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A Unifying Framework for Signal Processing
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Signals come in various forms:

f : {0, · · · ,N} !R Vectors, compactly-supported
or periodic sequences,

f :Z!R Generic sequences supported on Z,
f : [0,T) !R Compact-support or periodic functions,

f :R!R Generic functions.

With the right abstraction, they can all be seen as vec-
tors in some Hilbert spaces, which can be manipulated
geometrically. Many advantages:

• Leverages “real world” geometric intuition.
• Uni�ed understanding

of fundamental signal processing concepts.
• Can go faster and farther!
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Objectives and Reading Material
In this lesson we will:

�. Develop the basic geometric intuition central to Hilbert spaces,
�. Discuss linear operators –with a particular focus on projections– which generalise

�nite-dimensional matrices.

Our aim is to extend Euclidean geometric insights to abstract signals. You will have to invest some effort
to see signals as vectors in Hilbert spaces, but believe us, the effort is well placed!

Reading Material

• Chapter �, “From Euclid to Hilbert”, of [�], Sections �.� to �.� (in particular �.�.� and �.�)
• Appendix �.B, “Elements of Linear Algebra”, of [�]. This is a review of basic concepts of linear

algebra.�

• Download link: http://www.fourierandwavelets.org/FSP_v1.1_2014.pdf

�You should be familiar with most of these concepts, but do not hesitate to refresh your memory as we will assume these notions to
be mastered!
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Vector spaces

Vectors in RN can be added or scaled while staying in RN . This can serve as an inspiration for de�ning
abstract vector spaces:

De�nition: (Vector Space)

A vector space over a �eld of scalars F (think R or C) is a set of vectors V , together with operations of
vector addition + : V £V ! V and scalar multiplication · : F£V ! V .
For any x,y,z 2 V and Æ,Ø 2 F, these operations must moreover satisfy the following properties:
Commutativity: x+y = y+x.
Associativity: (x+y)+z = x+ (y+z) and (ÆØ)x =Æ(Øx).
Distributivity: Æ(x+y) =Æx+Æy and (Æ+Ø)x =Æx+Øx.
Additive identity: There exists a null 0 2 V , such that x+0 = 0+x = x, 8x 2 V .
Additive inverse: 8x 2 V , there exists a unique element °x in V , such that x+ (°x) = (°x)+x = 0.
Multiplicative identity: For every x in V , 1 ·x = x.

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



6

Common Vector spaces

Examples of vector spaces

• C-valued �nite-dimensional vectors: CN =
©£

x0 x1 . . . xN°1
§ ØØ xn 2C, n 2 {0, 1, . . . , N °1}

™
,

where vector addition and scalar multiplication are de�ned component-wise.
• C-valued sequences over Z: CZ =

n
x =

h
. . . x°1 x0 x1 . . .

i ØØØ xn 2C, n 2Z
o

, where vector
addition and scalar multiplication are de�ned component-wise.

• C-valued functions over R: CR = {x | x(t) 2C, t 2R}, where vector addition and scalar multiplication
are de�ned point-wise.

• C-valued N £M rectangular matrices: CN£M =

8
>><
>>:

2
664

x11 · · · x1N

...
. . .

...
xN1 · · · xNN

3
775

ØØØØØØØØ
xnm 2C, n ∑ N , m ∑ M

9
>>=
>>;
, where

vector addition and scalar multiplication are de�ned element-wise.
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Subspace & Span
A subspace is a set of vectors closed under vector addition and scalar multiplication:

De�nition: (Subspace)

S µ V is a subspace if: 8x,y 2 S, Æ,Ø 2 F, Æx+Øy 2 S.

Examples: the subspace of even/odd functions, the subspace of symmetric matrices.
Non example: the set of positive functions (not closed w.r.t. addition or multiplication).

It is possible to generate (span) subspaces from a collection of vectors:

De�nition: (Span)

The span of (potentially in�nite) set of vectors S Ω V consists in all �nite linear combinations of vectors
in S:

span(S) =
(

N°1X

k=0
Æk'k

ØØØØØ Æk 2 F,'k 2 S and N 2N
)

.
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Linear Independence & Dimension
Many different sets can have the same span. It can be of interest to �nd the smallest spanning set. This
leads to the dimension of a vector space, which depends on the concept of linear independence:

De�nition: (Linear Independence)

S =
©
'k

™
N°1
k=0 Ω V is said to be linerarly independent if:�

N°1X

k=0
Æk'k = 0 =) Æk = 0, 8k = 0, . . . ,N °1. (�)

If (�) does not hold, S is said linearly dependent.

A vector space V is said to have dimension N when it contains a linearly independent set with N

elements and every set with N +1 or more elements is linearly dependent. If no such �nite N exists, V is
in�nite-dimensional.

�If S is in�nite, we need every �nite subset to be linearly independent.
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Extending Euclidean Geometric Notions
We wish to extend to abstract vector spaces some useful Euclidean
geometric notions:

Norm The norm of a vector x 2 R2 can be interpreted as its
length:

kxk=
q

x
2
1 +x

2
2.

Distance The distance between two vectors x,y 2R2 is the norm
of their difference:

d(x,y) = kx°yk=
q

(x1 °y1)2 + (x2 °y2)2.

Orientation The relative orientation–orangle–between two vectors
x,y 2R2 is obtained via the inner product hx,yi= x1y1 +
x2y2:

hx,yi= kxkkykcosµxy ) µxy = arccos
µ hx,yi
kxkkyk

∂
.
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Inner products

Inner products help us formalise the geometric notions of orientation and orthogonality. They measure
the linear resemblance between two vectors.

De�nition: (Inner product)

An inner product for V is a map h·, ·i : V £V ! F satisfying, for any x,y,z 2 V and Æ 2 F,
�. Distributivity: hx+y,zi = hx,zi+ hy,zi
�. Linearity in the 1st argument : hÆx,yi=Æhx,yi
�. Hermitian symmetry: hx,yi= hy,xi
�. Positive de�niteness: hx,xi ∏ 0 and hx,xi= 0 iff x = 0.

A vector space equipped with an inner product is called an inner product space or pre-Hilbert space.

Note that from Items � and � we get:� hx,Æyi=Æhx,yi.

�We say that the inner product is antilinear w.r.t. its 2nd argument.
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Standard Inner Products

Standard Inner Products for Common Vector Spaces

CN
:

≠
x,y

Æ
=P

N

i=1 xiyi = yH x.

CN£M
: hX ,Y i= tr

°
X Y H

¢
=P

N

i=1
P

M

j=1 Xi,jYi,j = vec(Y )H vec(X ).

CZ:
≠

x,y
Æ
=P

i2Z xiyi. "

CR:
≠

x,y
Æ
=

R
R x(t)y(t)dt. "

" Note that inner products must be �nite. Hence, for the last two inner products to be valid, the in�nite
sum/integral must converge! This restricts the set of sequences/functions on which we can operate.
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Orthogonality
An inner product endows a space with geometric properties that arise from angles, such as
perpendicularity and relative orientation. An inner product being zero has special signi�cance.

De�nition: (Orthogonality)

�. Vectors x and y are said to be orthogonal when
≠

x,y
Æ
= 0, written as x ? y.

�. A set S Ω V is called orthogonal when x ? y 8x,y 2 S, x 6= y.
�. A set S Ω V is called orthonormal when it is orthogonal and hx,xi= 1 8x 2 S.
�. A vector x is said to be orthogonal to a set S Ω V when x ? s 8s 2 S, written as x ? S.
�. Two sets S0 Ω V and S1 Ω V are orthogonal –written as S0 ? S1– if 8s0 2 S0 we have s0 ? S1.
6. Given a subspace S Ω V , the orthogonal complement of S is the subspace S

? = {x 2 V | x ? S}.

Note that vectors in orthonormal set {'k}k2K are linearly independent since 0 =P
k2K Æk'k implies:

0 =
≠

0,'i

Æ
=

*
X

k2K

Æk'k,'i

+
=

X

k2K

Æk

≠
'k,'i

Æ
=

X

k2K

Æk±i°k = Æi, 8i 2K .
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Example of Orthogonal Functions on [°1,1]

Figure: x(t) = sin(4ºt), x(t) = sin(5ºt),
≠

x,y
Æ
=

R1
°1 sin(4ºt)sin(5ºt)dt = 0
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Norms
A norm is a function that assigns a length, or size, to a vector (analogously to the magnitude of a scalar).

De�nition: (Norm)

A norm on V is a function k ·k : V !R satisfying, for all x,y 2 V and Æ 2 F:
�. Positive de�niteness: kxk ∏ 0 and kxk= 0 iff x = 0,
�. Positive scalability: kÆxk= |Æ|kxk,
�. Triangle inequality: kx+yk ∑ kxk+kyk with equality iff y =Æx.

A vector space equipped with a norm becomes a normed vector space.� A normed vector space is also
a metric space, since the norm can be used to de�ne the induced metric� (or distance):

d(x,y) = kx°yk, 8x,y 2 V .

�As with the inner product, we must exercise caution and choose the subspace for which the norm is �nite.

�[�, Exercise �.��] gives the axioms that a metric must satisfy and explores metrics that are not induced by norms.
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Norms Induced by Inner Products

Any inner product induces a norm: kxk=
p
hx,xi, 8x 2 V .

Norms induced by Standard Inner Products

CN
: kxk2 =

p
hx,xi=

qP
N

i=1 |xi|2 =
p

xH x (`2-norm).

CN£M
: kXkF =

p
hX ,Xi=

q
tr

°
X X H

¢
=

qP
N

i=1
P

M

j=1 |Xi,j|2 =
p

vec(X )H vec(X ) (Froebenius norm).

CZ: kxk2 =
p
hx,xi=

qP
i2Z |xi|2 " (`2-norm)

CR: kxk2 =
p
hx,xi=

qR
R |x(t)|2dt " (L2-norm)

" Note that norms must be �nite. Hence, for the last two norms to be valid, the in�nite sum/integral
must converge! This restricts the set of sequences/functions on which we can operate.
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Properties of Norms Induced by Inner Products
Norms induced by inner products verify the following properties:

Pythagorean Theorem

Let V be an inner product space with induced
norm k ·k. Then, we have

x ? y =)kx+yk2 = kxk2 +kyk2.

By induction, one can derive a more general form
of the Pythagorean theorem:

{xk}k2K orthogonal =)
∞∞∞∞∞

X

k2K

xk

∞∞∞∞∞

2

=
X

k2K

kxkk2.

Cauchy-Schwartz Inequalitya

Let V be an inner product space with induced
norm k ·k. Then, we have

|hx,yi|∑ kxkkyk,

with equality when y =Æx for some Æ 2 F.

The Cauchy-Schwartz inequality can be used to
de�ne the angle between two vectors:

µxy = arccos
µ hx,yi
kxkkyk

∂
.

aSee [�, Exercise �.��] for a proof.
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Not all Norms are Induced by Inner Products
A necessary and suf�cient condition for a norm to be induced by an inner product is the following:

Proposition: (Induced Norms and Parallelogram Law)

Let (V ,k ·k) be some normed vector space. The norm is induced by
an inner product on V iif the parallelogram law holds for any
vectors x,y 2 V :

kx+yk2 +kx°yk2 = 2
≥
kxk2 +kyk2

¥
.

Notice that the forward direction6 is easily obtained from properties of the inner product:
(
kx+yk2 = kxk2 +kyk2 + hx,yi+ hy,xi
kx°yk2 = kxk2 +kyk2 °hx,yi°hy,xi

) kx+yk2 +kx°yk2 = 2
≥
kxk2 +kyk2

¥
.

6See [�, Exercise �.��] for the backward direction.
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Norms Not Induced by Inner Products
Examples of Norms Not induced by Inner Products

CN
: kxkp = p

qP
N

i=1 |xi|p, p 2 [1,1)\{2}, kxk1 = maxi=1,...,N |xi| (`p-norm)

CN£M
: kXkp = p

qP
N

i=1
P

M

j=1 |Xi,j|p = kvec(X )kp, p 2 [1,1)\{2}, (`p-norm)

kXkp,q = supkykq∑1 kX ykp (`p,q operator norm)

CZ: kxkp = p
pP

i2Z |xi|p, p 2 [1,1)\{2}, kxk1 = supi2Z |xi| " (`p-norm)

CR: kxkp = p

qR
R |x(t)|pdt, p 2 [1,1)\{2}, kxk1 = ess supt2R|x(t)| " (Lp-norm)

" Again, for the last two norms to be valid, the in�nite sum/integral must converge and the
supremum/essential supremum� must exist! This restricts the set of sequences/functions on which we
can operate.

�The essential supremum is the supremum of the function almost everywhere –i.e. except potentially on a set of measure �.
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L p Spaces
De�nition: (L p Space)

Let K denote R or Z. Then L p(K) is de�ned as the subspace of vectors of CK with �nite Lp-norm:

L p(K) =
n

x 2CK : kxkp <+1
o

, p 2 [1,+1].

Note: For K=Z, the lower case notation `p(Z) is preferred.

• L p(K) is a normed vector space with the norm k ·kp.
• L 2(K) is an inner product space with norm k ·k2 induced

by the standard inner product on CK.
• Hölder’s inequality generalises the Cauchy-Schwartz

inequality for conjugates p,q 2 [1,+1) (1/p+1/q = 1):
ØØ≠x,y

ÆØØ∑ kxyk1 ∑ kxkpkykq| {z }
Hölder’s inequality

<+1, 8x,y 2L p(K)£L q(K).
Figure: Unit balls of the `p norms in R2.
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Convergence in Normed Vector Spaces
When working in in�nite-dimensional vector spaces, we will often manipulate in�nite summations of
vectors. To make sense of such objects, we need a notion of convergence.8 The convergence of a
sequence of vectors is assessed via a metric, which we assume induced by a norm.

De�nition: (Convergence in Normed Vector Spaces)

A sequence of vectors (xn)n2N 2 V
N in a normed vector space V is said to converge to v 2 V if

limk!1kv°xkk= 0.

" Whether or not a sequence of vectors converges depends on the norm chosen on V !

Convergence in Different Norms
The sequence

°
xk(t) =¬[0,1/k](t)

¢
k2N , converges to the null sequence v = 0 for the Lp-norm, when

p 2 [1,+1), but does not converge for the L1-norm.

8See [�, Appendix �.A.�] for a review of convergence for sequences/series of numbers or functions.
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� Example: Convergence in Different Norms
xk(t) =¬[0,1/k](t), k 2N
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� Example: Convergence in Different Norms
xk[n] = 1

kÆ
if n 2 {1,2, · · · ,k}, 0 otherwise, k 2N,Æ 2 (0,1).
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Closed Subspace
A subspace containing the limits of all its convergent sequences is said to be closed:

De�nition: (Closed Subspace)

A subspace S of a normed vector space V is called closed when it contains all limits of sequences of
vectors in S. The closure S is the set of all limit points of convergent sequences in S.�

The closure of a set is by de�nition always closed. Subspaces of �nite-dimensional normed vector
spaces are also always closed, but this is not true in in�nite dimension. In particular, the span of an
in�nite set of vectors may not be closed.

The closure of the span of an in�nite set of vectors is the set of all convergent in�nite linear
combinations:

span
°
{'k}k2K

¢
=

(
X

k2K

Æk'k

ØØØØØ (Æk)k2K 2 FK and the sum converges
)

.

�We have hence in particular S Ω S since the constant sequences belong to S.
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� Example: Span Needs Not Be Closed

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro

0
¥-1 = { @¥.

e
"

i Ee la! ? c ta }

- 3 soiree Gsf t" "Ê%
= l ÊÎ ai⑤ INES I
- -

t K

④= ⑦ e- → la CAF - l
'¥ Être Iii

"

oi:* JE o



��

� Example: Span Needs Not Be Closed
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Completeness

Completeness of a space is the property that ensures that any sequence that intuitively ought to
converge –i.e. Cauchy sequences– indeed does converge to a limit in the same space.

De�nition: (Cauchy Sequence of Vectors)

A sequence of vectors (xn)n2N in a normed vector space is called a Cauchy sequence if

8"> 0, 9K" > 0 :
∞∞xk °xm

∞∞ < " 8k, m > K".

Since the elements of a Cauchy sequence eventually stay arbitrarily close to each other, it makes
intuitive sense that the sequence should converge. R is complete but Q is not:

Q is not complete
From the Taylor expansion of e

x in zero we have that: P+1
n=0 1/n! = e. Since

°P
N

n=0 1/n!
¢

N2N 2QN and e ›Q,
the set Q is not complete.
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Example: (C ([°1,1]),k ·k2) is not Complete

Figure: Approximation of the square wave with its
truncated Fourier series P

N

n=0
sin(ºnt)

n
for

N = 2,10,150.

(C ([°1,1]),k ·k2) is not complete. Indeed, we know from
Fourier analysis that:

lim
N!+1

∞∞∞∞∞∞∞
sgn(sin(ºt))| {z }
Square wave

°
NX

n=0

sin(ºnt)
n

∞∞∞∞∞∞∞
2

= 0.

The sequence of continuous functions
√

NX

n=0

sin(ºnt)
n

!

N2N
2C ([°1,1])N

has hence for limit the square wave which is discontin-
uous, showing that C ([°1,1]) is not complete w.r.t. k ·k2.
Note that it is however complete w.r.t. k ·k1.��

��This is because the limit of a uniformly convergent sequence of continuous functions is continuous.
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Hilbert and Banach Spaces

Hilbert and Banach Spaces

Complete inner product vector
spaces are called Hilbert spaces.a
Complete normed vector spaces are
called Banach spaces.

• Finite-dimensional vector
space over R or C are Banach.

• All L p spaces are Banach.
In particular, L 2 is Hilbert.

• C ([a,b]) is Banach with k ·k1.
It is not Hilbert w.r.t. k ·k2.

aHence the alternative appellation “pre-Hilbert
space” sometimes used to denote a
non-complete inner product space. Figure: Classi�cation of standard vector spaces.
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Linear Operators
Linear operators generalise �nite-dimensional matrices to abstract vector spaces:

De�nition: (Linear Operator)

A map A : H0 ! H1 is a linear operator when 8 x,y 2 H0,Æ 2C the following hold:

Additivity: A(x+y) = Ax+Ay,

Scalability: A(Æx) =Æ(Ax).

Just like in �nite dimension, we can de�ne the null space and range of an operator as, respectively:
N (A) = {x 2 H0| Ax = 0} = A

°1({0}), R(A) = {Ax 2 H1| x 2 H0} = A(H0).

De�nition: (Operator Norm & Bounded Operator)

The operator norm of A, denoted by kAk, is de�ned as kAk = supkxk=1 kAxk. A linear operator is called
bounded when its operator norm is �nite.
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Linear Operators: illustration
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Adjoint of an Operator
The adjoint generalises the Hermitian transpose for �nite-dimensional matrices.

De�nition: (Adjoint)

The linear operator A
§ : H1 ! H0 is called the adjoint of the linear operator A : H0 ! H1 when

≠
Ax,y

Æ
H1

=
≠

x,A
§

y
Æ

H0
, for every x in H0 and y in H1.

When A = A
§, the operator A is called self-adjoint or Hermitian.

The angle between Ax and y in H1 is the same as the angle between A
§

y and x in H0.

Examples of Adjoints

Adjoint of a scalar Æ 2C: We have
≠
Æx,y

Æ
=Æ

≠
x,y

Æ
=

≠
x, Ǣy

Æ
8x,y 2 H . Hence, Æ§ = Ǣ.

Adjoint of a matrix M 2CN£M
:

≠
Ax,y

Æ
=P

M

m=1
°P

N

n=1 Amnxn

¢
ym =P

N

n=1 xn

°P
M

m=1 Amnym

¢
=

≠
x,AH y

Æ

for all (x,y) 2CN £CM . Hence we get A§ = AH .

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro

D

x⑨→à|
,

te "
on a

a-
- ¥-7.



��

Adjoint Operator: illustration
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� Example: Local Averaging and its Adjoint
(Ax)n =

R
n+1/2

n°1/2 x(t)dt, n 2Z, x 2L 2(R).
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� Example: Local Averaging and its Adjoint
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Example: Local Averaging and its Adjoint

(a) We start with a function x in
L 2(R).

(b) The local averaging operator A

gives a sequence in `2(Z).
(c) y is an arbitrary sequence in

`2(Z).
(d) The adjoint A

§ is a linear operator
from `2(Z) to L 2(R) that uniquely
preserves geometry in that≠

Ax,y
Æ
`2(Z) =

≠
x,A

§
y
Æ
L 2(R). The

adjoint of local averaging is to
form a piecewise-constant
function.
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Properties of the Adjoint
Theorem: (Adjoint properties)

Let A : H0 °! H1 be a bounded linear operator. Then,
�. A

§ exists and is unique,
�. (A

§)§ = A,
�. AA

§ and A
§

A are self-adjoint,
�. kA

§k= kAk,
�. If A is invertible, (A

°1)§ = (A
§)°1,

6. B : H0 °! H1 bounded, (A+B)§ = A
§+B

§,
�. B : H1 °! H2 bounded, (BA)§ = A

§
B
§,

8. R(A)? =N (A
§) and R(A) =N (A

§)?.��

��
A and A

§ can be interchanged in these two relations. For the second relation, we must take the closure of the range since in in�nite
dimension the range is not necessarily a closed subspace while the nullspace is always a closed subspace. Note that this will rarely
be a concern in practice since most of the operators we will work with will have closed ranges.
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� Proof Sketch: points �, �
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� Proof Sketch: points �, 6 ,�
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� Proof Sketch: point 8
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Generalised Inverse & Pseudoinverse

De�nition: (Generalised Inverse & Pseudoinverse)

Let A : H0 ! H1 be a linear operator. Consider a bounded linear operator A
‡ : H1 ! H0 as well as the

Penrose conditions:
�. AA

‡
A = A,

�. A
‡

AA
‡ = A

‡,
�. (AA

‡)§ = AA
‡,

�. (A
‡

A)§ = A
‡

A.
Then, A

‡ is called: a generalised inverse if it satis�es �, a re�exive generalised inverse if it satis�es � & �,
the pseudoinverse�� denoted by A

† if it satis�es � to �.

Generalised inverses are not necessarily unique. The pseudoinverse of an operator A with closed range
exists and is unique [�, Section �].

��The pseudoinverse is also sometimes called the Moore-Penrose inverse after the pioneering works by Moore and Penrose.
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Inverse

De�nition: (Inverse)

A linear operator A : H0 ! H1 is said invertible if there exists a bounded linear operator B : H1 ! H0 such
that:
�. BAx = x, 8x 2 H0,
�. ABy = y, 8y 2 H1.

In which case, B is unique and is called the inverse of A, denoted by A
°1. Moreover, B is called a left

inverse if it satis�es � only, and a right inverse if it satis�es � only.

It is easy to see that when A is invertible, then the pseudoinverse and the inverse coincide. A left
(respectively right) inverse is moreover also a generalised inverse.
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� Example: Pseudoinverse of Matrices with Full Column Ranks
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� Example: Pseudoinverse of Matrices with Full Row Ranks
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Unitary Operator
Unitary operators are operators that preserve the geometry (angles and distances) when mapping one
Hilbert space to another.

De�nition: (Unitary Operator)

A bounded linear operator A : H0 °! H1 is unitary when:
�. A is invertible,
�. A preserves inner products: hAx,AyiH1 = hx,yiH0 , for every x,y 2 H0.

Preservation of inner products implies preservation of norms since kAxk2 = hAx,Axi= hx,xi= kxk2 8x 2 H0.

Theorem: (Characterisation of Unitary Operators)

A bounded linear operator A is unitary iff its inverse is its adjoint: A
°1 = A

§.
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Best Approximation Problem

Let S be some subspace of a Hilbert space H. For a given x 2 H , we
de�ne the best approximation problem�� as:

x̂ = argmin
s2S

kx° sk. (�)

Equation (�) tries to �nd an element of the subspace S that best approx-
imates –understand that is the closest to– the vector x 2 H.

Our intuition from Euclidean geometry tells us that the solution to (�)
is unique and such that the residual x° x̂ ? S. We now generalise this
result to abstract Hilbert spaces.

��When k ·k is the canonical � norm, the best approximation problem is also called the least-squares problem.
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Projection Theorem

Theorem: (Projection Theorem)

Let S be a closed subspace of Hilbert space H and let x 2 H.
�. Existence: There exists x̂ 2 S such that kx° x̂k ∑ kx° sk for all s 2 S,
�. Orthogonality: x° x̂ ? S is necessary and suf�cient to determine x̂,
�. Uniqueness: x̂ is unique,
�. Linearity: x̂ = Px where P is a linear operator,
�. Idempotency: P(Px) = Px for all x 2 H ,
6. Self-adjointness: P = P

§.

The effect of the operator P that arises in the projection theorem is to move the input vector x in a
direction orthogonal to the subspace S until S is reached at x̂. We will see that P has the de�ning
properties of an orthogonal projection operator.
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Example: Polynomial Approximation

Example: Polynomial Approximation
We want to approximate x(t) = cos(3ºt/2) 2L 2([0,1]) by a degree �
polynomial s(t) = a0 +a1t 2 S = span{1, t}.
Using point � of the projection theorem we get that the
approximand x̂ 2 S veri�es:
8
>>><
>>>:

hx° x̂,1i =
Z1

0
cos(3ºt/2)°a0 °a1t dt =° 2

3º
°a0 °

a1

2
= 0,

hx° x̂, ti =
Z1

0
cos(3ºt/2)t °a0t °a1t

2
dt =°4+6º

9º2 ° a0

2
° a1

3
= 0,

()

8
>><
>>:

a0 = 8+4º

3º2 ,

a1 =°16+12º

3º2 ,
and hence x̂(t) = 8+4º

3º2 ° 16+12º
3º2 t.

1

4

1

2

3

4
1

t

!1

1

xt

(a) Approximation of x(t) by a degree �
polynomial.

1

4

1

2

3

4
1

t

!1

1

xt

(b) Approximation of x(t) by a degree
K 2 {1,2,3,4} polynomial.
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Projection Operator
The operator P that arises from solving the best approximation problem is an orthogonal projection
operator:

De�nition: (Projection Operator)

• An idempotent�� operator P is an operator such that P
2 = P.

• A projection operator is a bounded linear operator that is idempotent.
• An orthogonal projection operator is a projection operator that is self-adjoint.
• An oblique projection operator is a projection operator that is not self-adjoint.

Theorem: (Characterisation of Projection Operators)

P is a bounded orthogonal projection operator ()
≠

x°Px,Py
Æ
= 0, 8x,y 2 H .

��An operator is idempotent when applying it twice is no different than applying it once.
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� Proof Sketch: Characterisation of Projection Operators
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Projection via Generalised Inverses
Theorem: (Projection via Generalised Inverses)

Consider a bounded linear operator A : H0 ! H1 with closed range. Denote moreover by A
‡ : H1 ! H0

some re�exive generalised inverse of A and by A
† its pseudoinverse.�� Then,

�. AA
‡ : H1 ! H1 is a projection operator onto R(A),

�. A
‡

A : H0 ! H0 is a projection operator onto R
≥
A

‡
¥
,

�. AA
† : H1 ! H1 is an orthogonal projection operator onto R(A),

�. A
†

A : H0 ! H0 is an orthogonal projection operator onto R(A
§).

We can deduce [�, Theorems �.�� and �.��] as corollaries of the above result (check it!):

• If A
‡ is a left inverse to A, then AA

‡ is a projection operator onto R(A),
• If A

§
A is invertible, then A(A

§
A)°1

A
§ is an orthogonal projection operator onto R(A),

• If AA
§ is invertible, then A

§(AA
§)°1

A is a orthogonal projection operator onto R(A
§).

��Which exists since A has closed range.
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� Proof Sketch: Points � & �
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Example: Projection onto a Subspace of R3

Figure: The two-dimensional range of the oblique
projection operator P is the plane x0 +x2 = x1.

Let

A =

2
4

1 0
1 1
0 1

3
5 and B = 1

2

∑
1 1 °1

°1 1 1

∏
.

Since B is a left inverse of A, we know from the previous
theorem that P = AB is a projection operator:

P = AB = 1
2

2
4

1 1 °1
0 2 0

°1 1 1

3
5 .

It is easy to verify that P
2 = P. The two-dimensional range of this projection operator is the set of three-

tuples with middle component equal to the sum of the �rst and last.
Note that P 6= P

§, so the projection is oblique.
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� Example: Projection onto Piecewise-Constant Functions
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Example: Projection onto Piecewise-Constant Functions

Figure: Given a function x 2L 2(R), the function in the subspace of piecewise-constant functions A
§`2(Z) that is

closest to x in L2 norm is the one obtained by replacing x(t), t 2 [n°1/2, n+1/2), by its local average
R

n+1/2
n°1/2 x(t)dt.
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Projections and Direct Sums

Projection operators generate direct sum decompositions.

De�nition: (Direct Sum)

A vector space V is a direct sum decomposition of subspace S and
T (written V = S©T) when any nonzero vector x 2 V can be written
uniquely as x = xS +xT , where xS 2 S and xT 2 T .

Theorem: (Direct-sum Decomposition from Projection)

• A projection P on H generates direct sum decomposition
H = S©T , where S =R(P) and T =N (P).

• If S,T are closed subspaces s.t. H = S©T , then there exists a
projection P on H s.t. S =R(P) and T =N (P).

(a) Decomposition

(b) Orthogonal projection

(c) Oblique projection
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