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Abstract
Auditory perception is an essential part of a robotic system in Human-Robot Interaction
(HRI), and creating an artificial auditory perception system that is on par with human
has been a long-standing goal for researchers. In fact, this is a challenging research topic,
because in typical HRI scenarios the audio signal is often corrupted by the robot ego
noise, other background noise and overlapping voices. The traditional approaches based
on signal processing seek analytical solutions according to the physical law of sound
propagation as well as assumptions about the signal, noise and environments. However,
such approaches either assume over-simplified conditions, or create sophisticated models
that do not generalize well in real situations.

This thesis introduces an alternative methodology to auditory perception in robotics
by using deep learning techniques. It includes a group of novel deep learning-based
approaches addressing sound source localization, speech/non-speech classification, and
speaker re-identification. The deep learning-based approaches rely on neural network
models that learn directly from the data without making many assumptions. They
are shown by experiments with real robots to outperform the traditional methods in
complex environments, where there are multiple speakers, interfering noises and no a
priori knowledge about the number of sources.

In addition, this thesis addresses the issue of high cost of data collection which arises
with learning-based approaches. Domain adaptation and data augmentation methods are
proposed to exploit simulated data and weakly-labeled real data, so that the effort for
data collection is minimized. Overall, this thesis suggests a practical and robust solution
for auditory perception in robotics in the wild.

Keywords: robotic auditory perception, deep learning, sound source localization, DOA
estimation, domain adaptation, multi-task learning, human-robot interaction.
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Résumé
La perception auditive est un élément essentiel d’un système robotique destiné à interagir
avec des humains. La création d’un système de perception auditive artificielle aussi
performant que celui de l’homme a été un objectif de longue date pour les chercheurs. En
fait, il s’agit d’un sujet de recherche difficile, car dans les scénarios d’interaction typiques,
le signal audio est souvent corrompu par le bruit produit par le robot lui-même, d’autres
bruits de fond ou encore des voix qui se chevauchent. Les approches traditionnelles sont
basées sur le traitement du signal et recherchent des solutions analytiques en fonction
de la loi physique de propagation du son, et des hypothèses sur le signal, le bruit et
l’environnement. Cependant, ces approches ou bien se reposent sur des hypothèses trop
simplificatrices ou bien utilisent des modèles trop sophistiqués. Pour ces raisons, les
approches traditionnelles sont difficiles à appliquer dans des situations réelles.

Cette thèse présente une méthodologie alternative s’appuyant sur des méthodes d’ap-
prentissage à partir de données. Plus spécifiquement, elle introduit un ensemble de
techniques basées sur de réseaux de neurones profonds pour accomplir des tâches telles
que localisation des sources sonores, distinction entre parole ou non, et ré-identification
des locuteurs. L’intérêt de ces approches est du faire peu d’hypothèses sur les modèles de
propagation du son. Des expériences avec de vrais robots montrent qu’elles surpassent
les méthodes traditionnelles dans des environnements complexes avec plusieurs locuteurs,
avec des bruits interférents et sans connaissance a priori du nombre de sources.

En outre, cette thèse aborde la question du coût élevé de la collecte de données, question
qui se pose inéluctablement avec les approches basées sur l’apprentissage. Des méthodes
d’adaptation de domaine et d’augmentation des données sont proposées pour exploiter
des données simulées et des données réelles faiblement étiquetées, de sorte que l’effort
pour la collecte de données soit minimisé. Dans l’ensemble, cette thèse suggère une
solution pratique et robuste pour la perception auditive en robotique dans des situations
d’interaction naturelles.

Mots clés : perception auditive en robotique, apprentissage profond, localisation sonore,
évaluation de lat direction d’arrivée du son, adaptation de domaine, apprentissage
multi-tâches, interaction homme-robot.
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1 Introduction

Robots have long been envisioned to be capable of interacting naturally and socially
with humans (Breazeal, 2004; Dautenhahn, 2007). To realize this, robots are required
to perceive the environments, make decision and act accordingly in a human-like way.
Robotic perception is the first stage of this “perceive-decide-act” processing pipeline.
Thus, precise and timely perception is the foundation for subsequent reasoning and
decision making.

Like humans, robots perceive the environments using multiple modalities, including
audio, visual and haptic. Among these modalities, audio signals carry unique and a
substantial portion of the information conveyed during interactions. Audio signals are
“omni-directional”, and complement the visual signal for object tracking when objects are
outside the field of view or occluded. Speech, which includes both verbal and non-verbal
information, is the major form of communication between humans and robots. Voices
can be used to recognize people’s identities, which is important for maintaining long-term
interactions. Moreover, various sound events characterize the environment where the
interactions take place.

As an essential part of the robotic perception, Robotic Auditory Perception or Robot
Audition (Okuno and Nakadai, 2015) interprets information about environments as well
as the interacting persons from signals captured by audio sensors. This thesis presents
several deep learning based approaches for robotic auditory perception. As an overview
of this research, the rest of this chapter is organized as follows: First we introduce the
specific components of robotic auditory perception and the challenges in this topic. Then
we explain the drawback of traditional approaches, and that leads to our motivation
of adopting deep learning. Based on the motivation and background of the MuMMER
project, we set the specific objectives of thesis. Finally, our contributions are summarized.

1



Chapter 1. Introduction

Multi-channel
Audio Signal Sound Source Localization Sound Source Separation

Single-channel audio analysis:
Sound Classification
Speaker Recognition
Speech Recognition
Emotion Recognition

Figure 1.1 – The core functions of robotic auditory perception. Although most existing
approaches apply these functions sequentially, there are exceptions (including our ap-
proaches) which solve two or more functions jointly. The focus of this thesis is highlighted
with bold fonts.

1.1 Components of Robotic Auditory Perception

The human counterpart, human auditory perception, can pay attention to and extract
information of a single voice in complex environments with multiple overlapping voices
and noises, which is a situation known as the Cocktail Party Effect (Cherry, 1953; Haykin
and Chen, 2005). The robotic auditory perception is expected to do the same, and
more specifically, it should interpret information such as locations or Direction-of-Arrival
(DOA) of the sound sources, type of the sound sources or events, speaker identity, speech
content, and nonverbal cues in voices (such as emotion). Several specific technologies are
involved for extracting these pieces of information, and they are applied sequentially in
most auditory perception systems (Okuno and Nakadai, 2015; Argentieri et al., 2015)
(Fig. 1.1):

• First, individual sound sources are localized with Sound Source Localization (SSL).
• Then, given the spatial information about the sound sources, Sound Source Separa-

tion (SSS) is applied to extract individual signals from different locations.
• Finally, the separated single-channel audio signals are processed for Sound Classifi-

cation, Speech Recognition, Speaker Recognition and/or Emotion Recognition.

1.2 Challenges in Robotic Auditory Perception

Although substantial progress has been made recently in sound source localization, sound
source separation, speech recognition, etc., their practical application in robotics is
still limited. Especially, creating a human-level robotic auditory perception system is
many years away. This is because several characteristics in the context of Human-Robot
Interaction (HRI) make the auditory perception particularly challenging (Argentieri
et al., 2015):

• Environments of HRI are dynamic and unpredictable. There are often multiple
simultaneous speakers, of which the number is not known a priori. In addition,
there are other unexpected background noises. All of these sounds reverberate in
various room conditions.
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• The choice of microphone array is limited in terms of size and budget of the robot.
Because the microphone array is embedded on the robot, the possibility of using
large microphone array and their corresponding technologies in array processing
is excluded. Moreover, for robots designed with a tight budget, it is unlikely to
use expensive microphones, such as high order ambisonic microphones. In fact, the
number of microphones on the majority of the existing robots are between two and
eight (Rascon and Meza, 2017).

• The physical embodiment of the robot generates noise and additional uncertainty.
Some parts of the robot itself, such as fans, motors and speakers, may induce noise,
which is termed ego-noise. Furthermore, the solid body also scatters the sound,
making the approximation of the transfer function inaccurate.

• For practical applications, the perception response should be real-time. The com-
putation complexity is limited so that prediction can be made within a guaranteed
short delay.

1.3 Traditional Approaches

The traditional approaches for sound source localization and sound source separation are
based on audio or array signal processing. These approaches seek analytical solutions
according to the physical law of sound propagation without using labeled samples. The
derivation of the solutions relies on assumptions about the acoustic environments, which
may include known Head Related Transfer Functions (HRTFs), free-field anechoic sound
propagation, high Signal-to-Noise Ratio (SNR), spatially white noise, and a known
number of sources.

However, these assumptions may not hold well in real-world applications. For example,
HRTF may not be precisely estimated due to the error in measurement of the microphone
array geometry or obstacles (e.g. robot head) scattering the sound propagation in a
way that is too complex to model. While direct measurement of the HRTF provides
better estimation, it requires specialized equipment and significant amount of work.
Moreover, there are often multiple simultaneous sound sources in the environments,
and the number of sound sources is not known. The discrepancy between assumptions
and reality may lead to significant performance degradation. Sophisticated modeling of
a specific complex environment may mitigate the problem, but it is not clear how to
generalize it as exhaustive modeling of all types of environments is unlikely.

1.4 Deep Learning for Auditory Perception

Alternative to traditional approaches, this thesis adopts a methodology of using Deep
Neural Networks (DNNs) for auditory perception. Starting from automatic speech
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recognition (Bourlard and Morgan, 1994; Hinton et al., 2012), there have been many
successful applications of DNNs in audio-related tasks (Purwins et al., 2019). With
the radical increase of computational power and better optimization methods in recent
years, it is now possible to train deeper and more complex neural network models which
have been shown to outperform traditional signal processing approaches in challenging
acoustic conditions. The deep learning approaches are advantageous in the following
aspects:

• Instead of relying on physical laws of sound propagation, the deep learning ap-
proaches build models from training samples. Thus, they do not require many
assumptions about the environment. In theory, DNNs are universal function approx-
imators (Hornik, 1991; Zhou, 2020). That is, they can approximate any continuous
function to an arbitrary accuracy, if the network size (in terms of depth or width)
is large enough. In practice, as long as sufficient training data under the target
conditions are available, it is possible to train neural network models for effective
applications in dynamic environments.

• Neural networks are capable of maintaining implicit prior models of the target
signals. In fact, humans use prior knowledge about sounds to help their auditory
perception. Studies have shown that native listeners are better than non-native
listeners at sentence processing in noisy environments (Florentine et al., 1984;
Cooke et al., 2008). As for the neural networks, since they learn from examples,
the features of the target audio signals in these examples are implicitly modeled by
the neural networks. However, for signal processing approaches, direct modeling of
audio signals, such as speech, is fundamentally difficult.

• Neural networks can be easily stacked and combined to create Multi-Task Learning
(MTL) models or end-to-end models. MTL allows the task-specific knowledge to be
shared among related tasks, so that they can help each other and create a synergy.
The end-to-end design allows the indirect tasks (e.g. sound source localization with
respect to speaker recognition) to be optimized directly for the target task at the
end of the sequential processing pipeline, so that the error does not propagate
through the pipeline. Examples are the increasing number of works in beamforming
neural networks for far-field automatic speech recognition (Xiao et al., 2016; Braun
et al., 2018; He et al., 2020)

Despite the success of deep learning approaches in many audio signal processing applica-
tions, some aspects of deep learning based auditory perception have not been studied in
depth:

• Simultaneous detection and localization of multiple sound sources in real HRI
scenarios. As previously mentioned, in real HRI scenarios there may be multiple
simultaneous sound sources and no a priori knowledge about the number of them,
so a practical SSL system is supposed to detect and localize all of them. However,
most of the previous studies on deep learning based approaches (which we will
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summarize in more detail in Section 2.1.2) either only address localization of a
single sound source, or overlook the fact that the number of sound sources is not
known.

• Learning with limited resource. It is known that the deep learning based approaches
rely heavily on a large number of labeled and unbiased training data. However,
acquisition of labeled robotic audio data is especially costly. This is because audio
data on distinct types of microphone arrays are radically different. Each type
of microphone array requires individual data collection. In addition, annotation
of sound source locations requires special procedure and external devices during
the data collection, as the locations cannot be precisely labeled using the audio
data alone. Instead of using real audio data, previous approaches have commonly
used simulated data for training. However, simulation differs from the reality,
therefore induces bias in the training data. Alternative learning techniques that
train auditory perception models with limited data collection effort have not been
well studied.

• Multi-task learning for auditory perception in robotics. As we have seen, an auditory
perception system consists of many functions, but most of the previous studies
consider them as separated modules in a sequential pipeline. There have been
some works on joint sound source localization and separation (Mandel et al., 2010;
Deleforge et al., 2013), joint localization and sound classification (May et al., 2011a;
Taghizadeh et al., 2011; Crocco et al., 2017), as well as joint localization and speaker
recognition (May et al., 2012). Nevertheless, the use of MTL neural networks for
robotic auditory perception has not been well investigated.

1.5 Objectives

The vision of this thesis is to develop a practical deep learning based system for auditory
perception in robotics with a focus on the following perception functions:

• Direction-of-arrival estimation;
• Speech/non-speech classification;
• Speaker re-identification.

These functions are the fundamental components of a full auditory perception system.
The DOA estimation detects the sound sources and provides their spatial information for
subsequent processing. Speech/non-speech classification enables the robot to distinguish
speech from other sounds and pay attention to human actions. Understanding people’s
identity with speaker re-identification is the basis of long-term interactions. Moreover,
the studies of these topics suggest a framework that can incorporate the other perception
functions, such as speech and emotion recognition.
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(a) Pepper. (b) An example HRI scenario.

Figure 1.2 – The robot Pepper and a typical HRI scenario where a robot interacts with
multiple persons.

Based on the previous discussion about the unsolved topics, the specific objectives of
this thesis include:

• Investigate deep learning approaches for DOA estimation of multiple speakers,
particularly under the condition that the number of speakers is not known a priori.

• Investigate domain adaptation methods for training DOA estimation DNNs with
unlabeled or weakly-labeled real audio data.

• Investigate multi-task learning for auditory perception in robotics.

1.6 Background of Research

The research of this thesis was conducted within the MuMMER project (MultiModal
Mall Entertainment Robot)1. The goal of this project is to build socially intelligent
robots for entertainment in public spaces (Foster et al., 2016, 2019).

The robot platform Pepper2 from Softbank Robotics has been used for this project
(Fig. 1.2a). The robot is a 1.3 meter tall humanoid robot, equipped with four co-planar
microphones as well as RGB and depth cameras. The cooling fans inside the robot head
are very close to the microphones. The strong ego-noise produced by the fans, and the
dynamic environments of HRI (Fig. 1.2b), make the auditory perception very challenging.

The approaches proposed in this thesis are all verified by experiments with the real
robot. The result of the auditory perception is then combined with visual perception for
long-term audio-visual person tracking and characterization (Foster et al., 2019).

1http://mummer-project.eu/
2https://www.softbankrobotics.com/emea/en/pepper
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1.7 Contributions

This thesis reports the following contributions:

• a deep learning framework for joint sound source detection and DOA estimation in
realistic HRI scenarios with the presence of short input, an unknown number of
overlapping voices and strong ego-noise. For this, we proposed spatial spectrum
output coding, that can handle an arbitrary number of sources. We study various
input representations and network architectures. Our proposed approaches are
shown to significantly outperforms traditional signal processing approaches. Part
of this work is published in (He et al., 2018a).

• several domain adaptation approaches for training DOA estimation models with
fully-labeled simulated data, and weakly-labeled or unlabeled real data. These
approaches include a weakly-supervised domain adaptation method using the
number of sound sources as weak label, and an unsupervised adaptation method
with domain adversarial training (Ganin and Lempitsky, 2015). The weakly-
supervised adaptation scheme is extended with data augmentation. With the
extension, the weakly-supervised adaptation reaches a performance on par with
the supervised approaches. This study suggests a practical deployment scheme for
DNN based DOA estimation in real robotic application with minimal effort for
data collection. Part of this work is published in (He et al., 2019).

• a novel multi-task neural network approach for joint DOA estimation and speech/non-
speech classification. The proposed method achieves significantly better results in
terms of speech/non-speech classification and speech source localization, compared
to methods that separates localization and classification. Part of this work is
published in (He et al., 2018b).

• another multi-task neural network for speaker embedding of overlapping voices
using DOA estimation as an auxiliary task. This approach outperforms a speaker
embedding DNN using beamformed signals as input in multi-source segments.

• more than 50 hours of original audio data with real robots, including sounds (speech
and noise) played from loudspeakers as well as voices of human talkers. These data
include as well the frame-level annotations of sound source locations, sound type,
and speaker identities. We have released the data3 for benchmarking of future
studies on auditory perception in robotics.

1.8 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 summarizes the previous research on related topics of auditory perception.

3https://www.idiap.ch/dataset/sslr/
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Chapter 1. Introduction

• Chapter 3 presents our research on deep neural networks for multi-speaker DOA
estimation. A description of our data collection procedure is also included.

• Chapter 4 presents several domain adaptation approaches for DOA estimation
models when training resource is limited.

• Chapter 5 studies a MTL neural network for joint DOA estimation and speech/non-
speech classification.

• Chapter 6 introduces a MTL neural network for extracting embeddings of multiple
speakers, which can be used for speaker re-identification.

• We conclude and suggest future research ideas in Chapter 7.
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2 Literature Review

This chapter reviews the related research on auditory perception in robotics. As there
is an extensive amount of literature on this topic, we limit the review to the studies
of sound source localization, domain adaptation, and multi-task learning for auditory
perception, as these are most relevant to the subsequent chapters of this thesis.

2.1 Sound Source Localization

Sound Source Localization (SSL) is the task of estimating locations of sound sources from
audio signals captured by audio sensors (i.e. microphones). It can be separated into
estimation of Direction-of-Arrival (DOA) and distance (Fig. 2.1). The DOA estimation
is categorized into 1-dimensional, which is estimating the azimuth (horizontal direction)
alone, and 2-dimensional, which is estimating both the azimuth and elevation of the
sound sources.

In the context of robotics, most of the literature of SSL addresses DOA estimation because
knowing the DOA is of greater interest and estimating distance is more challenging.
DOA (or azimuth alone) allows robots to turn to speakers and respond to interactions.
Associating sound sources to objects detected from vision system also requires DOA
estimation. Many of the DOA estimation approaches rely on a grid search on the
candidate DOAs, these approaches can be extended to location estimation under near-
field conditions by replacing the DOA candidate set with locations. Therefore, it is
common to see DOA estimation and SSL being used interchangeably in the literature.

The basis of SSL is that sound sources from various locations travel through different paths
before arriving at the microphones, and such information is embedded in the captured
audio signals. That is, in the signal processing language, the frequency-domain signals
X(ω) ∈ CM captured by M microphones are mixtures of N sound sources Si(ω) ∈ C
filtered by different transfer functions Hi(ω;ϕi, θi, ρi) ∈ CM , and an additional noise
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Figure 2.1 – Targets of sound source localization : azimuth ϕ, elevation θ and distance ρ.
In typical reference coordinate systems, the origin is the center of the microphone array,
and x-y plane is the horizontal plane.

V(ω) ∈ CM :

X(ω) =
N∑
i=1

Hi(ω;ϕi, θi, ρi)Si(ω) + V(ω), (2.1)

where ω is the frequency. Depending on the sound source location (ϕi, θi, ρi) (Fig. 2.1), the
transfer functions filter the source signals for each channel by different delays, attenuation,
diffraction and reverberation.

The information about the sound source locations, termed sound localization cues,
are extracted explicitly or exploited implicitly for both robotic and human auditory
perception. The most common cues are:

• Time Difference of Arrival (TDOA). Because the microphones are at different
distances to the sound source, the sound wave arrives at the microphones with
different delays (Fig. 2.2). The TDOA can be mapped back to space to get an
estimation of the DOA. In the context of human ears or binaural microphones with
artificial pinnae, the TDOA is also called Interaural Time Difference (ITD).

• Inter-channel Phase Difference (IPD). IPD for narrowband signals is the equivalent
concept of TDOA in the frequency domain. While TDOA requires estimation,
IPD can be directly computed. However, the mapping from IPD of high-frequency
signals to TDOA or spatial locations is ambiguous due to spatial aliasing.

• Inter-channel Level Difference (ILD). The different distances of the sound propaga-
tion paths and the objects blocking sound propagation cause sound level differences
between channels. For example, the human head or robot head can block the
sound, so that when a sound is coming from the left or the right, the sound is
more attenuated when it arrives at the ear on the opposite side. ILD is more
prominent for high frequency signals as they are more affected by obstacles, while
low frequency signals can travel around obstacles due to diffraction.

• Spectral Cues. Human or artificial pinnae (outer ears) amplify or attenuate different
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Wavefront Travel paths

ϕ
δ

d

Figure 2.2 – TDOA caused by different sound travel distances. In this example, the
sound wave is planar as a far-field condition is assumed. δ is the difference in travel
distance, and the TDOA is δ/c, where c is the sound speed.

frequencies depending on the DOA of the signal. Such changes of response power
in certain frequencies are the spectral cues. They can be used to distinguish sounds
coming from the front or the back, which can be confusing for two microphones
when relying on TDOA and ILD alone. Moreover, the spectral cues of a single
microphone can be used for sound source localization if the source signal prior
model and sound propagation are learned (Saxena and Ng, 2009; Georganti et al.,
2011; El Badawy et al., 2017).

Once the localization cues are obtained, cue-to-location mapping is carried out to estimate
the sound locations. The mapping depends on the type of localization cue and on a
propagation model. This propagation model describes how sound is propagated to the
microphones, or in other words, how the transfer functions H in Eq. (2.1) are like.

Depending on how the mapping procedure and propagation model are obtained, SSL
methods can be categorized into traditional signal processing approaches and learning-
based approaches. As we have mentioned in the introduction (Section 1.3), the traditional
approaches rely on explicit modeling of sound propagation according to the acoustic
environments and seek analytical solution based on the propagation model. In contrast,
the learning-based approaches do not require explicit modeling of sound propagation.
Instead, the propagation model as well as the mapping procedure are learned jointly from
training samples, which are samples of the captured sound signals and corresponding
sound locations.

In the following sections, we review the two groups of SSL approaches with an emphasis
on those which are most related to our work. For more comprehensive reviews on sound
source localization in robotics, readers are referred to (Argentieri et al., 2015) and (Rascon
and Meza, 2017).

2.1.1 Traditional Signal Processing Approaches for SSL

In this section, we summarize the propagation models and mapping procedures of the
traditional signal processing approaches.
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Propagation Models

Propagation models are required for all traditional signal processing approaches. They
are either estimated or measured. The estimation is normally based on simplified
assumptions about the environments. For example, free-field propagation is commonly
assumed, which means that there is no object in the space. Thus, the sound travels in
a single direct path to the microphone, without reflection and scattering. In this case
the transfer functions are simply time delays (phase shift in the frequency domain). For
more accurate propagation modeling, the geometry of the robot head is simplified as a
sphere, so that sound diffraction caused by the head can be taken into account (Nakadai
et al., 2000, 2003; Kim et al., 2011, 2015). While most literature does not directly model
the reverberation (which is considered as a part of the noise term V in Eq. (2.1)), there
are a few approaches which include early reverberations in their propagation models, so
that the DOA of the early reverberation can be exploited for SSL (An et al., 2018, 2020;
Di Carlo et al., 2019).

Besides estimation, the propagation model can also be obtained through measurement.
In binaural sound source localization research, measured Head Related Transfer Functions
(HRTFs) are commonly used (Gardner and Martin, 1995; Algazi et al., 2001; Wierstorf
et al., 2011). HRTF measurement requires an anechoic chamber and specific devices, and
this is not practical for all research groups. Even if the HRTFs are obtained, an HRTF
only constitutes the direct path part of the transfer function, and the reverberations
need to be coped additionally.

Mapping Procedures

The mapping procedures from localization cue to location can be categorized into three
types: TDOA-based, grid search and clustering-based.

TDOA-based. The TDOA-based methods first estimate the TDOA, and then infer
the sound locations from the estimated TDOA. Among the various proposed methods,
Generalized Cross-Correlation with Phase Transform (GCC-PHAT) (Knapp and Carter,
1976) is the most popular one due to its effectiveness and simplicity. According to
GCC-PHAT, the TDOA is estimated by finding the delay that maximizes the generalized
cross correlation between two channels:

TDOA = arg max
τ

∫ π

−π
Ψ(ω)X1(ω)X2(ω)∗ejωτdω, (2.2)

where ∗ denotes complex conjugation, and Ψ(ω) is the phase transform:

Ψ(ω) = 1

|X1(ω)X2(ω)∗| . (2.3)
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The intuitively-designed phase transform flattens the contribution of signals in all fre-
quencies, and under ideal conditions (two channels are exactly the same except for a
delay and scaling), the generalized cross correlation becomes a unit impulse shifted by
the TDOA. It has been shown that GCC-PHAT is robust to reverberation (Brandstein
and Silverman, 1997). However, the effectiveness of GCC-PHAT relies on the assumption
that the target signal dominates all frequency bins. In the presence of interfering sound
sources, frequency masking can be applied to select the frequency bins that correspond to
the target sound source for computing the cross correlation (Valin et al., 2003; Kim et al.,
2015; Grondin and Michaud, 2015). Although the GCC-PHAT is designed to estimate
the TDOA of a single sound source, other peaks in the cross correlation can also be used
to localize multiple sources with an optional modification of the filter function (Kwon
et al., 2010).

Once the TDOAs are estimated, sound locations are solved according to the propagation
model. For example, in the simple case of two microphones under the free-field and
far-field assumptions (Fig. 2.2), the DOA can be solved from the TDOA and the geometry
of the microphone array:

ϕ = arccos TDOA · c
d

, (2.4)

where c is the speed of sound and d is the distance between the microphones. However,
with only two microphones, sound sources from different directions in a cone (“cone of
confusion”) can produce exactly the same TDOA, therefore more microphone is required
for unambiguous 2D DOA estimation. When using more than two microphones, the
estimation of the DOA from pairwise TDOAs may be overdetermined, thus additional
criteria such as least square (Smith and Abel, 1987; Brandstein et al., 1997; Apolinario
et al., 2019) or maximum likelihood (Urruela and Riba, 2004; So et al., 2008) are needed.

Grid-search. The second type of mapping procedure relies on searching the solution on
a grid of candidate DOAs or locations. These grid search based approaches compute a
score for each DOA, and the DOAs with the maximum scores are the estimations. The
scores constitute a function of DOA, which is known as a spatial spectrum or angular
spectrum (Fig. 2.3). There are numerous methods to compute them. Each of these
methods rely on different assumptions and objectives.

A popular group of these methods are based on beamforming or steered response. These
approaches apply filters (linear transform) and summation over all channels (i.e. filter-and-
sum), so that the signal assumed to come from a target direction is isolated. Then, criteria
derived from the steered response are considered as the spatial spectrum. Examples of this
type are Steered Response Power with PHAse Transform (SRP-PHAT) (DiBiase et al.,
2001) and Signal-to-Noise Ratio (SNR) estimation with Minimum Variance Distortionless
Response (MVDR) beamformer (Capon, 1969; Blandin et al., 2012).

Besides beamforming, there are many other ways to compute the spatial spectrum. For
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DOA

SRP-PHAT

Figure 2.3 – Example spatial spectrum of SRP-PHAT. The abscissae of the two peaks in
the spatial spectrum indicates the two predicted DOAs.

example, it can be obtained through the estimation of the subspace spanned by the signal
from the target direction in the Spatial Covariance Matrix (SCM). This is the basis of
the well-known Multiple Signal Classification (MUSIC) approach (Schmidt, 1986) and
its variants (Dmochowski et al., 2007; Nakamura et al., 2009, 2011). Another example is
the coherence between signals after inverting the HRTF (Keyrouz et al., 2006).

Clustering-based. The third type of mapping procedure is based on clustering (Mandel
et al., 2006, 2010; Cobos et al., 2011; Blandin et al., 2012). These approaches assume
there is one dominant sound source in each time-frequency bin. Therefore, each bin can
be associated with a target sound source. This is accomplished by clustering the bins
iteratively with the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

2.1.2 Learning-based Approaches for SSL

As we have seen from the previous section, the traditional signal processing approaches
require explicit modeling of the sound propagation. However, sound propagation in real
situation is very complex due to sound reflection, diffraction and scattering. Simplifying
assumptions are made in order to obtain analytical solutions. Therefore, discrepancy
between the assumptions and reality may severely impact their performance.

Recently, researchers have proposed learning-based approaches, which can learn the
propagation model from sample data instead of manually specifying it. Specifically, these
approaches create machine learning models with adaptable parameters that describe a
relation between the features of the captured signals and sound locations. The parameters
are searched through a training process to make the model fit the relation observed on
the training samples. During test time, the model is expected to make predictions on
unseen data based on the relation specified by the model parameters.

In the supervised-learning setting, the training samples are pairs of captured signals
and corresponding location labels. Although most of the learning-based SSL approaches
assume the supervised-learning setting with sufficient number of labeled samples, there
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are exceptions that apply learning without labels (unsupervised) which we will introduce
in detail in Section 2.2.

Generative and Discriminative Approaches

There are two ways to model the relation between the features and labels: generative and
discriminative. The generative approaches model the joint distributions of the features
and the labels. For prediction, the posterior probability of the label conditioned on
the features is derived from the joint distribution. Examples of these approaches are
modeling binaural features and DOA with Gaussian Mixture Model (GMM) (May et al.,
2011b, 2015; Ma et al., 2015b), and probabilistic piecewise-affine mapping (Deleforge and
Horaud, 2012; Deleforge et al., 2015b).

The discriminative approaches approximate mappings from features to labels, without
necessarily using a probabilistic framework. Artificial Neural Networks (ANNs) are well
suited for such an approach, as they can in theory approximate any continuous func-
tion (Hornik, 1991; Zhou, 2020). In particular, with the advancement of computational
power as well as theories in deep learning, there has been a surge of studies on using Deep
Neural Networks (DNNs) for sound source localization in recent years. However, applying
deep learning is not trivial, the understanding of sound signal and sound propagation
is needed for designing effective input representation, output coding, neural network
structure as well as training processes. These elements can have a high impact on the
results and should be carefully chosen to avoid underfitting (the model does not describe
well the training samples) or overfitting (the model does not generalize well to unseen
data), both of which undermine the performance of the models. We summarize recent
studies (Table 2.1) in term of these elements.

Input Representation

Both high-level hand-crafted features and low-level representations have been used as
input of neural networks. The high-level hand-crafted features usually correspond to
those which have been used in the traditional signal processing approaches, including
ITD (Palmieri et al., 1991; Berglund and Sitte, 2005; Youssef et al., 2013), IPD (Datum
et al., 1996; Berglund and Sitte, 2005; Pang et al., 2019), ILD (Palmieri et al., 1991;
Datum et al., 1996; Berglund and Sitte, 2005; Youssef et al., 2013; Ma et al., 2015a,
2017; Pang et al., 2019), MUSIC eigenvectors (Takeda and Komatani, 2016b,a), Cross-
Correlation Function (CCF) (Ma et al., 2015a, 2017), and GCC-PHAT coefficients (Xiao
et al., 2015; He et al., 2018a; Ferguson et al., 2018; Vesperini et al., 2018; Vecchiotti
et al., 2018).

Recently, instead of explicit feature extraction, some approaches use directly the low-level
representations of the signal (i.e. raw signal) and expect the neural networks to learn by
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Table 2.1 – Summary of neural network based SSL approaches. We include our approaches (will be presented in Chapter 3) for
comparison. “1 (w noise)” in the second column means these approaches try to localize one target sound source from a mixture
of directional interfering noises. The third column “a priori” indicates whether a priori knowledge about the number of sources is
required for multi-source localization.

Approach # of Sources a priori Input Output Architecture

Palmieri et al. (1991) 1 - ITD, ILD Gaussian coding MLP
Neti et al. (1992) 1 - Power spectrum Gaussian coding MLP

Datum et al. (1996) 1 - IPD, ILD Gaussian coding MLP
Berglund and Sitte (2005) 1 - ITD, IPD, ILD Posterior probability PLSOM
Murray and Erwin (2011) 1 - Spectral analysis Posterior probability MLP

Youssef et al. (2013) 1 - ITD, ILD DOA MLP
Xiao et al. (2015) 1 - GCC-PHAT coefficients Posterior probability MLP

Ma et al. (2015a, 2017) Multiple required CCF, ILD Posterior probability MLP
Ma and Brown (2016) 1 (w noise) - CCF, ILD Posterior probability MLP

Takeda and Komatani (2016b) 0 or 1 no MUSIC eigenvectors Posterior probability modified MLP
Takeda and Komatani (2016a) 0, 1, 2 no MUSIC eigenvectors Marginal posterior probability modified MLP

Yalta et al. (2017) 0 or 1 no Power spectrogram Posterior probability CNN
Chakrabarty and Habets (2017) 1 - Phase spectrogram Posterior probability CNN (ResNet)

Pertilä and Cakir (2017) 1 - Magnitude spectrogram TF-mask (for SRP-PHAT) CNN
Adavanne et al. (2018) Multiple no Magnitude and phase spect. (DOA-wise) Posterior prob. CRNN

Chakrabarty and Habets (2019) Multiple required Phase spectrogram (DOA-wise) Posterior prob. CNN
Ferguson et al. (2018) 1 - GCC, cepstrogram DOA and distance CNN
Perotin et al. (2018) 1 - Ambisonic intensity vector Soft-assigned (1 and 0.5) CRNN

Vesperini et al. (2018) 1 - GCC-PHAT 2D coordinate CNN
Vecchiotti et al. (2018) 1 - GCC-PHAT, logmel 2D coordinate CNN

Pak and Shin (2019) Multiple required sin and cos of IPD Direct-path IPD MLP
Pang et al. (2019) 1 - IPD, ILD Posterior probability CNN

Pertila and Parviainen (2019) 1 - GCC-PHAT, logmel TDOA LSTM
Tang et al. (2019) 1 - Ambisonic intensity vector DOA or posterior prob. CRNN

Vecchiotti et al. (2019) 1 - Raw waveform Posterior probability CNN
Mack et al. (2020) 1 (w noise) - Phase spectrogram Posterior probability CNN with LSTM attention

Our approaches
He et al. (2018a) Multiple no GCC-PHAT Gaussian spatial spectrum MLP
He et al. (2018a) Multiple no GCC-PHAT on filter bank Gaussian spatial spectrum CNN, TSNN
He et al. (2018b) Multiple no STFT (real & imaginary) Gaussian spatial spectrum CNN (ResNet)
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themselves to extract the optimal localization features for SSL. These representations
include raw waveform (Vecchiotti et al., 2019) in the time domain, power spectrum (Neti
et al., 1992) in the frequency domain, ambisonic intensity vectors (Perotin et al., 2018;
Tang et al., 2019) in the spherical harmonic domain, and several kinds of representa-
tions in the Time-Frequency (TF) domain. For instance, there are power/magnitude
spectrogram (Yalta et al., 2017; Pertilä and Cakir, 2017; Adavanne et al., 2018) phase
spectrogram (Chakrabarty and Habets, 2017, 2019; Adavanne et al., 2018; Mack et al.,
2020), and raw Short-Time Fourier Transform (STFT) with its real and imaginary
parts (He et al., 2018b).

Output Coding

Output coding defines how labels are encoded into desired network outputs, and how the
network outputs are decoded into predictions. The type of output coding dictates the
choice of the loss function used during training.

Single sound source localization is commonly considered as either a regression problem or
a classification problem. In the regression setting, the network directly outputs the DOA
or locations as a continuous value (Youssef et al., 2013; Vesperini et al., 2018; Vecchiotti
et al., 2018; Tang et al., 2019). These approaches usually use Mean Squared Error (MSE)
between the prediction and ground truth as the loss function.

In the classification setting (Xiao et al., 2015; Takeda and Komatani, 2016b; Vecchiotti
et al., 2019; Tang et al., 2019; Mack et al., 2020), the network outputs a vector that
is interpreted as the posterior distribution probability. Each element in the vector
is associated with a location or DOA, and its value is the posterior probability of the
sound1 coming from that location (conditioned on the given input signal). The desired
output is a one-hot vector, with value 1 at the ground truth location and 0 at other
locations. During test time, the prediction is the direction with the highest output value.
A label of “silence” can be added to the set of classes, so that the model can detect and
localize a sound source without a priori knowledge about whether it is active (Takeda
and Komatani, 2016b). A softmax function is often used at the output layer, so that the
output values sum to one, and a cross-entropy loss is used as the training target.

In contrast to the posterior probability coding, the soft-assigned spatial spectrum coding
relaxes the constraint of “one-hot” (hard assignment), so that the output values at the
directions that are next to the ground truth are assigned between 0 and 1. For example,
Gaussian coding uses a Gaussian function centered at the ground truth direction as
the desired output (Palmieri et al., 1991; Neti et al., 1992; Datum et al., 1996). As
another example, in (Perotin et al., 2018), the desired output values are 1 at the ground
truth direction, and 0.5 at its neighboring directions. In these approaches, the network

1In single sound source localization, it is assumed that there is one and only one sound source.
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output is no longer a distribution (because it does not sum to one), and it resembles the
spatial spectrum used in traditional signal processing approaches2. Soft assignment takes
account of the variance in DOA estimation and correlation among neighboring directions.
It is shown to generate better models than the hard assignment (Perotin et al., 2018).
In these approaches, a sigmoid function is often used at the output layer, so that the
output values are bounded between 0 and 1, and an MSE loss defined on the spatial
spectrum is often used together with it.

Posterior probability coding can be extended to multiple sound source localization, by
aggregating single sound source predictions over time (Ma et al., 2015a, 2017). Such an
approach first trains neural networks for localizing a single sound source, Then with the
assumptions of each time frame is dominated by one sound source, the neural network
predicts the posterior probability of the dominant sound source locations in each frame,
and the outputs are averaged over time to get the final spatial spectrum. However,
this method usually applies averaging at the utterance level, and is not applicable for
detecting multiple sound sources in a short frame.

Other types of output coding have been proposed for multiple sound source location at
the frame level. Marginal posterior probability coding is used for localization of maximum
two sound sources (Takeda and Komatani, 2016a). In this approach, the network outputs
two vectors, each of which encodes the posterior probability of the location of one sound
source. The sound source to vector assignment, which can be ambiguous, is resolved by
location-based ordering. Nevertheless, there might be some confusion for the network, as
sound sources from the same direction may be assigned to the first source or the second
source depending on the spatial location of other sound sources.

DOA-wise posterior probability coding is another approach (Adavanne et al., 2018;
Chakrabarty and Habets, 2019), where network is used for multi-class multi-label clas-
sification. Binary classification is applied to each direction, in which an output value
indicates the posterior probability of the presence of a sound in that direction. The
desired output is a hard-assigned spatial spectrum, with multiple 1s at the ground truth
directions and 0 for the rest. At test time, if there is no a priori knowledge about the
number of sources, a threshold of 0.5 is applied to the output values to find the prediction.
If the number of sources k is known3, the directions with the k highest values are the
prediction. A sigmoid function at the output layer and a binary cross entropy loss are
often used in this type of output coding.

Different from other approaches, we have proposed using a Gaussian based spatial
spectrum coding for multiple sound source localization, which we will introduce in
Chapter 3.

2In fact, the posterior probability coding is the hard-assignment case of the spatial spectrum coding.
3Strictly speaking, if the number of sources k is known, the network output can no longer be interpreted

as posterior probability.
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Network Architecture

The choices of network architectures depends on the input representation, output coding
and complexity of the problem. Early approaches, which normally relied on high-level
feature extraction, were primarily based on Multi-Layer Perceptron (MLP) (Palmieri
et al., 1991; Ma et al., 2015a; Xiao et al., 2015). As the high-level features already
contain direct information regarding the sound source locations, exploiting simple neural
networks may be sufficient.

However, for approaches with low-level input representation, deeper models are required,
so that high-level localization cues can be extracted implicitly by the network. In
addition, the low-level representations contain topological structures, that is information
is distributed along time and frequency axes. Thus, Convolutional Neural Networks
(CNNs) are commonly used for these inputs (Chakrabarty and Habets, 2017; He et al.,
2018a; Vecchiotti et al., 2018). For example, 1D convolutions are typically applied
to time-domain signals, and 2D convolutions are applied to time-frequency domain
signals. The weight sharing of the convolution kernels significantly reduces the number of
model parameters, making deep architectures possible. The usage of Residual Networks
(ResNets) have also been studied (Yalta et al., 2017; He et al., 2018b). With residual
connection added to the CNN, ResNet allows even deeper models to be trained without
being affected by the vanishing gradient problem.

While CNNs exploit the temporal structure of the sound signal, their receptive fields (the
part of the signal which the prediction is based on) are limited. Using Recurrent Neural
Networks (RNNs) allows network to incorporate information from an unlimited context.
For example, some methods use Convolutional Recurrent Neural Networks (CRNNs),
which are the combinations of CNN with recurrent layers (Adavanne et al., 2018; Perotin
et al., 2018).

Hybrid Approaches

Besides the learning-based approaches we have mentioned, there are hybrid approaches
that also use machine learning models, but do not directly model the relation between
signal and locations. Instead, these approaches use machine learning models to predict
some statistics that can be combined with traditional signal processing approaches for
location estimation. For example, DNN is applied for TDOA estimation (Pertila and
Parviainen, 2019; Di Carlo et al., 2019), and then TDOA to DOA mapping can be carried
out with a manually-specified propagation model. In other examples, DNNs are used for
estimating the TF mask of the target signal, which then can be used for weighting the
TF-bins for SRP-PHAT (Pertilä and Cakir, 2017) , computing the SCM for MUSIC (Xu
et al., 2017) or refining the IPD for clustering-based DOA estimation (Pak and Shin,
2019).
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Data Acquisition

Unlike traditional signal processing approaches, the performance of the learning-based
approaches heavily relies on a large number of unbiased training samples. In other words,
the training samples should cover various conditions in terms of sound locations, number
of sources, room and noise conditions. These training conditions should match those in
the target application scenarios. Otherwise, the training samples may not generalize well
to unseen audio data.

There are two main ways to acquire training data. The first way is real data collection by
audio recording. Sounds from loudspeakers or human talkers are recorded by microphone
arrays and their location labels are extracted with external devices, such as cameras (Dele-
forge et al., 2015b; He et al., 2018a) and motion capture systems (Löllmann et al., 2018),
or using robot motor sensor data (Deleforge et al., 2015a). Obtaining frame-wise labels
(active or silence for each source in each frame) requires further voice activity annotation,
either manually or automatic if clean source signal is available. The whole data collection
process for real data is costly and the collected data is exclusive for only the type of
microphone array that is used during the recording. Applying learning-based approaches
to new types of microphone arrays requires individual data collection. In addition to
manually controlled data collection, there has also been research on recording data auto-
matically with mobile robots. With the images captured from the cameras, the robots
can autonomously annotate or verify the sound source locations, either according to fixed
data collection procedures (Le Roux et al., 2015) or via self-supervised learning (Liu
et al., 2019).

Alternative to audio recording, training data can be obtained through acoustic simulation.
While simulation generates a large number of data with various conditions at low cost,
the simulated data is biased. The most commonly used room acoustic simulation
methods (Allen and Berkley, 1979; Kulowski, 1985), only handle over-simplified room
settings (Campbell et al., 2005; Habets, 2006). Recently, advanced simulation techniques
considering sound reflection and scattering caused by solid objects (e.g. robot head or
other objects in rooms) have been proposed (Nakadai et al., 2003; Schimmel et al., 2009;
Jarrett et al., 2012; Schissler and Manocha, 2016; Tang et al., 2019). Nevertheless, in
practice it is still difficult to measure and simulate the surfaces of complex solid objects,
thus simulation cannot perfectly reproduce the directivity and frequency response patterns
of the real microphone arrays. For binaural sound localization, simulation with measured
HRTFs can generate more realistic data (Ma et al., 2015a).

2.2 Domain Adaptation

Ideal machine learning settings assume a sufficient number of training data. However, in
reality, due to the high cost of data collection and annotation, labeled data of a target
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domain are not always available or sufficient. As a compromise for this case, data from
another different but related domain, the source domain, can be used for training. While
models can be well trained with the abundant data from the source domain, these models
are not optimal for the target domain, because of the discrepancy between two domains.
For example, SSL models trained with simulated data (source domain) may not perform
well in real applications (target domain). Domain Adaptation (DA) aims to solve such
an issue by exploiting data from both domains (Ben-David et al., 2010; Wang and Deng,
2018).

Domain adaptation is a branch of transfer learning, which studies how knowledge of a
task can be exploited for another related task (Pan and Yang, 2010; Zhuang et al., 2020).
In domain adaptation, source and target domains are homogeneous, that is they share an
identical feature space, whereas transfer learning also studies situations where source
and target domains are heterogeneous, that is they have distinct feature spaces. Domain
adaptation is also related to domain generalization (Blanchard et al., 2011; Motiian
et al., 2017), which is applied to situations where target domain data are not available.
In contrast, domain adaptation assumes there are target domain data, which might be
scarce in quantity or of which the exact labels are unavailable.

Depending on such label availability in the target domain, domain adaptation can be
classified into four categories:

• Supervised Domain Adaptation (SDA): labeled but scarce target domain data are
available;

• Unsupervised Domain Adaptation (UDA): labels are not available;
• Semi-Supervised Domain Adaptation (SSDA): some but not all of the target domain

data are labeled;
• Weakly-Supervised Domain Adaptation (WSDA): the target domain data are anno-

tated with related but not exact labels (weak labels).

Many domain adaptation approaches have been proposed. We will summarize their basic
ideas in the following section, and present how they have been used in sound source
localization.

2.2.1 Domain Adaptation Approaches

Common domain adaptation strategies include instance weighting, feature transformation,
parameter control and regularization. Instance weighting tries to weight samples so that
the loss function on the source samples is corrected to approximate that on the target
domain (Huang et al., 2007; Sugiyama et al., 2008).

The feature transformation strategy seeks to construct a common representation space,
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so that a model can be used for inference on both domains. This can be achieved through
aligning correlation on the data from both domains (Sun et al., 2016), or minimizing
some metrics between the source domain and target domain data distributions, like in
the Maximum Mean Discrepancy (MMD) approach (Borgwardt et al., 2006). Moreover,
domain-adversarial training creates a common representation space such that features
in this space cannot be distinguished for its domain by an additional network (domain
classifier) (Ganin and Lempitsky, 2015).

Parameter control is another strategy which fixes some parameters of a model, such as
the first n layers of a network, and fine-tuning the rest (Yosinski et al., 2014). In the
supervised adaptation setting, the loss function is usually domain-agnostic and can be
directly applied to the samples in the target domain to conduct the fine-tuning. The
knowledge from the source domain is transferred via the frozen parameters.

Regularization strategy is used when labels of the target domain data are not available. It
is based on heuristics about the unlabeled data. An example is the entropy minimization
principle (Grandvalet and Bengio, 2004; Yves and Yoshua, 2006; Long et al., 2016). The
entropy of the predicted labels is a measure of the class overlap. With the assumption
that classes are well separated, models that generate minimum prediction entropy are
favored. Pseudo-labeling is another type of regularization (Lee, 2013; Choi et al., 2019),
which works by iteratively updating model parameters with its own prediction as ground
truth. This is based on the continuity assumption, that is the samples with their features
close to each other are likely to share the same label.

2.2.2 Domain Adaptation for Sound Source Localization

As we have previously mentioned, the cost of data collection for learning-based sound
source localization methods is particularly high, while generating a large number of data
with simulation is easy. Under such a context, domain adaptation is a critical technique
for developing practical sound source localization systems. However, there have been so
far only a few studies on this topic.

Takeda and Komatani (2017) have investigated unsupervised domain adaptation with
entropy minimization for single sound source localization. In this study, the source domain
data are generated from measured anechoic transfer functions, and target domain data
are generated from measured reverberant transfer functions. A neural network is trained
for classification of sound locations, thus entropy minimization is applicable. This study
shows that unsupervised domain adaption is able to improve the localization performance.
However, the improvement is sensitive to the stopping criterion. If adaptation is not
stopped correctly, overfitting may occur and severely undermine the performance. This
study is extended in (Takeda et al., 2018) by adding a eliminative constraint on top of
entropy minimization. The eliminative constraint removes the least probable locations
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that are determined from the MUSIC spatial spectra, and reduces the risk of overfitting.

As we can see, domain adaption for multiple sound source localization neural networks,
in particular with simulated source domain and real target domain, has not been well
studied.

2.3 Multi-Task Learning for Auditory Perception

As mentioned in the introduction, robotic auditory perception consists of several compo-
nents (Section 1.1). They are integrated into a whole system by two different strategies:
sequential integration and joint integration. In the following sections, we will summarize
specific research on robotic auditory perception under these two settings.

2.3.1 Sequential Approaches

Sequential integration combines the components in a sequential pipeline (Fig. 1.1). The
processing of a component is independent of its subsequent ones. The components
can be studied individually and combined freely. For example, any single-channel
analysis component, such as automatic speech recognition, speaker recognition and sound
classification, can be used directly with the result of any sound source separation approach.
However, error and noise produced by each component can accumulate through the
pipeline. Thus, to obtain an optimal solution, subsequent components should ideally be
designed or trained to handle such noise. Moreover, the improvement in an intermediate
component may not necessarily yield better performance in its following components.
For example, a better speech enhancement system, that increases SNR of the audio
signal, does not necessarily improve the word error rate of a subsequent automatic speech
recognition module, because it can be trained to be robust to noise with noisy training
data.

In the following sections, we will first introduce approaches for sound source separation
as it is the key component that connects to all other components in a sequential auditory
perception systems. Then, examples of sequential systems are presented.

Sound Source Separation

Sound source separation tries to reconstruct source signals from sound mixtures. beam-
forming is a class of techniques for separating spatially distributed sound sources when
a priori knowledge about the sound source locations is available. Beamformers applies
filter-and-sum to the multi-channel input signal to get the individual signals. The filter
weights (i.e. beamforming weights) are chosen based on the target source direction and the
input signal, so that the signals from other directions are suppressed. The most common
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beamformers are delay-and-sum beamformer, MVDR beamformer (Capon, 1969), and
Generalized Sidelobe Canceller (GSC) beamformer (Griffiths and Jim, 1982). A special
example is the Generalized Eigenvalue (GEV) beamformer (Warsitz and Haeb-Umbach,
2007), which does not require a priori knowledge about the sound source locations.

Time-frequency masking is another class of techniques. As speech signal is sparse in the
time-frequency domain, it is possible to assign time-frequency bins to different sound
sources. Based on the assignment, a binary mask (0 and 1 values for each TF bin) or soft
mask (values between 0 and 1 for each TF bin) is element-wisely multiplied to the input
signal, and the result is the separated signal. This is equivalent to applying a Wiener
filter (Wiener, 1949) to the input signal. Example methods for estimating TF mask include
the Degenerate Unmixing Estimation Technique (DUET) algorithm (Jourjine et al., 2000;
Yilmaz and Rickard, 2004), Non-negative Matrix Factorization (NMF) (Smaragdis and
Brown, 2003; Virtanen, 2007; Ozerov and Fevotte, 2010), and various recent approaches
with DNN (Wang and Chen, 2018).

Besides beamforming and time-frequency masking, a group of approaches are based
on Independent Component Analysis (Bell and Sejnowski, 1995; Smaragdis, 1998). By
assuming signals are mutually independent, finding the independent components separates
individual signals.

Examples of Sequential Systems

As previously mentioned, any single-channel audio analysis component can be used
directly with separated signals. For example, sound classification is applied to separated
signals to localize and track a specific type of sound sources (Lim et al., 2015; Crocco
et al., 2017; Wakabayashi et al., 2020). Nevertheless, approaches that work well for clean
signals may not perform the same for separated signals, which are unreliable due to
imperfect separation. Many studies have attempted to solve such an issue.

Missing data classification is such an example. An estimated TF mask indicates which
TF bins belong to the target signal and which bins belong to the noise. The noisy TF
bins are then considered as missing data (with respect to the target signal), which may
receive a distinctive processing. Three strategies have been proposed for missing data
classification: reconstruction, marginalization and direct masking (Cooke et al., 2001;
Hartmann et al., 2013). Reconstruction tries to reconstruct the complete observation
according to a prior distribution of the data. Marginalization uses marginalized posterior
on the reliable data in place of the complete posterior. Direct masking applies a constant
attenuation to the noisy TF bins, and use them as if they were from the target signal.
Missing data classification methods allow applications in noisy environments, such as
localization and classification of multiple sound sources (May et al., 2011a), robust
automatic speech recognition (Cooke et al., 2001; Hartmann et al., 2013), and robust
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speaker recognition (May et al., 2012; Zhao et al., 2012, 2014).

Besides missing data classification, there are other approaches dealing with unreliable
input feature. For example, feature normalization with linear transformation or histogram
equalization reduces the discrepancy between feature distributions of unreliable signal
and clean signal (Squartini et al., 2012). Moreover, data augmentation can be used to
train models robust to noise (Ming et al., 2007).

2.3.2 Joint Approaches

Joint integration, in contrast to sequential integration, solves multiple tasks at the same
time. In this framework, the knowledge of individual tasks is shared among them to
improve each other. From the view ofMulti-Task Learning (MTL), jointly solving multiple
tasks adds regularization on the model, and improves its generalization ability (Thrun,
1995; Caruana, 1997; Ruder, 2017).

Many of the clustering-based sound source localization approaches (Section 2.1.1) in-
corporate simultaneous sound source separation (Mandel et al., 2010; Deleforge et al.,
2013). They usually jointly estimate the location of each TF bin and associate them
with different sources to obtain TF masks. Jointly solving these two problems leads to
more robust performance compared to sequential approaches.

A similar idea has been explored for joint sound source separation and speaker recog-
nition (Zegers and Van hamme, 2016). In this work, speaker-specific basis vectors are
estimated during sound source separation with NMF. The speaker-specific basis vectors
provide prior knowledge about the spectral envelopes of the different voices, which is
useful for better sound separation.

Recently, multi-task learning with deep neural networks has been studied for joint
approaches. As an early attempt, (Hirvonen, 2015) uses CNN to estimate the joint
posterior of location and type (speech/music) of a single sound source. Later, many MTL
neural networks have been proposed for marginal estimations, that is the networks give
multiple outputs, each of which is a prediction of a single task. These approaches have
been applied to joint sound source localization and speech/non-speech classification (He
et al., 2018b; Vecchiotti et al., 2018), joint Sound Event Localization and Detection
(SELD) (Adavanne et al., 2019; Grondin et al., 2019; Kapka and Lewandowski, 2019;
Xue et al., 2019), as well as joint sound source separation and speaker recognition (Drude
et al., 2018; Shi et al., 2020).

25





3 Neural Network Models for
Multi-Speaker DOA Estimation

This chapter, based on (He et al., 2018a) and (He et al., 2018b), discusses several Deep
Neural Network (DNN) models for estimating Direction-of-Arrival (DOA) of multiple
simultaneous sound sources. In particular, we consider the DOA estimation under the
following conditions:

• Multiple simultaneous speakers;
• No a priori knowledge about the exact number of speakers;
• Short segments of speech;
• Presence of strong robot ego-noise.

While these are common conditions in Human-Robot Interaction (HRI), previous DNN-
based methods (discussed in Section 2.1.2) have not addressed DOA estimation under all
of these conditions.

In Section 3.1, we formalize the DOA estimation problem in a supervised learning setting,
and present an overview of our deep learning-based approaches.

The absence of knowledge about the number of speakers invalidates the previous learning-
based approaches based on regression or classification (Section 2.1.2). To solve this
issue, we propose a spatial spectrum output coding scheme (Section 3.2). According
to this output coding, neural networks are trained to predict spatial spectra, like those
encountered in SRP-PHAT (DiBiase et al., 2001) and MUSIC (Schmidt, 1986), which
can then be decoded into predictions of an arbitrary number of sound sources.

Then, three types of input representations are introduced in Section 3.3. These input
representations include high-level hand-crafted features, such as Generalized Cross-
Correlation with Phase Transform (GCC-PHAT) coefficients and GCC-PHAT on filter
bank (GCCFB), as well as a low-level representation directly derived from the Short-Time
Fourier Transform (STFT).
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According to the characteristics of the different input representations, we design various
network structures (Section 3.4), including a Multi-Layer Perceptron (MLP), a Convolu-
tional Neural Network (CNN), a Two-Stage Neural Network (TSNN) that exploits the
sub-band structures in the frequency domain, and a deep Residual Network (ResNet),
which is able to implicitly extract high-level features from the STFT input.

We collected more than 24 hours of training and evaluation data with a real robot for
experiments. These data includes both recordings of sound played from loudspeakers and
recordings of human talkers. The data collection procedure is described in Section 3.5.

Section 3.6 discusses the localization and detection performance of the proposed deep
learning-based approaches, which are compared to the traditional spatial spectrum based
approaches. Unlike previous works, we emphasize the condition that there is no a
priori knowledge about the number of sources, and include precision-recall curves in
the performance criteria. The results show that our proposed approaches significantly
outperform the traditional ones.

3.1 Overview

We seek algorithms that can detect sound sources and estimate their DOA from multi-
channel audio segments captured by microphone arrays on robots without any a priori
knowledge about the number of speakers. Each audio segment s is a mixture of background
noise and voices of some (may be zero) speakers from various directions. The set of
speaker directions is denoted by the label y ∈ Y , and Y is the label space that include all
finite subsets of possible directions:

Y = {y ⊂ Φ : |y| <∞} ,

where |y| is the cardinality of y (i.e. number of sources), and Φ is the set of all possible
directions. Depending on the application scenario, Φ can be all horizontal directions
(Φ = [−π, π]), all directions in the three-dimensional space (Φ = S2 is a sphere), or
even a set of locations for sound source localization. The goal of the DOA estimation
algorithms is to predict ŷ ∈ Y that is the same or close to the label y.

We propose using neural network models to approximate the relationship between audio
segments and DOA labels. This approximation is carried out in three steps (Fig. 3.1):

1. Input representation: conversion of the raw signal s to x ∈ X (the input space),
which can be used by the neural networks. This step may involve high-level feature
extraction.

2. Neural network model: the neural network model parameterized by θ takes x as
input and predicts o = fθ(x), an element in the output space O. The output space
of the neural network is different from the label space, because it is difficult for
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Loss
L(o, y) = ‖o− h(y)‖22
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Figure 3.1 – Overview of neural network-based approach for multi-speaker direction of
arrival estimation. The prediction process (depicted as blue blocks) involves extracting
input representation from a raw audio segment, applying a neural network model, and
decoding the network output into a set of predicted DOAs. The supervised learning
process (depicted as green blocks) includes encoding the ground truth DOA label,
computing the loss, which is the difference between the network output and the ideal
output, and tuning the neural network parameters such that the loss is minimized.

neural network to directly predict DOA labels, which have variable sizes. Instead,
the network output has a fixed number of dimensions.

3. Output decoder: finally, the network output is decoded into a DOA label ŷ = h−1(o).

Given the above procedure, we aim to find, with a set of training data, the neural network
parameters θ such that the output can be decoded into the correct DOA prediction.
Specifically, we are given a set of input-label pairs:

D = {(xi, yi)}Ni=1 ⊂ X × Y,

and the parameters θ are trained to minimize a loss function L on these samples:

θ∗ = arg min
θ

E
(x,y)∈D

L (fθ(x), y) , (3.1)

where the loss function L is defined based on a metric between the network output fθ(x)
and ideal output h(y) that is encoded by the ground truth label y. The function h is the
output encoder, which is coupled with the decoder h−1. We use the Mean Squared Error
(MSE) as the loss function, that is:

L(fθ(x), y) = ‖fθ(x)− h(y)‖22. (3.2)

Although the goal is to search for the global optimizer θ∗, in practice, achieving such a
goal is not likely due to the large search space and its non-convex characteristic. Instead,
the common approach is to compute the gradient of the loss with respect to the model
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parameters:
∇θL(fθ(x), y)

using back propagation (Rumelhart et al., 1986), and then apply gradient descent to
modify the parameters iteratively. In our work, we use Stochastic Gradient Descent (SGD)
that modifies network parameters based the mean gradient of the loss on a mini-batch of
samples:

θ ← θ − αg

 1

|B|
∑

(x,y)∈B
∇θL (fθ(x), y)

 , (3.3)

where B is the mini-batch of samples, α is the learning rate, and g(·) is a function
which modifies the gradient according to different optimization strategies. Examples of
the common optimization strategies include using momentum (Sutskever et al., 2013),
Adam (Kingma and Ba, 2015), Adagrad (Duchi et al., 2011), and ADADELTA (Zeiler,
2012).

Based on this framework, the following sections answer these remaining questions:

• What is the output encoding (h) and decoding (h−1) scheme?
• What input representations are suitable for multi-speaker DOA estimation?
• What are the neural network structures and how do we train them?

3.2 Spatial Spectrum Coding

We use a spatial spectrum coding to handle an arbitrary number of sound sources. The
spatial spectrum is a function of the DOA (o : Φ→ R), and its value indicates how likely
there is a sound source at a given DOA. Unlike signal processing approaches, where
the aim is to find the analytical solution for the spatial spectrum, our approach trains
models to approximate an ideal spatial spectrum that we can arbitrarily define. Thus,
the localization problem becomes a spatial spectrum regression problem.

3.2.1 Encoding

According to such a coding scheme, the network output vector o = {ol}Ll=1 indicates
values of the spatial spectrum on the sampled directions {ϕl}Ll=1 ⊂ Φ, where l is the
index of the DOA. In our experiments, {ϕl} are 360 evenly-spaced azimuth directions.
We define the ideal spatial spectrum of a label y as the maximum of Gaussian curves
centered at the sound source directions (Fig. 3.2):

h(y) = {o∗l }
L
l=1, (3.4)
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Figure 3.2 – Gaussian-based spatial spectrum output coding for multiple sources.

and

o∗l =


max
ϕ′∈y

{
e−d(ϕl,ϕ

′)2/σ2
}

if |y| > 0

0 otherwise
, (3.5)

where d(·, ·) is the angular distance, and σ is a constant that controls the width of the
Gaussian curves. The ideal output values are close to zero at directions away from
the sound sources. They peak at the ground truth directions with values of one, and
gradually decrease to zero as the distance to the sound source increases. The values
in each direction can be interpreted as a score or likelihood of the presence of a sound
source in that direction.

Unlike previous posterior probability coding (Section 2.1.2), the spatial spectrum coding
is not constrained as a probability distribution (the output layer is not normalized by
a softmax function). It can be all zero when there is no sound source, or contains the
same number of peaks as the number of sound sources. This coding scheme allows
detection of an arbitrary number of sound sources. In addition, the soft assignment of the
output values, in contrast to the 0/1 assignment in posterior probability coding, takes
the correlation between adjacent directions into account, allowing better generalization
of the neural networks.

3.2.2 Decoding

During inference, the network output is decoded to a prediction ŷ ∈ Y by finding the local
maxima in the predicted spatial spectrum. When the number of sources z is unknown,
the peaks above a given threshold ξ are taken as predictions:

ŷ = h−1(o; ξ) =
{
ϕl : ol > ξ and ol = max

d(ϕi,ϕl)<σn

oi

}
, (3.6)
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where o = fθ(x) is the network output and σn is the neighborhood size for non-maxima
suppression. When z is known, the z highest peaks are taken as predictions:

ŷ = h−1(o; z) =
{
ϕl : among the z greatest ol = max

d(ϕi,ϕl)<σn

oi

}
. (3.7)

3.3 Input Representations for DOA Estimation

We investigate three different input representations, that are extracted from the raw
input signals captured by M microphones. The short time Fourier transform (STFT) of
the input signal is denoted by Si(ω), i = 1, . . . ,M , where i is the microphone index and
ω is the frequency in the discrete domain. The time index is omitted for clarity. The
specific parameters of the input representations are chosen according to our experimental
setting. In this setting, we are given four-channel audio signals (M = 4) sampled at
48 kHz. The input representations are extracted from 170 ms (8192 samples) segments
with 50% overlap. Such a segment size provides a good balance between the amount of
information and time resolution.

3.3.1 GCC-PHAT Coefficients

The GCC-PHAT (Knapp and Carter, 1976) is one of the most popular method for
estimating the Time Difference of Arrival (TDOA) between microphones. The GCC-
PHAT between channel i and j is formulated as:

gij(τ) = R
(∑

ω

Si(ω)Sj(ω)∗

|Si(ω)Sj(ω)∗|e
jωτ

)
(3.8)

where τ is the delay in the discrete domain, (·)∗ denotes the complex conjugation, and
R(·) denotes the real part of a complex number. Usually, the peak in the GCC-PHAT is
used for TDOA estimation. However, under real condition, the GCC-PHAT is corrupted
by noise and reverberation. Therefore, we use the values of the GCC-PHAT coefficients
as the input feature instead of a single estimation of the TDOA (Fig. 3.3). Specifically,
the input representation is the concatenation of the center GCC-PHAT coefficients of all
M(M − 1)/2 microphone pairs, as it was proposed in (Xiao et al., 2015):

x = {gi,j(τ)}i 6=j;τ=−D,−D+1,...,D . (3.9)

Here, D is the center width, and it should be set according to the microphone array size,
namely:

D ≥ max{dij}
c

fs, (3.10)

where dij is the distance between the microphone pair (i, j), fs is the sampling rate
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Figure 3.3 – Example of GCC-PHAT coefficients extracted from the audio signals of a
pair of microphones. The input representation x is the concatenation of these coefficients
extracted from all M(M − 1)/2 pairs.

and c is the speed of sound. With the above formula satisfied, the coefficients include
information of all possible time delay. In the experiments, we choose D = 25, therefore
there are 51 coefficients for each pair of microphones.

3.3.2 GCC-PHAT on the Mel-scale Filter Bank

The GCC-PHAT is not optimal for TDOA estimation of multiple source signals since it
equally sums over all frequency bins disregarding the “sparsity” of speech signals in the
Time-Frequency (TF) domain and the randomly distributed noise which may be stronger
than the signal in some TF bins.

To preserve delay information on each frequency band and to allow sub-band analysis,
we propose the GCCFB. Hence, the second type of input feature is formulated as:

gij(f, τ) = R


∑
ω∈Ωf

Hf (ω) Si(ω)Sj(ω)∗
|Si(ω)Sj(ω)∗|e

jωτ∑
ω∈Ωf

Hf (ω)

 , (3.11)

where f is the filter index, Hf is the transfer function of the f -th mel-scaled triangular
filter, and Ωf is the support of Hf . Under this setting, the network input is:

x = {gi,j(f, τ)}i 6=j;f=1,...,F ;τ=−D,−D+1,...,D , (3.12)

where F is the number of filters.
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Figure 3.4 – Example of GCCFB extracted from a frame with two overlapping sound
sources.

Fig. 3.4 shows an example of the GCCFB representation of a frame in which two speech
signals overlap. Each row corresponds to the GCC-PHAT in an individual frequency
band. The frequency-based decomposition allows the estimation of the TDOAs by looking
into local areas rather than across all frequency bins. In the example, the areas marked
by the green rectangles correspond to two separate sources with different delays and
which produce high cross-correlation values in different frequency bands (and hence,
for different filter indices). In the experiments, we use 40 mel-scale filters covering the
frequencies from 100 to 8000 Hz.

3.3.3 Short Time Fourier Transform

The third type of input representation simply comprises the real and imaginary parts of
the time-frequency domain signal. In contrast to high-level features extraction, such a
representation retains all the information of the signals and allows the network to implicitly
extract informative features for localization, which potentially include both inter-channel
cues (i.e. level/phase difference) and intra-channel cues (i.e. spectral features). In addition,
as speech is known to be sparse in the time-frequency domain, with such a representation
the network can learn to separate overlapping sound sources in the mixed input signals.

Specifically, we compute the STFT of the segments with a frame size of 43 ms (2048
samples) and 50% overlap. Thus, there are seven frames in each segment (170ms). We
only use the frequency bins between 100 and 8000 Hz, so that the number of frequency
bins is reduced to 337. We take the real and imaginary part of the complex values instead
of the phase and power, so that we avoid the discontinuity problem of the phase at π
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GCC-PHAT (51×6)

fc 1000

fc 1000

fc 1000

fc 360, sigmoid

DOA Likelihood (360)

Figure 3.5 – Neural network architecture of the MLP-GCC model. Batch normalization
and ReLU activation function after each hidden layer are omitted in the graph.

and −π. Eventually, the dimension of the input vector is 7× 337× 8.

3.4 Neural Network Architectures

We investigate four different neural network architectures for multi-speaker DOA estima-
tion.

3.4.1 Multilayer perceptron with GCC-PHAT: MLP-GCC

MLP-GCC uses GCC-PHAT as input and contains three hidden layers (Fig. 3.5), each
of which is a fully-connected layer with a Rectified Linear Unit (ReLU) activation
function (Nair and Hinton, 2010) and Batch Normalization (BN) (Ioffe and Szegedy,
2015). The last layer is a fully-connected layer with sigmoid activation function. The
sigmoid function is bounded between 0 and 1, which is the range of the desired output.
According to our experiments, this helps the network to converge to a better result.

3.4.2 Convolutional neural network with GCCFB: CNN-GCCFB

MLP with fully-connected layers is not suitable for high-dimensional input features (such
as GCCFB) because the large input dimension requires a large number of parameters to
be trained, making the network computationally expensive and prone to overfitting. Con-
volutional neural networks can learn local features with a reduced number of parameters
by weight sharing. This leads to the idea of using CNN for the input feature of GCCFB.

We use the CNN structure shown in Fig. 3.6, which consists of four convolutional layers
(with ReLU activation and BN) and a fully connected layer at the output (with sigmoid
activation). The local features are not shift-invariant since the position of the feature
(the delay and frequency) is the important cue for SSL. Therefore, we do not apply any
pooling after the convolutions. Instead, we apply the filters with a stride of 2, expecting
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GCC-FB (51×40×6)

5×5 conv, stride 2, ch 12

5×5 conv, stride 2, ch 24

5×5 conv, stride 2, ch 48

5×5 conv, stride 2, ch 96

fc 360

DOA Likelihood (360)

Figure 3.6 – Neural network architecture of the CNN-GCCFB model. Batch normalization
and ReLU activation function after each hidden layer are omitted in the graph.

that the network learns its own spatial downsampling.

3.4.3 Two-stage neural network with GCCFB: TSNN-GCCFB

The CNN-GCCFB considers the input features as images without taking their properties
into account, which may not yield the optimal model. For the third architecture, we
design the weight sharing in the network exploiting these properties of the GCCFB:

• In each TF bin, there is generally only one predominant speech source, thus we
extract local features in each frequency band before such information is aggregated
into a broadband prediction.

• Features with the same delay in different channels of the GCCFB (Fig. 3.4) do not
correspond to each other locally, because a sound source has different delays among
different microphone pairs. Instead of using local convolution kernels, feature
extraction should take the whole delay axis into account.

Based on these considerations, we propose a two-stage neural network (Fig. 3.7). The
first stage extracts latent DOA features from narrow-band signals, by repeatedly applying
Subnet 1 on individual frequency regions (five filters) that span all delays and all
microphone pairs. The second stage aggregates information across all frequencies in
a neighbor DOA area and outputs the spatial spectrum. Similarly, the Subnet 2 is
repeatedly used for all DOAs in the second stage.

To train such network, we adopt a two-step training scheme: First, we train the Subnet
1 in the first stage using the ideal spatial spectrum as the desired latent feature for all
frequencies. In such way, we obtain DOA and frequency-related features that help the
NN to converge to a better result in the next step. During the second step, both stages
are trained in an end-to-end manner. In our experiments, Subnet 1 is a 2-hidden-layer
MLP, and Subnet 2 is a 1-hidden-layer MLP. All the hidden layers are of size 500.
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Figure 3.7 – NN architecture of our two-stage neural network with GCCFB as input
(TSNN-GCCFB). The first and second stages are marked as green and red, respectively.
The number of filters in the latent feature is less than that in the input feature, because
there is no padding applied to the moving window of the input of Subnet 1.

3.4.4 Residual Network with STFT : ResNet-STFT

We design a fully-convolutional residual neural network (ResNet) for the STFT input
(Fig. 3.8). In addition to weight sharing for reducing the number of parameters, the
residual connection in the ResNet allows the construction of very deep neural network
models, and therefore increases their capabilities at extracting high-level features (He
et al., 2015).

Similar to TSNN-GCCFB, this network comprises two parts. Each part convolves along
different axes. In the first part, the network convolves along the time and frequency
axes. Specifically, it includes two layers of strided convolution in the frequency axis for
downsampling as well as feature extraction, five residual blocks for the extraction of
higher level features, and a layer projecting the features to the DOA space. The output
of the first part of the network is time-frequency local, meaning that each output value
is derived from a local time-frequency region in the input.

In the second part, the network convolves along the DOA axis. It aggregates features
from all TF bins at the neighboring directions, and outputs the spatial spectrum.

Like the TSNN-GCCFB, the training of the ResNet-STFT consists of two stages. In the
first stage, we train the first part of the network by considering its output as short-term
narrow-band predictions of the spatial spectrum, and using a loss function that repeats
the ultimate loss (Eq. (3.2)) across TF bins:

LI (fI,θ(x), y) =
∑
t,k

L (fI,θ(x)[t, k], y), (3.13)

where fI,θ(x)[t, k] is the output of the first part of the network at time t and frequency k.
The pre-trained parameters are then used to initialize the network for the second stage,
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Figure 3.8 – Network architecture of ResNet-STFT. It uses STFT of the audio signals as
the input and predicts the spatial spectrum of the sound sources. It consists of two parts:
the first part (green) applies convolution along the time and frequency axes, and the
second part (blue) applies convolution along the DOA axis. The intermediate TF-local
output fI,θ(x) is used for the first-stage training with Eq. (3.13), while the network
output fθ(x) is used with Eq. (3.2) for the end-to-end training. Batch normalization and
ReLU activation functions after each hidden layer are omitted in the graph.
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(a) Pepper. (b) Front view of the head. (c) Rear view of the head.

Figure 3.9 – Pepper and its sensors on the robot. The labeled parts are: (A) front camera;
(B) bottom camera; (C) depth camera; (D) loudspeaker; (E) front right microphone; (F)
front left microphone; (G) rear left microphone; (H) rear right microphone; (I) vent holes
for the cooling fans.

where the whole network is trained with the loss function defined by Eq. (3.2).

3.5 Data Collection

We collected around 24 hours of real audio recordings with a robot. These data include
sounds from both loudspeakers and human talkers (Table 3.1).

3.5.1 Robot Platform

We used a Pepper robot1 developed by Softbank Robotics. The robot is a 1.3 meter tall
humanoid robot (Fig. 3.9a). There are two RGB cameras and a depth camera on the
robot head (Fig. 3.9b). We used the front camera for extracting sound location labels.

There are four microphones on the top of the robot head (Fig. 3.9c). The four microphones
are coplanar, forming a rectangle with 5.80 cm along the front-rear sides and 6.86 cm
along the left-right sides. The microphones are directional with a forward look direction,
and the sampling rate is 48 kHz. The captured audio signals are strongly affected by
the robot ego noise. It mainly consists of the noise of the fans next to the microphone
array (Fig. 3.9c).

1http://doc.aldebaran.com/2-5/home_pepper.html
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Table 3.1 – Specifications of the recorded data

Loudspeaker Human talkers
Training Test Test

# of frames 507k 262k 2098
- no source 106k 54k 1169
- single source 350k 179k 788
- two sources 51k 29k 144

# of files 4208 2393 21
- single source 2808 1597 −
- two sources 1400 796 21

# of male speakers 105 8 12
# of female speakers 43 8 2
Total duration 16 hours 8 hours 4 min
Azimuth (°) [−180, 180] [−180, 180] [−24, 23]
Elevation (°) [−39, 56] [−29, 45] [−14, 13]
Distance (m) [0.5, 1.8] [0.5, 1.9] [0.8, 2.1]

(a) Speakers attached with
markers. (b) Loudspeakers. (c) Human talkers.

Figure 3.10 – Data collection with Pepper.

3.5.2 Recording with Loudspeakers

We collected data by playing clean speech from loudspeakers and recording the sounds
with the robot (Fig. 3.10b).

The clean speech data were taken from the AMI corpus (McCowan et al., 2005), which
contains spontaneous speech of people interacting in meetings. We selected the non-
overlapping segments recorded from the headset microphones. For the convenience of
recording, segments with a minimum length of five seconds were used. The clean speech
data are split into training and test sets in a way that speakers in the training set are
not in the test set (Table 3.2). We applied phoneme forced alignment (with annotated
transcripts) on the clean speech data to acquire the phoneme and voice activity labels
analyzed at 100Hz.
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Table 3.2 – Specifications of source clean speech segments used for loudspeaker data
collection.

Training Test
# of segments 5409 472
# of speakers 148 16
# of male speakers 105 8
# of female speakers 43 8
Average duration (s) 11.6 10.6

For each recorded audio file, we played speech segments from one or two loudspeakers.
When two loudspeakers were playing overlapping sounds, the offset between the two
sounds was randomly chosen from a uniform distribution of [−2, 2] seconds.

The data collection was conducted in three rooms at Idiap with different sizes and
settings, which are:

• Room 106 a large meeting room (used for both training and test data collection).
• Room 301 a small meeting room (used exclusively for training data collection).
• Library a small room with book shelves (used exclusively for test data collection).

All of these rooms are ordinary office rooms without any reverberation control. We
programmed the robot to move its head automatically to acquire a large diversity of
relative locations of the sound sources. After every 40 different head poses, we moved the
robot and loudspeakers a different set of locations, and continued the same procedure.

The sound location labels were automatically obtained through detecting the mark-
ers (Fig. 3.10a) attached on the loudspeakers with the camera on the robot. In addition,
the frame-level annotation is derived from the voice activity labels of the clean signal.

3.5.3 Recording with Human Talkers

To evaluate SSL methods in real HRI, we collected a second test set with human
talkers (Fig. 3.10c). During the recording, talkers spoke to the robot with phrases for
interactions. This dataset includes recordings with both single utterances and overlapping
ones. Another room, which is of the same size of Room 301 but with different objects,
was used for the human talker recordings.

We manually annotated the voice activity labels and automatically acquired the mouth
position by applying a multiple person tracker (Khalidov and Odobez, 2017) with
detection from the Convolutional Pose Machine (CPM) (Wei et al., 2016; Cao et al.,
2017).

41



Chapter 3. Neural Network Models for Multi-Speaker DOA Estimation

3.6 Experiments

We implemented the proposed methods and compared them to the traditional SSL
approaches. We consider frame-level azimuth estimation of sound sources with frames of
170ms long. For output encoding (Eq. (3.4)) and decoding (Eq. (3.6)), the parameters
are chosen as: σ = σn = 8°.

3.6.1 Network Training

We trained the Neural Networks (NNs) with the loudspeaker training set, which includes
a total of 506k frames. We used the Adam optimizer (Kingma and Ba, 2015) with
a mini-batch size of 256 and an initial learning rate of 0.001. The learning rate was
decreased by half after every two epochs. MLP-GCC and CNN-GCCFB were trained for
ten epochs. We trained TSNN-GCCFB and ResNet-STFT for four epochs for the first
stage and another ten epochs for end-to-end training.

3.6.2 Evaluation Protocol

We considered two evaluation settings:

• when the number of sound sources is known, or
• when it is not.

When the number of sound sources is known, we evaluate how close the predicted DOAs
are from the ground truth. In this case, the predictions ŷi = {ϕ̂ij : j = 1, . . . , zi} are the
DOAs of the zi (number of sound sources) highest peaks in the output spatial spectrum
(according to Eq. (3.7)). The indices js are selected such that the predicted DOA ϕ̂ij is
nearest to the ground truths DOA ϕij in label yi = {ϕij : j = 1, . . . , zi}. As performance
measure, we compute the Mean Absolute Error (MAE) in terms of angular distance
between the predictions and the ground truth:

MAE =
∑
i

∑zi
j=1 d(ϕ̂ij , ϕij)∑

i zi
. (3.14)

We also compute the Accuracy (ACC), that is the percentage of the predictions of which
the error is less than a given admissible error Ea:

ACC =
∑
i

∑zi
j=1 1d(ϕ̂ij ,ϕij)<Ea∑

i zi
, (3.15)

where 1 is the indicator function.

When the number of sound sources is unknown, we evaluate the DOA estimation in
terms of sound source detection. The predictions ŷi = {ϕ̂ik : k = 1, . . . , ẑi} decoded from
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the network output by Eq. (3.6) are matched with the ground truth DOAs. We use
m(ϕ̂ik, ϕij) to denote a match. The number of predicted sound sources ẑi may not be
equal to the number of ground truth sources zi, and each ground truth source is matched
with at most one prediction (could be none), which is the nearest prediction with an
error less than Ea:

m(ϕ̂ik, ϕij) =

1 if d(ϕ̂ik, ϕij) < Ea and k = arg minẑi
l=1 d(ϕ̂il, ϕij),

0 otherwise.
(3.16)

We vary the prediction threshold ξ (Eq. (3.6)) and plot precision-recall curves. The
precision is the percentage of correct predictions among all predictions:

Precision =
∑
i

∑zi
j=1

∑ẑi
k=1m(ϕ̂ik, ϕij)∑
i ẑi

. (3.17)

The recall is the percentage of correct detection out of all ground truth sources:

Recall =
∑
i

∑zi
j=1

∑ẑi
k=1m(ϕ̂ik, ϕij)∑
i zi

. (3.18)

An admissible error Ea = 5° is used for the evaluation.

3.6.3 Baseline Methods

We include the following popular spatial spectrum-based methods for comparison:

• SRP-PHAT: steered response power with phase transform (DiBiase et al., 2001);
• SRP-NONLIN: SRP-PHAT with a non-linear modification of the score. It is a

multi-channel extension of GCC-NONLIN from (Blandin et al., 2012);
• MVDR-SNR: Minimum Variance Distortionless Response (MVDR) beamforming

with Signal-to-Noise Ratio (SNR) scoring (Blandin et al., 2012);
• SEVD-MUSIC: Multiple Signal Classification (MUSIC) (Schmidt, 1986), assuming

spatially white noise and one signal in each bin;
• GEVD-MUSIC: MUSIC with generalized eigenvector decomposition (Schmidt, 1986;

Nakamura et al., 2009), assuming noise is pre-measured and one signal in each TF
bin.

For all the above methods, the empirical spatial covariance matrices are computed using
blocks containing 7 frames of 2048 samples with 50% overlap, so that each block is 170ms
long (same as the network input of the proposed approaches).
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Table 3.3 – DOA estimation performance on the loudspeaker dataset with a priori
knowledge about the number of sources. Ea = 5°.

Dataset Loudspeaker
Subset (# of frames) Overall (207k) N = 1 (178k) N = 2 (29k)

MAE (°) ACC MAE (°) ACC MAE (°) ACC
MLP-GCC 4.9 0.92 4.2 0.94 9.2 0.77
CNN-GCCFB 4.8 0.90 4.1 0.93 9.1 0.73
TSNN-GCCFB 5.4 0.91 4.6 0.93 10.1 0.77
ResNet-STFT 3.1 0.94 2.7 0.95 5.8 0.85

SRP-PHAT 21.5 0.78 19.0 0.82 37.0 0.50
SRP-NONLIN 25.7 0.73 23.8 0.77 37.6 0.51
MVDR-SNR 23.2 0.76 21.2 0.79 35.2 0.55
SEVD-MUSIC 29.1 0.66 27.6 0.69 38.1 0.47
GEVD-MUSIC 25.4 0.64 23.2 0.67 39.3 0.44

Table 3.4 – DOA estimation performance on the human talkers dataset with a priori
knowledge about the number of sources. Ea = 5°.

Dataset Human Talkers
Subset (# of frames) Overall (929) N = 1 (788) N = 2 (141)

MAE (°) ACC MAE (°) ACC MAE (°) ACC
MLP-GCC 5.0 0.93 4.4 0.94 8.1 0.84
CNN-GCCFB 4.8 0.93 4.2 0.96 8.3 0.77
TSNN-GCCFB 4.1 0.95 3.8 0.96 5.8 0.90
ResNet-STFT 2.6 0.97 2.0 0.98 5.7 0.93

SRP-PHAT 5.4 0.88 2.6 0.93 20.9 0.56
SRP-NONLIN 4.8 0.90 2.5 0.94 18.1 0.68
MVDR-SNR 4.4 0.90 2.5 0.94 15.2 0.68
SEVD-MUSIC 6.4 0.85 3.0 0.88 25.1 0.64
GEVD-MUSIC 6.5 0.81 3.6 0.85 22.2 0.63
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3.6.4 DOA Estimation Performance

Table 3.3 and Table 3.4 show the results of localization with a priori knowledge about
the number of sound sources. On the loudspeaker dataset (Table 3.3), all four proposed
glsdnn models achieve on average less than 5° error and more than 90% accuracy. In
particular, the best approach ResNet-STFT outperforms others in all criteria, with
3.1°error and 94% accuracy. In contrast, the best baseline method (SRP-PHAT) has
21.5° error and only 78% accuracy.

For the human talker dataset (Table 3.4), the baseline methods have slightly better MAE
on single-source frames than three of the DNN approaches. However, their performance
degrades radically on frames with overlapping sources. In contrast, all the proposed
approaches outperform the baseline methods in terms of accuracy, and their performance
is not much affected by the condition of overlapping sources. The loudspeaker dataset
is in general more challenging because it contains samples with lower SNR and wider
range of azimuth directions. The sources from the rear are difficult to detect due to the
directivity of the microphones.

In terms of simultaneous detection and localization with an unknown number of sound
sources (Fig. 3.11), all proposed methods outperform the baseline methods, achieving
more than 90% precision and recall on both datasets. We also notice that, unlike signal
processing approaches, our DNN-based methods are not affected by the condition of no
a priori knowledge about the number of sound sources. This indicates that our output
coding and data-driven approach are effective for detecting the number of sound sources.
This is because all peaks in the desired spatial spectrum have a height of one, no matter
what the SNR is or how many sources there are. In contrast, the peak height in the
traditional spatial spectrum such as SRP-PHAT is affected by SNR and overlapping
sources.

Among the proposed models, both TSNN-GCCFB and ResNet-STFT achieve better
results on frames with overlapping sound. This justifies the usage of features decomposed
in the frequency domain (GCCFB) or TF domain (raw STFT), that allows networks to
separate the overlapping sounds. ResNet-STFT clearly outperforms the other DNN-based
approaches, which shows that with a deep network structure, the network can learn by
itself to extract the optimal localization cues from raw signals. Moreover, STFT with
both phase and power spectral information is indeed useful for sound source localization.

A demo video of the results is available online2.

2https://www.youtube.com/watch?v=_4EwuVlE_pU&t=153s
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Figure 3.11 – Detection and localization performance. The figure titles indicates the
test set (loudspeakers or human talkers) and selected frames (all, single-source frame, or
two-source frame). Ea = 5°.
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Figure 3.12 – Ideal spatial spectra of one active sound source with different σ values in a
polar plot.

Table 3.5 – DOA estimation performance on the loudspeaker dataset with different σ
values for output encoding.

Dataset Loudspeaker
Subset (# of frames) Overall (207k) N = 1 (178k) N = 2 (29k)

MAE (°) ACC MAE (°) ACC MAE (°) ACC
ResNet-STFT (σ = 2◦) 4.1 0.91 3.4 0.94 8.3 0.77
ResNet-STFT (σ = 4◦) 3.6 0.93 3.1 0.95 6.4 0.82
ResNet-STFT (σ = 8◦) 3.1 0.94 2.7 0.96 5.8 0.85
ResNet-STFT (σ = 16◦) 3.8 0.91 2.8 0.94 9.9 0.77
ResNet-STFT (σ = 32◦) 6.5 0.85 3.3 0.88 26.1 0.63

3.6.5 Curve Width for Output Coding

In the results reported above, the desired output spatial spectrum are all encoded with
a curve width of σ = 8◦ (Eq. (3.4)). We modified this parameter and examined how it
impacts the DOA estimation performance. We trained ResNet-STFT with different σ
values ranging from 2◦ to 32◦ (Fig. 3.12). The DOA estimation performance (Tables 3.5
and 3.6, Fig. 3.13) shows that σ = 8◦ is the optimal setting. The spatial resolution is
much reduced when using large σ values, therefore we can notice a significant performance
degradation on frames with overlapping sound sources. In contrast, small σ values may
generate spatial spectra with better spatial resolution. However, such spatial spectra
have smaller support, thus tend to be sensitive to condition changes.
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Figure 3.13 – Detection and localization performance of different σ values for output
encoding.
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Table 3.6 – DOA estimation performance on the human talkers dataset with different
output coding curve widths.

Dataset Human Talkers
Subset (# of frames) Overall (929) N = 1 (788) N = 2 (141)

MAE (°) ACC MAE (°) ACC MAE (°) ACC
ResNet-STFT (σ = 2◦) 2.8 0.96 2.4 0.97 4.7 0.90
ResNet-STFT (σ = 4◦) 2.4 0.97 2.1 0.98 4.2 0.93
ResNet-STFT (σ = 8◦) 2.6 0.97 2.0 0.98 5.7 0.93
ResNet-STFT (σ = 16◦) 3.3 0.96 2.2 0.97 9.8 0.89
ResNet-STFT (σ = 32◦) 7.2 0.92 2.5 0.96 33.1 0.68

3.7 Summary

This chapter has investigated four neural network models for simultaneous detection and
localization of sound sources. We have proposed a Gaussian-based spatial spectrum output
coding, making it possible to train DNNs to detect an arbitrary number of overlapping
sound sources. This approach is among the first deep learning based approaches for
multi-speaker DOA estimation with no a priori knowledge about the number of sources.

We have collected a large amount of real data, including recordings with loudspeakers
and human talkers, for both training and evaluation. The results of the comprehensive
evaluation show that our proposed methods significantly outperform the traditional
spatial spectrum-based approaches.

In addition, ResNet-STFT, the network with deep structures and raw signal input,
achieves the best performance. This shows that low-level input representations, as they
retain all information about the signals, can be better than hand-crafted high-level
features for deep neural networks.
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4 Domain Adaptation for DOA
Estimation Models

We have shown in the previous chapter that deep learning based approaches significantly
outperform the traditional spatial spectrum based approaches. However, this is based
on the assumption that a sufficient number of unbiased labeled data are available. In
fact, in the learning-based approaches, the difficulties have been shifted from modeling
the complex environments to the need of collecting a sufficient number of training data
covering all variabilities in the target test environment. Such variabilities include various
sound classes, samples per class, source locations, reverberation, noises, and objects in
the scene.

In addition to making audio recordings, annotating them with the location labels is also
particularly costly. As audio data do not intrinsically contain direct information for
annotation of the sound source locations, external devices, such as camera or motion
capture systems, are needed. Moreover, since multi-channel audio data are distinct
among different types of microphone arrays, individual target-domain data collection is
needed for each new type of microphone array.

One possible solution to costly data collection is to develop device-independent Sound
Source Localization (SSL) models, allowing real audio data to be reused for multiple
devices. This is a difficult problem and little research has been conducted in this
direction. Models using uniform input representation, such as the ambisonics intensity
vectors (Perotin et al., 2018; Tang et al., 2019), could potentially be applied to multiple
devices. However, this idea has not been verified by experiments and the conversion
of multi-channel audio signal to ambisonics intensity vectors is limited to non-coplanar
microphone arrays.

As we have discussed in Section 2.1.2, acoustic simulation is a popular way to obtain
training data for SSL. Although we can simulate a large number of audio samples under
various conditions at low cost, the simulated samples are biased, as it is unlikely to
perfectly reproduce real sound propagation. Therefore, the models trained with simulated
data are usually suboptimal for real applications.
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Domain Adaptation (DA) techniques (discussed in Section 2.2) aim to mitigate the
effect of the condition mismatch between the source domain (simulated data) and the
target domain (real situations). Although there is a substantial amount of research in
DA (Ben-David et al., 2010; Wang and Deng, 2018), its application to SSL has not been
studied in depth so far. DA can potentially exploit the wide variety of conditions from
the simulated data and the unbiased samples from the available real data. It aims to train
model with the best performance in real test scenarios. Previously, domain adaptation
by entropy minimization has been studied for single-source localization (Takeda and
Komatani, 2017; Takeda et al., 2018). However, this approach is only applicable to
classification problems, which are not suitable for multi-source localization, which is our
target.

This chapter, partially based on (He et al., 2019), discusses domain adaptation approaches
for multi-speaker Direction-of-Arrival (DOA) estimation neural networks under three
different scenarios: supervised, weakly-supervised and unsupervised, which are organized
as follows:

• In Section 4.1, we present the supervised domain adaptation approach, which is
simply combining the loss terms of the two domains.

• In Section 4.2, we introduce a novel weakly-supervised domain adaptation framework
with the number of sound sources as the weak label. This framework includes the
minimum distance adaptation criterion and pseudo-labeling relying on augmented
data.

• Finally, we investigate the application of domain adversarial training for unsuper-
vised domain adaptation for SSL in Section 4.3.

These approaches are applied to the ResNet-STFT model (Section 3.4.4), and evaluated
with audio data collected from two different versions of Pepper (Section 4.4). We will
show that the weakly-supervised approach achieves comparable performance as the
supervised adaptation approach. This suggests a practical and effective framework for
applying deep learning based approaches in real situations.

4.1 Supervised Adaptation

We first consider the supervised domain adaptation in which we are given a set of labeled
simulated data

Ds ⊂ X × Y,

together with a set of labeled real audio data

Dt ⊂ X × Y,
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where X and Y are respectively the input space and label space that we have defined in
Section 3.1. To apply supervised domain adaptation, we first use the simulated data
to pre-train a model, which is the initialization for subsequent optimization processes.
Then, we train a model that minimizes the loss on both the source domain and the target
domain:

θ∗ = arg min
θ

µt E
(x,y)∈Dt

L (fθ(x), y) + µs E
(x,y)∈Ds

L (fθ(x), y) , (4.1)

where L is the Mean Squared Error (MSE) loss (Eq. (3.2)), and µt and µs are the
weighting parameters for the two domains. In practice, the weighting is implemented
by changing the proportion of source and target domain samples in each mini-batch.
The added loss term relying on the simulated data can reduce the bias caused by data
insufficiency of the real data.

4.2 Weakly-Supervised Adaptation

Although with supervised domain adaptation we can reduce the requirement for a large
number of real samples, annotation of these real samples still demands a heavy workload.
Therefore, we propose a weakly-supervised adaptation framework to further reduce the
effort for data collection. According to this framework (Fig. 4.1), we first generate a large
number of simulated data from clean speech and background noise. These data serve as
the source domain data and are used to pre-train the ResNet-STFT model (Section 3.4.4).
Then, we collect a relatively small set of real audio data in which only the number
of sound sources is manually labeled (as weak labels), hence the high cost of exact
location annotation is avoided. These real audio data are also augmented by mixing
single-source frames. Lastly, we adapt the pre-trained model to the real condition using
a combination of the simulated data, the weakly-labeled real data and the augmented
data in a weakly-supervised fashion.

The adaptation process involves two adaptation schemes: minimum distance criterion
relying on the real data and pseudo-labeling relying on the augmented data, which we
will introduce respectively in the following sections.

4.2.1 Minimum Distance Criterion

In the weakly-supervised adaptation setting, instead of fully-labeled data Dt, we are
given a set of weakly-labeled real data:

Dw = {(xi, zi)}Nw
i=1 ⊂ X × Z,

accompanied by a set of fully-labeled simulated (source domain) data Ds. Each value
zi from the weak label domain Z = {0, 1, 2, . . .} indicates the number of sources in the
input frame xi.
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Figure 4.1 – Overview of our framework for neural network-based multi-speaker DOA
estimation with weakly-supervised domain adaptation. The arrows indicate which
datasets (green) are required or generated by data preparation procedures (red), and
which datasets are used for the training processes (blue).

We apply adaptation by minimizing a weak supervision loss Lw on the target domain as
well as the supervised loss (Eq. (3.2)) on the source domain:

θ∗ = arg min
θ

µw E
(x,z)∈Dw

Lw (fθ(x), z) + µs E
(x,y)∈Ds

L (fθ(x), y) , (4.2)

where µw and µs are weighting parameters. The minimum distance criterion defines the
weak supervision loss as the minimum distance in the output space between the network
output and all possible labels that satisfy the weak label:

Lw(fθ(x), z) = min
y∈r(z)

‖fθ(x)− h(y)‖22 , (4.3)

where h(·) is the output encoding defined by Eq. (3.4), and r(z) is the set of all sound
DOA labels that satisfy the weak label z, i.e. the number of sources in y is z:

r(z) = {y ∈ Y : |y| = z} .

The objective function and weakly-supervised loss are based on the assumptions that a
good model should:

• predict well the DOAs in the source domain (supervised loss);
• output curves that are close to ideal spatial spectra (weakly-supervised loss);
• make correct detection of the number of sources in the target domain (information

from weak labels).

The weak supervision can also be viewed as a pseudo-labeling approach, because the loss
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function Lw can be rewritten as:

Lw (fθ(x), z) =
∥∥∥∥∥fθ(x)− h

(
arg min
y∈r(z)

‖fθ(x)− h(y)‖22

)∥∥∥∥∥
2

2

= L
(
fθ(x), arg min

y∈r(z)
‖fθ(x)− h(y)‖22

)
= L (fθ(x), pθ(x, z)) ,

(4.4)

with
pθ(x, z) = arg min

y∈r(z)
‖fθ(x)− h(y)‖22 (4.5)

as the pseudo-labeling function. We can see that the weak supervision loss function is
equivalent to the supervised loss using pθ(x, z) as the ground-truth label.

Furthermore, we can visualize the pseudo-labels in the output space to see how the
minimum distance criterion works (Fig. 4.2). When the number of sources is zero, the
network is supervised to output zeros, thus reducing the false positives caused by unseen
noise (Fig. 4.2a). When the number of sources is one or more, the network is supervised
to give more certain prediction on the most prominent peaks, thus increasing the recall
(Fig. 4.2c). At the same time, the other peaks that are caused by unseen conditions are
suppressed (Fig.4.2b, c). However, the effectiveness of the weakly-supervised adaptation
depends on the initial performance of the network model. If the network initial output
is too far away from the ground truth, the weak supervision will lead to incorrect
pseudo-labels (Fig.4.2d, e).

4.2.2 Pseudo-labeling with Data Augmentation

In practice, we observe that the network trained on simulated data initially performs
worse on the multi-source audio segments as illustrated in Fig. 4.2e. Thus, in order to
increase the correctness of the pseudo-labeling on multi-source audio frames, we augment
the real data by generating mixture data with known single-source components, and
extend the weak supervision method using a modified pseudo-labeling approach. The
idea is that applying the pseudo-labeling to the more reliable single-source components
rather than to the constructed multi-source mixtures, we can obtain more effective weak
supervision.

Data augmentation. The augmented mixture dataset Da consists of a set of mixture
xi and their single-source components ui = {uij}zi

j=1:

Da = {(xi,ui)}Na
i=1 ⊂ X × 2X .
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Figure 4.2 – Examples of weak supervision with a known number of sources on real audio
segments. The ground truth locations are shown but are not used for weak supervision.

Here, the mixtures are generated by linear combination:

xi =
zi∑
j=1

αijuij , (4.6)

where {uij} are single-source segments randomly sampled from the weakly-labeled dataset
Dw, zi is the number of components (sources), and {αij} are random scaling factors.
Since all the real recordings include background noise, we scale each single source frame
in a way that the power of the background noise is constant in the mixture1, that is:

zi∑
j=1

α2
ij = 1. (4.7)

A benefit of such data augmentation is that it increases the number of realistic multi-
source segments, which is difficult to obtain by recording. In addition, as the combinations

1We assume the background noise segments are pairwise independent.
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of sound directions increases exponentially with the number of sources, we need a large
number of multi-source training samples to cover such variabilities.

Pseudo-labeling on components. The other benefit is that the knowledge of the
single-source components allows us to apply reliable pseudo-labeling on this dataset:
we first apply pseudo-labeling (Eq. (4.5)) to its single-source components, that are
pθ(uij , 1), j = 1 . . . zi (Fig. 4.3a,b). Then, we use the union of these pseudo-labels for the
multi-source frame (Fig. 4.3c). Thus, the loss function of the modified adaptation is:

La(fθ(xi),ui) = L
(
fθ(xi),∪zi

j=1pθ(uij , 1)
)
, (4.8)

and the optimization target becomes:

θ∗ = arg min
θ

µa E
(x,u)∈Da

La (fθ(x),u)+µw E
(x,z)∈Dw

Lw (fθ(x), z)+µs E
(x,y)∈Ds

L (fθ(x), y) ,

(4.9)
where µa controls the weight of the modified weak-supervision loss on the augmented
dataset.

4.3 Domain-Adversarial Training

We apply domain adversarial training (Ganin et al., 2016) for unsupervised adaptation.
Under this setting, we are given labeled simulated data Ds and unlabeled real data

Du = {xi}Nu
i=1 ⊂ X.

The goal of domain adversarial training is to learn a domain-invariant feature represen-
tation, so that a model can estimate DOA in the target domain as equally well as in
the source domain. To achieve this, we first separate the ResNet-STFT network into
two parts: a feature extractor gf (·; θf ), and a DOA Estimator gy(·; θy). Then, we add a
domain classifier gd(·; θd) subnet after the feature extractor (Fig. 4.4). The output of
the domain classifier is a scalar between 0 and 1, indicating the posterior probability of
the input being from the target domain. We train these three parts in a way that the
output of the feature extractor is suited for DOA estimation and indistinguishable by
the domain classifier.

Specifically, depending on the part of the network, the following objective function is
either minimized or maximized during adaptation:

E(θf , θy, θd) = E
(x,y)∈Ds

L (f(x), y)−µd
(

E
x∈Ds

Ld (fd(x), 0) + E
x∈Du

Ld (fd(x), 1)
)
, (4.10)

where f(x) = gy(gf (x; θf ); θy) is the output of the DOA estimator, fd(x) = gd(gf (x; θf ); θd)
is the output of the domain classifier, L is the supervised loss (Eq. (3.2)), µd is the
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Figure 4.3 – Example of weak supervision by pseudo-labeling on mixture components.
(a, b) The pseudo-labeling is applied first on the single-source components. (c) Then, the
pseudo-label of the two-source mixture is obtained by merging the pseudo-labels of its
components. This approach is more reliable than directly applying the pseudo-labeling
to the mixture as shown in (d).

weight for domain classification loss, and Ld is the binomial cross entropy loss for domain
classification:

Ld(fd(x), v) = −vlog fd(x)− (1− v)log (1− fd(x)), (4.11)

where v indicates the domain (0: source domain, 1: target domain).

The target of adaptation is to make the feature extractor and the DOA estimator minimize
the objective function (Eq. (4.10)), while the domain classifier maximizes that function.
Specifically, it seeks to find the saddle point such that:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d), (4.12)

θ̂d = arg max
θd

E(θ̂f , θ̂y, θd). (4.13)

Based on Eq. (4.12), the feature extractor parameters are modified to decrease the
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Figure 4.4 – Network architecture for domain adversarial training. It includes a feature
extractor gf (green), a DOA estimator gy (blue), and a domain classifier gd (red). GRL
is a Gradient Reversal Layer (Ganin et al., 2016). The Batch Normalization (BN) and
Rectified Linear Unit (ReLU) after each hidden layer are omitted in this graph.

DOA estimation loss and increase the domain classification loss. In contrast, based on
Eq. (4.13), the domain classifier parameters are modified in the adversarial direction,
that is decreasing the domain classification loss. Domain-invariant features are expected
to be obtained on this saddle point.

Combination with weakly-supervised adaptation. Domain adversarial training
can be combined with weakly-supervised adaptation, by adding a weakly-supervised loss
term to the objective function:

E(θf , θy, θd) = E
(x,y)∈Ds

L (f(x), y) + E
(x,z)∈Dw

Lw (f(x), z)

− µd
(

E
x∈Ds

Ld (fd(x), 0) + E
x∈Dw

Ld (fd(x), 1)
)
, (4.14)

where Lw is the weak supervision loss (Eq. (4.3) in Section 4.2.1). The target of adaptation
remains the same as finding the saddle point which satisfies Eqs. (4.12) and (4.13).
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4.4 Experiments

We applied the proposed approaches with simulated data and real data from two robots,
and we verified its effectiveness in two ways — by analyzing the correctness of pseudo-
labeling and evaluating the performance of DOA estimation.

4.4.1 Robots and Data

Robots. We used two versions of Pepper in our experiments. In addition to the one
we have described in Section 3.5.1, we added data from a second Pepper that has omni-
directional microphones, which are different from the directional microphones on the first
robot. We use P1 and P2 to denote the two versions respectively.

Source-domain (simulated) data. We generated the source domain data by convolv-
ing clean speech audio with simulated room impulse responses (Table 4.1). The room
impulse responses are simulated with the RIR-Generator2 (Habets, 2006). The clean
audio speech data were the close talking recordings randomly selected from the AMI
corpus (McCowan et al., 2005) (Table 3.2). We first generated spatialized audio of speech
signals from random locations in random rooms. The microphone array geometry was
set according to that on the robot. We tried to simulate both omni-directional and
cardioid directivity patterns of the microphones, and found out that the models trained
with omni-directional simulation have in general better performance, even for the robot
P1, whose actual microphones are directional. We hypothesize that this is because the
simulation cannot replicate exactly the directivity patterns of the real microphones, and
models trained with omni-directional simulation are easier to adapt to other situations.
Therefore, we used the omni-directional simulation for both robots throughout our exper-
iments. Then the single-source simulated audio frames are mixed randomly at runtime
with other frames as well as the real robot background recordings.

In total, we generated one million mixture frames (47 hours). The number of sources
varies from zero to four. This include a significant number of source locations and
audio content for training. We experimented with both anechoic and reverberant room
conditions. For the reverberant simulation, the Reverberation Time (RT60) is randomly
selected between 200 and 800 ms.

Target-domain data. We collected real data with the robots. For P1, we used the
same data that were used in the previous chapter (Table 3.1). For P2, we conducted the
data collection in the same way and obtained a set of loudspeaker data (Table 4.2). As
we have mentioned, the sound source locations are fixed during each piece of recording,
therefore the coverage in terms of varoius sound source locations in the real recordings is
considerably less than that of the simulated data.

2https://github.com/ehabets/RIR-Generator
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Table 4.1 – Specifications of the simulated data.

Simulation P1 & P2

Total duration 47 hours
# of frames 1 million
- no source 200k
- single source 400k
- two sources 300k
- more 100k

# of male speakers 105
# of female speakers 43
Azimuth (°) [-180, 180.0]
Elevation (°) [-74, 75]
Distance (m) [0.5, 10.8]
Room length (m) [8.0, 12.0]
Room width (m) [6.0, 9.0]
Room height (m) [2.0, 5.0]
RT60 (ms)∗ [200, 800]

∗RT60 values only apply to the reverberant simulation.

Table 4.2 – Specifications of the target-domain data for P2

P2-Loudspeaker
Training Evaluation

Total duration 3.8 hours 2.1 hours
# of frames 122k 67k
- no source 26k 14k
- single source 90k 46k
- two sources 6k 7k

# of male speakers 101 8
# of female speakers 41 8
Azimuth (°) [-180, 180] [-178, 180]
Elevation (°) [-39, 56] [ -29, 48 ]
Distance (m) [0.5, 1.8] [ 0.9, 2.0]
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These data were annotated with exact sound source locations, from which we derived
the weak labels (number of sound sources in each frame). Although only the weak
labels are required for the weakly-supervised adaptation approach, the availability of the
fully-labeled training data allowed us to analyze quantitatively the effectiveness of the
weak supervision, and compare it to the fully-supervised methods.

4.4.2 Training Parameters

According to the proposed framework (Fig. 4.1), we first pre-trained a model on the
fully-labeled simulated data using the two-stage training scheme. The model was trained
for one epoch in the first stage (Eq. (3.13)) and four epochs in the second stage (Eq. (3.2)).

For the weakly-supervised domain adaptation step, the pre-trained model was used as
initialization, and the weights of the components in the optimization target function
Eq. (4.9) where µw = 0.9 (for the weak supervision loss), µa = 0.1 (for the modified weak
supervision loss on augmented data), and µs = 1.0 (for supervised loss on simulated
data). This is equivalent to composing mini-batches using 45%, 5% and 50% of the
samples from the weakly-labeled dataset, augmented dataset, and the simulated dataset,
respectively. Models were adapted for ten epochs for P1 and 40 epochs for P2. We used a
learning rate of 0.001 and reduced it by half every two (P1) or eight (P2) epochs. During
all the training processes, the models were optimized with the Adam optimizer (Kingma
and Ba, 2015) and a mini-batch size of 100.

For domain adversarial training, the network was adapted for ten epochs. Domain
classification weight µd varied from 0 to 10−3 during the adaptation process:

µd(p) =
(

2

1 + exp(−10p) − 1

)
× 10−3, (4.15)

where p ∈ [0, 1] is the adaptation progress. In each mini-batch, an equal number of source
domain data and target domain data were sampled. The optimizer and mini-batch size
were the same as those used for the weakly-supervised adaptation scheme.

4.4.3 Analysis of the Pseudo-Labeling

To better understand the minimum distance criterion, we analyzed how the effectiveness
of the pseudo-labeling depends on the initial model performance and the number of
overlapping sources. Our expectation is that good pseudo-labels will have a positive
impact on the adaptation process if the target spatial spectra encoded from the pseudo-
labels are on average closer to the ground truth spatial spectra than the actual network
outputs. Therefore, we computed the loss reduction between the MSE loss (Eq. (3.2)) of
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Figure 4.5 – The distribution of the pseudo-labeling loss reduction on all samples in the
P1 training data. Top figure: each histogram (plotted vertically) shows a distribution of
the loss reduction (Eq. (4.16)) on the samples with the indicated prediction loss (left
histograms) and on all samples (right-most histogram). The green bars indicate positive
reduction (correct weak supervision), while the red bars indicate negative reduction
(incorrect weak supervision). Bottom figure: the distribution of the initial prediction loss.
The network is pre-trained with the anechoic simulation data.

the model prediction and that of the pseudo-label:

∆L = L (fθ(x), y)− L (h(pθ(x, z)), y) , (4.16)

where y and z are, respectively, the location label and the weak label corresponding to
the audio segment x. A positive loss reduction indicates that the pseudo-labeling should
be beneficial for the model.

We extracted the pseudo-labels on the target-domain data using the minimum distance
criterion (Eq. (4.3)) and the pre-trained model. Then, we computed the distributions of
the loss reduction (Eq. (4.16)) on samples with different prediction accuracy, which is
characterized here by the loss values of the predictions. The result (Fig. 4.5) shows that
weak supervision is mostly correct when the prediction loss is small (below 0.02), and
becomes unreliable as the prediction loss increases.

By comparing the loss reduction distributions on the single-source (Fig. 4.6) and the
multi-source samples (Fig. 4.7), we can verify the assumption that weak supervision
is more reliable on single-source frames, since the pre-trained model initially performs
better on the single-source frames.
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Figure 4.6 – The distribution of the pseudo-labeling loss reduction on the single-source
samples from the P1 training data.
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Figure 4.7 – The distribution of the pseudo-labeling loss reduction on the multi-source
samples from the P1 training data.
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Figure 4.8 – The distribution of the pseudo-labeling loss reduction on the P1 augmented
data using the minimum distance criteria.

We also computed the loss reduction distributions of two different strategies for pseudo-
labeling on the multi-source augmented data. The first strategy is to directly apply the
minimum distance criterion (Eq. (4.3)) on the mixed signal (Fig. 4.8), while the other
strategy is, as we proposed, to extract pseudo-labels from the mixture components and
then merge the pseudo-labels using Eq. (4.8) as the loss function (Fig. 4.9). Since the
modified adaptation relies on pseudo-labels of the single-source components, it generates
more reliable results than the direct application of pseudo-labeling on the multi-source
frames. Even when the initial prediction loss is larger than 0.02, the pseudo-labels are
more likely to have a positive reduction.

4.4.4 List of Methods

The following approaches were included for comparison:

• SRP-PHAT: steered response power with phase transform (DiBiase et al., 2001).
• SUP.REAL: the fully-supervised approach described in Chapter 3 using only fully-

labeled real data for training (two-stage training with loss functions Eqs. (3.2)
and (3.13)).

• SUP.SIM: a model trained with only the simulated data. This is also the initialization
for all the following adaptation approaches.

• SDA: the supervised domain adaptation approach. Its objective function is Eq. (4.1).
• WDA.MD: the weakly-supervised domain adaptation with minimum distance crite-
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Figure 4.9 – The distribution of the pseudo-labeling loss reduction on the P1 augmented
data, using the modified pseudo-labeling that takes advantage of the knowledge about
the mixing components.

rion. Its objective function is Eq. (4.2).
• WDA.AUG: the weakly-supervised domain adaptation approach with both minimum

distance criterion and pseudo-labeling on augmented data. Its objective function is
Eq. (4.9).

• UDA.DAT: the unsupervised domain adaptation approach with domain adversarial
training. Its objective functions are Eqs. (4.10), (4.12) and (4.13).

• WDA.DAT: the combined approach of domain adversarial training and minimum
distance weakly-supervised adaptation. Its objective functions are Eqs. (4.12)
to (4.14).

We experimented with both anechoic and reverberant simulation for generating source
domain data, therefore two models were obtained for each of the above methods (except
for SRP-PHAT and SUP.REAL).

4.4.5 DOA Estimation Results

We applied these approaches to both the robots P1 and P2, and evaluated them on
their respective test sets (real data). We report their performance on single-source and
two-source frames, as well as the overall performance on all test frames. The evaluation
criteria are the same as those in the previous chapter (Section 3.6.2).
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Table 4.3 – Mean Absolute Error (MAE) and Accuracy (ACC) on the P1-Loudspeaker
dataset. Performance is evaluated on different subsets: all frames, single-source frames
and two-source frames. The source-domain data are simulated with two different room
conditions (anechoic and reverberant).

Dataset P1-Loudspeaker
Subset All z = 1 z = 2

MAE (°) ACC (%) MAE (°) ACC (%) MAE (°) ACC (%)
SRP-PHAT 21.5 78 19.0 82 37.0 50
SUP.REAL 3.0 94 2.6 96 5.6 84
Anechoic Simulation
SUP.SIM 13.1 80 11.6 82 22.6 66
SDA 3.3 94 2.7 95 7.1 86
WDA.MD 7.5 87 4.3 91 26.6 62
WDA.AUG 4.5 93 3.3 95 12.2 83
UDA.DAT 12.9 81 11.3 83 22.6 69
WDA.DAT 8.1 87 4.1 92 32.3 58
Reverberant Simulation
SUP.SIM 11.7 86 10.0 88 22.7 69
SDA 3.8 94 3.1 95 7.9 84
WDA.MD 8.8 89 4.9 93 32.9 63
WDA.AUG 5.2 92 3.8 94 14.2 79
UDA.DAT 9.6 89 8.2 91 18.2 76
WDA.DAT 10.0 89 5.0 94 41.0 58

Learning-based vs SRP-PHAT. From the performance of the approaches on the
P1-Loudspeaker data (Table 4.3 and Fig. 4.10), we see that all learning-based approaches
outperform SRP-PHAT. Because there is a strong background noise in the robot audio
data, SRP-PHAT, which assumes the target signal is dominant across all frequencies, is
more affected. The learning-based approaches, on the other hand, can learn from the
samples to implicitly suppress the noise.

Simulation vs Real Data. Comparing the models trained with simulated data
(SUP.SIM) to those trained with real data (SUP.REAL), we see the expected per-
formance degradation caused by the discrepancy between the acoustic simulation and
real recordings.

Supervised Adaptation. The model first pre-trained with simulated data and then
adapted with fully-labeled real data (SDA) achieves similar performance as that directly
trained on real data (SUP.REAL) in the P1-Loudspeaker test set. Nevertheless, a
noticeable difference (see Fig. 4.10c) is that the adapted model has better precision and
recall in the two-source frames. This is probably because the simulated data provide a
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Figure 4.10 – Precision-recall curves as a sound source detection problem on the P1-
Loudspeaker dataset. The curves are generated by varying the prediction threshold ξ in
Eq. (3.6). DOA estimation with less than 5° error is considered correct. As indicated
in the figure titles, left column shows results of model trained with anechoic simulation,
and right column shows results of model trained with reverberant simulation.
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broader coverage of sound source directions, especially in the multi-source case, than the
real data.

Weakly-supervised Adaptation. Using the weakly-labeled real data, both the weakly-
supervised domain adaptation approaches (WDA.MD and WDA.AUG) significantly
outperforms the pre-trained model (SUP.SIM). The discrepancy between the simulation
and real data is mitigated. Between both the approaches, the performance of the approach
relying on augmented data (WDA.AUG) is significantly better, especially on the two-
source frames, with an accuracy of 83% (vs 62% for WDA.MD) for instance. In fact,
directly applying the minimum distance criterion (WDA.MD) on the multi-source frames
is not reliable and generates wrong pseudo-labels. Therefore, its performance on the
two-source frames is even worse than the pre-trained model. Applying the adaptation on
the single-source components of the augmented data prevents unreliable pseudo-labeling
and improves the adaptation result. As a result, our approach achieves comparable
results, in terms of accuracy as well as precision and recall (Fig. 4.10(a,d)), as those
using fully-labeled real data. This shows that we can substitute exact labels in the real
data with weak labels, thus the workload of annotation can be significantly reduced.

Domain-Adversarial Training. The adaptation with domain-adversarial training only
shows insignificant improvement (Fig. 4.10). Moreover, combining domain-adversarial
training with minimum distance weakly-supervised adaptation does not improve the
result with respect to using only weakly-supervised adaptation. We have explored various
values of µd, architecture of the domain classifier, and layers of features extractor, however
further improvements were not obtained. In practice, introducing domain-invariance
suffers the risk of reducing the discriminative power of the features, because the feature
extractor may produce irrelevant features in order to fool the domain classifier. Overall,
finding the balance between domain-invariance and discriminative power is difficult.

Anechoic vs Reverberant Simulation. Comparing the different simulation con-
ditions, we find that the pre-trained models with reverberant simulation in general
outperform those with anechoic simulation, as they matches the evaluation data better,
which are collected in reverberant environments. However, after domain adaptation,
the models with the anechoic simulation achieve better performance in most conditions.
This is probably because the models trained with simpler source-domain conditions (ane-
choic simulation) are more capable to adapt, while the models trained with reverberant
simulation might be already locked in a local optimum that favors the specific complex
conditions in the simulated training data.

P1-Human Data. We can draw similar conclusions from the evaluation on this test set
(Table 4.4 and Fig. 4.11), except that the performance of SRP-PHAT is much better
than that in the P1-Loudspeaker data. This is because in the human talker recordings
all speakers are from the front (inside the field of view of the robot camera), and the
SNR is higher. SPR-PHAT is less affected by the background noise. It achieves better
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Table 4.4 – MAE and ACC on the P1-Human dataset. The source-domain data are
simulated with anechoic condition.

Dataset P1-Human
Subset All z = 1 z = 2

MAE (°) ACC (%) MAE (°) ACC (%) MAE (°) ACC (%)
SRP-PHAT 5.4 88 2.6 93 20.9 56
SUP.REAL 2.9 97 2.4 98 5.6 94
Anechoic Simulation
SUP.SIM 4.9 92 3.9 94 10.4 83
SDA 3.9 97 3.2 98 8.0 92
WDA.MD 6.6 93 2.6 96 28.8 72
WDA.AUG 4.4 96 3.2 97 11.2 91
UDA.DAT 4.3 94 3.6 95 8.2 87
WDA.DAT 7.0 91 2.4 97 32.9 62

MAE than some learning-based approaches. However, in terms of detection ACC, the
learning-based approaches are better, as their ideal spatial-spectrum is normalized to
one (not dependent on the SNR or signal power), thus a certain prediction threshold
may work uniformly well for all samples.

P2-Loudspeaker Data. We notice that this dataset is in general more challenging than
the P1-Loudspeaker data, as indicated by the accuracy as well as precision and recall
of SRP-PHAT, SUP.REAL and SUP.SIM in the results (Table 4.5 and Fig. 4.12). The
proposed approach relies on initial performance of the pre-trained model, therefore it
does not perform as well as that in the P1 data. In spite of this, the proposed approach
(WDA.AUG) shows a significant improvement over the pre-trained model. We also find
that the model trained with both simulated and real data (SDA) outperforms significantly
the models using only real data. This is because there are less real training data for
P2 (compared to P1), and adding the simulated data may help especially when the real
training data are not sufficient.

4.4.6 Scalability with Data Size

We analyzed the scalability of the different approaches. Specifically, we examined on
P1-Loudspeaker (Fig. 4.13) and P1-Human (Fig. 4.14) how their F1-scores evolve with
the size of the target-domain training data. The F1-scores are computed with the
precision and recall values that generate the best F1-scores. Both figures show that the
performance of all approaches generally increases as more real data are used (except the
pre-trained model, which does not use real data). The domain adaptation approaches,
including weakly-supervised, outperform the supervised approach when the data size is
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Figure 4.11 – Precision-recall curves as a sound source detection problem on the P1-Human
dataset.
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Figure 4.12 – Precision-recall curves as a sound source detection problem on the P2-
Loudspeaker dataset.
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Table 4.5 – MAE and ACC on the P2-Loudspeaker dataset. The source-domain data are
simulated with anechoic condition.

Dataset P2-Loudspeaker
Subset All z = 1 z = 2

MAE (°) ACC (%) MAE (°) ACC (%) MAE (°) ACC (%)
SRP-PHAT 13.5 72 11.1 75 29.3 51
SUP.REAL 5.5 87 4.5 89 12.0 70
Anechoic Simulation
SUP.SIM 7.2 77 6.5 78 12.3 70
SDA 3.5 92 3.2 94 5.6 85
WDA.MD 5.1 81 4.4 82 9.7 71
WDA.AUG 4.7 82 4.4 83 7.1 77

small.

4.5 Summary

In this chapter, we have introduced a framework to train deep neural networks for
multi-source DOA estimation. The framework uses simulated data together with weakly-
labeled (number of sources) data under a domain adaptation setting. We have also
proposed a data augmentation scheme combining our weakly-supervised adaptation
approach with reliable pseudo-labeling of mixture components in the augmented data.
This approach prevents incorrect adaptation caused by difficult multi-source samples.
The proposed weakly-supervised method (WDA.AUG) achieves almost equal performance
to the fully-labeled case on the data of the P1 robot. As for the P2 robot, the proposed
method significantly improves the pre-trained model, but does not achieve the same level
of performance as the supervised approaches due to the inaccurate initial prediction of
the pre-trained model.

Moreover, we have explored the application of domain-adversarial training for unsuper-
vised domain adaptation of multi-source DOA estimation models. Domain-adversarial
training aims to construct a domain-invariant feature representation. However, this
compromises the discriminant power of the features and no significant adaptation im-
provement has been observed with this approach.

Overall, the proposed weakly-supervised framework can be used for deploying learning-
based DOA approaches to new microphone arrays with minimal effort for data collec-
tion.
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5 Joint DOA Estimation and
Speech/Non-Speech Classification

The previous chapters have focused on studying Deep Neural Network (DNN) for
Direction-of-Arrival (DOA) estimation of multiple speech sources. However, in real
Human-Robot Interaction (HRI) environments, there are other types of sounds besides
speech, which a robot should distinguish in order to respond accordingly. This chapter,
partially based on (He et al., 2018b), aims to develop DNNs for DOA estimation under
the following challenging conditions:

• Multiple simultaneous sound sources;
• No a priori knowledge about the number of sound sources;
• Presence of strong robot ego-noise;
• Presence of directional interfering non-speech sources besides speech sources.

As summarized in Section 2.3, previous research on localization and tracking of a specific
type of sound sources in the presence of interfering noise sources can be categorized
into sequential approaches and joint approaches. The sequential approaches first obtain
signals from individual directions through Sound Source Separation (SSS), and then apply
classification individually on the separated signals (May et al., 2012; Lim et al., 2015;
Crocco et al., 2017; Wakabayashi et al., 2020). The methods to achieve SSS include beam-
forming (Lim et al., 2015; Crocco et al., 2017), time-frequency masking (May et al., 2012),
and spatially-constrained Blind Source Separation (BSS) method (Wakabayashi et al.,
2020). These methods apply disjoint source separation and classification. Specifically,
the classification is either independent or subsequent of the sound source localization
and separation.

Joint approaches, in contrast, solve localization and classification simultaneously, allowing
knowledge to be shared between tasks. In fact, localization and classification of sources
in sound mixtures are closely related. Localization can help classification by providing
spatial information, which is useful for better separation or enhancement of source
signals. Vice versa, knowing the types of the sources provides spectral information
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that can help the localization. Such an idea has been explored by applying Multi-Task
Learning (MTL) neural networks for joint localization and classification of a single sound
source (Hirvonen, 2015; Vecchiotti et al., 2018). However, there has been little discussion
on joint localization and classification of multiple sound sources.

In this chapter, we present two deep multi-task neural networks for joint DOA estimation
and Speech/Non-Speech (SNS) classification of multiple sound sources. These networks
output two scores per direction: one for sound activity and the other for sound type.
By combining these scores, the networks can detect and classifier an arbitrary number
of sound sources. The two networks differ in their architectures. The first architecture
is based on the idea of sharing features across tasks, while the second architecture
explores the idea of merging initial estimation of the two tasks to get refined estimation
(re-estimation). Experiments with real noisy recordings show that these two approaches
outperform a sequential approach based on Minimum Variance Distortionless Response
(MVDR) beamformer, and two single-task networks.

5.1 Approach

We describe the multi-task neural networks in term of network input/output, loss function,
and network architectures.

5.1.1 Network Input

We adopt the raw Short-Time Fourier Transform (STFT) as our network input, as
it contains all the required information for both tasks. If we would extract high-
level localization features, such as cross correlation, Inter-channel Phase Difference
(IPD), Inter-channel Level Difference (ILD) or subspace-based features, the signal power
spectral information is lost. Therefore, such high-level features are not suitable for sound
classification. Conversely, high-level sound classification features, such as Mel-Frequency
Cepstral Coefficients (MFCCs) (Martin et al., 2001; Hughes and Mierle, 2013), do not
contain phase information for sound localization. In contrast, the raw signal, which
retains all information for both tasks, is preferable. In addition, we have shown in
Chapter 3 that DNNs can learn by themselves to extract suitable high-level features
from raw STFT. Therefore, we follow the approach of ResNet-STFT in Section 3.3.3 to
extract the same input representation for joint DOA estimation and SNS classification.

Specifically, the raw data received by the robot are 4-channel audio signals sampled at 48
kHz. Their STFT is computed in frames of 2048 samples (43 ms) with 50% overlap. Then,
a block of 7 consecutive frames (170 ms) are considered an input unit for analysis. The
337 frequency bins between 100 and 8000 Hz are used, and the real and imaginary parts of
the STFT coefficients form two individual channels. Therefore, the input representation
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Figure 5.1 – Desired outputs for joint DOA estimation and SNS classification. In this
example, there are two speech sources and one noise source indicated by green and
red bars, respectively. The desired SSL scores form a spatial spectrum with peaks at
the sound source directions. The desired SNS scores are either 1 (speech) or 0 (noise),
depending on the type of the nearest sound source.

has a dimension of 7× 337× 8 (temporal frames × frequency bins × channels).

5.1.2 Network Output and Loss Function

For each spatial direction, the multi-task networks predict a score of sound activity,
p = {pi} (SSL scores), and a score of sound type, q = {qi} (SNS scores). The elements
pi and qi are associated with one of the 360 azimuth directions ϕi.

Encoding. According to the Gaussian-based spatial spectrum coding described in
Section 3.2, the desired SSL scores are the maximum of Gaussian functions centered at
the DOAs of the ground truth sources (Fig. 5.1):

pi =

maxϕ∈y
{
e−d(ϕi,ϕ)2/σ2

}
if |y| > 0

0 otherwise
, (5.1)

where y = y(s)∪y(n) is the union of the ground truth speech source and interfering source
DOAs, σ is a parameter controlling the width of the Gaussian curves, d(·, ·) denotes the
azimuth angular distance, and | · | denotes the cardinality of a set.

The desired SNS scores are either 1 or 0 depending on the type of the nearest source1 (Fig. 5.1):

qi =

1 if the nearest sound source is speech
0 otherwise

. (5.2)

1It is assumed that sound sources are not from the exact same direction.
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Loss function. The loss function is defined as the sum of the Mean Squared Error
(MSE) of both predictions:

Loss = ‖p̂− p‖22 + µ
∑
i

wi |q̂i − qi|2 , (5.3)

where p̂ and q̂ are the network outputs, p and q are the desired outputs, and µ is a
constant. The SNS loss is weighted by {wi}, which depends on its distance to the nearest
source (wi differs from pi only in the parameter for curve width):

wi =

maxϕ∈y
{
e−d(ϕi,ϕ)2/σ2

w

}
if |y| > 0

0 otherwise
. (5.4)

The weighting emphasizes training around the directions of the active sources, and the
SNS scores can be arbitrary at the other directions.

Decoding. During test, the method localizes the sound sources by finding the local
maxima in the SSL likelihood that are above a given threshold (this is the same as
Eq. (3.6)):

ŷ =
{
ϕi : pi > ξ and pi = max

d(ϕj ,ϕi)<σn

pj

}
, (5.5)

where ξ is the prediction threshold and σn is the neighborhood distance for peak finding.
Furthermore, to detect speech sources and estimate their DOAs, we combine the SSL
and SNS likelihood to further refine the peaks in the SSL likelihood:

ŷ(s) =
{
ϕi : piqi > ξ and pi = max

d(ϕj ,ϕi)<σn

pj

}
. (5.6)

We set σ = σn = 8°, µ = 1 and σw = 16° in the experiments.

5.1.3 Network Architectures and Training Procedure

We investigate two multi-task network architectures, one with shared features and one
relying on re-estimation. For comparison, we also include a single-task approach with
two separate networks for individual tasks.

Multi-Task Network with Shared Features. Inspired by ResNet-STFT, the multi-
task network with shared features is a fully convolutional neural network consisting of a
residual network common trunk and two task-specific branches (Fig. 5.2). The common
trunk starts with the reduction of the size in the frequency dimension using two layers
of strided convolution. These initial layers are followed by five residual blocks. The
identity connections in the residual blocks allow a deeper network to be trained without
being affected by the vanishing gradients problem. We have shown that the ResNet is
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effective for multi-speaker DOA estimation (Chapter 3). The trunk extracts features that
are used for both tasks. The hard parameter sharing in such common trunk provides
regularization and reduces the risk of overfitting (Ruder, 2017).

The task-specific branches are identical in structure. They both start with a 1 × 1

convolutional layer with 360 output channels (corresponding to 360 azimuth directions).
The layers until this point represent Stage 1, in which all the convolutions are along the
Time-Frequency (TF) domain, therefore the outputs have local receptive fields in the TF
domain and can be considered as the initial estimation (of SSL and SNS) for individual
TF points. In the rest of the network, Stage 2, the convolutions are local in time and
DOA dimensions but global in the frequency dimension. In practice, this is achieved
by swapping the DOA and the frequency axes. The final output of each branch is a
360-dimension vector indicating the likelihood of SSL and SNS respectively. In addition,
Batch Normalization (BN) (Ioffe and Szegedy, 2015) and Rectified Linear Unit (ReLU)
activation functions (Nair and Hinton, 2010) are applied after all convolutional layers
except for the output layer.

Following the same training procedure of ResNet-STFT, we train the network with a
two-stage training scheme. We first train Stage 1 for four epochs by imposing supervision
to its output. The loss function at this stage is defined as the sum of Eq. (5.3) applied
to all the TF points2. Such supervision provides a better initialization of the Stage 1
parameters for further training, as we will show in the experiments.

Then, the whole network is trained in an end-to-end fashion (using the loss function of
Eq. (5.3) at the output) for ten epochs. We use the Adam optimizer (Kingma and Ba,
2015) with mini-batches of size 128 for training.

Separated Single-Task Networks. For comparison, we also implement a single-task
approach with separated networks (Fig. 5.3). This approach simply uses two identical
single-task networks, both of which are copies of ResNet-STFT. Each network outputs
the prediction of one task. It can be viewed as separating the trunk in the shared-feature
multi-task network. Without the hard feature sharing, these networks can theoretically
approximate better the training data, but they are more prone to overfitting compared
to the multi-task network. The separated networks are trained in the same way as the
shared-feature multi-task network with the two-stage training.

Multi-Task Network with Re-estimation. We design another multi-task network
by extending the separated single-task networks with a re-estimation module (Fig. 5.4).
The idea of the re-estimation is that the independent preliminary TF local predictions for
both task are combined to refine the final TF local predictions, so that the predictions are
shared explicitly between tasks. The re-estimation module uses the concatenation of the
Stage 1 outputs of both tasks as input, predicts individually the “refinement” for each

2We don’t use individual ground truth for each TF point, because it is impractical to acquire.
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Figure 5.2 – Multi-task network with shared features (MT.SHARED). Stage 1 consists
of the green layers, and Stage 2 consists of the blue layers. The BN and ReLU activation
functions after each hidden layer are omitted in this figure.

task, and adds them element-wisely to the original Stage 1 outputs. Each “refinement”
computation consists of two convolutional layers for downsampling, and two transposed
convolutional layers (Dumoulin and Visin, 2018) for upsampling back to the same size of
the original Stage 1 output.

To train the multi-task network with re-estimation, we first initialize it by the separated
single-task networks, and then train it with the same end-to-end fashion as the other
approaches.
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Figure 5.3 – Separated single-task networks (ST.SEP). Stage 1 consists of the green
layers, and Stage 2 consists of the blue layers. The BN and ReLU activation functions
after each hidden layer are omitted in this figure.

5.1.4 Adding Temporal Context

We extend the multi-task network with shared feature by simply adding more temporal
context to the input. That is, in addition to the block of 7 frames to be analyzed (i.e.
for which we want to make a prediction), we add 10 frames (210 ms) in the past and 10
frames (210 ms) in the future as input to the network, thus reaching an input duration of
600 ms. As the network is fully convolutional, its structure remains the same except for the
last convolutional layer where the kernel shape is changed from 7× 5 to 27× 5 (temporal
frames × DOA).
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Figure 5.4 – Multi-task network with re-estimation (MT.RE-EST). Stage 1 consists
of the green layers, and Stage 2 consists of the blue layers. Red layers constitute the
re-estimation module. “tconv” indicates transposed convolution. The BN and ReLU
activation functions after each hidden layer are omitted in this figure.
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Table 5.1 – Specifications of the recorded data. 360° means the source can be from any
azimuth direction. FoV is the camera’s field of view.

Loudspeaker Human
Training Test Test

Total duration 32 hours 17 hours 8 min
Max. # of speech 2 2 3
Max. # of noise 1 1 1
# of speakers 148 16 7
DOA range (speech) 360° 360° in FoV
DOA range (noise) 360° 360° 360°

5.2 Experiments

We collected noisy recordings with our robot Pepper, and evaluated the performance
of the methods in terms of sound localization, SNS classification, as well as speech
localization.

5.2.1 Data

The collected recordings consist of two sets: the loudspeaker mixtures and human
recordings (Table 5.1). The loudspeaker mixture recordings are an extension of the
loudspeaker dataset from Section 3.5 by mixing additional non-speech recordings with
the speech recordings. The non-speech recordings were collected by playing non-speech
audio segments from loudspeakers in the same condition as the speech recordings. These
segments are from the Audio Set (Gemmeke et al., 2017) and cover a wide range of audio
classes, including a variety of noises, music, nature sounds, animal sounds and non-speech
human sounds.

The human recordings involve people having natural conversation or reading with provided
scripts while non-speech segments were played from loudspeakers. Ground truth source
locations were automatically annotated, while the voice activity was manually labeled.

5.2.2 List of Methods

We include the following methods for comparison:

• SRP-PHAT: Steered response power with phase transform (DiBiase et al., 2001).
• ST.SEP: Separated single-task networks (Fig. 5.3).
• ST.SSL: A single-task network for sound source localization (the SSL part of ST.SEP).
• ST.SPEECH: A single-task network (same structure as ST.SSL) for speech localiza-
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Figure 5.5 – Sound source localization performance.

tion (trained to localize speech sources and ignore noises).
• SEQUENTIAL: It first localizes sounds with ST.SSL, then extracts the signals from

the estimated DOAs by the MVDR beamformer (Capon, 1969), and finally classifies
their sound type with a SNS neural network (with similar ResNet structure).

• MT.SHARED: The proposed multi-task network with shared features (Fig. 5.2).
• MT.RE-EST: The proposed multi-task network with re-estimation (Fig. 5.4).
• MT.SHA-N2S: MT.SHARED trained without using the two-stage training scheme.
• MT.SHA-CTX: MT.SHARED with temporal context extension.

5.2.3 Sound Source Localization Results

We evaluate the sound source localization as a detection problem, where the number of
sources is not known a priori. To do this, we compute the precision and recall with a
varying prediction threshold ξ of Eq. (5.5). A prediction is considered to be correct if it
is within 5° of error from a ground truth DOA. Then, we plot the precision vs. recall
curves on the two datasets (a) loudspeaker mixtures (b) human recordings (Fig. 5.5).
Both proposed multitask approaches (MT.SHARED and MT.RE-EST) achieve more
than 90% precision and 80% recall on both datasets. MT.SHARED is slightly worse
than the single task network (ST.SSL) on the loudspeaker dataset, it is because adding
the regularization with hard feature sharing may compromise the approximation ability
of one task. MT.RE-EST, in contrast, outperforms ST.SSL and shows re-estimation
refines correctly the DOA estimation. Note that all neural network-based methods are
significantly better than SRP-PHAT.
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Figure 5.6 – Speech source localization performance.

Table 5.2 – Speech/non-speech classification accuracy. The classification is extracted on
directions according to the ground truth (G.T.), or the DOA predictions (Pred.) that
have less than 5◦ of error. The numbers in the parentheses indicate the recall (Rec.) of
the DOA predictions.

Dataset Loudspeaker Human
Directions G.T. Pred. (Rec.) G.T. Pred. (Rec.)
ST.SEP 0.94 0.97 (0.83) 0.81 0.82 (0.83)
SEQUENTIAL 0.80 0.81 (0.83) 0.68 0.73 (0.83)
MT.SHARED 0.95 0.97 (0.81) 0.85 0.86 (0.82)
MT.RE-EST 0.95 0.98 (0.85) 0.85 0.87 (0.83)
MT.SHA-N2S 0.93 0.96 (0.79) 0.82 0.83 (0.76)
MT.SHA-CTX 0.96 0.98 (0.85) 0.89 0.89 (0.86)

5.2.4 Speech/Non-Speech Classification Results

To evaluate the performance of speech/non-speech classification, we compute the clas-
sification accuracy under two conditions: considering the SNS predictions (a) in the
ground truth directions, and (b) in the predicted directions (Table 5.2). Specifically,
under condition (a), for each ground truth sound source, we check how accurate the
method predict its type in the ground truth DOA. Such evaluation is independent of the
localization method. Under condition (b), we first detect sound sources using Eq. (5.5)
with ξ = 0.5, and select the sound sources of which the estimated DOAs are close to
the ground truth (error < 5°). Then we evaluate the accuracy of SNS classification at
these estimated directions. In this case, not all ground truth sources are matched to a
prediction (recall is lower than 1 and indicated in the parentheses in Table 5.2). The
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result is thus dependent on the DOA estimation. Ideally, we prefer methods with high
detection recall and high SNS classification accuracy. We can notice that the performance
using the predicted DOAs is better than using the ground truth DOAs. This is because
the sound sources which are correctly detected have on average higher Signal-to-Noise
Ratio (SNR), thus it is easier to classify them.

Both proposed multitask approaches (MT.SHARED and MT.RE-EST) achieve more than
95% accuracy on the loudspeaker recordings and more than 85% accuracy on the human
recordings. They are both better than ST.SEP and the difference is more prominent on
the human recordings, which have more condition mismatch with the training data than
the loudspeaker test set. This shows that single-task networks are not as good as the
multi-task approaches at generalization. All the end-to-end neural network approaches
are significantly better than SEQUENTIAL, which extracts signals by beamforming and
then applies classification.

5.2.5 Speech Source Localization Results

We evaluated the speech source localization performance in the same way as that for sound
source localization (Fig. 5.6). The results show that the multi-task approaches significantly
outperform the sequential approach, due to their better performance in SNS classification.
Although MT.SHARED is slightly worse than the single-task approaches (ST.SEP and
ST.SPEECH) in the loudspeaker recordings, it achieves better performance than ST.SEP
and similar performance as ST.SPEECH in the human recordings. This again indicates
that the multi-task learning achieves better generalization under unmatched conditions.
The other multi-task approach MT.RE-EST outperforms both single-task approaches as
well as MT.SHARED in both datasets.

5.2.6 Two-stage Training and Temporal Context

Results of all three evaluation criteria show that the shared-feature multi-task network
trained in two stages (MT.SHARED) is superior than training it with only the end-to-end
stage (MT.SHA-N2S). This implies that the two-stage training scheme effectively helps
the training process.

In addition, we see that adding temporal context (MT.SHA-CTX) improves both the
sound source localization and classification performance, and as a result, greatly improves
the speech localization performance. However, such an extension compromises the real-
time response of the approach, and may overfit if there are only static sound sources
present in the training data. Demonstration videos of MT.SHARED and MT.SHA-CTX
are available online3.

3https://www.youtube.com/watch?v=O7bQvg03RTc
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5.3 Summary

In this chapter, we have described two novel multi-task neural network approaches for joint
DOA estimation and speech/non-speech classification, including one with shared features
(MT.SHARED) and one with re-estimation (MT.RE-EST). Both networks use raw STFT
as input and predict SSL and SNS scores at each direction. The benefit of sharing
features between tasks is adding regularization to the model so that it generalizes better
under mismatched conditions, whereas the idea of re-estimation is to share information
of initial predictions between task and obtain refined estimation.

Both multi-task approaches achieve better SNS classification and speech localization
performance than separated single-task networks, and a sequential approach, which
applies DOA estimation, beamforming and classification sequentially. The shared-feature
approach (MT.SHARED) does not outperform single-task SSL network and single-
task speech localization network in terms of sound localization and speech localization,
respectively. This is because regularization with hard parameter sharing may compromise
the performance of one task in order to improve the other. In contrast, the re-estimation
approach (MT.RE-EST) achieves better performance in all criteria than the single-task
approaches. This indicates that re-estimation can improve the performance for both
tasks. In addition, we have shown that a simple extension to the shared-feature approach
by adding temporal context to inputs can significantly improve its performance.
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6 Speaker Embedding for
Re-Identification

Person re-identification aims at identifying whether a detected person has been observed
before. For person tracking, re-identification is required to establish consistent identity
labeling and associate disconnected tracks of the same person. In the context of Human-
Robot Interaction (HRI), person re-identification is a crucial part of a robot as it needs
to “remember” the identities of people for long-term natural interactions.

6.1 Introduction

Re-identification systems are usually based on vision, audio, or both. Vision-based
systems identify persons by their visual appearance, such as clothing and faces, and
body features, such as gait. A number of visual re-identification approaches have been
studied for multi-camera video surveillance as well as HRI (Bedagkar-Gala and Shah,
2014; Wang et al., 2019; Leng et al., 2020). Audio-based systems identify persons by their
voices. Audio is used to compensate vision, when talking persons are occluded or outside
of the field of view, or used alone when no visual sensor is available. Re-identification
is particularly important for audio tracking, because of the transient nature of speech.
In natural interactions, people move and do not talk continuously, audio tracking relies
on re-identification to keep consistent identity labels for detected voices. Audio and
visual person models are combined with early fusion or late fusion for robust multi-modal
re-identification (Brutti and Cavallaro, 2017; Marras et al., 2020).

Techniques for audio re-identification are generally known as speaker recognition, which
includes two different tasks: speaker identification and speaker verification (Hansen and
Hasan, 2015). Speaker identification aims to identify an unknown speaker from a set of
known speakers, whereas speaker verification aims to verify if a voice and some enrolled
voices are from the same speaker. On top of these two tasks, speaker re-identification
also has to actively manage the enrollment process. That is, when an unknown voice is
detected, the re-identification system compares it with the models of known speakers,

89



Chapter 6. Speaker Embedding for Re-Identification

and decides whether it is from a known speaker or a new identity needs to be created.
Although the goals of these tasks are different, the techniques they rely on are similar. In
fact, most of the speaker recognition methods are based on mapping speech segments to a
speaker embedding space where they can be compared using a metric for identification or
verification. In an ideal embedding space, distances between voices of the same speaker
are smaller than distances between voices of different speakers. Obtaining effective
speaker embeddings is key for speaker re-identification.

Speaker recognition with clean and segmented single-channel audio has been extensively
studied. Well-known approaches include Gaussian Mixture Model (GMM) (Reynolds and
Rose, 1995), GMM with Universal Background Model (UBM) (Reynolds et al., 2000),
Joint Factor Analysis (JFA) (Kenny, 2005), Support Vector Machine (SVM) for GMM
supervector classification (Campbell et al., 2006), and the i-vector system (Dehak et al.,
2011). Recently, many deep learning based approaches have been shown to outperform
the traditional ones (Variani et al., 2014; Snyder et al., 2016, 2018; Bredin, 2017; Le
and Odobez, 2018). These deep learning based approaches extract speaker embeddings
in two ways. One way is to train a network for speaker identification and use the
activation at one of the last hidden layers as speaker embeddings (Variani et al., 2014;
Snyder et al., 2018). In contrast, the other way is to use directly the network output
as the speaker embedding, and train the network with objective functions that are
defined on the distances between same-speaker and different-speaker pairs. Examples of
the objective functions include contrastive loss (Snyder et al., 2016), which separately
minimizes distances between same-speaker pairs and maximizes those between different-
speaker pairs, and triplet loss (Bredin, 2017; Le and Odobez, 2018), which maximizes
the difference between different-speaker distances and same-speaker distances up to a
given margin.

Besides speaker recognition using clean audio signals, a number of studies address speaker
recognition in the presence of noise and simultaneous speakers. As we have summarized
in Section 2.3, these approaches rely on separating the sound sources (from either
single-channel or multi-channel audio signals), so that speaker recognition is applied on
separated single-channel signals. Sound separation is applied prior and independently
to the speaker recognition in the sequential approaches (May et al., 2013; Zhao et al.,
2012, 2014). Alternatively, sound separation and speaker recognition are solved jointly
in the joint approaches (Zegers and Van hamme, 2016; Drude et al., 2018; Shi et al.,
2020). Nevertheless, using deep neural networks for speaker recognition in multi-speaker
conditions is still an emerging topic. Specifically, joint Direction-of-Arrival (DOA)
estimation and recognition of multiple speakers but has not been studied so far.

This chapter investigates deep neural networks for speaker recognition in multi-speaker
conditions using DOA estimation as an auxiliary task. We study an idea that is similar
to what is explored in the previous chapter: we use the neural works to extract features
for each direction, which are shared for both DOA estimation and speaker embedding. In
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contrast to previous works, our approach does not rely on explicit separation of the signals.
Instead, the network learns to implicitly separate the sound features through end-to-end
training. Our proposed neural network shares similarities with the well-known X-vector
network (Snyder et al., 2018), that both networks are trained using speaker identification
loss and extract speaker embeddings from hidden layers. Moreover, temporal statistic
pooling is used in both approaches to accommodate input sequences of variable lengths.
The difference between our approach and the X-vector approach is that we address the
speaker recognition of multiple overlapping speakers from multi-channel audio, while
X-vector approach extract speaker embeddings from single-channel single-speaker audio.

6.2 Approach

We describe our multi-task neural network approach in terms of input representation,
network output, loss function and network architecture.

6.2.1 Network Input

We use the raw Short-Time Fourier Transform (STFT) as the network input. As we have
discussed in the previous chapter (Section 5.1.1), STFT includes both the spectral power
information as well as the phase information of the input signal. For DOA estimation,
Inter-channel Level Difference (ILD) and spectral cues can be extracted from the power
information, and Inter-channel Phase Difference (IPD) can be extracted from the phase
information. The power information, in addition, includes necessary features for speaker
recognition.

The STFT is processed in the same way as in the previous chapter, except that the input
segment can be arbitrarily long to incorporate more information for speaker recognition.
Specifically, STFT is extracted from 4-channel input audio signals at 48 kHz sampling
rate using frames of 2048 samples (43 ms) with 50% overlap. The 337 frequency bins
between 100 and 8000 Hz are used. The real and imaginary parts of the STFT coefficients
are split into two individual channels. Therefore, the input feature of each unit has a
dimension of T × 337× 8, where the number of frames T varies across different segments.

6.2.2 Network Output and Loss Function

The network output includes frame-wise prediction of the spatial spectrum pt =
{ptd}Dd=1 ∈ [0, 1]D for DOA estimation, and segment-wise prediction of speaker pos-
terior probability at each direction qd = {qds}Ss=1 ∈ [0, 1]D for speaker identification.
The subscripts t ∈ {1, 2, . . . , To} is the frame index, d ∈ {1, 2, . . . , D} is the direction
index, and s ∈ {1, 2, . . . , S} is the speaker ID. Due to downsampling, the frame rate of
predicted spatial spectrum is different from that of the input, thus To 6= T .
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Encoding. The desired output spatial spectrum is encoded by the Gaussian based
spatial spectrum coding (Section 3.2), that is:

ptd =

maxϕ∈yt

{
e−d(ϕd,ϕ)2/σ2

}
if |yt| > 0

0 otherwise
, (6.1)

where yt ⊂ Φ is the set of ground truth directions at frame t, σ is the parameter to
control the width of the Gaussian curves, d(·, ·) denotes the azimuth angular distance,
and | · | denotes the cardinality of a set.

Similar to how we encode the sound type in Section 5.1.2, the speaker ID prediction at
direction ϕd depends on the nearest sound source (speaker) to that direction, that is:

qds =

1 if Speaker s is the nearest speaker to ϕd
0 otherwise

. (6.2)

Loss Functions. The target loss function is a linear combination of the individual
task-specific loss functions:

Loss = µLossDOA + λLossID, (6.3)

where µ and λ are weighting parameters. We use the Mean Squared Error (MSE) loss
for DOA estimation:

LossDOA = 1

To

To∑
t=1

‖p̂t − pt‖22 , (6.4)

where p̂t and pt are the actual and desired spatial spectrum outputs, respectively. The
speaker identification loss is the weighted sum of cross entropy loss at individual directions:

LossID = −
D∑
d=1

wd

S∑
s=1

qds log q̂ds, (6.5)

where q̂ds and qds are the actual and desired speaker identity outputs, respectively. The
weighting {wd} are same as those in the previous chapter:

wd =

maxϕ∈y
{
e−d(ϕd,ϕ)2/σ2

w

}
if |y| > 0

0 otherwise
, (6.6)

where y contains the segment-level ground truth directions.

Decoding. During test time, the network outputs frame-wise spatial spectra pt and
speaker embedding rd per direction (will be explained in Section 6.2.3). To get segment-
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level DOA prediction, we compute the average of frame-wise spatial spectra:

p = 1

To

To∑
t=1

pt (6.7)

and apply peak finding according to Eq. (3.6). For any detected sound source, the speaker
embedding output at its estimated direction is the predicted speaker embedding.

6.2.3 Network Architecture

We design a shared-feature multi-task network for speaker embedding using DOA esti-
mation as an auxiliary task. Its architecture, depicted in Fig. 6.1, consists of a trunk for
feature extraction, and two task-specific branches. The trunk (green blocks in the figure)
applies 2D convolutions along time and frequency axes to extract Time-Frequency (TF)
local features. It starts with two downsampling convolutions to reduce the computational
cost. They are followed by five residual blocks, which are used for extracting high-level
TF-local features, each of which is a 480-dimensional vector. Each of these feature is then
separated into DOA-wise features at 120 directions (4-dimensional vector per direction).
Then, they are re-organized by merging features across all frequencies (54 bins after
down-sampling). As a result, the trunk extracts time-DOA local features, each of which
is a 216-dimensional vector (216 = 4 ∗ 54). These features are then used as input for the
task-specific branches.

The DOA estimation branch (blue blocks in the figure) applies two layers of 2D convo-
lutions along time and DOA axes. The borders are padded circularly along the DOA
axis, preserving its actual topology. This branch outputs one value per direction per
frame, which is bounded between 0 and 1 by the sigmoid function. This output is the
frame-wise spatial spectrum pt.

The speaker recognition branch (red blocks in the figure) starts with two layers of 2D
convolutions to extract frame-wise speaker features per direction ftd ∈ R512, which is
then pooled along the time axis using weighted average and standard deviation:

f (avg)
d =

∑To
t=1 ptdftd∑To
t=1 ptd

, (6.8)

f (std)
d =

√√√√√∑To
t=1 ptd

(
ftd − f (avg)

d

)2

∑To
t=1 ptd

, (6.9)

where
√
· and ·2 are element-wise square root and square, respectively. As indicated in

the formulas, we use the output of the DOA estimation branch {ptd} as the weighting
parameters, because the DOA estimation output (i.e. spatial spectrum) indicates whether
there is an active sound at that frame and direction. This can be viewed as an attention
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Figure 6.1 – The architecture of the multi-task network for speaker recognition. Green
blocks: feature extraction trunk, which first uses convolutions along time and frequency
axes and then assigns individual channels in the TF-local features to different directions
to get time-DOA local features. blue blocks: DOA estimation branch, which consists
of convolutions along time and DOA axes. It outputs the DOA estimation which is
spatial spectra for each frame. red blocks: speaker recognition branch, which first extracts
frame-level speaker features for each direction, which are then pooled into segment-level
speaker features for each direction. The DOA estimation results are used as the weighting
parameters for the temporal pooling. It outputs posterior probability of the speaker ID at
each direction, and the activation of the last hidden layer is used as speaker embeddings
at each direction.
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mechanism, that is the network chooses by itself which frames to attend to.

Their concatenation fd = [f (avg)
d f (std)

d ] ∈ R1024 is the segment-level speaker feature per
direction. Then, the speaker identity posterior probability is computed from these
features with fully-connected layers (1× 1 convolutions) and a softmax layer.

At test time, the 512-dimensional activation of the last hidden layer after batch normal-
ization is the speaker embedding rd at the direction ϕd.

6.3 Experiments

We compared the proposed approach to a sequential approach on our loudspeaker dataset
in a speaker verification setting.

6.3.1 Data

We used the loudspeaker recordings desribed in Section 3.5 for training and evaluation.
The specifications of the loudspeaker data are listed in Table 3.1. Training models that
identify speakers per direction requires more variability in DOAs of individual speaker as
well and number of identities. Otherwise, the network may overfit to a wrong state where
spatial locations are used as the clues for speakers’ identity. Therefore, we added simulated
data to complement the real loudspeaker recordings for training. The simulation process
was the same reverberant room acoustic simulation described in Section 4.4.1, except
that the source signals were selected from the VoxCeleb1 dataset (Nagrani et al., 2017),
which includes more speaker identities than our previous simulated dataset. In total,
there are 1358 speakers (147 from the loudspeaker data and 1211 for simulated data) for
training and 16 different speakers (8 male and 8 female) for evaluation.

6.3.2 Details on Parameters and Training Process

The parameters are chosen as D = 120, σ = σn = 8°, and σw = 16° in the experiments.
Various settings of loss weighting parameters µ and λ are experimented, which we will
explain in Section 6.3.4.

During training, the input segments in each mini-batch are randomly truncated to the
same length between 3 to 10 seconds or 2 to 5 seconds, depending on the training stage.
In each mini-batch, 10.0% of the sequences are sampled from the loudspeaker dataset,
and the rest are sampled from the simulated dataset. We select the number of sequences
in each mini-batch, such that they approximately fill up the memory of a GPU with
11 GB memory. Thus, depending on the sequence length, the number of sequences in
each mini-batch varies between 10 to 90. The network is trained for 80 epochs with

95



Chapter 6. Speaker Embedding for Re-Identification

an Adam optimizer (Kingma and Ba, 2015). The learning rate is 0.001 for the first 40
epochs and reduced by half for the other 40 epochs.

6.3.3 Evaluation Protocol

We evaluate the Equal Error Rate (EER) of the speaker embedding methods under a
speaker verification setting. First the loudspeaker test data are segmented into 2, 3,
5, and 10 second frames or used directly at utterance level. For each sound source in
each segment, we extract the speaker embedding according to its ground truth direction,
estimated direction, or direction estimated by an external model (i.e. the ResNet-STFT
in Chapter 3). Then, we generate verification trials using 5 million randomly-sampled
pairs of sound sources, or all possible pairs if the number of them are fewer than 5 million.
We compute the cosine similarity scores between the speaker embeddings of all trial pairs.
Comparing the scores to a threshold, we can make predictions on whether the speakers
from a trial pair have the same identity. The EER is the rate when false acceptance rate
and false rejection rate are equal while varying the threshold.

In addition to segment duration, speaker verification are also strongly affected by whether
there are overlapping speech in the audio signal. Therefore, we additionally report the
speaker verification performance on trail pairs of these different conditions:

• Both speaker embeddings are sampled from the single-source segments;
• One is from the single-source segments and one is from the multi-source segments;
• Both are from the multi-source segments.

6.3.4 List of Methods

We include the following methods for comparison:

• SEQ (original): A sequential approach based on the Minimum Variance Distortion-
less Response (MVDR) beamformer (Capon, 1969) and a deep neural network for
speaker embedding (Le and Odobez, 2018). The neural network directly output
speaker embedding using single-channel audio input. It is trained on the VoxCeleb1
dataset (Nagrani et al., 2017) with a triplet loss and intra-class distance variance
regularization. The DOA for beamforming is either based on the ground truth or
an estimation from the ResNet-STFT model.

• SEQ (fine-tuned): A variant of SEQ (original) with a fine-tuned speaker embedding
neural network model. The model is fine-tuned using the beamformed signals
extracted from the loudspeaker training data according to the ground truth DOAs.

• PROP (µ = 1, λ = 0.1): The proposed approach using 3-10 second training segments
and the loss weighting that emphasizes more the DOA estimation loss.
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Table 6.1 – EER (%) on trials with pairs of sound sources from any segments. The
second column indicates how the DOA used for speaker embedding extraction is obtained:
according to the ground truth (G.T.), prediction made by the external model (P. (E))
or prediction made the DOA estimation branch of the multi-task model (P.). The best
EERs on predicted DOAs (i.e. excluding G.T.) are highlighted.

Method DOA Utterance 10s 5s 3s 2s
SEQ (original) G.T. 13.32 9.68 12.83 15.33 18.29
- P. (E) 13.34 9.64 12.81 15.33 18.29
SEQ (fine-tuned) G.T. 11.49 8.72 11.07 13.48 18.90
- P. (E) 11.51 8.67 11.04 13.49 18.93
PROP (µ = 1, λ = 0.1) G.T. 9.60 5.84 10.37 14.70 20.14
- P. (E) 9.65 5.89 10.44 14.78 20.18
- P. 9.53 5.69 10.22 14.57 20.03
PROP (µ = 0.1, λ = 1) G.T. 10.45 6.66 11.57 16.43 21.77
- P. (E) 10.49 6.74 11.60 16.47 21.78
- P. 14.79 9.98 14.12 18.23 23.07
PROP (with pre-tr.) G.T. 9.05 5.91 9.76 13.42 17.80
- P. (E) 9.11 5.97 9.83 13.50 17.85
- P. 11.21 6.96 10.85 14.32 18.63

• PROP (µ = 0.1, λ = 1): The proposed approach using 3-10 second training segments
and the loss weighting that emphasizes more the speaker identification loss.

• PROP (with pre-tr.): The proposed approach with pre-training. This model is
pre-trained with an emphasis on DOA estimation (µ = 1, λ = 0.1) and 3-10 second
training segments. Then, as the second step, it is trained with an emphasis on
speaker identification (µ = 0.1, λ = 1) and 2-5 second training segments.

6.3.5 Speaker Verification Performance

We compute the EER of the aforementioned methods under various conditions according
to the evaluation protocol. Table 6.1 shows the results when the verification trial pairs
are sampled from any audio segments, whereas Table 6.2 shows the case when the trial
pairs are sampled from segments containing only one sound source, Table 6.3 shows the
case when one sound source is sampled from single-source segments and the other is
from multi-source segments, and Table 6.4 shows the case when both sound sources are
from multi-source segments. In the rest of this section, we discuss how DOA estimation,
loss-weighting and pre-training impact the speaker verification performance, and how
our proposed multi-task learning approach is compared to sequential methods.

DOA estimation. Comparing the results of a method with different DOA estimation,
the speaker embeddings extracted from the directions predicted by an external model is as
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good as using the ground truth. This indicates that the prediction of the external model
is accurate and the speaker embedding approaches are robust to small error in DOA
estimation. However, the performance is degraded when an inaccurate DOA estimation
is used for speaker embedding extraction. This is the case when models are trained with
an emphasis on speaker identification and the DOA estimation accuracy is compromised.

Loss weighting and pre-training. Among the three proposed approaches with differ-
ent loss weighting, the one with an emphasis on speaker recognition after a pre-training
step geared towards DOA estimation achieves the best overall performance using either
ground truth directions or estimations of the external model. Direct training with the
same weighting parameters for the DOA estimation and speaker recognition losses does
not achieve the same performance, probably because without substantial supervision on
the DOA estimation the network cannot learn a proper weighting parameters for the
temporal statistic pooling in the speaker recognition branch. In contrast, pre-training
with an emphasis on DOA estimation initializes the model with reasonable temporal
weighting parameters. Better weighting parameters, which might not be the ideal spatial
spectra, can then derived from the subsequent training setting with a higher weight on
the speaker identification loss.

Proposed vs. sequential methods. The proposed methods, compared to the se-
quential approaches, achieve better overall performance in long segments (utterance
level, 10-second segments and 5-second segments), while their EERs in short segments
(2 and 3 second segments) are similar. Their performance under different trial condi-
tions (Tables 6.2 to 6.4) indicates that while the proposed methods are not as good as
extracting speaker embedding in single-source segments, they are better in general under
the multi-source conditions. In the single-source case, the sequential approach is not
influenced much by the beamformer, as sound source separation is not necessary and
the single-channel speaker embedding network can be trained to handle noisy input (as
what the fine-tuning is for). In contrast, our proposed multi-task network is trying to
extract speaker embeddings on all directions, and is more complex than a single-channel
single-speaker embedding network. Therefore, it is more difficult to train. In our exper-
iments, we find that the single-channel speaker embedding approach is more suitable
for single-source conditions. However, for segments containing multiple sound sources,
the sequential approach relies on the beamformer to separate the signals. Its speaker
embedding performance may degrade due to imperfect sound separation, whereas our
proposed approach does not require explicit sound separation.

6.4 Summary

In this chapter, we have presented a multi-task network for extracting speaker embeddings
of multiple simultaneous speakers using DOA estimation as an auxiliary task. The network
learns to output a spatial spectrum score and a speaker embedding for each direction.
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Table 6.2 – EER (%) on trials with pairs of sound sources from single-source segments.

Method DOA Utterance 10s 5s 3s 2s
SEQ (original) P. (E) 8.89 5.73 8.85 11.75 15.06
SEQ (fine-tuned) P. (E) 6.77 3.80 7.07 10.19 16.42
PROP (µ = 1, λ = 0.1) P. (E) 8.94 4.87 9.22 13.77 19.17
PROP (µ = 0.1, λ = 1) P. (E) 9.66 6.05 10.36 15.14 20.38
PROP (with pre-tr.) P. (E) 8.44 5.24 8.83 12.50 16.88

Table 6.3 – EER (%) on trials with pairs of sound sources that one is from single-source
segments and the other from multi-source segments.

Method DOA Utterance 10s 5s 3s 2s
SEQ (original) P. (E) 14.03 11.32 14.44 17.16 20.10
SEQ (fine-tuned) P. (E) 12.27 10.82 12.73 15.23 20.40
PROP (µ = 1, λ = 0.1) P. (E) 9.75 6.43 10.93 15.36 20.74
PROP (µ = 0.1, λ = 1) P. (E) 10.57 6.94 12.00 17.09 22.45
PROP (with pre-tr.) P. (E) 9.21 6.36 10.22 13.99 18.43

Table 6.4 – EER (%) on trials with pairs of sound sources from multi-source segments.

Method DOA Utterance 10s 5s 3s 2s
SEQ (original) P. (E) 16.12 12.44 15.87 18.87 22.09
SEQ (fine-tuned) P. (E) 14.65 12.24 14.29 16.87 21.70
PROP (µ = 1, λ = 0.1) P. (E) 10.17 6.46 11.50 16.13 21.47
PROP (µ = 0.1, λ = 1) P. (E) 11.19 7.60 13.16 18.61 23.95
PROP (with pre-tr.) P. (E) 9.54 6.34 10.76 14.71 19.18
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The spatial spectrum is used as weighting parameters for weighted average and standard
deviation pooling of the frame-wise speaker features along the time axis. Compared to a
sequential approach that applies separately DOA estimation, beamforming and speaker
embedding extraction, our proposed approaches achieves better overall performance for
audio segments with overlapping sound sources.
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7 Conclusion

This chapter summarizes the contributions of this thesis, and suggests possible directions
for future research.

7.1 Summary of Contributions

This thesis has reported progress in three important aspects of robotic auditory perception:

• Deep Neural Network (DNN) architectures and input/output representations for
multi-speaker Direction-of-Arrival (DOA) estimation;

• DNN training procedure with domain adaptation;
• Multi-task learning for robotic auditory perception.

We have proposed several DNN models, and deployed them on our Pepper robot in
challenging Human-Robot Interaction (HRI) scenarios. Their effectiveness is verified by
experiments with real data. Furthermore, some of the models are combined with visual
tracking, and integrated into a real-time robotic system, which has been successfully
demonstrated in public (Foster et al., 2019).

Although the earliest works on artificial neural networks for DOA estimation date back
to 1990s, the neural network based approaches under challenging acoustic conditions
were not studied in depth until recently. Our approaches presented in Chapter 3 are
among the first deep learning based approaches for multi-speaker DOA estimation. We
have proposed the Gaussian based spatial spectrum output coding, which can handle
an arbitrary number of sources and does not rely on a priori knowledge about the
number of them. Unlike “0-1” assignment in the posterior coding, our approach adopts
soft-assignment, taking account of the variance in estimation and correlation among
neighboring directions. This idea has been followed by other researchers as well (Nguyen
et al., 2020). In terms of performance, our deep learning based approaches achieve
significantly better results than the traditional spatial spectrum based approaches. This
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is because neural networks can implicitly learn the propagation and signal models from
example data, while it is difficult to create these models analytically. Learning-based
approaches in general are more adaptive to complex environments as long as a sufficient
number of training data are available.

As the second topic, we have studied domain adaptation methods for DOA estimation
neural networks. In fact, the success of deep learning based approaches rely on a sufficient
number of data, thus the cost of data collection should not be overlooked. In particular,
since audio data from distinct microphone arrays are radically different, the high cost of
data collection actually limits the practical application of deep learning based approaches.
In this view, we believe domain adaptation techniques can mitigate such issues related to
costly data collection. Although it is an important topic, very few research has been done
so far. Our research presented in Chapter 4 is the first to address domain adaptation of
multi-speaker DOA estimation models. Specifically, we have studied domain adaptation
methods under supervised, weakly-supervised and unsupervised settings. We have found
that our proposed weakly-supervised approach based on minimum distance criterion
and pseudo-labeling on augmented data is well suited for practical applications. This
approach requires only the labeling of the number of sound sources instead of exact
locations, and reduces significantly the annotation workload. It has shown very promising
results, achieving similar performance as supervised approaches.

Finally, we have investigated multi-task learning neural networks for robotic auditory
perception, including joint DOA estimation and Speech/Non-Speech (SNS) classification
(Chapter 5) and speaker embedding in multi-speaker environments (Chapter 6). In
contrast to sequential approaches, our approaches solve multiple tasks simultaneously,
allowing knowledge of one task to be shared with the others. In fact, the estimated
directions of the sound sources provide spatial information which is useful for the sound
classifier or the voice embedding system to separate the features of the sound sources, and
vice versa, knowledge about the sound type or speaker identity provides prior information
of sound spectral distribution that can help the DOA estimation. Our experiments
show that our joint approaches for DOA estimation and SNS classification outperform
single-task approaches and sequential approaches that separately apply DOA estimation,
beamforming, and sound classification. Furthermore, our multi-task speaker embedding
approach achieves better speaker verification performance in multi-speaker environments
than the sequential approaches.

7.2 Future Work

Besides the aforementioned progress, we have also observed the following limitations
about our current research:

• More complex conditions are not yet addressed. We have studied DOA estimation
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of up to three overlapping static sound sources. However, we do not know whether
our approaches can generalize well to other conditions such as moving sound sources,
more than three overlapping sound sources, or presence of babble noise, robot
motor noise when it is moving, and voice of the robot when it is speaking.

• Adaptive speaker model management for person re-identification is not implemented,
and the speaker embedding performance of our proposed multi-task network is not
as good as the sequential approaches under single-source conditions.

• Unified auditory perception neural network model is not studied. So far, the speaker
embedding network is separate from the network that is for joint DOA estimation
and SNS classification, and it requires an external model for DOA estimation.
Although, these models can run in parallel on an external computer that receives
streaming data from the robot, it is not possible to run them using the on-board
chip. A unified auditory perception model may reduce the total computational
requirement and potentially improve the overall performance.

• Integration with visual perception is not studied. We have integrated the speech
detection with a visual tracker using a simple decision fusion rule. However, this
thesis does not address how to fuse both modalities and adapt models taking
account of their different reliability.

In future work, we suggest several directions that might solve these issues.

Collection of more data. Availability of a sufficient number of real data is the basis
for evaluation and training of models. By collecting data under the aforementioned
complex conditions, we can objectively and comprehensively study the generalization of
our DNN approaches. Moreover, collecting more data for training may potentially solve
the performance issues of our models, because bigger and deeper network models can be
trained with more data without being affected by overfitting.

Temporal context. Following our approaches, more research could be done for incor-
porating temporal context. Besides the experiment in Section 5.1.4, we haven’t explored
the temporal context due to the lack of training data with moving sources. However,
temporal context provides more information and is required for more robust auditory
perception. Besides increasing the local receptive fields of the Convolutional Neural
Networks (CNNs), as what we use, Recurrent Neural Network (RNN) models can be
explored to incorporate long temporal context.

Integration of more functions. We have studied multi-task DNN models for at most
two tasks. However, the same idea can be applied to create a unified system for more
auditory perception functions including DOA estimation, SNS classification, speaker
embedding as well as speech recognition. The benefit of integrating more functions
is that it works as a regularization on the models, and can create models with better
generalization ability. However, the degree of parameter sharing and loss weighting need
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to be carefully chosen, as the performance of one task may be compromised to improve
the other tasks.

Online and autonomous model adaptation. A possible extension to our domain
adaptation methods for DOA estimation DNN models is to develop online adaption that
could be one autonomously by robots during their exploration and interactions. Visual
feedback, such as visual Voice Activity Detection (VAD), could be used for self-supervised
long-term learning. In addition, modeling turn-taking in conversations may provide prior
knowledge of the speech activity, which can also be useful for the adaptation. Multiple
robots could be used together to simulate multi-party interactions.

Explicit signal modeling. Another interesting topic is explicit modeling of the signal
prior distribution, since it is known that prior knowledge about the target signals helps
auditory perception. One advantages of DNNs over traditional approaches is that they
can implicitly learn the signal prior. Recent studies have shown that it is possible to
model speech prior with Variational Autoencoder (VAE) for speech enhancement (Bando
et al., 2018; Leglaive et al., 2019; Sekiguchi et al., 2019). However, this idea has not been
applied to sound source localization. Unlike multi-channel audio recordings which are
scarce, clean single-channel audio data are abundant. Models of signal prior could lead to
unsupervised (no labeled multi-channel audio recordings required) learning approaches
for sound source localization, which model the sound sources in a probabilistic framework,
and infer the sound signals as well as their locations with the maximum likelihood.
In addition, the separated signals, as a byproduct, can be used for other perception
functions, such as speaker and speech recognition.
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