
Finite Rate of Innovation Sampling
Mathematical Foundations of Signal Processing

Dr. Matthieu Simeoni

November 30, 2020



2

Table of contents

1 Introduction
Beyond Shannon Sampling Theorem
Finite Rate of Innovation
Stream of Diracs

2 The Finite Rate of Innovation Framework
The Annihilating Filter and Annihilating Equation
Total Least-Squares
Estimating the Amplitudes
Finite Rate of Innovation Sampling

3 Cadzow Denoising
The Method of Alternating Projections (MAP)
Cadzow Denoising

4 Generalised FRI Sampling
Explicit vs. Implicit Formulation
Cadzow Plug-and-Play Gradient Descent

EPFL 2020 | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



3

Introduction
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Beyond Shannon Sampling Theorem

Sampling theorems lie at the foundation of modern digital signal processing: they permit the navigation
between the analogue and digital worlds.

The most famous is undoubtedly the Shannon sampling theorem [1]. The latter states that bandlimited
signals can be exactly recovered after uniform sampling with rate at least twice their maximum frequency
and interpolation with a sinus cardinal kernel with same bandwidth.

This major result has had tremendous impact on the field of signal processing and by extension on many
fields of natural sciences. But this unanimous celebration lead many scientists to start thinking about
sampling theory exclusively in terms of bandlimitedness, which is only a sufficient condition for a signal
to admit a discrete representation.

In fact, sampling theorems can also be devised for non-bandlimited signals as long as they possess
finitely many degrees of freedom.
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Signals with Finite Rates of Innovation (FRI)

Definition (Rate of Innovation of a Signal)

The rate of innovation of a signal is defined as its number of degrees of freedom, or innovations, per unit
of time.

In this lesson,wewill investigate sampling algorithms for signalswith finite rates of innovation –i.e. finitely-
many degrees of freedom per unit of time. Intuitively, if the signal is sampled below this critical rate not all
the degrees of freedom will be fixed, leading to an underdetermined system and hence unidentifiability.

Example: (Rate of Innovation of Bandlimited Signals)

For a bandlimited signal with bandwidth B, Shannon theorem tells us than the signal can be identified
with a sequence of samples spaced Ts = 2π/B = Tmax/2 seconds apart.There is hence one degree of
freedom every Ts seconds or a rate of innovation of ρ = 1/Ts = 2/Tmax = 2fmax = fc. Note that this rate of
innovation coincides with the critical sampling rate announced by the theorem.
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Stream of Diracs and the FRI Framework

Similarly, consider the prototypical sparse signal, a T -periodic stream of Diracs:

x(t) = ∑
k′∈Z

K∑
k=1

xkδ(t − tk −Tk′), ∀t ∈R, (1)

with xk ∈C and tk ∈ [0,T),k = 1, . . . ,K . It is easy to see that this signal has 2K innovations {(xk, tk)}k=1,...,K over
a period of time T , leading to a finite rate of innovation of ρ = 2K /T . Hence, despite being non-bandlimited,
it seems that sampling some transformation of x(t) at a finite rate ρ could, at least theoretically, yield a
complete characterisation of the signal in terms of discrete measurements.

The classical FRI framework, introduced in [2], aims at estimating the innovations {(xk, tk), k = 1, . . . ,K } ⊂
C× [0,T [, of the T -periodic stream of Diracs (1).

The estimation procedure is divided into two stages. The locations tk are first estimated by a nonlinear
method, and then used to form a Vandermonde system whose solution yields the Dirac amplitudes xk.
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Stream of Diracs: Example

Figure: Example of Dirac stream with rate of innovation ρ = 10/T .
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The Finite Rate of Innovation Framework
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The Annihilating Filter and Annihilating Equation
The recovery of the locations tk relies on the so-called annihilating equation which cancels out the Fourier
series coefficients of x by convolving them with a particular filter, called the annihilating filter.

Definition (Annihilating Filter)

Let x be a Dirac stream with innovations {(xk, tk), k = 1, . . . ,K } ⊂C× [0,T [. Then the annihilating filter of x is
defined as the finite-tap sequence h = [· · · ,0, h0 ,h1, . . . ,hK ,0, · · · ] ∈CZ, with z-transform vanishing at roots{

uk := e−j2πtk/T , k = 1, . . . ,K
}
:

H(z) :=
K∑

k=0
hk z−k = h0

K∏
k=1

(1−ukz−1). (2)

The annihilating filter satisfies the annihilating equation:

(x̂∗h)m =
K∑

k=0
hk x̂m−k =

K∑
k′=1

xk′

(
K∑

k=0
hku−k

k′

)
um

k′ = 0, ∀m ∈Z, (3)

where x̂m =∑K
k=1 xkum

k ,m ∈Z, are the Fourier coefficients of x in (1).
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The Annihilating Filter and Annihilating Equation
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Leveraging the Annihilating Equation

We can recover the Dirac locations tk as follows:

1. Estimate the coefficients h = [h0, . . . ,hK ] ∈CK+1 of h by extracting K +1 independent equations from
the annihilating equation (3).

2. Find the K roots uk of the polynomial
∑K

k=0 hk zk (using for example numpy.roots()).
3. Recover the Dirac locations tk with:

tk = Tθ(uk)

2π
, k = 1, . . . ,K , (4)

where θ :C→ [0,2π) maps a complex number to its phase modulo 2π.1 From the definition of the
annihilating filter we have indeed that uk = e−j2πtk/T .

1See numpy.angle().
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Solving the Annihilating Equation
Assume that we have access to N = 2M+1 consecutive Fourier coefficients of x, x = [x̂−M , . . . , x̂M ] ∈C2M+1,
with M ≥ K . Then, we can extract the N −K equations from (3) corresponding to the convolution indices
m =−M +K , . . . ,M , and form the following matrix equation:

x̂−M+K x̂−M+K−1 · · · x̂−M
x̂−M+K+1 x̂−M+K · · · x̂−M+1

...
. . .

. . .
...

x̂M−1 x̂M−2 · · · x̂M−K−1
x̂M x̂M−1 · · · x̂M−K




h0
h1
...

hK

=


0
0
...
0
0

 ⇐⇒ TK (x)h = 0N−K . (5)

The operator TK , called the Toeplitzification operator, embeds x into the space TK of Toeplitz matrices
of C(N−K )×(K+1). It is defined as:

TK :

{
CN →TK ⊂C(N−K )×(K+1)

x 7→ [TK (x)]i,j := x−M+K+i−j, i = 1, . . . ,N −K , j = 1, . . . ,K +1.
(6)

Observe that the value of an entry of TK (x) depends only on the distance i−j between the row and column
indices: TK (x) is indeed a Toeplitz matrix and the vector x is called its generator.

EPFL 2020 | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



13

Total Least-Squares

Note that h = 0K+1 is trivially a solution to (5). To avoid this degenerate case, we constrain ‖h‖ 6= 0.
Estimating the coefficients of the annihilating filter amounts then to solving:

TK (x)h = 0N−K , such that ‖h‖ 6= 0. (7)

Observe that any nontrivial element of the nullspace of TK (x) is a solution to (7).

For M ≥ K , it can be shown [3] that TK (x) ∈C(N−K )×(K+1) has rank K and therefore has a nontrivial nullspace
with dimension 1. Up to a multiplicative constant, the annihilating equation (7) admits hence a unique
solution. The latter can be obtained numerically by means of total least-squares [3], which computes the
eigenvector associated to the smallest2 eigenvalue of TK (x).

In the critical case M = K , the matrix TK (x) is square, while in the oversampling case M > K it is rectangular
and tall. As explained in [3], oversampling makes the estimation procedure more resilient to potential
noise perturbations in the Fourier coefficients.

2An eigenvalue exactly equal to zero may in practice be impossible to obtain due to numerical inaccuracies.
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Estimating the Amplitudes

Once the coefficients h = [h0, . . . ,hK ] of the annihilating filter recovered by total least-squares, we can
compute its roots uk = e−j2πtk/T and recover the Dirac locations tk as explained on Slide 11.

To recover the Dirac amplitudes, we leverage the formula x̂m =∑K
k=1 xkum

k (see Slide 9) which yields the
following matrix equation:

u−M
1 u−M

2 · · · u−M
K

u−M+1
1 u−M+1

2 · · · u−M+1
K

...
... · · ·

...
1 1 · · · 1
...

... · · ·
...

uM−1
1 uM−1

2 · · · uM−1
K

uM
1 uM

2 · · · uM
K




x1
x2
...

xK

=



x̂−M
x̂−M+2

...
x̂0
...

x̂M−1
x̂M


. (8)

Note that the entries of the right-hand side vector in (8) corresponds to the same N = 2M +1 consecutive
Fourier coefficients of x that were used to estimate the annihilating filter.
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Estimating the Amplitudes (continued)

Notice that:

u−M
1 u−M

2 · · · u−M
K

u−M+1
1 u−M+1

2 · · · u−M+1
K

...
... · · ·

...
1 1 · · · 1
...

... · · ·
...

uM−1
1 uM−1

2 · · · uM−1
K

uM
1 uM

2 · · · uM
K


=



1 1 · · · 1
u1

1 u1
2 · · · u1

K
...

... · · ·
...

uM+1
1 uM+1

2 · · · uM+1
K

...
... · · ·

...
u2M

1 u2M
2 · · · u2M

K
u2M+1

1 u2M+1
2 · · · u2M+1

K


︸ ︷︷ ︸

:=V


u−M

1 0 · · · 0

0 u−M
2

. . .
...

...
. . .

. . . 0
0 · · · 0 u−M

K


︸ ︷︷ ︸

:=D

,

which is the product of a transposed rectangular Vandermonde matrix3 V ∈ R(2M+1)×K and a diagonal
matrix D ∈RK×K both full column ranks. Equation (8) hence admits indeed a solution.

3We have indeed Vik := ui−1
k

, i = 1, . . . ,2M +1, k = 1, . . . ,K .

EPFL 2020 | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



16

Finite Rate of Innovation Sampling
We have hence described a procedure for recovering the innovations {(xk, tk)} of a Dirac stream x from
2M+1 consecutive Fourier coefficients of x, M ≥ K . In practice, these Fourier coefficients can be obtained
via the following sampling scheme:

1. Pre-filter the signal x(t) by an ideal low-pass filter with bandwidth N = 2M +1, and collect N samples
yn ∈R from the resulting signal, taken uniformly at a sampling period Ts = T/N :

yn =
K∑

k=1
xkϕN (nTs − tk) =

M∑
m=−M

Tx̂mej2πmn/N , n = 1, . . . ,N , (9)

where ϕN (t) := sin(Nπt)
NT sin(πt/T) , t ∈R is the T -periodic sinc function, or Dirichlet kernel.

2. Take the discrete Fourier transform (DFT) of the time samples (9). This yields, up to a multiplicative
constant, the N consecutive Fourier coefficients [x̂−M , · · · , x̂M ] of x:

ŷm =
N∑

n=1
yne−j2πnm/N =

{
Tx̂m, if |m| ≤ M ,

0, otherwise.

This sampling scheme has sampling rate Fs = 1/Ts = (2M +1)/T . Note that when M = K , this is almost the
rate of innovation ρ = 2K /T of the Dirac stream.
EPFL 2020 | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



17

Finite Rate of Innovation Sampling: Example

Figure: Sampling of a Dirac stream with rate of innovation ρ = 10/T . The sampling rate is Fs = 11/T .
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Finite Rate of Innovation Sampling: Summary

Let x(t) =∑
k′∈Z

∑K
k=1 xkδ(t− tk −Tk′). The latter can be sampled/reconstructed according to the following

schemes:

• Sampling:
1. Pre-filter the signal x(t) by an ideal low-pass filter with bandwidth N = 2M +1, M ≥ K ;
2. Sample uniformly the low-pass filtered signal with sampling rate Fs = N/T ;
3. Take the DFT of the time samples to get 2M +1 consecutive Fourier coefficients [x̂−M , · · · , x̂M ] of x.

• Reconstruction:
1. Solve the annihilating equation (7) via total least-squares to get the annihilating filter h = [h0, . . . ,hK ] ∈CK+1;
2. Compute the K roots uk of the polynomial

∑K
k=0 hkzk ;

3. Recover the Dirac stream innovations (xk , tk) from (4) and (8).
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Cadzow Denoising
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The Need for Denoising

In practical setups, the low-pass filtered time samples (9) are often polluted by noise. Consequently, the
Fourier coefficients x = [x̂−M , · · · , x̂M ] obtained by taking the DFT of the time samples are noisy too. For
strong noise perturbations, the annihilating equation

TK (x)h = 0N−K , such that ‖h‖ 6= 0,

may fail to admit a nontrivial solution. Indeed, noisy generators x can yield full column rank matrices TK (x)
with trivial nullspace.

A potential cure consists in denoising the Fourier coefficients x prior to solving the annihilating equa-
tion. This denoising step attempts to transform TK (x) into a Toeplitz matrix with rank at most K , thus
guaranteeing the existence of nontrivial solutions to the annihilating equation.
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The Method of Alternating Projections (MAP)

The method of alternating projections (MAP) is used in computational mathematics to approximate
projections onto intersecting sets. In its simplest form proposed by von Neumann in 1933 [4], the MAP
performs a cascade of n projection steps onto subsets {M1, . . . ,ML} of some Hilbert space H , starting
from a point z ∈H :

ž = [
ΠML · · ·ΠM1

]n (z). (10)

In (10), ΠMk
denotes the projection map onto Mk , defined for k = 1, . . . ,L as

ΠMk
:

H →Mk,

z 7→ arg min
x∈Mk

‖z−x‖,

for some norm ‖ ·‖ on H .
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Convergence of the MAP

In the case of closed linear subspaces {M1, . . . ,ML}, von Neumann and Halperin showed that [4, 5, 6]

lim
n→∞

∥∥∥[
ΠML · · ·ΠM1

]n (z)−Π⋂L
k=1 Mk

(z)
∥∥∥= 0, ∀z ∈H . (11)

The MAP equation (10) can therefore be used to approximate the complex projection map Π⋂L
k=1 Mk

.

For closed convex sets {M1, . . . ,ML}, Bregman [7] showed moreover the convergence of the MAP[
ΠML · · ·ΠM1

]n (z) towards a point4 in the intersection ž ∈⋂L
k=1 Mk.

In the case of non convex intersecting sets, the MAP is often used as a heuristic with no convergence
guarantees.

4This point may not necessarily be the projection Π⋂L
k=1

Mk
(z) however. Convergence towards the actual projection is achieved by

Dysktra’s MAP [8], one of the most popular variant to von Neumann’s original algorithm.

EPFL 2020 | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



23

Illustration of MAP

Figure: Iterative solution of finding the nearest vector in a convex set using MAP. (a) The convex sets are affine
subspaces. (b) Intersection of a general convex set and an affine subspace. (c) Intersection of two general convex
sets.
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Cadzow denoising
The standard denoiser in FRI is called Cadzow denoising [9]. The latter processes the noisy coefficients
x as follows:

x̌ = T†
K

[
ΠTK ΠHK

]n TK (x). (12)

The operator T†
K :C(N−K )×(K+1) →CN in (12) is the Moore-Penrose pseudoinverse of the Toeplitzification

operator TK . The latter maps a Toeplitz matrix on its generator by averaging across each diagonal of the
matrix.

Figure: Sampling of a Dirac stream with rate of innovation ρ = 10/T . The sampling rate is Fs = 11/T .

EPFL 2020 | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



25

Cadzow denoising (continued)

The operators ΠTK = TK T†
K and ΠHK in (12) are the projections onto respectively the subspace TK of

Toeplitz matrices and the subset HK of matrices with rank at most K :

HK :=
{

M ∈C(N−K )×(K+1) | rankM ≤ K
}

. (13)

The projection operator onto the space HK of matrices with rank at most K is given by the Eckart-Young-
Minsky theorem [10]. The latter states that the projection map

ΠHK (X ) = arg min
H∈HK

‖X −H‖F , X ∈C(N−K )×(K+1), (14)

can be computed in closed-form as:

ΠHK (X ) = UΛK V H , X ∈C(N−K )×(K+1), (15)

where X = UΛV H is the singular value decomposition of X , andΛK is the diagonalmatrix of sorted singular
values truncated to the K strongest ones.
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Cadzow Denoising as a MAP

Note that (12) leverages a MAP to approximate the complex projection ΠHK ∩TK :

ΠHK ∩TK ' [
ΠTK ΠHK

]n , n ∈N.

If this approximation is sufficiently good (n large enough) then the denoised Fourier coefficients x̌ should
generate a Toeplitz matrix with rank at most K , hence guaranteeing the feasibility of the annihilating
equation.

SinceHK is a non convex set the convergence of theMAPabove is however not guaranteed. Nevertheless,
experimental results [3, 9] suggest that Cadzow denoising almost always converges after a few iterations
(typically n ≤ 20).
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Cadzow Denoising: Example I [3]

Figure: Retrieval of an FRI signal with 7 Diracs (left) from 71 noisy (SNR = 5 dB) samples (right).
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Cadzow Denoising: Example II [3]

Figure: Retrieval of an FRI signal with 100 Diracs (left) from 1001 noisy (SNR = 20 dB) samples (right).
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Generalised FRI Sampling
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Generalised FRI Sampling

We have seen that the innovations of a Dirac stream could be recovered from consecutive Fourier coeffi-
cients, obtained by applying a discrete Fourier transform to the low-pass filtered uniform time samples.

In some applications however, the measurements available to us may not consist in low-pass filtered
time samples. In which case, the situation is more complex, and the Fourier coefficients x ∈CN must in
general be estimated from the measurements y ∈CL by solving a linear inverse problem:

y = Gx+n, (16)

where the application-dependent forward matrix G ∈CL×N ,L ≥ N , is assumed injective, and n is additive
noise, usually assumed to be a white Gaussian random vector.
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The Explicit Generalised FRI Problem
In [11], Pan et al.proposed the explicit generalised FRI (genFRI) optimisation problem to deal with (16).
The latter is a non convex constrained optimisation problem whose objective is to jointly recover the
Fourier coefficients x ∈CN –required to minimise a quadratic data-fidelity term– and their corresponding
annihilating filter coefficients h ∈CK+1. The annihilating equation linking the two unknowns is explicitly
enforced as a constraint, yielding an optimisation problem of the form:

min
x∈CN

h∈CK+1

∥∥Gx−y
∥∥2

2 subject to
{

TK (x)h = 0N−K ,

〈h,h0〉 = 1,
(17)

where h0 ∈CK+1 is an arbitrary vector generated randomly.

The annihilating constraint regularises the genFRI problem by making sure that the recovered Fourier
coefficients x can indeed be annihilated. The normalisation constraint5 〈h,h0〉 = 1 is used to exclude trivial
solutions to the annihilating equation in (17) [11, 12].

5In [11], the authors have also considered the more natural normalisation constraint ‖h‖ = 1. They claim however that this
normalisation strategy is less successful experimentally.
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The Implicit Generalised FRI Problem

The annihilating equation constraint in (17) complicates significantly the optimisation procedure. Indeed,
it requires the introduction of an extra unknown variable with non linear dependency on the data, namely
the annihilating filter h.

To circumvent this issue, Simeoni et al.proposed in [13] an implicit formulation of the genFRI problem, in
which only the Fourier coefficients are recovered:

min
x∈CN

∥∥Gx−y
∥∥2

2 subject to rankTK (x) ≤ K . (18)

The regularising rank constraint on TK (x) guarantees that solutions to (18) can be annihilated. Unlike (17),
this constraint does not explicitly involve the unknown annihilating filter.

This implicit regularisation hence greatly simplifies the genFRI problem: it decouples the problem of
estimating the Fourier coefficients from the problem of estimating the annihilating filter.
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Optimisation Algorithm
The optimisation problem (18) can be rewritten in unconstrained form as:

min
x∈CN

∥∥Gx−y
∥∥2

2︸ ︷︷ ︸
:=F(x)

+ ιHK (TK (x))︸ ︷︷ ︸
:=H(x)

, (19)

where HK is the non convex set of matrices with rank lower than or equal to K defined in (13), and
ιHK :C(N−K )×(K+1) → {0,+∞}, is the indicator function of HK . It is possible to optimise (19) by means of
proximal gradient descent (PGD), which proceeds iteratively as follows:

xk+1 = proxτH
(
xk −τ∇F

(
xk

))= proxτH

(
xk −τGH (Gxk −y)

)
, (20)

for k ≥ 0, x0 ∈CN , and τ> 0. We have the following convergence result [13, Theorem 2]:

Theorem: (Convergence of PGD for Injective G)

Assume that τ< 1/β with β= 2‖G‖2
2 and G ∈CL×N in (19) is injective, i.e. N (G) = {0N }. Then, any limit

point x? of the sequence {xk}k∈N generated by (20) is a local minimum of (19).
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Cadzow Plug-and-Play Gradient Descent (CPGD)
The proximal step is hard to compute exactly but can be approximated via Cadzow denoising [13, Section
IV.B]:

proxτH (x) = argmin
z∈CN

1

2τ
‖x−z‖2

2 + ιHK (TK (z)) ' T†
K

[
ΠTK ΠHK

]n TK (x), ∀x ∈CN , (21)

for some n ≥ 0. This yields an inexact PGD method, called Cadzow Plug-and-Play Gradient Descent:

Algorithm 1 Cadzow PnP Gradient Descent (CPGD)

1: procedure CPGD(τ> 0,x0 ∈CN ,K ∈N,n ∈N)
2: for all n ≥ 1 do
3: zk+1 := xk −2τGH (

Gxk −y
)

4: xk+1 := T†
K

[
ΠTK ΠHK

]n TK
(
zk+1

)
5: return (xk)k∈N

Such an approach is reminiscent of the plug-and-play (PnP) framework [14, 15] from image processing,
which leverages generic denoisers to approximate complex proximal operators [16].
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Generalised FRI: Irregular Time Samples [11]

Figure: Reconstruction of a stream of Diracs from ideally low-pass filtered samples taken at irregular time instances.
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Generalised FRI: Irregular Fourier Samples [11]

Figure: Reconstruction of weighted Diracs from non-uniform Fourier samples.
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Generalised FRI: Direction of Arrival (DOA) Estimation [17]

Figure: (a) Microphone array with 48 microphones. (b) Locations of the loudspeakers and microphone array in
experiments. (c) Anechoic chamber used for the experiments.
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Generalised FRI: Direction of Arrival (DOA) Estimation [17]

(a) Reconstruction of 10 acoustic sources. (b) Average DOA reconstruction error.
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