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Motivation

Figure: Coordinates of a vector.

Vectors in RN are usually represented as �D arrays of coef�cients or co-
ordinates,measuring the signed distances of the vector to the canonical
axes. In doing so, we implicitly use the canonical basis of RN :
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Similarly, �nite-dimensional linear operators A :RN !RM can be represented as �D arrays of coef�cients
called matrices A 2RM£N , each column being the image of an element of the canonical basis: A:,n = Aen.

Such representations are very convenient for practical purposes, since they allow us to perform lin-
ear algebra operations via simple matrix calculations. We would like similar representations for in�nite-
dimensional vector spaces!
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Objectives and Reading Material

In this lesson we will introduce bases for abstract Hilbert spaces show how they can be used to:

�. Represent/expand vectors as sequences of coef�cients,
�. Represent linear operators as (potentially in�nite) matrices.

Our aim is to extend linear algebra matrix calculations to abstract Hilbert spaces. This way, we reduce
our level of abstraction and get closer to computational tools for signal processing.

Reading Material

• Chapter �, “From Euclid to Hilbert”, of [?], Section �.� (subsection �.�.� on frames is optional and is
not part of the exam material).

• Download link: http://www.fourierandwavelets.org/FSP_v1.1_2014.pdf
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Bases

De�nition: (Basis)

The set of vectors ©= {'k}k2K Ω V , where K is countable, is called a basis for a normed vector space V
when:

8x 2 V , there exists a unique sequence (Æk)k2K 2CK such that� x = P
k2K Æk'k.

The elements of the sequence (Æk)k2K are called the expansion coef�cients of x w.r.t the basis ©.

" Whether a set is a basis or not depends on the underlying norm (see [?, Example �.��]).

• Any element of V can be represented uniquely in terms of its expansion coef�cients.
• The existence of the expansion coef�cients for each x 2 V can be re-written as V = span(©).
• The Hilbert spaces that we will work with are separable (they contain a countable dense subset)

and have hence countable bases.

�We restrict our attention to unconditional bases for which the convergence of the series does not depend on the summation order.
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Riesz Bases

When working with bases in practice, one may face numerical stability issues. Riesz bases are special
bases with stability constraints, making them particularly suitable for numerical computations.

De�nition: (Riesz Basis)

In a Hilbert space H , a basis ©= {'k}k2K is called a Riesz basis when there exists 0 <∏min ∑∏max <1
s.t. 8x =

X

k2K

Æk'k 2H ,

∏minkxk2 …
X

k2K

|Æk |2…∏maxkxk2.

The constants ∏max and ∏min are called stability constants. The smallest (respectively largest) ∏max and
∏min are called the optimal stability constants.

The stability constants bound the ratio kÆk2/kxk from above and below, hence ensuring that the energy
of the expansion coef�cients is not arbitrarily large or small w.r.t. the energy of x.
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Synthesis Operator Associated to a Riesz Basis
Any vector can be synthesised from its expansion coef�cients in a certain Riesz basis using the
synthesis operator associated to this basis:

De�nition: (Synthesis Operator)

Given a Riesz basis {'k}k2K for a Hilbert space H , the synthesis operator associated with it is given by

© :

8
<
:

`2(K ) !H ,

Æ 7! x =
X

k2K

Æk'k.

Note that the synthesis operator is bounded. Indeed, we have from the de�nition of a Riesz basis:

k©Æk2 = kxk2 ∑ 1
∏min

X

k2K

|Æk|2 = 1
∏min

kÆk2
2,

and hence k©k= supkÆk2=1 k©Æk ∑ 1/
p
∏min.
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Analysis Operator Associated to a Riesz Basis
Let us compute the adjoint of the synthesis operator. For Æ 2 `2(K ) and y 2H we have:

≠
©Æ,y

Æ
=

*
X

k2K

Æk'k,y

+
=

X

k2K

Æk
≠

y,'k
Æ
=

≠
Æ,©§y

Æ
,

and hence the adjoint –called the analysis operator– is given by:

De�nition: (Analysis Operator)

Given a Riesz basis {'k}k2K for a Hilbert space H , the analysis operator associated with it is given by

©§ :

(
H ! `2(K ),

y 7! (Ø)k =
≠

x,'k
Æ

, k 2K .

Again the analysis operator is bounded: k©§k= k©k ∑ 1/
p
∏min. The analysis operator maps a vector

y 2H to a sequence Ø 2 `2(K ), which in general differs from the representing sequence of y. Each
coef�cient in Ømeasures the linear resemblance of y with an element of the Riesz basis {'k}k2K .
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Gram Operator

We de�ne now the Gram operator –or Gramian– associated to a Riesz basis:

De�nition: (Gram Operator)

Given a Riesz basis {'k}k2K for a Hilbert space H , the Gram operator associated with it is given by

G :

8
<
:

`2(K ) ! `2(K ),

Æ 7! (Ø)i =
X

k2K

≠
'k,'i

Æ
Æk, i 2K .

Once again, this operator is bounded: k©§©k= k©k2 ∑ 1/∏min. The Gramian is the composition G =©§©
between the analysis and synthesis operator. We have indeed, for all Æ 2 `2(K ) :

(GÆ)i =
X

k2K

≠
'k,'i

Æ
Æk =

*
X

k2K

Æk'k,'i

+
=

≠
©Æ,'i

Æ
= (©§©x)i, i 2K .
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Gram Operator and Orthonormal Bases

The Gramian maps sequences on sequences, and can hence be represented as an in�nite matrix:

G =

2
6666666664

...
...

...
· · ·

≠
'°1,'°1

Æ ≠
'0,'°1

Æ ≠
'1,'°1

Æ
· · ·

· · ·
≠
'°1,'0

Æ ≠
'0,'0

Æ ≠
'1,'0

Æ
· · ·

· · ·
≠
'°1,'1

Æ ≠
'0,'1

Æ ≠
'1,'1

Æ
· · ·

...
...

...

3
7777777775

.

Each entry of this matrix measures the amount of collinearity between two elements of the Riesz basis.

De�nition: (Orthonormal Basis)

A basis {'k}k2K for a Hilbert space H is said to be orthonormal if
≠
'i,'k

Æ
= ±i°k, 8i,k 2K .

From the de�nition of an orthonormal basis, we have hence: a Riesz basis is orthonormal iff G = Id.
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� Gramian Eigenvalues & Optimal Stability Constants
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� Computing the Optimal Stability Constants (Example I)

(a) Riesz basis.

(b) Optimal stability constants vs a.

Figure: Example setup.
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� Computing the Optimal Stability Constants (Example II)

(a) Riesz basis.

(b) Optimal stability constants vs a.

Figure: Example setup.
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Gramian & Generalised Parseval’s Equality
Proposition: (Generalised Parseval’s Equality)

Consider a Hilbert space H with Riesz basis {'k}k2K and associated synthesis operator ©. Then, for all
x =©Æ and y =©Ø in H , we have

≠
x,y

Æ
=

≠
©Æ,©Ø

Æ
=

≠
Æ,©§©Ø

Æ
=

≠
Æ,GØ

Æ
.

In particular we have, for all x =©Æ 2H :

kxk=
p
hÆ,GÆi= kÆkG . (�)

k ·kG and k ·k2 are equivalent norms on `2(K )

From (�) and the de�nition of a Riesz basis, we can show that k ·kG and k ·k2 are equivalent norms:

∏minkÆk2
G =∏minkxk2∑

X

k2K

|Æk|2 = kÆk2
2 ∑∏maxkxk2 =∏maxkÆk2

G , 8Æ 2 `2(K ) and x =©Æ.
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Gramian & Generalised Parseval’s Equality
The inner product in H becomes a (re-weighted) inner product in `2(K ). The synthesis operator © is an
isometric isomorphism from (H ,h·, ·i) to (`2(K ),h·,G ·i) preserving angles and distances.

Useful in practice: geometric manipulations on expansion coef�cients instead of abstract vector!
Problem: how to compute the expansion coef�cients?
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Expansion Coef�cients via ©°1

From the de�nition of a Riesz basis, © is injective, surjective and hence invertible. Its inverse
©°1 : H ! `2(K ) is moreover bounded. Indeed, we have:

8x 2H ,
∞∞∞©°1x

∞∞∞
2

2
=

∞∞∞©°1©Æ
∞∞∞

2

2
= kÆk2

2 =
X

k2K

|Æk|2 ∑∏maxkxk2 =)
∞∞∞©°1

∞∞∞∑
p
∏max.

We can hence use ©°1 to obtain the expansion coef�cients. Indeed, 8x =©Æ 2H , we have
©°1x =©°1©Æ=Æ. But how to compute the inverse of an abstract operator?

Examples:
Sometimes, computing ©°1 can be avoided by directly evaluating the image ©°1x.

• Polynomial of degree at most N , ¶N
k=1(X °!k) =PN

k=0ÆkXk:
©°1

≥
¶N

k=1(X °!k)
¥
= (Æ0, . . . ,ÆN ) can be computed (tediously) via polynomial expansion.

• Trigonometric polynomial cos(Nx) =PN
k=0Ækcosk(x):

©°1(cos(Nx)) = (Æ0, . . . ,ÆN ) can be computed by (very tediously) expanding the degree N Chebyshev
polynomial of the �rst kind TN (X) (which is such that cos(Nx) = TN (cos(x))).
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Computing ©°1: Orthonormal Bases
For orthonormal Riesz bases, ©°1 can be computed very ef�ciently. In this case, we have indeed
G =©§©= Id (see Slide ��) and hence� ©°1 =©§ (© is unitary).

Theorem: (Expansion with Orthonormal Bases)

Let {'k}k2K be an orthonormal Riesz basis for some
Hilbert space H , with associated synthesis operator ©. Then, every x 2H can
be written uniquely as x =©Æ where the expansion coef�cients Æ are given by

Æ=©§x =
°≠

x,'0
Æ

,
≠

x,'1
Æ

,
≠

x,'2
Æ

,
≠

x,'3
Æ

, · · ·
¢
2 `2(K ).

This can be written in short as: x =©©§x =P
k2K

≠
x,'k

Æ
'k, 8x 2H .

The generalised Parseval’s equality is moreover given in this case by:
≠

x,y
Æ
=

≠
©§x,©§y

Æ
=

≠
Æ,Ø

Æ
, and in particular kxk= k©§xk2 = kÆk2, 8x =©Æ,y =©Ø 2H .

�Since © is invertible, its left inverse and inverse coincide (check it!).
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Computing ©°1: Non Orthonormal Bases
Consider now a non orthonormal Riesz basis {'k}k2K . Then, for all x =©Æ 2H we have

x =©Æ , ©§x =©§©Æ ,
°
©§©

¢°1©§x =Æ , ©
°
©§©

¢°1©§x =©Æ= x.

This yields ©°1 =
°
©§©

¢°1©§. For all x =©Æ 2H the expansion coef�cients Æ can hence be computed as

Æ=
°
©§©

¢°1©§x = G°1 °≠
x,'0

Æ
,
≠

x,'1
Æ

,
≠

x,'2
Æ

,
≠

x,'3
Æ

, · · ·
¢
2 `2(K ). (�)

The coef�cients are hence obtained by applying the synthesis operator followed by the inverse of the
Gramian, correcting for the lack of orthogonality.� When K is �nite, the Gramian correction simply
amounts to inverting a matrix! When K is in�nite, inverting the Gramian can be complex...

Is the Gramian Invertible?
Note that the Gramian G =©§© is indeed invertible as composition between the synthesis and analysis
operators, both invertible. Moreover, its inverse is bounded

∞∞(©§©)°1∞∞=
∞∞©°1∞∞2 ∑∏max.

�Notice that in the orthonormal case, G = Id and the Gram correction disappears.
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Dual Basis and Biorthogonal Pairs of Bases
Note that the expansion coef�cients in (�) can be seen as the image of x through the dual of
e©=©G°1 : `2(K ) !H . This is the synthesis operator associated to the Riesz basis of H :

(
e'j =

X

k2K

≥
G°1

¥
k,j
'k

)

j2K

(�)

with optimal stability constants 1/∏max and 1/∏min.� The basis de�ned in (�) is called the dual basis of©
'k

™
k2K

. Notice that the two bases are such that

e©§©=

2
6666666664

...
...

...
· · ·

≠
'°1, e'°1

Æ ≠
'0, e'°1

Æ ≠
'1, e'°1

Æ
· · ·

· · ·
≠
'°1, e'0

Æ ≠
'0, e'0

Æ ≠
'1, e'0

Æ
· · ·

· · ·
≠
'°1, e'1

Æ ≠
'0, e'1

Æ ≠
'1, e'1

Æ
· · ·

...
...

...

3
7777777775

= (©§©)°1©§©= Id.

We say that the two bases form a biorthogonal pair of bases:
≠
'k, e'j

Æ
= ±k°j, 8k, j 2K .

�See [?, Exercise �.��] for a proof of this fact.
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Expansion with Non Orthonormal Bases

Theorem: (Expansion with Non Orthonormal Bases)

Let {'k}k2K be a Riesz basis for some Hilbert space H , with dual basis
{e'k}k2K . Then, every x 2H can be written uniquely as x =©Æ where

Æ= G°1©§x = G°1 °≠
x,'0

Æ
,
≠

x,'1
Æ

,
≠

x,'2
Æ

,
≠

x,'3
Æ

, · · ·
¢

, Æ= e©§x =
°≠

x, e'0
Æ

,
≠

x, e'1
Æ

,
≠

x, e'2
Æ

,
≠

x, e'3
Æ

, · · ·
¢

.

This can be written in short as:

x =©G°1©§x =©e©§x =
X

k2K

≠
x, e'k

Æ
'k

= e©©§x =
X

k2K

≠
x,'k

Æ
e'k, 8x 2H . Figure: Expansion in non

orthonormal bases.
The generalised Parseval’s equality can also be written in this case as:

≠
x,y

Æ
=

≠
Æ,GØ

Æ
=

≠e©§x,Ge©§y
Æ
=

≠e©§x,©§y
Æ
=

≠
Æ, Ø̃

Æ
, 8x =©Æ= e©Æ̃, y =©Ø= e©Ø̃ 2H .
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� Example in R2

©=
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1 1
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Example: Expansion of Polynomials

(a) Monomials basis: '0 = 1, '1 = X ,
'2 = X2 , '3 = X3 , '4 = X4.

(b) Gram matrix:
Gij =

R1
°1'i(X)'j(X)dX ,

i, j 2 {0,1,2,3,4}

(c) Inverse of the Gram matrix: G°1.

Figure: Monomials basis on [-�,�], its Gram matrix and its inverse.
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Example: Expansion of Polynomials

(a) Monomials basis: '0 = 1, '1 = X ,
'2 = X2 , '3 = X3 , '4 = X4.

(b) Dual basis: e'0, e'1, e'2, e'3, e'4. (c) Effect of Gram correction: ©©§x vs
©G°1©§x

Figure: Expansion of polynomials of degree at most � on [-�,�].
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Example: Expansion of Polynomials (Python code)

import numpy as np

x = np . l inspace ( −� , � , ���)
s tep_s ize= � / x . s ize
Phi = np . stack ( [ � + � * x , x , x ** � , x ** � , x ** � ] , ax is =−�)
Gram = step_s ize * ( Phi . transpose ( ) @ Phi )
Gram_inv = np . l i n a l g . solve (Gram , np . eye ( Phi . shape [ � ] ) )
P h i _ t i l d e = Phi @ Gram_inv
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Example: Expansion of Trigonometric Polynomials

(a) Trigonometric monomials basis:
'0 = 1, '1 = cos(t), '2 = cos2(t),
'3 = cos3(t), '4 = cos4(t).

(b) Gram matrix:
Gij =

Rº
°º'i(X)'j(X)dX ,

i, j 2 {0,1,2,3,4}

(c) Inverse of the Gram matrix: G°1.

Figure: Trigonometric monomials basis on [°º,º], its Gram matrix and its inverse.
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Example: Expansion of Trigonometric Polynomials

(a) Trigonometric monomials basis:
'0 = 1, '1 = cos(t), '2 = cos2(t),
'3 = cos3(t), '4 = cos4(t).

(b) Dual basis: e'0, e'1, e'2, e'3, e'4. (c) Effect of Gram correction: ©©§x vs
©G°1©§x

Figure: Expansion of trigonometric polynomials of degree at most � on [°º,º].
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Example: Expansion w.r.t. basis of shifted Gaussians

(a) Basis of shifted Gaussians: '0, '1 ,
'2 , '3 , '4.

(b) Gram matrix:
Gij =

R
'i(X)'j(X)dX ,

i, j 2 {0,1,2,3,4}

(c) Inverse of the Gram matrix: G°1.

Figure: Basis of shifted Gaussians, its Gram matrix and its inverse.
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Example: Expansion w.r.t. basis of shifted Gaussians

(a) Basis of shifted Gaussians: '0, '1 ,
'2 , '3 , '4.

(b) Dual basis: e'0, e'1, e'2, e'3, e'4. (c) Effect of Gram correction: ©©§x vs
©G°1©§x

Figure: Expansion w.r.t. basis of shifted Gaussians.
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Gramian and Orthogonalisation
Consider factorising the Gramian as G = G1/2G§/2, where G1/2 is a square root of G. Then, we have
G°1 = G°1/2G°§/2the expansion formula can be rewritten as

x =©G°1©§x =©G°1/2G°§/2©§x =
≥
©G°1/2

¥≥
©G°1/2

¥§
x =©?©

§
?x.

The operator ©? =©G°1/2 is unitary:

©§
?©? = G°§/2©§©G°1/2 = G°§/2GG°1/2 = G°§/2G§G°1/2 = G°§/2G§/2G1/2G°1/2 = Id.

The Riesz basis�
Ω
'?

j =P
k2K

≥
G°1/2

¥
k,j
'k

æ

j2K

is hence orthonormal.

The operator G°1/2 hence orthogonalises the Riesz basis {'k}k2K . Note that the square root of an
operator is non unique: the square root obtained via Cholesky factorisation G°1 = LL§ is lower-triangular
while the square root obtained via the eigenvalue decomposition G°1/2 = U§°1/2U§ is self-adjoint.
Each square root yields a different orthogonalised basis.

�With optimal stability constants ∏min =∏max = 1.
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Gram-Schmidt Orthogonalisation

(a) Basis {'0,'1}. (b) Normalisation of '0.

(c) Creation of √1 ?'?0 . (d) Normalisation of √1.

Figure: Illustration of the Gram-Schmidt
orthogonalisation process.

Another popular orhtogonalisation process is the Gram-
Schmidt algorithm. It transforms a basis {'k}k2K into an
orthonormal basis {'?

k }k2K via the iterations:
8
>>>>>>>><
>>>>>>>>:

'?
0 = '0

k'0k

√k ='k °
k°1X

j=0

D
'k,'?

j

E
'?

j

'?
k = √k

k√kk
, for k = 0,1,2,3 · · ·

" This algorithm is numerically unstable, and can result in
loss of orthogonality due to roundoff errors.
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Gram-Schmidt Orthogonalisation and QR Decomposition
The QR Notice that Gram-Schmidt orthogonalisation performs a QR decomposition of ©:

©=
£
'0'1'2 . . .

§
=

h
'?

0 '
?
1 '

?
2 . . .

i

| {z }
Q=©? unitary

2
6666666664

≠
'0,'?

0
Æ ≠

'1,'?
0

Æ ≠
'2,'?

0
Æ

· · ·
0

≠
'1,'?

1
Æ ≠

'2,'?
1

Æ
· · ·

... 0
≠
'2,'?

2
Æ

· · ·
...

... 0
. . .

...
...

...
. . .

3
7777777775

| {z }
R upper triangular

. (�)

Indeed, all the quantities involved in (�) are computed during the Gram-Schmidt orthogonalisation
process.6 In numerical linear algebra libraries however, the QR decomposition is computed via
Householder re�ections or Givens rotations which are more stable than the Gram-Schmidt
orthogonalisation process.

6Observe indeed that
D
'k ,'?k

E
= k√kk, for k 2K .
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� Orthogonalisation in R2 (Cholesky)

©=
∑

1 1
0 1

∏
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� Orthogonalisation in R2 (Gram-Schmidt)
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Example: Orthogonal Bases for Polynomials

(a) Monomials basis: '0 = 1, '1 = X ,
'2 = X2 , '3 = X3 , '4 = X4.

(b) Orthogonalised basis (via Cholesky):
'?0 , '?1 , '?2 , '?3 , '?4 .

(c) Legendre basis (Gram-Schmidt): '?0 ,

'?1 , '?2 , '?3 , '?4 .

Figure: Orthogonalisation of the monomials basis on [-�,�].
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Example: Orthogonal Bases for Polynomials (Python code)

import numpy as np

x = np . l inspace ( −� , � , ���)
s tep_s ize= � / x . s ize
Phi = np . stack ( [ � + � * x , x , x ** � , x ** � , x ** � ] , ax is =−�)
Gram = step_s ize * ( Phi . transpose ( ) @ Phi )
Gram_root� = np . l i n a l g . cholesky ( Gram_inv )
Phi_perp� = Phi @ Gram_root�
w, v = np . l i n a l g . e ig (Gram)
Gram_root� = ( v * �/ np . sq r t (w[ None , : ] ) ) @ v . transpose ( )
Phi_perp� = Phi @ Gram_root�
Phi_ legendre , r =np . l i n a l g . qr ( Phi , mode= ’ reduced ’ )
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Example: Orthogonal Bases for Trigonometric Polynomials

(a) Trigonometric monomials basis:
'0 = 1, '1 = cos(t), '2 = cos2(t),
'3 = cos3(t), '4 = cos4(t).

(b) Orthogonalised basis (via EVD): '?0 ,

'?1 , '?2 , '?3 , '?4 .

(c) Fourier basis (Gram-Schmidt):
'?0 / 1, '?1 / cos(t), '?2 / cos(2t),
'?3 / cos(3t), '?4 / cos(4t).

Figure: Orthogonalisation of the monomials basis on [°º,º].
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Example: Orthogonalisation of shifted Gaussians

(a) Basis of shifted Gaussians: '0 = 1,
'1 , '2 , '3 , '4.

(b) Orthogonalised basis (via Cholesky):
'?0 , '?1 , '?2 , '?3 , '?4 .

(c) Orthogonalised basis (via
Gram-Schmidt): '?0 , '?1 , '?2 , '?3 , '?4 .

Figure: Expansion w.r.t. basis of shifted Gaussians.
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Orthogonal Projection Onto a Subspace
Theorem: (Orthogonal Projection Onto a Subspace)

Let {'k}k2I be a Riesz basis for a closed subspace SI = span({'k}k2I ) in a Hilbert space H , with
synthesis operator ©I : `2(I ) !H . Then, for every x 2H ,

PI x =©I

°
©§

I
©I

¢°1©§
I

x (�)

is the orthogonal projection of x onto SI .

• When {'k}k2I is orthonormal, (�) simpli�es to PI x =©I©
§
I

x.

• We can rewrite (�) as PI x = e©I©
§
I

x, where e©I =©I

≥
©§

I
©I

¥°1
is the synthesis operator of the

dual basis {e'k}k2I of {'k}k2I . Note that e©I is a right inverse of ©§
I
:

©§
I

e©I =©§
I
©I

°
©§

I
©I

¢°1 = Id.

• The projection residual x°PI x is consequently orthogonal to SI :
©§

I

°
x°PI x

¢
=©§

I
x°©§

I
e©I| {z }

=Id

©§
I

x = 0 =) x°PI x ? SI .
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Bessel’s Inequality

Since the projection PI x and the residual x°PI x are orthogonal, we can use Pythagorean theorem to
deduce the so-called Bessel’s inequality:

Bessel’s inequality

Let PI be an orthogonal projection operator as in (�). Then,

kxk2 = kPI xk2 +kx°PI xk2∏kPI xk2 =
≠
©§

I
x, e©§

I
x
Æ
=

X

k2I

≠
x,'k

Æ≠
x, e'k

Æ
, 8x 2H .

Bessel’s inequality becomes an equality when SI = span({'k}k2I ) =H . When {'k}k2I is orthonormal
moreover, it simpli�es into:

kxk2 ∏ kPI xk2 =
X

k2I

|
≠

x,'k
Æ
|2.

Geometrically speaking, Bessel’s inequality tells us that orthogonal projections shrink the norm of their
input. This is not true in general for oblique projections!
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Illustration of Bessel’s Inequality in R3
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Example of Orthogonal Projection

(a) Basis functions©
cos(t),cos(t)2,cos(t)3™

.

(b) Gramian.
(c) Orthogonal projection of a Gaussian x(t) = exp(°3t2) onto S = span

°©
cos(t),cos(t)2,cos(t)3™¢

.
The residual x°PSx is orthogonal to S.

Figure: Example of orthogonal projection.
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Oblique Projection with Biorthogonality

Theorem: (Oblique Projection with Biorthogonality)

Let {'k}k2I and {e'k}k2I be two Riesz bases for some closed subspaces SI = span({'k}k2I ) and
eSI = span({e'k}k2I ) of a Hilbert space H . Assume further the biorthogonality condition:

≠
'i, e'k

Æ
= ±i°k, 8i,k 2I . (6)

Then, for every x 2H ,
PI x =©I

e©§
I

x (�)

is an oblique projection of x onto SI and

ePI x = e©I©
§
I

x (8)

is is an oblique projection of x onto eSI . Moreover, we have: x°PI x 2 eS?
I

and x° ePI x 2 S?
I

.

The biorthogonality condition (6) implies that e©§
I
©I =©§

I
e©I = Id, which shows that (�) and (8) are

indeed projections.
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Illustration of Oblique Projection with Biorthogonality R2
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General Oblique Projections

Theorem: (General Oblique Projections)

Let {'k}k2I and {√k}k2E be two Riesz bases for some closed subspaces SI = span({'k}k2I ) and
SE = span({√k}k2E ) of a Hilbert space H . Then, for every x 2H ,

PE x =™E

°
©§

I
™E

¢†©§
I

x (�)

is an oblique projection of x onto R

≥
™E (©§

I
™E )†

¥
Ω SE and

PI x =©I

°
™§

E
©I

¢†™§
E

x (��)

is an oblique projection of x onto R

≥
©I (™§

E
©I )†

¥
Ω SI .

When ©§
I
™E is invertible (requires I = E ) then the ranges of the oblique projections (�) and (��)

coincide with SE and SI respectively.
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� Proof
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Oblique vs. Orthogonal Projection

(a) Sampling functions
©§ : H !R3.

(b) Interpolating functions
™ :R10 !H .

(c) Gramian
©§© 2R3£3.

(d) Gramian ©§™ 2R3£10.

(e) Orthogonal projection ©(©§©)°1©§x of x(t) = exp(°3t2).

(f) Oblique projection ™(©§™)†©§x of x(t) = exp(°3t2).
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Matrix Representations of Linear Operators

We want to represent a bounded linear operator A : H0 !H1 between two Hilbert spaces H0 and H1 as
a matrix. To this end, we consider two Riesz bases {'k}k2K0 and {√k}k2K1 for H0 and H1 respectively.
Then, for any y =™Ø 2H1 and x =©Æ 2H0 such that y = Ax we have:

y = Ax , ™Ø= A©Æ , e™§™| {z }
=Id

Ø= e™§A©Æ , Ø= °Æ,

where e™§ denotes the analysis operator associated to the dual basis { e√k}k2K1 of {√k}k2K1 .
The operator A can hence be represented as a (potentially in�nite) matrix ° : `2(K0) ! `2(K1) given by:

°= e™§A©=

2
6666666664

...
...

...
· · ·

≠
A'°1, e√°1

Æ ≠
A'0, e√°1

Æ ≠
A'1, e√°1

Æ
· · ·

· · ·
≠

A'°1, e√0
Æ ≠

A'0, e√0
Æ ≠

A'1, e√0
Æ

· · ·
· · ·

≠
A'°1, e√1

Æ ≠
A'0, e√1

Æ ≠
A'1, e√1

Æ
· · ·

...
...

...

3
7777777775

= (™§™)°1(™§A©).
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Matrix Representations of Linear Operators
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Example: Derivative Operator I

Let A : H0 !H1 be the derivative operator from

H0 : space of piecewise-linear, continuous, �nite-energy functions with breakpoints at integers

to

H1 : space of piecewise-constant, �nite-energy functions with breakpoints at integers.

• Basis for H0: {'k(t)}k2Z = {'(t °k)}k2Z, '(t) =
Ω

1° |t|, |t| < 1;
0, otherwise

• Basis for H1: {√i(t)}i2Z = {¬[i,i+1)(t)}i2Z. This basis is orthogonal so e™=™.
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Example: Derivative Operator II
We evaluate

≠
A'k,√i

Æ
for all k and i.

A'(t) = '0(t) =

8
<
:

1, for °1 < t < 0;
°1, for 0 < t < 1;

0, for |t| > 1,

Then
≠

A'0,√i
Æ
=

8
<
:

1, for i =°1;
°1, for i = 0;

0, otherwise.
and

≠
A'k,√i

Æ
=

8
<
:

1, for i = k°1;
°1, for i = k;

0, otherwise.

This yields

° =

2
666666664

. . . . . . . . .
...

...
...

...
· · · 0 °1 1 0 0 0 · · ·
· · · 0 0 °1 1 0 0 · · ·
· · · 0 0 0 °1 1 0 · · ·

...
...

...
...

. . . . . . . . .

3
777777775

.
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Example: Derivative Operator III

Consider

x(t) ='(t)°'(t °1)

=©
≥
· · · ,0, � ,°1,0, · · ·

¥

| {z }
=Æ

.

Its derivative is given by

x0(t) =√(t +1)°2√(t)+√(t °1)

=™
≥
· · · ,0,1, -� ,1,0, · · ·

¥

| {z }
=Ø

.

We have indeed (check it!)

Ø= °Æ.

(g) Original function x(t). (h) Its decomposition in the H0 basis.

(i) Derivative function x0(t). (j) Its decomposition in the H1 basis.
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