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Introduction

Most real-life approximation problems can be formulated as inverse problems:

Inverse Problem

Consider an unknown signal f € .22 [Rd] and assume that the latter is probed by some sensing device,

resulting in a data vector y= [y1,...,yr] € RL of L measurements. Recovering f from the data vector y is
called an inverse problem.

We make the following assumptions:

1. To account for sensing inaccuracies, the data vector y is assumed to be the outcome of a random
vector Y = [V7,..., 7] : Q — RE, fluctuating according to some noise distribution. The entries of
E[Y] =y are called the ideal measurements —these are the measurements that would be obtained in
the absence of noise.

2. The measurements are assumed unbiased and linear, i.e. E[Y] = ®*f = [{f,¢1),...,{f,¢L)], for some

sampling functionals {¢1,...,¢1} c .£? (Rd), modelling the acquisition system.



Common Sampling Functionals

Common Sampling Functionals

« Spatial Sampling:
Ji=f@x) = fpaf@O(x-x)dx — @ix)=8(x-x), x;€R%
« Fourier Sampling:
¥i1 = Jgaf@cos((x,w;))dx  — @) =cos((x,w;)), w;€ R4,
Vio = Jgaf@)sin((x,w;))dx  —  @p@) =sin((x,0;)), ;€ RY.
« Radon Sampling:
Hi=F i) = fpaf @3 (pi=(xé))dx  — 90 =0(pi— (%)), pi>0,&eSN
Filtering:
Ji={f o} @) = [papxi—0f@dx — @) =px;—-x), x€ RY, ¢ :RY —R.
« Mean-Pooling:

Ji= g Jo,f@dx — wi(x)=|wli|m,-(x)::{

Q17! ifxeQ;

., Q;c R4,
0 otherwise



I Example: Deblurring




I Example: Inpainting




I Example: Unpooling




Gaussian White Noise

Assume that sensor inaccuracies are independent and result from the sum of many independent per-
turbations. Then, from the central limit theorem, sensor inaccuracies can be modelled as independent
realisations of an additive Gaussian white noise:
Y;=3;+N;, where N;"% .#(0,62), W)= ——exp|-—|, xeR,
i= Vit N i ( J PN ovon p 202

where py is the noise probability density function. Notice that we have indeed E[Y;] = j; foreach i=1,..., L.
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Laplacian/Salt-and-pepper White Noise

Assume that sensorinaccuracies are independent and present strong outliers (for example due to malfunc-
tioning sensors). Then, sensor inaccuracies can be modelled as independent realisations of an additive
Laplacian white noise, also called salt-and-pepper noise:

s iiid. 1 | x|
Y;=3;+N;, where N; ~ Laplace(0,0), pn(x) = 25 P\~ xE R,
(o) o
where py is the noise probability density function. Notice that we have indeed E[Y;] = j; foreach i=1,..., L.
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Uniform/Quantisation White Noise

Assume that sensor inaccuracies are independent and primarily caused by quantisation artefacts —i.e.
round-off errors incurred by storing digits with finite precision. Then, sensor inaccuracies can be modelled
as independent realisations of an additive uniform white noise, also called quantisation noise:

iid. [ g g) () = /o ifxe[-0/2,0/2]
272 ) 'N

Y;=y;+N;, where N; ~ U
=y ! 0 ifx¢[-0/2,0/2]

»

where py is the noise probability density function. Notice that we have indeed E[Y;] = j; foreach i=1,...,L.
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Poisson/Shot Noise

Assume that the measurements are independent and originate from a counting process —i.e. ¥: Q —e N,
Then, sensor inaccuracies can be modelled as independent realisations of a non additive Poisson noise,

also called shot noise:
) 7k o= Vi
ind_. - yie
Y; ~ Poisson(7;), py,(k) = I VkeN,
where py. is the probability density function for the ith measurement. Using properties from the Poisson
distribution, we can indeed show that E[Y;] =j; foreach i=1,..., L.
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Real-Life Examples: Meteorology, Forestry, Astronomy...

’l
& -
- ’
- - ¢

Weather Forests -\’ Fires ® Stars

-
A

https://matthieumeo.github.io/




Pixelisation

Since the number of measurements is finite, it is reasonable to constrain the signal f to be finite-dimensional:

N
=Y awp=Ya, a=[ay,...,an]eRY 1)
n=1

for some suitable basis functions {y,,, n=1,..., N} ¢ Z2®%). Typically, the basis functions are chosen as
indicator functions of regular rectangular tiles of R called pixels. For example:

1 ifxele+(n—Dhy,c+nl x-x [cg+ (n—Dhg,cg+ nhy|,

Vnx) = {0 otherwise,

where ¢ = [cy,..., ¢4] are the coordinates of the lower-left corner of the first pixel,and {h, ..., h;} are the sizes
of the pixels across each dimension. The parametric signal f in (1) is then a piecewise constant signal
than can be stored/manipulated/displayed efficiently via multi-dimensional array (hence the popularity
of pixel-based discretisation schemes).

Tinfinite-dimensional signals may indeed have an infinite number of degrees of freedom, which cannot hope to estimate from a finite
number of measurements only.



Pixelisation

Pixel

N
fay) =3 anthu(,y)

ha
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Discrete Inverse Problems
Assuming the parametric model (1) induces a discrete inverse problem:
Find a e RN from the noisy measurements y «~~ Y where E[Y] = ®* VY a = Ga.

The operator G: RN — RL is a rectangular matrix given by:2

(vi,01) - (wnoo1) Jo,pr@dx - o @1(x)dx
RN 5 6= : .. : = : - :
(vioL) - (v10L) Jo, pr@dx - [o @r(x)dx
@1&1) - 1N
=1 : : .
@r&) - eriN)

where = szlhk, and {Q,}n € 2(RY and {£,,}, < RY are the supports and centroids of each pixel, respec-
tively.

2The last approximate equality results from the midpoint rule.



Inverse Problems are lll-Posed

To solve the inverse problem one can approximate the mean E[Y] by its one-sample empirical estimate y
and solve the linear problem:
y=Ga. 2
Unfortunately, (2) is in general ill-posed:
1. There may exist no solutions to (2). If N& indeed (or more generally if G is not surjective),
2(G) CRN. Therefore the noisy data vector y is not guaranteed to belong to %(G).
2. There may exist more than one solution to (2). If N% L indeed (or more generally if G is not
injective), 4 (G) # {0}. Therefore, if a* is a solution to (2), then a* + g is also a solution VB € A4 (G):
Ga*+p)=Ga* +GB=Ga* =y.

3. Solutions to (2) may be numerically unstable. If G is surjective for example, then G' = GT(GGT)~1
is a right-inverse of Gand a*(y) = GT (GGT)"'y s a solution to (2). We have then

\:ah

_ V Amax(GTG)

la* Wz <1626 G s "= |ylo,  VyeRh
Amin(G” G)

N————
Can be very large!

The reconstruction linear map y— a* (y) can hence be virtually unbounded making it unstable.



Inverse Problems are Unstable

Noise fluctuations

Inversion

e G a
Data Space Solution Space

Small perturbations on the data
affect greatly the solution!



Regularising Inverse Problems

The linear system (2) is not only ill-posed but also non sensible: matching exactly the measurements is
not desirable since the latter are in practice corrupted by instrumental noise.

A more sensible approach consists instead in solving the inverse problem by means of a penalised
optimisation problem, confronting the physical evidence to the analyst's a priori beliefs about the
solution (e.g. smoothness, sparsity) via a data-fidelity and regularisation term, respectively:

min F(y,Ga) + AZ(a). (3)
acRN

The various quantities involved in (3) can be interpreted as follows:

o F:RLxRL >R, U{+oolisa cost/data-fidelity functional, measuring the discrepancy between the
observed and predicted measurements y and Ga respectively.

o #:RN - R, U{+oo} is a regularisation/penalty functional favouring simple and well-behaved
solutions (typically with a finite number of degrees of freedom).

« A>0is aregularisation/penalty parameter which controls the amount of regularisation by putting
the regularisation functional and the cost functional on a similar scale.



Existence of Solutions

Theorem: (Existence of Solutionsto )

Consider the following set of assumptions:

1. Forallye RL, the univariate cost trace functionals

L—>
z— F(y,2)

and the regularisation functional % : RN — R, U {+oo} are proper, convex and lower semi-continuous
(see Slide 20 for a definition).

2. The objective functional of (3) is coercive, i.e. limj g, —+c0 F(, G&) + AZ(a) = +0o.

Then, the solution set 7 = argmin .pv F(y, Ga) + AZ(a), is non empty, convex and compact.3

The proof of this theorem can be deduced from [1, Proposition 8] (for reference only do not check it!).

3In finite dimension, a compact set is a closed and bounded set.



Proper, Convex, Lower Semi-Continuous Functional

Definition: (Proper Convex Functional)

A function F: RN — RU {—o0, +oo} is called convex if
vx,yeRN, vOe[0,1]: F(0x+(1-0)y) <0F®) + (1-0)F(y), (4)

and strictly convex if the inequality in (4) is strict. If moreover, F(x) > —oo for all xe RN and
D=1{xeRY: F(x) < +o0} # @, then Fis called a proper (strictly) convex function.?

Definition: (Lower Semi-Continuity)

A function F: RN — RU {—oo, +oc} is said lower semi-continuous (Iwsc) at xo € RN if for every y < F(xp)
there exists a neighborhood U < RV of xj such that F(x) = y, Vxe U.

41n short, a convex function is proper if its domain is nonempty and it never attains —co.



Proper, Convex, Lower Semi-Continuous Functional

A
F(x)
} >
Lo
Example of Lower Example of Strictly Convex,
Semi-Continuous Function Convex, Concave and Non

Convex Functions



Unicity of Solutions

Theorem: (Unicity of Solutions)

Assume that F and £ are as in Slide 19 and that the objective functional ¢ («):= F(y, Ga) + AZ(a) is
strictly convex. Then (3) admits a unique solution.

Proof: Assume that there exists at least two distinct solutions a1, s € 7. Then, by the strict convexity of
#,wehaveV0e[0,1]: Z(0a;+(1-0)ay) <0_¢(a)+(1-0)_#(ay), and hence a1, a do not minimise 7#
which is a contradiction. i 22

Sufficient conditions for the strict convexity of _¢ are: F(y,) is strictly convex and G is injective, or Z is
strictly convex. When _¢ is not strictly convex we can still retain a weaker form of unicity:

Theorem: (Unicity of Predicted Measurements)

Assume that F and £ are as in Slide 19 and that F(y, ) is strictly convex. Then there exists a unique
y* eRl such that Ga* =y*, Va* €7 =argmin, v £ (a), i.e. every solution yield the same predicted
measurements.



@¢ Proof (Unicity of Predicted Measurements.
I4°‘4/°‘z€’7 By =Yy O™z m
(<) = FLY, 6x) + A Rix) = Fy(6x) + 4 Rl

Fg(') b 3{7\'0&9 cux . lostidoe &, =e°‘4’*(46>°‘?_

€D convex

(@ F (@x,\%éﬂ-e)»lz_) + A &( B o\t Q'S)K.z)

< & F(cx)+ (©) F (e + ,f[%‘%zr?.i} ¥ EA @%&;

mwle ’}(o() 4 (- @J(dz) </m\m uahL
L




Choosing the Cost Functional (Noiseless Case)

In a noiseless setup, one has full trust in the measurements. It is therefore natural to require that any
solution of (3) be consistent with the data at hand, i.e. y= GaVa € 7. This can be achieved by choosing
the cost functional as F(y, Ga) = 1(y— Ga), where ¢ : Rl — {0, +o0} is the indicator function

0 ifz=0,
12) = .
+oo otherwise.
Problem (3) becomes then a generalised interpolation problem:

min (y-Ga) + AZ(@)= min R(@).
acRN aeRN, y=Ga

Under the assumptions of the Theorem “Unicity of Predicted Measurements” on Slide 22 we have that:

min F(y,Gae) + AZ(a)= min % (@),
acRN acRN, y*=Ga

for some (unknown) y* € RE. Hence, every penalised optimisation problem with strictly convex cost
functional is equivalent to a generalised interpolation problem.



Choosing the Cost Functional (Noisy Case)

In a noisy setup, consistency is not desired anymore, as it almost always leads to overfitting the noisy
data. One approach consists then in using the negative log-likelihood of the data y as a measure of
discrepancy:

F(y, Ga) = —l(aly) = -logpy,,..v; (n1,...,yil).
When the noise distribution is not fully known or the likelihood too complex, one can also use general ),
cost functionals

L N p
Fly,Ga) = ly-Galh=Y |yi— Y Ginan|
i=1 n=1 25
where pe [1,+o0] is typically chosen according to the tail behaviour of the noise distribution [2].
Heavy-tailed Gaussian-like Anything in Compact
distributions distributions between distributions
| | |
I I 1
p=1 p=2 p=+




Example: Cost Functional for Gaussian Noise
Assume the following multivariate Gaussian noise model:

Y=Ga+N, where N340, pN(y):%exp(flyTz*ly), yeRE.
|Z|1/Z(2n)L/Z 2

Then we have:
F(y,Ga) = —l(aly) = —logpy (yla)

=—lo (;ex (—1 -Ga)'z7Y —Ga)))
- & |Z|1/2(27'[)L/2 p 2(}’ y

- % “2_1/2(3" Ga) Hi + %10g|2| + élog(zn)

Independent ofa
. 2
« [z~ ca,.

This is the weighted least-squares functional. For white noise, we have = = 02I; and the cost functional
becomes proportional to |y — Gal|2, which is the regular least-squares functional.



Example: Cost Functional for Laplacian Noise

Assume the following Laplacian white noise model:

| x|

), xeR.
[0}

i.i.d. 1
Y;=(Ga);+N;, where N; '~ Laplace(0,0), pn@x) = 55 &XP| =
20

Then we have:

F(y,Ga) = —{(aly) = =logpy, ..y, (1,.... V| @)

- hzﬁn (m—fmmn

= E Z lyi— (Ga);|+  Llog(20)

i=1

N— —
Independent ofa

o [ly-Gaf,.
This is the least absolute deviations functional. It is less affected by outliers than the least-squares

functional. The weighted least absolute deviations functional can also be defined but cannot be
interpreted as the negative log-likelihood of a multivariate Laplacian distribution.




Example: Cost Functional for Poisson Noise

Assume positive measurements Y : Q — RL and the following Poisson noise model:

(Ga)fe*(cd)i

_—
Y; " Poisson ((Ga);), py,(k) = o

, VkeN.
Then we have:

F(y,Ga) = —((aly) = ~logpy, ...y, (y1,--- VL)

L (Ga)ie (G
=—log|[] —+——
15—
L
=) (Ga);-yjlog((Ga);)+  log(yi)
i=1 ~——
Independent of a
L

x Y (Ga);-yjlog((Ga),)
i=1




Example: Cost Functional for Poisson Noise (Continued)

L
x ) (Ga);—y;log((Ga);) + yilog(y) - yi
i=1 ——~—

Can add anything independent ofa

+ (Ga)l Vi

L
=3yl
; Og((c)

= Drr(yl|Ga),

where s
Dy (yll2) = Zyilog(f)—yﬁzlu vy,zeR:, (5)
i=1 1

is the generalised Kullback-Leibler (KL) divergence [3] for discrete positive vectors which do not
necessarily sum to one. In information theory, and in the case where 17z =17y = 1,% the KL-divergence (5)
can be interpreted as the relative entropy of y with respect to z, i.e. the amount of information lost when
using z to approximate y. Note that the KL-divergence is not a distance (no symmetry/subadditivity).

5so that z and y can be interpreted as discrete probability distributions



Real-Life Example: Wild Fires
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Choosing the Regularisation Functional

The regularisation functional is used to favour physically-admissible solutions with simple behaviours. It
can be interpreted as implementing Occam'’s razor principle:

Occam's Razor Principle (Lex parsimoniae)

Occam'’s razor principle is a philosophical principle also known as the “law of briefness” or in Latin “lex
parsimoniae”. It was supposedly formulated by William of Ockham in the 14th century, who wrote in
Latin “Entia non sunt multiplicanda praeter necessitatem”. In English, this translates to “More things

should not be used than are necessary”.

In essence, this principle states that when two equally good explanations for a given phenomenon are
available, one should always favour the simplest, i.e. the one that introduces the least explanatory
variables.

What exactly is meant by “simple” solutions will depend on the specific application at hand.



(generalised) Tikhonov Regularisation

A common regularisation strategy consists in penalising the squared ¢,-norm of the solutions, i.e.
R =lal?  acRV. (6)

This strategy is called Tikhonov regularisation and tends to favour smooth solutions. Different notions of
smoothness can be achieved by introducing a positive semi-definite finite-difference differential operator
DeRN*N in (6), yielding a generalised Tikhonov regularisation:

%(@) = |Dal;, acRV. )

The Tikhonov functional (6) is strictly convex, hence yielding unique solutions when used in conjunction
with a convex cost functional. The generalised Tikhonov functional (7) is strictly convex if D is injective
and simply convex otherwise. In the latter case, solutions to (3) exist if A4 (G)n.# (D) = {0} and Fis coercive
but are in general non unique.®

6 A sufficient condition for uniqueness is that Fis proper strictly convex.




Form of Solutions with generalised Tikhonov Regularisation

Representer Theorem: (generalised Tikhonov Regularisation)

Assume that:
1. GeREN s surjective (i.e. full row rank), D is positive semi-definite and .# (G) n ./ (D) = {0}.
2. F(y,-):RL — R, is proper strictly convex, coercive and lower semi-continuous for every y € RE.

Then the optimisation problem:
. 2
élelulalllv Fy,Ga) + AlDalj

admits a unique solution which can be written as

a* = (DTD)T G%ﬁt@

When D = Iy (standard Tikhonov regularisation) of D is invertible then the theorem holds for F proper
convex and lwsc and we get «* = (D”D) ' 6T p* this case is discussed in [4, Corollary 7).

for some p* e Rl and y* € ¥ (D).



@¢( Ridge Estimate
I 9 stk evx + proper+ lwsc (COQFCW@

/ WSy
mg}vény—Gan% ¥ é%J_: o =
14 < q d,
_ va D=T
|hQ®F€/\"'\ : ot = GTB* 7(3"' s \R" .
?’
97 (w) - GO’ GTg + A x® = 06

d
= (e +AT) o = Gy

= ()= (eTe D) ey

€ R (G



I @¢ Stability of Ridge Estimate
T )
y s oy = (676+AT)

Loyl < u@%—rﬂ)( (\ﬁ“ﬁ/lgg
‘[——r\’/\m(é“e‘ nnox (66

WLEM/\M(G @)@ A>0
< @(l Y lly_ C & +=0

bourdud ¢




¢,/TV Regularisation

A common regularisation strategy consists in penalising the ¢;-norm of the solutions, i.e.
R(@) =lal, acRV. (8)

This strategy tends to favour sparse solutions with only a few non zero coefficients. Different notions
of sparsity can be achieved by introducing a positive semi-definite finite-difference differential operator
DeRN*N in (8), yielding a total variation (TV) regularisation:

Z(@) = |Dall;, acRV. 9)

The ¢, and TV functionals are convex. Solutions to (9) exist if A4 (G) n.4 (D) = {0} and F is coercive but
are in general non unique.”

Examples:

« LASSO/Penalised Basis Pursuit: min, p~ %Ily— Ga||§ + AMeal.

« Generalised LASSO: min v 3ly— Gal3 + AlDal;.

7Sufficient conditions for uniqueness are: G is injective and F is strictly convex.



Form of Solutions with TV Regularisation

Representer Theorem I: (TV Regularisation)

Assume that:
1. GeRN s invertible, D is positive semi-definite.
2. F(y,-):RL — R, is proper strictly convex, coercive and lower semi-continuous for every y € RE.
Then the optimisation problem:
¥ =argmin F(y,Ga) + AlDeal

acRN

admits a unique solution of the form:
a* =D'pr+v*,

for some K-sparse vector g% e RN, K< Land y* € 4 (@.

When D = Iy (¢; regularisation) or Dis invertible then the theorem holds for F proper strictly convex and
Iwsc (no coercivity needed) and we have a* = D! g%.




Form of Solutions with TV Regularisation

Representer Theorem IlI: (TV Regularisation)

Assume that:
1. Ge RN s surjective (i.e. full row rank), D is positive semi-definite and .4 (G) n.# (D) = {0}.
2. F(y,):RL— R, is proper convex, coercive and lower semi-continuous for every ye RL.

Then the solution set:
¥ =argmin F(y,Ga) + A|Dally
aeRN

is non empty, compact and the convex-hull of extreme point solutions of the form:
a* = DTﬁI*( + y*,

for some K-sparse vector ¥ eRY, K< Land y* € ¥ ().

When D= Iy (¢; regularisation) or D is invertible then the theorem holds for F proper convex and lwsc
(no coercivity needed) and we have a* = D™! g (this case is discussed in [4, Corollary 8]).




Solution Set is the Convex-Hull of Sparse Extreme Points

Extreme Point

Definiton: (Extreme Point)

o —©
Let 7 be a convex set. An extreme point ve ¥

is a point such that

Aw,v) e¥2,0€10,1:  v=0w+(1-0)v. V

In plain words, v is a point in 7 which does not
lie in any open line segment joining two points
of 7.
Interior Point



@ Example: Finite Difference Operator in R3*3

L) D(>-(x.x4> > fote - dx%w&

D=

0o -1 1 X, ~x

\);Qem,\ €y, 6Gx) + 4 1 OXi,
x€R>

g€fR , G e ‘RZKB
N the Qorm:
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Real-Life Example: Sea Surface Temperatures
G my W

Tikhonov Total Variation
@ g’
Favours processes with smooth, large scale Favours processes with sharp but sparse
variations. o variations.

Zinbabwe.

South Afric
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Maximum Entropy Regularisation

The maximum entropy regularisation strategy considers the following regularisation functional:

N
Z(@) =Y a;loglay), acRrl. (10)

n=1

When 17« = 1 this si the negative Shannon entropy [5, 6] of a, a mathematical generalisation of entropy
as introduced by Boltzmann in thermodynamics. It favours positive, featureless solutions which: smooth
vectors indeed carry much less information than vectors with sharp, localised features, and hence have
higher entropy.

This regularisation can be generalised by considering the negative relative entropy w.r.t. a reference
discrete distribution n e RY:

N o
R(@)= Y ailog(—l), acry. (1)
n=1 ni

The functional (11) favours solutions with similar features as the reference distribution 5. Both functionals
(10) and (11) are strictly convex and coercive, hence yielding unique solutions when they exist.




Form of Solutions with Maximum Entropy Interpolation

Representer Theorem: (Maximum Entropy Interpolation)

Consider the generalised interpolation problem:

N
min Y ajlog(ay, (12)

acR™ p=1

for some y e RE. If (12) admits a solution, the latter is unique and can be written as [7]:
a* =yexp (GTﬁ*],
for some y >0 and p* e RL.

The nonlinear exponential map kills low intensity features and boosts prominent ones.



Nonnegativity Regularisation

The nonnegativity regularisation strategy considers the following regularisation functional:

0 ifaeRrl, (13)

Q =
@ {+oo otherwise.

It constrains the solutions to be positive. This functional is convex and non coercive.
The functional (13) is sometimes replaced by the log-barrier functional (convex and non coercive):
N
R(@)=- ) log(a;), acry,
n=1
which also promotes positive solutions.
Nonnegative Least-Squares (NNLS):

in Ly- Gal?
min —[y—- Gall;.
acRl 2 z



Form of Solutions with Nonnegativity Constraints

Representer Theorem: (Nonnegativity Constraints)

Assume that:
1. GeREN s injective.
2. F(y,-):RE— R, is proper strictly convex, coercive and lower semi-continuous for every y € RE.
45
Then the optimisation problem:
min F(y, Ga)
acRY

admits a unique L-sparse solution.

The proof to this Theorem follows from [8, Proposition 4.1].



Bayesian Interpretation

In certain cases, the penalised optimisation problem (3) can be interpreted as a maximum a posteriori
(MAP) problem. Adopting a Bayesian view, assume for example a Gaussian a priori distribution for « and
a Gaussian likelihood function (i.e. a Gaussian white noise model):

pla) eXp( 2 IIallz) pyle) o exp |- ||y Gal3]. (14)

From Baye's theorem, the posterior distribution of @ knowing the data y is then given by

plyla)pla) .
aly) = ————"——. 15) B&
plaly) JrN PYl@) ple)de (19
A maximum a posteriori (MAP) estimate is then defined as
aX,IAP € argmaxp(aly) = argmax p(y|la)p(@) = argmax L(a|y) p(@) = argmin -/ (al|y) —log(p()).
N

ack aeRN aeRN acRkN

For the prior distribution and likelihood assumed in (14) this yields:

1 : . o?
aMApeargman—IIy Ga||2+ ||a||2—argm1nf||y Gozll2 fllallﬁ, with /1:5—2. (16)

52



Bayesian Interpretation (continued)

We recognise in (16) the Ridge estimate (see Slide 34), obtained when choosing a least-squares cost
functional and a Tikhonov penalty in (3). Notice moreover that the regularisation parameter 1 is equal to
the ratio of the likelihood and prior variances.

Note that the prior distribution can be improper (i.e. not summable) as long as [~ p(yl@)p(a)da < +oco SO
that (15) is still well-defined.

This allows us to extend the previous analysis to many classical optimisation problems:

Example: (Penalised Optimisation Pbs as MAP)

« Weighted Least-Squares with Generalised Tikhonov (min, gy 31Z7V2(y- Ga)l13 + 1 |Da||2):
pl@) o exp (—%aTDTDa), pyla) o< exp (—%(y— Ga)TZ_l (y— Ga)J , A=1

« Least Absolute Deviations with Tikhonov (min, gy lly- Gellt + 2l al3):
pla) o exp(—#llall%), pyl@) < exp(—élly— Gall1)» A= éir



Bayesian Interpretation (continued)

Example: (Penalised Optimisation Pbs as MAP)

LASSO (ming gy 3lly— Gall3 + Allelr):

pa ocexp(-Lial),  pyla)ocexp(- 5L Iy~ Gald), A=%.
Generalised LASSO (min, gy 3lly— Gell3 + Al Dall1):

pl@) o exp (= Dalll),  pyla) o exp(—#lly— Gall%), A=d2.

Least-squares with Maximum Entropy (min,gv 31— Ga)ll3 + AX V| aylog(an):
pla) o exp (- XN | ayloglan), Pyla) exp(—#lly— Ga) ||%], A=02.
Nonnegative Least-Squares (min gy |y~ Gal:):

pla) x exp(—tRzl/(a)), pyla) o« exp(—# ly— Gall%).

KL-Divergence with Tikhonov (min, v Dkz.(yl|Ga) + %llallg):

pla) exp(—#llallg), pyla) < exp (-DgrlIGe)), A=Z.
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