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Background Concepts
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Positron Emission Tomography (PET)

De�nition: (Positron Emission Tomography)

Positron Emission Tomography (PET) is a medical diagnostic technique that enables a physician to
study blood �ow in and metabolic activity of an organ in a visual way.

• A biochemical metabolite labeled with a
positron emitting radioactive material is
introduced into the organ.

• The biochemical (typically sugar for the brain)
concentrates in regions of high metabolic
activity.

• Positron emissions occur randomly are
counted by a PET scanner (ring of scintillation
detectors).
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Positron Emissions as Poisson Process

• Positron emissions occur randomly in S

according to a Poisson process.
• Rate of occurrence is characterised by an

intensity function ∏ : S !R.
• For a given region B ΩS of the organ, the

expected number of positron emissions N(B) is
given by

E[N(B)] =
Z

B

∏(x)dx.

• The intensity function is assumed to be
proportional to the metabolic activity of
interest.
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Indirectly Observed Poisson Process
• In practice, we cannot directly observe positron

emissions.
• Instead, we observe gamma rays induced by

annihilation with neighbouring electrons.
• Coincident gamma rays are recorded on a detector

ring.
• We speak of an indirectly observed Poisson process.

The number nd of gamma rays recorded by each
detector pair is Poisson distributed, with rate

nd ªP (∏̌d), ∏̌d = E[N(Ld)] =
Z

Ld

∏(x)dx, d = 1, . . . ,D,

where D denotes the total number of detector pairs
on the detector ring. ∏̌d corresponds to the line
integral of ∏ along the line Ld linking the d-th pair of
detectors on the detector ring.
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The Radon Transform

• Line integrals can be seen as samples of the so-called Radon
transform.

• The chord linking two points on a ring can be parametrised as:

L = {x 2R2 : hx,ªµi= p},

where p 2R, µ 2 [0,º) and ªµ = [cos(µ),sin(µ)] 2S1.
• The Radon transform maps a function ∏ onto its line integrals:

De�nition (Radon Transform)

The Radon transform ∏̌ : [0,º[£R!R of a function ∏ :R2 !R 2L 2(R2) is

∏̌(µ,p) = (R∏)(µ,p) :=
Z

R2
∏(x)±(p°hx,ªµi)dx.
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Example: Radon Transform of a Gaussian
Example: Radon Transform of a Gaussian
Let f (x,y) = e

°º(x
2+y

2),8(x,y) 2R2. Then,

f̌ (µ,p) =
Z+1

°1

Z+1

°1
e
°º(x

2+y
2)±

°
p°cos(µ)x° sin(µ)y

¢
dxdy, (�)

We perform the following orthogonal transformation:
µ

u

v

∂
=

µ
cosµ sinµ
°sinµ cosµ

∂µ
x

y

∂
.

The transformation is orthogonal, and thus u
2 +v

2 = x
2 +v

2. Moreover, in this new basis, the equation of
the line L = {(x,y) 2R2 : cos(µ)x+ sin(µ)y = p} becomes simply: L = {(u,v) 2R2 : u = p}. Eq. (�) hence
becomes:

f̌ (µ,p) =
Z+1

°1

Z+1

°1
e
°º(u

2+v
2)±(p°u)dudv = e

°ºp
2
Z+1

°1
e
°ºv

2
dv = e

°ºp
2

,

where we have used the well known result
R1
1 e

°t
2

dt =
p
º. Hence, we have: R{e

°º(x
2+y

2)} = e
°ºp

2 .
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Example: Radon Transform of a Gaussian

(a) The Gaussian distribution. (b) Radon transform of the Gaussian distribution.

Figure: The Gaussian distribution and its Radon transform.
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Example: Radon Transform of Ellispes [�, Example �.�]

(a) Sum of ellipses’ characteristic functions with
heights given by the color of each ellipse.

(b) Radon transform.

Figure: The Radon transform of a sum of ellipses’ characteristic functions.
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Basic Properties of the Radon Transform
Proposition: (Properties of the Radon Transform)

• Linearity: Let f and g be two functions and Æ,Ø 2R. Then,

R{Æf +Øg} =ÆRf +ØRg.

• Shifting Property: Let g(x) = f (x°a) for some a 2R2. Then we have:

Rg(µ,p) =Rf
°
µ,p°

≠
ªµ ,a

Æ¢
, 8(µ,p) 2 [0,º)£R.

• Scaling Property: Let g(x) = f (Æx) for some Æ 6= 0. Then we have:

Rg(µ,p) = 1

Æ2 Rf
°
µ,Æp

¢
, 8(µ,p) 2 [0,º)£R.

Proof:
• Linearity: R{Æf +Øg} =

R°
Æf (x)+Øg(x)

¢
±(p°ª ·x)dx =Æf̌ +Øǧ.

• Shifting Property: R{f (x°a)} =
R

f (x°a)±(p°ª ·x)dx =
R

f (y)±(p°ª ·a°ª ·x).
• Scaling Property: R{f (Æx)} =

R
f (Æx)±(p°ª ·x)dx = 1

Æ

R
f (y)±(p° 1

Æª ·y) = 1
Æ2

R
f (y)±(Æp°ª ·y).
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Link with �D Fourier Transform
The Radon and Fourier transforms are linked by the
projection-slice theorem:

Lemma: (Projection-Slice Theorem)

For any µ 2 [0,º) we have:
Z

R
R∏(µ,p)e

°j!p
dp = ∏̂(!cosµ,!sinµ),

where ∏̂ :R2 !C is the �D Fourier transform of ∏.

Proof � :

2D Radon 
Domain

2D Fourier 
Domain

Slice
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Back to PET
• A PET scanner samples the Radon transform of the metabolic activity.
• Samples are polluted by Poisson noise, resulting in the data:

n(µd ,pd) ªP
°
∏̌(µd ,pd)

¢
, d = 1, . . . ,D.

• It is customary to represent the data in the (µ,p) 2 [0,º)£R plane, yielding a sinogram.

(a) Metabolic activity
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(b) PET data as a Sinogram
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Complications with Real-life Scanners

• In practice, the detectors have a certain width. We
have hence detector tubes instead of lines,

Td =
n

x 2R2 : |hx,ªdi°pd|∑ ≤d

o

=
n

x 2R2 :¬d

≥
pd °hx,ªµd

i
¥
= 1

o
.

• Actual data hence consist in tube integrals and not
line integrals:

∏̌(µd ,pd) = E[N(Td)] =
Z

R2
∏(x)¬d

≥
pd °hx,ªµd

i
¥

dx.

• Formulating the data model in terms of the Radon transform is hence only valid in the limit for
in�nitely thin detectors.
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Radon-based Tomographic Reconstruction
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Inverting the Radon Transform

The Radon transform is invertible. Inversion formula in �D is given by the �ltered back-projection (FBP)
formula [�]:

Theorem: (Filtered Back-Projection)

Let ∏ :R2 !R be suf�ciently smooth. Then we have

∏(x) = 1

(2º)2

Zº

0

£
∏̌(µ, ·)§h

§
(hx,ªµi)dµ,

where h :R!R –called the Ramp �lter– is de�ned in terms of its Fourier transform ĥ(!) := |!|, 8! 2R.
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Inverting the Radon Transform

• Holographic result: Reconstruct �D object from
many �D projections (pro�les).

• The Ramp �lter, with Fourier transform
ĥ(!) = |!|, is a roughening �lter, acting as a
derivative.a It makes objects more singular,
with sharper edges.

• The function ∏must hence be suf�ciently
smooth for the inversion formula to be
well-de�ned!

aRecall that in the Fourier domain differentiating accounts to
multiplying by j!: F {g}(!) = j!ĝ(!).
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Interpretation of FBP
• The adjoint of the Radon transform R is given, for all µ : [0,º)£R!R, by

R
§µ=

Zº

0
µ(µ,hx,ªµi)dµ.

Indeed,

hR∏,µi=
Zº

0

Z

R

∑Z

R2
∏(x)±(p°hx,ªµi)dx

∏
µ(µ,p)dpdµ

=
Z

R2
∏(x)

∑Zº

0
µ(µ,hx,ªµi)dµ

∏
dx = h∏,R§µi.

• R
§ performs a back-projection: all sinogram points to which x contributed to are summed together.

• The inverse Radon transform decomposes as:

R
°1 = 1

(2º)2 R
§∏̃, where ∏̃(µ,p) =

Z

R
∏̌(µ,p° t)h(t)dt = 1

2º

Z

R
|!|∏̂(!ªµ)e

j!p
d!,

where the last equality results from the projection-slice and convolution/multiplication theorems.
• In summary: �rst apply �D �lter h to slices ∏̌(µ, ·) of the Radon transform, then back-project with R

§.
Hence the name: �ltered back-projection.
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Filtered Backprojection in Practice

• Tubes are assumed narrow and approximated by lines
with coordinates (µd ,pd).

• Samples are typically non-uniform and noisy.
• Discrete FBP for uniform samples in the p-direction is

given by

∏FBP(x) = ¢µ
(2º)2

NµX

n=1

°
∏̃[µn, ·]~h

¢£
bhx,ªµn

i/¢pc
§
, x 2R2.

• Data must be gridded.
• Convolution is approximated by a circular discrete

convolution, ef�ciently implemented via FFT/iFFT.
• The routine skimage.transform.iradon implements the

discrete FBP in Python.
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Example
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Issues with FBP

• Gridding is expensive and ad-hoc.
• Discrete formula makes a lot of approximations (circular convolution, interpolation).
• Border effects due to circular convolution.
• Ramp �lter boosts high frequencies, generally polluted by noise. FBP is unstable and must be

regularised by truncating or more generally windowing the Ramp �lter (optimal window?).

(c) Metabolic activity (d) FBP Estimate (e) Error
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Sampling & Interpolation in PET
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Sampling Operator

• De�ne H =L
2(B1) with B1 the unit disk (the brain space).

• We can link the measurements (n1, . . . ,nD) to the Poisson process of interest N through a sampling
operator ©§ : H !RD : 2

664

n1
...

nD

3
775=©§

N =

2
664

hN ,¡1iH
...

hN ,¡DiH

3
775 ,

where ¡d are the indicator functions of the detector tubes:

¡d(x) =¬d(x) =
(

1 if x 2Td ,

0 otherwise.
.
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Sampling Operator

• Since ©§ is linear, on expectation we have
2
664

∏§1
...
∏§

D

3
775=©§∏=

2
664

h∏,¡1iH
...

h∏,¡DiH

3
775 .

• Measurements give us evidence about the components of ∏ in R(©) = span{¡1, . . . ,¡D}.
• Goal: to solve this inverse problem and �nd an estimate ∏.
• This is an ill-posed problem: any component in N (©§) is unaccessible to us

©§∏=©§∏1 +©§∏2| {z }
=0

=©§∏1,

where ∏=∏1 +∏2 2R(©)©N (©§) =H .
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Least-Squares Estimate

• An estimate of ∏ can be obtained by solving

∏? 2 argmin
∏2H

kn°©§∏k2
2

• No unique solution!
• Impose minimal L2 norm and ∏ 2R(©) for uniqueness.
• Leads to the generalised Moore-Penrose pseudo-inverse solution:

∏? = (©§)†n.
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Ideally-Matched Interpolation

• Generalised pseudoinverse is given by

(©§)† =©(©§©)°1,

and the least-squares estimate is hence given by

∏?(x) = (©(©§©)°1n)(x) =
DX

d=1
ñ¡d(x),

where ñ = (©§©)°1n 2RD.
• Recovery in two steps: apply Gram correction to the data, and interpolate using the synthesis

operator ©, adjoint of ©§

© :

(
RD !R(©),

y 7! (©y)(x) =P
D

d=1 yd¡d(x).

• We have consistency ©§(©§)† = ID and hence (©§)†©§ is an orthogonal projection.
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About the Gram Matrix

• The quantity ©§© 2RD£D is the Gram matrix.
• An element of the Gram matrix is given by

(©§©)ij = h¡i,¡ji.

• Need to compute areas of parallelograms! Can
be ef�ciently computed analytically.

• Dense matrix! Basis elements are not
localised...

• Dense = ill-conditioned (often)
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Regularisation
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Eigenfunctions of the Integral Operator

• We have
©(©§©)°1©§©Æ=©Æ.

• Hence any element of R(©) is an eigenfunction with eigenvalue 1. To get orthogonal eigenspaces,
we need to �nd {Æ1, . . . ,ÆD} ΩRD s.t.

h©Æi,©Æji=ÆT

j
(©§©)Æi = 0.

• Choosing {Æ1, . . . ,ÆD} eigenvectors of ©§© yields the spectral decomposition:

©(©§©)°1©§ =
DX

d=1

1
¥d

(©Æd)(©Æd)§,

where ¥d = k©Ædk2
2 =ÆT

d
(©§©)Æd .
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Noisy Measurements

• We can hence re-write the pseudo-inverse estimate as

∏? =
DX

d=1

h∏,©Ædi
¥d

(©Æd) =
DX

d=1

ÆT

d
n

¥d

(©Æd).

• In practice, measurements are noisy (Poisson noise). For
high rates we can approximate

n =©§∏ + ≤,

with ≤ªN (0,ß).
• Small ¥d may lead to numerical instability! Need

regularisation...
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Spectrum Gram Matrix
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Back to the Eigenfunctions
• Small ¥d correspond to high-frequency eigenfunctions! Without regularisation the estimate will be

dominated by those eigenfunctions and hence very wiggly...

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



��

Regularisation

• Two avenues: Spectral truncation vs. Tikhonov regularization.
• Spectral truncation:

∏?
ST

=
øX

d=1

ÆT

d
n

¥d

(©Æd),

with ø∑ D some integer, truncation parameter.
• Tikhonov regularization:

∏?Ω =
DX

d=1

ÆT

d
n

¥d + Ω
(©Æd),

with Ω > 0, called the ridge parameter.

• Act as smoothers. Tikhonov performs better (in terms of consistency), but spectral truncation is
more economic computationally (less terms in the summation).
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Spectral Truncation

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



��

Spectral Truncation (Point Spread Function)
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Final Estimate
• Optimal truncation parameter chosen according to the width of point spread function main lobe.
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Comparison: FBP vs. Interpolation
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Comparison: FBP vs. Interpolation
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Comparison: FBP vs. Interpolation

• Interpolation produces more accurate images than state of the art methods.
• Estimate can be sampled and displayed at any resolution (continuous estimate).
• Filtered backprojection scales however better with the number of detectors.
• Indeed the Gram matrix is expensive to compute and invert.
• Need to investigate dimensionality reduction via sketching (random projections):

™§ = W
H©§,

with W
H :RD !RL, L ø D.
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Gaussian Sketching

• Choose √m(x) =P
D

d=1 Wdm¡d(x), with

Wdm

i.i.dª N (0,æ).

• New Gram is G™ = W
H©§©W .

• If æ= 1/trace(©§©) we can show that

E
h

W
H©§©W

i
= IL£L.

• Sketching acts as a preconditioner (improves
conditioning). In expectation, the Gram is identity...

• Basis functions are less coherent.

EPFL ���� | Mathematical Foundations of Signal Processing M. Simeoni & B. Bejar Haro



��

Compression Factor
• In practice we only have one random realization of W

H©§©W .
• No guarantee it would fall near the mean!
• For small dimensions, this is more likely to be the case.
• Example: for D = 7140 and L = 3160, we go from ∑(G©) = 1.9458£1021 to ∑(G™) = 7476.
• Huge improvement (�8 orders of magnitude)!
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Results (D = 7140, M = 3160)
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Results (D = 7140, M = 3160)
• Eigenfunctions of the sketched sampling operator ™§:
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Comparison without/with Sketching
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Comparison Sketching vs. FB
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Comparison without/with Sketching
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Comparison Sketching vs. FB
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