Linear Inverse Problems (2/2)

Dr. Matthieu Simeoni

=PrL

Table of contents

@ Functional Linear Inverse Problems

Functional Tikhonov Regularisation
Functional Representer Theorem
Canonical Discretisation

© Proximal Algorithms

Proximal Operator

Proximal Minimisation

Gradient Descent

Accelerated Proximal Gradient Descent
Primal-Dual Splitting

Numerical Tricks

Examples

© Numerical Experiments

Functional Linear Inverse Problems

Functional Inverse Problems

In the previous lecture, we have constrained the signal f to be finite-dimensional:

N
f=> apyp=Va, a=[ay,...,anl €RY,
n=1

for some suitable basis functions {y,,, n=1,...,N} ¢ Z2R%.T The idea was to reduce the number of
degrees of freedom of the signal f to something manageable given the finite-dimensional data. While
sensible, it is unclear if this discretisation step can be done canonically:

e How should we choose N?

« How should we choose the parametrising basis functions {wy,, n=1,...,N}? (pixels, sines/cosines,
radial basis functions, polynomials, splines...)

To answer these questions, we relax the finite-dimensional assumption and formulate the reconstruction
problem directly in the continuous domain. We then characterise the form of the solutions and deduce
canonical discretisation schemes.

TTypically chosen as indicator functions of regular rectangular tiles of R¥ called pixels.

Functional Tikhonov Regularisation

Consider the following functional penalised Tikhonov problem:?2

. « ke[|
min Fly.0") + Aot ™
where k=0, A >0 and:
« DF denotes the k-th derivate operator on R.
o k= {fe L2R): HDka2 < +oo} denotes the Hilbert space of functions with square-integrable k-th

derivatives called Sobolev space.

« ¢*: .7k — RL is the sampling operator associated with a linearly independent family of sampling
functionals {¢1,...,¢1} < .#% and such that A (@*) 0.4 (D) = (0}.

o F:RExRL— R, U{+oo} is a cost functional assumed proper convex, coercive and lwsc w.r.t. its
second argument.

2Note that the unknown signal f:R — R in (1) is a function and not a discrete vector anymore.

Functional Representer Theorem

Representer Theorem: (Functional Tikhonov) [, Theorem 3]

Under the assumptions listed on Slide 5, the solution set of (1) is non empty, convex, compact. Moreover,
any solution f* € 7 can be written as:

L k=1 .
FF@=) ailppxpd@+ Y pix, VxeR, 2)
i=1 =0

for some coefficients @ = [ay,...,az] € RL, B =[Bo,..., Br_1] € RF such that

L) L)
Zai<x],<pi>=2a,- R(p,-(x)x]dxzo, Vj=0,...,k-1. (3)
i=1 i=1
and where
-1 —zk}() |xf2k-1 " 4
=F =——, ER.
PE) {lwl Y k-

Moreover if F(y,-) is strictly convex, then the solution is unique.

Canonical Discretisation
We can re-write (2) as
[*=Ya+Ap,

where ¥ :RE — 7% and A:R¥ — 7K are the synthesis operators associated to the family of functions
{or*@;i=1,...,Lyand {¥, j=0,...,k— 1} respectively. We have then:

O f* =d*Wa+ O AP =Ga+HP, (5)

where G=0* ¥ e RE*L and H = @* A € RE*X are real matrices with entries given by:

Gij=={(pr*¢j9i), bj=1,...,L, and Hy,:=(x",¢;)i=1,...,L, n=0,...k-1.
We have moreover:
1Dk F*)2 = <Dkf*,Dkf*> = <Dk\I/a+DkAﬁ,Dk\I/a+DkAﬁ> = <Dk*Dk‘Pa,‘Pa>
=0 =0

since Af = Z]’F:‘OI B is a polynomial of degree k-1 and hence DA =0.

Canonical Discretisation (continued) QD flx = Ofe= juw @Cw)

S . ~
Additionally, we have from (4) and the convolution/multiplication theorem that: BLg :(‘)09 6(}9
L L 2k L
% S ks kA A 1) lwl*®
D prwe=Y a7} {—]wk]wkpkqoi} =Y a;77! { m%} =) ajp;=2a,
i=1 i=1 i=1
which yields:
1Dk F*) = <Dk* Dk‘I/a,‘I’a> = (@a, Ya) = (a,0* Va) = a’ Ga. (6)
Finally, note that condition (3) translates into:
L ;
Y ai<x],(p,-> =0, Vj=0,..,k-1, o a’H=0 o acRH"*cRr- 7)

i=1
Plugging (5), (6) and (7) into (1) yields:
f* eargminF(y,®*f) + /lHDkfllg o (a,f)e argmin F(y,Ga+HpP) +1la! Ga.
fek acZ(H)L,BeRk

We have hence shown that the functional penalised Tikhonov problem (1) can be discretised canonically.
Moreover this discretisation is lossless: the functional and discrete problems are both equivalent!

®(Example: Ideal Sampling, k=2 e {@r”““% /ﬂm"un e 1%
S min 2 (9 gm)lz £ A oguz

be% ts:’!?lfc\\x lwse proee-{ 4\
z:) = j (%) $ (- /’t) dx = —'—_'__'A\</
R

N €8(1?)>

5 f)«z Z g /; * 8(_‘2,‘,) 2 \L‘r\e,@.ky ldﬁpl
(=4 - —— Po + Ry X
/JZ(%_%L) o —
(2% EE— G— < h(--x), 8 (-x)>
/L(I - _4%— L/ %"AQMT\Q\& [(g~ %)
o« TH :Oc:)oa(A -0 H =2, 8 zﬁi =27

i

N ﬁeﬂ@lﬁé@) IR

Proximal Algorithms

Proximal Operator

Definition: (Proximal Operator)

Let f: RN — Ru{+oc} be a proper convex and lwsc functional. Then, the proximal operator prox; : RN — RN
of fis defined as

1
proxf(z) :=argmin f(x) + — ||x—z||§, Vze [RN.
XE N 2

Since f proper convex and lwsc, it is easy to see that the objective functional defining the proximal
operator is proper strictly convex, coercive, and lwsc, and hence prox,(z) exists and is unique for every

zeRN. The proximal operator is hence well defined. We will often encounter the proximal operator of the
scaled function 7f, T > 0, which can be expressed as:

Prox;(z) := argmin f(x) + L ||x—z||§, vzeRN.
XER“ 2T

We say that a function is proximable if its proximal operator admits a simple closed-form expression.

Interpretation of Proximal Operator [2, Section 1.2]

« The thin black lines are level curves of f.

» The bold black line indicates the boundary of the domain \\
of f.

« Evaluating prox, s at the blue points moves them to the
corresponding red points.

» The three points in the domain of the function stay in the
domain and
(= descent step).

« The two points outside of the domain
and of the
function (= projection step).
« The parameter 7 controls the
towards the minimum.

Properties of Proximal Operators

Proposition: (Properties of Proximal Operators)

1. Separable Sum: If f:RM x ... x RN» — RU {+o0} is defined as: f(x1,...,x,) = Y fikxd,
V(x1,..., %) € RV x ... x RV then the proximal operator of f is given by:

prox, ;= [profo1 (xl),...,proxrfn(xn)] eRM x ... x RNn,
2. Precomposition: If f(x) = g(ax+y), a >0, ye RY, then
1 N
Prox;(x) = p (proxng(ax+y) —y) 5 VxeR™.

3. Fixed Points & Minimisers: x* € RV minimises f: RN — RU {+oo} iff proxf(x*) =x* [2, Section 2.3].

Additional useful results can be found in [2, Section 2].

I @¢ Proof (Point 1) A g(it((d)—— 6 (%)4’9 (9)

6[RN4 ‘Rﬁz
Prong(w[z) = Q&m@mﬂz 3619 H (2’-19) CCDZ)”
_) - -z),5
?;%;;m {)4(7§>+£2(_3) sz[ﬂfc w)\f+ iy %&
] @9m [() £ & taoool?) armin) a7ty
2C g

- PF@XZ—g,1 (0.)) Q"’O‘(L‘ L(Z)

I ®¢(Proof (Point 2) B(z) = 9&7,“5) -

2
_ (x) + 4 [[=z- 2«"2
proKey (2) wﬂ% 2z
— v 4 o # UW=XZtY
= \m%(ywe\?p::“ ¢ Rz +LJ) t2 ((Zilz /;>I7Eﬂ%

P

a1 gt

\/o% (Proxwta COZ > W)@

Examples of Simple Proximal Operators

Examples of Simple Proximal Operators (y € RM):

o f0) = lx—yll3:

prox, ;(x) = 1x_y +y, xeRV,

+27
o f@) =1c(x—y) with CcRN convex:

prox ¢(x) = Pcx-y+y, xeRY,

where P¢ is the projection operator onto the convex set C.

o f&®)=Ilx-yl:
prox, () =soft;g(x-y +y, xeRY,

where SOft‘[](x) := max{|x| — 7,0} sgn(x). %

e f(x) = Dxg.(yll%):
X—-T+ \/(x—r)2+4y1

, xeRN.
2

prox; ;(x) =

Proximal Minimisation

Consider the following problem:

min ¥4 (x),

xeRN
where ¢ : RN — R is proper, lwsc and convex functiong with simple proximal operator. This optimisation
problem can be solved by means of proximal minimisation:

Algorithm 1 Proximal Minimisation

1: procedure PROXMIN(7,xp)
2: forall n>1do

3: X5 = ProxX,« (x,—1)

4: return (x,) e

If 7 = argmin v 4 (x) is non empty, the sequence (x,) ,eny CONverges to an element of 7 for any 7> 0 [2,
Section 4.1].

Gradient Descent

Consider the following problem:

min & (x),
xeRN
where & :RN — R is convex and differentiable, with f-Lipschitz continuous gradient:
IVF @) -VFE)2 < plx-xl, Vixx)eRVxeRN, ®)
for some Lipschitz constant f € [0, +co[. This optimisation problem can be solved by means of gradient
descent:
18
Algorithm 2 Gradient Descent I

1: procedure GRADDESC(T,xg)
2: forall n=1do
3: Xp=Xp-1—-TVF(x5-1)
4: return (x;) en

If ¥ = argmin v .Z (x) is non empty, the sequence (xy) ,en converges to an element of 7 for any
0<7=21[3, Section 2].

Proximal Minimisation vs. Gradient Descent
Consider the least-squares minimisation problem:
1
min > ly-6x,

with Ge RE*N, y e RE. We can minimise the functional #(x) = 1 |ly— Gx|3 in two ways:

« Via proximal minimisation since ¢ is proper convex, and Iwsc. This yields the following iterations:

Xp = proxrf(xn_l) < (TGTG+ I)xn =Xp-1+ GTy, X0 € RN’ n=1.

We must solve a linear system of size N x N at each iteration! Computationally expensive...

- Via gradient descent since ¢ is differentiable and its gradient V_¢ (x) = GT (Gx—y) is moreover
p-Lipschitz continuous with Lipschitz constant = | GT Gl|,. This yields the following iterations:

xn:xn_1+rGT(y—Gxn_1), xOE[RN,nzl.

The update equation only involves matrix/vector products with G and GT. Much cheaper!

Accelerated Proximal Gradient Descent

Consider the following problem:
min & (x) + ¥4 (x),
xeRN

where # :RN — Ris as in Slide 18 and ¢ : RN — RU {+o0} is as in Slide 17.This optimisation problem can
be solved by means of Accelerated Proximal Gradient Descent (APGD):

Algorithm 3 Accelerated Proximal Gradient Descent (APGD)

1. procedure APGD(z,0,xp = zp)

2 forall n=1do

3: Zp = ProX,eg (Xp—1 —TV.F (X-1))
4 Xn=2zn+ 25 (2n—zp-1)

5

return (x,) ;en

The update equation at line 3 is the composition between a proximal step for ¢ and a gradient step for
Z. Line 4 is an acceleration step.

Convergence of APGD

/1,
Foro>2ando<t sé, APGD achieves the following (optimal) convergence rates:
Jim 2P| g - F)| =0 & lm P lxe— %115 =0,

for some minimiser x* € argmin gy {.£(®) := F(x) + 9 (x)}. 3

In other words, both the objective functional and the APGD iterates {x,} ey COnverge at a rate o(1/12).

Significant practical speedup can moreover be achieved for values of v in the range [50,100] [4, 5].

3 Assuming that the solution set is non empty.

Example: Fast Iterative Soft Thresholding Algorithm (FISTA)

Consider the LASSO problem:
.1 2
min o l[y-Gx|5 + Alxly,

with Ge R™*N, yeR%, 1 > 0. This problem can be solved via APGD with #(x) = 1 ||y - Gx||5 and
%4 (x) = Al x|l;. We have:

VF(x) =G (Gx-y), proxy., (x) = soft) (x).
This yields the so-called Fast Iterative Soft Thresholding Algorithm (FISTA) [6]:

Algorithm 4 Fast Iterative Soft Thresholding Algorithm (FISTA)

1. procedure FISTA(7,0,x0 = zg)

2 forall n=1do

3: 2z =80ft,) (xp—1 + TG (y— Gx,_1))
4 xnzzn+ZT_%(zn—zn_1)

5

return (x;) ;e

Convergence of FISTA is moreover guaranteed foro>2and 0 <7< g1 = ||G||52.

Lipschitzian, Proximable and Linear Composite Terms

Consider the following problem:
min F®) + 9x) + AKx).)

xeRN

with the following assumptions:

1. & :RN - Ris convex and differentiable, with f-Lipschitz continuous gradient:
IVFx) -VF W)l < flx-xllg, Vxx erY,

for some Lipschitz constant § € [0, +ool.

2. 4 :RN -~ RU{+o0} and .#: RM — R U {+oc} are two proper, lwsc and convex functions with simple
proximal operators.

3. K:RY -~ RM is a linear operator, with operator norm: | K] = SUD RN =1 IKXI2.
4. The problem (9) is feasible —i.e. there exists at least one solution.

Variable Splitting

Problem (9) cannot be solved via APGD: ¢ and . have simple proximal operators, but the composite
term 9 (x) +.7(Kx) may not!*

To circumvent this issue, we perform variable splitting by re-writing (9) in consensus form:

min Fx) + 9x) + A(w), st w=Kx. (10)

xeRN,weRM
The Lagrangian £ : RN x RM x RM — RU {+o0} associated to this problem is given by: .
24
Laxwa=Fx + Gx) + Aw) + z' (Kx—w), ()

where the ancillary variable ze RM is called a Lagrange multiplier. It is then possible to show that the
saddle-point problem

min max Z(x, w, z)
xeRN, weRM zeRM

is equivalent to (10). To this end, we introduce the notion of Fenchel conjugate of a function.

4For example the TV proximal problem argmin, v [[Kxly + % Hx—zH% does not admit a simple closed-form expression.

Fenchel Conjugate and Fenchel-Moreau Theorem

Definition: (Fenchel Conjugate/Biconjugate)

The Fenchel conjugate of a function f: RN — RU {-oco, +o0} is defined as:

f*(2):= sup (z,x) - f(x), vzeRN.
xeRN

The Fenchel biconjugate f** : RN — RU {—o0, +o0} is the Fenchel conjugate of the Fenchel conjugate:

@) := sup (x,2) - f*(2), vxeRN.
xeRN

Theorem: (Fenchel-Moreau)

For f proper convex and lwsc we have f=f**,i.e. f is equal to its Fenchel biconjugate.

Saddle-Point Problem is Equivalent to (9)

Using the Fenchel-Moreau theorem applied to . we get:

min (max ZL(x, w,z)) min max F(x) + Y (x) +
xeRN weRM \zeRM xeRN zeRM

min J(w) —sz)+zTKx
weRM

= min max Z (x) + 9(x) +

max ZTw- Jf(w))+zTK

XeRN zeRM weRM
=—J*(2)
= mlng(x) + %(x) +maxz Tkx — 7% (2)
xeRN zeRM
=A** (KX)

= min Z(x) + ¥(x) + S (Kx).
xeRN

We can hence solve (9) by solving the saddle-point problem (also called primal-dual problem):

min max . % (x,w,z) = mln max F(x) + 9(x) — A" @ +z Kx
xeRN, weRM zeRM xeRN zeRM

Primal-Dual Splitting Method

The primal-dual problem
min max #(x) + 9@&) — A" (2)+z' Kx (12)

xeRN zeRM

is much simpler to optimise:

1. #:RN - Ris convex and differentiable, with S-Lipschitz continuous gradient.

2. x—zTKxand z— zT Kx are convex and differentiable functionals, with 0-Lipschitz continuous
gradients.

3. ¢:RN - RU{+o0o} and #* :RM — R U {+o0} are two proper, lwsc and convex functions with simple
proximal operators. Indeed, the proximal operator of the Fenchel conjugate #* is given by
Moreau’s identity:

ProX; 7+ (z) = z— 0 ProX z,, (z/ o), vzeRM o >0. (13)

The primal-dual splitting method [7, Algorithm 3.1] can therefore be used to solve (12).

Primal-Dual Splitting Method

Algorithm 5 Primal-Dual Splitting (PDS) Method

1: procedure PDS(7,0, p,x9,z0)

2 forall n>1do

3: Xn=ProxX;q (xp-1 —1VF (xy-1) - 1K*2-1)
4 Zp = ProX, s+ (zn—1 + 0K 2%, — Xp—1))
5
6
7

Xp=pXp+(1—-p)xp-1
zZp=pzZp+ (1 —-p)zp—1
return {(x;,z,)}neN

Interpretation of PDS

The algorithm performs alternating proximal gradient/ascent steps:

« Given an estimate z;,_1, Row 3 performs a proximal gradient descent with step size 7 > 0 to minimise

min & (x) + 4¥(x) — +z0 Kx
xeRN 0) Mﬁ -l

« Row 4 uses the result of the proximal gradient descent step 3 and the previous primal estimate x,,_;

w.r.t. to the variable x (called primal variable).
and performs a proximal gradient ascent with step size o > 0 to maximise

max z! K&, — %p_1) — 77 (2)
zeRM

w.r.t. to the variable z (called dual variable).

e p>0isamomentum term, used to combine the output of the gradient/ascent steps with previous
estimates of the primal/dual variables.

Convergence of PDS (# 0)

Theorem: (Convergence of PDS, 5 #0) [, Theorem 3.1]

Consider problem (12) under the assumptions of Slide 23 and let 7 > 0, o > 0 and p > 0 be the
hyperparameters of Algorithm 5. Suppose moreover that > 0 and that the following holds:

1 2 B
1. -0IK|fy = 5,

T

2. pel0,5], where 5:=2- 5 (1 ankﬁy)_l €l1,2L.

Then, there exists a pair (x*,z*) € RV x RM s solution to (12), s.t. the primal and dual sequences of
estimates (x;) ,en and (zp) neny cONverge towards x* and z* respectively, i.e.

lim ||x*—xul2=0, and lLim [z*—2zyl2=0.
n—+oo n—+oo

Convergence of PDS (5 = 0)

Theorem: (Convergence of PDS, 5=0) [, Theorem 3.1]

Consider problem (12) under the assumptions of Slide 23 and let 7 >0, o > 0 and p > 0 be the
hyperparameters of Algorithm 5. Suppose moreover that =0 and that the following holds:

1. 101Ky <1,
2. pele,2—¢], for somee > 0.

Then, there exists a pair (x*,z*) € RV x RM s solution to (12), s.t. the primal and dual sequences of
estimates (xy) ,en and (z,) neny cONverge towards x* and z* respectively, i.e.

lim ||x*—x,l2=0, and lLim |z*—2zyl2=0.
n—+oo n—+oo

Choosing the Step Sizes

In practice, the convergence speed of Algorithm 5 is improved by choosing ¢ and 7 as large as possible
and relatively well-balanced -so that both the primal and dual variables converge at the same pace. In
practice, it is hence recommended to choose perfectly balanced parameters ¢ = 7 saturating the
inequalities 1 and 1. For > 0 this yields:

B

1
- ~7IKII3 = 5 = -272||KlI5 - pr+2 =0,

_ 1 (B P

T=0=|Kl;". (15)

which admits one positive root

For g =0, this yields

Computing the Lipschitz Constant g

Sometimes, computing the Lipschitz constant g of & can be difficult. In which case, it can be beneficial
to overestimate it slightly using properties of sums/compositions of Lipschitz continuous functions:

o Let 7 = 7, 0%, where &, are Lipschitz continuous functions with Lipschitz constants y1,y2
respectively. Then & is Lipschitz continuous with Lipschitz constant g < y17y».

o Let Z = 7, + 7> where®®,, &, are Lipschitz continuous functions with Lipschitz constants y1,y2
respectively. Then & is Lipschitz continuous with Lipschitz constant <y +y».

Example:

Assume that Z (x) = &£(Gx) + A| Dx||> where & is differentiable with y-Lipschitz continuous gradient (y
known). Then,

VZ () = GLVE(Gx) + 2AD" Dx, vxeRY.
We have moreover

IV @ -VF @)l < (G +2A1DI?) 1x- %1, V(x,%) RN xRN,

and hence V. is p-Lipschitz continuous, with < y| G| + 21| D||?.

Computing Operator Norms

Computing the operator norm | K], of the linear operator K : RY — RM amounts to finding its largest
singular value. Performing this computation via a full SVD is wasteful and expensive: the full spectrum is
computed when only the leading singular value is needed.

Instead, it is recommended to use the routine scipy.linalg.svds()° which is capable of computing
only the leading (or more generally k leading) singular values. .
34

This routine is moreover matrix-free: the operator K needs not be stored as an array, but can be an
instance of the abstract class scipy.sparse.linalg.LinearOperator with methods matvec () and
rmatvec () for matrix/vector products Kx and K x respectively. This is particularly useful when N and M
are very large (e.g. in computational imaging) and K cannot be stored in memory as a Numpy array.

50r its companion routines scipy.linalg.eigs(), scipy.linalg.eigsh() for square/Hermitian matrices respectively

. . ’El ° 9@ ap
Example of a Matrix-Free Linear Operator 6 @ o O rmank.
D O —_
Do O

from scipy.sparse.linalg import LinearOperator

class DownSampling(LinearOperator):

def

def

def

@)
| (
__init__(self, size: int, mask: np.ndarray, dtype: type = np.float64
self .mask = np.asarray(mask).reshape(-1).astype(bool)

self.in_size = size

self.out_size = self.mask[self.mask == True]. size
super(Masking, self).__init__(shape=(self.out_size, self.in_size),\ 35
dtype=dtype)

matvec(self, x: np.ndarray) -> np.ndarray:
return x[self . mask]

rmatvec(self, y: np.ndarray) -> np.ndarray:

X = np.zeros(shape=self.in_size, dtype=self.dtype) o
x[self .mask] =y 2z

1
return x O o
/l

a

I @¢(Example 1: TV-Penalised Basis Pursuit

1 2
min = ||ly— Gx|5 + 1| Dx|;
xeRN 2 y 2

lg-oxl , YRW = G (6x-y) R= Lol =1 6ll,”

y(X): i
* INx N
G0 - H& =AU, k=be & B
PrOX 0 (x) = So[)bc (x) < _
Proxo_,,x.,(x); X - O PW%/O,C)*) X
¢
2\’: Zn- - GT(GK Y -z DTZT\-/\

g
M . ¢ 1
/;z,\JcCAﬁ)«;n £=0,4 pelcal

2_
I @¢(Example 1: TV-Penalised Basis Pursuit = fleh,

> 2
z=-0= 4 _ el "G“ZU_ (\DI\Z_L)
P o112 A 16

‘ﬂ(x c %W— GK()Z’) Pf@(z%(z); M%w\j__n&_@ngqiz-xi

s - >
- o G6x-6Ty+ix-4z2¢
@ prox,, (Xa, ~TD IZ”—4> dx 9¥z* "¢

T, . = = (B'6 il_'4 6T+i
o~ :@ 64%) (6123 +%(7(,,M—Z,DT *j>><’x‘ Sﬂ\g!skL 2061\'\4)9&(% ? 7,&>
n = Pr@/(ara&"izn + ch(Z;é‘;‘_'z,HD

@t CR (17 Zan

5 M Boipaofcepons gpsprPlopgssing

@« Example 2: Tikhonov-Penalised Least Absolute Deviation
I v D [RN’? IRQN W&Qi
C@ (X) =0)lcieluiqel}vlly—lellJr%IIDxlI% CW\)
P()= 4 1Dx07 5 vIFGJ-aFDx > p= > (007

txN

.
M) - ny-ziq ¥esR K= 6C€>‘P:n 5
. rorX - -
mecﬁ (2) = $o€tLCZ %) -"%’ / P ha a‘au/dta,

(e, 20) € R™xRE
PoS {7, = z,., -zADDx - &2n, ;
=N

N ﬂ

Prexo,,}‘,g(zm4 +o 6 (2.25- x,\-())
L (Arg)

I @¢(Example 2: Tikhonov-Penalised Least Absolute Deviation

pe A (DI

12
A (0
=2 = — s +\/jkﬂ)
_ 4 (.. Allol~ \D|14+(|6,,LH
16

lel(,-

/él@l’ll = /0:6/%
gs/{

I @¢ Example 3: KL-Divergence + TV

_? D: lRNa lRZN
;Igngllv D1 (yl1Gx) + Al Dxll
L 2N
7g=o W) ™ E
2 W) -
5% =0 ’ (=, 0) > D (gled I,

40

¢) RY s RExRS
2 r — (6, DX>

W(er) = R(6x, %)= DKL(%HGX)-)-AHDM)/)

I ®(Example 3: KL-Divergence + TV “W(zu)- 0 (yl2)+ 4 | wly

prox , (z,%) = (e (7)), Proa,

s 2
PrOX, o 1 - J}@—
KT- (G’r‘)
(ZOIQ‘”) °
PDS
;CL;\: Za-a — KT(Z’HM") = CZ/(L)

SR (201 w623 20 >
1 = ProX - %" (LL,\. iy O DCZ'?CA" 2./\—1))

Effect of Regularisation Operator (Tikhonov)

200
150
100
50

(a) Data (b) D=V (c)p=A

2
mln—lly lelg —IIDxIIZ
xE[R

Effect of Regularisation Operator (TV)

(d) Data

(e) D=V

1
min ~ |y — Gx|5 + Al Dxll;
xeRY 2

(f)p=A

200

150

100

2.0
15
1.0
05

(h) Least-squares + gradient Tikhonov (i) Least-squares + gradient TV

le-6
0.006 10 %
80
0.005 08
70
0.004
06 60
0.003 50
04 40
0.002
30
02
0.001
20

(j) KL-divergence + gradient Tikhonov (k) Least-deviations + gradient Tikhonov (I) KL-divergence + gradient TV

References |

[11 Harshit Gupta, Julien Fageot, and Michael Unser.
Continuous-domain solutions of linear inverse problems with tikhonov versus generalized tv
regularization.
IEEE Transactions on Signal Processing, 66(17):4670—4684, 2018.

[2] Neal Parikh and Stephen Boyd.
Proximal algorithms.
Foundations and Trends in optimization, 1(3):127-239, 2014.

[3] Brendan O’donoghue and Emmanuel Candes.
Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715-732, 2015.

[4] Jingwei Liang, Jalal Fadili, and Gabriel Peyré.
Activity identification and local linear convergence of forward—backward-type methods.
SIAM Journal on Optimization, 27(1):408-437, 2017.

[5]1 Jingwei Liang and Carola-Bibiane Schonlieb.
Improving fista: Faster, smarter and greedier.
arXiv preprint arXiv:1811.071430, 2018.

References I

[6] Amir Beck and Marc Teboulle.
A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183-202, 2009.

[71 Laurent Condat.
A primal—-dual splitting method for convex optimization involving lipschitzian, proximable and
linear composite terms.
Journal of Optimization Theory and Applications, 158(2):460-479, 2013.

