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Introduction
Most real-life approximation problems can be formulated as inverse problems:

Inverse Problem

Consider an unknown signal f 2L 2
≥
Rd

¥
and assume that the latter is probed by some sensing device,

resulting in a data vector y = [y1, . . . ,yL] 2RL of L measurements. Recovering f from the data vector y is
called an inverse problem.

We make the following assumptions:

�. To account for sensing inaccuracies, the data vector y is assumed to be the outcome of a random
vector Y = [Y1, . . . ,YL] :≠!RL, �uctuating according to some noise distribution. The entries of
E[Y ] = ỹ are called the ideal measurements –these are the measurements that would be obtained in
the absence of noise.

�. The measurements are assumed unbiased and linear, i.e. E[Y ] =©§f =
£≠

f ,'1
Æ

, . . . ,
≠

f ,'L
Æ§

, for some
sampling functionals {'1, . . . ,'L} ΩL 2

≥
Rd

¥
, modelling the acquisition system.
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Common Sampling Functionals

Common Sampling Functionals

• Spatial Sampling:
ỹi = f (xi) =

R
Rd f (x)±(x°xi)dx ! 'i(x) = ±(x°xi), xi 2Rd .

• Fourier Sampling:
ỹi1 =

R
Rd f (x)cos

°≠
x,!i

Æ¢
dx ! 'i1(x) = cos

°≠
x,!i

Æ¢
, !i 2Rd .

ỹi2 =
R
Rd f (x)sin

°≠
x,!i

Æ¢
dx ! 'i2(x) = sin

°≠
x,!i

Æ¢
, !i 2Rd .

• Radon Sampling:
ỹi = f̌ (pi,ªi) =

R
Rd f (x)±

°
pi °

≠
x,ªi

Æ¢
dx ! 'i(x) = ±

°
pi °

≠
x,ªi

Æ¢
, pi > 0, ªi 2SN°1.

• Filtering:
ỹi =

©
f §'

™
(xi) =

R
Rd '(xi °x)f (x)dx ! 'i(x) ='(xi °x), xi 2Rd , ' :Rd !R.

• Mean-Pooling:

ỹi = 1
|≠i|

R
≠i

f (x)dx ! 'i(x) = 1
|≠i|¬≠i (x) :=

(
|≠i|°1 ifx 2≠i

0 otherwise
, ≠i ΩRd .
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Example: Deblurring
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Example: Inpainting
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Example: Unpooling
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Gaussian White Noise
Assume that sensor inaccuracies are independent and result from the sum of many independent per-
turbations. Then, from the central limit theorem, sensor inaccuracies can be modelled as independent
realisations of an additive Gaussian white noise:

Yi = ỹi +Ni, where Ni
i.i.d.ª N

≥
0,æ2

¥
, pN (x) = 1

æ
p

2º
exp

√
° x2

2æ2

!
, x 2R,

where pN is the noise probability density function. Notice that we have indeed E[Yi] = ỹi for each i = 1, . . . ,L.
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Laplacian/Salt-and-pepper White Noise
Assume that sensor inaccuracies are independent andpresent strong outliers (for example due tomalfunc-
tioning sensors). Then, sensor inaccuracies can be modelled as independent realisations of an additive
Laplacian white noise, also called salt-and-pepper noise:

Yi = ỹi +Ni, where Ni
i.i.d.ª Laplace (0,æ) , pN (x) = 1

2æ
exp

µ
° |x|
æ

∂
, x 2R,

where pN is the noise probability density function. Notice that we have indeed E[Yi] = ỹi for each i = 1, . . . ,L.
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Uniform/Quantisation White Noise
Assume that sensor inaccuracies are independent and primarily caused by quantisation artefacts –i.e.
round-off errors incurred by storing digits with �nite precision. Then, sensor inaccuracies can bemodelled
as independent realisations of an additive uniform white noise, also called quantisation noise:

Yi = ỹi +Ni, where Ni
i.i.d.ª U

≥
°æ

2
,
æ

2

¥
, pN (x) =

(
1/æ if x 2 [°æ/2,æ/2]

0 if x › [°æ/2,æ/2].
,

where pN is the noise probability density function. Notice that we have indeed E[Yi] = ỹi for each i = 1, . . . ,L.
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Poisson/Shot Noise
Assume that the measurements are independent and originate from a counting process –i.e. Y :≠!2NL.
Then, sensor inaccuracies can be modelled as independent realisations of a non additive Poisson noise,
also called shot noise:

Yi
indª Poisson

°
ỹi

¢
, pYi (k) =

ỹk
i e°ỹi

k!
, 8k 2N,

where pYi is the probability density function for the ith measurement. Using properties from the Poisson
distribution, we can indeed show that E[Yi] = ỹi for each i = 1, . . . ,L.
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Real-Life Examples: Meteorology, Forestry, Astronomy...

https://matthieumeo.github.io/
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Pixelisation
Since the numberofmeasurements is �nite, it is reasonable to constrain the signal f to be �nite-dimensional:�

f =
NX

n=1
Æn√n =™Æ, Æ= [Æ1, . . . ,ÆN ] 2RN (�)

for some suitable basis functions {√n, n = 1, . . . ,N} ΩL 2(Rd). Typically, the basis functions are chosen as
indicator functions of regular rectangular tiles of Rd called pixels. For example:

√n(x) =
(

1 ifx 2 [c1 + (n°1)h1,c1 +nh1]£ · · ·£
£
cd + (n°1)hd ,cd +nhd

§
,

0 otherwise,

where c = [c1, . . . ,cd] are the coordinates of the lower-left cornerof the �rst pixel, and {h1, . . . ,hd} are the sizes
of the pixels across each dimension. The parametric signal f in (�) is then a piecewise constant signal
than can be stored/manipulated/displayed ef�ciently via multi-dimensional array (hence the popularity
of pixel-based discretisation schemes).

�In�nite-dimensional signals may indeed have an in�nite number of degrees of freedom, which cannot hope to estimate from a �nite
number of measurements only.
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Pixelisation
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Discrete Inverse Problems
Assuming the parametric model (�) induces a discrete inverse problem:

Find Æ 2RN from the noisy measurements y  Y where E[Y ] =©§™Æ= GÆ.

The operator G :RN !RL is a rectangular matrix given by:�

RL£N 3 G =

2
664

≠
√1,'1

Æ
· · ·

≠
√N ,'1

Æ

...
. . .

...≠
√1,'L

Æ
· · ·

≠
√1,'L

Æ

3
775=

2
664

R
≠1

'1(x)dx · · ·
R
≠N

'1(x)dx
...

. . .
...R

≠1
'L(x)dx · · ·

R
≠N

'L(x)dx

3
775

' ¥

2
664

'1(ª1) · · · '1(ªN )
...

. . .
...

'L(ª1) · · · 'L(ªN )

3
775 ,

where ¥=¶d
k=1hk , and {≠n}n 2P (Rd) and {ªn}n ΩRd are the supports and centroids of each pixel, respec-

tively.

�The last approximate equality results from the midpoint rule.
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Inverse Problems are Ill-Posed
To solve the inverse problem one can approximate the mean E[Y ] by its one-sample empirical estimate y
and solve the linear problem:

y = GÆ. (�)
Unfortunately, (�) is in general ill-posed:

�. There may exist no solutions to (�). If N > L indeed (or more generally if G is not surjective),
R(G)(RN . Therefore the noisy data vector y is not guaranteed to belong to R(G).

�. There may exist more than one solution to (�). If N < L indeed (or more generally if G is not
injective), N (G) 6= {0}. Therefore, if Æ? is a solution to (�), then Æ?+Ø is also a solution 8Ø 2N (G):

G(Æ?+Ø) = GÆ?+GØ= GÆ? = y.

�. Solutions to (�) may be numerically unstable. If G is surjective for example, then G† = GT (GGT )°1

is a right-inverse of G and Æ?(y) = GT (GGT )°1y is a solution to (�). We have then

kÆ?(y)k2 ∑ kGk2k(GT G)°1k2 =
p
∏max(GT G)

∏min(GT G)| {z }
Can be very large!

kyk2, 8y 2RL.

The reconstruction linear map y 7!Æ?(y) can hence be virtually unbounded making it unstable.
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Inverse Problems are Unstable
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Regularising Inverse Problems

The linear system (�) is not only ill-posed but also non sensible: matching exactly the measurements is
not desirable since the latter are in practice corrupted by instrumental noise.
A more sensible approach consists instead in solving the inverse problem by means of a penalised
optimisation problem, confronting the physical evidence to the analyst’s a priori beliefs about the
solution (e.g. smoothness, sparsity) via a data-�delity and regularisation term, respectively:

min
Æ2RN

F(y,GÆ) + ∏R(Æ). (�)

The various quantities involved in (�) can be interpreted as follows:

• F :RL £RL !R+[ {+1} is a cost/data-�delity functional, measuring the discrepancy between the
observed and predicted measurements y and GÆ respectively.

• R :RN !R+[ {+1} is a regularisation/penalty functional favouring simple and well-behaved
solutions (typically with a �nite number of degrees of freedom).

• ∏> 0 is a regularisation/penalty parameter which controls the amount of regularisation by putting
the regularisation functional and the cost functional on a similar scale.
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Existence of Solutions
Theorem: (Existence of Solutions to (�))

Consider the following set of assumptions:
�. For all y 2RL, the univariate cost trace functionals

F(y, ·) :

(
RL !R+[ {+1}

z 7! F(y,z)

and the regularisation functional R :RN !R+[ {+1} are proper, convex and lower semi-continuous
(see Slide �� for a de�nition).

�. The objective functional of (�) is coercive, i.e. limkÆk2!+1 F(y,GÆ)+∏R(Æ) =+1.

Then, the solution set V = argminÆ2RN F(y,GÆ)+∏R(Æ), is non empty, convex and compact.�

The proof of this theorem can be deduced from [�, Proposition 8] (for reference only do not check it!).

�In �nite dimension, a compact set is a closed and bounded set.
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Proper, Convex, Lower Semi-Continuous Functional

De�nition: (Proper Convex Functional)

A function F :RN !R[ {°1,+1} is called convex if

8x,y 2RN , 8µ 2 [0,1] : F
°
µx+ (1°µ)y

¢
∑ µF(x)+ (1°µ)F(y), (�)

and strictly convex if the inequality in (�) is strict. If moreover, F(x) >°1 for all x 2RN and
D = {x 2RN : F(x) <+1} 6=;, then F is called a proper (strictly) convex function.�

De�nition: (Lower Semi-Continuity)

A function F :RN !R[ {°1,+1} is said lower semi-continuous (lwsc) at x0 2RN if for every y < F(x0)
there exists a neighborhood U ΩRN of x0 such that F(x) ∏ y, 8x 2 U.

�In short, a convex function is proper if its domain is nonempty and it never attains °1.
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Proper, Convex, Lower Semi-Continuous Functional

Example of Lower 
Semi-Continuous Function

Example of Strictly Convex, 
Convex, Concave and Non 

Convex Functions
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Unicity of Solutions

Theorem: (Unicity of Solutions)

Assume that F and R are as in Slide �� and that the objective functional J (Æ) := F(y,GÆ)+∏R(Æ) is
strictly convex. Then (�) admits a unique solution.

Proof: Assume that there exists at least two distinct solutions Æ1,Æ2 2 V . Then, by the strict convexity of
J , we have 8µ 2 [0,1]: J (µÆ1 + (1°µ)Æ2) < µJ (Æ1)+ (1°µ)J (Æ2), and hence Æ1,Æ2 do not minimise H

which is a contradiction.
Suf�cient conditions for the strict convexity of J are: F(y, ·) is strictly convex and G is injective, or R is
strictly convex. When J is not strictly convex we can still retain a weaker form of unicity:

Theorem: (Unicity of Predicted Measurements)

Assume that F and R are as in Slide �� and that F(y, ·) is strictly convex. Then there exists a unique
y? 2RL such that GÆ? = y?, 8Æ? 2 V = argminÆ2RN J (Æ), i.e. every solution yield the same predicted
measurements.
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� Proof (Unicity of Predicted Measurements)

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro

74 ,xzEUGxs--yyGxz--yzYpFY@IKt.Fly
, Ox) + d Rca)

= Fg (Ox) tt Rlx)

Fyl .) à strictly eux .

Ccrsèder xz-oxptd-pxe.EUconvers

④=

t-yloxstd-okdtdRCOxstl-dxdq.ru#oppOFYldtlO)Fylx2t-ÆÆ,
d (

ORklitl-GRKDF-ozcxdtl-GJ-gtfqmizudae.gs
8



��

Choosing the Cost Functional (Noiseless Case)
In a noiseless setup, one has full trust in the measurements. It is therefore natural to require that any
solution of (�) be consistent with the data at hand, i.e. y = GÆ8Æ 2 V . This can be achieved by choosing
the cost functional as F(y,GÆ) = ∂(y°GÆ), where ∂ :RL ! {0,+1} is the indicator function

∂(z) =
(

0 if z = 0,

+1 otherwise.
Problem (�) becomes then a generalised interpolation problem:

min
Æ2RN

∂(y°GÆ) + ∏R(Æ) = min
Æ2RN ,y=GÆ

R(Æ).

Penalised Problems with Strictly Convex Cost Functional are Interpolation Problems
Under the assumptions of the Theorem “Unicity of Predicted Measurements” on Slide �� we have that:

min
Æ2RN

F(y,GÆ) + ∏R(Æ) = min
Æ2RN ,y?=GÆ

R(Æ),

for some (unknown) y? 2RL. Hence, every penalised optimisation problem with strictly convex cost
functional is equivalent to a generalised interpolation problem.
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Choosing the Cost Functional (Noisy Case)
In a noisy setup, consistency is not desired anymore, as it almost always leads to over�tting the noisy
data. One approach consists then in using the negative log-likelihood of the data y as a measure of
discrepancy:

F(y,GÆ) =°`(Æ|y) =° logpY1,...,YL

°
y1, . . . ,yL|Æ

¢
.

When the noise distribution is not fully known or the likelihood too complex, one can also use general `p
cost functionals

F(y,GÆ) = ky°GÆkp
p =

LX

i=1

ØØØØØyi °
NX

n=1
GinÆn

ØØØØØ

p

,

where p 2 [1,+1] is typically chosen according to the tail behaviour of the noise distribution [�].

p=1 p=2 p=+∞

Gaussian-like 
distributions

Heavy-tailed 
distributions

Compact 
distributions

Anything in 
between
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Example: Cost Functional for Gaussian Noise
Assume the following multivariate Gaussian noise model:

Y = GÆ+N , where N dªNL (0,ß) , pN (y) = 1

|ß|1/2(2º)L/2
exp

µ
°1

2
yTß°1y

∂
, y 2RL.

Then we have:

F(y,GÆ) =°`(Æ|y) =° logpY
°
y|Æ

¢

=° log
µ

1

|ß|1/2(2º)L/2
exp

µ
°1

2
(y°GÆ)Tß°1(y°GÆ)

∂∂

= 1
2

∞∞∞ß°1/2(y°GÆ)
∞∞∞

2

2
+ 1

2
log |ß|+ L

2
log(2º)

| {z }
Independent ofÆ

/
∞∞∞ß°1/2(y°GÆ)

∞∞∞
2

2
.

This is the weighted least-squares functional. For white noise, we have ß=æ2IL and the cost functional
becomes proportional to ky°GÆk2

2, which is the regular least-squares functional.
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Example: Cost Functional for Laplacian Noise
Assume the following Laplacian white noise model:

Yi = (GÆ)i +Ni, where Ni
i.i.d.ª Laplace (0,æ) , pN (x) = 1

2æ
exp

µ
° |x|
æ

∂
, x 2R.

Then we have:

F(y,GÆ) =°`(Æ|y) =° logpY1,...,YL

°
y1, . . . ,yL|Æ

¢

=° log

√
1

(2æ)L

LY

i=1
exp

µ
° |yi ° (GÆ)i)|

æ

∂!

= 1
æ

LX

i=1
|yi ° (GÆ)i|+ L log(2æ)| {z }

Independent ofÆ

/
∞∞y°GÆ

∞∞
1 .

This is the least absolute deviations functional. It is less affected by outliers than the least-squares
functional. The weighted least absolute deviations functional can also be de�ned but cannot be
interpreted as the negative log-likelihood of a multivariate Laplacian distribution.
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Example: Cost Functional for Poisson Noise

Assume positive measurements Y :≠!RL
+ and the following Poisson noise model:

Yi
indª Poisson

°
(GÆ)i

¢
, pYi (k) =

(GÆ)k
i e°(GÆ)i

k!
, 8k 2N.

Then we have:

F(y,GÆ) =°`(Æ|y) =° logpY1,...,YL

°
y1, . . . ,yL|Æ

¢

=° log

√
LY

i=1

(GÆ)yi
i e°(GÆ)i

yi!

!

=
LX

i=1
(GÆ)i °yi log

°
(GÆ)i

¢
+ log(yi!)| {z }

Independent of Æ

/
LX

i=1
(GÆ)i °yi log

°
(GÆ)i

¢
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Example: Cost Functional for Poisson Noise (Continued)

/
LX

i=1
(GÆ)i °yi log

°
(GÆ)i

¢
+ yi log(yi)°yi| {z }

Can add anything independent ofÆ

=
LX

i=1
yi log

µ
yi

(GÆ)i

∂
+ (GÆ)i °yi

= DKL(y||GÆ),

where

DKL(y||z) =
LX

i=1
yi log

µ
yi
zi

∂
°yi +zi, 8y,z 2RL

+, (�)

is the generalised Kullback-Leibler (KL) divergence [�] for discrete positive vectors which do not
necessarily sum to one. In information theory, and in the case where 1T z = 1T y = 1,� the KL-divergence (�)
can be interpreted as the relative entropy of y with respect to z, i.e. the amount of information lost when
using z to approximate y. Note that the KL-divergence is not a distance (no symmetry/subadditivity).

�so that z and y can be interpreted as discrete probability distributions
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Real-Life Example: Wild Fires

https://matthieumeo.github.io/fire_density.html
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Choosing the Regularisation Functional

The regularisation functional is used to favour physically-admissible solutions with simple behaviours. It
can be interpreted as implementing Occam’s razor principle:

Occam’s Razor Principle (Lex parsimoniae)

Occam’s razor principle is a philosophical principle also known as the “law of briefness” or in Latin “lex
parsimoniae”. It was supposedly formulated by William of Ockham in the ��th century, who wrote in
Latin “Entia non sunt multiplicanda praeter necessitatem”. In English, this translates to “More things
should not be used than are necessary”.

In essence, this principle states that when two equally good explanations for a given phenomenon are
available, one should always favour the simplest, i.e. the one that introduces the least explanatory
variables.
What exactly is meant by “simple” solutions will depend on the speci�c application at hand.
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(generalised) Tikhonov Regularisation

A common regularisation strategy consists in penalising the squared `2-norm of the solutions, i.e.

R(Æ) = kÆk2
2, Æ 2RN . (6)

This strategy is called Tikhonov regularisation and tends to favour smooth solutions. Different notions of
smoothness can be achieved by introducing a positive semi-de�nite �nite-difference differential operator
D 2RN£N in (6), yielding a generalised Tikhonov regularisation:

R(Æ) = kDÆk2
2, Æ 2RN . (�)

The Tikhonov functional (6) is strictly convex, hence yielding unique solutions when used in conjunction
with a convex cost functional. The generalised Tikhonov functional (�) is strictly convex if D is injective
and simply convex otherwise. In the latter case, solutions to (�) exist ifN (G)\N (D) = {0} and F is coercive
but are in general non unique.6

6A suf�cient condition for uniqueness is that F is proper strictly convex.
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Form of Solutions with generalised Tikhonov Regularisation

Representer Theorem: (generalised Tikhonov Regularisation)

Assume that:
�. G 2RL£N is surjective (i.e. full row rank), D is positive semi-de�nite and N (G)\N (D) = {0}.
�. F(y, ·) :RL !R+ is proper strictly convex, coercive and lower semi-continuous for every y 2RL.

Then the optimisation problem:
min
Æ2RN

F(y,GÆ) + ∏kDÆk2
2

admits a unique solution which can be written as

Æ? =
≥
DT D

¥†
GTØ?+∞?,

for some Ø? 2RL and ∞? 2N (G).

When D = IN (standard Tikhonov regularisation) of D is invertible then the theorem holds for F proper
convex and lwsc and we get Æ? =

°
DT D

¢°1 GTØ? this case is discussed in [�, Corollary �]).
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� Ridge Estimate

min
Æ2RN

1
2
ky°GÆk2

2 + ∏

2
kÆk2

2.
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� Stability of Ridge Estimate
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`1/TV Regularisation
A common regularisation strategy consists in penalising the `1-norm of the solutions, i.e.

R(Æ) = kÆk1, Æ 2RN . (8)
This strategy tends to favour sparse solutions with only a few non zero coef�cients. Different notions
of sparsity can be achieved by introducing a positive semi-de�nite �nite-difference differential operator
D 2RN£N in (8), yielding a total variation (TV) regularisation:

R(Æ) = kDÆk1, Æ 2RN . (�)
The `1 and TV functionals are convex. Solutions to (�) exist if N (G)\N (D) = {0} and F is coercive but
are in general non unique.�

Examples:

• LASSO/Penalised Basis Pursuit: minÆ2RN
1
2ky°GÆk2

2 + ∏kÆk1.

• Generalised LASSO: minÆ2RN
1
2ky°GÆk2

2 + ∏kDÆk1.

�Suf�cient conditions for uniqueness are: G is injective and F is strictly convex.

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



��

Form of Solutions with TV Regularisation

Representer Theorem I: (TV Regularisation)

Assume that:
�. G 2RL£N is invertible, D is positive semi-de�nite.
�. F(y, ·) :RL !R+ is proper strictly convex, coercive and lower semi-continuous for every y 2RL.

Then the optimisation problem:

V = argmin
Æ2RN

F(y,GÆ) + ∏kDÆk1

admits a unique solution of the form:
Æ? = D†Ø?K +∞?,

for some K -sparse vector Ø?K 2RN , K ∑ L and ∞? 2N (G).

When D = IN (`1 regularisation) or D is invertible then the theorem holds for F proper strictly convex and
lwsc (no coercivity needed) and we have Æ? = D°1Ø?K .
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Form of Solutions with TV Regularisation

Representer Theorem II: (TV Regularisation)

Assume that:
�. G 2RL£N is surjective (i.e. full row rank), D is positive semi-de�nite and N (G)\N (D) = {0}.
�. F(y, ·) :RL !R+ is proper convex, coercive and lower semi-continuous for every y 2RL.

Then the solution set:
V = argmin

Æ2RN
F(y,GÆ) + ∏kDÆk1

is non empty, compact and the convex-hull of extreme point solutions of the form:

Æ? = D†Ø?K +∞?,

for some K -sparse vector Ø?K 2RN , K ∑ L and ∞? 2N (G).

When D = IN (`1 regularisation) or D is invertible then the theorem holds for F proper convex and lwsc
(no coercivity needed) and we have Æ? = D°1Ø?K (this case is discussed in [�, Corollary 8]).

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro

•



��

Solution Set is the Convex-Hull of Sparse Extreme Points

De�niton: (Extreme Point)

Let V be a convex set. An extreme point v 2 V

is a point such that

ÿ(w,∫) 2 V
2, µ 2]0,1[: v = µw+ (1°µ)∫.

In plain words, v is a point in V which does not
lie in any open line segment joining two points
of V .
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� Example: Finite Difference Operator in R3£3

D =

2
4

1 0 0
°1 1 0
0 °1 1

3
5
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Real-Life Example: Sea Surface Temperatures

https://matthieumeo.github.io/tikhonov_vs_tv_en.html
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Maximum Entropy Regularisation

The maximum entropy regularisation strategy considers the following regularisation functional:

R(Æ) =
NX

n=1
Æi log(Æi), Æ 2RN

+ . (��)

When 1TÆ= 1 this si the negative Shannon entropy [�, 6] of Æ, a mathematical generalisation of entropy
as introduced by Boltzmann in thermodynamics. It favours positive, featureless solutions which: smooth
vectors indeed carry much less information than vectors with sharp, localised features, and hence have
higher entropy.

This regularisation can be generalised by considering the negative relative entropy w.r.t. a reference
discrete distribution ¥ 2RN

+ :

R(Æ) =
NX

n=1
Æi log

µ
Æi
¥i

∂
, Æ 2RN

+ . (��)

The functional (��) favours solutions with similar features as the reference distribution ¥. Both functionals
(��) and (��) are strictly convex and coercive, hence yielding unique solutions when they exist.
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Form of Solutions with Maximum Entropy Interpolation

Representer Theorem: (Maximum Entropy Interpolation)

Consider the generalised interpolation problem:

min
Æ2RN

y=GÆ

NX

n=1
Æi log(Æi), (��)

for some y 2RL. If (��) admits a solution, the latter is unique and can be written as [�]:

Æ? = ∞exp
≥
GTØ?

¥
,

for some ∞> 0 and Ø? 2RL.

The nonlinear exponential map kills low intensity features and boosts prominent ones.
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Nonnegativity Regularisation
The nonnegativity regularisation strategy considers the following regularisation functional:

R(Æ) =
(

0 if Æ 2RN
+ ,

+1 otherwise.
(��)

It constrains the solutions to be positive. This functional is convex and non coercive.

The functional (��) is sometimes replaced by the log-barrier functional (convex and non coercive):

R(Æ) =°
NX

n=1
log

°
Æi

¢
, Æ 2RN

+ ,

which also promotes positive solutions.

Nonnegative Least-Squares (NNLS):

min
Æ2RN

+

1
2
ky°GÆk2

2.
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Form of Solutions with Nonnegativity Constraints

Representer Theorem: (Nonnegativity Constraints)

Assume that:
�. G 2RL£N is injective.
�. F(y, ·) :RL !R+ is proper strictly convex, coercive and lower semi-continuous for every y 2RL.

Then the optimisation problem:
min
Æ2RN

+
F(y,GÆ)

admits a unique L-sparse solution.

The proof to this Theorem follows from [8, Proposition �.�].
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Bayesian Interpretation
In certain cases, the penalised optimisation problem (�) can be interpreted as a maximum a posteriori
(MAP) problem. Adopting a Bayesian view, assume for example a Gaussian a priori distribution for Æ and
a Gaussian likelihood function (i.e. a Gaussian white noise model):

p(Æ) / exp
µ
° 1

2ª2 kÆk
2
2

∂
, p(y|Æ) / exp

µ
° 1

2æ2 ky°GÆk2
2

∂
. (��)

From Baye’s theorem, the posterior distribution of Æ knowing the data y is then given by

p(Æ|y) = p(y|Æ)p(Æ)R
RN p(y|Æ)p(Æ)dÆ

. (��)

A maximum a posteriori (MAP) estimate is then de�ned as

Æ?MAP 2 argmax
Æ2RN

p(Æ|y) = argmax
Æ2RN

p(y|Æ)p(Æ) = argmax
Æ2RN

L(Æ|y)p(Æ) = argmin
Æ2RN

°`(Æ|y)° log(p(Æ)).

For the prior distribution and likelihood assumed in (��) this yields:

Æ?MAP 2 argmin
1

2æ2 ky°GÆk2
2 +

1

2ª2 kÆk
2
2 = argmin

1
2
ky°GÆk2

2 +
∏

2
kÆk2

2, with ∏= æ2

ª2 . (�6)

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



��

Bayesian Interpretation (continued)

We recognise in (�6) the Ridge estimate (see Slide ��), obtained when choosing a least-squares cost
functional and a Tikhonov penalty in (�). Notice moreover that the regularisation parameter ∏ is equal to
the ratio of the likelihood and prior variances.

Note that the prior distribution can be improper (i.e. not summable) as long as
R
RN p(y|Æ)p(Æ)dÆ<+1 so

that (��) is still well-de�ned.

This allows us to extend the previous analysis to many classical optimisation problems:

Example: (Penalised Optimisation Pbs as MAP)

• Weighted Least-Squares with Generalised Tikhonov (minÆ2RN
1
2kß

°1/2(y°GÆ)k2
2 +

1
2kDÆk2

2):
p(Æ) / exp

≥
° 1

2Æ
T DT DÆ

¥
, p(y|Æ) / exp

≥
° 1

2 (y°GÆ)Tß°1(y°GÆ)
¥

, ∏= 1.

• Least Absolute Deviations with Tikhonov (minÆ2RN ky°GÆk1 + ∏
2 kÆk

2
2):

p(Æ) / exp
≥
° 1

2ª2 kÆk2
2

¥
, p(y|Æ) / exp

≥
° 1
æky°GÆk1

¥
, ∏= æ

ª2 .
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Bayesian Interpretation (continued)

Example: (Penalised Optimisation Pbs as MAP)

• LASSO (minÆ2RN
1
2ky°GÆk2

2 +∏kÆk1):
p(Æ) / exp

≥
° 1
ª kÆk1

¥
, p(y|Æ) / exp

≥
° 1

2æ2 ky°GÆk2
2

¥
, ∏= æ2

ª .

• Generalised LASSO (minÆ2RN
1
2ky°GÆk2

2 +∏kDÆk1):
p(Æ) / exp(°kDÆk1) , p(y|Æ) / exp

≥
° 1

2æ2 ky°GÆk2
2

¥
, ∏=æ2.

• Least-squares with Maximum Entropy (minÆ2RN
1
2k(y°GÆ)k2

2 +∏
PN

n=1Æn log(Æn)):
p(Æ) / exp

°
°PN

n=1Æn log(Æn)
¢

, p(y|Æ) / exp
≥
° 1

2æ2 ky°GÆ)k2
2

¥
, ∏=æ2.

• Nonnegative Least-Squares (minÆ2RN
+
ky°GÆk2):

p(Æ) / exp
≥
°∂RN

+
(Æ)

¥
, p(y|Æ) / exp

≥
° 1

2æ2 ky°GÆk2
2

¥
.

• KL-Divergence with Tikhonov (minÆ2RN DKL(y||GÆ)+ ∏
2 kÆk

2
2):

p(Æ) / exp(° 1
2ª2 kÆk2

2), p(y|Æ) / exp
°
°DKL(y||GÆ)

¢
, ∏= 1

ª2 .
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