

Linear Inverse Problems (2/2)

Mathematical Foundations of Signal Processing

Dr. Matthieu Simeoni

November 16, 2020

Table of contents

- **Functional Linear Inverse Problems**
- Functional Tikhonov Regularisation
- **Functional Representer Theorem**
- Canonical Discretisation
- **Proximal Algorithms**
- **Proximal Operator**
- Proximal Minimisation
- Gradient Descent Accelerated Proximal Gradient Descent
- Primal-Dual Splitting
- Numerical Tricks
- Examples
- **Numerical Experiments**

Functional Linear Inverse Problems

Functional Inverse Problems

In the previous lecture, we have constrained the signal *f* to be finite-dimensional:

$$f = \sum_{n=1}^{N} \alpha_n \psi_n = \Psi \boldsymbol{\alpha}, \qquad \boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_N] \in \mathbb{R}^N,$$

for some suitable basis functions $\{\psi_n, n=1,\ldots,N\}\subset \mathscr{L}^2(\mathbb{R}^d)$. The idea was to reduce the number of degrees of freedom of the signal f to something manageable given the finite-dimensional data. While sensible, it is unclear if this discretisation step can be done canonically:

- How should we choose N?
- How should we choose the parametrising basis functions $\{\psi_n, n=1,...,N\}$? (pixels, sines/cosines, radial basis functions, polynomials, splines...)

To answer these questions, we relax the finite-dimensional assumption and formulate the reconstruction problem directly in the continuous domain. We then characterise the form of the solutions and deduce canonical discretisation schemes.

¹Typically chosen as indicator functions of regular rectangular tiles of \mathbb{R}^d called pixels.

Functional Tikhonov Regularisation

Consider the following functional penalised Tikhonov problem:²

$$\min_{f \in \mathcal{H}^k} F(\mathbf{y}, \Phi^* f) + \lambda \left\| D^k f \right\|_2^2, \tag{1}$$

where $k \ge 0$, $\lambda > 0$ and:

- D^k denotes the k-th derivate operator on \mathbb{R} .
- $\mathcal{H}^k := \left\{ f \in \mathcal{L}^2(\mathbb{R}) : \left\| D^k f \right\|_2 < +\infty \right\}$ denotes the Hilbert space of functions with square-integrable k-th derivatives called Sobolev space.
- $\Phi^*: \mathcal{H}^k \to \mathbb{R}^L$ is the sampling operator associated with a linearly independent family of sampling functionals $\{\varphi_1, \ldots, \varphi_L\} \subset \mathcal{H}^k$ and such that $\mathcal{N}(\Phi^*) \cap \mathcal{N}(D^k) = \{0\}$.
- $F: \mathbb{R}^L \times \mathbb{R}^L \to \mathbb{R}_+ \cup \{+\infty\}$ is a cost functional assumed proper convex, coercive and lwsc w.r.t. its second argument.

²Note that the unknown signal $f: \mathbb{R} \to \mathbb{R}$ in (1) is a function and not a discrete vector anymore.

Functional Representer Theorem

Representer Theorem: (Functional Tikhonov) [1, Theorem 3]

Under the assumptions listed on Slide 5, the solution set of (1) is non empty, convex, compact. Moreover, any solution $f^* \in \mathcal{V}$ can be written as:

$$f^{*}(x) = \sum_{i=1}^{L} \alpha_{i} (\rho_{k} * \varphi_{i})(x) + \sum_{j=0}^{k-1} \beta_{j} x^{j}, \qquad \forall x \in \mathbb{R},$$
 (2)

for some coefficients $\alpha = [\alpha_1, \dots, \alpha_L] \in \mathbb{R}^L$, $\beta = [\beta_0, \dots, \beta_{k-1}] \in \mathbb{R}^k$ such that

$$\sum_{i=1}^{L} \alpha_i \left\langle x^j, \varphi_i \right\rangle = \sum_{i=1}^{L} \alpha_i \int_{\mathbb{R}} \varphi_i(x) x^j dx = 0, \qquad \forall j = 0, \dots, k-1.$$
 (3)

and where

$$\rho_k(x) = \mathscr{F}^{-1}\left\{|\omega|^{-2k}\right\}(x) = \frac{|x|^{2k-1}}{2(-1)^k(2k-1)!}, \qquad x \in \mathbb{R}.$$
 (4)

Moreover if $F(y, \cdot)$ is strictly convex, then the solution is unique.

Canonical Discretisation

We can re-write (2) as

$$f^{\star} = \Psi \boldsymbol{\alpha} + \Lambda \boldsymbol{\beta},$$

where $\Psi: \mathbb{R}^L \to \mathscr{H}^k$ and $\Lambda: \mathbb{R}^k \to \mathscr{H}^k$ are the synthesis operators associated to the family of functions $\{\rho_k * \varphi_i, i=1,\ldots,L\}$ and $\{x^j, j=0,\ldots,k-1\}$ respectively. We have then:

$$\Phi^* f^* = \Phi^* \Psi \alpha + \Phi^* \Lambda \beta = G\alpha + H\beta, \tag{5}$$

where $G = \Phi^* \Psi \in \mathbb{R}^{L \times L}$ and $H = \Phi^* \Lambda \in \mathbb{R}^{L \times k}$ are real matrices with entries given by:

$$G_{ij} := \langle \rho_k * \varphi_j, \varphi_i \rangle$$
, $i, j = 1, ..., L$, and $H_{in} := \langle x^n, \varphi_i \rangle$ $i = 1, ..., L$, $n = 0, ..., k-1$.

We have moreover:

$$\|D^{k}f^{\star}\|_{2}^{2} = \left\langle D^{k}f^{\star}, D^{k}f^{\star} \right\rangle = \left\langle D^{k}\Psi\boldsymbol{\alpha} + \underbrace{D^{k}\Lambda\boldsymbol{\beta}}_{=0}, D^{k}\Psi\boldsymbol{\alpha} + \underbrace{D^{k}\Lambda\boldsymbol{\beta}}_{=0} \right\rangle = \left\langle D^{k*}D^{k}\Psi\boldsymbol{\alpha}, \Psi\boldsymbol{\alpha} \right\rangle$$

since $\Lambda \beta = \sum_{j=0}^{k-1} \beta_j x^j$ is a polynomial of degree k-1 and hence $D^k \Lambda \beta = 0$.

Canonical Discretisation (continued)

D f(≈ c→ Dfa= jw f(w)

Additionally, we have from (4) and the convolution/multiplication theorem that:

$$D^{k*}D^k\Psi\pmb{\alpha} = \sum_{i=1}^L\alpha_i\mathcal{F}^{-1}\left\{-j\omega^kj\omega^k\hat{\rho}_k\hat{\varphi}_i\right\} = \sum_{i=1}^L\alpha_i\mathcal{F}^{-1}\left\{\frac{|\omega|^{2k}}{|\omega|^{2k}}\hat{\varphi}_i\right\} = \sum_{i=1}^L\alpha_i\varphi_i = \Phi\pmb{\alpha},$$

which yields:

$$\|D^{k}f^{\star}\|_{2}^{2} = \langle D^{k*}D^{k}\Psi\boldsymbol{\alpha}, \Psi\boldsymbol{\alpha} \rangle = \langle \Phi\boldsymbol{\alpha}, \Psi\boldsymbol{\alpha} \rangle = \langle \boldsymbol{\alpha}, \Phi^{*}\Psi\boldsymbol{\alpha} \rangle = \boldsymbol{\alpha}^{T}\boldsymbol{G}\boldsymbol{\alpha}.$$
 (6)

Finally, note that condition (3) translates into:

$$\sum_{i=1}^{L} \alpha_i \left\langle x^j, \varphi_i \right\rangle = 0, \qquad \forall j = 0, \dots, k-1, \quad \Leftrightarrow \quad \boldsymbol{\alpha}^T \boldsymbol{H} = \boldsymbol{0} \quad \Leftrightarrow \quad \boldsymbol{\alpha} \in \mathcal{R}(\boldsymbol{H})^{\perp} \subset \mathbb{R}^L.$$
 (7)

Plugging (5), (6) and (7) into (1) yields:

$$f^{\star} \in \mathop{\arg\min}_{f \in \mathcal{H}^k} F(\mathbf{y}, \Phi^* f) + \lambda \|D^k f\|_2^2 \quad \Leftrightarrow \quad (\boldsymbol{\alpha}, \boldsymbol{\beta}) \in \mathop{\arg\min}_{\boldsymbol{\alpha} \in \mathcal{R}(\boldsymbol{H})^{\perp}, \boldsymbol{\beta} \in \mathbb{R}^k} F(\mathbf{y}, \boldsymbol{G}\boldsymbol{\alpha} + \boldsymbol{H}\boldsymbol{\beta}) + \lambda \boldsymbol{\alpha}^T \boldsymbol{G}\boldsymbol{\alpha}.$$

We have hence shown that the functional penalised Tikhonov problem (1) can be discretised canonically. Moreover this discretisation is lossless: the functional and discrete problems are both equivalent!

 $f(z_i) = \int_{\mathbb{R}} f(z) S(z-z_i) dx = \langle f, S(z-z_i) \rangle$

strot cux, rusc, proper

P2 (x-xi)

+ Bo + B1 x

Vardenmond = P2 (2; -x;)

 $\alpha^{\dagger}H = 0 = 0 \times (\frac{1}{2} \frac{2}{2}) = 0 H_{1} = (2^{\circ}, 8(-2) = 2)^{\circ}$

 $G_{ij} < P_2(--x_i), \delta(-x_j)$

JA2 { f: IR > IR , [| (2) | dr <+= **Example: Ideal Sampling,** k = 2min $\sum_{i=1}^{2} |y_i - \beta(x_i)|^2 + \lambda \|D^2 \beta\|_2^2$

Proximal Algorithms

Proximal Operator

Definition: (Proximal Operator)

Let $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ be a proper convex and lwsc functional. Then, the proximal operator $\operatorname{prox}_f: \mathbb{R}^N \to \mathbb{R}^N$ of f is defined as

$$\mathbf{prox}_f(z) := \operatorname*{arg\,min}_{x \in \mathbf{JR}^{\mathbf{N}}} f(x) + \frac{1}{2} \|x - z\|_2^2, \quad \forall z \in \mathbb{R}^N.$$

Since f proper convex and lwsc, it is easy to see that the objective functional defining the proximal operator is proper strictly convex, coercive, and lwsc, and hence $\mathbf{prox}_f(z)$ exists and is unique for every $z \in \mathbb{R}^N$. The proximal operator is hence well defined. We will often encounter the proximal operator of the scaled function τf , $\tau > 0$, which can be expressed as:

$$\mathbf{prox}_{\tau f}(z) := \underset{x \in \mathbf{PN}}{\operatorname{argmin}} f(x) + \frac{1}{2\tau} \|x - z\|_2^2, \quad \forall z \in \mathbb{R}^N.$$

We say that a function is proximable if its proximal operator admits a simple closed-form expression.

Interpretation of Proximal Operator [2, Section 1.2]

- The thin black lines are level curves of f.
- The **bold** black line indicates the boundary of the domain of f.
- Evaluating prox_{rf} at the blue points moves them to the corresponding red points.
- The three points in the domain of the function stay in the domain and move towards the minimum of the function (≈ descent step).
- The two points outside of the domain move to the boundary of the domain and towards the minimum of the function (≈ projection step).
- The parameter τ controls the amount of displacement towards the minimum.

Properties of Proximal Operators

Proposition: (Properties of Proximal Operators)

1. **Separable Sum:** If $f: \mathbb{R}^{N_1} \times \cdots \times \mathbb{R}^{N_n} \to \mathbb{R} \cup \{+\infty\}$ is defined as: $f(x_1, \dots, x_n) = \sum_{i=1}^n f_i(x_i)$, $\forall (x_1, \dots, x_n) \in \mathbb{R}^{N_1} \times \cdots \times \mathbb{R}^{N_n}$, then the proximal operator of f is given by:

$$\mathbf{prox}_{\tau f} = \left[\mathbf{prox}_{\tau f_1}(x_1), \dots, \mathbf{prox}_{\tau f_n}(x_n)\right] \in \mathbb{R}^{N_1} \times \dots \times \mathbb{R}^{N_n}.$$

2. Precomposition: If $f(x) = g(\alpha x + y)$, $\alpha > 0$, $y \in \mathbb{R}^N$, then

$$\operatorname{prox}_{\tau f}(x) = \frac{1}{\alpha} \left(\operatorname{prox}_{\tau \alpha^2 g}(\alpha x + y) - y \right), \qquad \forall x \in \mathbb{R}^N.$$

3. Fixed Points & Minimisers: $x^* \in \mathbb{R}^N$ minimises $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ iff $\operatorname{prox}_f(x^*) = x^*$ [2, Section 2.3].

Additional useful results can be found in [2, Section 2].

Proof (Point 1)
$$n = 2$$

$$\frac{\beta(x,y)}{\beta(x,y)} = \frac{\beta_1(x)}{\beta(x)} + \frac{\beta_2(y)}{\beta(x)}$$

$$\frac{\beta(x,y)}{\beta(x)} = \frac{\beta_1(x)}{\beta(x)} + \frac{\beta_2(y)}{\beta(x)}$$

$$\frac{\beta(x,y)}{\beta(x)} = \frac{\beta_1(x)}{\beta(x)} + \frac{\beta_2(y)}{\beta(x)}$$

$$\operatorname{prox}_{z}(w,z) = \operatorname{argmin}_{(x,y) \in \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}}$$

$$\begin{cases} (x,y) + \frac{1}{2z} \| (x,y) - (\omega,z) \|_{2}^{2} \end{cases}$$

= argmin
$$f_1(z)$$

$$b_1(x) + b_2(y) + \frac{1}{2z} \left[||x - \omega||_2^2 + ||y - z||_2^2 \right]$$

=
$$\left(\underset{\mathcal{Z}_{1}}{\text{argmin}}\right)_{1}\left(\mathcal{R}\right) + \frac{1}{2z}$$

$$f_{1}(z) + \frac{1}{2z} ||z - w||_{2}^{2}$$
, argmin $f_{2}(y) + \frac{1}{2z} ||y - z||_{2}^{2}$
 $f_{1}(z) + \frac{1}{2z} ||z - w||_{2}^{2}$, argmin $f_{2}(y) + \frac{1}{2z} ||y - z||_{2}^{2}$
 $f_{2}(z)$

Proof (Point 2)
$$\int_{0}^{x} (x)$$

$$f(x) = g(\alpha x + y) +$$

$$prox_{z}(z) = \underset{z \in \mathbb{R}^N}{\operatorname{argmin}} |f(z)| + \frac{1}{2z} ||z - z||_z^2$$

= argmin
$$q(\alpha x + y) + \frac{1}{22} (|x-z||_2^2)$$

$$g(u) + \frac{1}{2z} || \frac{2z}{z} - \frac{1}{z^2} - \frac{1}{z^2} - \frac{1}{z} ||_2$$

argmin,
$$g(u) + \frac{\alpha}{2(\alpha^2)} \| u - (\alpha z + y) \|_2^2$$

$$\frac{1}{\alpha} \left(prox_{z \propto 2g} (\alpha z + y) - y \right)$$

Examples of Simple Proximal Operators

Examples of Simple Proximal Operators $(y \in \mathbb{R}^N)$:

• $f(x) = ||x - y||_2^2$:

$$\operatorname{prox}_{\tau f}(x) = \frac{x - y}{1 + 2\tau} + y, \qquad x \in \mathbb{R}^N.$$

• $f(x) = \iota_C(x - y)$ with $C \subset \mathbb{R}^N$ convex:

$$\operatorname{prox}_{\tau f}(x) = P_C(x - y) + y, \qquad x \in \mathbb{R}^N,$$

where P_C is the projection operator onto the convex set C.

• $f(x) = ||x - y||_1$:

$$\operatorname{prox}_{\tau f}(x) = \operatorname{soft}_{\tau f}(x - y) + y, \qquad x \in \mathbb{R}^N,$$

where $\mathbf{soft}_{\tau}(x) := \max\{|x| - \tau, 0\} \operatorname{sgn}(x)$.

• $f(\mathbf{x}) = D_{KL}(\mathbf{y}||\mathbf{x})$:

$$\mathbf{prox}_{\tau f}(\mathbf{x}) = \frac{\mathbf{x} - \tau + \sqrt{(\mathbf{x} - \tau)^2 + 4\mathbf{y}\tau}}{2}, \qquad \mathbf{x} \in \mathbb{R}^N.$$

Proximal Minimisation

Consider the following problem:

$$\min_{\mathbf{x}\in\mathbb{R}^N}\mathcal{G}(\mathbf{x}),$$

where $\mathscr{G}: \mathbb{R}^N \to \mathbb{R}$ is proper, lwsc and convex function with simple proximal operator. This optimisation problem can be solved by means of proximal minimisation:

Algorithm 1 Proximal Minimisation

- 1: **procedure** PROXMIN (τ, x_0)
- 2: for all $n \ge 1$ do
- 3: $x_n = \mathbf{prox}_{\tau \mathscr{G}}(x_{n-1})$
- 4: **return** $(x_n)_{n \in \mathbb{N}}$

If $\mathcal{V} = \arg\min_{x \in \mathbb{R}^N} \mathscr{G}(x)$ is non empty, the sequence $(x_n)_{n \in \mathbb{N}}$ converges to an element of \mathcal{V} for any $\tau > 0$ [2, Section 4.1].

Gradient Descent

Consider the following problem:

$$\min_{\mathbf{x}\in\mathbb{R}^N}\mathcal{F}(\mathbf{x}),$$

where $\mathscr{F}: \mathbb{R}^N \to \mathbb{R}$ is convex and differentiable, with β -Lipschitz continuous gradient:

$$\|\nabla \mathcal{F}(\mathbf{x}) - \nabla \mathcal{F}(\mathbf{x}')\|_{2} \le \beta \|\mathbf{x} - \mathbf{x}'\|_{2}, \qquad \forall (\mathbf{x}, \mathbf{x}') \in \mathbb{R}^{N} \times \in \mathbb{R}^{N},$$
(8)

for some Lipschitz constant $\beta \in [0, +\infty[$. This optimisation problem can be solved by means of gradient descent:

Algorithm 2 Gradient Descent

- 1: **procedure** GRADDESC (τ, x_0)
- 2: for all $n \ge 1$ do
- $\mathbf{x}_n = \mathbf{x}_{n-1} \tau \nabla \mathscr{F}(\mathbf{x}_{n-1})$
- 4: **return** $(x_n)_{n \in \mathbb{N}}$

If $\mathcal{V} = \arg\min_{\mathbf{x} \in \mathbb{R}^N} \mathscr{F}(\mathbf{x})$ is non empty, the sequence $(\mathbf{x}_n)_{n \in \mathbb{N}}$ converges to an element of \mathcal{V} for any $0 < \tau \le \frac{1}{B}$ [3, Section 2].

Proximal Minimisation vs. Gradient Descent

Consider the least-squares minimisation problem:

$$\min_{\boldsymbol{x}\in\mathbb{R}^N}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G}\boldsymbol{x}\|_2^2,$$

with $G \in \mathbb{R}^{L \times N}$, $y \in \mathbb{R}^L$. We can minimise the functional $\mathscr{J}(x) = \frac{1}{2} \|y - Gx\|_2^2$ in two ways:

Via proximal minimisation since \(\mathcal{I} \) is proper convex, and lwsc. This yields the following iterations:

$$x_n = \mathbf{prox}_{\tau, \mathscr{J}}(x_{n-1}) \Leftrightarrow \left(\tau \mathbf{G}^T \mathbf{G} + \mathbf{I}\right) x_n = x_{n-1} + \mathbf{G}^T y, \qquad x_0 \in \mathbb{R}^N, n \ge 1.$$

We must solve a linear system of size $N \times N$ at each iteration! Computationally expensive...

• Via gradient descent since \mathscr{J} is differentiable and its gradient $\nabla \mathscr{J}(x) = G^T(Gx - y)$ is moreover β -Lipschitz continuous with Lipschitz constant $\beta = \|G^TG\|_2$. This yields the following iterations:

$$x_n = x_{n-1} + \tau G^T (y - Gx_{n-1}), \quad x_0 \in \mathbb{R}^N, n \ge 1.$$

The update equation only involves matrix/vector products with G and G^T . Much cheaper!

Accelerated Proximal Gradient Descent

Consider the following problem:

$$\min_{\mathbf{x}\in\mathbb{R}^N}\mathscr{F}(\mathbf{x})+\mathscr{G}(\mathbf{x}),$$

where $\mathscr{F}: \mathbb{R}^N \to \mathbb{R}$ is as in Slide 18 and $\mathscr{G}: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is as in Slide 17. This optimisation problem can be solved by means of Accelerated Proximal Gradient Descent (APGD):

Algorithm 3 Accelerated Proximal Gradient Descent (APGD)

- 1: **procedure** APGD $(\tau, \mathfrak{d}, x_0 = z_0)$
- 2: for all $n \ge 1$ do
- 3: $z_n = \mathbf{prox}_{\tau \mathscr{G}} (x_{n-1} \tau \nabla \mathscr{F}(x_{n-1}))$
- 4: $x_n = z_n + \frac{n-1}{n+0}(z_n z_{n-1})$
- 5: **return** $(x_n)_{n \in \mathbb{N}}$

The update equation at line 3 is the composition between a proximal step for \mathscr{G} and a gradient step for \mathscr{F} . Line 4 is an acceleration step.

Convergence of APGD

For $\delta > 2$ and $0 < \tau \le \beta$, APGD achieves the following (optimal) convergence rates:

$$\lim_{n \to \infty} n^2 \left| \mathcal{J}(\boldsymbol{x}^{\star}) - \mathcal{J}(\boldsymbol{x}_n) \right| = 0 \qquad \& \qquad \lim_{n \to \infty} n^2 \|\boldsymbol{x}_n - \boldsymbol{x}_{n-1}\|_{\mathcal{X}}^2 = 0,$$

for some minimiser $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^N} \{ \mathscr{J}(x) := \mathscr{F}(x) + \mathscr{G}(x) \}.$

In other words, both the objective functional and the APGD iterates $\{x_n\}_{n\in\mathbb{N}}$ converge at a rate $o(1/n^2)$. Significant practical speedup can moreover be achieved for values of δ in the range [50, 100] [4, 5].

³Assuming that the solution set is non empty.

Example: Fast Iterative Soft Thresholding Algorithm (FISTA)

Consider the LASSO problem:

$$\min_{\mathbf{x} \in \mathbb{R}^N} \frac{1}{2} \|\mathbf{y} - \mathbf{G}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1,$$

with $G \in \mathbb{R}^{L \times N}$, $y \in \mathbb{R}^L$, $\lambda > 0$. This problem can be solved via APGD with $\mathscr{F}(x) = \frac{1}{2} \|y - Gx\|_2^2$ and $\mathscr{G}(x) = \lambda \|x\|_1$. We have:

$$\nabla \mathscr{F}(x) = G^T(Gx - y), \quad \operatorname{prox}_{\lambda \| \cdot \|_1}(x) = \operatorname{soft}_{\lambda}(x).$$

This yields the so-called Fast Iterative Soft Thresholding Algorithm (FISTA) [6]:

Algorithm 4 Fast Iterative Soft Thresholding Algorithm (FISTA)

- 1: **procedure** FISTA $(\tau, \mathfrak{d}, x_0 = z_0)$
- 2: for all $n \ge 1$ do
- $z_n = \mathbf{soft}_{\tau \lambda} \left(x_{n-1} + \tau \mathbf{G}^T (\mathbf{y} \mathbf{G} x_{n-1}) \right)$
- 4: $x_n = z_n + \frac{n-1}{n+0}(z_n z_{n-1})$
- 5: **return** $(x_n)_{n \in \mathbb{N}}$

Convergence of FISTA is moreover guaranteed for $\mathfrak{d} > 2$ and $0 < \tau \le \beta^{-1} = \|G\|_2^{-2}$.

Lipschitzian, Proximable and Linear Composite Terms

Consider the following problem:

$$\min_{\mathbf{x} \in \mathbb{R}^N} \mathscr{F}(\mathbf{x}) + \mathscr{G}(\mathbf{x}) + \mathscr{H}(\mathbf{K}\mathbf{x}). \tag{9}$$

with the following assumptions:

1. $\mathscr{F}: \mathbb{R}^N \to \mathbb{R}$ is convex and differentiable, with β -Lipschitz continuous gradient:

$$\|\nabla \mathcal{F}(\mathbf{x}) - \nabla \mathcal{F}(\mathbf{x}')\|_{\mathscr{X}} \le \beta \|\mathbf{x} - \mathbf{x}'\|_{\mathscr{X}}, \quad \forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^N,$$

for some Lipschitz constant $\beta \in [0, +\infty[$.

- 2. $\mathscr{G}: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $\mathscr{H}: \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ are two proper, lwsc and convex functions with simple proximal operators.
- 3. $K: \mathbb{R}^N \to \mathbb{R}^M$ is a linear operator, with operator norm: $\|K\|_2 = \sup_{x \in \mathbb{R}^N, \|x\|_2 = 1} \|Kx\|_2$.
- **4.** The problem (9) is feasible –i.e. there exists at least one solution.

Variable Splitting

Problem (9) cannot be solved via APGD: \mathscr{G} and \mathscr{H} have simple proximal operators, but the composite term $\mathscr{G}(x) + \mathscr{H}(Kx)$ may not!⁴

To circumvent this issue, we perform variable splitting by re-writing (9) in consensus form:

$$\min_{\mathbf{x} \in \mathbb{R}^{N}, \mathbf{w} \in \mathbb{R}^{M}} \mathcal{F}(\mathbf{x}) + \mathcal{G}(\mathbf{x}) + \mathcal{H}(\mathbf{w}), \quad \text{s.t.} \quad \mathbf{w} = \mathbf{K}\mathbf{x}.$$
 (10)

The Lagrangian $\mathcal{L}: \mathbb{R}^N \times \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ associated to this problem is given by:

$$\mathcal{L}(x, w, z) = \mathcal{F}(x) + \mathcal{G}(x) + \mathcal{H}(w) + z^{T}(Kx - w), \tag{11}$$

where the ancillary variable $z \in \mathbb{R}^M$ is called a Lagrange multiplier. It is then possible to show that the saddle-point problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^N, \boldsymbol{w} \in \mathbb{R}^M} \max_{\boldsymbol{z} \in \mathbb{R}^M} \mathcal{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z})$$

is equivalent to (10). To this end, we introduce the notion of Fenchel conjugate of a function.

⁴For example the TV proximal problem $\operatorname{argmin}_{x \in \mathbb{R}^N} \|Kx\|_1 + \frac{1}{2\tau} \|x - z\|_2^2$ does not admit a simple closed-form expression.

Fenchel Conjugate and Fenchel-Moreau Theorem

Definition: (Fenchel Conjugate/Biconjugate)

The Fenchel conjugate of a function $f: \mathbb{R}^N \to \mathbb{R} \cup \{-\infty, +\infty\}$ is defined as:

$$f^*(z) := \sup_{x \in \mathbb{R}^N} \langle z, x \rangle - f(x), \quad \forall z \in \mathbb{R}^N.$$

The Fenchel biconjugate $f^{**}: \mathbb{R}^N \to \mathbb{R} \cup \{-\infty, +\infty\}$ is the Fenchel conjugate of the Fenchel conjugate:

$$f^{**}(x) := \sup_{x \in \mathbb{R}^N} \langle x, z \rangle - f^*(z), \quad \forall x \in \mathbb{R}^N.$$

Theorem: (Fenchel-Moreau)

For f proper convex and lwsc we have $f = f^{**}$, i.e. f is equal to its Fenchel biconjugate.

Saddle-Point Problem is Equivalent to (9)

Using the Fenchel-Moreau theorem applied to ${\mathcal H}$ we get:

$$\min_{\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{w} \in \mathbb{R}^{M}} \left(\max_{\boldsymbol{z} \in \mathbb{R}^{M}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z}) \right) = \min_{\boldsymbol{x} \in \mathbb{R}^{N}} \max_{\boldsymbol{z} \in \mathbb{R}^{M}} \mathcal{F}(\boldsymbol{x}) + \mathcal{G}(\boldsymbol{x}) + \left(\min_{\boldsymbol{w} \in \mathbb{R}^{M}} \mathcal{H}(\boldsymbol{w}) - \boldsymbol{z}^{T} \boldsymbol{w} \right) + \boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x}$$

$$= \min_{\boldsymbol{x} \in \mathbb{R}^{N}} \max_{\boldsymbol{z} \in \mathbb{R}^{M}} \mathcal{F}(\boldsymbol{x}) + \mathcal{G}(\boldsymbol{x}) + \left(-\max_{\boldsymbol{w} \in \mathbb{R}^{M}} \boldsymbol{z}^{T} \boldsymbol{w} - \mathcal{H}(\boldsymbol{w}) \right) + \boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x}$$

$$= \min_{\boldsymbol{x} \in \mathbb{R}^{N}} \mathcal{F}(\boldsymbol{x}) + \mathcal{G}(\boldsymbol{x}) + \max_{\boldsymbol{z} \in \mathbb{R}^{M}} \boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x} - \mathcal{H}^{*}(\boldsymbol{z})$$

$$= \min_{\boldsymbol{x} \in \mathbb{R}^{N}} \mathcal{F}(\boldsymbol{x}) + \mathcal{G}(\boldsymbol{x}) + \mathcal{H}(\boldsymbol{K} \boldsymbol{x}).$$

We can hence solve (9) by solving the saddle-point problem (also called primal-dual problem):

$$\min_{\boldsymbol{x} \in \mathbb{R}^N, \boldsymbol{w} \in \mathbb{R}^M} \max_{\boldsymbol{z} \in \mathbb{R}^M} \mathcal{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z}) = \min_{\boldsymbol{x} \in \mathbb{R}^N} \max_{\boldsymbol{z} \in \mathbb{R}^M} \mathcal{F}(\boldsymbol{x}) + \mathcal{G}(\boldsymbol{x}) - \mathcal{H}^*(\boldsymbol{z}) + \boldsymbol{z}^T \boldsymbol{K} \boldsymbol{x}.$$

Primal-Dual Splitting Method

The primal-dual problem

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} \max_{\mathbf{z} \in \mathbb{R}^{M}} \mathcal{F}(\mathbf{x}) + \mathcal{G}(\mathbf{x}) - \mathcal{H}^{*}(\mathbf{z}) + \mathbf{z}^{T} \mathbf{K} \mathbf{x}$$
(12)

is much simpler to optimise:

- 1. $\mathscr{F}: \mathbb{R}^N \to \mathbb{R}$ is convex and differentiable, with β -Lipschitz continuous gradient.
- 2. $x \mapsto z^T K x$ and $z \mapsto z^T K x$ are convex and differentiable functionals, with 0-Lipschitz continuous gradients.
- 3. $\mathscr{G}: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $\mathscr{H}^*: \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ are two proper, lwsc and convex functions with simple proximal operators. Indeed, the proximal operator of the Fenchel conjugate \mathscr{H}^* is given by Moreau's identity:

$$\operatorname{prox}_{\sigma \mathcal{H}^*}(z) = z - \sigma \operatorname{prox}_{\mathcal{H}/\sigma}(z/\sigma), \qquad \forall z \in \mathbb{R}^M, \, \sigma > 0. \tag{13}$$

The primal-dual splitting method [7, Algorithm 3.1] can therefore be used to solve (12).

Primal-Dual Splitting Method

Algorithm 5 Primal-Dual Splitting (PDS) Method

```
1: procedure PDS(\tau, \sigma, \rho, x_0, z_0)

2: for all n \ge 1 do

3: \tilde{x}_n = \mathbf{prox}_{\tau \mathscr{G}} (x_{n-1} - \tau \nabla \mathscr{F}(x_{n-1}) - \tau K^* z_{n-1})

4: \tilde{z}_n = \mathbf{prox}_{\sigma \mathscr{H}^*} (z_{n-1} + \sigma K[2\tilde{x}_n - x_{n-1}])

5: x_n = \rho \tilde{x}_n + (1 - \rho) x_{n-1}

6: z_n = \rho \tilde{z}_n + (1 - \rho) z_{n-1}

7: return \{(x_n, z_n)\}_{n \in \mathbb{N}}
```

Interpretation of PDS

The algorithm performs alternating proximal gradient/ascent steps:

• Given an estimate z_{n-1} , Row 3 performs a proximal gradient descent with step size $\tau > 0$ to minimise

$$\min_{\mathbf{x} \in \mathbb{R}^N} \mathcal{F}(\mathbf{x}) + \mathcal{G}(\mathbf{x}) - \mathcal{F}(\mathbf{x}) + \mathbf{z}_{n-1}^T \mathbf{K} \mathbf{x}$$

$$= \mathbf{z} \mathbf{x}$$

w.r.t. to the variable x (called primal variable).

• Row 4 uses the result of the proximal gradient descent step 3 and the previous primal estimate x_{n-1} and performs a proximal gradient ascent with step size $\sigma > 0$ to maximise

$$\max_{\mathbf{z} \in \mathbb{R}^M} \mathbf{z}^T \mathbf{K} (2\tilde{\mathbf{x}}_n - \mathbf{x}_{n-1}) - \mathcal{H}^*(\mathbf{z})$$

w.r.t. to the variable z (called dual variable).

• ρ > 0 is a momentum term, used to combine the output of the gradient/ascent steps with previous estimates of the primal/dual variables.

Convergence of PDS ($\beta \neq 0$)

Theorem: (Convergence of PDS, $\beta \neq 0$) [7, Theorem 3.1]

Consider problem (12) under the assumptions of Slide 23 and let $\tau > 0$, $\sigma > 0$ and $\rho > 0$ be the *hyperparameters* of Algorithm 5. Suppose moreover that $\beta > 0$ and that the following holds:

$$1. \ \frac{1}{\tau} - \sigma \|K\|_{2}^{2} \geq \frac{\beta}{2},$$

2.
$$\rho \in]0, \delta[$$
, where $\delta := 2 - \frac{\beta}{2} \left(\frac{1}{\tau} - \sigma \| K \|_{2}^{2} \right)^{-1} \in [1, 2[$.

Then, there exists a pair $(x^*, z^*) \in \mathbb{R}^N \times \mathbb{R}^M s$ solution to (12), s.t. the primal and dual sequences of estimates $(x_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ converge towards x^* and z^* respectively, i.e.

$$\lim_{n \to +\infty} \|x^* - x_n\|_2 = 0, \text{ and } \lim_{n \to +\infty} \|z^* - z_n\|_2 = 0.$$

Convergence of PDS ($\beta = 0$)

Theorem: (Convergence of PDS, $\beta = 0$) [7, Theorem 3.1]

Consider problem (12) under the assumptions of Slide 23 and let $\tau > 0$, $\sigma > 0$ and $\rho > 0$ be the *hyperparameters* of Algorithm 5. Suppose moreover that $\beta = 0$ and that the following holds:

- $1. \ \tau\sigma \|K\|_{L^{2}(\mathbb{R}^{N})}^{2} \leq 1,$
- **2.** $\rho \in [\epsilon, 2 \epsilon]$, for some $\epsilon > 0$.

Then, there exists a pair $(x^*, z^*) \in \mathbb{R}^N \times \mathbb{R}^M s$ solution to (12), s.t. the primal and dual sequences of estimates $(x_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ converge towards x^* and z^* respectively, i.e.

$$\lim_{n \to +\infty} \|x^* - x_n\|_2 = 0$$
, and $\lim_{n \to +\infty} \|z^* - z_n\|_2 = 0$.

Choosing the Step Sizes

In practice, the convergence speed of Algorithm 5 is improved by choosing σ and τ as large as possible and relatively well-balanced –so that both the primal and dual variables converge at the same pace. In practice, it is hence recommended to choose perfectly balanced parameters $\sigma = \tau$ saturating the inequalities 1 and 1. For $\beta > 0$ this yields:

$$\frac{1}{\tau} - \tau \| \mathbf{K} \|_2^2 = \frac{\beta}{2} \iff -2\tau^2 \| \mathbf{K} \|_2^2 - \beta \tau + 2 = 0,$$

which admits one positive root

$$\tau = \sigma = \frac{1}{\|\mathbf{K}\|_{2}^{2}} \left(-\frac{\beta}{4} + \sqrt{\frac{\beta^{2}}{16}} + \|\mathbf{K}\|_{2}^{2} \right).$$
 (14)

For $\beta = 0$, this yields

$$\tau = \sigma = \|\boldsymbol{K}\|_2^{-1}.\tag{15}$$

Computing the Lipschitz Constant β

Sometimes, computing the Lipschitz constant β of \mathscr{F} can be difficult. In which case, it can be beneficial to overestimate it slightly using properties of sums/compositions of Lipschitz continuous functions:

- Let $\mathscr{F} = \mathscr{F}_1 \circ \mathscr{F}_2$ where $\mathscr{F}_1, \mathscr{F}_2$ are Lipschitz continuous functions with Lipschitz constants γ_1, γ_2 respectively. Then \mathscr{F} is Lipschitz continuous with Lipschitz constant $\beta \leq \gamma_1 \gamma_2$.
- Let $\mathscr{F}=\mathscr{F}_1+\mathscr{F}_2$ where $\mathscr{H}_1,\mathscr{F}_2$ are Lipschitz continuous functions with Lipschitz constants γ_1,γ_2 respectively. Then \mathscr{F} is Lipschitz continuous with Lipschitz constant $\beta \leq \gamma_1+\gamma_2$.

Example:

Assume that $\mathscr{F}(x) = \mathscr{E}(Gx) + \lambda \|Dx\|^2$ where \mathscr{E} is differentiable with γ -Lipschitz continuous gradient (γ known). Then,

$$\nabla \mathscr{F}(\mathbf{x}) = \mathbf{G}^T \nabla \mathscr{E}(\mathbf{G}\mathbf{x}) + 2\lambda \mathbf{D}^T \mathbf{D}\mathbf{x}, \qquad \forall \mathbf{x} \in \mathbb{R}^N.$$

We have moreover

$$\|\nabla \mathscr{F}(\mathbf{x}) - \nabla \mathscr{F}(\mathbf{x}')\| \le \left(\gamma \|\mathbf{G}\|^2 + 2\lambda \|\mathbf{D}\|^2\right) \|\mathbf{x} - \mathbf{x}'\|, \quad \forall (\mathbf{x}, \mathbf{x}') \in \mathbb{R}^N \times \mathbb{R}^N,$$

and hence $\nabla \mathscr{F}$ is β -Lipschitz continuous, with $\beta \leq \gamma \|\mathbf{G}\|^2 + 2\lambda \|\mathbf{D}\|^2$.

Computing Operator Norms

Computing the operator norm $\|K\|_2$ of the linear operator $K: \mathbb{R}^N \to \mathbb{R}^M$ amounts to finding its largest singular value. Performing this computation via a full SVD is wasteful and expensive: the full spectrum is computed when only the leading singular value is needed.

Instead, it is recommended to use the routine $scipy.linalg.svds()^5$ which is capable of computing only the leading (or more generally k leading) singular values.

This routine is moreover matrix-free: the operator K needs not be stored as an array, but can be an instance of the abstract class <code>scipy.sparse.linalg.LinearOperator</code> with methods <code>matvec()</code> and <code>rmatvec()</code> for matrix/vector products Kx and K^Tx respectively. This is particularly useful when N and M are very large (e.g. in computational imaging) and K cannot be stored in memory as a Numpy array.

⁵Or its companion routines scipy.linalg.eigs(), scipy.linalg.eigsh() for square/Hermitian matrices respectively

Example of a Matrix-Free Linear Operator

```
def matvec(self, x: np.ndarray) -> np.ndarray:
    return x[self.mask]
```

def rmatvec(self, y: np.ndarray) -> np.ndarray:
 x = np.zeros(shape=self.in_size, dtype=self.dtype)
 x[self.mask] = y
 return x

Example 1: TV-Penalised Basis Pursuit

$$\frac{\min_{x \in \mathbb{R}^{N}} \frac{1}{2} \|y - Gx\|_{2}^{2} + \lambda \|Dx\|_{1}}{x^{2}(x)} = \frac{1}{2} \|y - Gx\|_{2}^{2} + \lambda \|Dx\|_{1}$$

$$\frac{1}{2} \|y - Gx\|_{2}^{2} , \quad \nabla \mathcal{P}(x) = G^{T}(Gx - Y) \qquad \beta = \|G^{T}G\|_{2} = \|G\|_{2}^{2}$$

$$\frac{1}{2} \|y - Gx\|_{2}^{2} , \quad \nabla \mathcal{P}(x) = G^{T}(Gx - Y) \qquad \beta = \|G^{T}G\|_{2} = \|G\|_{2}^{2}$$

$$\frac{1}{2} \|y - Gx\|_{2}^{2} + \lambda \|Dx\|_{1}$$

$$\frac{1}{2} \|y - Gx\|_{2}^{2} + \lambda \|Gx\|_{2}$$

$$\frac{1}{2} \|y - Gx\|_{2}^{2}$$

Example 1: TV-Penalised Basis Pursuit

$$Z = 0 = \frac{1}{\|D\|_{2}^{2}} \left(-\frac{\|G\|_{2}^{2}}{4} + \sqrt{\frac{\|G\|_{2}^{4}}{16} + \|D\|_{2}^{2}} \right)$$

$$\mathcal{R}(x) = 0$$

$$Z = 0 = \frac{1}{\|D\|_{2}^{2}} \left(-\frac{\|G\|_{2}^{2}}{4} + \sqrt{\frac{\|G\|_{2}^{4}}{16}} + \right)$$

 $\begin{array}{lll}
\mathcal{G}(x) = 0 \\
\mathcal{G}(x) = \frac{1}{2} \| y - Gx \|_{2}^{2} & \rightarrow & \text{prox}_{2g}(z) = \text{argmin} \frac{1}{2} \| y - Gx \|_{2}^{2} + \frac{1}{2} z^{2} \\
\mathcal{E}(x) = 0 \\
\mathcal{E}(x) = \frac{1}{2} \| y - Gx \|_{2}^{2} & \rightarrow & \text{prox}_{2g}(z) = \text{argmin} \frac{1}{2} \| y - Gx \|_{2}^{2} + \frac{1}{2} z^{2} \\
\mathcal{E}(x) = 0 \\
\mathcal{E}(x) = 0$

Example 2: Tikhonov-Penalised Least Absolute Deviation
$$\text{Tr}(x) = C \qquad \min_{x \in \mathbb{R}^N} \|y - Gx\|_1 + \frac{\lambda}{2} \|Dx\|_2^2 \qquad \text{Tr}(x) = C$$

$$\mathcal{P}(x) = \frac{1}{2} || D \times ||_{2}^{2} \rightarrow \nabla \mathcal{P}(x) = \lambda D^{T}D \times \rightarrow \beta = \lambda || D ||_{2}^{2}$$

$$M(z) = 11y-z11+1+z \in \mathbb{R}^{L}$$
, $K = G \in \mathbb{R}^{L\times N}$
 $Prox_{zh}(z) = soft_{z}(z-y)+y$, $Prox_{zh}(z) = Moreon_{zh}(z)$

PDS
$$\begin{cases} (x_0, z_0) \in (\mathbb{R}^N \times \mathbb{R}^L) \\ \widehat{z}_n = z_{n-1} - z_n D^T D \times - z_n G^T z_{n-1} \\ \widehat{z}_n = \text{prox}_{\text{orgs}} (z_{n-1} + \sigma G(2z_n - z_{n-1})) \end{cases}$$
EPFL 2020 | Mathematical Foundiations & Signal Processing

M. Simeoni & B. Bej

Example 2: Tikhonov-Penalised Least Absolute Deviation

$$B = \lambda \frac{\|D\|_{2}^{2}}{5}$$

$$S = Z = \frac{1}{\|K\|_{2}^{2}} \left(-\frac{3}{4} + \sqrt{\frac{8^{2}}{16} + \|K\|_{2}^{2}} \right)$$

$$= \frac{1}{\|6\|_{2}^{2}} \left(-\frac{\lambda \|D\|_{2}^{2}}{4} + \sqrt{\frac{\lambda^{2} \|D\|_{2}^{4}}{16} + \|6\|_{2}^{2}} \right)^{36}$$

$$\min_{\mathbf{x} \in \mathbb{R}^N} D_{KL}(\mathbf{y} || \mathbf{G} \mathbf{x}) + \lambda || \mathbf{D} \mathbf{x} ||_1$$

TH
$$(z, u)$$
:
$$\begin{cases} \mathbb{R}^{L} \times \mathbb{R}^{2N} \\ (z, u) \mapsto D_{KL}(y||z) + \lambda \|u\|_{1} \end{cases}$$

$$K: \begin{cases} \mathbb{R}^N & \longrightarrow \mathbb{R}^L \times \mathbb{R}^{2N} \\ \mathcal{Z} & \longmapsto (G \times , D \times) \end{cases}$$

Example 3: KL-Divergence + TV
$$\mathcal{A}(z,u) = D_{KL}(y||z) + \lambda ||u||_{A}$$

$$Prox_{zH}(z,u) = \left(Prox_{zD_{KL}}(z)\right) Prox_{zH}(u)$$

$$Prox_{zH}(z,u) = \left(Prox_{zD_{KL}}(z)\right) Prox_{zH}(u)$$

Effect of Regularisation Operator (Tikhonov)

Effect of Regularisation Operator (TV)

EPFL 2020 | Mathematical Foundations of Signal Processing

M. Simeoni & B. Bejar Hard

References I

11 Harshit Gupta, Julien Fageot, and Michael Unser.

Continuous-domain solutions of linear inverse problems with tikhonov versus generalized tv regularization.

IEEE Transactions on Signal Processing, 66(17):4670–4684, 2018.

Neal Parikh and Stephen Boyd.

Proximal algorithms.

Foundations and Trends in optimization, 1(3):127–239, 2014.

Brendan O'donoghue and Emmanuel Candes.

Adaptive restart for accelerated gradient schemes.

Foundations of computational mathematics, 15(3):715–732, 2015.

Jingwei Liang, Jalal Fadili, and Gabriel Peyré.

Activity identification and local linear convergence of forward-backward-type methods. SIAM Journal on Optimization, 27(1):408-437, 2017.

Jingwei Liang and Carola-Bibiane Schönlieb.

Improving fista: Faster, smarter and greedier.

arXiv preprint arXiv:1811.01430, 2018.

References II

[6] Amir Beck and Marc Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM journal on imaging sciences*, 2(1):183–202, 2009.

[7] Laurent Condat.

A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms.

Journal of Optimization Theory and Applications, 158(2):460–479, 2013.