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Abstract: The standard approach to deal with uncertainty in dynamic optimization
is to take a conservative stand. Measurement-based optimization schemes allow
reducing this conservatism by using measurements to compensate for the uncer-
tainty. On the example of the productivity optimization of a batch distillation
column with a terminal quality constraint, various model-based and model-free
optimization schemes are compared. They all use measurements to update the
input from batch-to-batch or within a batch. A novel mid-course correction scheme
for satisfying the terminal constraint is proposed. Copyright c©2002 IFAC
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1. INTRODUCTION

The optimization of batch processes has received
increasing attention since it is a natural choice
for maximizing productivity. Typically, the quan-
tity of the desired product is maximized at final
time while respecting operational path constraints
and terminal quality constraints. The classical
approach is to apply open-loop input profiles
that have been determined off-line. In practical
applications, perturbations and uncertainties are
present, which may lead to constraint violation or
non-optimal operation. To satisfy the constraints
despite uncertainty, conservative input trajecto-
ries that guarantees feasibility needs to be found
(Terwiesch et al., 1994). However, such a conser-
vative strategy is, in most cases, non-optimal.

When suitable measurements are available, they
can be used in the optimization scheme to reduce
conservatism (Bonvin et al., 2001). Depending
on the availability of measurements, the inputs
are updated during the batch (intra-batch) or
in a batch-to-batch manner (inter-batch). The
intra-batch optimization is capable of coping with

perturbations that occur during a batch run.
The objective of inter-batch optimization is to
exploit the repetitive nature of batch processes to
find the optimal operating conditions iteratively
(Srinivasan et al., 2001).

Two approaches can be distinguished depending
on whether or not the model is used at the im-
plementation level (Srinivasan et al., 2002). In
the indirect approach, where a model is used
for implementation, the estimates of the states
and/or parameters are used to compute updated
optimal trajectories. In the direct batch-to-batch
approach, the parameters of the inputs are up-
dated using a feedback controller (without the use
of a model) to meet the terminal constraints. With
on-line measurements, the direct approach re-
quires a mid-course correction strategy to satisfy
the terminal constraints, for which only very few
studies have been reported (Yabuki and MacGre-
gor, 1997). This paper proposes a novel scheme
that tracks an off-line determined trajectory.

As an example, the optimal operation of a batch
binary distillation column is studied. Numerous



publications deal with the optimization of batch
distillation columns in the case of no uncertainty
(Robinson, 1969; Hansen and Jørgensen, 1986; Di-
wekar et al., 1987; Farhat et al., 1991). The objec-
trive is to maximize the quantity of distillate at
final time, or to minimize the time of operation
for a given productivity. Typically, a terminal
constraint on the average distillate quality is im-
posed. In this paper, the problem of maximizing
productivity with a terminal constraint on quality
will be studied with the reflux ratio being the sole
the manipulated variable. Various measurement-
based optimization schemes will be evaluated in
the presence of uncertainty in the relative volatil-
ity and boilup rate, with the measurement of the
average distillate composition used to compensate
for the uncertainty.

This paper is organised as follows: In the next
section, a classification of optimization schemes
to deal with uncertainty is undertaken. Section
3 describes the on-line tracking scheme that can
be used for tracking terminal constraints. The
problem of optimizing a distillation column is
presented in Section 4, and various optimization
schemes are evaluated on this example in Section
5. Finally, conclusions are drawn in Section 6.

2. CLASSIFICATION OF OPTIMIZATION
SCHEMES

The terminal-cost optimization problem with un-
certain parameters θ, perturbations dk(t) and
measurement noise vk in the kth batch can be
stated mathematically as follows:

max
uk(t)

Jk = φ(xk(tf ), θ) (1)

s.t. ẋk = F (xk, uk, θ) + dk(t), xk(0) = xk0

S(xk, uk, θ) ≤ 0, T (xk(tf ), θ) ≤ 0

yk = h(xk, θ) + vk(t)

given zj , ∀ j = {1 . . . k−1}
or yk(ti), ∀ i = {1 . . . l}

where Jk is the cost function, uk the inputs, xk the
states with initial conditions xk0 , S(xk, uk, θ) the
path constraints, and T (xk(tf ), θ) the terminal
constraints. The measurements at the end of the
jth batch are represented by zj , j = {1 . . . k−1},
and yk(ti) represents the on-line measurements at
time instant ti in batch k.

In the presence of uncertainty, the introduction of
a security margin (backoff) for active constraints
is necessary. Backoffs (bS ≥ 0, bT ≥ 0) can
added to the path and terminal constraints as
in: S(xk, uk, θ) + bS ≤ 0, T (xk(tf ), θ) + bT ≤ 0.
The backoffs are so chosen that the probability of
constraint satisfaction is larger than a prespecified

confidence level. Since the backoffs affect the opti-
mal solution which in turn affects the backoffs, the
backoffs have to be calculated using an iterative
scheme (Srinivasan et al., 2002).

Different dynamic optimization schemes are clas-
sified in Figure 1 (Bonvin et al., 2001). Possible
combinations of the schemes are not considered,
whereby certain parameters are adapted on-line
and others in a batch-to-batch basis.
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Fig. 1. Classification of dynamic optimization
schemes in the presence of uncertainty

2.1 Nominal optimization

When uncertainty is neglected, the nominal or ex-
pected values of the uncertain parameters are used
in the optimization. Thus, the nominal solution
may not even be feasible, let alone optimal, in the
presence of uncertainty.

2.2 Robust optimization

Taking the uncertainty into account explicitly, a
robust solution is obtained, for example by consid-
ering the worst-case scenario for the constraints
and optimizing the cost in an expected sense.
Such a conservative solution guarantees feasibility,
however the cost is inferior due to the introduction
of backoffs.

2.3 Batch-to-batch optimization, refined model

When measurements are available at the end of
the batch, they can be incorporated into an opti-
mization scheme that updates the input trajecto-
ries in a batch-to-batch manner. The optimization
scheme consists of two steps:
(i) estimation of the uncertain parameters at the
end of each batch, and
(ii) computation of the optimal input trajectories
using the refined model.
Both steps use the model explicitly and can be-
come computationally expensive with large mod-
els. Additionally, a conflict between identification
and optimality objectives may be observed: If, the
input it not sufficiently excited, it may not be rich
enough to uncover the uncertain parameters. On
the other hand, if the input is sufficiently excited,
the operation may no longer be optimal.



2.4 On-line optimization, fixed model

When measurements are available during the
batch, reoptimization can be executed with the
advent of every measurement. It is supposed that
reoptimization can be completed in-between the
measurements, so that the inputs are updated
after each measurement. When a fixed model is
used, only the states are estimated and the opti-
mal trajectory is calculated for the remaining of
the batch. However, the computed optimal solu-
tion can become infeasible, especially towards the
end of the batch, due to model inaccuracies.

2.5 On-line optimization, refined model

To compensate for the model inaccuracies, the un-
certain parameters can also be estimated on-line
using the available measurements. The estimated
parameters are then used in a refined model for
the calculation of the optimal trajectory. When
such an approach is used, the issue of persistent
excitation need to be addressed explicitly.

2.6 Batch-to-batch optimization, model-free

In the model-free implementation schemes, the
measurements are used directly to adapt the op-
timal input. They use the fact that the optimal
inputs of (1) consist of various arcs and the in-
puts can be parameterized as a function of the
states and so-called input parameters π, u =
U(x, π). The input parameterization also includes
the switching time between different arcs.

Without loss of generality, assume that all ter-
minal constraints are active. Then, the necessary
condition for optimality with parameterization π
can be stated as follows (Srinivasan et al., 2002):

T = 0, ψ =
∂φ

∂π
+ νT

∂T

∂π
= 0 (2)

where ν is the vector of Lagrange multipliers for
the terminal constraints. The idea of model-free
optimization is to satisfy the necessary conditions
of optimality (2) despite uncertainty by adjusting
the values of π using measurements. The necessary
conditions consist of two parts: (i) the constraint
part T = 0, and (ii) the sensitivity part ψ = 0.
There is usually considerably more to gain by
meeting the constraints than from reducing the
sensitivities to zero. Thus, only the satisfaction
of terminal constraints will be discussed in this
paper.

Consider (i) the batch-end measurements to be
the value of terminal constraints, zj = T (xj(tf )),
(ii) a subset of π, π̄ of dimension τ , which has
a large influence on T , and (iii) the τ × τ gain
matrix, G : π̄ → z, between the input parameters
π̄ and the measurements z. Then, G−1 can be used

for decoupling, and the following update law for
π̄ can be used:

π̄j+1 = π̄j + G−1Kjzj (3)

This represents an integral control law, where Kj

is a diagonal gain matrix of dimension τ × τ . The
other elements of π are kept constant.

2.7 On-line optimization, model-free

In the previous subsection, a batch-to-batch adap-
tation methodology that uses batch-end measure-
ments for pushing the system closer to terminal
constraints was presented. However, when on-line
measurements are available, a mid-course correc-
tion methodology to satisfy terminal constraints
is necessary. One such scheme will be discussed in
the next section.

3. ON-LINE TRACKING TO MEET
TERMINAL CONSTRAINTS

Constraints in general, and terminal constraints
in particular, play an important role in batch
optimization problems. As discussed earlier, an
operation point quite close to the optimum can be
achieved just by meeting the terminal constraints.

With batch-end measurements, only systematic
variations, i.e., those that occur the same way
in every batch, can be compensated. To handle
variations within the batch, it is important to use
on-line measurements. So, with on-line measure-
ments, a larger class of uncertainty can be han-
dled, the backoff can be reduced, thereby leading
to improved performance. Also, it is wise to use
on-line measurements when they are available!

The batch-end measurements that are needed are
measurements of the terminal constraints. Since
on-line measurements do not directly provide this
information, some sort of prediction or extrapo-
lation is needed. Such a prediction is not always
robust due to model mismatch and disturbances.
Though model mismatch can be handled by refin-
ing the model using measurements, the approach
suffers typically from lack of persistent excitation.

Suppose the on-line measurements y(ti) = T (x(ti))
are available, i.e., the quantities corresponding to
the terminal constraints T (x(tf )) are not only
measured at the end of the batch but also during
the batch. The idea proposed in this paper is
to track conservative reference trajectories yr(t)
whose main purpose is to guarantee the satisfac-
tion of the terminal constraints at final time, i.e.,
yr(tf ) = 0. Then, the adaptation law is given by:

u(ti) = ur(ti) + Kp(yr(ti)− y(ti)) (4)



where ur and yr are the conservative inputs and
output trajectories. The input is constant between
sampling instants. Optionally, an integral term
can be added to the adaptation law (4). Also,
reference trajectories with yr + bT ≤ 0 can be
chosen to provide a safety margin in the presence
of measurement noise.

Though this scheme does not use the model for
implementation, a model is needed to generate
the reference trajectory. If there is no uncertainty
(modeling errors and disturbances), then y(ti) =
yr(ti), and the proposed feedback controller has
no effect, u(ti) = ur(ti). The role of the feedback
controller is therefore to steer the system towards
the predicted reference state, thereby rejecting the
effect of model uncertainty and disturbances.

It is interesting to note the twist in concept – the
model is not adapted to provide a good prediction
of the system instead, the input is adjusted so that
the system follows the model prediction. Since the
model prediction renders the terminal constraint
active, following it close enough will push the
system towards the terminal constraints.

Note that no optimization nor estimation has to
be executed on-line, which makes this method
computationally attractive and numerically ro-
bust. So, in comparison to the model-based on-
line optimization scheme, the sampling frequency
can be higher, the backoff can be reduced, and the
cost can be improved.

4. OPTIMIZATION OF A BATCH BINARY
DISTILLATION COLUMN

4.1 Modeling

A batch binary distillation system is consid-
ered. The model is based on previous work re-
ported in the literature, see e.g. (Diwekar et
al., 1987), (Robinson, 1969), (Farhat et al., 1991)
and (Hansen and Jørgensen, 1986). The following
assumptions are made: (1) Equimolar overflow,
(2) Constant relative volatility, ideal vapor-liquid
equilibrium, (3) Equilibrium stages, (4) Negligi-
ble vapor holdup, (5) Constant liquid holdup on
stages and in condenser, (6) Total condenser, (7)
Constant boilup rate.

Considering a column with a total of p equilibrium
stages and using the molar balance equation for
the holdup in the reboiler and the liquid molar
fraction on the various stages and in the con-
denser, the following model of order (p + 2) is
obtained:

Ṁ1 =−fdV (5)

ẋ1 =
V

M1
(x1 − y1 + (1− fd)x2) (6)

ẋi =
V

Mi
(yi−1 − yi + (1− fd) (xi+1 − xi)) (7)

ẋc =
V

Mc
(yp − xc) (8)

i = 2, . . . , p, where xi is the molar liquid fraction,
yi the molar vapor fraction and Mi the holdup
on Stage i. Stage 1 refers to the reboiler and
Stage p to the top of the column. The model uses
the property that the composition of the liquid
flow entering the top stage corresponds to the
composition in the condenser, xc, i.e., xp+1 = xc.
Mc is the holdup in the condenser. The ratio fd of
the distillate to boilup rate, fd = D

V , is considered
as the manipulated variable. The vapor-liquid
equilibrium relationship is:

yi =
αxi

1 + (α− 1)xi
, i = 1, · · · , p (9)

where α is the relative volatility. The model pa-
rameters and the initial conditions are given in
Table 1. The composition of the accumulated dis-
tillate, xd, is assumed to be measured with the
sampling time, ts is given by:

xd(t) =
∑p
i=1 xi(t)Mi(t)− xi(0)Mi(0)

M1(t)−M1(0)
(10)

Table 1. Model Parameters and initial
conditions, i = 2, · · · , p

p 10 V 15 kmol/h
tf 10 h xd,des 0.9 kmol/kmol
ts 30 min M1(0) 100 kmol
α 1.5 x1(0) 0.5 kmol/kmol
Mi 0.2 kmol xi(0) 0.5 kmol/kmol
Mc 2 kmol xc(0) 0.5 kmol/kmol

The objective is to maximize the quantity of accu-
mulated distillate for a given batch time tf with a
terminal constraint on xd(tf ). Additionally, there
are path constraint on the manipulated input
fd. The optimization problem is mathematically
stated as follows:

max
fd(t)

J = M1(t0)−M1(tf ) (11)

s.t. Diff. Alg. Equations (5)− (10)

0 ≤ fd(t) ≤ 1

xd(tf ) ≥ xd,des

4.2 Characterization of the optimal solution

The optimal solution obtained numerically con-
sists of three intervals:

(1) Full reflux (fd = 0),
(2) A nearly linear arc to represent the compro-

mise between quality and productivity,
(3) No reflux (fd = 1).



As a result, the input can be parameterized using
the following four parameters: the two switching
times t1 and t2 and the parameters for the linear
profile, the level l and the slope s. The parameter-
ized optimal input trajectory is illustrated in Fig-
ure 2. This parameterization results in the optimal
cost J = 22.73 kmol, and the input parameters
are π = [t1 t2 l s]T = [1.02 9.88 0.1748 −0.0039]T .
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Fig. 2. Parameterization of the input fd.

5. EVALUATION OF VARIOUS SCHEMES

In order to provide a realistic test scenario, the
following uncertainty is considered:

• Parametric uncertainty: Fixed but unknown
relative volatility in the range α = [1.4 1.6]
• Perturbation: Boilup rate equally distributed

in the range V = [13 17] kmol/h, changed
every 2.5h

• Measurement noise: Product composition xd
with 5% multiplicative gaussian noise

The value α = 1.5 is used all simulations. How-
ever, this value is not disclosed to the various
optimization schemes that start with the worst-
case value α = 1.4. The costs reported in Table 2
are calculated on the basis of 50 realizations with
respect to perturbation and measurement noise.
The backoffs are introduced so that in every case
the constraint satisfaction is 99%.

The results of the various optimization schemes
are compared in Table 2. The loss in performance
is calculated as: Loss = (Jnom − J)/Jnom, where
J is the actual cost and Jnom the nominal cost
without parametric uncertainty, perturbation and
measurement noise. The optimal profiles could
be updated either (i) on-line, (ii) batch-to-batch,
or (iii) both. The third case is not considered
here. Thus, with on-line schemes, the improve-
ment shown in Table 2 is that obtained from a
single batch.

(1) Nominal case: When the nominal input tra-
jectory is applied open-loop in the presence of
uncertainty, the terminal constraint is satisfied in
only 53% of the realizations.

(2) Robust case: If measurements are not avail-
able, constraint satisfaction is guaranteed by using

Table 2. Comparison of cost and re-
quired backoff. The numbering refers to

subsections of Section 2

Method Cost Backoff Loss
J [kmol] bT [%]

1 Open loop, 22.73 infeasible 0
nominal input

2 Open loop, 14.98 0.042 34.1
robust input

3 Batch-to-batch, 20.32 0.015 10.6
refined model

4 On-line, 20.20 0.015 11.1
fixed model

5 On-line, 20.41 0.013 10.2
refined model

6 Batch-to-batch, 20.83 0.012 8.4
model-free

7 On-line, 20.64 0.010 9.2
model-free

the worst-case parameters in the optimization,
α = 1.4 and V = 17 kmol/h.

(3) Batch-to-batch, refined model: In the batch-
to-batch optimization scheme, the uncertain pa-
rameters are estimated by least-squares estima-
tion using the batch-end measurements of average
distillate composition. The refined model is then
used to update the input parameters. The optimal
cost is reached in about 5 batches (Figure 3), but
the cost changes significantly from batch to batch
due to the perturbation and measurement noise.
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Fig. 3. Evolution of the cost function for the
batch-to-batch, refined model scheme.

(5) On-line case, fixed model: If the measurement
of xd is available on-line, the current state of
the system can be estimated and used for reop-
timization. However, such a procedure is slightly
inferior to batch-to-batch schemes due to wrong
parameters. Also, the computed optimal input
becomes infeasible towards the end of the batch
and some heuristic approaches need to be used to
circumvent the problem.

(4) On-line, refined model: Here, the uncertain pa-
rameters are also estimated. The forgetting factor
λ = 0.94 is used in the least-squares estimation
method. It was seen that the parameter estimates
do not actually coincide with the true values.
This can be attributed to, bias in estimation, a
lack of sufficiently exciting signals, and infrequent
measurements. Also, since the measurements are



only available after the switching time t1, this
input parameter cannot be adapted in any on-line
optimization method.

(6) Batch-to-batch, model-free: Among the input
parameters π = [t1, t2, l, s], the switching time t2
does not change with the uncertainty considered
and need not be adapted. The parameter with
the strongest influence on the terminal quality
constraint is the level l. So, a simple integral
control law as in (3): lj+1 = lj +G−1 Kj T j , with
G−1 = 1.5, is used for batch-to-batch optimiza-
tion. In addition, the controller gain is reduced
with the batch number j: Kj = j−0.9. With such
a scheme, the optimal cost is reached is about 5
batches (see Figure 4). Note that the variations in
cost are less than with the batch-to-batch, refined-
model scheme (Figure 3).
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Fig. 4. Evolution of the cost for the model-free
batch-to-batch scheme.

(7) On-line case, model-free: Assuming that y(ti) =
xd(ti) can be measured without any delay, a tra-
jectory xdr (t) is tracked. In this case, the con-
servative trajectory computed off-line using ro-
bust optimization techniques was considered as
xdr (t). Here, trajectory tracking closely resembles
the constant distillate purity method of opera-
tion. The backoff bT = 0.01 is added to the
reference trajectory and tracking is done using
a PI-controller with k = 1.2, Ti = 1.6. Figure
5 shows that though the reference trajectory is
not perfectly tracked, the terminal constraint is
attained at the end of the batch.

The performance can be improved in two different
ways: (i) If the measurements are available more
frequently, it is possible to increase the sampling
time, since on-line computation is minimal. With
the sampling time ts = 3 min, the backoff can be
reduced to bT = 0.009 and the performance is only
7% inferior to the nominal solution. (ii) Perfor-
mance improvement can be achieved with a com-
bination of on-line tracking and batch-to-batch
adaptation of the reference trajectory xdr (t).

6. CONCLUSION

Several optimization schemes that use measure-
ments to reduce conservatism (necessary in the
presence of uncertainty) have been presented. The
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Fig. 5. Reference trajectory and measurements for
the on-line model-free scheme.

methods were applied to a simulated batch binary
distillation with terminal cost and path and termi-
nal constraints. A novel scheme was proposed to
track a reference trajectory on-line, the purpose
of which is to bring the system to the terminal
constraints. This method is numerically robust
since no parameter estimation nor trajectory re-
optimization is required on-line. Future work will
investigate the application of the method to multi-
input systems with several terminal constraints.
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