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Abstract

Many physically-based models for climate change impact studies require sub-

daily temporal resolution of the forcing data to provide meaningful predic-

tions. However, climate scenarios are typically available at daily time step,

severely limiting the application of such physically-based models. In this study,

we propose an enhanced delta-change method for downscaling climate change

scenarios from daily to hourly resolution. The approach presented provides

objective criteria for assessing the quality of the determined delta and down-

scaled time series, while also fixing issues of common quantile mapping

methods used for spatial downscaling related to the decrease of correlation

between different variables. However, this new approach has limitations in

correctly representing statistically extreme events and changes in the fre-

quency of discontinuous events such as precipitation. Smoothing of historical

and future data is required prior to applying the delta-change method, and the

related parameters are found to have a subtle impact on the correctness of the

representation of the seasonal means as well as the resulting (artificial) vari-

ability in the scenario data product. This new method is universal and can be

applied with smoothing approaches apart from the harmonic fitting used in

this work and in the past. In this study, the assessment suggested the use of

seven harmonics for the smoothing of the input data as a best choice of this

parameter for the data used. The method is applied to a Swiss climate change

scenario data set, CH2018, and to a complement of this set to a Swiss alpine

measurement network obtained by spatial transfer of CH2018, resulting in a

set of 68 climate change scenarios at hourly resolution for 188 stations over

Switzerland significantly expanding upon the spatial and temporal resolution

of the CH2018 data set. All source code to perform such an analysis and the

complete data product are provided open access.
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1 | INTRODUCTION

Climate change scenarios are widely used for impact
studies. Many data products do exist, but unfortunately,
they do not necessarily meet the required spatial and
temporal resolution needed by models used for impact
studies. This is the case of the newly released CH2018
scenarios for Switzerland, which are provided only at
daily resolution. Here, we present a new version of this
data set downscaled at hourly resolution along with an
extension of this data set to the Inter-Cantonal Measure-
ment and Information System (IMIS), an Alpine network
(IMIS, 2019) of automatic meteorological stations.

The CH2018 climate change scenarios (MeteoSuisse
et al., 2018a) consist of future climate data generated by
downscaling 68 scenarios produced by the EURO-CORDEX
project using the ‘quantile mapping’ (QM) approach. This
method consists of building a one-to-one functional map-
ping between quantiles of distributions of measured and
simulated data sets. This mapping is derived for a reference
period and applied to simulated future climates to generate
data at the point of measurement. This technique is used in
CH2018 to perform spatial downscaling from RCM grid
data to point stations. This is also used in this study to per-
form spatial transfer between CH2018 scenarios and the
alpine IMIS station network. CH2018 is a significant
improvement over the previous generation of scenarios
released for Switzerland, CH2011 (CH2011, 2011), in terms
of methodology as well as number of stations, in addition to
being based on the latest climate model outputs. However,
the new data sets are still limited in that they only provide
future climate scenarios at daily time scale. Moreover, since
the QM methodology is applied separately for each station
as well as for each variable, there is no guaranteed spatio-
temporal consistency between variables and between
stations.

Our motivation in expanding the CH2018 data sets
from daily to hourly timescales along with additional sta-
tions arises from requirements in two independent pro-
jects, namely the Hydro-CH2018 project (FOEN, 2018) of
the Swiss Federal Office for the Environment, and the
Climate Change Impacts on Alpine Mass Movements
(CCAMM) (CCAMM, 2019) research program of the
Swiss Federal Institute for Forest, Snow and Landscape
Research (WSL). The Hydro-CH2018 project aims at
assessing the impact of expected climate changes on the
hydrological system in Switzerland. The CCAMM project
investigates the influence of climate change on avalanche
danger as well as other mass movements such as rockfalls
and landslides. Both projects use models that require
hourly input data.

While spatial downscaling has been extensively dis-
cussed in the literature, temporal downscaling has

received much less attention. Temporal downscaling can
be performed through dynamical downscaling and statis-
tical downscaling (SD) methods. Since this application is
done on RCMs output, we focus here only on SD
methods. The main methods used in temporal SD include
the delta-change method (also called change factor
method), and weather generators (WG).

In the delta-change approach (discussed for example,
in Anandhi et al. (2011)), first the difference or ratio
(delta) between measurements over a reference period in
the past and the output of a climate change scenario over
a given period, both at daily resolution, is computed.
Then, this delta is applied to a past time series at hourly
resolution to obtain an hourly time series for the future
period encapsulating the main annual and seasonal
behaviour of the output of the climate change scenario
over this period. The second approach relies on WG (see
for example, Peleg et al. (2019)). In this method, some
statistical moments (mean, variance, skewness, etc.) are
computed for historical time series. Then, a transient fac-
tor of change of these moments is computed between his-
torical data and future time series from scenarios.
Finally, some new time series are generated for the future
by randomly picking values from distributions having
statistical moments adapted at this point in time using
the computed factor of change.

Weather generators require significant calibration
and existing 2-dimensional generators for Switzerland
have been calibrated only for a few regions (Peleg
et al., 2017). This prevents their use in our applications.
As a consequence, we go back to the delta-change
approach used in the previous CH2011 scenarios detailed
in the work of Bosshard et al. (2011) and further develop
it, especially regarding the assessment of the quality of
the time series obtained and the validation of the param-
eters used. Indeed, by investigating time series obtained
from the former method, it became evident that it does
not necessarily represent correctly the seasonal cycle of
the climate change scenario. In addition, this method has
been originally developed and validated only for precipi-
tation and temperature, while it has been used for other
variables without any further validation (e.g., case study
in CH2018).

In the present study, we provide temporally down-
scaled time series for precipitation and temperature, as
well as for relative humidity, incoming shortwave solar
radiation and wind speed. The obtained time series are
used in a case study. The aim of this case study is not to
discuss impact of climate change, but to illustrate, for
realistic ‘end-user’ applications, the difference induced
by the choice of the inner parameters of the delta-change
method. In addition to providing new climate change
data sets, the main objective of this work is to propose
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new metrics for assessing the quality of downscaled time
series in order to choose the right parameters for the
downscaling process.

The QM is applied to 198 IMIS stations in order to
obtain daily climate change time series since IMIS sta-
tions have not been included in the original CH2018 data
set. The time series are downscaled at hourly resolution
at decadal intervals for 72 MeteoSwiss stations and
116 IMIS stations where the requirements for applying
the delta method are met. They are also downscaled at
hourly resolution at 30-years intervals for 58 MeteoSwiss
stations (when sufficient historical data is available). All
time series are publicly available with relevant metadata
for end users, and all the source codes and detailed
instructions on how to use this method on different data
sets are provided along with this work.

2 | DATA

2.1 | MeteoSwiss data

Part of the meteorological data used in this paper are
measurements from the MeteoSwiss (MCH) automatic
monitoring network which are distributed through
IDAWEB (2019). Data at daily and hourly resolution for
2-m air temperature, precipitation accumulation, wind
velocity, relative humidity and incoming shortwave solar
radiation are used.

2.2 | IMIS data

The second part of the meteorological data are acquired
through the IMIS automatic monitoring network
(IMIS, 2019), comprising of 198 automatic weather sta-
tions well spread over the Swiss Alps, operated by the
WSL Institute for Snow and Avalanche Research, SLF.
This network features two types of stations, so-called
‘wind’ and ‘snow’ stations. While wind stations provide
wind speed (7.5 m), gust speed, wind direction, air tem-
perature (2 m) and relative humidity, the snow stations
provide the following additional measurements: snow
height, reflected shortwave radiation, snow tempera-
ture at 25, 50 and 100 cm above ground, infrared snow
surface temperature. Some stations also have a (non-
heated) rain gauge for liquid precipitation. For stations
without heated rain gauge, the snow cover model
SNOWPACK (Lehning et al., 2002) is used to retrieve
the snow precipitation from snow height measure-
ments, and during snow-free seasons precipitation is
obtained by extrapolating precipitation measured at
nearby MCH stations.

In SNOWPACK, incoming shortwave solar radiation
can be computed from the reflected shortwave radiation
and the surface albedo. While this method is well suited
for winter, when the ground is snow-covered, it gives
poor results in summer. For this reason, incoming short-
wave radiation was excluded from the present downscal-
ing for IMIS stations.

IMIS stations are not included in the CH2018 data
set. The first step with these time series is thus to produce
climate change scenario output using the quantile map-
ping method for spatial transfer, as described in
Section 2.4.

2.3 | CH2018 climate change scenarios

The CH2018 scenarios (MeteoSuisse et al., 2018b) are
based on the European Coordinated Regional Climate
Downscaling Experiment, EURO-CORDEX. In EURO-
CORDEX, regional climate models (RCM) are used to
dynamically downscale the global climate model simula-
tions from the Coupled Model Intercomparison Project
CMIP5 (Taylor et al., 2012). Both EUR-11 (0.11∘,
�12.5 km) and EUR-44 (0.44∘, �50 km) spatial resolu-
tions of EURO-CORDEX are used in CH2018. Note that
both EUR-11 and EUR-44 resolutions can be used for the
same GCM-RCM chain. For more details, see
MeteoSuisse et al. (2018a).

These data are provided at daily time steps at the loca-
tions of the MCH automatic weather station. Available
variables are the 2 m air temperature and relative humid-
ity, daily minimum and maximum air temperature, near
surface 10 m wind speed, precipitation, and incoming
shortwave radiation. There are 68 model chain outputs:
31 for the business-as-usual ‘Representative Concentra-
tion Pathways’ RCP8.5 scenario, 25 for the intermediate
case RCP4.5, and 12 for an ambitious mitigation pathway
RCP2.6.

2.4 | Quantile mapping on IMIS data

The quantile mapping technique used to generate the
CH2018 data set is limited to MCH stations. Using the
methodology of Rajczak et al. (2016), the future climate
scenarios are spatially transferred from the MCH station
network to the IMIS stations for air temperature, precipi-
tation, wind speed and relative humidity. The methodol-
ogy is detailed in this Section. Firstly, for each IMIS
station, the ‘most representative station’ (MRS) of the
MCH network is found using correlation values between
the IMIS station and each station in the MCH network
(for which CH2018 data sets are available).
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The bias-corrected climate scenarios at the MRS are
spatially transferred to the corresponding IMIS station
using the quantile mapping (QM) approach. The transfer
function required to perform the QM is generated using
historical observations available at both the MRS and the
IMIS station. Note that this differs from the QM tech-
nique employed in CH2018 where the climate change sig-
nal is being transferred from a climate model output to a
local station. Thus, in the context of CH2018, the
intended implication of the QM technique was to per-
form bias correction alone. Using QM to spatially transfer
information between observational data sets is also ter-
med as ‘empirical quantile mapping’ in the literature.
More related information can be found in Maraun (2016)
and Maraun et al. (2017).

Performing only the spatial transfer between two
measurement stations has two implications. Firstly, since
the transfer function is being built using ‘real’ observa-
tions at both the MRS and the IMIS stations, time series
of a limited number of years, is generally sufficient as
opposed to the climate model-to-station transfer function
in CH2018, where 30 years of measurements are neces-
sary. The longer time series in this case are required since
the QM must correct for model errors as well as spatial
transfer. The validity of using shorter time series for
station-to-station transfer was confirmed in the detailed
checks by Rajczak et al. (2016).

In fact, it is due to this very constraint that the
CH2018 scenarios are available for considerably fewer
stations than the entire MCH station network. Secondly,
the periods of observational time series do not necessarily
need to be contained in the ‘historical’ period defined by
the CMIP5/CORDEX climate simulations, and thus the
most up-to-date observational time series can be used to
develop the spatial transfer function. The spatial transfer
function is assumed to be valid in past, current and
future climates (which corresponds to the commonly
assumed stationary hypothesis). This is one important
limitation of this method and is further discussed in
Section 5.1.

The QM-based spatial transfer is performed for all
IMIS stations resulting in future climate scenarios for
198 stations in addition to those in the CH2018
data set.

2.5 | Variables, stations, and
periods used

The temporal downscaling is applied to all the variables
available in the CH2018 data set: Air temperature (TA),
precipitation (PSUM), relative humidity (RH), wind
speed (VW) and total incoming shortwave radiation

(ISWR), the latter not for IMIS stations as discussed in
Section 2.2.

Stations where the downscaling is performed are
shown in Figure 1. A complete list of stations, together
with the variables downscaled, is presented in Tables S1–
S6. The reasons for excluding some stations are detailed
in Section S3.

The time series are downscaled to 10-year periods (all
decades between 1990 and 2100) using the period
2005–2015 for historical measurements. When sufficient
data are available, time series are also downscaled to
30-years periods (1980–2010, 2010–2040, 2040–2070, and
2070–2100) using the reference period 1985–2015 of his-
torical measurements. Periods including historical mea-
surements are referred to as ‘historical time series’, while
periods for which downscaling is applied are referred to
as ‘climate change time series’ or ‘future time series’,
even if part of these periods are in the past.

3 | DELTA COMPUTATION
METHOD

The method developed in this paper is an improvement
of the method described in MeteoSuisse et al. (2018a),
section 10.2, in CH2011 (2011), section 2.7 and A2, and
in Bosshard et al. (2011). A drawback of the method of
Bosshard et al. (2011) is that seasonal means are not well
represented in downscaled time series, which is corrected
here by assessing the quality of the delta leading to a bet-
ter choice of parameters.

A definition of the delta is, for each variable, an addi-
tive or multiplicative factor that will be used to modify
historical hourly time series in a way that the mid- and
long-term means (seasonal, yearly) are as close as possi-
ble to the climate change daily time series to be down-
scaled, without adding any natural variability. Additive
delta is used for temperature while multiplicative delta is
used for other variables. Note that multiplicative delta
might lead to unrealistically high values; this effect is dis-
cussed in Section 5.1.

The flow chart shown in Figure 2 describes the
whole methodology while this section describes only
the steps presented in the orange box of the flow chart.
A simple method to obtain the delta would be to sub-
tract or divide the daily value averaged over all years
from climate scenarios to the one obtained from histori-
cal periods. However, the delta obtained exhibits signif-
icant noise. Even by averaging each day of the year
(DOY) over many years, some variability remains in the
data, which is undesirable in this case (see Figure 3
bottom-left panel). Indeed, natural variability is already
present in the historical time series. If some high
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frequency variability remains in the delta, artificial var-
iability will be added when applying the delta to histori-
cal time series.

For variables such as precipitation, with high inter-
mittency (many zero values), smoothing of the data is
mandatory. Even with a DOY averaging, some days
show very low amounts of precipitation (see Figure 3
top panels), leading to arbitrary high or low delta
values, and thus potentially unrealistically high precipi-
tation events. In addition, a statistical artefact will lead
to higher delta values when the time series used to com-
pute the delta are uncorrelated. As a consequence, the
mean of the historical time series when the delta is
applied (the downscaled time series) will be larger than
the mean of the climate change time series. Smoothing
the time series beforehand allows to significantly
reduce the impact of this artefact. Note that these two
issues impose a smoothing of the time series themselves
before the computation of the delta instead of smooth-
ing of the delta. A related extensive discussion is given
in (Bosshard et al., 2011).

The simplest approach to smooth the data is a running
mean. However, a running mean applied to a time series
with a sinusoidal shape, as air temperature for instance,
tends to flatten the amplitude and the seasonal mean in
summer and winter will be affected. Another solution,
proposed in Bosshard et al. (2011), is to approximate the
time series with an harmonic function, which is actually a
truncation until the nth term of the discrete Fourier trans-
form (Storch and Zwiers, 1999; CH2011, 2011).

Given a periodic discrete time series x = [x1, .., xT], it
can be approximated by a superposition of sine and
cosine functions of various frequencies:

xt=a0+
XT−1

j=1

ajcos 2πωjt
� �

+bjsin 2πωjt
� � ð1Þ

where:

ωj=
j
t

ð2Þ

a0=
1
T

XT

t=1

xt=�x ð3Þ

aj=
2
T

XT

t=1

xtcos 2πωjt
� � ð4Þ

bj=
2
T

XT

t=1

xtsin 2πωjt
� � ð5Þ

In Equations (1) and (2), j is the current harmonic
number and its value corresponds to the frequency;
here we also call j the smoothing parameter. In
this application, the objective is to approximate the
time series by using only low frequency terms
(seasonal components), ignoring the high frequency
terms (natural variability)), which means stopping
the sum in (1) at some value of j. Bosshard
et al. (2011) found that ending at j = 3 yields the best
value for precipitation, but this assessment is only
based on testing that no additional natural variability
is added to the final time series. Contrary to the state-
ments in the CH2011 report (CH2011, 2011) we show
that this method does actually not preserve the
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seasonal means. Figure 4 top panels shows the delta
obtained with j = 3 for temperature at the Payerne
station.

A better agreement for seasonal means can be
achieved by increasing the number of harmonics
used. Figure 4 bottom panels shows the results for j = 7.
The drawback is that the obtained delta is more noisy
and thus some natural variability might be added.

In the present method, we keep the same smoothing
approach as in Bosshard et al. (2011), but the metrics for
assessing the quality of the delta and the choice of the

smoothing parameter is enhanced. The assessment
method presented below is not dependent on the smooth-
ing approach chosen and can thus be applied with any
smoothing function.

4 | DELTA QUALITY ASSESSMENT

This section describes the elements of the purple part
of the flow chart (Figure 2). The impact of the smooth-
ing parameter is assessed in terms of seasonal mean
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and natural variability. In addition, we show how this
method restores the inter-variable and inter-station
correlations, which might be reduced by the fact that
the QM used for spatial downscaling and spatial trans-
fer is applied separately for each station and for each
variable..

4.1 | Seasonal mean conservation

Section 3 showed the importance of smoothing the time
series to preserve, as much as possible, the seasonal
means, without including much additional natural vari-
ability. For air temperature, it is easy to compare the sea-
sonal mean of the delta obtained from raw data and from
smoothed data, as shown in Figure 4, for assessing
whether the seasonality is conserved. However, for pre-
cipitation, as discussed in Section 3, the delta obtained
from raw data is rather meaningless and thus it cannot
be compared to the delta obtained from smoothed data.
To assess the ability of the method to capture correctly
the seasonal means, the following approach is proposed
(blue elements in the purple parts of the flow chart
Figure 2).

The delta between historical and CH2018 time series
is computed and applied to the whole historical time
series. Then, the seasonal means of the modified time
series are computed and compared to the seasonal means
of the raw CH2018 scenario and to the historical data. In
other words, instead of comparing the smoothed delta
with the delta from the raw data, we compare the appli-
cation of the delta to time series with the raw time series
themselves, which also allows to see any bias introduced
by the application of the delta.

By defining:

• �VH
S � Mean of historical data for the variable V and

the season S
• �VCC

S � Mean of CH2018 data for the variable V and the
season S

• �VΔH
S � Mean of the downscaled time series, that is, his-

torical data with the delta applied, for the variable V
and the season S,
we can further define:

• ΔVCC
S � �VCC

S − �VH
S , the difference between CH2018 and

historical seasonal mean, that is, the raw seasonal cli-
mate change signal from climate change scenario, for
the variable V and the season S.

• ΔVDS
S � �VCC

S − �VΔH
S , the difference between the tempo-

rally downscaled time series and the CH2018 seasonal
mean, that is, the raw error on seasonal mean of the
reconstructed time series compared to raw climate
change data, for the variable V and the season S.

• ΔV rel
S � ΔVDS

ΔVCC
S
, the relative error of the downscaled time

series seasonal mean compared to the raw delta signal,
for the variable V and the season S.

The last two values allow for assessing the quality of
the delta in terms of preserving the seasonal means. Note
that in Figure 4 the quality of the delta itself is assessed,
whereas now the quality of the delta applied to the his-
torical data can be assessed, which is, in the end, the
value of interest. The graphical output of this assessment
method is shown in Figure 5. Note that this figure is
based on only one scenario and one time period.

To optimally infer the impact of the number of har-
monics used, the procedure needs to be applied to all
model chain outputs and all periods. Figures 6 and 7
show the output for Payerne for air temperature and pre-
cipitation, for the 56 model chains, the four 30-years time
periods used, and for two values of j, namely 3 and 7. The
three other variables an analogue plots for the alpine sta-
tion of Weissfluhjoch are shown in Figures S1–S8.

This analyse shows that:
• The raw error ΔVDS

S is almost the same for each
time period and is not strongly correlated to the strength
of the signal ΔVCC

S . As a consequence, there is also no
correlation between the raw error and the RCP scenario.

• Increasing the number of harmonics (from j = 3 to
j = 7) does reduce the error by roughly a factor of 2.

• The absolute error is strongly dependent on the sea-
son, but increasing the number of harmonics decreases
the seasonal dependence of the error.

4.2 | Natural variability

Increasing j leads to an improved representation the sea-
sonal cycle, as discussed in the previous section, but it
increases artificially the variability simultaneously.

To assess this effect, an approach similar to Bosshard
et al. (2011) is used (green elements in the purple part of
the flow chart Figure 2). The 30 years periods are split
into 10 periods of 3 consecutive years. Then, 9 out of the
10 periods are DOY averaged and used to compute the
harmonic factors and obtain a smoothed time series. This
smoothed time series is compared to the DOY average of
the remaining 3 years and the root mean square error
(RMSE) between them is computed. This is repeated
10 times (changing the 3 years verification period) and
the 10 RMSE values are averaged. The method is applied
to various j values while trying to minimize the RMSE.
Figure 8 shows the result of this method. The output for
temperature and precipitation are similar to the Bosshard
et al. (2011) results. Despite an increase of the mean
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RMSE value when j increases, the increase is very small
compared to the variability between the various model
chains (top row). In an attempt to remove the variability
between model chains and highlight the influence of the
chosen harmonic value, the second row of Figure 8
shows the same output as the top row but for each model
chain the mean of the RMSE for all j values is subtracted
separately. We refer to this value as centred RMSE.

In the third row of Figure 8, the RMSE is plotted against
the time period, to show that there is no correlation
between the RMSE and the time period used, as we can
expect. A similar figure for the station Weissfluhjoch is
shown in Figure S9, exhibiting the same general behaviour.

4.3 | Final assessment

The goal is to minimize simultaneously, and for each
variable, the following two objective functions: the
mean centred RMSE, and the mean absolute seasonal
raw error, presented in Sections 4.2 and 4.1, respec-
tively. The mean absolute seasonal raw error is obtained
by averaging the absolute values of the raw error for all

model chain outputs, all periods, and all seasons for a
given variable and harmonic smoothing value, that is,
averaging the absolute values of all the points of
Figure 6 left panel. The mean centred RMSE is obtained
by taking the mean of the centred RMSE values for all
scenarios and periods (i.e., the mean of each box in the
second row of Figure 8).

Figure 9 shows values of the two objectives functions
for all five variables at the Payerne and the Weissfluhjoch
stations. The error bars in the plots correspond to the var-
iance of the data. Additional stations are shown in
Figures S10–S68. Since the two objective functions have
different magnitudes, and since it is difficult to deduce a
physical significance of the mean RMSE, it is not possible
to define a real metric in the ‘mean MSE – mean absolute
seasonal’ error space. In addition, the problem being
driven by only one variable, j, this problem cannot be
solved by a Pareto Front approach. Indeed, the curve
drawn by the points in Figure 9 is already the Pareto
Front. Therefore, it is proposed to perform the analysis
graphically.

An analysis of the plots obtained for a subset of
20 MCH stations over 30 years and 10 years and 20 IMIS
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FIGURE 5 Top: Raw (thin line) and smoothed (thick line) air temperature data for the measured historical period 1985–2015 (black),
and for the CH2018 model chain DMI-HIRHAM_ECEARTH_EUR11_RCP85 for the period 2040–2070 (red). Smoothing is obtained by

harmonic fitting with j = 3 (left) and j = 7 (right). Coloured lines represent the seasonal mean for period 2040–2070 (dashed lines), for

historical measured time series with delta applied (thick solid lines), and for raw historical measured time series (thin solid lines). Bottom:

Same for precipitation [Colour figure can be viewed at wileyonlinelibrary.com]
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stations over 10 years show that the smoothing parameter
j, which best keeps both sources of errors low is equal to
7. This value is then further used to produce the down-
scaled time series.

We emphasize that the best value found here is prob-
ably dependent on the data set used. In other applica-
tions, especially with data from a climatic regime
different from the mid-latitude climate of the Swiss Pla-
teau or the climate in the Swiss Alps, a similar assess-
ment should be performed in order to define the best
smoothing parameter value.

4.4 | Inter-variable correlation

The spatial downscaling applied in CH2018 using the
QM method, and the similar approach used to obtain cli-
mate change scenarios at IMIS station locations
(Section 2.4), reduce the temporal correlation between

variables and the spatial correlation between stations.
The former is problematic for physically based models. It
is shown below that, as a side-effect, the temporal down-
scaling method allows for eliminating these issues. This
section corresponds to the pink elements in the purple
part of the flow chart (Figure 2).

To infer the impact of the QM and delta-change
downscaling on inter-variable correlations at a single sta-
tion, correlation is computed between variables for the
historical time series, but also for each scenario using
raw CH2018 data and downscaled time series (results
shown here uses j = 7 for the delta computation, but
results with other j values are similar). These correlations
are computed over the historical period only (1980–2010)
to allow for comparison with historical data, and are
averaged over all scenarios. Figure 10 shows such correla-
tions for the stations Payerne and Weissfluhjoch. For raw
CH2018 and hourly downscaled time series, the variance
of the correlation value between scenarios is also shown
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FIGURE 6 Left 2 panels: Air temperature seasonal absolute and relative error (ΔAVΔ
S and ΔRVΔ

S ) plotted as a function of the raw delta

values (ΔVCC
S ) for the station Payerne. Colours indicate season and symbols indicate the RCP scenario. Right panel: Box plot of the seasonal

absolute error ΔAVΔ
S (absolute value) for the four time periods. Top: Harmonic smoothing with j = 3. Bottom: Harmonic smoothing with

j = 7 [Colour figure can be viewed at wileyonlinelibrary.com]
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(panels c, e, h and j). Differences in the correlations are
observed between historical and raw CH2018 time series
(compare panel a to panel b and panel f to panel g), while
for temporally downscaled time series the correlation pat-
tern is very close to the historical one (compare panel a
to panel d and panel f to panel i). In addition, there is an
important spread of the correlation values between sce-
narios for raw CH2018 (as illustrated by the variance
plots; note that the scale is different between raw
CH2018 and downscaled data, in order to distinguish dif-
ferences in downscaled correlation variance). This
implies that for some scenarios, the deviation from the
observed correlation over historical time series is even
more pronounced. This spread is not observed in time
series downscaled with the delta-change method.

A similar approach is used to compare variables
between stations. Two pairs of relatively close stations
are chosen, here the pair Basel Binningen – Zürich
Kloten and the pair Chur – Davos. The correlation
between identical variables are computed between the

two stations for each pair, again using historical, raw
CH2018 and temporally downscaled time series, all the
scenarios and the period 1980–2010. Results are shown in
Figure 11 and similar behaviour as for the inter-variable
correlation is observed.

From these two comparisons, it is concluded that the
lack of correct inter-variable and inter-station correlation
in the CH2018 data set is improved by the temporal
downscaling.

5 | LIMITATIONS OF DELTA-
CHANGE METHOD AND
RESULTING DATA SET

5.1 | General considerations

The CH2018 data set comes with some limitations and
pitfalls, mostly induced by the use of quantile mapping.
The main points are presented in this section while full
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details are given in MeteoSuisse et al. (2018a),
section 5.7. The present section also discusses further
limitations arising from the temporal downscaling
method used in this work.

The quantile mapping method used in CH2018 is cali-
brated over a historical time period and the correction
function obtained is constant over time, meaning that the
model bias is assumed to be constant over time. This
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assumption is uncertain because of multi-decadal climate
variability. In addition, some statistical artefacts induced
by quantile mapping, such as change in elevation

dependence of the warming rate, have been identified.
The spatial climate variability at small scale, which is not
present in RCMs outputs, might be not completely
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captured by the quantile mapping. The complex topogra-
phy of Switzerland might also cause the output of RCMs
to be not representative of the meteorological stations in
some pixels. Finally, large scale bias in GCMs or RCMs
will not be corrected by quantile mapping and are still
present in the CH2018 outputs. All these limitations add
some uncertainty to the quantile-mapped time series.
These limitations remain in the downscaled time series
provided here and users should be aware of it.

Another limitation of CH2018 concerns possible
changes in future extreme events. Quantile mapping
might fail to correct bias for future extreme values lying
outside of the range of historical values, leading to wrong
intensities for extreme events in future climates. The
method used in this work leads to a situation even worse
for extreme events. The delta-change method only scales
the intensity of the time series, and not the frequency of
events in the data. This is important especially for precip-
itation, where the scaling might lead to unrealistically
high precipitation extremes or to precipitation events that
will actually not happen in a future dryer climate. As a
consequence, the provided time series are not suited for
use in the analysis of extreme events.

The fact that only intensity is scaled might likewise
lead to unrealistic high shortwave solar radiation values.
Potential decrease in cloudiness in climate change scenar-
ios are not visible in the temporally downscaled time
series (i.e., the period of time when solar radiation is
below its theoretical maximum for clear sky at this time of
the day does not change), but the whole time series is
scaled up, meaning a brighter sun during clear sky periods
and more transparent clouds. The opposite occurs in case
of a decrease in incoming shortwave radiation in the
CH2018 time series. The same applies for the scaling of
relative humidity (which can be superior to 1) and of the
wind speed. Depending on the application, users must
apply appropriate filtering and correction to the data espe-
cially regarding upper bound values.

One inherent drawback of the method presented is the
absence of transient time series. That is, only snapshots
for the future are provided with discontinuities between
them. In addition, the climate change signal in the time
series is the mean signal over the whole period and the
non-stationarity of the time series is driven by historical
data only. In addition, sub-daily cycles are climate change
agnostic in the downscaled time series, that is, they are
the same as in historical time series. This should be con-
sidered as an additional source of uncertainty.

In summary, the method proposed for temporal
downscaling is suited for use in models requiring hourly
data as input, while only some parts of the climate
change signal, that is, the monthly/seasonal to annual
signal, is captured. All other effects arising from changes

in the frequency of events or from changes in short-term
cycles are not captured and should be accounted for in
the overall uncertainty. In addition, the obtained down-
scaled data set is not suited for studies of extreme events
and the various sources of uncertainty mentioned in this
section need to be accounted for.

5.2 | Usage of 10 years time series

The downscaled time series are provided over 10 and
30 years time periods for MCH station, and only over
10 years for IMIS stations. The usage of 10 years is appro-
priate when long enough historical time series do not exist
to apply the temporal downscaling over 30 years. The
usage of such shorter time series raises two questions: Is it
representative to use only 10 years time series in impact
studies, and is the downscaling method able to capture the
delta correctly over 10 years only? Regarding representa-
tiveness, most climate change studies use 30 years periods,
as recommended by the World Meteorological Organiza-
tion (WMO, 2017). However, the same recommendations
state that for most applications shorter time series, for
example, 12 or 10 years, are also suited. The biggest con-
cern of using 10 years time series is precipitation. Indeed,
precipitation time series exhibit variations driven by long-
term oscillations of the climate system (usually longer
than 30 years). In the delta-change approach, the mean
seasonal cycle from future time series is mapped to histori-
cal data. Therefore, all downscaled time series exhibit the
same underlying inter-annual behaviour driven by large-
scale atmospheric oscillation present in the historical time
series. Looking at the difference between model outputs in
the past and in the future only allows for assessing the
impact of the main climate change signal while omitting
parts of the perturbation from large-scale atmospheric
oscillations and their potential future changes.

For answering the question concerning the ability of
the delta-change method to capture the main annual sig-
nal over 10 years only, further investigations are required
as this is a non-trivial problem. Performing an assess-
ment similar to Section 4 is not possible. Indeed, compar-
ison of time series downscaled over 10 and 30 years will
probably show some differences, but it is impossible to
identify whether: the cause of this is the inability of the
method to capture the main behaviour of the time series
over 10 years only, it is caused by a possible underlying
trend in the historical data, or it is caused by some long-
term oscillation not captured over 10 years. To avoid this
pitfalls, stationary time series are required.

Stationary time series are obtained by using the one-
dimensional weather generator AWE-GEN (Fatichi
et al., 2011). In this example, 500 realizations are generated
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for the location of Firenze in Italy over the 1980–2010 time
period with inter-annual variation enabled in the generator.
While additional variables are provided by the weather gen-
erator, only the same five variables as provided in CH2018
are used. For all the realizations, the time series are first
DOY averaged and then smoothed using j = 7 as smoothing
parameter (Section 3). This procedure is performed over the
whole 30 years time series, and also separately for each of
the three decades. The seasonal mean of the time series
smoothed over 10 and 30 years are computed and compared
to the seasonal mean of the raw generated time series.

The results of this analysis are shown in Figure 12.
There is a clear difference between the seasonal means
obtained when using 10 or 30 years time series (first line
of the figure). However, this does not tell whether the dif-
ference is due to the inter-annual variability present in
the data (as discussed at the beginning of this section), or
because the smoothing over a shorter time period is not
able of capturing the mean seasonal signal. Panels in sec-
ond and third rows of Figure 12 show seasonal means of
smoothed time series compared to seasonal means of raw
time series for 10 and 30 years. When using the 10 years
time series, the error on seasonal means is slightly higher

and the distribution more spread than that found when
using 30 years, but the differences are relatively small.
Thus it can be concluded that the method itself is still
robust when applied to the 10 years time series.

For all the time series provided together with this
paper, we consider the uncertainties discussed in this
section not important enough to forbid the usage of the
10 years downscaling product. Indeed, using decadal time
periods allows for performing the downscaling over the
whole IMIS station network resulting in a completely
new data set of climate change scenarios over the Swiss
alpine regions. When using only MCH time series,
30 years should be preferred; however, when a mix of
MCH and IMIS stations is desired, 10 years time series
should be used for both. In all cases, the 10 years time
series should be used with caution and users should
ensure that the product is suited for the purpose.

6 | CASE STUDY

In this section, a brief case study performed with the
SNOWPACK model (Lehning et al., 2002) is presented.
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In Switzerland, many studies focus on the future evolu-
tion of the seasonal snow cover due to its importance for
hydrology, electricity production and tourism. Some of
these studies need to perform temporal downscaling of
climate change scenarios to run the respective impact
models. We show here the importance of correctly
assessing the quality of these time series before applica-
tion for such studies.

The model SNOWPACK is run for 10 MCH stations
at high altitude using 30 years time series for the periods
1980–2010, 2010–2040, 2040–2070, and 2070–2,100, and
for 17 IMIS stations representative of the Alps for the
periods 1990–2000, 2020–2030, 2050–2060, and
2080–2090. The model is run for all climate scenarios and
all odd smoothing values j between 3 and 15, leading to a
total of 350532 model runs.

Two variables are extracted from the model output:
The daily mean snow height, and the occurrence of rain
on snow (ROS) events. They are defined here based on
the work of Würzer et al. (2016): a ROS event is occurring
when at least 20 � mm of rain fall within 24 � hr on a
snow cover of at least 25 � cm at the onset of rain. From
these three variables, five values of interest are extracted.

• ROS: The number of ROS events during the simulation
period.

• HS5: The mean annual number of days when the snow
height is greater or equal to 5 � cm.

• HS30: The mean annual number of days when the
snow height is greater or equal to 30 � cm.

• HSMean: The mean snow height for the months
December–January–February (DJF) over the simula-
tion period.

• HSMax: The maximum snow height reached over the
simulation periods.

These values are then grouped by station, RCP, j
values, and period, to obtain a distribution of values with
one point per scenario. The distributions for various j
values are then compared to see if they significantly dif-
fer. This difference is assessed using a two sided t-test
assuming paired values and a significance level of .05.
Figure 13 shows the proportion of such tests indicating a
significant difference. Only the proportion of significant
difference between the couple j � (3, 7), j � (3, 15), and
j � (7, 15) are shown. In the first column the results are
sorted by stations, and in the second column they are
sorted by time period. Since the significance value of 0.05
assumes that 5% of the test might lead to false positive, a
line is shown at 5%. This would assume that the false pos-
itive rate is equally distributed between the categories.
For an even more conservative approach, we compute for
each j-couple the total number of t-test indicating a

difference and compare it to the 5% of the total number
of tests performed for this j-couple (342 tests per j-couple,
so the expected number of false positive is 17). These
numbers are indicated in the figure legends.

Figure 13 shows that for all of the 5 quantities stud-
ied, the number of occurrences when the results differ is
larger than the expected false positive rate. As expected,
the number of different distributions is largest for the
couple j � (3, 15). For HS5, HS30, there are more differ-
ences in the couple j � (3, 7) than in the group j � (7, 15).
HS5 and HS30 being mainly determined by the beginning
and ending time of the snow season, this result is in
agreement with Sections 4.1 and 4.3, where we show that
the biggest difference in seasonal mean is between small
j values. ROS and HSMax, on the other hand, are more
impacted by the variability. Since the increase of variabil-
ity is almost linear with increasing j (see Sections 4.4 and
4.3), no important difference between the couples j �
(3, 7) and j � (7, 15) is observed. Regarding HSMean, the
fact that the number of significantly different outputs is
greater than 0 only at MCH stations (except for one IMIS
station) is explained by the lower snow height at these
stations.

The right column of Figure 13 suggests that most of
the results indicating a difference are obtained over the
historical periods. This is explained by the fact that differ-
ences between scenarios for a given RCP grow with time,
leading to wider distributions (see Figure 14). Increasing
the background variability leads to less significant influ-
ence of varying j. However, since most studies analyse
results by subtracting values of interest from past periods
to values from future periods, this error will be propa-
gated to all results.

In summary, this case study shows the impact of the
smoothing value j in a concrete example, and demon-
strates that a non-negligible part of the results can be sig-
nificantly different, highlighting the need of correct
assessment of the downscaled time series. This statistical
significance does not tell, however, whether the conclu-
sion drawn on a real impact study would be different.
Figure 14 shows the example of an obvious difference.
This is probably a ‘worst-case’ scenario, but it is informa-
tive about the potential impact of different downscaling
parameter values.

7 | CONCLUSION

In the present work, the delta-change approach used in
the context of temporal downscaling of climate change
scenarios was analysed in detail. The different steps
required for obtaining downscaled time series are
explained and justified. In particular, it is shown that a
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FIGURE 13 Fraction of significantly different distribution of outputs of SNOWPACK models runs. Each distribution is composed of all

model outputs for a given station, time period, variable and RCP. Distributions obtained with different values of j are compared and the

fraction of significant difference (determined by a t-test) between two values of j is shown. Horizontal black lines show the 5% value, the

expected rate of false positive. Numbers in the legend indicate the total number of positive tests and the total number of false positives

expected [Colour figure can be viewed at wileyonlinelibrary.com]
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smoothing of the historical and future time series is
required and that the parameters chosen for this smooth-
ing have a determinant impact on the correctness of the
seasonal means of the downscaled time series as well as
on the amount of artificial variability.

Using the CH2018 data set and the spatial transfer of
this data set on the Inter-cantonal Measurement and
Information System (IMIS) station network, it is shown
that the smoothing parameter used in Bosshard
et al. (2011) and in many other studies in Switzerland
leads to sub-optimal results for the data sets used. A spe-
cific example of studying snow depth and rain on snow
events using the SNOWPACK model showed significant
difference in results obtained depending on the smooth-
ing parameter used.

In order to get the best value for the smoothing
parameter, we propose a new step-by-step two-factor
assessment method based on the correctness of seasonal
means and on the change in the natural variability
induced by the downscaling. In addition to the detailed
description of the method, source code is provided to per-
form such an analysis. The proposed method can be also
applied with smoothing approaches different to the har-
monic fitting used in this work. Application of this
assessment on the two data sets used in this study
(MeteoSwiss, MCH, meteorological data and IMIS snow
and meteo data) shows that the use of seven harmonics
for the smoothing of the input data was the best choice of

this parameter. However, this value corresponds to the
data set used in this study and when applying the down-
scaling to a new data set, the assessment should be
repeated to determine the best parameter for that
specific case.

The method could be adapted to obtain transient
delta and consequently transient time series, but it would
require a de-trending of the observational time series.
The development of a correct and robust assessment of
the quality of the downscaled time series would be a
major effort, though. Nevertheless, we do encourage the
development of such an improvement and the code pro-
vided along with this study may provide a solid point of
departure.

The quantile mapping used for the spatial downscal-
ing of CH2018 is shown to break the correlation between
variables measured at one individual site but also to
break the observed correlation between nearby stations.
The new delta method presented here allows for restoring
this correlation which is an important prerequisite in
physical models. On the other hand, the delta approach
has a limitation concerning changes in the frequency of
intermittent time series such as precipitation, prohibiting
the use of the downscaled time series for studies of
extreme events.

The application of the downscaling to the CH2018
and IMIS station networks also leads to the introduction
of a new data set of climate change scenarios over
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FIGURE 14 Snow height simulated by SNOWPACK averaged for each DOY over the 30 years simulation periods at the MCH station

Samedan (GR) Switzerland for RCP2.6. Forcing data are downscaled with j = 3 (green) and j = 15 (red). Significant difference in snow height

(about 20%) can be observed for the first 3 time periods. The growing spread of the output in the future is explained by the growing

difference between the climate change scenarios [Colour figure can be viewed at wileyonlinelibrary.com]
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Switzerland. Ten-years hourly time series for 72 MCH
stations and 116 IMIS stations for all decades between
1980 and 2,100, and 30 years time series for 58 MCH sta-
tions for the periods 1980–2010, 2010–2040, 2040–2070,
and 2070–2,100 have been produced, released and are
publicly available. These time series offer new opportuni-
ties to run physical models, especially over the alpine
regions of Switzerland. This data set is actively used in
the framework of the CH2018 (FOEN, 2018) and
CCAMM (CCAMM, 2019) projects. As any climate
change scenarios, they must be used with caution as
detailed in Section 5.1, especially the 10 years time series.
The main limitations are the incapacity to reproduce
changes in future extreme events' frequency and ampli-
tude, the absence of change in future sub-daily cycles,
and the fact that these time series are not transient, but
only slices of future time periods with discontinuities in
between. Despite these limitations, the released product
opens new perspectives for numerous impact studies in
the alpine environment.

DATA AND CODE AVAILABILITY

The data produced in this work, that is, the climate change
daily time series obtained from QM at IMIS stations and
the downscaled hourly time series are available at: https://
www.envidat.ch/dataset/climate-change-scenarios-at-hour
ly-resolution and should be cited as: Michel, A., Sharma,
V., Lehning, M., & Huwald, H. (2021). Dataset for: Climate
change scenarios at hourly time-step over Switzerland
from an enhanced temporal downscaling approach.
EnviDat. doi: 10.16904/envidat.201.

The code used to perform the downscaling and to
extract data from downscaled time series in order to
assess the quality is available at: https://www.envidat.ch/
dataset/source-code-climate-change-scenarios-at-hourly-
resolution and should be cited as: Michel, A., Sharma, V.,
Lehning, M., & Huwald, H. (2021). Source code for: Cli-
mate change scenarios at hourly time-step over Switzer-
land from an enhanced temporal downscaling approach.
EnviDat. doi: 10.16904/envidat.203ß.
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