Linear Inverse Problems (2/2)

Mathematical Foundations of Signal Processing

Dr. Matthieu Simeoni

Table of contents

1 Functional Linear Inverse Problems

- Functional Tikhonov Regularisation
- Functional Representer Theorem
- Canonical Discretisation

2 Proximal Algorithms
Proximal Operator
Proximal Minimisation
Gradient Descent
Accelerated Proximal Gradient Descent
Primal-Dual Splitting
Numerical Tricks
Examples
(3) Numerical Experiments

Functional Linear Inverse Problems

Functional Inverse Problems

In the previous lecture, we have constrained the signal f to be finite-dimensional:

$$
f=\sum_{n=1}^{N} \alpha_{n} \psi_{n}=\Psi \boldsymbol{\alpha}, \quad \boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{N}\right] \in \mathbb{R}^{N}
$$

for some suitable basis functions $\left\{\psi_{n}, n=1, \ldots, N\right\} \subset \mathscr{L}^{2}\left(\mathbb{R}^{d}\right) .{ }^{1}$ The idea was to reduce the number of degrees of freedom of the signal f to something manageable given the finite-dimensional data. While sensible, it is unclear if this discretisation step can be done canonically:

- How should we choose N?
- How should we choose the parametrising basis functions $\left\{\psi_{n}, n=1, \ldots, N\right\}$? (pixels, sines/cosines, radial basis functions, polynomials, splines...)

To answer these questions, we relax the finite-dimensional assumption and formulate the reconstruction problem directly in the continuous domain. We then characterise the form of the solutions and deduce canonical discretisation schemes.

[^0]
Functional Tikhonov Regularisation

Consider the following functional penalised Tikhonov problem: ${ }^{2}$

$$
\begin{equation*}
\min _{f \in \mathscr{H}^{k}} F\left(\boldsymbol{y}, \Phi^{*} f\right)+\lambda\left\|D^{k} f\right\|_{2^{\prime}}^{2}, \tag{1}
\end{equation*}
$$

where $k \geq 0, \lambda>0$ and:

- D^{k} denotes the k-th derivate operator on \mathbb{R}.
- $\mathscr{H}^{k}:=\left\{f \in \mathscr{L}^{2}(\mathbb{R}):\left\|D^{k} f\right\|_{2}<+\infty\right\}$ denotes the Hilbert space of functions with square-integrable k-th derivatives called Sobolev space.
- $\Phi^{*}: \mathscr{H}^{k} \rightarrow \mathbb{R}^{L}$ is the sampling operator associated with a linearly independent family of sampling functionals $\left\{\varphi_{1}, \ldots, \varphi_{L}\right\} \subset \mathscr{H}^{k}$ and such that $\mathscr{N}\left(\Phi^{*}\right) \cap \mathscr{N}\left(D^{k}\right)=\{0\}$.
- $F: \mathbb{R}^{L} \times \mathbb{R}^{L} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ is a cost functional assumed proper convex, coercive and lwsc w.r.t. its second argument.

[^1]
Functional Representer Theorem

Representer Theorem: (Functional Tikhonov) [, Theorem 3]

Under the assumptions listed on Slide 5, the solution set of (1) is non empty, convex, compact. Moreover, any solution $f^{\star} \in \mathscr{V}$ can be written as:

$$
\begin{equation*}
f^{\star}(x)=\sum_{i=1}^{L} \alpha_{i}\left(\rho_{k} * \varphi_{i}\right)(x)+\sum_{j=0}^{k-1} \beta_{j} x^{j}, \quad \forall x \in \mathbb{R}, \tag{2}
\end{equation*}
$$

for some coefficients $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{L}\right] \in \mathbb{R}^{L}, \boldsymbol{\beta}=\left[\beta_{0}, \ldots, \beta_{k-1}\right] \in \mathbb{R}^{k}$ such that

$$
\begin{equation*}
\sum_{i=1}^{L} \alpha_{i}\left\langle x^{j}, \varphi_{i}\right\rangle=\sum_{i=1}^{L} \alpha_{i} \int_{\mathbb{R}} \varphi_{i}(x) x^{j} d x=0, \quad \forall j=0, \ldots, k-1 . \tag{3}
\end{equation*}
$$

and where

$$
\begin{equation*}
\rho_{k}(x)=\mathscr{F}^{-1}\left\{|\omega|^{-2 k}\right\}(x)=\frac{|x|^{2 k-1}}{2(-1)^{k}(2 k-1)!}, \quad x \in \mathbb{R} \tag{4}
\end{equation*}
$$

Moreover if $F(\boldsymbol{y}, \cdot)$ is strictly convex, then the solution is unique.

Canonical Discretisation

We can re-write (2) as

$$
f^{\star}=\Psi \boldsymbol{\alpha}+\Lambda \boldsymbol{\beta}
$$

where $\Psi: \mathbb{R}^{L} \rightarrow \mathscr{H}^{k}$ and $\Lambda: \mathbb{R}^{k} \rightarrow \mathscr{H}^{k}$ are the synthesis operators associated to the family of functions $\left\{\rho_{k} * \varphi_{i}, i=1, \ldots, L\right\}$ and $\left\{x^{j}, j=0, \ldots, k-1\right\}$ respectively. We have then:

$$
\begin{equation*}
\Phi^{*} f^{\star}=\Phi^{*} \Psi \boldsymbol{\alpha}+\Phi^{*} \Lambda \boldsymbol{\beta}=\boldsymbol{G} \boldsymbol{\alpha}+\boldsymbol{H} \boldsymbol{\beta} \tag{5}
\end{equation*}
$$

where $\boldsymbol{G}=\Phi^{*} \Psi \in \mathbb{R}^{L \times L}$ and $\boldsymbol{H}=\Phi^{*} \Lambda \in \mathbb{R}^{L \times k}$ are real matrices with entries given by:

$$
G_{i j}:=\left\langle\rho_{k} * \varphi_{j}, \varphi_{i}\right\rangle, i, j=1, \ldots, L, \quad \text { and } \quad H_{i n}:=\left\langle x^{n}, \varphi_{i}\right\rangle i=1, \ldots, L, n=0, \ldots k-1 .
$$

We have moreover:

$$
\left\|D^{k} f^{\star}\right\|_{2}^{2}=\left\langle D^{k} f^{\star}, D^{k} f^{\star}\right\rangle=\langle D^{k} \Psi \boldsymbol{\alpha}+\underbrace{D^{k} \Lambda \boldsymbol{\beta}}_{=0}, D^{k} \Psi \boldsymbol{\alpha}+\underbrace{D^{k} \Lambda \boldsymbol{\beta}}_{=0}\rangle=\left\langle D^{k *} D^{k} \Psi \boldsymbol{\alpha}, \Psi \boldsymbol{\alpha}\right\rangle
$$

since $\Lambda \boldsymbol{\beta}=\sum_{j=0}^{k-1} \beta_{j} x^{j}$ is a polynomial of degree $k-1$ and hence $D^{k} \Lambda \boldsymbol{\beta}=0$.

Canonical Discretisation (continued)

Additionally, we have from (4) and the convolution/multiplication theorem that:

$$
D^{k *} D^{k} \Psi \boldsymbol{\alpha}=\sum_{i=1}^{L} \alpha_{i} \mathscr{F}^{-1}\left\{-j \omega^{k} j \omega^{k} \hat{\rho}_{k} \hat{\varphi}_{i}\right\}=\sum_{i=1}^{L} \alpha_{i} \mathscr{F}^{-1}\left\{\frac{|\omega|^{2 k}}{|\omega|^{2 k}} \hat{\varphi}_{i}\right\}=\sum_{i=1}^{L} \alpha_{i} \varphi_{i}=\Phi \boldsymbol{\alpha}
$$

which yields:

$$
\begin{equation*}
\left\|D^{k} f^{\star}\right\|_{2}^{2}=\left\langle D^{k *} D^{k} \Psi \boldsymbol{\alpha}, \Psi \boldsymbol{\alpha}\right\rangle=\langle\Phi \boldsymbol{\alpha}, \Psi \boldsymbol{\alpha}\rangle=\left\langle\boldsymbol{\alpha}, \Phi^{*} \Psi \boldsymbol{\alpha}\right\rangle=\boldsymbol{\alpha}^{T} \boldsymbol{G} \boldsymbol{\alpha} \tag{6}
\end{equation*}
$$

Finally, note that condition (3) translates into:

$$
\begin{equation*}
\sum_{i=1}^{L} \alpha_{i}\left\langle x^{j}, \varphi_{i}\right\rangle=0, \quad \forall j=0, \ldots, k-1, \quad \Leftrightarrow \quad \boldsymbol{\alpha}^{T} \boldsymbol{H}=\mathbf{0} \quad \Leftrightarrow \quad \alpha \in \mathscr{R}(\boldsymbol{H})^{\perp} \subset \mathbb{R}^{L} . \tag{7}
\end{equation*}
$$

Plugging (5), (6) and (7) into (1) yields:

$$
f^{\star} \in \underset{f \in \mathscr{H}^{k}}{\arg \min } F\left(\boldsymbol{y}, \Phi^{*} f\right)+\lambda\left\|D^{k} f\right\|_{2}^{2} \quad \Leftrightarrow \quad(\boldsymbol{\alpha}, \boldsymbol{\beta}) \in \underset{\boldsymbol{\alpha} \in \mathscr{R}(\boldsymbol{H})^{\perp}, \boldsymbol{\beta} \in \mathbb{R}^{k}}{\arg \min } F(\boldsymbol{y}, \boldsymbol{G} \boldsymbol{\alpha}+\boldsymbol{H} \boldsymbol{\beta})+\lambda \boldsymbol{\alpha}^{T} \boldsymbol{G} \boldsymbol{\alpha} .
$$

We have hence shown that the functional penalised Tikhonov problem (1) can be discretised canonically. Moreover this discretisation is lossless: the functional and discrete problems are both equivalent!

Example: Ideal Sampling, $k=2$

$$
\mathcal{H} \|^{2}=\left\{f: \mid R \rightarrow\left(\mathbb{R}, \int_{\mathbb{R}}\left|b^{\prime \prime}(x)\right|^{2} d x<+0\right.\right.
$$

$$
\begin{aligned}
& \rightarrow b^{*}=\sum_{i=1}^{L} \alpha_{i} \underbrace{\rho_{2} \delta\left(\cdot-x_{i}\right)}_{\rho_{2}\left(x-x_{i}\right)}+\underbrace{\beta_{0}}_{0}+\underbrace{\beta_{1}} x \\
& \rho_{2}(x)=\frac{|x|^{3}}{12} \quad \begin{aligned}
G_{i j} & =\left\langle\rho_{2}\left(\cdots x_{i}\right), \delta(.\right.
\end{aligned}
\end{aligned}
$$

Proximal Algorithms

Proximal Operator

Definition: (Proximal Operator)

Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex and lwsc functional. Then, the proximal operator prox ${ }_{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ of f is defined as

$$
\operatorname{prox}_{f}(\boldsymbol{z}):=\underset{\boldsymbol{x} \in\left\{\mathbb{R}^{\boldsymbol{N}}\right.}{\operatorname{argmin}} f(\boldsymbol{x})+\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}, \quad \forall \boldsymbol{z} \in \mathbb{R}^{N} .
$$

Since f proper convex and lwsc, it is easy to see that the objective functional defining the proximal operator is proper strictly convex, coercive, and Iwsc, and hence $\operatorname{prox}_{f}(\boldsymbol{z})$ exists and is unique for every $z \in \mathbb{R}^{N}$. The proximal operator is hence well defined. We will often encounter the proximal operator of the scaled function $\tau f, \tau>0$, which can be expressed as:

$$
\boldsymbol{p r o x}_{\tau f}(\boldsymbol{z}):=\underset{\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{N}}}{\operatorname{argmin}} f(\boldsymbol{x})+\frac{1}{2 \tau}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}, \quad \forall \boldsymbol{z} \in \mathbb{R}^{N} .
$$

We say that a function is proximable if its proximal operator admits a simple closed-form expression.

Interpretation of Proximal Operator [2, Section 1.2]

- The thin black lines are level curves of f.
- The bold black line indicates the boundary of the domain of f.
- Evaluating prox $_{\tau f}$ at the blue points moves them to the corresponding red points.
- The three points in the domain of the function stay in the domain and move towards the minimum of the function (\simeq descent step).
- The two points outside of the domain move to the boundary of the domain and towards the minimum of the function (\simeq projection step).
- The parameter τ controls the amount of displacement
 towards the minimum.

Properties of Proximal Operators

Proposition: (Properties of Proximal Operators)

1. Separable Sum: If $f: \mathbb{R}^{N_{1}} \times \cdots \times \mathbb{R}^{N_{n}} \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined as: $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$, $\forall\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{N_{1}} \times \cdots \times \mathbb{R}^{N_{n}}$, then the proximal operator of f is given by:

$$
\operatorname{prox}_{\tau f}=\left[\operatorname{prox}_{\tau f_{1}}\left(\boldsymbol{x}_{1}\right), \ldots, \operatorname{prox}_{\tau f_{n}}\left(\boldsymbol{x}_{n}\right)\right] \in \mathbb{R}^{N_{1}} \times \cdots \times \mathbb{R}^{N_{n}}
$$

2. Precomposition: If $f(x)=g(\alpha \boldsymbol{x}+\boldsymbol{y}), \alpha>0, \boldsymbol{y} \in \mathbb{R}^{N}$, then

$$
\operatorname{prox}_{\tau f}(\boldsymbol{x})=\frac{1}{\alpha}\left(\operatorname{prox}_{\tau \alpha^{2}}(\alpha x+\boldsymbol{y})-y\right), \quad \forall \boldsymbol{x} \in \mathbb{R}^{N}
$$

3. Fixed Points \& Minimisers: $\boldsymbol{x}^{\star} \in \mathbb{R}^{N}$ minimises $f: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ iff $\operatorname{prox}_{f}\left(\boldsymbol{x}^{\star}\right)=\boldsymbol{x}^{\star}$ [2, Section 2.3].

Additional useful results can be found in [2, Section 2].

$$
\begin{aligned}
& 0 \text { Proof (Point 1) } \quad n=2 \quad \underline{f(x, y)}=f_{1}(x)+f_{2}(y) \\
& \operatorname{prox}_{2 f}(\omega, z)=\operatorname{argmin}_{(x, y) \in \underbrace{}_{\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}}} f(x, y)+\frac{1}{2 \tau}\|(x, y)-(\omega, z)\|_{2}^{2} \\
& =\underset{(x, y)}{\operatorname{argmin}} \quad f_{1}(\underline{x})+f_{2}(\underline{y})+\frac{1}{2}\left[\|x-w\|_{2}^{2}+\|y-z\|_{2}^{2}\right] \\
& =\underbrace{\operatorname{argmin} f_{1}(x)+\frac{1}{22}\|x-\omega\|_{2}^{2}}_{\text {prox }_{2 f_{1}}(\omega)}, \underbrace{\operatorname{argmin} f_{2}(y)+\frac{1}{22}\left(\mid y-2 \|_{2}^{2}\right)}_{\operatorname{prox}_{2 f_{2}}(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) Proof (Point 2) } \quad f(x)=g(a x+y) \quad x \\
& \operatorname{prox}_{z f}(z)=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} f(x)+\frac{1}{2 z}\|x-z\|_{2}^{2} \\
& =\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} g(\alpha x+y)+\frac{1}{z 2}\|x-z\|_{2}^{2} \quad \Leftrightarrow \quad u=\alpha x+y \\
& \left.=\frac{1}{\alpha}\right) \underset{u \in \mathbb{R}^{N}}{\underset{\operatorname{argmin}}{u} \sin } g(u)+\frac{1}{2 z}\left\|\frac{u}{\alpha}-\frac{y}{\alpha}-2\right\|_{2}^{2} \\
& \underset{u \in \mathbb{R}^{N}}{\operatorname{argmin}} g(u)+\frac{\bar{x}}{\frac{1}{2\left(-\alpha^{2}\right)}}\|u-\underbrace{(\alpha z+y)}\|_{2}^{2} \\
& \frac{1}{\alpha}\left(\text { prox }_{\text {zazg }}(\alpha 2+g)-y\right)
\end{aligned}
$$

Examples of Simple Proximal Operators

Examples of Simple Proximal Operators $\left(y \in \mathbb{R}^{N}\right)$:

- $f(\boldsymbol{x})=\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.

$$
\operatorname{prox}_{\tau f}(\boldsymbol{x})=\frac{\boldsymbol{x}-\boldsymbol{y}}{1+2 \tau}+\boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^{N} .
$$

- $f(\boldsymbol{x})=\iota_{C}(\boldsymbol{x}-\boldsymbol{y})$ with $C \subset \mathbb{R}^{N}$ convex:

$$
\operatorname{prox}_{\tau f}(\boldsymbol{x})=P_{C}(\boldsymbol{x}-\boldsymbol{y})+\boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^{N},
$$

where P_{C} is the projection operator onto the convex set C.

- $f(\boldsymbol{x})=\|\boldsymbol{x}-\boldsymbol{y}\|_{1}$:

$$
\operatorname{prox}_{\tau f}(\boldsymbol{x})=\operatorname{soft}_{\tau}(\boldsymbol{x}-\boldsymbol{y})+\boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^{N},
$$

where $\operatorname{soft}_{\tau}(x):=\max \{|x|-\tau, 0\} \operatorname{sgn}(x)$.

- $f(\boldsymbol{x})=D_{K L}(\boldsymbol{y} \| \boldsymbol{x})$:

$$
\operatorname{prox}_{\tau f}(\boldsymbol{x})=\frac{\boldsymbol{x}-\tau+\sqrt{(\boldsymbol{x}-\tau)^{2}+4 \boldsymbol{y} \tau}}{2}, \quad \boldsymbol{x} \in \mathbb{R}^{N}
$$

Proximal Minimisation

Consider the following problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \mathscr{G}(\boldsymbol{x})
$$

where $\mathscr{G}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is proper, Iwsc and convex function with simple proximal operator. This optimisation problem can be solved by means of proximal minimisation:

```
Algorithm 1 Proximal Minimisation
    1: procedure \(\operatorname{PROXM} \operatorname{IN}\left(\tau, x_{0}\right)\)
2: \(\quad\) for all \(n \geq 1\) do
3: \(\quad \boldsymbol{x}_{n}=\operatorname{prox}_{\tau \mathscr{G}}\left(\boldsymbol{x}_{n-1}\right)\)
4: return \(\left(x_{n}\right)_{n \in \mathbb{N}}\)
```

If $\mathcal{V}=\operatorname{argmin}_{x \in \mathbb{R}^{N}} \mathscr{G}(\boldsymbol{x})$ is non empty, the sequence $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ converges to an element of \mathcal{V} for any $\tau>0$ [2, Section 4.1].

Gradient Descent

Consider the following problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \mathscr{F}(\boldsymbol{x}),
$$

where $\mathscr{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex and differentiable, with β-Lipschitz continuous gradient:

$$
\begin{equation*}
\left\|\nabla \mathscr{F}(\boldsymbol{x})-\nabla \mathscr{F}\left(\boldsymbol{x}^{\prime}\right)\right\|_{2} \leq \beta\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}, \quad \forall\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \in \mathbb{R}^{N} \times \in \mathbb{R}^{N}, \tag{8}
\end{equation*}
$$

for some Lipschitz constant $\beta \in[0,+\infty[$. This optimisation problem can be solved by means of gradient descent:

```
Algorithm 2 Gradient Descent
    1: procedure GRADDESC \(\left(\tau, x_{0}\right)\)
2: \(\quad\) for all \(n \geq 1\) do
3: \(\quad \boldsymbol{x}_{n}=\boldsymbol{x}_{n-1}-\tau \nabla \mathscr{F}\left(\boldsymbol{x}_{n-1}\right)\)
4: return \(\left(x_{n}\right)_{n \in \mathbb{N}}\)
```

If $\mathscr{V}=\arg \min _{x \in \mathbb{R}^{N}} \mathscr{F}(\boldsymbol{x})$ is non empty, the sequence $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ converges to an element of \mathscr{V} for any $0<\tau \leq \frac{1}{\beta}[3$, Section 2].

Proximal Minimisation vs. Gradient Descent

Consider the least-squares minimisation problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}\|_{2}^{2}
$$

with $\boldsymbol{G} \in \mathbb{R}^{L \times N}, \boldsymbol{y} \in \mathbb{R}^{L}$. We can minimise the functional $\mathscr{J}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}\|_{2}^{2}$ in two ways:

- Via proximal minimisation since \mathscr{J} is proper convex, and lwsc. This yields the following iterations:

$$
\boldsymbol{x}_{n}=\operatorname{prox}_{\tau \mathscr{J}}\left(\boldsymbol{x}_{n-1}\right) \Leftrightarrow\left(\tau \boldsymbol{G}^{T} \boldsymbol{G}+\boldsymbol{I}\right) \boldsymbol{x}_{n}=\boldsymbol{x}_{n-1}+\boldsymbol{G}^{T} \boldsymbol{y}, \quad \boldsymbol{x}_{0} \in \mathbb{R}^{N}, n \geq 1 .
$$

We must solve a linear system of size $N \times N$ at each iteration! Computationally expensive...

- Via gradient descent since \mathscr{F} is differentiable and its gradient $\nabla \mathscr{J}(\boldsymbol{x})=\boldsymbol{G}^{T}(\boldsymbol{G} \boldsymbol{x}-\boldsymbol{y})$ is moreover β-Lipschitz continuous with Lipschitz constant $\beta=\left\|\boldsymbol{G}^{T} \boldsymbol{G}\right\|_{2}$. This yields the following iterations:

$$
\boldsymbol{x}_{n}=\boldsymbol{x}_{n-1}+\tau \boldsymbol{G}^{T}\left(\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}_{n-1}\right), \quad \boldsymbol{x}_{0} \in \mathbb{R}^{N}, n \geq 1
$$

The update equation only involves matrix/vector products with \boldsymbol{G} and \boldsymbol{G}^{T}. Much cheaper!

Accelerated Proximal Gradient Descent

Consider the following problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x}),
$$

where $\mathscr{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is as in Slide 18 and $\mathscr{G}: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ is as in Slide 17. This optimisation problem can be solved by means of Accelerated Proximal Gradient Descent (APGD):

```
Algorithm 3 Accelerated Proximal Gradient Descent (APGD)
    1: procedure \(\operatorname{APGD}\left(\tau, \mathfrak{d}, x_{0}=z_{0}\right)\)
    2: for all \(n \geq 1\) do
3: \(\quad z_{n}=\operatorname{prox}_{\tau} \mathscr{G}_{\mathcal{G}}\left(\boldsymbol{x}_{n-1}-\tau \nabla \mathscr{F}\left(\boldsymbol{x}_{n-1}\right)\right)\)
4: \(\quad \boldsymbol{x}_{n}=z_{n}+\frac{n-1}{n+\mathfrak{d}}\left(z_{n}-z_{n-1}\right)\)
5: return \(\left(x_{n}\right)_{n \in \mathbb{N}}\)
```

The update equation at line 3 is the composition between a proximal step for \mathscr{G} and a gradient step for \mathscr{F}. Line 4 is an acceleration step.

Convergence of APGD

For $\mathfrak{d}>2$ and $0<\tau \leq \frac{1}{1} / \beta$, APGD achieves the following (optimal) convergence rates:

$$
\lim _{n \rightarrow \infty} n^{2}\left|\mathscr{J}\left(\boldsymbol{x}^{\star}\right)-\mathscr{J}\left(\boldsymbol{x}_{n}\right)\right|=0 \quad \& \quad \lim _{n \rightarrow \infty} n^{2}\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{n-1}\right\|_{\mathscr{X}}^{2}=0
$$

In other words, both the objective functional and the APGD iterates $\left\{\boldsymbol{x}_{n}\right\}_{n \in \mathbb{N}}$ converge at a rate $o\left(1 / n^{2}\right)$. Significant practical speedup can moreover be achieved for values of \mathfrak{d} in the range $[50,100][4,5]$.

[^2]
Example: Fast Iterative Soft Thresholding Algorithm (FISTA)

Consider the LASSO problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1}
$$

with $\boldsymbol{G} \in \mathbb{R}^{L \times N}, \boldsymbol{y} \in \mathbb{R}^{L}, \lambda>0$. This problem can be solved via APGD with $\mathscr{F}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}\|_{2}^{2}$ and $\mathscr{G}(\boldsymbol{x})=\lambda\|\boldsymbol{x}\|_{1}$. We have:

$$
\nabla \mathscr{F}(\boldsymbol{x})=\boldsymbol{G}^{T}(\boldsymbol{G} \boldsymbol{x}-\boldsymbol{y}), \quad \operatorname{prox}_{\lambda\|\cdot\|_{1}}(\boldsymbol{x})=\operatorname{soft}_{\lambda}(\boldsymbol{x})
$$

This yields the so-called Fast Iterative Soft Thresholding Algorithm (FISTA) [6]:

```
Algorithm 4 Fast Iterative Soft Thresholding Algorithm (FISTA)
    1: procedure \(\operatorname{FISTA}\left(\tau, \mathfrak{d}, x_{0}=z_{0}\right)\)
    2: for all \(n \geq 1\) do
    3: \(\quad z_{n}=\boldsymbol{\operatorname { s o f t }}_{\tau \lambda}\left(\boldsymbol{x}_{n-1}+\tau \boldsymbol{G}^{T}\left(\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}_{n-1}\right)\right)\)
    4: \(\quad \boldsymbol{x}_{n}=z_{n}+\frac{n-1}{n+\mathfrak{d}}\left(z_{n}-z_{n-1}\right)\)
    5: return \(\left(x_{n}\right)_{n \in \mathbb{N}}\)
```

Convergence of FISTA is moreover guaranteed for $\mathfrak{d}>2$ and $0<\tau \leq \beta^{-1}=\|\boldsymbol{G}\|_{2}^{-2}$.

Lipschitzian, Proximable and Linear Composite Terms

Consider the following problem:

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\mathscr{H}(\boldsymbol{K} \boldsymbol{x}) . \tag{9}
\end{equation*}
$$

with the following assumptions:

1. $\mathscr{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex and differentiable, with β-Lipschitz continuous gradient:

$$
\left\|\nabla \mathscr{F}(\boldsymbol{x})-\nabla \mathscr{F}\left(x^{\prime}\right)\right\|_{\mathscr{X}} \leq \beta\left\|x-x^{\prime}\right\|_{\mathscr{X}}, \quad \forall x, x^{\prime} \in \mathbb{R}^{N},
$$

for some Lipschitz constant $\beta \in[0,+\infty[$.
2. $\mathscr{G}: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $\mathscr{H}: \mathbb{R}^{M} \rightarrow \mathbb{R} \cup\{+\infty\}$ are two proper, Iwsc and convex functions with simple proximal operators.
3. $\boldsymbol{K}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ is a linear operator, with operator norm: $\|\boldsymbol{K}\|_{2}=\sup _{\boldsymbol{x} \in \mathbb{R}^{N},\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{K} \boldsymbol{x}\|_{2}$.
4. The problem (9) is feasible -i.e. there exists at least one solution.

Variable Splitting

Problem (9) cannot be solved via APGD: \mathscr{G} and \mathscr{H} have simple proximal operators, but the composite term $\mathscr{G}(\boldsymbol{x})+\mathscr{H}(\boldsymbol{K} \boldsymbol{x})$ may not! ${ }^{4}$

To circumvent this issue, we perform variable splitting by re-writing (9) in consensus form:

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{w} \in \mathbb{R}^{M}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\mathscr{H}(\boldsymbol{w}), \quad \text { s.t. } \quad \boldsymbol{w}=\boldsymbol{K} \boldsymbol{x} \tag{10}
\end{equation*}
$$

The Lagrangian $\mathscr{L}: \mathbb{R}^{N} \times \mathbb{R}^{M} \times \mathbb{R}^{M} \rightarrow \mathbb{R} \cup\{+\infty\}$ associated to this problem is given by:

$$
\begin{equation*}
\mathscr{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z})=\mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\mathscr{H}(\boldsymbol{w})+\boldsymbol{z}^{T}(\boldsymbol{K} \boldsymbol{x}-\boldsymbol{w}) \tag{11}
\end{equation*}
$$

where the ancillary variable $z \in \mathbb{R}^{M}$ is called a Lagrange multiplier. It is then possible to show that the saddle-point problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{w} \in \mathbb{R}^{M}} \max _{\boldsymbol{z} \in \mathbb{R}^{M}} \mathscr{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z})
$$

is equivalent to (10). To this end, we introduce the notion of Fenchel conjugate of a function.
${ }^{4}$ For example the TV proximal problem $\operatorname{argmin}_{\boldsymbol{x} \in \mathbb{R}^{N}}\|\boldsymbol{K} \boldsymbol{x}\|_{1}+\frac{1}{2 \tau}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}$ does not admit a simple closed-form expression.

Fenchel Conjugate and Fenchel-Moreau Theorem

Definition: (Fenchel Conjugate/Biconjugate)
The Fenchel conjugate of a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ is defined as:

$$
f^{*}(z):=\sup _{\boldsymbol{x} \in \mathbb{R}^{N}}\langle z, \boldsymbol{x}\rangle-f(\boldsymbol{x}), \quad \forall z \in \mathbb{R}^{N} .
$$

The Fenchel biconjugate $f^{* *}: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ is the Fenchel conjugate of the Fenchel conjugate:

$$
f^{* *}(\boldsymbol{x}):=\sup _{\boldsymbol{x} \in \mathbb{R}^{N}}\langle\boldsymbol{x}, \boldsymbol{z}\rangle-f^{*}(\boldsymbol{z}), \quad \forall \boldsymbol{x} \in \mathbb{R}^{N} .
$$

Theorem: (Fenchel-Moreau)
For f proper convex and Iwsc we have $f=f^{* *}$, i.e. f is equal to its Fenchel biconjugate.

Saddle-Point Problem is Equivalent to (9)

Using the Fenchel-Moreau theorem applied to \mathscr{H} we get:

$$
\begin{aligned}
\min _{\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{w} \in \mathbb{R}^{M}}\left(\max _{\boldsymbol{z} \in \mathbb{R}^{M}} \mathscr{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z})\right) & =\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \max _{\boldsymbol{z} \in \mathbb{R}^{M}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\left(\min _{\boldsymbol{w} \in \mathbb{R}^{M}} \mathscr{H}(\boldsymbol{w})-\boldsymbol{z}^{T} \boldsymbol{w}\right)+\boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x} \\
& =\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \max _{\boldsymbol{z} \in \mathbb{R}^{M}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\underbrace{\left(-\max ^{T} \boldsymbol{w}-\mathscr{H}(\boldsymbol{w})\right)}_{\boldsymbol{w} \in \mathbb{R}^{M}}+\boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x} \\
& =\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\underbrace{\max _{\boldsymbol{z}} \boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x}-\mathscr{H}^{*}(\boldsymbol{z})}_{=-\mathbb{R}^{*}} \\
& =\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})+\mathscr{H}(\boldsymbol{K} \boldsymbol{x}) .
\end{aligned}
$$

We can hence solve (9) by solving the saddle-point problem (also called primal-dual problem):

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{w} \in \mathbb{R}^{M}} \max _{z \in \mathbb{R}^{M}} \mathscr{L}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{z})=\min _{x \in \mathbb{R}^{N}} \max _{z \in \mathbb{R}^{M}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})-\mathscr{C}^{*}(\boldsymbol{z})+z^{T} \boldsymbol{K} \boldsymbol{x} .
$$

Primal-Dual Splitting Method

The primal-dual problem

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{N}} \max _{z \in \mathbb{R}^{M}} \mathscr{F}(\boldsymbol{x})+\mathscr{G}(\boldsymbol{x})-\mathscr{H}^{*}(\boldsymbol{z})+\boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x} \tag{12}
\end{equation*}
$$

is much simpler to optimise:

1. $\mathscr{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex and differentiable, with β-Lipschitz continuous gradient.
2. $\boldsymbol{x} \mapsto \boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x}$ and $\boldsymbol{z} \mapsto \boldsymbol{z}^{T} \boldsymbol{K} \boldsymbol{x}$ are convex and differentiable functionals, with 0-Lipschitz continuous gradients.
3. $\mathscr{G}: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $\mathscr{H}^{*}: \mathbb{R}^{M} \rightarrow \mathbb{R} \cup\{+\infty\}$ are two proper, Iwsc and convex functions with simple proximal operators. Indeed, the proximal operator of the Fenchel conjugate \mathscr{H}^{*} is given by Moreau's identity:

$$
\begin{equation*}
\operatorname{prox}_{\sigma \mathscr{H}}{ }^{*}(z)=z-\sigma \operatorname{prox}_{\mathscr{H} / \sigma}(z / \sigma), \quad \forall z \in \mathbb{R}^{M}, \sigma>0 \tag{13}
\end{equation*}
$$

The primal-dual splitting method [7, Algorithm 3.1] can therefore be used to solve (12).

Primal-Dual Splitting Method

Algorithm 5 Primal-Dual Splitting (PDS) Method
1: procedure $\operatorname{PDS}\left(\tau, \sigma, \rho, x_{0}, z_{0}\right)$
2: \quad for all $n \geq 1$ do
3: $\quad \tilde{\boldsymbol{x}}_{n}=\operatorname{prox}_{\tau \mathscr{G}}\left(\boldsymbol{x}_{n-1}-\tau \nabla \mathscr{F}\left(\boldsymbol{x}_{n-1}\right)-\tau \boldsymbol{K}^{*} z_{n-1}\right)$
4: $\quad \tilde{z}_{n}=\operatorname{prox}_{\sigma \mathscr{H}}{ }^{*}\left(z_{n-1}+\sigma K\left[2 \tilde{\boldsymbol{x}}_{n}-\boldsymbol{x}_{n-1}\right]\right)$
5: $\quad \boldsymbol{x}_{n}=\rho \tilde{\boldsymbol{x}}_{n}+(1-\rho) \boldsymbol{x}_{n-1}$
6: $\quad z_{n}=\rho \tilde{z}_{n}+(1-\rho) z_{n-1}$
7: return $\left\{\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}\right)\right\}_{n \in \mathbb{N}}$

Interpretation of PDS

The algorithm performs alternating proximal gradient/ascent steps:

- Given an estimate z_{n-1}, Row 3 performs a proximal gradient descent with step size $\tau>0$ to minimise

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{N}} \mathscr{F}(x)+\mathscr{G}(x)-\mathscr{Y}\left(z_{n-1}\right)+z_{n-1}^{T} K x \\
&=\text { Oste }
\end{aligned}
$$

w.r.t. to the variable \boldsymbol{x} (called primal variable).

- Row 4 uses the result of the proximal gradient descent step 3 and the previous primal estimate \boldsymbol{x}_{n-1} and performs a proximal gradient ascent with step size $\sigma>0$ to maximise

$$
\max _{\boldsymbol{z} \in \mathbb{R}^{M}} \boldsymbol{z}^{T} \boldsymbol{K}\left(2 \tilde{\boldsymbol{x}}_{n}-\boldsymbol{x}_{n-1}\right)-\mathscr{H}^{*}(\boldsymbol{z})
$$

w.r.t. to the variable z (called dual variable).

- $\rho>0$ is a momentum term, used to combine the output of the gradient/ascent steps with previous estimates of the primal/dual variables.

Convergence of PDS $(\beta \neq 0)$

Theorem: (Convergence of PDS, $\beta \neq 0$) [, Theorem 3.1]

Consider problem (12) under the assumptions of Slide 23 and let $\tau>0, \sigma>0$ and $\rho>0$ be the hyperparameters of Algorithm 5. Suppose moreover that $\beta>0$ and that the following holds:

1. $\frac{1}{\tau}-\sigma\|K\|_{2}^{2} \geq \frac{\beta}{2}$,
2. $\rho \in] 0, \delta$ [, where $\delta:=2-\frac{\beta}{2}\left(\frac{1}{\tau}-\sigma\|K\|_{2}^{2}\right)^{-1} \in[1,2[$.

Then, there exists a pair $\left(x^{\star}, z^{\star}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{M} s$ solution to (12), s.t. the primal and dual sequences of estimates $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ converge towards \boldsymbol{x}^{\star} and \boldsymbol{z}^{\star} respectively, i.e.

$$
\lim _{n \rightarrow+\infty}\left\|x^{\star}-x_{n}\right\|_{2}=0, \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\|z^{\star}-z_{n}\right\|_{2}=0
$$

Convergence of PDS $(\beta=0)$

Theorem: (Convergence of PDS, $\beta=0$) [, Theorem 3.1]
Consider problem (12) under the assumptions of Slide 23 and let $\tau>0, \sigma>0$ and $\rho>0$ be the hyperparameters of Algorithm 5. Suppose moreover that $\beta=0$ and that the following holds:

1. $\tau \sigma\|K\|_{2}^{2} \leq 1$,
2. $\rho \in[\epsilon, 2-\epsilon]$, for some $\epsilon>0$.

Then, there exists a pair $\left(x^{\star}, z^{\star}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{M} s$ solution to (12), s.t. the primal and dual sequences of estimates $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ converge towards \boldsymbol{x}^{\star} and \boldsymbol{z}^{\star} respectively, i.e.

$$
\lim _{n \rightarrow+\infty}\left\|x^{\star}-x_{n}\right\|_{2}=0, \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\|z^{\star}-z_{n}\right\|_{2}=0
$$

Choosing the Step Sizes

In practice, the convergence speed of Algorithm 5 is improved by choosing σ and τ as large as possible and relatively well-balanced -so that both the primal and dual variables converge at the same pace. In practice, it is hence recommended to choose perfectly balanced parameters $\sigma=\tau$ saturating the inequalities 1 and 1 . For $\beta>0$ this yields:

$$
\frac{1}{\tau}-\tau\|\boldsymbol{K}\|_{2}^{2}=\frac{\beta}{2} \quad \Longleftrightarrow \quad-2 \tau^{2}\|\boldsymbol{K}\|_{2}^{2}-\beta \tau+2=0
$$

which admits one positive root

$$
\begin{equation*}
\tau=\sigma=\frac{1}{\|\boldsymbol{K}\|_{2}^{2}}\left(-\frac{\beta}{4}+\sqrt{\frac{\beta^{2}}{16}+\|\boldsymbol{K}\|_{2}^{2}}\right) . \tag{14}
\end{equation*}
$$

For $\beta=0$, this yields

$$
\begin{equation*}
\tau=\sigma=\|\boldsymbol{K}\|_{2}^{-1} . \tag{15}
\end{equation*}
$$

Computing the Lipschitz Constant β

Sometimes, computing the Lipschitz constant β of \mathscr{F} can be difficult. In which case, it can be beneficial to overestimate it slightly using properties of sums/compositions of Lipschitz continuous functions:

- Let $\mathscr{F}=\mathscr{F}_{1} \circ \mathscr{F}_{2}$ where $\mathscr{F}_{1}, \mathscr{F}_{2}$ are Lipschitz continuous functions with Lipschitz constants γ_{1}, γ_{2} respectively. Then \mathscr{F} is Lipschitz continuous with Lipschitz constant $\beta \leq \gamma_{1} \gamma_{2}$.
- Let $\mathscr{F}=\mathscr{F}_{1}+\mathscr{F}_{2}$ where $\mathscr{F}_{1}, \mathscr{F}_{2}$ are Lipschitz continuous functions with Lipschitz constants γ_{1}, γ_{2} respectively. Then \mathscr{F} is Lipschitz continuous with Lipschitz constant $\beta \leq \gamma_{1}+\gamma_{2}$.

Example:

Assume that $\mathscr{F}(\boldsymbol{x})=\mathscr{E}(\boldsymbol{G} \boldsymbol{x})+\lambda\|D x\|^{2}$ where \mathscr{E} is differentiable with γ-Lipschitz continuous gradient $(\gamma$ known). Then,

$$
\nabla \mathscr{F}(\boldsymbol{x})=\boldsymbol{G}^{T} \nabla \mathscr{E}(\boldsymbol{G} \boldsymbol{x})+2 \lambda \boldsymbol{D}^{T} \boldsymbol{D} \boldsymbol{x}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{N}
$$

We have moreover

$$
\left\|\nabla \mathscr{F}(\boldsymbol{x})-\nabla \mathscr{F}\left(\boldsymbol{x}^{\prime}\right)\right\| \leq\left(\gamma\|\boldsymbol{G}\|^{2}+2 \lambda\|\boldsymbol{D}\|^{2}\right)\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|, \quad \forall\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N},
$$

and hence $\nabla \mathscr{F}$ is β-Lipschitz continuous, with $\beta \leq \gamma\|\boldsymbol{G}\|^{2}+2 \lambda\|\boldsymbol{D}\|^{2}$.

Computing Operator Norms

Computing the operator norm $\|\boldsymbol{K}\|_{2}$ of the linear operator $K: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ amounts to finding its largest singular value. Performing this computation via a full SVD is wasteful and expensive: the full spectrum is computed when only the leading singular value is needed.

Instead, it is recommended to use the routine scipy. linalg. svds ($)^{5}$ which is capable of computing only the leading (or more generally k leading) singular values.

This routine is moreover matrix-free: the operator K needs not be stored as an array, but can be an instance of the abstract class scipy.sparse.linalg. LinearOperator with methods matvec() and rmatvec () for matrix/vector products $\boldsymbol{K} \boldsymbol{x}$ and $\boldsymbol{K}^{T} \boldsymbol{x}$ respectively. This is particularly useful when N and M are very large (e.g. in computational imaging) and \boldsymbol{K} cannot be stored in memory as a Numpy array.

[^3]
Example of a Matrix-Free Linear Operator

from scipy.sparse.linalg import LinearOperator
 self.mask = np.asarray (mask).reshape (-1). astype (bool)
self.in_size = size
self.out_size = self.mask[self.mask == True]. size super (Masking, self).__init__ (shape=(self.out_size, self.in_size), \} dtype=dtype)
def matvec(self, $x: n p . n d a r r a y) ~->~ n p . n d a r r a y: ~$ return $x[$ self.mask]
def rmatvec(self, y: np.ndarray) -> np. ndarray:
$x=n p . z e r o s($ shape $=$ self.in_size, dtype=self.dtype) / 1 x [self.mask] $=\mathrm{y}$ return x

Example 1: TV-Penalised Basis Pursuit

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|y-G x\|_{2}^{2}+\lambda\|D x\|_{1} \\
& \tilde{H}^{\sim}(x)=\frac{1}{2}\|y-G x\|_{2}^{2}, \nabla \mathcal{F}(x)=G^{\top}(G x-y) \quad \beta=\left\|G^{\top} G\right\|_{2}=\|G\|_{2}^{2} \\
& G(x)=0 ; \quad \mathcal{H}(x)=\lambda\|x\|_{1} \quad K=D \in \mathbb{R}^{2 N \times N} \\
& \operatorname{prox}_{\text {cyp }}(x)=\operatorname{sof}_{c}(x) \leftarrow \\
& \operatorname{prox}_{\sigma \sim P^{*}}(x)=x-\sigma \operatorname{prox}_{\partial / / \sigma}(x) \leftarrow x \\
& \left(x_{0}, z_{0}\right) \\
& \tilde{x}_{n}=x_{n-1}-z G^{\top}\left(G x_{n-1}-y\right)-z D^{\top} z_{n-1} \\
& \tilde{z}_{n}^{\prime}=\frac{p_{1-1}}{\operatorname{proxpsex}^{2}}\left(z_{n-1}+D\left(2 \tilde{x}_{n}-x_{n-1}\right)\right)> \\
& \begin{array}{lll}
x_{n}=\rho \tilde{x}_{n}+(1-\rho) x_{n} \\
z_{n}^{n n}=\rho 2_{n}^{n}+(1-\rho) z_{n}
\end{array} \quad \rho=0,4 \quad \quad B \in J C, 1[
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example 1: TV-Penalised Basis Pursuit } \quad \beta=\|G\|_{2}^{2} \\
& \underset{\tilde{H}(x)=0}{z=\sigma}=\frac{1}{\|D\|_{2}^{2}}\left(-\frac{\|G\|_{2}^{2}}{4}+\sqrt{\frac{\|G\|_{2}^{4}}{16}+\|D\|_{2}^{2}}\right) \\
& \mathscr{C}_{f}(x)=\frac{1}{2}\|y-G x\|_{2}^{2} \rightarrow \operatorname{prox}_{r g_{g}}(2)=\operatorname{argmin} \frac{1}{2}\|y-G\|_{2}^{2}+\frac{1}{2} \frac{12-x)}{}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{z}_{n}=\operatorname{prox}_{\sigma H H^{*}}\left(z_{n}+\sigma D\left(2 \tilde{x}_{n}-x_{n-1}\right)\right) \\
& \hat{x}_{n}=\rho \tilde{x}_{n}+(1-\rho) x_{n-1} \\
& z h=\rho \tilde{z_{n}}+(\eta-p) z_{n-1}
\end{aligned}
$$

E Example 2: Tikhonov-Penalised Least Absolute Deviation

$$
\begin{aligned}
& \varphi_{f}(x)=0 \quad \min _{\substack{x \in \mathbb{N}} y-G x\left\|_{1}+\frac{\lambda}{2}\right\| D x \|_{2}^{2}}^{\mathbb{L}} D: \mathbb{R}^{N} \rightarrow \mathbb{R}^{2 N} \text { (image) } \\
& \text { (image) } \\
& \mathcal{F}^{2}(x)=\frac{d}{2}\|D x\|_{2}^{2} \rightarrow \nabla \tilde{H}(x)=\lambda D^{\top} D x \rightarrow \beta=\lambda\|D\|_{2}^{2} \\
& M(z)=\|y-z\|_{1} \quad \forall z \in \mathbb{R}^{L}, \quad K=G \in \mathbb{R}^{L \times N}
\end{aligned}
$$

Example 2: Tikhonov-Penalised Least Absolute Deviation

$$
\left.\begin{array}{rl}
\beta= & \lambda\|D\|_{2}^{2} \\
\sigma=2 & =\frac{1}{\|K\|_{2}^{2}}\left(-\frac{\beta}{4}+\sqrt{\frac{\beta^{2}}{16}+\|K\|_{2}^{2}}\right) \\
& =\frac{1}{\|G\|_{2}^{2}}\left(-\frac{\lambda\|D\|_{2}^{2}}{2}+\sqrt{\frac{\lambda^{2}\|D\|_{2}^{4}}{16}+\|6\|_{2}^{2}}\right)^{39} \\
\rho \in I 0,1[\rightarrow \rho=0,4 \\
\delta=1
\end{array}\right) \rightarrow \rho
$$

$$
\begin{aligned}
& \text { Example 3: KL-Divergence + TV } \\
& \underset{\substack{\min _{x \in \mathbb{R}^{2}} D_{K L}(y)\|(x)+\lambda\| D x \|_{1}}}{\longrightarrow} D: \mathbb{R}^{N} \rightarrow \mathbb{R}^{2 N} \\
& \begin{array}{l}
\rightarrow \tilde{H}=0 \\
\rightarrow G=0
\end{array} \quad \mathcal{H}(z, u): \quad\left\{\begin{array}{l}
\mathbb{R}^{L} \times \mathbb{R}^{2 N} \\
(z, u) \mapsto D_{K L}(y \| z)+\lambda\|u\|_{1}
\end{array}\right. \\
& K:\left\{\begin{array}{l}
\mathbb{R}^{N} \longmapsto \mathbb{R}^{2} \times \mathbb{R}^{2 N} \\
x \longmapsto(G x, D x)
\end{array}\right. \\
& \mathscr{H}\left(K^{\prime} x\right)=M\left(G_{x}, D_{x}\right)=D_{K L}\left(y \| G_{x}\right)+\lambda\left\|D_{x}\right\|_{1}
\end{aligned}
$$

-1 Example 3: KL-Divergence + TV $\underbrace{H P(z, u)}=\underbrace{+}_{L_{k L}\left(y \|_{\uparrow}\right)} \underbrace{\lambda\|u\|_{1}}_{\uparrow}$

$$
\begin{aligned}
& \text { Pfox } 2 \mathrm{H}^{\alpha} \\
& \operatorname{PDS}\left\{\begin{array}{l}
\left(z_{0}, a_{0}\right) \\
\tilde{x}_{n}=x_{n-1}-\underbrace{K^{\top}\left(z_{n} u_{n}\right)}_{-G^{\top} z_{n-1}-D^{\top} a_{n-1}}=\binom{G^{\top}}{D^{\top}} \\
+\tilde{z}_{n-1}=\operatorname{prox} \sigma H_{n}^{*}\left(z_{n-1}+\operatorname{tog}\left(2 \tilde{x}_{n}-x_{n-1}\right)\right) \\
\widetilde{u_{n-1}}=\operatorname{prox}
\end{array}\right. \\
& (2, a) \\
& =\operatorname{prox}_{\sigma} y_{H_{2}}=\left(u_{n-1}+\sigma D\left(2 \tilde{x}_{n}-x_{n-1}\right)\right)
\end{aligned}
$$

Effect of Regularisation Operator (Tikhonov)

(a) Data

(b) $D=\nabla$

(c) $\boldsymbol{D}=\boldsymbol{\Delta}$

$$
\min _{\boldsymbol{x} \in \mathbb{R}_{+}^{N}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}\|_{2}^{2}+\frac{\lambda}{2}\|\boldsymbol{D} \boldsymbol{x}\|_{2}^{2}
$$

Effect of Regularisation Operator (TV)

(d) Data

(e) $\boldsymbol{D}=\nabla$

(f) $D=\Delta$

$$
\min _{\boldsymbol{x} \in \mathbb{R}_{+}^{N}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{G} \boldsymbol{x}\|_{2}^{2}+\lambda\|\boldsymbol{D} \boldsymbol{x}\|_{1}
$$

References I

[1] Harshit Gupta, Julien Fageot, and Michael Unser.
Continuous-domain solutions of linear inverse problems with tikhonov versus generalized tv regularization.
IEEE Transactions on Signal Processing, 66(17):4670-4684, 2018.
[2] Neal Parikh and Stephen Boyd.
Proximal algorithms.
Foundations and Trends in optimization, 1(3):127-239, 2014.
[3] Brendan O'donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715-732, 2015.
[4] Jingwei Liang, Jalal Fadili, and Gabriel Peyré.
Activity identification and local linear convergence of forward-backward-type methods.
SIAM Journal on Optimization, 27(1):408-437, 2017.
[5] Jingwei Liang and Carola-Bibiane Schönlieb. Improving fista: Faster, smarter and greedier. arXiv preprint arXiv:1811.01430, 2018.

References II

[6] Amir Beck and Marc Teboulle.
A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009.
[7] Laurent Condat.
A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms.
Journal of Optimization Theory and Applications, 158(2):460-479, 2013.

[^0]: ${ }^{1}$ Typically chosen as indicator functions of regular rectangular tiles of \mathbb{R}^{d} called pixels.

[^1]: ${ }^{2}$ Note that the unknown signal $f: \mathbb{R} \rightarrow \mathbb{R}$ in (1) is a function and not a discrete vector anymore.

[^2]: ${ }^{3}$ Assuming that the solution set is non empty.

[^3]: ${ }^{5}$ Or its companion routines scipy.linalg.eigs(), scipy.linalg.eigsh() for square/Hermitian matrices respectively

