CONVERGENCE ANALYSIS OF AN ITERATIVE
CORRELATION-BASED CONTROLLER TUNING
METHOD

A. Karimi, L. Miskovic and D. Bonvin

Institut d’Automatique, EPFL, CH-1015 Lausanne, Switzerland.
Fax: 0041(21) 693 2574, e-mail: alireza.karimi@epfl.ch

Abstract: A new iterative method using closed-loop data for controller tuning based
on the correlation approach is proposed. The main idea is to make the output
error between the closed-loop system and a reference model uncorrelated with
the reference signal. The controller parameters are calculated as the solution to a
correlation equation involving instrumental variables. Convergence and consistency of
the controller parameters for two choices of instrumental variables are analyzed. It is
shown that the controller parameters converge to their true values independent of the
noise characteristics and modeling error. Simulation results confirm the effectiveness

of the proposed approach.
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1. INTRODUCTION

Control problems are generally expressed as the
minimization of an error signal. In many servo
control problems, the error signal may be defined
as the difference between the output of the closed-
loop system and the output of a reference model
that represents the desired response of the closed-
loop system to a reference signal. This problem
is called model following and can be solved us-
ing pole-placement design provided that the plant
model is perfectly known. For the case of unknown
plant models or models with time-variant param-
eters, Self-Tuning Regulation (STR) or Model-
Reference Adaptive Control (MRAC) can be em-
ployed (Astrém and Wittenmark, 1989). In these
approaches, optimization methods are used to find
the controller parameters driving the error signal
to zero. The approaches can be extended to the
case where a general quadratic criterion is mini-
mized. The gradient of the criterion is calculated
using an on-line estimated model of the plant
(Trulsson and Ljung, 1985) or using closed-loop
data as in the Iterative Feedback Tuning (IFT)
approach (Hjalmarsson et al., 1994). However, a

characteristic feature of these approaches is that,
in the presence of noise, the controller parameters
do not necessarily converge to their correct values
(the values computed from the true plant model).
As an extreme case, if the excitation signal is
kept constant, a minimum-variance controller is
obtained, which is known to lack robustness.

In this paper, a new approach to model-following
problem based on correlation technique is intro-
duced and its convergence is studied. The main
idea is to modify the control objective so that,
instead of minimizing a norm of the error signal,
one tries to make the closed-loop output error
(the difference between the output of the closed-
loop system and the reference model) uncorrelated
with the excitation signal. This way, the achieved
closed-loop system will capture the dynamics of
the reference model (i.e., the desired dynamics)
such that there remains no information about
the excitation signal in the closed-loop output
error. Thus, this error will mainly contain the
contribution of noise that is uncorrelated with the
excitation signal.



In contrast to MRAC, STR and IFT, the effect of
noise on the closed-loop output is not minimized
in this approach. In fact, the designed closed-loop
model (reference model) is approximated by the
achieved one, independently of the noise charac-
teristics. As a result, the robustness properties of
the designed closed-loop system will be preserved,
and the performance with respect to noise atten-
uation is not changed.

The paper is organized as follows. In Section 2,
the notations and the basics of the correlation
approach and the choice of instrumental variables
are presented. The convergence and the consis-
tency of the algorithm for different choices of the
instruments are studied in Section 3. Simulation
results are given in Section 4. Finally, Section 5
concludes the paper.

2. CORRELATION APPROACH

A SISO linear time-invariant discrete-time system
is considered as the plant model. Let the output
y(t) of the system be described as:

y(t) = G(g~ ult) + v(t) (1)

where u(t) is the plant input, v(t) represents a
zero-mean noise and the transfer operator G(q=!)
is defined as:

(2)

where

Rl =14rqg '+ +rp.q "¢ (4)
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and r(t) is the reference or excitation signal. The
controller output can be presented in regression
form as:

u(t) = ¢" (p,t)p (6)

with the regressor vector ¢(p,t) and the vector
of controller parameters p, both of dimension n,,
defined as:

¢ (p,t) = [~ult 1)+ —u(t — ng),
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and e(t) = r(t) — y(t).
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Fig. 1. Block diagram of the achieved and designed
closed-loop systems

Figure 1 shows the block diagram of the closed-
loop system. The upper part represents the
achieved closed-loop system and the lower part
shows the reference model (B,,/A,,) which is
presented as the desired closed-loop system con-
taining the initial model of the plant (Go) and
the initial controller (Rg,So). It is assumed that
the initial controller is able to meet the control
specifications with respect to the initial model. In
this way, the reference model gets a reasonable
and attainable structure.

Let the initial controller (Ry, Sp) be applied to the
real system excited by the reference signal r(t) and
the plant output be measured. Then, the closed-
loop output error (see Fig. 1) defined as

scl(pv t) = y(p’ t) - yd(t)
contains the effect of both modeling errors and
noise. Evidently, the effect of modeling errors is
correlated with the reference signal, while that of
noise is not. Since the lack of control performance
results essentially from the modeling errors, an
improved controller should be able to compensate
the effect of the modeling errors to the point
that the closed-loop output error contains only
filtered noise. Thus, a reasonable way to tune the
controller parameters is to make the closed-loop
output error independent of the reference signal.
So, the parameters of the controller should be
solution to the following n, correlation equations:

N
Fo) = 5 S Cotealp) =0 (9)
t=1

where N is the number of data and ((p,t) is a n,-
dimensional vector of instrumental variables. The
instrumental variables should be correlated with
the reference signal and uncorrelated with noise.

Equation (9) is in general nonlinear and cannot be
solved analytically. Iterative numerical solution is
possible using the relationship:

pit1 = pi — % [Qn(p)) " fpi) (10)

where ~; is the step size and Qn(p;) is a square
matrix of dimension n,. For faster convergence



one can use the Newton-Raphson method. In this
method, Qn(p;) is defined as the derivative of the
correlation equation:

N
Pz ﬁZ{aCP’

Oeci(p,t)
dp

Ecl (ph t) +
P=Ppi

} (11)

The gradient of the closed-loop output error with
respect to p can be represented in terms of the
regressor vector ¢ as follows (Astrom and Wit-
tenmark, 1989):

C(pia t)

-1
YT (p,t) = 85%(;’ B _ ggg_liqﬁT(p, t) (12)
where P(qg') = A(¢"")R(¢"") + B(¢~")S(¢™")

is the closed-loop characteristic polynomial. Since
the plant model is unknown, an estimate 1 of this
gradient can be used instead (see the definition in
Eq. (23)). On the other hand, near the solution,
the first term in Eq. (11) is close to zero because
the derivatives of the instrumental variables are
uncorrelated with the closed-loop output error.
Neglecting this term, let redefine Qn(p;) as:

z = Z C(pi,t pwt) (13)

Choice of instruments: An “idealized” choice is a
noise-free estimate of the gradient ¥ (p,t) based
only on the reference signal (Séderstrém and Sto-
ica, 1983). This makes Qn(p) as close as possible
to a positive semi-definite matrix. The instru-
ments can be obtained in two different ways by
filtering a noise-free estimate of the regressor:

(1) The first approach is based on identi-
fied models, and the corresponding Itera-
tive Correlation-based Tuning will be labeled
ICT-IM:

CIM(pv t) = T/Aj(pv t) = = qAS(p7 t) (14)

The closed-loop models % and A—; can
be identified using open-loop identification
methods or they may be computed using the
plant model identified in closed loop (Landau
and Karimi, 1997) and knowledge of the con-

troller.

(2) The second approach uses the designed out-
put, leading to the acronym ICT-DO:

Coolpr) = Vulpit) = -2 6a(p.t) (A7)
where
di (p,t) = [~ua(t — 1) -+ — ug(t — ng),
ea(t) - -eq(t —ng)) (18)
and

wilt) = Zealt) 5 ealt) = r(0) — yalt)

Notice that the instrumental variables
Cpo(p,t) are independent of the noise and
the plant model. This approach can be im-

plemented if the controller has no zeros or
poles outside the unit circle.

Both choices of instrumental variables can be
expressed in the following general form:

_ S S
(W)= Fla )= pr(t=1)... = Zr(t =),
r(t)...r({t —ng)] (19)
where F(g~!) is an asymptotically stable ﬁltelt.
Therefore, for ICT-IM one has F = DA—E D= IB;

and for ICT-DO F = DAuzbu D = ABmS

3. CONVERGENCE AND CONSISTENCY

This section discusses the limiting behavior of the
controller parameters p; as the number of data
tends to infinity. When dealing with consistency,
the concept of convergence with probability one
(w.p.1) to the true controller parameters is con-
sidered. The methods of analysis used here are
adopted from the framework used in (Séderstrém
and Stoica, 1981).

Let introduce a number of assumptions about
the true system, the controller structure and the
experimental conditions under which the data are
collected.

(A1) The system to be controlled is SISO, linear
time-invariant, finite order and strictly causal.
(A2) The disturbance w(t) is a stationary
stochastic process with zero mean and a ratio-

nal, nonsingular spectral density matrix.

(A3) The reference signal r(t) is persistently ex-
citing of sufficiently high order, and uncorre-
lated with the disturbance v(s) Vs, t.

(A4) The controller computed at each iteration
stabilizes the closed-loop system.

(A5) The order of the estimated controller (ng
and ng) and the order of a controller (n}, and
n%) that is solution to the correlation equation
are related by the following inequality:

min(ng — ng«,ng —ng=) >0 (20)



(A6) The solution p* to the correlation equation
is unique.

Assumptions Al and A2 define the class of sys-
tems and disturbances to be considered, while A3
is a classical assumption for the excitation sig-
nal in parameter estimation algorithms based on
the correlation approach. The only additional as-
sumption compared with the classical IV methods
for model identification is A4. This assumption
may be rather restrictive for some systems, but
it is required for implementing the controller on
the real system in each iteration. In practice, a
stability test based on the initial model of the
plant or the model identified in the previous it-
eration can be performed before implementing a
controller. If the stability test fails, the step size ;
is reduced so as to obtain a stabilizing controller.
The stability test can also be performed without
using the plant model, based on the Vinnicombe
gap, as it is proposed for the IFT approach in
(Kammer et al., 2000).

Assumption A5 implies that there is at least
one solution to the correlation equation and
this solution is attainable by the estimates. This
assumption is required for parameter conver-
gence. However, it is also well known that over-
parameterization of the controller leads to numer-
ical difficulties due to zero-pole cancellation. As-
sumptions A6 is necessary only for the consistency
analysis and it also implies the equality in (20).

The sufficient conditions for convergence (under
Assumptions A1-A5) and consistency (under As-
sumptions A1-AG) of the iterative parameter up-
date equation (10) are the same as those for con-
ventional parameter estimation methods based on
the correlation approach (Ljung, 1987). That is:

N

T2t () ()

t=1

Q= lim

N—o00

exists and is nonsingular w.p.1, and

N—o0

1 N
lim Nzg(p,t)v(t):() wp.l. (22
t=1

where
" (p,t) = D(g )9 (p, 1) (23)

is an estimation of the gradient vector v (deﬁne(_l
in 12). After some straightforward calculations, ¢
can be expressed as:

AD

5 [r(t)---r(t —n,+1)] ST (24)

&T(p’ t) =

where S is defined as:

0 —s0 -+ —8ng

1 ry - rpp

O 1 r - g

Under Assumption A2, the limits in (21) and (22)
can be replaced by the corresponding expected
values (Soderstrom and Stoica, 1983):

E¢(p, )" (p,1) = Q (25)

EC(p,t)o(t) = 0. (26)

Note that, under Assumption A3, Eq. (26) is triv-
ially satisfied. The conditions of nonsingularity of

Q for different types of excitations are given in the
following theorem:

Theorem 1. Consider the matrix @ in Eq. (25)

and the transfer function H(z~1) defined as:

F(z7Y) P
R(z=1)D(z71) A(=71)

H(zh = (27)

Suppose that Assumptions A1-A5 hold.

(a) If r(t) is persistently exciting of order p and
H(z~') (after zero-pole cancellation) is a
strictly positive real transfer function, then
the matrix () is nonsingular.

(b) If r(¢t) is a deterministic periodic signal with
period p and persistently exciting of order p
and H(z~!) (after zero-pole cancellation) has
no pole on the unit circle, then the matrix @
is nonsingular.

The proof of the part (a) of the theorem is
based on the following lemma (Soderstrom and
Stoica, 1981):

Lemma 1. Let W(t) = [z(t — 1)...2(t — p)]T
be a p-dimensional stationary stochastic process.
Assume that x(t) is persistently exciting of order
p. Let the scalar filter H(z~!) be a strictly positive
real (SPR) transfer function. Then the matrix
Z = E[H(z~1)¥(¢)]¥T(t) is nonsingular.

Proof of Theorem 1: Taking into account the
relation (24), the general form of @ is:

[ =S(@™r(t=1) ]

~S(gYyr(t - nn)
R(g")r(t)

| R(gY)r(t—ns) |
X[Tf(t) ce Tf(t — Ny + 1)] ST



where

This matrix can also be presented as:

Q=S8-7T 8T (29)

where the matrix 7 is defined by:

L Fleh)
T=E Rl ) [r(t) - r(t —n, +1)]T
x[rp() - -rp(t —n, +1)] (30)

It results from Eq. (29) that @ is nonsingular if
and only if the matrices 7 and S are nonsingular.
As for the § matrix, it is well known in the theory
of resultants (van der Waerden, 1991) that S is
nonsingular if and only if the polynomials R and S
are coprime (this condition will be satisfied under
Assumption A5 with the equality in 20). Thus, @
is nonsingular if and only if 7 is nonsingular. But
7T can be expressed as:

x[rp(t) - rp(t —n,+1)]

Now Lemma 1 can be applied to show that 7 is
nonsingular if H(z71) is SPR. Note that, under
this condition, 7;(t) is also persistently exciting
of order p because H(z~') has no zeros on the
unit circle.

The proof of part (b) of the Theorem goes along
the lines of the proof of Theorem 5.1, part (iii)
in (S6derstrom and Stoica, 1981) and will not be
given here. [ ]

Remarks:

(1) The transfer function H(z7!) for ICT-IM
variant becomes:
_ A(z"Y) P(z71)
H(zY) = - 31
Y= @Y

It is clear that when A = A and P = P,
this transfer function is SPR. However, with
a good estimation of the closed-loop system,
the strictly positive realness of H is strongly
expected. Yet, it is interesting to mention
that poor estimates of A and P might as
well give a consistent algorithm if the SPR
condition is satisfied. In this case, only the
convergence speed is affected because a good
estimation of the filter B/P preserves the
gradient descent direction and improves the

speed of convergence. This will be illustrated
by a simulation example in Section 4.
(2) For ICT-DO variant, one has:

P(zl)  Am(zT!) = Bm(z™h)
A(z7R(z71) Am(z71)

It can be observed that this transfer function
is independent of the identified plant model.
On the other hand, in the proximity of the
optimal solution, where A,, ~ P and A,, —
B,, = AR, the transfer function H is likely
SPR. Therefore, this variant seems to be
suitable for systems with large unmodeled
dynamics and noise in final iterations.

(3) Part (b) of Theorem 1 shows that with a
periodic signal of period p as the excita-
tion signal, the method will be consistent
for all A, B, P and their estimates with a
much weaker condition on H. However, if for
practical reasons this type of signal is not
implementable on the real system, Part (a)
that is valid for all persistently exciting r(t)
of at least order p may be used.

H(z') =

It should be mentioned that, in practice when
the number of data N is finite, the solution to
the correlation equation changes in each iteration
because of different noise realization (this change
tends to zero when N tends to infinity). However,
when the number of iterations goes to infinity,
the expectation of the estimates tends to the true
values (the solution with infinite number of data).
As a result, the proposed iterative controller tun-
ing method needs more iterations for convergence
compared with the IV methods for model param-
eter estimation where only one data collection is
used in all iterations.

4. SIMULATION RESULTS

The aim of this section is to provide two simula-
tion examples in order to illustrate the theoretical
results of Section 3. In the first simulation the
influence of modeling errors on the convergence
speed in the absence of noise is investigated. The
second simulation compares the behavior of ICT-
IM and ICD-DO variants in the presence of noise
via Monte-Carlo simulation.

The following system is considered:

(1—1.5¢7" +0.7¢7Hy(t) = (¢~ + 0.5¢~?)u(t)
+(1+0.5¢71 +0.5¢")e(t)

where e(t) is zero-mean, stationary, white Gaus-
sian noise with variance A\? (for the first simulation
A = 0). The reference model is given by:

B —0.0781¢! — 0.0625¢~2 — 0.0117¢~3

An  1—15781¢~ ' + 0.6375¢2 — 0.0117¢3




which has two poles at 0.7794 and one pole at
0.019. Using the pole-placement technique, the
optimal controller can be easily computed as:
R*(¢g7') =1and S*(¢~!) = —0.0781 — 0.0234¢*
which gives p* = [-0.0781 —0.0234]7. The same
structure is considered for the initial controller
with the initial parameter vector py = [0.075 0]
which represents a proportional controller that
stabilizes the closed-loop system.

Consider first the ICT-IM variant where the
closed-loop models used for filtering (42, 23, £)
in (14) and (16) are computed using the current
controller and the plant model (%) identified in
closed loop. The reference signal r(t) is a PRBS
generated by an 11-bit shift register (data length
N = 2047). Table 1 gives the number of iterations
needed to achieve a parametric distance of le-9,
defined as PD = (p; — p*)" (p; — p*), for different

orders of the polynomials A and B.

Table 1. Influence of the modeling error

ny =deg(A) | 0 1 (1122

np=deg(B) | 1 1 (212
No. iter. 55 | 11 | 9 | 6 | 5

It is clearly seen that the speed of convergence
depends on the order of the identified plant model.
Note, however, that ICT-IM variant gives consis-
tent estimates even in the case when the plant is
modeled only by a gain (n4; =0 and ng = 1).

The second simulation study illustrates the be-
havior of the ICT-IM and ICD-DO variants in
the presence of noise. To compare ICT-IM and
ICT-DO variants 100 Monte-Carlo simulations are
performed. For each simulation run, 20 iterations
are carried out and each iteration is performed
with a different realization of the noise e(t) that
provides a ratio noise/signal of about 7,5% in
terms of variance. The same PRBS as in the pre-
vious numerical example is used as the reference
signal. The plant model for the ICT-IM variant is
identified with n ; = 1 and n = 1. For the first 10
iterations, the ICT-IM variant is used and in the
next 10 iterations, when the estimates are close to
the solution, the two variants are compared.

Let define the parametric error as Ap; = pj —
pj;j = 0,1. Table 2 shows the mean values
and variances of the parametric errors over 100
simulation runs for both the ICT-IM and ICT-DO

variants.

It can be seen that both variants provide the
convergence to the optimal values in the presence

Table 2. Comparison of IV variants

ICT-IM ICT-DO
mean(Ap;) | var(Ap;) | mean(Ap;) | var(Apj)
0 -2.71e-3 5.96e-5 -6.81e-4 2.11e-5
P1 2.97e-3 6.64e-5 7.35e-4 2.15e-5

of noise. Note also that, in the proximity of the
solution, ICT-DO variant is less sensitive to noise
and shows better performance in terms of mean-
value and variance of the parametric error. This
suggests using the ICT-IM variant in few first
iterations and then switching to the ICT-DO
variant.

5. CONCLUSIONS

It has been shown that making the output error
between the closed-loop system and a reference
model uncorrelated with reference signal, can be
used as objective for controller tuning in model-
following problems. The iterative correlation-
based tuning (ICT) approach preserves the de-
signed objectives, presented in terms of a reference
model, independently of the noise characteristics.
The algorithm requires an approximate model of
the plant for computing the gradient of the output
error. However, the convergence analysis shows
that modeling errors do not affect the parametric
convergence as long as a SPR condition on some
transfer function is satisfied. Simulation examples
illustrate well the theoretical results regarding the
consistency of the proposed method.
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