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A B S T R A C T   

Vehicle trajectory prediction tasks have been commonly tackled from two distinct perspectives: 
either with knowledge-driven methods or more recently with data-driven ones. On the one hand, 
we can explicitly implement domain-knowledge or physical priors such as anticipating that ve
hicles will follow the middle of the roads. While this perspective leads to feasible outputs, it has 
limited performance due to the difficulty to hand-craft complex interactions in urban environ
ments. On the other hand, recent works use data-driven approaches which can learn complex 
interactions from the data leading to superior performance. However, generalization, i.e., having 
accurate predictions on unseen data, is an issue leading to unrealistic outputs. In this paper, we 
propose to learn a “Realistic Residual Block” (RRB), which effectively connects these two per
spectives. Our RRB takes any off-the-shelf knowledge-driven model and finds the required re
siduals to add to the knowledge-aware trajectory. Our proposed method outputs realistic 
predictions by confining the residual range and taking into account its uncertainty. We also 
constrain our output with Model Predictive Control (MPC) to satisfy kinematic constraints. Using 
a publicly available dataset, we show that our method outperforms previous works in terms of 
accuracy and generalization to new scenes. Code is available at: https://github.com/vita-epfl/ 
RRB.   

1. Introduction 

While driving, humans have this powerful capability to anticipate other drivers’ decisions. Similarly, an autonomous vehicle should 
have the same prediction capability to safely navigate alongside human drivers. Some researchers addressed the vehicle trajectory 
prediction task, also known as microscopic traffic modeling, by building hand-crafted functions based on the available domain- 
knowledge to model average driving behaviors (Coscia et al., 2018; Cosgun et al., 2017; Keyvan-Ekbatani et al., 2016; Treiber 
et al., 2000; Xu et al., 2015; Coscia et al., 2016). These methods are interpretable and usually lead to a set of feasible predictions. 
However, they have limited performance since they not only miss non-average behaviors, but also are not able to model complex 
interactions. Conversely, recent works solely rely on experience, i.e., learning from data, mostly using neural networks (Alahi et al., 
2017; Xie et al., 2019; Zhang et al., 2019; Tang and Salakhutdinov, 2019; Kothari et al., 2020). Using large amount of data helps these 
methods to achieve accurate predictions without explicitly modeling the domain-knowledge. However, their predictions are not 
essentially realistic (on-road) and in some cases, even counter-intuitive. Moreover, they are prone to overfitting on the training data or 
poor performance on out-of-distribution data. Combining the domain-knowledge and the data will benefit from the strengths of both 
approaches and avoid their shortcomings. 
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We argue that driving is a skill learned from domain-knowledge and experience. The former is typically driven by physical con
straints such as respecting road constraints or avoiding collisions. The later is driven by social conventions e.g., the way drivers interact 
with each other or the safe way to enter a roundabout. Consequently, learning to predict vehicle trajectories can be re-framed as 
learning to combine both knowledge-driven and data-driven methods. Human’s ability to employ both knowledge and data is not 
specific to driving. Researchers believe that humans learn rich representations (we refer to as knowledge) as well as patterns from 
observed examples in everyday life (Lake et al., 2017). This allows them to learn from fewer examples and to generalize to new 
conditions (Lake et al., 2015). 

A popular way of adding domain-knowledge to the neural network is by adding constraints to the problem and optimizing the 
network under these constraints. Authors in (Niedoba et al., 2019) proposed a road-loss which can be interpreted as an approximation 
of the scene constraint in order to avoid off-road predictions. However, directly optimizing the model under constraints makes the 
optimization difficult and leads to sub-optimal results (Ganchev et al., 2010; Pathak et al., 2015). 

There exist two main challenges towards creating a knowledge-driven and data-driven model. First, the combined model should be 
differentiable so that the data-driven part can be trained. This means that the integration needs careful design as the knowledge-driven 
part of the model usually is not differentiable. The second challenge is to preserve the benefits of both worlds after merging them i.e., 
the final output should be realistic despite the fact that neural network might generate unrealistic outputs. 

In this work, we address the aforementioned challenges. In the proposed approach shown in Fig. 1, the knowledge-driven (KD) 
trajectory is achieved by any knowledge-driven model. The KD output is then taken as input by our Realistic Residual Block (RRB) and 
the residuals required to be added to KD trajectory are found. In other words, the KD trajectory estimates coarse-grained behaviors 
based on the common driving performances while the residuals address fine-grained behaviors coming from non-modeled social in
teractions in KD trajectory as well as the long-tail of performances. This structure allows imposing knowledge by any function while 
allowing the residual block to be trainable. Moreover, in order not to diminish the feasibility of KD prediction, we can physically 
constrain the output of our RRB (i.e., the allowed feasible offset) and leverage its uncertainty in the combination. Hence, our RRB uses a 
physically-constrained Inverse-variance weighting approach to add feasible and confident residuals to the KD trajectory. We finally 
constrain the final output with Model Predictive Control (MPC) to ensure kinematic-feasibility of predictions. 

The contributions of this work can be summarized as: (1) proposing a Realistic Residual Block (RRB) as an effective way of 
leveraging both knowledge and data in vehicle trajectory prediction. Our RRB complements the knowledge-driven output with 
realistic and confident outputs. (2) Using Model Predictive Control (MPC) to bring kinematic constraints to the vehicle trajectory 
prediction task with latent control variables. (3) Demonstrate the generalization of our approach to new scenes and the multimodal 
case. 

2. Related work 

Vehicle trajectory prediction: Pioneering works addressed vehicle trajectory prediction problem by means of knowledge-driven 
methods. Researchers in (Cosgun et al., 2017) used Kalman filter (Kalman, 1960) to predict vehicle future trajectory. In order to 
incorporate scene information, (Ziegler et al., 2014) proposed associating vehicle’s positions with the lanes of the road. Vehicle-vehicle 
interaction is addressed in (Treiber et al., 2000) to predict the longitudinal motion of a target vehicle. In Xu et al. (2015), an asym
metric optimal velocity model is presented to capture the asymmetry between acceleration and deceleration and (Keyvan-Ekbatani 
et al., 2016) studied lane change decision empirically. On the other hand, many researchers tackle the problem by leveraging data- 
driven models. A deep belief network is proposed in (Xie et al., 2019) to model lane-changing behavior. Authors in (Zhang et al., 
2019; Deo and Trivedi, 2018) model lane-changing and car following behaviors simultaneously by employing long short-term memory 
(LSTM) neural networks and convolutional social pooling respectively. Authors in (Sadeghian et al., 2018) used an attention module to 
incorporate scene features into an LSTM model. An inverse optimal control (IOC) ranking module is used in (Lee et al., 2017) to 
determine the most likely hypotheses incorporating scene context and interactions. Moreover, some researchers addressed the 

Fig. 1. Illustration of our Realistic Residual Block (RRB) model. The knowledge-based model generates a scene-compliant trajectory (yellow dots) 
which could not effectively account for other agents, hence, is too conservative. Our data-driven RRB improves the prediction (purple dots) by 
adding confined residuals conditioned on other agents in the scene (illustrated by the arrows). The blue region shows the physically-constrained 
output space for our RRB predictions. 
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multimodal nature of human behavior prediction by using Winner-Takes-All (WTA) loss method (Cui et al., 2019a; Makansi et al., 
2019). While all mentioned works rely on knowledge or data exclusively, our solution benefits from both approaches. 

Injecting domain-knowledge to neural networks: Knowledge has been incorporated into the non-data-driven models to pre
serve realisticity and improve generalization. In An et al. (2015), Tang et al. (2016), space–time constraints were employed to confine 
the outputs to the feasible range. Researchers have proposed different means for incorporating domain-knowledge into neural net
works (Willard et al., 2020; Borghesi et al., 2020; von Rueden et al., 2020). It can be injected into neural networks by designing 
specialized network structures (França et al., 2014; Garcez et al., 2019). As an example, Convolutional neural network (CNN) was 
created by changing multilayer perceptron (MLP) networks, considering image specifications (LeCun et al., 1998). Another approach 
for fusing neural networks with domain knowledge is to modify the learning algorithm. This can be done by exposing knowledge- 
driven negative samples to the model (Liu et al., 2020) or adding constraints to the outputs of the network (von Rueden et al., 
2020). Other approaches are adding knowledge to the training data (Karpatne et al., 2017) and post-processing (Fang et al., 2017). 
From another perspective, some researchers used neural networks to address the imperfection of knowledge-driven models. They used 
knowledge-driven models to find biases of the data and the neural network compensates the error by outputting required residuals. 
Zeng et al. (2020), Silver et al. (2018) predict residuals on top of a physics-based robotic controller and (Kani and Elsheikh, 2017) finds 
residual minimiser of numerically discretized differential equations. A key limitation in residual modeling is by adding neural 
network-based residuals, the physics-based constraints, which are required for a realistic prediction, are hard to preserve (Willard 
et al., 2020). In this paper, we mitigate this limitation by confining the residual values. Moreover, we replaced naive addition of 
residuals by variance-based integration methods. 

In the context of vehicle trajectory prediction, previous works attempt to add scene knowledge by adding penalty terms to the loss 
function. Researchers in (Bansal et al., 2019) defined an on-road loss to keep the predictions inside the road. The proposed loss requires 
the output to be an occupancy heatmap, which is computationally expensive to achieve and also not compatible with most of the 
trajectory prediction works (Niedoba et al., 2019). Authors in (Niedoba et al., 2019) proposed an off-road loss defined as the euclidean 
distance between each predicted waypoint and the nearest drivable point to penalize off-road predictions. Their experiments show that 
although off-road predictions are reduced, the performance deteriorates in terms of ℓ2 loss. This is due to the fact that direct opti
mization of the model with constraints which are non-linear with respect to model parameters is difficult and leads to sub-optimal 
solutions (Ganchev et al., 2010; Pathak et al., 2015). In this paper, we propose a new method for adding scene knowledge to the model. 

Kinematically-feasible predictions: Kinematic constraints are physical rules that need to be satisfied for a realistic vehicle 
prediction. Authors in (Cui et al., 2019b) showed that the predictions of the neural network model were not essentially kinematically- 
possible. Researchers in (Cui et al., 2019b; Li et al., 2019) solved the problem by adding the bicycle model (Kong et al., 2015) as a layer 
to the model. The network estimates control commands instead of coordinates and the kinematic layer converts them to a feasible 
trajectory. Despite the effectiveness of this approach, in many cases, it cannot be employed as most of the off-the-shelf models predict 
coordinates rather than control commands. Moreover, having control commands as the outputs prevents any further knowledge in
jection to the model’s output, since any changes to the predicted trajectory can lead to a non-kinematically-feasible trajectory. In 
contrast, we propose using a Model Predictive Controller (MPC) to satisfy kinematic constraints. This allows the outputs to be in the 
coordinate format while the control commands are latent variables and mitigates the mentioned problems. MPC is commonly used for 
planning (Ziegler et al., 2014; Chen et al., 2019; Kazemi et al., 2018; Jeong et al., 2020; Bae et al., 2019). In this work, we show how it 
can also be used for the vehicle trajectory prediction task. 

3. Proposed method 

Humans have a clear understanding of the domain-knowledge while driving e.g., where the drivable and non-drivable areas are. 
Moreover, they learn specific aspects of driving by experience e.g., interacting with other agents. However, benefiting from the 
domain-knowledge and learning from experience simultaneously is challenging. We address the problem by proposing a Realistic 
Residual Block (RRB). RRB finds data-driven residuals conditioned on the knowledge-aware prediction. The output is a physically- 
constrained Inverse-Variance Weighted (IVW) sum of the knowledge-driven (KD) trajectory with the residuals. Finally, Model Pre
dictive Control (MPC) is incorporated to satisfy kinematic constraints. Fig. 2 shows a high level picture of our proposed model. We will 
explain each part of the model in the following subsections. 

Knowledge-aware 
modelInputs ( )

Realistic Residual Block

MPCIVW-
addition

Residual
estimator

Inputs ( )

Fig. 2. Our proposed Realistic Residual Block (RRB) takes as input (i) the state of the scene, St , and (ii) the knowledge-driven prediction, ykd. The 
Residual estimator block builds physically-constrained residuals yres. Then, the IVW-addition block merges ykd and yres by Inverse-Variance Weighted 
sum and forms yref according to Eq. 3. Finally, Model Predictive Control (MPC) satisfies the kinema.tic constraints. 
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3.1. Problem formulation 

The goal of our model is to predict future positions of a vehicle given its history and surroundings. Therefore, the state of the scene 
input to the model at time t,St , consists of an image of the scene and histories of ego-vehicle and other vehicles in the scene. By ego- 
vehicle, we refer to the vehicle whose future is predicted. The observation vectors for ego-vehicle and other vehicles’ history comprises 
of To observed 2D coordinates of them in the world space. Without loss of generality, each time, one of the agents in the scene is taken 
as the ego-vehicle. At time t, the model predicts yref

t for the next Tp prediction frames as a Gaussian distribution with mean μ and 
variance σ as: 

p

(

yref
t |St, μt, σt

)

=
∏Tp

j=1
N

(

yref
t+j|St, μt+j, σt+j

)

. (1)  

Note that we indicate the sequence of values in a bold text. We omit the index t in the rest of the paper for simplicity. 

3.2. Knowledge-aware prediction 

Our proposed method is flexible in the choice of the knowledge-aware model. Hence, any off-the-shelf knowledge-driven prediction 
model can be employed to create the KD trajectory. In Section 4.5, we show the robustness of our RRB to different knowledge-driven 
models. In this work, we make the KD trajectory by utilizing the scene knowledge, the most influential domain-knowledge in vehicle 
prediction task. Inspired by (Ziegler et al., 2014), we use the lanes of the road to form the scene-compliant trajectory ykd. To have a 
probabilistic framework, we take KD trajectory as the mean of a Gaussian distribution with fixed variances which are approximated by 
the statistics of the training data. 

3.3. Realistic residual block 

While KD trajectory reflects average behaviors with respect to the scene, our proposed data-driven Realistic Residual Block learns 
the missing complex interactions. The architecture of RRB is depicted in Fig. 3. The learned residuals are first confined and then 
merged with the KD prediction by the IVW-addition block. This will lead to feasible and confident predictions. Both Residual estimator 
and integration mechanism are explained in the following subsections. 

3.3.1. Residual estimator 
Our Residual estimator’s structure is shown in Fig. 3. The inputs are the KD trajectory and St consisting of the image of the scene 

and history of agents in coordinate format. The history of ego-vehicle is processed by the history encoder to find the driver’s intention 
leading to the feature eHist . We model the interaction among agents in a simple yet effective approach. Inspired by how vehicles interact 
in the real-word, our preprocessing eliminates non-interacting agents in the scene. In contrast with most previous works (Alahi et al., 
2016; Tang and Salakhutdinov, 2019) which consider surrounding agents, it excludes all the agents behind the vehicle as usually, 
vehicles interact with the agents in front. Moreover, as only the closest vehicles can impact the driver’s behavior, it only preserves a set 
of closest vehicles and passes them to the interaction encoder model to get the interaction features eInt. Our experiments show the 
effectiveness of the model in learning interactions between agents. The KD trajectory ykd, is encoded into the vector ekd by the KD 
encoder network. All the encoders are feed-forward networks with ReLU non-linearities. Finally, the residual decoder estimates the 
residuals given the concatenated features as: 

Knowledge-
driven model

History

Other agents

Scene

Interaction 
encoder

History 
encoder

KD 
encoder

Residual 
decoder

Fig. 3. The ‘Residual estimator’ block inside our RRB. Three encoders are employed to embed the history, the interactions and the KD trajectory. 
The residual decoder integrates the features and estimates the residual distribution. The mean of the distribution is confined to C, a real-word 
extracted parameter. 
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(μ̂res
, σres) = MLP

( [
eHist, eInt, ekd]; Wres ),

μres = Cμ̂res
,

(2)  

where (μres, σres) are parameters of the Gaussian distribution yres and MLP is a multilayer perceptron network parameterized by Wres. 
Note that we bound the range of ̂μres to ( − 1, 1) by using Tanh activation function in the last layer. μres is the scaled version of ̂μres by C to 
adjust the max feasible deviation from the center of the road. C is a real-word extracted parameter which can be adapted to each scene. 
In our experiments, we chose C equal to the half of the minimum width of the road in each scene. 

3.3.2. IVW-addition 
The merged trajectory yref can be achieved by simply adding residual Gaussians to the KD Gaussian prediction, referred to “A-RRB” 

baseline in Section 4.3. However, adding uncertain residuals to the KD trajectory can impair the KD predictions. To mitigate that, we 
utilize Inverse-Variance Weighting (IVW) (Cochran, 1954) to scale residuals according to their uncertainties which results in the most 
certain output (in terms of output variance) among all weighted averages (Hartung et al., 2011). Hence, our goal is to find the weights 
w, w̃ such that each point on the merged trajectory shown in Eq. 3 has the minimum variance. 

yref = wykd + w̃
(
ykd + yres). (3)  

Let’s represent ykd +yres by yad for brevity. The points on each trajectory are assumed temporally-independent. Weight matrices have 
the form of w = diag(w1,w2), w̃ = diag(w̃1, w̃2) where wi, w̃i are scalar values. Note that ykd is a prior for yres and hence they are not 
independent. The problem formulation is as follows: 

argminw,̃w(σ
ref
11 , σ

ref
22 ), subject to : σref = wσkdwT + w̃σadw̃T

+ 2wσkd,adw̃T
,w + w̃ = I2×2, (4)  

where σkd, σad are the covariance matrices and σkd,ad is the cross-covariance matrix. Solving the constraint problem using Lagrangian 
multipliers leads to the following solution: 

w =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σad
11 − σkd,ad

11

σad
11 + σkd

11 − 2σkd,ad
11

σad
22 − σkd,ad

22

σad
22 + σkd

22 − 2σkd,ad
22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, w̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σkd
11 − σkd,ad

11

σad
11 + σkd

11 − 2σkd,ad
11

σkd
22 − σkd,ad

22

σad
22 + σkd

22 − 2σkd,ad
22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)  

3.4. Multimodal prediction and loss function 

Our approach can easily be extended to a multimodal predictor using Winner-Takes-All (WTA) loss (also known as oracle loss) 
approach (Rupprecht et al., 2017). To do so, the knowledge-aware model should generate multiple plausible future trajectories. RRB 
takes the KD predictions and finds the associated required residuals. Finally, the loss will be calculated, considering the closest mode to 
the ground truth. Minimizing the log-likelihood will lead to the following loss function: 

l(θ) = −
∑N

n=1

∑M

m=1
1(m = m*)

[
logp

(
xp

n,m

⃒
⃒
⃒Sn, μref

n,m(θ), σref
n,m(θ)

) ]
, (6)  

where N and M are number of samples and modes respectively, 1 is the indicator function, and m* is the closest output to the ground 
truth in terms of ℓ2 distance. Note that for the single modal case, the equation holds with M = 1. 

3.5. MPC 

To add kinematic feasibility, in contrast with the previous works (Cui et al., 2019b; Li et al., 2019) which utilize a kinematic layer 
after computing control commands, we employ Model Predictive Control (MPC). This gives the model the flexibility to estimate the 
positions instead of finding the control commands which is beneficial in adding the domain-knowledge. MPC minimizes its cost 
function subject to a set of constraints. The state parameters for agent i in time t is st = [xt , yt ,ϕt , vt ] which consists of coordinates, 
orientation and speed. We denote control parameters acceleration and the steering angle by ut = [at ,γt ]. The dynamics of the system is 
formulated using bicycle model Fbic (Kong et al., 2015) which is shown to be sufficient for normal manoeuvres (Kong et al., 2015). 
Then, the MPC solves the following optimization problem: 

yp
t = argminst:t+Tp ,ut:t+Tp

∑Tp

j=1
|| st+j[0 : 1] − yref

t+j ||
2
2 + λ|| ut+j − ut+j− 1 ||

2
2 (7)  

subject to : st+1 = Fbic(st, ut), s0 = sinit, umin < ut < umax,

where yref is the reference trajectory, λ is a hyper-parameter and umin, umax are minimum and maximum feasible control values 
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respectively. 

4. Experiments 

We evaluate our RRB against other baselines to test the following hypotheses: (1) RRB brings the advantages of both knowledge- 
driven and data-driven models thus, outperforms both types of models, (2) RRB structure merges knowledge-driven and data-driven 
models better than other fusion techniques, (3) adding MPC makes outputs more realistic by satisfying kinematic constraints, (4) our 
trained RRB can improve performance of different knowledge-driven models without the need for fine-tuning, (5) IVW-addition and 
residual confinement are essential parts for more realistic outputs. 

4.1. Dataset 

We evaluate the proposed method on Interaction dataset (Zhan et al., 2019). It is a large-scale real-world dataset which consists of 
top-down scenes from intersections, highways, and roundabouts. The data is collected from three different continents (North America, 
Asia and Europe). It includes locations of dynamic agents such as vehicles and pedestrians for each frame of the 10 Hz downsampled 
video. The dataset also provides the static context of the scene. Interaction dataset is challenging as it includes interactions between 
vehicles, different environments, and potentially multiple plausible predictions. We used the same settings as (Zhan et al., 2019). The 
observation and prediction lengths indicate the number of frames used to represent the past states and to be predicted, respectively. We 
have set observation lengths equal to 5 frames (2.5 s) and and prediction length as 10 frames (5 s). The dataset includes scenes with 
different numbers of samples. Hence, in order not to be overwhelmed by scenes with large number of samples, we report the average of 
performance of a model on the three categories regardless of the number of samples in each category. Moreover, to study the model’s 
generalization power, we consider two scenarios: the first scenario is scene-overfitting, in which all scenes exist in the training set, but 
20% of data is kept for the test set. In this scenario the model should be able to overfit on the scene and generalize on the interactions. 
We argue that to assess model generalization in terms of scene perception, another scenario named scene-generalization is required. In 
this scenario, the three following scenes, ‘DR_USA_Intersection_MA’, ‘DR_USA_Roundabout_SR’, ‘DR_CHN_Merging_ZS’ are kept for the 
test set and the rest scenes are used in training. This challenging scenario reveals the performance of the models in a new environment. 

4.2. Implementation details 

The models are trained for 50 epochs with batch size of 32. We employed Adam optimizer (Kingma and Ba, 2014) with the initial 
learning rate of 0.001, which is decreased by half every 10 epochs. The model is implemented using PyTorch (Paszke et al., 2017). 
Network’s building blocks are MLP networks with the following hidden layers: History and interaction encoders have (32,32,64), KD 
encoder has (32,64) and the decoder has (256,128,128,64) hidden layers. 

4.3. Metrics and baselines 

The following metrics were used for the evaluation:  

1. Average/final displacement error (ADE/FDE). Average displacement error (ADE) and Final displacement error (FDE) are adopted 
as two common evaluation metrics. In the multimodal case, similar to the previous works (Gupta et al., 2018; Lee et al., 2017), the 
closest mode to the ground truth is chosen.  

2. Road violation (RV). Inspired by (Niedoba et al., 2019), we define this metric as the percentage of average number of points 
predicted in the off-road area. For the multimodal case, we average RVs for the modes weighted by their probability. RV measures 
the feasibility of predictions concerning the scene.  

3. Cross track (CT). Cross track is the distance between the actual destination and the final point on the retimed predicted sequence by 
the ground truth speed profile(Gong and McNally, 2004). In other words, cross track is the distance between the actual destination 
and the final point on the retimed predicted sequence. Cross track metric is able to express the spatial effectiveness of the model, 
excluding temporal aspects. 

To demonstrate the effectiveness of RRB, we compare the results with the following baselines: 
Naive baselines: We used Kalman filter as a linear prediction (Lin). We also report Constant velocity (CV) (Schöller et al., 2020) as 

another naive baseline. 
Knowledge-driven baselines: In order to form the KD trajectory explained in Section 3.2, we utilize different strategies to predict 

vehicle velocity. We name Constant velocity strategy (Schöller et al., 2020) as KD1, and Leader follower (Treiber et al., 2000) which 
tackles interaction between agents as KD2. 

Data-driven baselines: For the data-driven models that address agent-agent interactions, we report Social LSTM (S-LSTM) (Alahi 
et al., 2016), Social Attention (S-ATT) (Vemula et al., 2018) (numbers reported from (Li et al., 2020)), and Social GAN (S-GAN_M) 
(Gupta et al., 2018). We report Social WaGDAT (S-WaGDAT_M) (Li et al., 2020) (numbers reported from their paper) as a state-of-the- 
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art work that models both scene and interactions. We also report the performance of our encoder-decoder neural network (EDN) 
similar to Fig. 3 trained with Eq. 6 as the loss function. We replaced the knowledge-driven model in Fig. 3 with a convolutional neural 
network to represent a fully data-driven model. Note that the multimodal baselines’ names end with ‘_M’. 

Mixed baselines: We implemented the road loss (RL) (Niedoba et al., 2019) to impose the scene constraint to the model. It adds the 
road loss to the NN model to help it learn the drivable and non-drivable regions. We also consider two alternatives to the RRB model. 
The first one is to use a Variance-based Integration (VI1) between the KD1 and data-driven prediction EDN by employing IVW method 
(Cochran, 1954). Note that this is equivalent to using Bayes rule while KD output is taken as the prior and EDN as the likelihood. The 
second approach is to replace the KD variance in VI1 by a fixed hyperparameter (VI2). 

Our proposed solution is RRB model (RRB) explained in Section 3.3 which uses KD1 method. We express the effectiveness of our 
method on other KD predictions in the ablation study. We also demonstrate the performance of our model in the multimodal case 
(RRB_M) with 2 modes and when constrained by the MPC (RRB_M þ MPC). Moreover, in the ablation study, we report the perfor
mance of RRB while IVW-addition is replaced by simple addition (A-RRB) and also a non-confined RRB model (NC-RRB). 

4.4. Results 

Table 1 provides the results in scene-generalization scenario. Knowledge-driven models outperform other models in terms of RV 
and CT metrics since they can perceive scene well and also generalize to new environment. The data-driven approaches have better 
ADE/FDE as they can learn interactions from data. Although EDN performs well in scene-overfiting scenario (shown in Table 2), it fails 
in generalizing to the new environment leading to high RV and CT values. The large gap between the performance of data-driven 
methods in scene-overfitting and the scene-generalization scenarios reveals the limited generalization power of solely data-driven 
approaches, which can be mitigated by leveraging domain-knowledge. The proposed RRB model outperforms knowledge-driven 
models as it learns vehicle-vehicle interactions from data and goes beyond average behavior. Compared to the data-driven models, 
RRB can better generalize to new environments due to utilization of the scene knowledge. Compared with the mixed approaches, RRB 
outperforms both VI1 and VI2 because as opposed to them that merge two independent models, RRB generates residuals conditioned 
on KD output. Our method has zero RV because of the realistic residual scale which prevents off-road predictions. Note that RL could 
not improve EDM performance as it is very sensitive to the choice of hyperparameters and has many local minima. 

The possibility of having multiple outputs is investigated by increasing the number of modes of RRB model to 2. The results approve 

Table 1 
Quantitative results of baselines in scene-generalization scenario. ADE/FDE and CT are reported in meters. The 
lower the better for all metrics.  

Models Scene-generalization 

ADE/FDE RV CT 

Naive 
Lin 4.13/ 8.77 34 3.6 

CV (Schöller et al., 2020) 3.12/ 7.34 24 3.19 

Knowledge-driven 
KD1 (Schöller et al., 2020; Ziegler et al., 2014) 2.92/ 6.62 0 1.87 
KD2 (Treiber et al., 2000; Ziegler et al., 2014) 2.85/ 6.55 0 1.74 

Data-driven 
S-LSTM (Alahi et al., 2016) 2.85/ 7.17 72 4.26 

S-GAN_M (Gupta et al., 2018) 2.34/ 5.82 52 5.71  
EDN 2.78/ 6.7 7 3.4 

Mixed approaches 

VI1 2.52/ 6.27 3 2.9 
VI2 2.62/ 6.38 2 2.32 

RL (Niedoba et al., 2019) 2.56/ 6.40 9 3.15 
RRB 2.44/ 6.04 0 1.98 

RRB_M 2.15/ 5.08 0 1.81 
RRB_M + MPC 2.13/ 5.02 0 1.81  

Table 2 
Quantitative results of baselines in scene-overfitting scenario. ADE/FDE are 
in meters.  

Models ADE/FDE 

CV (Schöller et al., 2020) 2.80/ 6.59 
KD1 (Schöller et al., 2020; Ziegler et al., 2014) 2.59/ 6.00 
KD2 (Treiber et al., 2000; Ziegler et al., 2014) 2.53/ 5.83 

S-LSTM (Alahi et al., 2016) 2.33/ 4.52 
EDN 1.81/ 4.05 

S-ATT (Vemula et al., 2018) 2.29/ 4.25 
S-GAN_M (Gupta et al., 2018) 2.12/ 4.20 
S-WaGDAT_M (Li et al., 2020) 1.62/ 3.35 

RRB_M 1.49/ 3.68  
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that RRB_M is able to successfully capture multiple modes while it provides the required residuals for each mode individually leading 
to a multimodal knowledge-aware model. MPC is employed in RRB_M + MPC in order to ensure the kinematic-feasibility of the 
outputs. The results show that kinematic constraints are satisfied without loss of performance. Hence, the model better approximates 
human behavior. 

The results of previous works in scene-overfitting scenario are reported in Table 2. Our RRB_M model outperforms previous works 
and especially the recent S-WaGDAT_M (Li et al., 2020) model which expresses the ability of the model to learn from data. Note that 
RRB_M could successfully improve performance of KD1 by adding the residuals. 

We visualize the outputs of different models in Fig. 4. The first row images visualize the cases where KD prediction is not accurate 
because of the missing interactions. RRB complements KD trajectory by accounting for interactions in the residuals. The second row 
images emphasize on realisticity of the predictions. Although EDN can reason about interactions, it can have unrealistic predictions 
with respect to the scene especially in a new environment. However, the realistic elements of RRB preserve the feasibility of the final 
output as shown in all images. 

4.5. Ablation study 

In this section, a set of ablation studies are performed to shed light on the effectiveness of different parts of the model. First, we want 
to study the robustness of RRB concerning the different knowledge-driven models. We report two knowledge-driven methods in 
Table 1 and report the RRB performance while KD1 was employed. Without retraining the model, we replaced KD1 with Lin (Lin +
RRB) and KD2 (KD2 + RRB) models. The results are expressed in Table 3a, where the performance of the knowledge-driven model is 
reminded in the parenthesis. It shows that RRB could successfully improve the performance of the models in all metrics. This 
experiment shows the robustness and effectiveness of the proposed RRB for different KD trajectories. 

The second ablation study aims at assessing realistic elements of RRB which are the realistic parameter c and IVW-addition. We 
trained the model without the limitation on the range of RRB as non-confined RRB (NC-RRB). In addition, IVW-addition can be 

Fig. 4. Qualitative results of different baselines. Given the scene and history (Hist), the models predict the future positions. The ground truth (GT) is 
shown in black. The encoder-decoder neural network (EDN) captures the interactions while is prone to create unrealistic outputs shown in first row. 
Knowledge-driven (KD) model has realistic predictions as it uses the scene knowledge but cannot reason about the interactions among vehicles as 
shown in the second row. Our proposed RRB predicts realistic and interaction-aware outputs. 

Table 3 
Results of the two ablation studies on robustness and realistic elements of the proposed RRB.  

(a) Assessing the robustness of RRB with respect to different 
knowledge-driven models. RRB is not trained in this experiment 
but we used the fixed model in Table 1.  

(b) Ablation study on the two realistic elements of the 
proposed RRB, residual confinement and IVW-addition 
block. 

Models Scene-generalization  Models Scene-generalization 

ADE/FDE RV CT  ADE/FDE RV CT 

Lin 4.13/ 8.77 34 3.6  NC-RRB 2.28/ 5.59 10 1.94 
Lin + RRB 3.11/ 7.50 2 3.59  A-RRB 2.47/ 6.08 3 2.07 

KD2 2.85/ 6.55 0 1.74  RRB 2.44/ 6.04 0 1.98 
KD2 + RRB 2.49/ 6.14 0 2.04       
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replaced with simply adding the residuals to the KD prediction which is reported as A-RRB. This is equivalent to setting w = diag(0,
0), w̃ = diag(1,1) in Eq. 3. The results are expressed in Table 3b. Non-confined model has more freedom in improving the KD trajectory 
hence achieves a better ADE/FDE. But it is prone to unrealistic predictions with large RV error. Also, neglecting uncertainties in A-RRB 
will increase RV and CT as the network utilized uncertain residuals. These experiments approve that the added elements play 
important roles in having realistic predictions. 

5. Conclusions and future work 

In this paper, we addressed the safety–critical task of vehicle trajectory prediction also known as microscopic traffic modeling. We 
argue that neither solely knowledge-driven nor purely data-driven models can provide generalizable and accurate predictions. Given a 
set of experiments on a real-world dataset, our experiments demonstrate that knowledge-driven models have inferior performance but 
can generalize to new scenes. On the other hand, although data-driven models provide more accurate predictions, they tend to have 
unrealistic predictions in new scenes. Our proposed solution, named RRB, effectively merges knowledge-driven with data-driven 
models by finding residuals required to be added to the knowledge-driven prediction in order to model human stochastic behavior. 
It leverages physically-constrained Inverse-variance weighting approach to build realistic and confident residuals. To further make the 
predictions realistic, we employed a Model Predictive Control (MPC) to bring kinematic constraints to the final output. RRB out
performs all other counterparts in terms of accuracy and generalizability. As future work, we will study the effectiveness of RRB when 
employing more complex knowledge-driven methods on a variety of agents, including pedestrians. Pedestrians are not constrained to 
the roads but respect specific social rules. We can take the existing knowledge-driven models such as “Social force” (Helbing and 
Molnar, 1998) as prior predictions and learn residuals required to better capture pedestrians dynamics. Moreover, our approach can 
help in complex multi-agent environments where there exist vehicles, pedestrians and cyclists each one with its own constraints and 
dynamics. In such scenarios, RRB can benefit from using strong knowledge-driven priors for each category and provide safe and ac
curate data-driven residuals. We hope that our work will pave the way to more methods combining the best of knowledge and data 
driven approaches. 
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Schöller, C., Aravantinos, V., Lay, F., Knoll, A., 2020. What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot. Automat. Lett. 5, 

1696–1703. 
Silver, T., Allen, K., Tenenbaum, J., Kaelbling, L., 2018. Residual policy learning. arXiv preprint arXiv:1812.06298. 
Tang, C., Salakhutdinov, R.R., 2019. Multiple futures prediction. In: Advances in Neural Information Processing Systems. pp. 15398–15408. 
Tang, J., Song, Y., Miller, H.J., Zhou, X., 2016. Estimating the most likely space–time paths, dwell times and path uncertainties from vehicle trajectory data: A time 

geographic method. Transport. Res. Part C: Emerg. Technol. 66, 176–194. 
Treiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62 (2), 1805. 
Vemula, A., Muelling, K., Oh, J., 2018. Social attention: Modeling attention in human crowds. In: 2018 IEEE International Conference on Robotics and Automation 

(ICRA). IEEE, pp. 1–7. 
von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B., Pfrommer, J., Pick, A., Ramamurthy, R., et al., 2020. Informed machine 

learning–a taxonomy and survey of integrating knowledge into learning systems. arXiv preprint arXiv:1903.12394. 
Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V., 2020. Integrating physics-based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919. 
Xie, D.F., Fang, Z.Z., Jia, B., He, Z., 2019. A data-driven lane-changing model based on deep learning. Transport. Res. Part C: Emerg. Technol. 106, 41–60. 
Xu, X., Pang, J., Monterola, C., 2015. Asymmetric optimal-velocity car-following model. Physica A 436, 565–571. 
Zeng, A., Song, S., Lee, J., Rodriguez, A., Funkhouser, T., 2020. Tossingbot: Learning to throw arbitrary objects with residual physics. IEEE Trans. Rob. 
Zhan, W., Sun, L., Wang, D., Shi, H., Clausse, A., Naumann, M., Kümmerle, J., Königshof, H., Stiller, C., de La Fortelle, A., Tomizuka, M., 2019. INTERACTION Dataset: 

An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps. arXiv:1910.03088 [cs, eess]. 
Zhang, X., Sun, J., Qi, X., Sun, J., 2019. Simultaneous modeling of car-following and lane-changing behaviors using deep learning. Transport. Res. Part C: Emerg. 

Technol. 104, 287–304. 
Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., Franke, U., Appenrodt, N., Keller, C.G., et al., 2014. Making bertha drive–an 

autonomous journey on a historic route. IEEE Intell. Transport. Syst. Mag. 6 (2), 8–20. 

M. Bahari et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S0968-090X(21)00042-5/h0090
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0090
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0095
https://doi.org/10.1109/OJITS.2020.2965969
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0125
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0125
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0130
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0130
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0140
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0140
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0145
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0145
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0150
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0155
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0160
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0170
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0170
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0175
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0175
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0185
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0185
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0190
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0190
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0200
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0200
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0205
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0205
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0210
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0210
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0215
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0215
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0230
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0230
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0235
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0240
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0240
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0255
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0260
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0265
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0275
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0275
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0280
http://refhub.elsevier.com/S0968-090X(21)00042-5/h0280

	Injecting knowledge in data-driven vehicle trajectory predictors
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Problem formulation
	3.2 Knowledge-aware prediction
	3.3 Realistic residual block
	3.3.1 Residual estimator
	3.3.2 IVW-addition

	3.4 Multimodal prediction and loss function
	3.5 MPC

	4 Experiments
	4.1 Dataset
	4.2 Implementation details
	4.3 Metrics and baselines
	4.4 Results
	4.5 Ablation study

	5 Conclusions and future work
	CRediT authorship contribution statement
	Acknowledgements
	References


