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Background Concepts




Positron Emission Tomography (PET)

Definition: (Positron Emission Tomography)

Positron Emission Tomography (PET) is a medical diagnostic technique that enables a physician to
study blood flow in and metabolic activity of an organ in a visual way.
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Radioactive tracer

» A biochemical metabolite labeled with a
positron emitting radioactive material is
introduced into the organ.

 The biochemical (typically sugar for the brain)
concentrates in regions of high metabolic
activity.

« Positron emissions occur randomly are Scintillation detectors

counted by a PET scanner (ring of scintillation
detectors).

Annihilation



Positron Emissions as Poisson Process

{3 Non decayed nuclei
@ Decayed nuclei
(positron emission)

« Positron emissions occur randomly in .
according to a Poisson process.

« Rate of occurrence is characterised by an
intensity function 1:.# —R.

« For a given region Bc.# of the organ, the
expected number of positron emissions N(B) is
given by

EIN(B) = fB A dx.

« The intensity function is assumed to be
proportional to the metabolic activity of
interest.



Indirectly Observed Poisson Process

« In practice, we cannot directly observe positron
emissions.

« Instead, we observe gamma rays induced by
annihilation with neighbouring electrons.

« Coincident gamma rays are recorded on a detector
ring.

« We speak of an indirectly observed Poisson process.
The number n,; of gamma rays recorded by each
detector pair is Poisson distributed, with rate

ng~2MAg, id=[E[N(Ld)]=fL Ax)dx, d=1,...,D,
d

where D denotes the total number of detector pairs
on the detector ring. 1 corresponds to the line
integral of A along the line L, linking the d-th pair of
detectors on the detector ring.




The Radon Transform

« Line integrals can be seen as samples of the so-called Radon
transform.
« The chord linking two points on a ring can be parametrised as:

L={xecR’: @ &) =ph

where peR, 0 € [0,7) and &y = [cos(0),sin(0)] € S.
« The Radon transform maps a function A onto its line integrals:

Definition (Radon Transform)

The Radon transform A: [0, 7[xR — R of a function 1 : R% — R e £2(R?) is

A6,p) = (@O, p) = fR , A@B(p—(x,&g)) dx.



Example: Radon Transform of a Gaussian

Example: Radon Transform of a Gaussian
Let f(x,) = e’”(x2+y2),V(x,y) € R%. Then,

. +00 p+oo 2
16,p) =f f el +y2)5(p—cos(0)x—sin(6)y) dxdy, O
—00 —00 /\
We perform the following orthogonal transformation: %}

© L
u) [ cosf sinf \( x o B¢ H
v ) | —sinf cosO y ) >t s' X
The transformation is orthogonal, and thus 2 + ¥ = x* + ¢2. Moreover, in this new basis, the equation of

the line L= {(x,y) € R?: cos(0)x+sin(0)y = p} becomes simfPly: L= {(1, v) e R? : u= p}. Eq. (1) hence
becomes:

o +o00 p+oo +00
fO,p =f f e_”(“2+l’2)6(p— u)dudvze_”’”zf e =,
—00 —00 —00

where we have used the well known result [3° e~ dr = /7. Hence, we have: (e 7 )} = ¢~



Example: Radon Transform of a Gaussian
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(a) The Gaussian distribution. (b) Radon transform of the Gaussian distribution.

Figure: The Gaussian distribution and its Radon transform.



Example: Radon Transform of Ellispes [1, Example 2.2]
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(a) Sum of ellipses’ characteristic functions with (b) Radon transform.
heights given by the color of each ellipse.
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Figure: The Radon transform of a sum of ellipses’ characteristic functions.



Basic Properties of the Radon Transform

Proposition: (Properties of the Radon Transform)

« Linearity: Let f and g be two functions and «, 5 € R. Then,
Riaf+Pg = aRf+ PRG.
« Shifting Property: Let g(x) = f(x— a) for some a < R?. Then we have:

#80,p) = Rf (0,p— (&9, a)), Y0, p) € [0,7) xR.

« Scaling Property: Let g(x) = f(ax) for some a # 0. Then we have:

1
RGO, p) = ?%f(e,ap), Y0, p) € [0,7) xR.

Proof:
o Linearity: Z{af + Bg} = [ (af®) + Bg®) 5(p—& -x)dx = af + BE.
« Shifting Property: Z{f(x—a)} = [fx—a)d(p—&-xdx= [fy)6(p—&-a—&-x).
« Scaling Property: (f(ax)} = [ f(ax)8(p—§-X)dx= § [ f)S(p— 5&-Y) = 25 [f)d(ap-§-y).



Link with 2D Fourier Transform

The Radon and Fourier transforms are linked by the

projection-slice theorem: 2D Radon
Domain
Lemma: (Projection-Slice Theorem) o
p 5
For any 0 € [0,7) we have: ®
f%A(E),p)eij‘“pdp:i(wcosf),wsin@), )\
R

0 , )
1 A 7Jpw I
where 1:R2 — C is the 2D Fourier transform of A. //R’\(e’p)e dp

P\I;OOf.‘ Do ZDI(D”I;:::ier /
/m)‘(bn(’)ew?o\p;)() AR) §(p- <x?’>)o\7§ 55 <1
=
X

}R A(?O eI (p- <x,§ P>A h\
] AR) c‘d‘°<"/§lz, 4% - Aflwy) _ B lwes, WS &)




Back to PET

« A PET scanner samples the Radon transform of the metabolic activity.
« Samples are polluted by Poisson noise, resulting in the data:

n@apa) ~2(AO04pa), d=1,...,D.

« Itis customary to represent the data in the (6, p) € [0,7) x R plane, yielding a sinogram.
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(a) Metabolic activity (b) PET data as a Sinogram




Complications with Real-life Scanners %, (p)- ﬁ A leg-pI€ &g
0 wse

« In practice, the detectors have a certain width. We Detector tube d

have hence detector tubes instead of lines,
Lol_d = {xe Rz : |(x,£d> - Pd| = (:’d}

:{x(—: Rz:ﬂ(pd—(x,fgd)] = 1}.

o Actual data hence consist in tube integrals and not
line integrals:

AOg, pa) = EIN(T )] ZfRZ//l(x)Xd[Pd—@,EGd)] dx. “/f\_’/

« Formulating the data model in terms of the Radon transform is hence only valid in the limit for
infinitely thin detectors.



Radon-based Tomographic Reconstruction




Inverting the Radon Transform

The Radon transform is invertible. Inversion formula in 2D is given by the filtered back-projection (FBP)
formula [2]:

Theorem: (Filtered Back-Projection)

Let A:R2 — R be sufficiently smooth. Then we have

1 L.
Ax)= ——= AO,)) xh 8 do,
@)= s | A0« 1] (. 80)

where h:R — R —called the Ramp filter— is defined in terms of its Fourier transform h(w) := |w|, Yo € R.

(fon)(p => 1ol &
(reasdin@oiade © H’*’-"“"“)



Inverting the Radon Transform

« Holographic result: Reconstruct 2D object from
many 1D projections (profiles).

o The Ramp filter, with Fourier transform
) =|ol, is a roughening filter, acting as a
derivative.? It makes objects more singular,
with sharper edges.

« The function A must hence be sufficiently
smooth for the inversion formula to be
well-defined!

@Recall that in the Fourier domain differentiating accounts to
multiplying by jo: F{gl(w) = jwg(w).




Interpretation of FBP
« The adjoint of the Radon transform £ is given, for all u: [0,7) xR — R, by

T
2 =f0 1, (x,£9))do.

T
(e%ﬂtym:f f f /l(x)(S(P—(x,fe))dx]#(G,P)dpde
0 JrIJR2

T
:f[RZ A(x) \[0 M(9’<xvze>)d9] dx:(ﬂ»,-%*l,l).

« %* performs a back-projection: all sinogram points to which x contributed to are summed together.
« The inverse Radon transform decomposes as:
a1
(2m)?
where the last equality results from the projection-slice and convolution/multiplication theorems.

« In summary: first apply 1D filter hto slices A(6,-) of the Radon transform, then back-project with 2%*.
Hence the name: filtered back-projection.

Indeed,

#*1, where 1(0,p)= f 16, p— oh(de = - f lwlA(©Eg) P do,
R 21 Jr



Filtered Backprojection in Practice

o Tubes are assumed narrow and approximated by lines
with coordinates (6,4, p)-

« Samples are typically non-uniform and noisy.

« Discrete FBP for uniform samples in the p-direction is
given by

Ap No 2 N 2
ApBp(%) = (27)2 Z ( [On,-1® h) [\_<x,§9”>/ApJ], xeR".

n=1

« Data must be gridded.

« Convolution is approximated by a circular discrete
convolution, efficiently implemented via FFT/iFFT.

o Theroutine skimage.transform. iradon implements the
discrete FBP in Python.




Example

Ground Truth

Filtered Backprojection Error filtBackprojection

Ground Truth Filtered Backprojection

Error filtBackprojection




Issues with FBP

o Gridding is expensive and ad-hoc.
« Discrete formula makes a lot of approximations (circular convolution, interpolation).
« Border effects due to circular convolution.

Ramp filter boosts high frequencies, generally polluted by noise. FBP is unstable and must be
regularised by truncating or more generally windowing the Ramp filter (optimal window?).

€CC

) Metabolic activity ) FBP Estimate




Sampling & Interpolation in PET




Sampling Operator

« Define # = 2 (B;) with B, the unit disk (the brain space).
o We can link the measurements (n,..., np) to the Poisson process of interest N through a sampling
operator ®* : # —RP:
n (N, 1) 72

E ZQ*N: : y
np (N, ¢p) 7

where ¢ are the indicator functions of the detector tubes:

1 iffofd,

¢al0) = xald = {0 otherwise.



Sampling Operator

« Since ®* is linear, on expectation we have

AT A1) 7
| =0"As :
AL (A ¢D) 7
« Measurements give us evidence about the components of A in Z(®) = spani¢y,...,$p}.

« Goal: to solve this inverse problem and find an estimate A.
« Thisis anill-posed problem: any component in A4/ (®*) is unaccessible to us
P A=P A+ D Ny =D* N4,
=0

where A =11 + 1y € Z(D) & N (DF) = .



Least-Squares Estimate

« An estimate of A can be obtained by solving

A* € argmin||n—®* Al|5
AeFE

« No unique solution!
« Impose minimal % norm and 1 € (®) for uniqueness.
« Leads to the generalised Moore-Penrose pseudo-inverse solution:

A* =@



Ideally-Matched Interpolation

« Generalised pseudoinverse is given by
@M =o@ o),

and the least-squares estimate is hence given by

D
MW= @@ O mw =Y iy,
d=1

where 2= (@*®) " neRP.

« Recovery in two steps: apply Gram correction to the data, and interpolate using the synthesis
operator @, adjoint of ®*

RP — 2(®),
y— @@ =X yipa.

« We have consistency ®*(@*)" = Ip and hence (@*)T®* is an orthogonal projection.



About the Gram Matrix

« The quantity ®*® € RP*P is the Gram matrix.
« An element of the Gram matrix is given by

(@ @) = (i, p))-

« Need to compute areas of parallelograms! Can
be efficiently computed analytically.

« Dense matrix! Basis elements are not
localised...

« Dense = ill-conditioned (often)




Regularisation




Eigenfunctions of the Integral Operator

« We have
@ D) lo*da = da.

« Hence any element of 2(®) is an eigenfunction with eigenvalue 1. To get orthogonal eigenspaces,
we need to find {ay, ..., ap} cRP s t.

T O =
(Pa;da) = a] (@ D)a;=0.

o Choosing {«y,..., ap} eigenvectors of ®*® yields the spectral decomposition:

D

* ry— 1 *

D@ ) I0* = Y —(day @ay*,
d=1Md

where ng = |Payl3 = al (@* D)ay.



Noisy Measurements

« We can hence re-write the pseudo-inverse estimate as

T

D (A, da D a,n
1% = Z u@ad): Z L(Cbad).
d=1 Na da=1 Na

Spectrum Gram Matrix

« In practice, measurements are noisy (Poisson noise). For
high rates we can approximate

n=0%1+¢,

with e ~ A4(0,%).

« Small n,; may lead to numerical instability! Need
regularisation...

Ad
N W AR TN O

100 200 300 400



Back to the Eigenfunctions

« Small n; correspond to high-frequency eigenfunctions! Without regularisation the estimate will be
dominated by those eigenfunctions and hence very wiggly...

Index=4

Index=12 Index=600




Regularisation

« Two avenues: Spectral truncation vs. Tikhonov regularization.
« Spectral truncation:
T oagn
V=Y 22 0y,
d=1 Nd

with T < D some integer, truncation parameter.
« Tikhonov regularization:

D aTn

Ap=

a=1Mat+p

(DPay),

with p >0, called the ridge parameter.

« Act as smoothers. Tikhonov performs better (in terms of consistency), but spectral truncation is
more economic computationally (less terms in the summation).



Spectral Truncation

No Gram Correction Truncation=1e-02x \,,,4 Truncation=5e-03 X \,,,02
Truncation=1e-03X A0z Truncation=1e-07 X A0z Truncation=1e-10X A0z




Spectral Truncation (Point Spread Function)

No Gram Correction Truncation=1e-02X A0z Truncation=5e-03x \,,,4
Truncation=1e-03X A0 Truncation=1e-07 X A0z Truncation=1e-10X A,z




Final Estimate

« Optimal truncation parameter chosen according to the width of point spread function main lobe.

Ground Truth Estimate Error
Ground Truth Estimate Error




Comparison: FBP vs. Interpolation

Ground Truth Filtered Backprojection Error filtBackprojection

Ground Truth Estimate




Comparison: FBP vs. Interpolation

Ground Truth Filtered Backprojection Error filtBackprojection

Ground Truth Estimate




Comparison: FBP vs. Interpolation

« Interpolation produces more accurate images than state of the art methody.

« Estimate can be sampled and displayed at any resolution (continuous estimate).
« Filtered backprojection scales however better with the number of detectors.

« Indeed the Gram matrix is expensive to compute and invert.

« Need to investigate dimensionality reduction via sketching (random projections):

p* = WHcD*

with Wi :RP — Rl L« D.



Gaussian Sketching

« Choose y/(x) = X1 Wy¢(x), with

ii.d

Wam 24N (0,0).

« New Gram is Gy = W ow.
e If o =1/trace(®* ®) we can show that

[E[Wch*cbw] = IixL.

Sketching acts as a preconditioner (improves
conditioning). In expectation, the Gram is identity...

Basis functions are less coherent.




Compression Factor

« In practice we only have one random realization of W”@*@Ww.

« No guarantee it would fall near the mean!

« For small dimensions, this is more likely to be the case.

« Example: for D=7140 and L= 3160, we go from «(Gg) = 1.9458 x 10?! t0 x(Gy) = 7476.
« Huge improvement (18 orders of magnitude)!

T T T T T T =
|
1015 4
___Conditioning Number
after randomization
= 10} - Onglbnal conditioning I
A number
-
<
10° 1
10”

10 20 30 40 50 60 70 80 90
Dimensionality L




Results (D =7140, M = 3160)

Basis Function 1 Basis Function 1264

Basis Function 632

Basis Function 3160




Results (D =7140, M = 3160)

« Eigenfunctions of the sketched sampling operator ¥*:

Index=1 Index=4 Index=8

¥

Index=12 Index=26




Comparison without/with Sketching

Ground Truth Estimate

Error

Ground Truth Estimate Error




Comparison Sketching vs. FB

Ground Truth Filtered Backprojection Error filtBackprojection

Ground Truth Estimate




Comparison without/with Sketching

Ground Truth Estimate Error

Ground Truth Estimate Error




Comparison Sketching vs. FB

Ground Truth Filtered Backprojection Error filtBackprojection

Ground Truth Estimate
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