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Abstract
To exploit fusion as a source of energy, a hot and dense confined plasma is needed. This is

achieved in tokamaks by actively controlling the plasma state meaning in particular shape,

position and internal kinetic profiles. This thesis addresses two topics: the development of a

tokamak simulator to design and test real-time controllers; the reconstruction of the plasma

state from diagnostic measurements.

A flexible control oriented simulator is needed to design the feedforward trace of the current

evolution in the external conductors and to test/design/verify the controllers that maintain

the desired shape, position and vertical stability. A fully Matlab-based suite of routines called

"LIUQE-suite", sharing the same optimized low level routines, has been developed at SPC-

EPFL addressing multiple problems related to the free-boundary equilibrium. It covers the full

range of free-boundary magnetic equilibrium codes from computing the coil currents for a

sequence of desired plasma equilibria (FBT code), simulating the plasma magnetic evolution

coupled to controller dynamics (FGE code), performing magnetic equilibrium reconstruction

(MER) from synthetic/experimental data both in post discharge and for real-time analysis

(LIUQE code).

In this thesis, two new codes have been added to this code suite. FGS (Forward Grad-Shafranov

Static) which solves the forward static free-boundary equilibrium problem. FGE (Forward

Grad-Shafranov Evolutive) which solves the dynamics of conductor current evolution, coupled

to the resistive plasma current decay on subsequent states of free-boundary equilibria. Both

codes use the Jacobian Free Newton Krylov (JFNK) method, which combines the stability

property of the Newton-like algorithm without requiring the explicit Jacobian of the problem.

This enables the implementation of a monolithic approach to solve the coupled system of

equation and avoids iterative coupling between the free-boundary solution and 0D current

diffusion equation (CDE). A particular form of the CDE, derived in this thesis, allows to avoid

the expensive computation of the geometrical coefficients in the coupling. A linearized state-

space version of FGE is presented, consistently including deformable plasmas and plasma

current resistive diffusion. A novel contribution of this thesis is also the derivation of an

analytic Jacobian for the free-boundary forward equilibrium problem discretized in space with

finite differences, which can enable the implementation of a standard Newton method. FGS

was used to investigate the impact of some simplification hypotheses in the LIUQE algorithm,

related to the functional dependencies of the synthetic diagnostics on the plasma flux map,
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Abstract

finding a small impact to the resulting magnetic equilibrium reconstruction (MER), confirm-

ing the robustness of LIUQE code. A proof of principle application of Bayesian analysis to

obtain uncertainty quantification for MER is shown. To validate the implementation of FGE,

the growth rates of vertical displacement events (VDE) for several TCV plasmas were compared

to the rigid displacement RZIP model. After coupling the real vertical stability and position

controller of TCV, the request of the central solenoid in the simulation was compared to the

experiment, in order to verify the correctness of the CDE implemented. Good agreement was

found in all cases, enabling in future a confident use of FGS and FGE for the development of

TCV controllers.

Kinetic equilibrium reconstruction (KER) is the consistent reconstruction of the plasma flux

surface shapes and internal kinetic profiles combining external magnetic measurements, in-

ternal kinetic measurements and/or transport modelling, under the constraint of MHD force

balance. KER originated from improving the magnetic equilibrium reconstruction (MER),

where only external magnetic measurements are considered, and is becoming a standard

post-discharge analysis in many tokamaks as a starting point for stability threshold evalua-

tion and gyrokinetic transport analysis, which are highly sensitive to internal profile features.

It is also an important step to compare our understanding of the discharge time evolution

combining "all" the diagnostics available, hence also known as integrated data analysis. The

real-time KER is much more difficult, and yet compulsory, to inform the controllers and safely

achieve burning plasmas close to their maximum performances. The difficulties rely both on

the limited set of available real-time diagnostics and on the computational time requirements.

This thesis makes significant advances in both off-line and real-time kinetic equilibrium re-

constructions.

The KER is formulated, implemented and compared against MER, both in post-discharge and

real-time, for several TCV discharges with different physical characteristics. As a result of the

limited set of diagnostics, in particular the lack of direct measurements of the internal plasma

current density, together with an inaccurate estimate of the ion temperature Ti and effective

charge Ze f f , the final reconstruction is affected by significant uncertainties. Hence, KER in

TCV will need further improvements to obtain an accurate reconstruction in particular of the

safety factor profile. On the other hand, the possibility for routine use of KER analysis enabled

by this thesis provides insights on which diagnostics and physics to be first improved and/or

verified. Moreover the rigorous derivation of KER interpreted as a dynamic state and parame-

ter identification from a forward predictive model contributes to the general understanding of

the problem, identifying the limitation of the derivation hypotheses.

Keywords: Tokamak, TCV, vertical stability control, magnetic equilibrium reconstruction,

kinetic equilibrium reconstruction, real-time, free-boundary equilibrium, Grad-Shafranov, Ja-

cobian free Newton krylov solver, LIUQE, FGE, FGS, Bayesian parameter estimation, Bayesian

equilibrium reconstruction, inverse problem, reconstruction problem, Tokamak simulator,

non-linear least-squares optimization, Newton method, analytic Jacobian, LIUQE-suite, meq
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Sinossi
Per sfruttare la fusione termonucleare come fonte di energia è necessario confinare un plasma

denso ed estremamente caldo ottenuto nei tokamak controllando attivamente la forma, la

posizione e i profili cinetici interni al plasma. In questa tesi si affrontano due temi principali:

lo sviluppo di un simulatore per il design e la verifica dei controllori utilizzati in tempo reale;

la ricostruzione dello stato del plasma utilizzando le misure disponibili.

Un simulatore flessibile orientato al controllo è necessario per preparare i riferimenti di

corrente per i conduttori attivi del tokamak a per progettare e verificare i controllori che man-

tengono la forma, la posizione e la stabilità verticale del plasma. Un insieme di programmi

completamente basato sul linguaggio Matlab chiamata "LIUQE-suite", condividendo le fun-

zionalità di base principali, è stato sviluppato al centro di ricerca SPC-EPFL. È dedicato alla

soluzioni di problemi legati all’equilibrio di plasmi deformabilii (free-boundary equilibrium).

Comprende l’intera gamma di codici che si occupano del calcolo delle correnti dei conduttori

per ottenere un plasma desiderato (codice FBT), simulare l’evoluzione magnetica del plasma

accopiata ai controllori (codice FGE), calcolare la ricostruzione di equilibrio magnetico sia

durante che dopo l’esperimento (codice LIUQE).

In questa tesi sono stati sviluppati due nuovi codici. FGS (Forward Grad-Shafranov Static), che

si occupa di risolvere il problema di equilibrio statico per plasma deformabile. FGE (Forward

Grad Shafranov Evolutive) che si occupa di risolvere la dinamica di evoluzione delle correnti

nei conduttori, accopiata al decadimento resistivo della corrente di plasma, attraverso stati

succesivi di equilibrio MHD. Entrambi i codici fanno uso dell’algoritmo Jacobian Free Newton

Krylov (JFNK), che combina le proprietà di stabilità di un algorimo di tipo Newton, senza

richiedere di calcolare esplicitamente lo Jacobiano del problema. Questo permette l’utilizzo

di un approccio monolitico nella soluzione dei problemi senza dover far ricorso a techniche

di accoppiamento basato su iterazioni del solutore di equilibrio e del modello di diffusione

della corrente. Una particolare espressione per l’equazione di diffusione della corrente è

stata derivata in questa tesi che potenzialmente permette di evitare il calcolo dei coefficienti

geometrici durante l’accoppiamento, che sono particolarmente costosi in termini di tempo

computazionale. Inoltre, viene derivata una linearizazzione di FGE nello spazio degli stati

che include consistentemente il modello di plasma deformabile e di diffusione resistiva della

corrente. Un ulteriore risultato di questa tesi è la derivazione di uno Jacobiano analitico per il

problema di equilibrio per plasmi deformabili, specifico per la discretizzazione con differenze
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finite, che permetterebbe l’implementazione di un methodo di algoritmo di Newton standard

per la soluzione del problema.

Il codice FGS è stato utilizzato per studiare l’impatto di alcune ipotesi semplificative del codice

LIUQE, legate alla dipendenza della diagnostiche sintetiche dalla mappa di flusso del plasma,

trovando un impatto molto piccolo sulla soluzione finiale della ricostruzione di equilibrio

magnetico MER, cofermando cosí la robustezza del codice LIUQE. Viene anche presentata

una dimostrazione dell’applicazione di analisi Bayesiana per ottenere la stima di incertezza

per il problema MER. Per validare l’implementazione di FGE, il tasso di crescita della instabil-

ità verticale per diversi plasmi di TCV è stata confrontata con simulazioni di plasma rigido

con il modello RZIP. Dopo aver accopiato il controllore di stabilità veriticale e di posizione

utilizzato durante l’esperimento TCV, la traccia della richiesta del controllore al solenoide

centrale di una risimulazione di un esperimento è stata confrontata con la ricostruzione di

equilibrio dei dati reali, per validare il modello di diffusione di corrente implementato in FGE.

In tutti i casi studiati si è trovato un buon accordo tra il codice e l’esperimento permettendo

cosí in un prossimo futuro di utilizzare il codice per lo sviluppo dei controllori real-time di TCV.

La tecnica della ricostruzione di equilibrio cinetico (kinetic equilibrium reconstruction, KER)

è la ricostruzione autoconsistente delle superfici magnetiche del plasma e dei profili cinetici

combinando le misure disponibili e/o la modelizzazione teorica del trasporto, soddisfando

la condizione di equilibrium di forze del modello MHD. KER è nato come un miglioramento

della ricostruzione di equilibrio magnetico (magnetic equilibrium reconstruction MER), dove

vengono utilizzate solamente le misure magnetiche esterne al tokamak. KER sta diventando

progressivamente una tra le techniche di analisi dati standard in molti tokamak, come punto

di partenza per il calcolo delle soglie di stabilità e per modelizzazione di trasporto con codici

girocinetici. Queste ultime applicazioni sono particolarmente sensibili ai profili cinetici in-

terni del plasma. Inoltre, KER contribuisce a migliorare la comprensione delle esperimento

combinando la maggior parte possibile delle diagnostiche disponibili, da cui deriva il nome,

analisi integrata dei dati con cui a volte ci si riferisce. Eseguire KER in tempo reale durante

un esperimento comporta diverse complicazioni, ma è necessario per dare informazioni ai

controllori grazie ai quali si può ottenere attivamente lo stato del plasma, in particulare per

plasmi termonucleari (burning plasma) in modo stabile e vicino ai limiti massimi di oper-

azione. Le difficoltà sono legate sia ad un ridotto insieme di diagnostiche disponibili durante

l’esperimento, sia agli stringenti limiti di tempo di calcolo. Questa tesi apporta progressi

significativi allo sviluppo ed utilizzo di KER, sia durante l’esperimento che nella successiva

analisi dei dati.

La tecnica di KER in questa tesi viene formulata rigorosamente, implementata e confrontata

con MER, sia in real-time che successivamente all’esperimento, per diversi experiementi

di TCV con caratteristiche fisiche differenti. La disponibilità limitata di diagnostiche, in

particolare la mancanza di una misura diretta della distribuzione di densità di corrente interna

al plasma, insieme alla poco accurata stima della temperatura ionica Ti e della carica efficace
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Ze f f , portano a forti incertezze nella ricostruzione finale. Pertanto, KER come attualmente

implementato per TCV, necessita di ulteriori miglioramenti in particolar modo per ottenere

una ricostruzione accurata del profilo del fattore di sicurezza (safaty factor) nel plasma. D’altro

canto, la possibilità di far utilizzo di KER in modo semi-automatico ottenuta con questa tesi da

la possibilità di identificare quali diagnostiche e quali modellizzazioni è necessario migliorare

con priorità. Inoltre, la rigorosa derivazione di KER presentata in questa tesi, interpretando il

problema come la ricostruzione dinamica dello stato e dei parametri di plasma dal problema

predittivo corrispondente, contribuisce ad una migliore comprensione di KER, identificando

le limitationi delle ipotesi presenti nelle varie implementazioni.
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1 Introduction

In the last decade (2010-2020) the global warming and the green house effects have become a

popular worldwide topics of discussion, driving the attention of the media with an increasing

interest of youngest generation. Nuclear fusion could become the holy grail of energy sources.

Its main advantages are: carbon free, unlimited fuel mostly taken from the ocean and not local-

ized in few regions of the planet, no long-lived radioactive waste, limited risk of proliferation,

no risk of melt-down of the reactor. This process, which takes place in stars and heats them up,

is difficult to handle on earth due to the extreme temperature conditions required. After more

than 80 years of research, even if several physics aspects are not fully understood, it became

mainly a technological issue. It is the conviction of the author of this thesis that human kind

will be able to exploit this source of energy one day. The history will tell if this will happen in

this century or waiting for new technological discoveries will be needed. Moreover in the next

20 years the results of the ITER experiment, which is supposed to start its first operation at the

end of 2025 in Cadarache (France), will be a major turning point to understand how soon a

test power plant can be operating.

1.1 Fusion energy and plasma physics

Nuclear fusion is the process in which two or more nuclei are combined to form one or more

atomic nuclei of different elements together with other subatomic particles. This is an exother-

mic reaction when the incoming nuclei are lighter than iron-56 and is the process which

allows the formation of new elements in stars. For the reaction to occur the original nuclei,

composed by neutrons and protons, must reach a proximity such that the so-called nuclear

"strong force" prevails on the repulsion between protons given by the Coulomb force between

particles of the same charge. This condition can be achieved only if the incoming nuclei have

a velocity (kinetic energy) high enough to counteract the Coulomb repulsion. The kinetic

energy manifests itself on the macroscopic scale as the temperature of the medium. Any gas,

in a temperature range of 10000K, undergoes a phase transition where a large fraction of the

atoms (potentially all of them depending on the temperature) gets ionized. The electrons

get detached from the nuclei and free to move independently. When the kinetic energy of

1



Chapter 1. Introduction

the charged particle exceeds the potential energy of their electrostatic particle-particle attrac-

tion/repulsion collective effects, mediated by long range electrostatic interactions, dominate

over single particle interaction. When this occurs, the matter reaches the state of "plasma".

Most of the observed matter in the universe is found in plasma state both in high density, like

the stars, and low density conditions as the interstellar plasma.

The plasma is therefore the natural state to reach conditions such that many nuclei can

undergo fusion reactions. A useful consequence of this state is that, since the plasma is

composed of charged particles, its behavior can be influenced by external electromagnetic

fields thanks to the Lorentz’s force F = q(E +v ×B ), where q is the charge of a single particle

composing the plasma, v is the velocity and B ,E are the magnetic and electric fields generated

either externally or by the charged particles of the plasma themselves. As a consequence of

the Lorentz force, the particles will mainly follow the magnetic field lines, allowing to design

magnetic field configurations able to confine the plasma. This is the underlying principle of

the so called "magnetically confined fusion". A toroidally symmetric (donut shape) magnetic

field configuration is the backbone of the device called "tokamak" [Wesson and Campbell

2011] exploited in this thesis.

1.1.1 Conditions for fusion reaction and plasma confinement

Exploiting nuclear fusion as a commercial source of energy requires a large fraction of plasma

particles to achieve the physical condition for the reactions to occur, therefore the plasma

must become sufficiently dense and hot. Out of the possible fusion reactions, the one with

the highest probability at lowest temperature is the reaction between the two isotopes of

Hydrogen, the Deuterium (2
1D) and Tritium (3

1T ),

2
1D + 3

1T → 4
2He (3.5MeV)+n(14.1MeV). (1.1)

Unfortunately a large instantaneous fusion reaction rate is not sufficient for continuous energy

generation. The energy released by the fusion reaction must be confined inside the plasma

for a long enough time to allow heating other "colder" particles and bringing them to fusion

condition. This concept is expressed by the energy confinement time (τE ) defined as the

ratio between the plasma total energy and power losses. The condition at which the plasma

ignites, hence when a chain of fusion reactions is sustained by the energy released by fusion

reactions themselves, is expressed by the Lawson’s criterion [Lawson 1955] in terms of the

"triple" product nTeτE where n and T are the density and temperature of the plasma.

nTeτE ≥ 3×1021m−3[keV s] (1.2)

Given the optimal T fixed by the D-T reaction cross-section T ∼ 20keV , a minimum require-

ment for the product nτE is obtained. This requirement can be achieved both by increasing

the density or the confinement time τE , which leads to the two paradigms of nuclear fusion

research: the "inertial" confinement fusion and the "magnetically confined fusion" respec-

2



1.1. Fusion energy and plasma physics

tively. The first aims to achieve high density, but small confinement time, by compressing

small capsules containing the isotopes (2
1D) and (3

1T ) shooting lasers to the target. The most

advanced experiment in this respect is the NIF [Patel et al. 2020] facilities in Livermore (USA),

The second approach aims instead to use a low density plasma, much less dense than the

atmosphere on earth, but higher τE . The confinement, as anticipated, is obtained by properly

designing the shape of the magnetic fields generated both externally with solenoids and by

the current flowing in the plasma.

After the first linear devices developed in the 1940s, two main toroidal devices have emerged

which are shown in figs. 1.1 and 1.2. In the stellarator concept, invented by Lyman Spitzer

of Princeton University in 1951 [Bishop 1958], the magnetic field confining the plasma is

fully generated by external coils. It has the advantages to not give rise to disruptive plasma

instabilities, due to almost null net plasma current flowing in the toroidal direction, and

to naturally allow for stationary operation that would be desirable for a future power plant.

However so far the stellarator concept has not achieved the same performance, in terms of

Lawson criterion, as the tokamak concept explained in the following. Notably the recent

experiment Wendelstein 7-X (W7X) [Wolf et al. 2019] is providing significant advancements

thanks to the optimized magnetic field configuration developed. The tokamak concept,

invented by the Soviet Physicists Igor Tamm and Andrei Sakharov in early 1950s, is a toroidally

symmetric device where the total magnetic field is generated both by the plasma current

and by external magnetic fields. So far it has reached the best performance in terms of triple

product but it suffers from disruptive instabilities, mainly due to the presence of the large total

toroidal plasma current itself.

Tokamaks and stellarators have both achieved the reactor relevant target temperatures and

densities independently, but not at the same time with a sufficient τE , hence the Lawson’s

criterion has not been met yet. The worldwide effort culminated in the results achieved in 1997

[Keilhacker et al. 1999] by the Joint European Torus, with the production of 16 MW of fusion

power. Even though the plasma transport physics is not yet fully understood, it is known to

improve with the dimension of the machine. This motivated the design of the new experiment

ITER as a joint effort of seven members: China, European Union with Switzerland, India, Japan,

Russia, South Korea and the United States. The goal is to exceed the break-even condition,

Q = P f us/Paux =1, where P f us is the fusion power and Paux the auxiliary heating provided

externally, and to produce ten times more fusion power than what is required externally to

heat up the plasma (Q = 10). This will be the step in between an experimental facility and

being able to design a power plant scale device.

The ITER experimental results will be a major turning point for the fusion research and if

successful a big step in the history of human kind.
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Chapter 1. Introduction

Figure 1.1 – W7-X schematic drawing. External coils in blue and plasma in yellow.

Figure 1.2 – Tokamak schematic drawing.
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1.2 The Tokamak device

The tokamak will be the only device analysed in this thesis since most part of the results

presented have been obtained with TCV (Tokamak a configuration Variable [Coda et al. 2019])

at the SPC (Swiss Plasma Center).

1.2.1 Magnetic field and coil systems

The skeleton of the tokamak is a toroidally symmetric (donut shape) device composed by three

main sets of coils as shown in figure 1.2. The main magnetic field is the one in the toroidal

direction (around the torus) generated by a set of identical toroidal field coils (in blue). The

plasma charged particle, as a first order motion, will gyrate around the magnetic field lines

(black lines) performing simple revolutions around the torus. Unfortunately a pure toroidal

magnetic field is not sufficient to confine the plasma, since gradient and curvature of the

toroidal magnetic field generate a radial drift motion for the particle. A second component,

orthogonal to the toroidal field, called "poloidal field", is needed. This component is generated

mainly by the toroidal plasma current induced by the primary transformer circuit, called also

Ohmic coil (OH), and partially by the poloidal field coils (gray) controlled externally, together

with eventual external current drive systems.

The Ohmic coil, inducing current in the plasma, helps heating the plasma by resistive heating.

A continuous increase of the current in the Ohmic coils is needed in order to sustain the natural

resistive decay of the plasma current due to Coulomb collisions of plasma particles. This is

one of the intrinsic limitations of the tokamak device since OH coil current cannot ramp-up

indefinitely, hence the tokamak operates with repeated pulses unless other non-inductive

means of driving the plasma current are exploited.

The shape of the plasma is defined by the surfaces (magenta surface) on which the magnetic

field lines lay (black helical lines wounding the surface). Taking a section of the torus with a

vertical plane, the projection of the magnetic field lines on the plane generates the red contour

line in figure 1.3. The surfaces are typically composed by nested flux surfaces up to the so

called Last Closed Flux Surface (LCFS) which ultimately defines the outermost shape of the

plasma. In a tokamak, in general, the LCFS terminates on the divertor region prolonging into

two legs up to the strike points. The strike points end on the divertor plates where most of the

exhausted heat of the plasma is released. The shape of the LCFS as well as the location of the

strike points are controlled by the poloidal field coils.

1.2.2 Auxiliary heating and current drive systems

In order to sustain the tokamak operation two requirements are needed: generate the plasma

current which together with the external coils provide the magnetic field topology confining

the plasma; heat and fuel the plasma. The plasma current naturally decays if not sustained

5



Chapter 1. Introduction

externally, and becomes a source of heat. However, the resistivity scales as η∼ T −3/2
e , where

Te is the electron temperature. Opposite to metals and other materials, the hotter is the

plasma the smaller the resistivity. This is beneficial for driving the plasma current but limits

the maximum achievable heating. Auxiliary devices have been developed to both heat and

drive plasma current. These are based on two main concepts: injection of fast particles which

release their energy inside the plasma and injection of electromagnetic waves which resonate

with plasma characteristic frequencies releasing their energy.

In Neutral Beam Injection (NBI) heating and current drive (NBCD), highly energetic neutral

particles are injected into the plasma. Since the particles are neutral, they can penetrate the

confining magnetic field till they get ionized inside the plasma, where they release their energy.

Depending on the injection aiming direction, the total amount of current drive can change.

Moreover the NBI is an important source of rotation for the plasma.

Injecting an electromagnetic wave inside the plasma contributes to heat the plasma and can

drive current. Depending on the frequency, the wave can interact more with electrons or with

ions. The ion cyclotron resonance heating (ICRH) is a low radio frequency (30MHz to 55MHz),

it couples mainly with the ions and requires an antenna in the proximity of the plasma region.

The Electron Cyclotron Resonance Heating (ECRH) and Electron Cyclotron Current Drive

(ECCD) heats the electrons with high-frequency waves (100 GHz to 170 GHz) which resonate

with the electron cyclotron motion around the field lines. The ECRH and ECCD can deliver

current and heat in a very localized and controllable region of the plasma and therefore they

are used in order to control a certain class of plasma instabilities. The Lower Hybrid Resonance

Heating (LHRH) and current drive (LHCD) use an intermediate frequency to heat the plasma

and drive current.

All the systems have advantages and disadvantages. For example the ECRH has a simple design

and the wave can be generated away from the tokamak and carried to the device through wave

guides. However, the ECCD efficiency is lower than LHCD. A combination of the systems is

therefore needed to operate a tokamak. For example the design of ITER includes NBI, ICRH

and ECH where each of them will have different roles. Together with the external magnetic

field coils, they constitute the actuators to control the experiment.

1.2.3 Tokamak parameters and plasma scenarios

The performances of the plasma in a tokamak are measured by a number of global and local

parameters. The total plasma current Ip is defined by the flux of the toroidal component of

the plasma current density in the poloidal cross section. Ip , after an initial ramp-up phase, is

maintained stationary and then ramped-down at the end of the experiment. The normalized

pressure factor β is the ratio between the volume averaged thermal pressure and the averaged
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magnetic field pressure:

β= < p >
B 2

0 /2µ0
, (1.3)

where B0 is the magnitude of the vacuum magnetic field at the device major radius R0. β is

an important figure of merit since the goal of fusion energy is to achieve the highest fusion

power, which is proportional to p, when the maximum B0 is set by the mechanical limit of the

materials and feasibility of high B0, and is the "cost" for confining.

Increasing p and Ip leads the plasma to an unstable state as briefly discussed in the next

section. The parameter

βN = β[%]

I [M A] a[m]B0[T ]
(1.4)

allows to express the proximity to the tokamak stability limit [Troyon et al. 1984].

Apart from the global quantities, many spatial dependent quantities play a role both for the

stability and the global performances of the plasma. The magnetic topology of the plasma is

characterized by nested flux surfaces up to the LCFS as shown in fig. 1.3. By defining a radial

coordinate which labels these surfaces we can define 1-dimensional radial profiles from the

plasma axis towards the edge. Some quantities are constant on these 2D toroidally symmetric

surfaces while for others an average on the surface can provide 1D profiles.

The ion and electron temperatures Te , Ti and densities ne , ni are almost constant on flux

surfaces, and directly define the total plasma pressure henceβ. These are usually called kinetic

profiles.

The distribution of the plasma current density contributes both to the plasma transport and

stability. Strictly related to this quantity is the "safety factor" q . The magnetic field lines wrap

around the flux surfaces as shown by the black lines in fig. 1.2 generating a spiral. q is the ratio

of the number of times a particular magnetic field line travels around the toroidal direction

"long way" (toroidally) to the "short way" (poloidally), i.e. a measure of the helicity of the spiral.

Since the magnetic field lines are generated both by the plasma and the external currents, q

is a result of the plasma state and external actuators. Many types of plasma instabilities are

related to the value of q , hence the name "safety factor".

The shape of the kinetic and plasma current density profiles define different plasma operation

regimes. For example the High confinement mode (H-mode), the standard operating mode

for ITER, presents a characteristic very steep pressure gradient in the proximity of the plasma

edge, which affects also the distribution of the plasma current.

An accurate identification of the kinetic and plasma current density profiles is therefore

important both for plasma operation and post-discharge analysis and will be one of the topic

of this thesis.
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1.2.4 Plasma MHD instabilities during operation

Unstable states lead to degradation of performances and in the worst case to an abrupt

interruption of confinement releasing a large amount of energy to the tokamak structure.

This event is called disruption and in large devices, such as ITER, can limit the lifetime of the

machine. The triggering phenomena and onset thresholds for these instabilities have not been

completely understood for all of them. Plasma operation stays away from operational regions

where these are expected to occur and/or mitigate/suppress their effects when required.

We list in the following some of these instabilities in order of appearance from the outside

of the plasma toward the plasma axis. We consider only macroscopic instabilities, described

by the Magneto-Hydrodynamics MHD [Freidberg 2014], of first concern during tokamak

operation [Hender et al. 2007].

• Vertical displacement event (VDE): The plasma force balance equilibrium obtained

with the magnetic field is globally unstable. The plasma drifts away from the original

position with a mainly rigid displacement. This instability is ubiquitous during plasma

operation and needs to be actively controlled exploiting external coils. In this thesis we

will develop a code to simulate the initial phase of this instability [Hender et al. 2007]

and to help designing real-time controllers.

• β limit/Resistive wall Mode (RWM): Increasing the plasma pressure and current leads

the plasma to unstable conditions occurring as a helical deformation of the plasma. This

instability can be mitigated/suppressed by adding a conductive wall in the proximity of

the LCFS. The closer the plasma to the wall the better the stabilization indicating the

importance to fine control the plasma shape [Chu and Okabayashi 2010], but then RWM

can occur, and closer wall is leading to higher growth rate.

• Edge Localized Modes (ELMs): These modes are an exclusive feature of H-mode plasma

operation. The steep edge pressure gradient suddenly collapses releasing particles and

plasma energy to the divertor plates. ELM-free regimes with H-mode performances have

been studied in recent years and require specific design of the internal plasma profiles

trajectories to reach the condition. A recent promising discovery is the possibility

of achieving H-mode like performances remaining in L-mode with a plasma shape

characterized by negative triangularity [Austin et al. 2019].

• Neoclassical tearing mode (NTM): When a finite resistance of the plasma is considered,

the nested shape of the flux surfaces can break into local independent regions called

islands. This occurs in regions of rational value of q . An accurate knowledge of the

location in space of these regions allows to steer the external source of heating and

current drive to suppress these instabilities which deteriorates the plasma performances

[Zohm et al. 1999].

• Sawtooth: a periodic sudden relaxation of the core pressure appearing when the safety

factor drops below 1. Though they might be beneficial to remove ashes from the plasma
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(a) (b)

Figure 1.3 – Tokamak poloidal cross section [Teplukhina 2018]

core they can trigger NTMs. The control of current density affects their behavior [Chap-

man 2010].

The triggering and evolution of these MHD instabilities are all affected by the plasma shape and

internal profiles. An accurate reconstruction during plasma operation is therefore important

as input to the real-time controllers.

1.3 Tokamak operation overview

While the target that needs to be achieved to exploit nuclear fusion as a source of energy is

clear and summarized by the Lawson’s criterion, plasma physics sets many requirements/-

constraints/limits for the tokamak operation. Achieving the desired target respecting all of

them robustly and repeatedly is necessarily not only for the present and future experiments

but even more so for the future power plants. The tokamak operation can be summarized by

the schematic picture in figure 1.4. The picture does not want to be exhaustive but only to

show the main aspects that will be addressed in this thesis.

Operation requests

We start from the requests which are the target for the operation aimed for. We divide them

between "normal operation" and "off-normal events".

9



Chapter 1. Introduction

The first normal operation request is to safely initialize the plasma, ramp-up the plasma

current, achieve and maintain the stationary operation point and ramp-down the plasma

current. During all these phases the control of plasma shape and strike point locations are

required. TCV in this respect is a unique tokamak in terms of plasma shape flexibility. At

the stationary operating point, both some global plasma parameters and specific kinetic and

current density profiles are needed to enter the desired plasma scenario.

The "off-normal" events are for example the instabilities presented in the previous section

which require active control during plasma operation and are influenced by plasma shape

and internal kinetic profiles.

Actuators

The operation requests are converted into requests for the available actuators. Those are

primarily the currents in the coils and the heating, fueling and current drive systems described

in previous section.

Diagnostics

The actuators drive the experiment and the diagnostics measure its performances. These

are composed both of magnetic diagnostics placed externally to the plasma volume and

diagnostics able to measure the internal kinetic and current density profiles. The set of TCV

diagnostics will be specified later in this thesis. Only a subset of the diagnostics provides data

with a time resolution suited for real-time application.

State reconstruction

The raw signals of the diagnostics need to be interpreted to extract the plasma parameters

of interest. For example from the measurements of the external magnetic fields, assuming

the plasma in an equilibrium state, one can infer the flux surface shapes. This allows to

map the kinetic measurements into 1D radial profiles from the plasma axis to the edge.

The reconstruction of shape and profiles, known in control theory as parameter and state

reconstruction, is crucial both during real-time operation and for the post-discharge analysis.

Control

Given the observed plasma state, the control block aims to change the requests of the actuators

in order to achieve a different target. This can be done both from one experiment to the next or

in real-time. Controlling the plasma is required both to achieve a normal operation condition

and to avoid/mitigate/correct off-normal events. However, a large number of control targets

need to be satisfied with a relatively small number of actuators, which therefore need to be

shared among the tasks with a careful prioritization [Blanken et al. 2019], [Vu et al. 2019].
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Plasma 
Physics

 Coils 
 Gyrotrons
 Neutral Beam
 Gas-Valve
 Pellet injection
...

 Shape 
 Global quantities
 Kinetic profiles
 Safety limits
...

 Shape 
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... 

 Magnetics
    - Flux loops 
    - Magnetic probes
 Kinetics
    - Thomson 
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    - XTE
    ...

Real-time
Shot to shot

Figure 1.4 – Operation phases in tokamak experiment

1.4 Motivation for this thesis

The tokamak is a complex device where many different components have to work together in

order to achieve the target operation condition being constrained by the plasma physics and

avoiding development of detrimental instabilities. This thesis focuses on two fundamental

aspects of the tokamak operation represented by the "plasma physics" block, developing a

simulator, and "state reconstruction" block in fig. 1.4.

Predictive simulator for plasma shape, conductor current evolution and plasma current

resistive diffusion

Starting from the low level routines developed for the code LIUQE [Moret et al. 2015], a

simulator is developed to describe the evolution of the plasma shape coupled to the evolution

of the currents in the coils and passive conductors, including the dynamics of the vertical

displacement event in its early phase and including a simplified dynamics for the resistive

decay of the plasma current. The purpose was to extend the suite of codes available at our

institution to help the design of real-time controllers for vertical stabilization, position, shape

and total plasma current control, which is the very basic aspect of tokamak operation. Similar

codes already existed before this thesis. In the simulator presented in this thesis some novel

numerical algorithms have been explored which allowed flexibility to address many different

problems within the same framework and to quickly test new physics modules.
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Real-time and post-discharge consistent reconstruction of plasma shape and kinetic pro-

files

Obtaining an accurate reconstruction of the plasma state from the available diagnostics is

necessarily to interpret the experimental results, design new experiments and to provide, in

real-time, the observed inputs for the controllers in order to drive the actuators and obtain

the desired performances and avoid/correct off-normal events. The shape of the internal

flux surfaces of the plasma is intrinsically related to the kinetic plasma profiles and, at the

same time, the evolution of these profiles depends on the plasma shape. However a consistent

reconstruction of these two aspects, the plasma shape and the kinetic profiles, merging

together information from first principle models and available diagnostics, is still an open

field of research leading to the so called kinetic equilibrium reconstruction or integrated

data analysis. In this thesis we develop and test new tools and models to perform kinetic

equilibrium reconstruction both for the post-discharge analysis and real-time reconstruction

for TCV experiment.

1.5 Thesis outline

The first chapter is dedicated to a brief introduction to plasma physics, thermonuclear fusion

and the tokamak device. The focus is put on the different experimental operation phases in

order to provide the motivation of the thesis to study both the simulation and reconstruction

of the plasma state.

The thesis content is divided into two parts. The first part aims to formulate the analytic

problems addressed in this thesis while the second presents their numerical implementation

and applications.

Part I

• In Chapter 2 the forward/predictive problems are presented. Within the MHD model we

focus on the coupled dynamics of the free-boundary plasma equilibrium, the evolution

of the current in tokamak external conductors and the evolution of the flux surface

averaged plasma current density and kinetic profiles.

• A reconstruction problem aims to find the best estimate of plasma state and parameters

combining noisy/redundant measurements and uncertain first-principle models. In

Chapter 3 the reconstruction/interpretative problems is derived from their equivalent

forward/predictive models, by making assumptions on the measurement and model

uncertainties and adopting a statistical interpretation. We derive first the reconstruc-

tion problem for the plasma shape, pressure and current profiles from the external

magnetic measurements constrained by the MHD free-boundary equilibrium, obtain-

ing the magnetic equilibrium reconstruction (MER) problem. After discussing MER

limitations, the Kinetic Equilibrium Reconstruction (KER) problem is obtained where
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models for the free-boundary equilibrium and kinetic profiles evolution are treated con-

sistently together with external magnetic and internal kinetic measurements. A reduced

formulation suited for the set of TCV diagnostics is provided. KER can be performed

relatively routinely in many institutions with different approaches but often considered

as a simple integration of existing tools. This thesis contributes to interpret KER as a

unique framework for all reconstruction problems providing a detailed description of

assumptions and limitation during the derivation.

Part II

• In Chapter 4 we present the new forward/predictive codes developed in this thesis based

on the low-level routines of the free-boundary equilibrium reconstruction code LIUQE.

They include: a forward static free-boundary equilibrium code (Forward Grad-Shafranov

Static "FGS"); a forward free-boundary equilibrium code coupled to the dynamics of ac-

tive and passive conductors and including 0D equation for the resistive evolution of the

total plasma current (Free-boundary Grad-Shafranov Evolutive "FGE"); a linearization

of FGE on trajectories of solutions of the free-boundary equilibrium, providing also its

state space representation. The use of the Jacobian Free Newton Krylov Solver (JFNK)

algorithm to solve all the formulated problems, the monolithic coupling of the current

diffusion equation with the free-boundary equilibrium evolution and the derivation

of the linearized problem including both a free-boundary equilibrium and the current

diffusion are novel contributions of this thesis. The Vertical displacement event growth

rate of FGE is benchmarked with rigid displacement RZIP model. The current diffusion

equation is validated against experiment after coupling FGE with the TCV real-time

controller. The code is now used to improve and design vertical stability and shape

controllers. A magnetic equilibrium reconstruction code is implemented starting from

FGS. This allows to investigate limitations/simplifications of the equilibrium reconstruc-

tion code LIUQE. A novel contribution of this thesis is the numerical demonstration of

the difference between the proper solution of the non-linear least-squares magnetic

equilibrium problem and the "quasi-linear" approach adopted in LIUQE, in presence of

noisy measurements. This is detailed in Appendices E and F. Furthermore, a preliminary

example of magnetic equilibrium reconstruction considered as a Bayesian parame-

ter estimation is provided, based on the FGS code, and compared with the standard

least-squares approach previously discussed. It shows how uncertainty quantification

can be computed for the equilibrium reconstruction problem. FGS is used to generate

synthetic data for an ITER standard H-mode equilibrium with realistic kinetic profiles

to compare different reconstruction solutions.

• In Chapter 5, the implementation of kinetic equilibrium reconstruction developed

during this thesis for post-discharge analysis in TCV is presented. This couples the

free-boundary equilibrium reconstruction code LIUQE [Moret et al. 2015], the transport

code ASTRA [Pereverzev and Yushmanov 2002], the ray-tracing code Toray-GA [Matsuda
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1989], the kinetic and magnetic measurements. We investigate the sensitivity of the

equilibrium reconstruction to internal plasma profiles on a database of TCV discharges

with different physical content and the comparison between MER and KER for few

discharges with significant plasma profile features generated by external heating and

current drive and plasma transport.

• In Chapter 6 we present the implementation and first time application of kinetic equi-

librium reconstruction in real-time during tokamak operation, including consistently

a magnetic equilibrium reconstruction code LIUQE, a transport code RAPTOR [Felici

et al. 2018] and magnetic and kinetic measurements. The results have been published

in [Carpanese et al. 2020].

• In Chapter 7 summary and outlooks are provided.

• In Appendix A we briefly discuss the Kalman Filter technique to perform state and

parameter estimation combining dynamic models with available measurements.

• In Appendix B the estimate of the effective charge from the flux surface averaged plasma

current diffusion is described as implemented in the kinetic equilibrium reconstruction

post-discharge analysis.

• In Appendix C the formulation of an analytic gradient for the free-boundary equilibrium

problem with finite difference spatial discretization is derived. This derivation is a novel

contribution of this thesis.

• In Appendix D we describe the Jacobian Free Newton Krylov (JFNK) to solve root-finding

type problems.

• In Appendix E we discuss analytically the difference between the solution of linear and

"quasi-linear" least-squares optimization problems.

• In Appendix F we discuss the application of the Lagrange’s multipliers to show the

difference between the solution of linear and "quasi-linear" least-squares optimization

problem with equality constraint, in order to explain analytically the difference between

the solution of the LIUQE reconstruction code and magnetic equilibrium reconstruction

performed with the FGS code developed in this thesis.

• In Appendix G the derivation of the integral current diffusion equation as implemented

in FGE is provided. Also this derivation is a novel contribution of this thesis.

Other work carried out during this thesis

During the thesis the author participated to other scientific works not mentioned in the

chapters which are listed here for completeness.
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• Contribution to several weekly code camps to provide TCV magnetic data, first into the

EU-ITM data structure contributing to [Pinches et al. 2021], and then to the IMAS/IDS

framework [Pinches et al. 2017], within the EUROfusion Project on Code Development

for Integrated Modelling (WPCD) contributing to [Pinches et al. 2021]. This work in-

cluded the porting of the LIUQE code to read IMAS/ITM data structure.

• First benchmark of LIUQE against EFIT equilibrium reconstruction code for ITER H-

mode discharge synthetic data [F.Carpanese 2017] which led to start a more extended

benchmark (2020) to assess its potential use during ITER operation.

• During a visit at ITER and in collaboration with ITER-IO (2020), LIUQE equilibrium

reconstruction code was interfaced with ITER Plasma Control System Simulation Plant-

form (PCSSP) [Walker et al. 2014].

• Main supervisor of the Master Thesis of Lucas Marietan [Marietan], where the routines

to perform post-discharge kinetic equilibrium reconstruction analysis developed in

this thesis have been used to quantitatively compare kinetic and magnetic equilibrium

reconstruction for TCV.
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2 Forward/predictive problems

In this chapter we derive the formulation of the forward/predictive models addressed in this

thesis.

We start by revising the transport in tokamak on resistive time scale ordering. Then in section

2.2 and 2.3, from the static free-boundary MHD equilibrium, we couple it to the evolutionary

equations for the current in the active and passive structures. We derive in section 2.4 a 0D

current diffusion equation, integrating the flux surface averaged poloidal flux evolution, and

we briefly discuss the heat and particle flux surface averaged transport equations.

2.1 Diffusion and transport in tokamaks with resistive time scale

ordering

Citing directly from [Fasoli et al. 2016]: "Magnetic-fusion plasmas are complex self-organized

systems with an extremely wide range of spatial and temporal scales, from the electron-orbit

scales (∼ 10−11s, ∼ 10−5m) to the diffusion time of electrical current through the plasma (∼ 102

s) and the distance along the magnetic field between two solid surfaces in the region that de-

termines the plasma–wall interactions (∼ 100m). The most straightforward way for describing

plasmas would be the microscopic particle approach: solving the equations of motion for

the many individual particles that form the plasma in externally imposed electromagnetic

fields and in the fields that the particles themselves generate. However, this is computationally

impossible to apply to realistic magnetic-fusion plasmas, which typically contain 1022–1023

particles".

Every plasma model of practical use is therefore targeted to a small spatial and time scale range

and aims to address specific aspects of the plasma physics. In this thesis we are interested to

investigate the basic aspects of the tokamak operation, in particular:

1. Macroscopic force balance equilibrium between the plasma pressure and the electro-

magnetic forces.
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2. The radial (across flux surface) diffusion of kinetic and plasma current profiles.

3. The evolution of plasma through subsequent states of equilibrium due to the evolution

of both external current in conductors and plasma profiles.

We are interested both in developing predictive capabilities (problems described in this chap-

ter) and to reconstruct these plasma states from available measurements in post-discharge

analysis and during the experiment (problems described in next chapters).

These aspects are found in spatial scales of the order of fraction of the plasma minor radius a,

comparable to fraction of the size of the vacuum chamber of the device (a ∼ 25cm in TCV),

where the kinetic profiles are described. For the time scales we will make a distinction which

will be clearer in the following.

The time and spatial scale of these aspects fit the Magnetic Hydro Dynamic model under the

resistive time scale ordering. This is derived and described rigorously in many textbooks and

manuals [Jardin 2010; Pereverzev and Yushmanov 2002; Blum and Le Foll 1984; Hinton and

Hazeltine 1976]. We discuss here only the key aspects and hypotheses leading to a system of

equations describing the phenomena of interest.

In the spatial scale of interest, the fluid can be described by the scalar pressure two-fluid MHD

system of equations.

ni mi

(
∂u

∂t
+u ·∇u

)
+∇p = j ×B (2.1)

∂ni

∂t
+∇· (ni u) = Sn,i (2.2)

∂ne

∂t
+∇· (ne u) = Sn,e (2.3)
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]
=−pe∇·u + j ·R +Q∆i e +Si i (2.4)
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∂pe

∂t
+∇·

[
q e +
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pe u

]
=−pe∇·u + j ·R +Q∆ei +See (2.5)

∂B

∂t
=−∇×E (2.6)

E +u ×B = R (2.7)

j = ni zi ui +ne ze ue (2.8)

In the system we defined with ni the density of the ions, ne the density of the electrons and

zi ,ze their respective charges. We consider for the moment only the presence of electron and

ions with a single charge and the quasi neutrality condition reads n = ne = ni . The mass bulk

fluid velocity u = (me ne ue +mi ni ui )/(me ne +mi ni ) ∼ ui , is approximately equal to the ion

bulk velocity ui since mi À me . We indicate with p = pe +pi the total plasma pressure, with

Sne and Sni the sources of particles, with qi and qe the heat fluxes, with Q∆ei and Q∆i e the
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exchange of heat between species and with Si i and See the sources of heat, for the electron

and ion species respectively. The Q∆ represents the collisional exchange of energy between

particles and R the collision exchange of momentum which, in its most simple expression,

can be represented by the scalar Ohm’s law R = 1
η j , where η is the plasma resistivity.

We can recognize in order, the total momentum balance equation eq. (2.1), the particle density

conservation for the species eq. (2.2) and eq. (2.3), the heat diffusion equations for the species

eq. (2.4) and eq. (2.5), the Faraday’s law eq. (2.6) and generalized Ohm’s law eq. (2.7). The

system of equations still needs a closure to relate the fluxes and cross exchange sources/sinks

to the kinetic quantities. These are given in the many references [Jardin 2010; Pereverzev and

Yushmanov 2002; Blum and Le Foll 1984] and we will provide only some specific cases when

needed in the next sections.

There are two important time scales in the system of equations eq. (2.1) and eq. (2.7). We

define first the Alfven velocity,

VA = Bp
µ0ni mi

(2.9)

which represents the travelling velocity of typical oscillation of ions ( hence the bulk mass of

the plasma) and magnetic fields. The Alfven time τA is the characteristic time of propagation

of the previously described waves in the system,

τA = a

VA
, (2.10)

where a is the minor radius of the plasma approximately equal to the radial dimension of the

vacuum chamber. The resistive time scale,

τR = µ0a2

η
(2.11)

is the characteristic time of momentum transport due to particle collisions. The ratio of the

two time scales defines the Lundquist non dimensional parameter S ≡ τR
τA

. This number for

modern fusion experiment is typically S ∼ 106 −1012, meaning that the propagation of the

ions/magnetic field oscillations in the system is much faster than the momentum diffusion

from collisions.

We are now interested in phenomena of the order of the resistive time t ∼ τR ∼ SτA . We can

use ε= S−1 as a small parameter to perform the ordering expansion. We consider first all the

sources of dissipation to be small,

η∼ R ∼ Sn ∼ Se ∼ qε¿ 1. (2.12)
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Chapter 2. Forward/predictive problems

Moreover, we look for solutions in which all the time derivatives and velocities are of order ε,

∂

∂t
∼ u ∼ ε¿ 1, (2.13)

and also the electric field is considered to have the same order E ∼ ε.

If we apply this scaling to the system of equations eq. (2.1) to eq. (2.7), all the equations remain

unchanged, only picking up an ε factor in front, except the momentum balance equation,

ε2nmi

(
∂u

∂t
+u ·∇u

)
+∇p = j ×B . (2.14)

The derivation is found in [Jardin 2010]. In the limit ε−> 0, we can neglect the inertial nmi

term and obtain the force balance equation ∇p = j ×B , the ideal massless MHD force balance,

also called the "plasma equilibrium equation".

Some important remarks on the obtained set of equations.

• Having removed from the system the inertial terms has the consequence to remove all

the wave behavior of the system, in particular all the instabilities. The remaining system

indeed is represented only by diffusion equations, hence parabolic type equations, with

the force balance as a constraint.

• If we did not consider a scaling assumption for the time derivatives and velocity, we

would have obtained the ideal MHD system of equations. The instabilities of the ideal

MHD are of major concern for tokamak operation when the pressure and current

overcome a certain threshold. These instabilities are removed with the resistive time

scale ordering.

• The velocity of the plasma u is not removed from the system, since it is still present in

the equations except the force balance equation. The plasma therefore can still move,

but only through equilibrium states, meaning through states which respect the force

balance equation.

• The force balance equation is not in its final used in this thesis. Exploiting the toroidal

symmetry of the tokamak device, one can reduce its dimensionality. This will lead

to the Grad-Shafranov equation discussed in the next section. The solution of the

force balance equation is represented by nested surfaces at constant poloidal flux and

constant pressure, where the magnetic field lines lie. We will define a coordinate system

moving with the flux surfaces. This way we will allow the plasma to move, and the

transport equation to be represented, only through states respecting the force balance

equation under plasma toroidal symmetry assumption.

• The transport of heat and particles is very fast along the magnetic field lines but much

slower across them, since the particles are at first approximation forced to gyrate about

the magnetic field lines. In the resistive time scale limit, we are only interested in the
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2.1. Diffusion and transport in tokamaks with resistive time scale ordering

transport orthogonal to magnetic field lines. We will therefore use a flux surface average

of the transport equations to describe the dynamics across flux surfaces.

In summary, from the two fluids MHD model, applying the resistive time scale ordering, one

obtains a system of equations suited to describe the transport across flux surfaces, where all

the fast dynamics including the ideal MHD instabilities have been removed.

The system of equations however is not sufficient to describe all the dynamics targeted in this

thesis. There are indeed phenomena, described in the following, which appear in a time range

between the Alfven time scale τA and the resistive time scale τR , which are important for the

tokamak operation and are still compatible with the actuators response.

Vertical Displacement Event (VDE)

When we add the circuit equations describing the dynamics of the currents in the active and

passive conductors around the plasma, the Vertical Displacement Event (VDE) instability

arises. This instability, at least in its early phase, can be described by subsequent equilibria

with plasma drifting vertically towards the wall. A vertical stability controller acting on a set of

poloidal field coils is needed during tokamak operation. The resulting system of equations,

coupled to the conductor dynamics, will be described in the following section. The time scale

of this instability in TCV is of the order of ms or fraction of ms, while the typical diffusion time

scale for the heat/particle flux and current diffusion ranges from 5−200ms.

For completeness, we specify that coupling the two-fluid MHD under resistive time scale

ordering, which led to neglect the plasma inertia, with the evolutionary equations for the

current in the active and passive conductors allows to describe the VDE only during its initial

phase. When the plasma, after displacing, approaches the wall a large increase of so-called

"halo currents" [Hender et al. 2007], currents flowing partially in a small region outside the

LCFS and partially in the vessel, provides an important contribution to the magnetic force

of the structures. We will not consider this aspect in this thesis. Moreover in a later phase of

the instability, when the plasma shrinks, non-toroidally symmetric instabilities prevail, which

cannot be described by the model under resistive time scale assumptions [Strauss 2015, 2018;

Pfefferlé et al. 2018; Artola et al. 2018; Sovinec and Bunkers 2019].

In this thesis however, we only aim to use a model to design the controllers to keep the plasma

in a desired equilibrium condition and not to recover from a later phase of the instability.

The system of equations under resistive time scale ordering coupled to the dynamics of the

conductors contains therefore enough physics content for our purpose.

Other plasma events with τA ¿ τ¿ τR

We have listed in the introduction some MHD instabilities that appear during tokamak opera-

tion which can have intermediate time scales between the τA and τR . These are the sawtooth
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crash of the central current profile, the localized modes with a fast pressure pedestal drop

at the plasma edge, and the opening up of a magnetic island between nested flux surfaces.

These instabilities might not necessarily lead to a disruption but can be detrimental for the

plasma performances, in particular magnetic islands. These need dedicated modelling to be

able to simulate the dynamics and are not represented by the system of equations described

before. We will not aim in this thesis to simulate them in their dynamics however when

performing reconstruction/interpretative problem (described in the next chapter) we will

eventually consider their macroscopic effects on the plasma profiles.

2.2 MHD static equilibrium problem

The static free boundary equilibrium problem looks for the magnetic field which satisfies

the MHD force balance equation together with the Maxwell’s equations both under static

condition d
d t = 0. The system of equations reads,

j ×B =∇p

∇×B =µ0 j

∇·B = 0

(2.15)

where j is composed of the contribution of both the plasma current density j pl and currents

external to the plasma j e but present in the domain of validity of the system, for example the

currents belonging to conductors (coils and passive structures). We consider a cylindrical

coordinate system {R,φ, Z } were φ is the toroidal angle. When a toroidally symmetric solution

is sought, the magnetic field B can be expressed with the use of two scalar potentials {ψ,T } as

B = 1

2π
∇ψ×∇φ︸ ︷︷ ︸

B p

+T∇φ,︸ ︷︷ ︸
Bφ

(2.16)

where Bφ represents the toroidal magnetic field and B p the poloidal magnetic field. The choice

of the coordinate system corresponds to COCOS=17 as described in [Sauter and Medvedev

2013]. Notice that B p lies on a plane ⊥∇φ called the poloidal plane which corresponds to the

(R, Z ) plane. ψ=ψ(R, Z ) is related to the poloidal flux of B p and T (R, Z ) = RBφ. For example,

if one considers a disk centered at the center of symmetry of the coordinate system, of radius

Ri , placed orthogonal to Z direction at the height Zi , then ψ(Ri , Zi ) = ∫
B (R, Zi )p ·ez 2πRdR.

This is the case for the flux loop measuring the poloidal flux around the tokamak vessel.

A property of the system eq. (2.15) is that, inside the plasma, nested surfaces at constant

value of ψ are formed. Moreover, these surfaces are also surfaces of constant pressure hence

p = p(ψ(R, Z )) and also T = T (ψ(R, Z )). Making use of eq. (2.16) and the properties just cited,

the system of equations (2.15) becomes the well known Grad-Shafranov equation [Grad and
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2.2. MHD static equilibrium problem

Rubin 1958],

∆∗ψ=−2πµ0R( jpl ,φ+ je,φ) =−4π2
(
µ0R2 d p

dψ
+T

dT

dψ

)
−2πµ0R je,φ, (2.17)

where jpl ,φ(R, Z ) is the toroidal component of the plasma current density, p = p(ψ) is the

total plasma pressure, je,φ the external (to the plasma) toroidal current density belonging to

the currents flowing in the active coils circuits ja or in the passive conductors jv such as the

vacuum vessel. The location in the poloidal plane of these currents is shown in fig.2.1a for the

case of TCV tokamak. In eq. (2.17) we introduced the so-called Grad-Shafranov operator,

∆∗ = R
∂

∂R

(
R
∂

∂R

)
+ ∂2

∂Z 2 . (2.18)

The toroidal symmetry hypothesis will be always valid in this document. Hence the toroidal

component jφ of any current density, either from the plasma or external conductor, is the only

component which provides contribution to the poloidal flux ψ. The label φ will be therefore

dropped in the rest of the document from any current density distribution component ji

meaning with that ji = ji ,φ unless differently specified.

It is useful to specify in table 2.1 the sub-domains of (R, Z ) poloidal plane that are used in this

work. These are shown in fig. 2.1 for the TCV tokamak. With the symbol Ω∗ we refer to the

Ω (R,Z) plane
Ωc Computational domain
Ωpl Plasma region where jpl 6= 0
Ωv Vessel region
Ωvac = (Ωc ∩Ωpl )c Vacuum region inside computational domain
Ωa Active coil region

Table 2.1

open set, i.e. excluding its boundary ∂Ω∗. The computational domainΩc , where the solution

of the Grad-Shafranov equation is sought, can be any subset of the poloidal plane. In fig. 2.1a,

Ωc is represented with a rectangular box enclosed within ∂Ωc (blue continuous curve). This

particular choice of the shape for ∂Ωc will simplify the numerical finite difference formulation

in sec. 4.2. The plasma regionΩpl is contained within the so-called "last closed flux surface"

(LCFS) represented with the continuous red line in fig. 2.1a and 2.1b. As suggested by the

name, the LCFS is the outermost closed surface of the nested flux surfaces at constant ψ.

There are two possible conditions in a tokamak that can define the LCFS. If the plasma touches

the limiter (black continuous line) then the LCFS is given by the isoflux line at the flux value

of the contact point. In this case we refer to a so-called "limited" plasma. In the second

case, the one represented in figs. 2.1a and 2.1b, the boundary of the plasma region ∂Ωpl is

defined by the isoflux line at the value of the poloidal flux of the X point (red cross in fig. 2.1a),

which is a saddle point of the flux map ψ(R, Z ). The vessel region Ωv (gray region) might
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Figure 2.1 – Example of domains in poloidal plane of TCV: Plasma domainΩpl (yellow region),
delimited by the plasma boundary ∂Ωpl (red continuous line); the X point is represented
with a red cross and the divertor legs with dashed red lines; the computational domain is
contained inside the computational domain boundary ∂Ωc (dark blue line) and is composed
by the union of the plasma domainΩpl and the vacuum regionΩvac in light blue; the vessel
regionΩv (gray) intersectsΩc in the upper and lower right corner; locations of the active coil
filaments in pink; limiter displayed with black continuous line, violet region for magnetic
probes location Bm and violet stars for flux loops F f .
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be partially inside and partially outsideΩc as seen from the more detailed representation in

fig. 2.1b. The active coilsΩa(pink regions) can be located both inside and outside the vessel,

but always separated from the plasma which will remain inside the region delimited by the

physical structure called limiter (black continuous line). For example in TCV the coils inside

the vessel which are visible in fig. 2.1b (small pink circles insideΩc ) are used for the vertical

stabilization of the plasma since their fast response is less screened by the vessel induction.

Therefore we will assume for this case Ωv ∩Ωc 6= ;, Ωa ∩Ωc 6= ; but Ωv 6⊂Ωc and Ωa 6⊂Ωc .

In fig. 2.1 the position of the magnetic field probes Bm(small violet regions near the vessel),

measuring locally the component of the magnetic field orthogonal to the probe, and the flux

loop diagnostics F f (violet stars), measuring the poloidal flux ψ(R, Z ), are shown. The flux

loops are circular conductors centered around the vertical axis of the tokamak at various R,Z

locations and placed perpendicular to the Z direction.

In order to solve eq. (2.17), the functions p ′(ψ) and T T ′(ψ) together with the boundary

conditions at the computational boundary ∂Ωc need to be specified. The boundary condition

at ∂Ωc are given by,

ψ(R, Z ) = ∑
i=[pl ,a,v]

∫
Ωi

G(R, Z ;R ′, Z ′) ji (R ′, Z ′)dR ′d Z ′ with (R, Z ) ∈ ∂Ωc . (2.19)

The integral in eq. (2.19), which in principle is extended to the whole poloidal plane Ω for

(R ′, Z ′), is effectively evaluated only in the region where ji 6= 0 equivalent toΩa ∪Ωv ∪Ωpl and

we call G(R, Z ;R ′, Z ′) the Green’s function that provides the contribution of the toroidal current

density ji (R ′, Z ′) to the fluxψ(R, Z ). In eq. (2.19) ji can belong either to the plasma jpl (always

insideΩc ) or to the external current density je (inside or outsideΩc ) composed by active coil

ja ( poloidal field coils and OH coils) and passive structure currents such as the vessel jv . For

the external current I e , instead of continuous distribution in the poloidal plane, we will always

consider sets of filamentary currents I = { j (R j , Z j )} located at the positions {(R j , Z j )} with

point-wise sections in the poloidal plane, calling I a the active coil current filaments and I v

the vessel ones and packing them together in I e = {I a , I v }. This is equivalent to consider ji

as a Dirac distribution Iiδ(R −Ri , Z −Zi ), where (Ri , Zi ) is the location of the filament i . This

way the contribution of the filamentary current i to the poloidal flux at a given location in the

poloidal plane (Rk , Zk ) from eq. (2.19), is simply given by ψi (Rk , Zk ) = g (Rk , Zk ;Ri , Zi )Ii .

We notice that another possible boundary condition is to set lim{R,Z }→∞ψ= 0, which requires

to consider a much bigger computational domain.

We now define with ψA = ψ(RA , ZA) the value of the poloidal flux at plasma axis as an ex-

tremum point of the poloidal flux map ψ(R, Z ) (either a maximum or a minimum depending

on the sign of the plasma current). The point in the poloidal plane {RA , ZA} represents the

center of the plasma. With ψB = ψ(RB , ZB ) we define the value of the flux at the plasma

boundary. The point (RB , ZB ) in case of limited plasma is given by the value of the flux at the

plasma/limiter contact point, and in case of a diverted plasma by the value of the flux at the

X point, which is a saddle point in the poloidal flux map ψ(R, Z ) . We define the normalized
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poloidal flux as

ψ̂= ψ(R, Z )−ψA

ψB −ψA
(2.20)

Given the ψ̂definition we note that p ′(ψ) = p ′(ψ̂)/(ψB−ψA) , and similarly T T ′(ψ) = T T ′(ψ̂)/(ψB−
ψA)

2.2.1 Free boundary equilibrium

We can finally formulate the forward static free boundary equilibrium problem.

Given: p ′(ψ̂) , T T ′(ψ̂), the active coil I a and vessel coil I v currents

Find: ψ(R, Z ) inΩc , solving eq. (2.17) with boundary conditions in eq. (2.19).

The main difficulty in solving this non-linear 2nd order elliptic PDE is to find the plasma

domain Ωpl entering in the surface integral in eq. (2.19). This is not given a priori as input

in the free-boundary equilibrium problem and requires to find the value ψB of the flux at

the plasma boundary. Indeed, this particular non linearity is why the problem is called "free-

boundary" as opposed to "fixed boundary" where the plasma boundary ∂Ωpl is known. We

consider the p ′(ψ) and T T ′(ψ) defined only withinΩpl and jpl is considered null outside this

region.

jpl (ψ(R, Z ), p ′(ψ̂),T T ′(ψ̂)) =
 2π

ψB−ψA

(
R d p

dψ̂ + 1
µ0R T dT

dψ̂

)
for (R, Z ) ∈Ωpl

0 for (R, Z ) ∈ (Ωc ∩Ωpl )c
(2.21)

The plasma regionΩpl , as a property of ideal MHD system of equations, is always a closed

flux surface defined by the isoflux line at ψB . In real plasma there is a small region outside the

LCFS, called the scrape of layer, where a small non null toroidal plasma current is present, but

we do not consider it in this work.

It is convenient to express the free-boundary equilibrium forward problem as a root finding

problem. We will be able to represent all the problems formulated in this part of the thesis in

this form such that a single technique will be applied for their numerical solution. We define

the unknown x ≡ψ(R, Z ) and the inputs v ≡ {p ′(ψ̂),T T ′(ψ̂), I a , I v } . Bringing the RHS of eq.

(2.17) and 2.19 to the LHS, we can define the nonlinear operator F = F (x; v) as,

F (x; v) =
{
∆∗ψ+2πµ0R( jpl + je ) in Ωc

ψ(R, Z )−∑
i=[pl ,a,s]

∫
Ωi

G(R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc
(2.22)

The static free boundary forward equilibrium problem can be now expressed as a root finding

problem.

Given: v = {p ′(ψ̂),T T ′(ψ̂), I a , I v }

Find: x =ψ(R, Z ) such that F (x; v) = 0 inΩc , with jpl defined in eq. (2.21).
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We stress the fact that findingΩpl in order to compute jpl defined in eq. (2.21) is part of the

solution of the problem. Because of the non-linearity of finding a saddle point from a 2D

map ψ(R, Z ), it is not possible to write the analytical gradient of the operator ∇x F (x; v) in

continuous (R, Z ) space representation for diverted plasma. This will be discussed extensively

in the second part of the thesis when the problem will be addressed numerically.

2.2.2 Fixed boundary equilibrium

To complete the overview of the forward problems described in this chapter related to the

Grad-Shafranov equation we summarize in the following the formulation of the problem in

case ∂Ωpl is given, which is typically addressed as the "fixed boundary equilibrium problem".

In this case the problem becomes,

Given: {p ′(ψ̂),T T ′(ψ̂)} and ∂Ωpl

Find: ψ̂(R, Z ) such that, ∆∗ψ̂=−
(

2π
ψB−ψA

)2(
µ0R2 d p

dψ̂ +T dT
dψ̂

)
for (R, Z ) ∈Ωpl

ψ̂(R, Z ) = 1 for (R, Z ) ∈ ∂Ωpl

(2.23)

The problem eq. (2.23) is much easier to solve than eq. (3.9) since one does not need to find

the domainΩpl which is the most difficult non linearity of the free boundary case. One can

specify an additional constraint, which is typically set to be the total plasma current Ip , since

one can rescale the sources and ψB −ψA to yield a self-similar equation.

Some analytic solutions exist for simple plasma profiles both for fixed-boundary and free-

boundary case [Cerfon and Freidberg 2010; Guazzotto and Freidberg 2007].

2.2.3 Flux surface coordinate system and related quantities

In this section we will define several quantities that can be computed from the solution of the

equilibrium equation that will appear in several formulation in the remainder of this thesis.

First of all we notice that, since the plasma at equilibrium forms nested flux surfaces at

constant ψ, if we label each flux surface with the corresponding value of the flux we obtain

a monotonic increasing/decreasing (depending on the convention) range of ψ from ψA to

ψB . Therefore, within the plasma, the value of ψ at a given flux surface can be used as radial

coordinate from the plasma axis to the boundary.

In principle every quantity which is constant on a given flux surface and monotonic from the

plasma axis to the boundary could be used as a radial coordinate. We define two of them in

the following. The volume enclosed by a constant flux surface is given by,

V (ψ∗) =
∫ ∫

Ωψ∗
2πRdRd Z =

∫ 2π

0

∫ ψ∗

ψA

∫ lp,tot (ψ∗)

0
Rdφ

dψ

|∇ψ|dlp =
∫ ψ∗

ψA

dψ
∮ dlp

Bp
(2.24)
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in particular dlp is an infinitesimal length in the poloidal plane along the flux surface, Bp =
1

2π
|∇ψ|

R is the modulus of the poloidal magnetic field as it can be seen from eq. (2.16) andΩψ is

the subset of the volume in physical space enclosed by the flux surface at ψ=ψ∗ constant.

To derive equation eq. (2.24) we use the coordinate system transformation from (R,φ, Z ) to

(ψ, lp ,φ) using ψ as a radial coordinate as anticipated and lp the length of the cross section

contour of the flux surface in the poloidal plane. The volume V (ψ) is a flux surface quantity

and can be used as a radial coordinate. Also, note that

dV

dψ
= 2π

∮
R

dlp

|∇ψ| =
∮ dlp

Bp
(2.25)

We can define similarly the area of the cross section of a given flux surface at ψ=ψ∗ as

A(ψ∗) =
∫
Ωψ∗

dRd Z =
∫ ψ∗

ψA

dψ
∮ dlp

2πRBp
. (2.26)

We have in particular the following Jacobians for coordinate transformation,

d A = dψ

|∇ψ|dlp

dV = Rdφ
dψ

|∇ψ|dlp .

It is important to notice that in case of a diverted plasma in presence of an X point, which by

definition has ∇ψ= 0, these Jacobians diverge hence care must be taken in choosing a non

degenerate coordinate system when computing integrals which include the separatrix.

We call toroidal fluxΦ(ψ∗) the flux of the toroidal magnetic field in the poloidal cross section

of a flux surface at ψ=ψ∗ ,

Φ(ψ∗) =
∫
Ωψ∗

Bφ ·d A =
∫
Ωψ∗

T

R2 dRd Z =
∫ ψ∗

ψA

∮
T (ψ)

R2

dψ

|∇ψ|dlp (2.27)

Since the toroidal magnetic field in a tokamak is mainly produced by the external toroidal field

coils which provide a field of magnitude B0 ∼ 1
R , the toroidal fluxφ is monotonously increasing

from the plasma axis to the plasma boundary and can be used as a radial coordinate.

With Ip we indicate the total flux of the toroidal plasma current density inside the poloidal

cross section of a flux surface at ψ=ψ∗

Ip (ψ∗) =
∫
Ωψ∗

j pl ·d A =
∫
Ωψ∗

jpl d A = 1

2π

∫ ψ∗

ψA

dψ
∮ jpl

R

dlp

Bp
(2.28)

We also use the fact that d A = d Aêφ , having defined the unity vector êφ = R∇ϕ and |∇φ| = 1
R .
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Not that Ip (ψ) is not in general a good flux surface label since it may not be monotonic in

special cases.

We summarize in the following the radial coordinates which will appear in the following

formulations together with their range of value that they can assume within the LCFS:

ψ̂= ψ−ψA

ψB −ψA
[0,1] ρψ̂ = ρpol =

√
ψN [0,1]

Φ̂= Φ

ΦB
[0,1] ρ̂ = ρΦN = ρtor,N =

√
Φ̂ [0,1]

ρvol =
√

V (ρ)

V (ρB )
[0,1] ρΦ = ρtor =

√
Φ

πB0
[0,

√
ΦB /πB0].

We tried to use the most common names and symbols in literature for each quantity. We

notice that ψ is defined also outside the LCFS, hence it is possible to find ψ̂> 1 in literature

when for example displaying some kinetic profiles. However in this thesis we will restrict to

ψ̂ ≤ 1. We stress that ρ̂, which will be the main radial coordinate for the current diffusion

equation in the next section, is computed from the normalized toroidal flux Φ̂ and not from

the poloidal flux. Moreover, B0 is defined as the vacuum toroidal magnetic field, meaning

the toroidal magnetic field generated by external conductors, at R0 fixed location, which is

typically chosen to be the geometrical center of the vacuum vessel.

We remind here some useful relations between the quantities that will be convenient in the

following derivations. We notice again that these definitions assume COCOS = 17 [Sauter and

Medvedev 2013].

dψ

dΦ
≡ ι≡ 1

q

dψ̂

dψ
= 1

ψB −ψA
(2.29)

dΦ

d ρ̂
= 2ΦB ρ̂

d ρ̂

dψ̂
= ψB −ψA

2Φρ̂ι
(2.30)

d ρ̂

dΦ̂
= 1

2

1√
Φ̂

dψ

d ρ̂
= dψ

d ρ̂

dΦ

d ρ̂
= 2ιΦB ρ̂ (2.31)

In particular we stress the definition of the quantity q ,

dψ

dΦ
≡ ι≡ 1

q
(2.32)

usually called "safety factor", which can be shown to be related the number of toroidal turns

to complete one poloidal revolution of a given magnetic field line lying on a given flux surface.

The q profile is related to the onset of different plasma instabilities, and has become a crucial

parameter to estimate and control during plasma operation. One of the purpose of the kinetic

equilibrium reconstruction that will be explained in the following is to improve the estimation

of this quantity from the available measurements. We now define an averaging operator which

will be crucial in the following derivations for transport equations. The intuition to introduce
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Chapter 2. Forward/predictive problems

this operator is that the transport along the magnetic field lines, which lays on a given flux

surface, has strongly different properties with respect to the transport across them. One can

study the two of them independently, at least in the resistive time scales of interest.

The flux surface average for quantity Q on a given flux surface ψ∗ is defined as,

〈Q〉(ψ∗) = ∂

∂V

∫
Ωψ∗

QdV = ∂ψ

∂V

∂

∂ψ

∫ ψ∗

ψA

∫ 2π

0

∮
Q

Rdlp

|∇ψ| dψdφ=
∮

Q
dlp

Bp
/
∮ dlp

Bp
(2.33)

We stress that in order to apply this operator to a given quantity Q(R, Z ) it is necessary to

know the full poloidal distribution of ψ(R, Z ) in order to obtain the flux surface geometry and

compute the average.

We define as in [Fable et al. 2013a],

g0 = 〈|∇V |〉 (2.34)

g1 = 〈< (∇V )2〉 (2.35)

g2 = 〈|∇V |2
R2 〉 (2.36)

g3 = 〈 1

R2 〉 (2.37)

which we will always refer to as geometrical quantities.

2.2.4 Alternative specification of free functions for equilibrium problem

Thanks to the quantities defined in the previous section, one can rewrite the Grad-Shafranov

equation eq. (2.17) by specifying different input functions instead of p ′(ψ̂) and T T ′(ψ̂).

We define j∥ as,

j∥ ≡
< j pl ·B >

B0
= 1

8π2B0

1

µ0ΦB

T 2

V ′
ρ̂

∂

∂ρ̂

[
g2g3

ρ̂

∂ψ

∂ρ̂

]
(2.38)

and jtor as,

jtor ≡ R0 <
jpl ,φ

R
>= 2πR0

1

16π3µ0ΦB

1

V ′
ρ̂

∂

∂ρ̂

(
T

g2g3

ρ̂

∂ψ

∂ρ̂

)
(2.39)

where in particular V ′
ρ̂
= dV

d ρ̂ andΦB is the toroidal flux enclosed by the LCFS. The derivation

of the quantities eq. (2.38) and eq. (2.39) can be found in [Felici et al. 2011].

By taking the flux surface average of the Grad-Shafranov equation one can also find the relation
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2.3. Circuit equation for evolution of conductor currents

between j∥ , jtor , q and the previously used free functions d p
dψ̂ and T dT

dψ̂ . The relations are,

j∥ =− 2πT

µ0B0

1

ψB −ψA

{
µ0

d p

dψ̂
+T

dT

dψ̂

[
g3 + g2

4π2T 2(V ′
ρ̂

)2

(
dψ

d ρ̂

)2]}
, (2.40)

jtor = R0π

ψB −ψA

(
d p

dψ̂
+ g3

1

µ0
T

dT

dψ̂

)
, (2.41)

q = T
dV

dψ
g3. (2.42)

From the relations eq. (2.40) to eq. (2.42) one can see that different combination of quantities

can be used to specify the RHS of the Grad-Shafranov equation. One simply needs to invert

the relations to find d p
dψ̂ and T dT

dψ̂ and replace them in eq. (2.17).

However to make use of any quantity among j∥, jtor , q implies to compute the geometrical

quantities g2, g3 from ψ(R, Z ) which have divergent behavior in case of diverted plasma and

add an extra non-linearity to the problem. In the following of the thesis we will stick therefore

with the formulation of the Grad-Shafranov equation usig p ′ and T T ′ as free functions. How-

ever j∥, jtor and q definitions will be important when coupling the free boundary equilibrium

problem to the current diffusion equation explained in the following sections.

2.3 Circuit equation for evolution of conductor currents

The Grad-Shafranov equation described in previous section represents a force balance equa-

tion in the direction ⊥ B under the hypothesis of toroidal symmetry. Given a set of external

toroidal currents ja(R, Z ), jv (R, Z ) distribution in the poloidal plane, it finds the solution of

the plasma current distribution such that the plasma is an equilibrium state and the pressure

gradient force is balanced by the j ×B force. The equilibrium condition is reached in the

MHD timescale that can be estimated by the Alfven frequency which is much faster than the

usual time scale of the evolution of the external currents in active and passive conductors.

In this section we will provide the equation for the evolution of the current in the external

conductors, and we will assume that the plasma evolves through a sequence of MHD equilibria

represented by the Grad-Shafranov equation. Notice that the phenomena of interest are found

at intermediate time scaled between the Alfven and resistive/transport time scale, this means

that we can use the GS equation (massless approximation) but assume the profiles p ′,T T ′ are

static for one GS solution.

The evolution of the toroidal currents in a filament of an active conductor is described by

Ohm/Faraday’s law,

dψ

d t
=V −RI , (2.43)

where the resistive decay of the current, described by the Ohm’s law RI , is sustained by the

externally applied voltages V (only for the active coils) and the back-EMF dψ
d t produced by
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Chapter 2. Forward/predictive problems

the variation of the magnetic flux. The magnetic flux is the flux of the poloidal magnetic field

when considering only toroidal current filaments and it is generated by all toroidal currents

present in whole domain including the currents of the filament itself.

Formally, if we define with ψt =ψ(Rt , Zt ) the poloidal flux enclosed by the toroidal filament t

where (Rt , Zt ) is the coordinate in the poloidal plane of the location of the toroidal filament t

ψ(Rt , Zt ) = ∑
k=[pl ,a,v]

∫
Ωk

G(Rt , Zt ;R ′, Z ′) jk (R ′, Z ′)dR ′d Z ′. (2.44)

In a tokamak typically the active conductors, which are used to generate the magnetic field

to keep the plasma in equilibrium, are connected in circuits. In particular, a single active

conductor that we will call "coil" and label with c , is made of several toroidal wires represented

by filamentary windings connected in series that we label with w . The active coils are then

connected in series to form what we call an "active circuit" which we will label with a.

We now define ψi , j ,k =ψ(Ri , j ,k , Zi , j ,k ) with i ∈ [1, .., N w
j ,k ] where N w

j ,k is the total number of

windings of the coil j belonging to the active circuit k, j ∈ [1, ..., N c
k ] where N c

k is the total

number of coils belonging to the circuit k, and finally k ∈ [1, ..., Na] with Na the total number

of active circuits. Hence from eq. (2.43), for all the individual windings belonging to all active

circuits we have obtained the following system of equations:

dψi , j ,k

d t
=Vi , j ,k −Ri , j ,k Ii , j ,k . (2.45)

We can now use Kirchkoff’s for series connection to group some of the equations in eq. (2.45).

We define Va,k = ∑N c
k

j=1

∑N w
j ,k

i=1 Vi , j ,k the effective voltage applied to the active circuit k with

k ∈ [1, ..., Na] and Ra,k = ∑N c
k

j=1

∑N w
j ,k

i=1 Ri , j ,k the effective resistance of the active circuit k with

again k ∈ [1, ..., Na]. Thanks to the property of series connection Ii , j ,k = Il ,m,k∀i , l ∈ [1, .., N w
j ,k ]

and ∀ j ,m ∈ [1, ..., N c
k ]. We define therefore the current flowing in the active circuit k as Ia,k

equal to any of the current of a given filament i of a given coil j belonging to the active circuit

k. We now perform the sum
∑N c

k

j=1

∑N w
j ,k

i=1 on eq. (2.45) to obtain,

dψa

d t
=V a −Raa I a (2.46)

where V a = {Va,k } , I a = {Ia,k } ,ψa = {ψa,k } with k ∈ [1, ..., Na], andRaa being a diagonal matrix

containing the Ra,k .

We can now further simplify the expression by grouping together expression related to the

active circuits and the passive structure. In this part I of the thesis we wanted to provide the

formulation of the problem in continuous space form. However we will make an exception for

the case of the current in the passive structure since this will greatly simplify the notation and

the generalization to a continuous distribution of passive current jv (R, Z ) is trivial. We label

the current in the passive conductors with v since in a tokamak they are mainly present in the
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2.3. Circuit equation for evolution of conductor currents

vessel. We consider jv (R,V ) = {Iv,iδ(Ri −R, Zi −Z )} with i = [1, ..., Nv ] and Nv being the total

number of toroidal filaments considered. We use the notation δ(Ri −R, Zi − Z ) to indicate

the Dirac distribution. While the filaments in an active conductors are typically physically

connected as described above, and represent real wires of a coil, the filaments in the passive

conductor are only an artificial discretization of the current distribution. They have to be

considered independent, hence not connected if not differently specified, and Nv can be

chosen arbitrarily to have a more or less fine discretization of jv (R, Z ). We callψv = {ψ(Ri , Zi )}

and I v = {Iv,i } with i = [1, ..., Nv ]. Finally we groupψe = {ψa ,ψv } , Ie = {Ia , Iv } to obtain,

dψe

d t
=V e −Ree I e (2.47)

where,

V e =
[

Va

ONv ,1

]
(2.48)

Ree =
[
Raa ONv ,Na

ONa ,Nv Rv v

]
(2.49)

and we indicate with Ox,y a matrix of zeros of dimension x × y . We stress the fact that the

passive conductors do not have any externally applied voltages, hence the corresponding part

of V e is set to 0.

Since both the active and passive conductors are described with filamentary currents of type

j (R, Z ) =∑
i Iiδ(R −Ri , Z −Zi ), one can insert this relation in eq. (2.44). Taking as an example

the passive structure, jv (R, Z ) =∑Nv

i=1 Iv,iδ(R −Ri , Z −Zi ) , the contribution of all filaments of

the passive structure to the poloidal flux at a location (R, Z ) is given simply by,

ψ(R, Z ) =
Nv∑
i=1

G(R, Z ;Ri , Zi )Iv,i = M T I v (2.50)

where the vector M is simply the collection of the Green’s functions, Mi = g (R, Z ,Ri , Zi ).

Guided by the relation in eq. (2.50), we define (ψx )I y , with x, y ∈ {a, v}, the contribution to

the effective fluxψx from current Iy . For example (ψa)I v is the contribution to the effective

flux of the active circuit a from the vessel filaments I v . In particular from the definitions eq.

(2.44) and eq. (2.50) the following linear relations can be obtained,

(ψa)Ia =Maa I a (ψa)Iv =Mav I v

(ψv )Ia =Mva I a (ψv )Iv =Mv v I v

We stress the fact that the two attached labels as aa in Maa , are not the indices of the matrix

butMaa is the full name given to the matrix. The matricesMxx contains the needed collection
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Chapter 2. Forward/predictive problems

of sums of Green’s functions. We also define,

Mee =
[
Maa Mav

Mva Mv v

]
(2.51)

such that (ψe )I e =Mee I e . Finally the contribution of the plasma current density jpl to the k

component ofψe , called (ψe,k ) jpl is given by,

(ψe,k ) jpl =
N c

k∑
j=1

N w
j ,k∑

i=1

∫
Ωpl

g (Ri , j ,k , Zi , j ,k ;R ′, Z ′) jpl (R ′, Z ′)dR ′d Z ′ (2.52)

such thatψe = (ψe )I e + (ψe ) jpl , where (ψe )pl = {(ψe,k )pl } for k = [1, ..., Na +Nv ].

2.3.1 Coupling with free boundary equilibrium

The formulation of the problem coupling the dynamics of the currents in the passive/active

conductors with a plasma described by subsequent states of equilibrium can be now formu-

lated.

Given: p ′(ψ̂, t ), T T ′(ψ̂, t ) ,V e (t ) + initial condition

Find: jpl (R, Z ; t ), ψ(R, Z ; t ) inΩc ∪∂Ωc andψe (t ), I e (t ) such that,



dψe
d t =V e −Ree I e

ψe =Mee I e + (ψe ) jpl

∆∗ψ =−2πµ0R( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

G(R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

jpl = 2π
ψB−ψA

(
R d p

dψ̂ + 1
µ0R T dT

dψ̂

)
in Ωpl

jpl = 0 in (Ωc ∩Ωpl )c

(2.53)

Looking at the system of eq. (2.53) one can understand the coupling between the plasma

dynamics and evolution of the currents in the conductors. A displacement of the plasma,

which modifiesΩpl , or a modification of the plasma current distribution jpl (R, Z ; t ) produces

a modification of the flux ψe , which induces a back EMF to the active/passive conductors

through the Faraday’s law in the first equation. At the same time, a modification of the

I e requires the plasma to change its current distribution jpl (R, Z ; t) in order to find a new

equilibrium condition which must respect the Grad-Shafranov equation.

We would like to make some remarks.

• As already discussed in the introduction part, the obtained system of equations contains

the dynamics for vertical displacement events. A controller acting on the input voltages

Va is needed to stabilize the system. One of the purpose of simulators based on eq. (2.53)
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2.4. Current diffusion equation

is indeed to design and test these controllers, together with the controllers to obtain a

desired plasma shape.

• Ip (t) is effectively given trough the profiles of p ′ and T T ′, but it could be given as an

input parameter instead, provided that the profiles are re-scaled.

The problem is a DAE (Differential Algebraic) problem of the type,{
d x
d t = R y + A

β(y, x) = 0
(2.54)

and, being first order in time, it requires an initial condition. We will discuss this in detail in

the second part of the thesis when addressing the numerical discretization of the problem.

2.4 Current diffusion equation

In the previous sections we described the coupling between the slow evolution of the currents

in the external conductors and the force balance equation to keep the plasma into an equi-

librium state. Now we will discuss physical models for the evolution of the plasma profiles

p ′(ψ̂, t ) and T T ′(ψ, t ). We notice that this will not contradict the static assumption to derive

the Grad-Shafranov equation. Indeed, the Grad-Shafranov equation provides the state of

equilibrium for the ⊥ B force balance equation, which is reached on the Alfven time scale τA .

We are interested in describing the evolution of plasma profiles due to the diffusion across

the flux surfaces which are much slower than τA . The plasma will therefore evolve through

subsequent states of equilibrium for the ⊥ B force balance equation. In this section we will

discuss a model which describes the evolution of the parallel current j∥. In the next section, a

transport model for the evolution of the temperature profiles is presented. Both j∥ and Te ,Ti

will contribute to the evolution of p ′(ψ̂, t ) and T T ′(ψ̂, t ) as clear from the relation in sec. 2.2.4.

We assume the validity of the Ohm’s law in the parallel to B direction and consider the resulting

flux surface averaged equation:

j∥ =σ∥E∥+
< jbs ·B >

B0
+ < jcd ·B >

B0
(2.55)

where E∥ is the parallel electric field, σ∥ is the conductivity ( the inverse of the resistivity) and

jbs and jcd are the non-inductive bootstrap and auxiliary current densities. All the quantities

with the label ∥ in eq. (2.55) are defined as for example j∥ =< j ·B > /B0 . The j∥ and E∥ terms

can be rewritten as function of ψ and its time derivative to obtain the flux diffusion equation,

which we will also refer to as the current diffusion equation in this dissertation. The derivation

of the equation can be found in literature [Pereverzev and Yushmanov 2002; Blum et al. 2012;

Felici 2011; Jardin 2010].
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The current diffusion equation reads:

σ∥
(
ρ̂2Φ̇B

V
′
ρ̂

∂ψ

∂ρ̂
− 2ΦB

V
′
ρ̂

ρ̂
∂ψ

∂t

∣∣∣∣
ρ̂

)
︸ ︷︷ ︸

< jΩ·B>

= T 2

8πµ0ΦB V
′
ρ̂

∂

∂ρ̂

(
g2g3

ρ̂

∂ψ

∂ρ̂

)
︸ ︷︷ ︸

< j ·B>

−< j ni ·B > (2.56)

where the following relations holds,

lim
ρ̂→1

T

16π3µ0ΦB

g2g3

ρ̂

∂ψ

∂ρ̂
= Ip (2.57)

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0, (2.58)

which also represents the usual boundary conditions to solve eq. (2.56). The condition on

Ip is considered in the limit sense since in case of diverted plasma some geometrical terms

diverge but their combination has a finite limit.

The current diffusion equation can be considered as the diffusion equation of the poloidal

flux ψ across surface of constantΦ. In other words, in a plasma with finite parallel resistance,

surfaces at constantΦmove differently to surfaces at constant ψ. This is the intuition of the

two time derivative terms in the LHS of eq. (2.56).

Another intuitive interpretation of eq. (2.56) considers the flux surface averaged current

< j ·B > as composed by an inductive contribution < jΩ ·B >= σ∥E∥, which is mainly (but

not completely) due to the induced electric field generated by the external coils in the central

solenoid of the tokamak, and a non-inductive part which can be either self-generated by the

plasma jbs or due to external non inductive sources such as the current by ECRH sources or

neutral beam injection.

In order to solve the current diffusion equation to obtain ψ(ρ̂, t) one needs to provide the

inputs σ∥(ρ̂, t) , < j ni ·B > and quantities that are computed from the solution of the free-

boundary equilibrium Φ̇B (t ) , V ′(ρ̂, t ), g2(ρ̂, t ) and g3(ρ̂, t ) .

The eq. (2.56) admits a stationary-state solution. When all the sources and geometrical

quantities do not vary in time, Φ̇B = 0 and the total plasma current Ip is fixed, there exists a

solution where ∂
∂ρ̂

∂ψ
∂t = 0. This condition means that the time derivative of the poloidal flux

Vss = ∂ψ
∂t has a constant stationary state value Vss over ρ̂. During normal tokamak operation,

when a stationary phase is reached and the current density profile has relaxed to the stationary

condition, the Vss has to be supplied mainly by the Central solenoid coil in order to keep a

constant plasma current and overcome the resistive decay. The stationary state operation

with inductive current is the normal operation mode in present experiments. We notice that

a stationary condition is not a steady-state condition where all the time derivatives would

vanish. A steady-state condition could be achieved instead if the resistive decay of the plasma

current would be fully sustained by the external sources jcd and/or the bootstrap current
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2.4. Current diffusion equation

jbs , resulting in dψ
d t . This scenario would be desirable to exploit the tokamak as a continuous

source of energy and it has been reached in TCV with ECCD [Sauter et al. 2001] and 100%

bootstrap current [Coda et al. 2008]. However the externally driven current systems are not

sufficiently efficient and high Ip scenarios with high percentage of bootstrap current are under

investigation. One of the goal of ITER is to prove the possibility of sustaining a tokamak plasma

in steady-state condition with no current driven inductively.

In this thesis we will make use of an integral version of eq. (2.56). We provide here the final

expression and the derivation is given in appendix G. We define the integral operator,

Γ(A) = TB

2π

∫
A

T 2 dV (2.59)

and apply it to eq. (2.56), to obtain:

−(A1,1 + A2) = Ip −Γ(< jni ·B >) (2.60)

with,

A2 =−TB (ψB −ψA)

2π

∫ 1

0

σ∥
T 2

∂Φ

∂t

∣∣∣∣
ψ̂

dψ̂ (2.61)

A1,1 = TBΦB

2π

∫ 1

0

σ∥
T 2

∂ψ

∂t

∣∣∣∣
ψ̂

dΦ̂. (2.62)

The integral 0D eq. (2.60) is useful when one is not interested in simulating and predicting the

evolution of the current density profile of the plasma but just to take into account the global

decay of the total plasma current Ip due to plasma resistivity. However, it is of notable interest

that the expressions eq. (2.61),eq. (2.62) do not contain the flux-surface averaged geometrical

quantities (g2, g3) that were originally present in eq. (2.56). While we chose here to integrate

over the entire plasma domain, yielding a 0D equation, in principle we could also integrate in

different several sub-domains up to 0 < ψ̂< 1, respectively 0 < Φ̂< 1. This potentially allows

to solve a full 1D CDE that does not require evaluation of flux-surface averaged geometrical

quantities. This will be discussed in more detail in section 4.3

2.4.1 Coupling free boundary equilibrium and conductor currents evolution

Coupling the current diffusion equation with the free boundary equilibrium problem allows

to remove the free parameters T T ′(ψ̂, t) from the set of forward inputs needed to solve the

Grad-Shafranov equation. There can be many formulation of the problem depending on

which inputs are used in the RHS of the Grad-Shafranov equation. We provide here only one

among them with the purpose of clarifying the relation between the different physical models.

Given: p ′(ψ̂, t ), V e (t ), σ∥(ψ̂, t ), jcd (ψ̂, t ), jbs(ψ̂, t ) + initial condition ψ0
e , ψ0(ρ)

Find: jpl (R, Z ; t), ψ(R, Z ; t) inΩc ∪∂Ωc , ψe (t), I e (t) , ψ(ρ̂, t) ∈ [0,1] , T T ′(ψ̂, t), Ip (t) and all

the other quantities appearing in the system, such that
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

dψe
d t =V e −Ree I e

ψe =Mee I e + (ψe ) jpl

∆∗ψ=−2πµ0R( jpl + je ) (R, Z ) ∈Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

G(R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ (R, Z ) ∈ ∂Ωc

jpl = 2π
ψB−ψA

(
R d p

dψ̂ + 1
µ0R T dT

dψ̂

)
(R, Z ) ∈Ωpl

jpl = 0 (R, Z ) ∈ (Ωc ∩Ωpl )c

σ∥
(
ρ̂2Φ̇B

V
′
ρ̂

∂ψ
∂ρ̂ − 2ΦB

V
′
ρ̂

ρ̂
∂ψ
∂t

∣∣∣∣
ρ̂

)
= T 2

8πµ0ΦB V
′
ρ̂

∂
∂ρ̂

(
g2g3

ρ̂
∂ψ
∂ρ̂

)
−B0( jbs + jcd ) ρ̂ ∈ (0,1)

T
16π3µ0ΦB

g2g3

ρ̂
∂ψ
∂ρ̂ = Ip ρ̂→ 1

∂ψ
∂ρ̂ = 0 ρ̂ = 0

T dT
dψ̂ = µ0

g3

(
jtor

ψB−ψA

R0π
− d p

dψ̂

)
ψ̂ ∈ [0,1]

(2.63)

We would like to stress some features of the obtained eq. (2.63).

• Ip (t) is not a feedforward input for the system, but it has to be found as part of the

solution. The total plasma current without any external drive would decay as a conse-

quence of the resistivity in the Ohm’s law (current diffusion equation). In this system

it is maintained through both the non-inductive sources jbs , jcd and the electric field

produced by the central solenoid. The voltages applied to the active coils will produce a

variation in time of the poloidal flux. The plasma will respond to this variation and will

feel a ∂ψ
∂t

∣∣∣∣
ρ̂

. This will drive inductive current in the plasma. As a consequence of that,

the system eq. (2.63), differently to eq. (2.53), allows to design and test controllers for

the central solenoid to control the total Ip (t ).

• From the current diffusion equation one can compute ψ(ρ̂, t), this can be used to

compute jtor (ψ̂, t) from the formula eq. (2.41), which is then used in the system to

compute T T ′(ψ̂, t ). The current diffusion equation is used therefore effectively to specify

one of the free function which enter in the RHS of the Grad-Shafranov equation.

• Having coupled the dynamics of the conductor, this system of equations contains the

Vertical Displacement Events and needs active stabilization, with the addition that

a dedicated controller for the central solenoid is needed to control the total plasma

current.

2.5 Heat and particles diffusion equations

The derivation of the flux surface averaged heat and particles diffusion equation can be found

in [Teplukhina et al. 2017; Pereverzev and Yushmanov 2002; Blum and Le Foll 1984; Hinton
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and Hazeltine 1976]. We provide here their final form for convenience. The energy flux for

various species "s" (electrons, ions, impurities) reads,

3

2

1

(V ′
ρ̂

)5/3

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇B

2Φb

∂

∂ρ̂
ρ̂

)
[(V

′
ρ̂)5/3nsTs] = 1

V
′
ρ̂

∂

∂ρ̂

[
g1

V
′
ρ̂

nsχs
∂Ts

∂ρ̂
+ 5

2
TsΓs g0

]
+Ps (2.64)

where χs(ρ̂, t) is the thermal diffusivity, Γs is the convective flux defined below and Ps(ρ, t)

represents the power density as a sum of the various sources and sinks.

Similarly the particle transport,

1

V
′
ρ̂

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇B

2Φb

∂

∂ρ̂
ρ̂

)
[V

′
ρ̂ns] =−V

′
ρ̂

∂

∂ρ̂
Γs +Ss (2.65)

where the particle flux is defined as,

Γs =− g1

V
′
ρ̂

Ds
∂ns

∂ρ̂
+ g0Vsns , (2.66)

with Ds corresponding to the particle diffusivity, Vs the pinch velocities and Ss a combination

of various sources and sinks of particles.

When these transport equations are added to eq. (2.63), the pressure plasma profile is fully

specified hence the p ′ is no longer a free parameter to be given as a feed-forward input. We do

not discuss here the case in presence of fast ions. This way a predictive simulation of the flux

surface averaged MHD system of equations on resistive time-scales can be obtained.

2.6 Summary

When the resistive time scale ordering is applied to the two fluids MHD model, a system

of equations suited to describe the radial transport of heat and particles through states of

magnetic force balance equilibria is obtained, removing all the fast MHD instabilities and

under toroidal symmetric assumptions. This will be the basis for the reconstruction/inverse

problems described in the following chapters. When this system is coupled to the dynamics of

the active and passive conductors, the Vertical Displacement Event instability appears. This

second set of equations will be implemented in a predictive simulator to design the vertical

stability and shape controller for tokamak operation.
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3 Reconstruction/interpretative/inverse
problems

In this chapter we will introduce the reconstruction/interpretative/inverse problems where

the knowledge of some measurements is used to infer the parameters and/or the state of the

plasma. In control theory this is typically called a state and parameter identification problem.

In statistics this is called inference of parameters or inverse problem. We will use the name

"reconstruction" in the following.

The problem of how to combine uncertain measurements with models to provide the best

estimate of the parameters and state and how to define a measure to compare different esti-

mates is discussed in terms of a statistical interpretation comparing the Frequentist approach

to the Bayesian one. The result is the derivation of the least-squares optimization technique

which will be the basis for all the inverse problems discussed in this thesis.

After that we will provide the formulation of the Magnetic Equilibrium Reconstruction (MER)

problem including some reduced formulation to simplify its implementation. We will stress

in particular the limits which advocate for the implementation of the Kinetic Equilibrium

Reconstruction (KER).

After a short literature investigation on the available techniques to perform KER, based on

the minimum least squares problem, we define some assumptions to derive the formulation

implemented in TCV. We discuss in details the set of diagnostics available in TCV and the

forward models needed to complete the formulation. We provide, at the end of the chapter,

two reduced formulations of the problem which will be implemented and discussed in part II

of this thesis.

3.1 Statistical interpretation

In the previous chapter we derived several "forward" models. A forward model is a relation of

the type x = f (θ) , where given the parameter θ on can predict the state x . More generally it

can be given as a non-linear relation f (x,θ) = 0 that can be inverted to find x. From the state

and the parameter one can compute the "simulated measurements" y = g (x,θ) , which are
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Chapter 3. Reconstruction/interpretative/inverse problems

obtained typically as a post processing from the knowledge of the state x and parameters θ.

For example taking the case of the free boundary equilibrium problem eq. (3.9), θ = {p ′(ψ̂),

T T ′(ψ̂), I a , I v }, x =ψ(R, Z ) and y =ψ(Ri , Zi ) could be the estimate of the poloidal flux at the

location of the flux loops.

We call a reconstruction/inverse/identification problem (several names have been used in

literature to indicate the same family of problems) when the parameters θ are unknowns

but measurements ỹ are available for the simulated measurements. The goal is to infer the

parameters θ and state x such that the forward model x = f (θ) is satisfied and the simulated

measurements y = g (θ, x) match in some sense the measurements ỹ (we will be more specific

in the following).

It is important to notice that the difference between the state x and parameters θ is arbitrary.

Indeed, provided that one can always compute the forward model, replacing x everywhere

one could obtain a formulation depending only on θ, in particular y = g ( f (θ),θ) = g (θ). In

this chapter while deriving the Frequentist and Bayesian approaches, we will always consider

only the θ dependence to simplify the notation, except when we will present the case of the

magnetic equilibrium reconstruction, where a particular form of g will make it clearer to split

and consider x and θ independently.

To introduce the problem let us consider the ideal case where a number of perfect (noiseless,

infinite precision) measurements ỹ are available, and the physics is perfectly described, hence

there exists θ such that ỹ = g (θ). In this case, provided that g can be inverted, simply θ =
g−1(ỹ).

However when dealing with real experiments, things are more complicated,

• Measurements have uncertainties, coming both from limited resolution and noise.

• The forward model might not perfectly describe the physics of the phenomenon ad-

dressed, hence there is no θ such that ỹ = g (θ).

• Different types of diagnostics can provide measurements of the same physical quanti-

ty/state x at different levels of uncertainties.

• Different forward models relying on different sets of parameters might provide estimates

of the same state x.

• The forward model generally might not have a unique solution.

On top of the complications mentioned above for the uncertainty of the measurements and

models, another important issue is, given that the goal of a reconstruction problem is finding

the best estimate of θ and x, how "best" is defined? In other words, one needs to provide a

measure of the quality of the reconstructed state and parameters which in principle allows to

compare between different estimates.
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3.1. Statistical interpretation

To make progress, one needs to take assumptions on the type of uncertainties of the models

and measurements. For the models, we will consider that the uncertainty can be expressed as

extra parameters ε to be estimated. Suppose that the parameter θ, for example the conductivity

σ∥ = θ+ ε in the current diffusion equation eq. (2.56), is known up to a certain additive

uncertainty ε, then ε becomes an extra free parameter to be inferred.

For the measurements, there are two types of uncertainties. The first is the resolution of

the diagnostic which has to be considered as a fixed lower bound interval within which the

measurements cannot be distinguished. The second is the uncertainty due to noise of the

measurements. Under these conditions, the measurement ỹ could be considered as drawn

from a probability distribution P (y). Different types of measurement uncertainties can be

described in this framework. For example the resolution of the diagnostic can be described by

a uniform distribution on the interval given by the precision of the diagnostic. A white noise

is instead described by the Gaussian (Normal) distribution with given standard deviation.

Systematic errors, if known, should be removed directly from the measurements. Otherwise

they can be treated as additive disturbance, where the shift is an extra free parameter to be

inferred.

Applying a statistical interpretation to the parameter and the measurement uncertainties

allows to treat all the complications mentioned above in a consistent framework and provides

the definition of measures to compare different methods of estimating the parameters θ as

well as providing the information on the quality of these estimations. However, this requires

to make assumptions on the uncertainties of the model and the measurements.

Next, we will discuss two possible interpretations in statistic: the frequentist and the Bayesian

approaches [Hogg et al. 2005].

3.1.1 Frequentist approach

In the frequentist interpretation of the inverse(reconstruction) problem, the measurements ỹ

are considered to be the sample of a random process taken from a repeatable experiment that

can be described by a conditional probability distribution function p(ỹ |θ) called likelihood.

For example white noise is described by a p(ỹ |θ) being a Normal distribution with a given

mean and standard deviation.

The frequentist approach looks for an estimator θ̂(ỹ) for the fixed but unknown parameter

θ. It is important to notice that, in this approach, θ is not a random variable, but it is unique

and fixed, while ỹ is a random variable and therefore also θ̂(ỹ) is a random variable. There

is not a unique approach to choose the best estimator θ̂. However a common approach, the

so called maximum likelihood, is to consider θ̂ = argmaxθp(ỹ |θ). The relation tells that the

best estimator θ̂(ỹ) is the θ which maximizes the probability of obtaining the measurement

ỹ conditioned to the fact of considering the parameter θ represented by the conditioned

probability distribution function p(ỹ |θ).
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To clarify the concept lets make an important example which will be the basis for the derivation

of the reconstruction problem in the remainder of this chapter. Assume we have the forward

model y = g (θ) which has no uncertainty. We consider the case of additive white noise, hence

ỹ = g (θ)+ ε with ε ∼ N (0,σ) and N indicating a Gaussian probability distribution with 0

mean and a given standard deviation σ that represents the uncertainty of the measurements.

One can notice that in the likelihood function p(ỹ |θ) the forward model g (θ) appears. The

maximum likelihood estimator θ̂(ỹ) can be demonstrated to be θ̂(ỹ) = argminθ||ỹ − g (θ)||2σ,

where we indicated with ||ỹ − g (θ)||2σ the 2-norm weighted by the standard deviation of the

measurements.

In case we also want to estimate the state x of the system together with the parameters θ the

problem can be formulated as follows:

Given: ỹ , and the knowledge of the forward models f and g

Find: x∗ and θ∗

{x∗,θ∗} = argmin
x,θ

||ỹ − y ||2σ
such that

(3.1)

{
x = f (θ)

y = g (x,θ)
(3.2)

The problem is classified as non-linear least-squares optimization with non-linear equal-

ity constraints represented by the forward function f (x) and the simulated measurements

forward model g (x,θ).

We would like to make some remarks on the problem obtained in eq. (3.2),

• The problem eq. (3.2) is the formulation of the inverse/reconstruction problem that we

seek. Starting from a forward model it estimates the state x and parameter θ from the

knowledge of some measurements ỹ . This will be the basis for all the formulation of all

the reconstruction problems in this thesis.

• In order to solve the obtained MLS problem with equality constraints, one can adopt

Lagrange’s multipliers technique. This is discussed for the case of linear and "quasi-

linear" forward model g (x,θ) in Appendices E and F. We do not discuss in this thesis the

case of inequality constraints which would require to satisfy the Karush–Kuhn–Tucker

(KKT) conditions [Kuhn and Tucker 1951].

• All different diagnostics, eventually also measuring the same quantity, can be included

in eq. (3.2) by adding them to the cost function. The information on the uncertainty of

each diagnostic is independently provided by the factor σ, weighting each least squares

term. In the framework of eq. (3.2), the uncertainty of the measurement is modelled as

white noise with standard deviation σ.

• Due to the possible non-linearity of the forward model, the inverse problem might result
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3.1. Statistical interpretation

to be ill-posed: no solution might match the data (existence), many solutions might

match the data (uniqueness), ill-conditioning/instability small change in data might

lead to large changes in the estimator θ̂. To recover from these issues two techniques

are used either to reduce the number of free parameters or to add a regularization

term to the cost functions. We will see in the following that this issue will appear when

discussing the magnetic equilibrium reconstruction and it will be one of the motivation

to develop the kinetic equilibrium reconstruction.

• To provide some insight on the quality of the state x and parameters θ obtained in eq.

(3.2), one can study its variance with respect to the input measurements. The strategy

is to sample the distribution of the measurements noise and recover the conditional

distribution P (θ∗|ỹ). Since computing θ∗ requires to solve the optimization problem,

this procedure is very expensive, and technique such as Markov Chain Monte Carlo

MCMC are used to build P (θ∗|ỹ) with the minimum amount of forward solution of

the problem. This technique allows to compute some confidence bar for the obtained

θ∗ and it is used in frequentist analysis with maximum likelihood estimator to pro-

vide information on the propagation of the errors from the measurement to the final

reconstructed parameter.

• The last remark on the problem eq. (3.2) is related to the case that the forward model

includes time evolutive problems of ODE type. In that case the optimal parameter

θ∗(t) must be the one minimizing the cost function at every time slices, in particular

one needs to consider the correlation between different time slices: a variation of the

parameter at the time instant t will have a deterministic effect on the estimate of the

state x(t +d t), hence on the cost function at t +d t . Therefore, supposing that the

forward model needs a number Np of parameters and a numerical scheme is sought to

solve Nt number of time steps, then the number of total parameters that all together

enter in the optimization problem is Np ×Nt . The number of free parameters therefore

increases rapidly when time evolving problems are considered. A typical simplification

adopted is to remove correlation between timeslices above a certain threshold up to the

limit of considering every time slice as independent. This will be the case for the inverse

problems that we will adopt in this thesis. Otherwise there exists techniques estimating

the parameters recursively, using the information already obtained from the previous

time slice.

3.1.2 Bayesian approach

The Bayesian interpretation is different from the frequentist one. In Bayesian approach one

does not look for the unique true parameter θ and instead accepts that the knowledge one can

have on θ will always have a certain degree of uncertainty. The Bayesian analysis provides the

technique to reduce the degree of uncertainty on a prior belief on the parameter θ, represented

by a probability distribution P (θ), with the information contained in the measurements. The

goal of the Bayesian analysis is not to find θ, but rather to find the conditional probability
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P (θ|ỹ), which is the probability density function of the parameter θ to be θ given a set of

measurements ỹ , which have a degree of uncertainty for θ smaller than the prior belief on θ

represented by P (θ), measured for example by the standard deviation of P (θ|ỹ).

The Bayesian approach uses the Bayes theorem to compute P (θ|ỹ),

P (θ|ỹ) = P (ỹ |θ)P (θ)

P (ỹ)
(3.3)

where in particular P (ỹ |θ) is called the "likelihood", P (θ) is called the "prior", P (ỹ) the "evi-

dence" and P (θ|ỹ) the "posterior".

The prior P (θ) reflects our prior belief on the parameter θ. A typical case is that, for physical

reasons, we know a range of values that the parameter can assume. For example if the

parameter is a temperature, it must be positive and below a maximum limit. If no other

information are available, one can choose the prior to be a uniform distribution in the range

of validity of the parameter.

The likelihood, as it was the case for the frequentist analysis, provides the degree of uncertainty

of the measurements. Statistical noise and/or measurement resolution are modelled with

choice of the likelihood. For example suppose to model additive white noise on the measure-

ments, as for the case of the frequentist analysis, and assume there are no uncertainties on the

forward model y = g (θ), we can assume,

P (ỹ |θ) = 1

σ
p

2π
exp

(
− (ỹ − g (θ))2

2σ2

)
(3.4)

This tells us that, if we had θ, then it is certain to have value y = g (θ), but the probability

of observing ỹ is given by eq. (3.4) since measurement has additive white noise described

by normal distribution with σ standard deviation. It is important to notice that it is in the

likelihood that the forward model g (θ) appears as for the case of the frequentist analysis.

The evidence P (ỹ) = ∫
P (ỹ |θ)P (θ)dθ in eq. (3.3) can be considered simply as a normalization

constant to make the posterior a proper probability distribution function integrating to 1.

We would like to make some remarks on the Bayesian approach,

• It provides a formal procedure to combine several diagnostics with different uncer-

tainties and computes how these propagates to the uncertainty of the final estimate

p(θ|ỹ). This allows to understand which measurements are most relevant for the final

estimation.

• From the knowledge p(θ|ỹ), the degree of uncertainty of the estimated parameter can be

computed considering moments of the posterior distribution. This provides information

on the quality of the inferred parameters and allows also to compare different forward

models.
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• In addition to the definition of the likelihood, as in the frequentist analysis, one needs to

provide the prior P (θ). This is one of the criticisms that frequentist approach moves to

Bayesian analysis since the choice of P (θ) affects the final result and its choice is quite

arbitrarily based on the prior belief of the user on the parameter. To avoid having bias

on the estimation of the parameter from the prior, P (θ) is usually considered as a broad

distribution function, for example a uniform distribution within a wide range.

• A point estimation of the parameter θ can be provided in the Bayesian approach

considering for example the maximum of the posterior (MAP) distribution function

θ̂ = argmaxθP (θ|ỹ).

• In order to use the Bayes theorem to obtain the posterior distribution, one needs to

sample from it. Since this involves computing the forward model g (θ), which is con-

tained in the likelihood function, this becomes rapidly expensive with the increase of

the number of parameters. Instead therefore of sampling uniformly θ, Markovian Chain

Monte Carlo techniques [Von Toussaint 2011] are used to reduce the number of samples

for getting a good estimate of the probability distribution, by sampling mainly on the

regions of high probability. The MLS problem obtained with frequentist analysis instead

can be formulated as a unique root-finding problem which is much less expensive to

solve.

• In case of time dependent forward models, assumptions can be taken on the correlation

of subsequent states in order to estimate recursively the posterior without sampling on

all the previous time slices. The most famous of this recursive Bayesian filter/estimator

is the Kalman Filter which is widely used in control field for parameters and state

estimation [Särkkä 2013], which are discussed in Appendix A.

3.1.3 Summary

We discussed in this introduction the formulation for the inverse/reconstruction problem,

which addresses the case of estimating the parameters θ of a forward model y = g (θ), when

some measurements ỹ are available. The uncertainties on the measurements are described

by a user-define likelihood probability distribution function P (ỹ |θ), which given a certain

parameter θ provides the probability of experiencing ỹ . There are two statistical interpretation

to make use of the hypothesis on the measurement uncertainties to estimate θ.

In the frequentist approach, one looks for the unique true parameter θ and its estimator θ̂(ỹ)

is usually considered as the one maximizing the likelihood θ̂ = argmaxθP (ỹ |θ). When only

the additive white noise is considered as uncertainty for the measurements, represented by a

normal distribution with N (0,σ) with zero mean and standard deviation σ, this provides the

weighted minimum least squares (MLS) estimator θ̂(ỹ) = argminθ||ỹ − g (θ)||2σ. The MLS is the

basis for all the inverse problem formulation in the following of this thesis.

In Bayesian approach, instead of trying to infer the unique true parameter θ, the aim is to
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find the conditional probability density P (θ|ỹ), called posterior, providing the probability of

the parameter to be θ given the measured ỹ . It assumes a likelihood P (ỹ |θ) to estimate the

measurements uncertainties as for the case of the frequentist analysis but it also assumes

the prior P (θ) probability distribution which models the prior belief on the parameter θ. The

posterior P (θ|ỹ) is obtained with the help of the Bayes theorem. With the Bayesian approach

a point estimation for the parameter θ from the posterior P (θ|ỹ) can be obtained by looking

for the maximum of the posterior (MAP) distribution θ∗ = argmaxθP (θ|ỹ) , similarly to the

maximum likelihood principle but with a completely different meaning.

Several pros and cons have been discussed about the two approaches, we mention just the

main ones. The costly part of the inverse problem is generally to compute the operator f (θ)

. The MLS provides a unique root-finding type problem to be solved which could find also

real-time application and it will be the basis for the magnetic equilibrium reconstruction

and kinetic equilibrium reconstruction problems. The Bayesian approach instead requires

to sample from the posterior distribution, hence to compute many times the operator g (θ),

which we remind requires also to compute f (θ) , making it usually very expensive. Techniques

to estimate this posterior distribution function recursively are available for time dependent

problems such as Kalman Filter [Welch et al. 1995], Unscented Kalman Filter [Knudsen and

Leth 2018], which finds many application also in real-time. This approach provides the correct

framework to propagate the measured uncertainties to the θ estimate and gives a measure of

the quality of the reconstruction.

We conclude this summary by providing in table 3.1 a list of I/O for Frequentist and Bayesian

approach.

Frequentist Bayesian

Find Estimator θ̂ Posterior P (θ|ỹ)
Given P (ỹ |θ) P (ỹ |θ), P (θ)
Point estimate Max likelihood Max posterior (MAP)

θ̂ = argmaxθP (ỹ |θ) θ = argmaxθP (θ|ỹ)
(For additive white noise -> MLS)

Error propagation Variance of θ̂ Momenta of P (θ|ỹ)

Table 3.1 – Frequentiest vs Bayesian parameter estimation.

It is important to mention that fusion community is largely using these approaches for data

analysis. The Bayesian error estimation is gaining interest [Fischer et al. 2010], [Fischer

et al. 2016], [Mazon et al. 2020] together with the increasing application of machine learning

techniques.

3.2 Magnetic Equilibrium Reconstruction(MER)

In the previous section, we saw how to derive a reconstruction problem from its forward coun-

terpart, in particular in eq. (3.2) we interpreted the minimum least-squares (MLS) problem in
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a frequentist statistical framework. In this section, starting from the forward free-boundary

equilibrium eq. (2.22), we will derive the magnetic equilibrium reconstruction (MER) as an

MLS problem. We first describe the set of external magnetic diagnostics available in TCV and

then we formulate the reconstruction problem where the internal plasma profiles represent

the parameters to be inferred and the Grad-Shafranov equation non-linear constraint to be

respected. We finally describe an important simplification, which is usually adopted by many

codes addressing this problem, including our equilibrium reconstruction code LIUQE.

The solution of the free boundary equilibrium is a fundamental analysis for both the post-

discharge analysis and the tokamak operation. It provides the shape of the plasma and the

magnetic surfaces geometry which are the starting point for several further analyses. However

the internal plasma profiles d p
dψ and T dT

dψ which enter in the RHS of the Grad-Shafranov equa-

tion are not known a priori, hence the problem is to infer them from available measurements.

The Magnetic Equilibrium Reconstruction (MER) takes its name because it considers only

external magnetic measurements, which are directly related to ψ(R, Z ).

We follow the notation in [Moret et al. 2015]. The unknown parameters p ′(ψ) and T T ′(ψ) are

first expanded into a linear combination of known basis functions gi (ψ̂) with i = [1, ..., Ng ]

where Ng is the total number of basis function

jpl (R, Z ) = 2π

(
Rp ′+ T T ′

µ0R

)
=

Ng∑
i=1

ai Rνi

ψB −ψA
gi (ψ̂(R, Z )), (3.5)

where νi = 1 for terms contributing to p ′ and νi = −1 for terms contributing to T T ′, and

a = {ai } with i = [1, ..., Ng ] are the basis function coefficients, which will become the new

parameters to be inferred with the reconstruction problem. In principle different sets of basis

g (ψ̂) can be used to express p ′ and T T ′, however to simplify the notation we assume to use

the same functional form of basis functions for the two profiles. We stress the fact that one

needs to specify only the 1D functional form g = g (ψ̂) function of only ψ̂. In eq. (3.5) the (R, Z )

dependence is then given automatically by the definition ψ̂(R, Z ) = (ψ(R, Z )−ψA)/(ψB −ψA).

The 1
ψB−ψA

comes from the chain rule d p
dψ = 1

ψB−ψA

d p
dψN

. Remembering the relation between

toroidal current density and poloidal magnetic flux at the poloidal point (R f , Z f ),

ψ(R f , Z f ) = ∑
k=[pl ,a,v]

∫
Ωk

G(R f , Z f ;R ′, Z ′) jk (R ′, Z ′)dR ′d Z ′, (3.6)

making use of eq. (3.5), one can write,

ψ(R f , Z f ) =M f e I e +
Ng∑
i=1

ai Ki (3.7)

where M f e , similarly to the definition Mee eq. (2.51), is the matrix containing the mutual

inductance between the location of the external current filaments I e and the location (R f , Z f )

such that M f e I e is the contribution to the poloidal flux ψ(R f , Z f ) of the external current I e .
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Moreover we have,

Ki =
∫
Ωpl

G(R f , Z f ;R ′, Z ′)Rνi

ψB −ψA
gi (ψ̂(R ′, Z ′))d A (3.8)

In this relation one should not confuse the Green’s function G(R f , Z f ;R ′, Z ′)Rνi , with the basis

functions to represent the p ′(ψ̂) and T T ′(ψ) profiles gi (ψ̂(R ′, Z ′)). We stress one needs to

know ψ(R, Z ) in order to findΩpl and ψA ,ψB to compute ψ̂(R ′, Z ′).

If we call state x =ψ(R, Z ) and parameters θ = {I e , a} from eq. (3.7), a "quasi-linear" relation

ψ(R f , Z f ) =A(x)θ is found. The term "quasi-linear" might be improper, we use it in this thesis

to refer to the case where the relation for ψ is linear in θ but the matrix A depends on the

state x. Since B p = 1/2π∇ψ×∇φ , also for the components of the poloidal magnetic field the

relation is "quasi-linear". The same can be shown for Ip which is the surface integral of eq.

(3.5). Under the hypothesis of small diamagnetic flux, meaning that the contribution to the

toroidal fluxΦB enclosed by the LCFS is mainly composed by the contribution of the vacuum

toroidal field, a "quasi-linear" relation is found also for ΦB . Further details can be found in

[Moret et al. 2015].

We can call simulated measurements all these quantities y which can be computed from the

"quasi-linear" forward model A(x)θ, from the knowledge of the state x and parameters θ, to

conform to the notation used in eq. (3.2) to present the MLS problem.

F̃ f , Poloidal flux from flux loops
B̃ m Poloidal B component from magnetic probes
Ĩ v , Current of the vessel filaments
Ĩ a , Active coils
Φ̃p Toroidal flux from diamagnetic flux loop
Ĩp Total toroidal plasma current

Table 3.2 – The symbol ∼ is used to indicate measurements from real diagnostic.

We now discuss the set of external magnetic measurements typically available in a tokamak,

taking TCV as an example. With the tilde symbol ∼ we will always refer to a measured value

coming from a real diagnostic. The available measurements in TCV, which are common in

essential all tokamaks, are listed in table 3.2, and their location displayed in fig. 2.1. They are

composed by a set of 38 magnetic probes B̃ m , shown in fig. 2.1a with the purple rectangle,

measuring the poloidal component of the magnetic field at (Rm , Zm) in the poloidal plane

with m = [1, ..., Nm] and Nm being the total number of probes, with acquisition frequency of

10 kHz for equilibrium reconstruction and 500kHz for MHD analysis. A set of 38 flux loops

F̃ f , shown fig. 2.1a with the purple crosses, measuring the poloidal flux ψ(R f , Z f ) at (R f , Z f )

with f = [1, ..., N f ] and N f being the total number of loops, with an acquisition frequency of

2kH z. The diamagnetic flux loop (DML) measuring the contribution of the plasma to the flux

of the total toroidal magnetic fieldΦt in the area enclosed by the loop. Due to the absence of a

Rogowski coil in TCV, no direct measurement of Ip is available. An estimate is computed using
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Stokes theorem on the Ampere’s law, µ0Ip = ∮
∂ΩBm

B ·d l , where ∂ΩBm is a contour passing

through the (Rm , Zm) position of magnetic probes and therefore effectively obtained from

B̃ m measurements. A direct measurements of the Ĩ a is available while Ĩ v are estimated from

the loop voltage measured by the flux loops close to the vessel, combining Faraday’s law with

an effective Ohm’s law of type Iv ∝ 1
R

dψ
d t , R being an effective resistance of the vessel. More

details are found in [Moret et al. 1998].

We can now finally formulate the MER problem as an inverse problem of the type derived

in eq. (3.2). Let us call M̃ the set of all measured inputs, M̃ = {B̃ m , F̃ f , Ĩ v , Ĩ a ,F̃t ,Ĩp }. All

measurements M̃i are considered to be affected by white noise with standard deviation δMi .

We call θ = {I e , a} the parameters and x =ψ(R, Z ) the state.

Given: M̃ and a set of basis functions {gi (ψN )}

Find: x∗ =ψ(R, Z ) inΩc ∪∂Ωc and θ∗

{x∗,θ∗} = argmin
x,θ

||M̃ −A(x)θ||2w
such that
∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

jpl =
∑Ng

i=1 ai Rνi gi (ψ̂(R, Z )) in Ωpl

jpl = 0 in (Ωpl ∩Ωc )c

(3.9)

We would like to make some remarks on eq. (3.9).

• The problem was obtained following the MLS problem derived in eq. (3.2) where the

forward model f (x,θ) is given by the Grad-Shafranov equation, the forward observer

g (x,θ) by the "quasi-linear" operator A(x), the state is the poloidal flux x =ψ(R, Z ) and

the parameters are θ = {Ie , a}.

• In eq. (3.9) the least squares is weighted depending on the uncertainties wi = δM̃i
,

where δM̃i
is the uncertainty of M̃i measurements. In a statistical interpretation the

measurements are considered to have only additive white noise.

• We split the domain of jpl into plasma and non-plasma region to emphasize the free

boundary nature of the problem.

• The problem eq. (3.9) is classified as a non linear least-squares optimization problem

with equality constraints and can be solved using the Lagrange multipliers technique as

explained in Appendix F and G.

• The problem is static since it is formulated for each time slice independently. In order to

estimate the vessel currents Iv , a simple static Ohm’s law Iv ∝ 1
R

dψ
d t is used, by grouping

the coils around the flux loop measurements. One could imagine otherwise to formulate

a reconstruction as in eq. (3.9) but using as forward model the coupled system of

equations of the free boundary equilibrium and the conductor evolution eq. (2.63). This
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would turn the problem into a dynamic state and parameters reconstruction and would

provide better time evolution of the current in the conductors.

3.2.1 MER reduced problem

To simplify the optimization problem instead of looking for {x∗,θ∗} = argmin
x,θ

||M̃ −A(x)θ||2w
one can consider variation only in the parameters θ and not on the states x, hence replacing

the optimization part of eq. (3.9) with {x∗,θ∗} = argmin
θ

||M̃ −A(x)θ||2w ( notice that the argmin

is computed letting only θ to vary). What remains is a linear-squares problem which has the

following solution θ = (AT (x)A(x))−1AT (x) · M̃ . Replacing this solution in eq. (3.9), from an

optimization problem, one obtains a more simple non-linear root finding problem.

θ = (AT (x)A(x))−1AT (x) · M̃

∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

jpl =
∑Ng

i=1 ai Rνi gi (ψ̂(R, Z )) in Ωpl

jpl = 0 in (Ωpl ∩Ωc )c

(3.10)

The eq. (3.10) is the problem implemented in LIUQE [Moret et al. 2015]. The differences

between the solution of the original problem eq. (3.9) and the simplified one eq. (3.10) are

explained analytically in Appendices E, F. In the part II of the thesis we will investigate the

difference numerically for some TCV cases. However we can anticipate that the simplification

is equivalent to consider ∇xA(x) = 0 and since the external magnetic measurements are not

very sensitive to variations of the plasma flux inside the plasma, x =ψ(R, Z ), this simplified

solution will not make a significant difference on the final result.

3.2.2 Critical aspects of MER and motivation for KER

A critical aspect in MER is the ill-conditioning of the problem in eq. (3.9): a not very ac-

curate reconstruction of the plasma profiles can be obtained since the external magnetic

measurements are not very sensitive to internal profile feature. One needs to either include

regularization terms in the cost function or reducing the number of basis functions. However,

as a result, the reconstructed p(ρ) and j (ρ) profiles, which are directly related to p ′(ψ̂) and

T T ′(ψ̂) from eq. (2.40), can be strongly affected by the adopted regularization technique

rather than real physical features. In many plasma scenarios like H-mode, flat profile due to

internal mode, hollow current density profiles, transport barrier, ..., these features are essential

components to regulate the plasma performances and therefore it would be important to

properly take them into account in the equilibrium reconstruction.

The third important aspect is that, among all the available magnetic measurements M̃ , only

the toroidal flux Φ̃t from the DML is directly related to only one of the two free functions,

p ′ and T T ′, making this measurement essential for disentangling the degeneracy between
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Rp ′ and T T ′/R in the RHS of GS equation. Important quantities like the total stored plasma

energy, i.e. the integral of the pressure over the plasma volume, are strongly sensitive to this

measurement. Unfortunately this measurement is difficult to calibrate, since the plasma

component of the toroidal flux is orders of magnitude smaller than the vacuum one. It may

cause errors in reconstruction unless the measurement is very precisely calibrated.

We will see in the next section that KER aims to solve these issues by providing direct con-

straints on p ′(ρ, t ) and T T ′(ρ, t ) from available kinetic measurements and/or first principle

based modeling.

3.3 Kinetic Equilibrium Reconstruction(KER) in TCV

After having discussed some of the critical aspects of magnetic equilibrium reconstruction

in the previous section, we introduce in this section the formulation of Kinetic Equilibrium

Reconstruction (KER) performed in TCV. Since a general consensus on the definition of KER

has not been achieved in the fusion community, we build our definition incrementally from

the magnetic equilibrium reconstruction problem. We first state a list of assumptions on

which we will base our formulation and discuss the specific set of measurements available

in TCV and the required additional modeling. Following the frequentist approach we obtain

a first formulation of the problem as a least-squares non-linear optimization problem with

non-linear equality constraints, as done for the magnetic equilibrium reconstruction. As for

the case of the Magnetic Equilibrium Reconstruction, we will adopt some simplifications

obtaining two possible simplified formulations that will be implemented in the part II of this

thesis. The purpose of this simplification is only to facilitate the numerical implementation of

the problem. Limitations and consequences of the assumptions taken will be discussed in

details.

3.3.1 Definition and literature investigation

The reconstruction problem is always a combination of forward model and measurements. A

first definition of Kinetic Equilibrium reconstruction is to interpret it as performing a Magnetic

Equilibrium Reconstruction providing direct constraints on internal plasma profiles from

modeling and/or available measurements.

A relatively large set of diagnostics is available to measure internal plasma features. We pro-

vide here a non-exhaustive list restricted to the most established diagnostics available. We

will restrict for simplicity to diagnostics providing measurements which appear directly or

indirectly in the forward model as in sec. 2. The electron temperature Te can be measured by

Thomson Scattering (TS) [Peacock et al. 1969], soft X-ray [von Goeler et al. 1974] emission orig-

inate by electrons in thermal range, Electron Cyclotron Emission (ECE) diagnostics [Bornatici

et al. 1983]. The electron density ne is measured mainly by TS and microwave reflectometry

[Undertaking 1992]. The ion temperature Ti is measured by Charge eXchange Recombination
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Spectroscopy [Isler 1994]. The magnetic or magnetic field pitch angle can be measured inside

the plasma by Motional Stark Effect (MSE) [Rice et al. 1997], imaging motional stark effect

[Thorman et al. 2018], or polarimetry . These last one can be related directly to the plasma

current density j . Direct measurements of the plasma shape can be made using visible light or

filter emission, and bolometers can be used to measure the plasma radiation and to compute

the total power balance. The pros of using constraints from measurements are simply that

they provide the real physical value of a given quantity in a given time instant and location.

However, measurements have limitations in both availability and resolution. For example

the MSE diagnostic, while being the only one together with polarimetry to be able to provide

information on the internal distribution of the plasma current, it is often difficult to calibrate

in particular for metal wall machine [Makowski et al. 2008]. The limitations become more

stringent when the reconstruction is performed in real-time during an experiment.

From the forward modeling side, we have already discussed in sec. 2 a system of equations, the

flux surface averaged transport problem, which can provide first-principle based estimates of

plasma kinetic profiles. The pros of using constraints from modelling are that these quantities

are available in principle at any time and space resolution provided to be able to solve the set

of equations describing the forward model. The cons are that the quality of the predictive/-

forward estimation depends on the assumptions made to derive the forward model and to

the knowledge/uncertainty of the model. For example, solving the energy equation for the

ion temperature requires to provide the transport coefficients χi which is not a well known

quantity.

As we have seen there are multiple diagnostics, sometimes redundant, and several models

that can provide information of the same physical quantity. A question rises then, what to use

to define the KER and provide constraints to the equilibrium profiles? The answer is trivial

only in the extreme cases. If there is a diagnostic which is much more precise. For example the

Thomson scattering diagnostic has proved to be a very reliable and precise measurements for

Te and ne in different operation in TCV condition and it is always taken into account whenever

available. If, on the contrary, no measurements are available for a given quantity, then one

can only use estimation from modelling. In TCV, for example, there are no measurements for

the internal distribution of the current density profile, hence it is necessary to use the CDE

equation eq. (2.56) to provide constraints on the current density profile.

However, when performing Kinetic Equilibrium Reconstruction, one is almost never in one

of the two extreme cases and information from both the diagnostic and modelling have to

be used. It should be clear that from the first definition of KER, based on simply improving

the limitations of MER providing internal constraints to the profiles, the target moves to a

more complex interpretation where quantities related to the plasma equilibrium problem

have to be considered at the same level as the kinetic ones. This way the border between the

Kinetic Equilibrium Reconstruction and what we could call in general Integrated Data Analysis

becomes less defined.
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We discussed in detail in sec. 3.1 how from a forward model, making assumptions on the type

of uncertainties of the measurements and models, one can derive a reconstruction problem

that combines the available measurements and modelling. We have seen in particular how to

make use of the frequentist approach to derive the minimum least-squares problem for the

magnetic equilibrium reconstruction and the differences with the Bayesian approach.

In the following we will derive the formulation of KER implemented in TCV replicating the

steps done for the MER eq. (3.9), obtaining a minimum least-squares MLS problem, where

the forward model will be the coupled equilibrium and transport system of equations and the

measurements a combination of kinetic and magnetic measurements.

3.3.2 Problem derivation hypothesis

The derivation of the problem proposed in the following is general for every tokamak, however

some choices of the derivation are due to the specific set of diagnostics available in TCV. This

however could be easily generalized to account for different set of diagnostics. We will take

the following working assumptions,

1. The 1.5D equilibrium and transport model is considered for the forward model.

2. Only the best available estimate for each quantity is retained (modelling or measure-

ment), hence most of the time a single source for each physical quantity is used.

3. Least-squares approach: any available measurement enters in a least-square type cost

function weighted by its uncertainty. Any unknown parameter, if not estimated by a

predictive model, is considered as a free parameter to be found in order to minimize the

cost function.

4. No modelling errors: Uncertainties on the estimation of the forward model only come

from uncertain inputs.

5. Error propagation analysis will not be considered.

A last remark, which is trivial but it is worth to specify in this context, is that whenever a given

quantity appears in different places in a system of equations, this must be assumed the same

value everywhere to be an exact solution of the problem. In other words, the values used in

the models must be consistent across different equations.

Given the least squares approach, the hypothesis 2 is not restrictive and can be relaxed, since

many different measurements, eventually redundant, can enter together in the cost function,

without changing the formulation. We imposed strongly only to derive the specific TCV formu-

lation, since for most of the kinetic quantities there is no redundancy on the measurements or,

better, one of the estimate is clearly more accurate than the others. The working hypothesis 4

could be relaxed by considering the model uncertainty as extra parameters to be found. Also
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the hypothesis 5 could be relaxed, by remembering that the quality of the reconstructed state

and parameters in a frequentist approach are estimated by evaluating the sensitivity of the

estimator.

Given the working assumptions we now focus on TCV by starting to provide details on as-

sumption 2, discussing first the available set of diagnostics considered and then the additional

modeling needed in order to complete the formulation.

Set of kinetic diagnostics

A detailed description of the diagnostics available in TCV is listed in [Coda et al. 2017]. As for

the case of the magnetic measurements in the MER problem, we will indicate with the ∼ a

quantity measured by a diagnostic and in bold-tilde a collection of measurements acquired at

different time instants and space locations. For example Ã = {A(Ri , Zi , tk )} with i = [1, .., Np ]

and t = [1, .., Nt ] is a collection of Np ×Nt of the quantity at (Ri , Zi ) positions in the poloidal

plane and tk time instants.

Additionally to all the magnetic measurements used for the MER we will consider the following

list of kinetic measurements:

• T̃ e : The Thomson scattering system is the main diagnostic for the measurement of

the spatial profiles of the electron temperature and density on TCV. The profiles are

measured along a laser beam passing the plasma in vertical direction at R=0.9m (mid

radius of the TCV vessel). At present, there are 109 observation positions covering the

region from Z=-69cm to Z=+55cm with a spatial integration length that depends on the

channel location. The acquisition frequency is 20H z or 60H z, which does not allow to

follow the diffusion time scale for the electron temperature in TCV. A description of the

spatial resolution and the position of all the observation positions is given in [Arnichand

et al. 2019].

• ñe : Together with the Thomson scattering diagnostic, a 14-channel Mach-Zehnder

type interferometer is used to measure the line-integrated density along parallel chords

in the vertical direction. The system comprises a FIR (FarInfraRed with CH2F2 diflu-

oromethane gas) laser, pumped by a CO2 laser, and emitting a continuous wave at

184.3 µm , and a multi-element detector unit (InSb hot-electron bolometer) with an

acquisition frequency of 20kH z available also during real-time operation [Barry 1999].

• T̃ i : The Charge eXchange Recombination Spectroscopy [Marini 2017] coupled with the

diagnostic neutral beam injection provides information on the ion temperature with

10-50 Hz acquisition frequency. However this diagnostic is not used by default during

operation and not available for real-time purposes.

We summarize the measurements and their diagnostic in the following table 3.3.
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Symbol Name Source

B̃ m Poloidal B component Magnetic probes
F̃ f , Poloidal flux Flux loops
Ĩ a , Active coil currents
Ĩ v , Vessel filament currents V measurements + model resistance
(F̃t ) Plasma toroidal flux diamagnetic flux loop (DML)
Ĩp , Plasma current Ampére’s law on B m

ñe , Electron density Thomson scattering / FIR
T̃ e , Electron temperature Thomson scattering
(T̃ i ) Ion temperature Charge Exchange

Table 3.3 – Summary of measurements used for Kinetic Equilibrium Reconstruction in TCV
and related sources. With the symbols in parenthesis we indicate the measurements which
are not always available/used in post-discharge analysis of a specific experiments.

Modeling

• p: The flux surface averaged total plasma pressure p(ρ, t ) is modeled as

p(ρ, t ) = ne Te +ni Ti +
(pB ,∥+pB ,⊥)

2
+p f ast (3.11)

where in particular pB ,∥ and pB ,∥ are the parallel and perpendicular pressure provided by

the neutral beam heating system. p f ast is the contribution of the pressure provided by

the fast ions hence from the ions in the tails of the energy distribution, but not belonging

to the beam, for example the alpha particles generated by the fusion reaction. In TCV

and experimental devices p f ast is negligible but we report it here for completeness. In

eq. (3.11) we give the expression as implemented in the ASTRA code [Pereverzev and

Yushmanov 2002] which will be used in the implementation of KER in the following

chapters. To estimate the contribution of the beam, a model to describe the slowing

down of the fast ions from the injection into the system, solving the particle trajectories,

is needed. We refer to [Polevoi et al. 1997] for details. In particular ne , Te , and sometimes

Ti , have direct measurements.

• ni : From the definition of the effective charge Ze f f and the hypothesis of quasi neutral-

ity,

Ze f f =
∑

j={i ,c} Z 2
j n j∑

j={i ,c} Z j n j

∑
j={e,i ,c}

Z j n j = 0,

assuming carbon to be the only impurity species, Ze f f being constant in the plasma

volume and performing the flux surface average we obtain

ni (ρ) = ne (ρ)
Zc −Ze f f

Zc −1
. (3.12)

The bulk ion density ni in TCV is typically represented by Deuterium Zi = 1. We remind
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that for carbon, which is the main impurity for TCV, Zc = 6, and that Ze =−1.

In case a fast ion population nB contribution is given from the beam, this is subtracted

from the bulk ions ni , and Ze f f has to be considered as a given parameter or a free

parameter to be found with the optimization problem. A possible way to estimate Ze f f

from the stationary state current diffusion equation is provided in appendix B.

• Ti : There are several options for this quantity, depending on the diagnostics and dis-

charge condition. The CXRS measurements is not always available. Several modelling

options are considered.

1. Ti (ρ, t ) as one of the free parameter to be found with the MLS problem.

2. The flux surface averaged diffusion for Ti was already discussed in eq. (2.64) The

transport coefficient χi (ρ, t ) is considered either a free parameter to be found by

the optimization or given by neoclassical estimation [Angioni and Sauter 2000b],

[Angioni and Sauter 2000a]. Eventually a scaling factor is multiplied to χi , tuned

to match the CXRS measurements in available experiment. We refer to ASTRA

manual sec. 3.9 for specifications of the boundary condition, sources and sinks.

In particular the function to compute the contribution of the fast ions is given in

[Polevoi et al. 1997].

3. Another option is to consider Ti (ρ, t ) =αTe (ρ, t ). The parameter α can be consid-

ered as a given parameter or a free parameter to be found with the optimization

problem. Another possibility is to specify a given total plasma stored energy

WM HD = 3
2

∫
pdV . Recalling eq. (3.11), this becomes

α=
3
2WM HD −∫

(ne Te +pb +p f )dV∫
ni Te dV

, (3.13)

where we indicated the contribution to the pressure of the neutral beam. In this

case WM HD becomes the new parameter to be specified a priori or to be found

with the optimization problem.

• j∥/ jtor : Since no diagnostics to measure these quantities are available at present in TCV,

we will make use of the current diffusion equation already explained in detail in sec. 2.4.

• P⊥, P∥, Pi : The contribution of the fast particles to the total pressure and eventually to

the heat source for the Ti diffusion equation, are computed from analytical approxima-

tion [Polevoi et al. 1997].

As clear from the measurements and modelling description, one can choose among several

options, in particular to estimate Ti , that would lead to a different formulation of the problem.

The choice is based on the availability and the quality of the measurements, as also stated in

working assumption 2.
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3.3.3 Problem formulation

We can finally provide the formulation for the KER problem. Only the case where Ti is esti-

mated from transport diffusion modelling is provided as an example. The other formulations

can be easily derived from that. In the derivation we will not make the distinction between

state and free parameters to simplify the notation, considering that for each set of parameters

the forward model can be solved.

In particular we define the free parameters P = { I a , I v , Te (ρ), ne (ρ) } and the set of measure-

ments M̃ = {B̃ m ,F̃ f ,Ĩp ,F̃t ,Ĩ v , Ĩ a ,T̃ e , ñe }.

The formulation of the problem becomes:

Given: M̃ , inputs χi (ρ, t ), Ze f f (t ), nB (ρ, t ), the sources jcd (ρ, t ) , Pi (ρ, t ) and the initial condi-

tion for the diffusion equation Ti ,0(ρ), ψ0(ρ) and all the other terms appearing in the equation

Find: P∗ and all the quantities appearing in the system of equations

P∗ = argmin
P

||M̃ −M(P )||2w
such that

∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

3
2

1
(V ′

ρ̂
)5/3

(
∂
∂t

∣∣∣∣
ρ̂

− Φ̇B
2Φb

∂
∂ρ̂ ρ̂

)
[(V

′
ρ̂

)5/3ni Ti ] = 1
V

′
ρ̂

∂
∂ρ̂

[
g1

V
′
ρ̂

niχi
∂Ti
∂ρ̂ + 5

2 TiΓi g0

]
+Pi

ni (ρ) = ne (ρ)
Zc−Ze f f

Zc−1 −nB . in ρ ∈ [0,1]

p(ρ, t ) = ne Te +ni Ti + pB ,∥+pB ,⊥
2 +p f ast in ρ ∈ [0,1]

σ∥
(
∂ψ
∂t − ρ̂Φ̇B

2ΦB

∂ψ
∂ρ̂

)
= T 2

16π2µ0Φ
2
B ρ̂

∂
∂ρ̂

(
g2g3

ρ̂
∂ψ
∂ρ̂

)
− B0

2ΦB ρ̂
V ′
ρ̂

( jbs + jcd ) in ρ ∈ [0,1]( g2

4π2µ0

1
V ′
ρ̂

∂ψ
∂ρ̂

)∣∣
ρ̂B

= Ip , ∂ψ
∂ρ̂

∣∣
ρ̂=0 = 0, ψ(ρ, t = 0) =ψ0

(3.14)

We would like to make some remarks on the formulated problem eq. (3.14).

• With the ∗ we indicate the solution of the formulated problem.

• In the present thesis we aim to discuss KER only for events occurring at the time scales

of energy/particle confinement and of resistive diffusion. The system of equations eq.

(3.14), while including dynamic models for the kinetic profiles, does not present any

instability. One could include for example the evolution of the current in the coils and

vessel in the forward model, provided that when solving the equation a sufficient time

resolution is used and the vertical stability controller is coupled to the system of equation.

This would allow for example to reconstruct the early phase of an eventual VDE event.

The same thing applies to other type of instabilities. A model to describe the dynamics

of the sawtooth crash [Biskamp and Drake 1994] can be included to reconstruct the

evolution of the q profile on axis during these events eventually synchronizing the
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crashes in the reconstruction with measurements from diagnostics with high acquisition

frequency [Fischer et al. 2019], or simply to recover on average central q above 1.

• The problem is classified as a minimum least-squares (MLS) problem with non-linear

equality constraints represented by the force balance equation (Grad-Shafranov), the

current diffusion equation, the radial transport diffusion equation for Ti (ρ, t ) and the

model for ni (ρ, t) and p(ρ, t). The cost function is weighted by the measurements

uncertainty. In frequentist interpretation this corresponds to assuming additive white

noise to all measurements. The solution of the problem can be sought with the use of

Lagrangian multipliers.

• The forward model for the observer M(P ) is nonlinear. For a given set of parameters

P , it requires to solve the full system of equations representing the constraints. We

have already seen in the Magnetic Equilibrium Reconstruction how from the solution of

the Grad-Shafranov equation the forward estimate of the magnetic measurements are

obtained. The extra kinetic ones T̃ e , ñe are directly related to the new free parameters

Te (ρ, t ), ne (ρ, t ).

• In eq. (3.14) the equilibrium and the transport problem are strongly coupled. For

example, a variation of the free parameter ne produces a modification of p hence a

modification of the RHS of the Grad-Shafranov equation and ultimately a variation of

the forward prediction of the magnetic measurements contained in M(P ) .

• The plasma current distribution jpl (ρ, t ) = jpl (ψ(R, Z ), p ′(ψ),T T ′(ψ)) is computed with

eq. (2.21) after having found theΩpl from the flux mapψ(R, Z ). Thus, p ′(ψ̂) and T T ′(ψ̂)

are no longer free parameters in this problem but are obtained from the modelling of

p(ρ, t ) and the current diffusion equation, through the evaluation of jtor (ρ, t ) eq. (2.38)

and its relation with p ′ and T T ′ eq. (2.41). As discussed in sec. 2.2.4, different quantities

can be chosen to relate the current diffusion results to the RHS of the Grad-Shafranov

equation. However the solution of the system will not change for a different choice of

the coupling profiles.

• The free parameters ne (ρ, t), Te (ρ, t) can be treated, similarly to what is done in the

Magnetic Equilibrium Reconstruction, by expanding them into a linear combination of

known basis functions, where the coefficients of the expansion become the new free

parameters to be found.

• The problem formulated in eq. (3.14) respects all the working assumptions in sec. 3.3.2.

In particular for each physical quantity, only its best known estimate, either from model

or measurements, is used. For example for Ti one can substitute in the model the

different forward models depending on the availability of the diagnostic for a given

experiment.

• In case of uncertainty of the models, this can be added to the list of free parameters. For

example suppose that the effective charge Ze f f = Ze f f ,0+a is known up to a constant a,

this constant can become part of the free parameters to estimate.
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• In eq. (3.14) the sources for the transport equation, the current drive jcd and the energy

released by the presence of the neutral beam Pi are assumed to be given. In general the

models to compute them, a full-wave warm plasma model [Poli et al. 2001] and a kinetic

model for the diffusion of the neutral particles [Pankin et al. 2004; Weiland et al. 2019],

could be included in the system of equations to be solved.

• In eq. (3.14) χi (ρ, t), Ze f f (t) are considered as given parameters, however in general

these might not be known a priori. One could include them in the list of free-parameters

to be found with the optimization problem. We also notice that in principle Ze f f might

have a spatial dependence. One needs to remember that increasing the number of

parameters without increasing the measurements or the constraints easily leads to an

ill-posed problem.

• Differently to the magnetic equilibrium reconstruction, which considered a static prob-

lem, eq. (3.14) includes time evolutive dynamic models for the evolution of the ion

temperature and current density profiles. As a consequence, all the free parameters

and quantities entering in the equality constraints depend on time. As discussed when

deriving the inverse problem within a statistical framework, this significantly enlarges

the number of free parameters. Indeed correlation between two different time slices

have to be taken into account, for example a variation of the electron density ne at time

t will have an impact on the pressure estimate at time t +∆t , hence will impact the

cost function at t +∆t . Suppose that the system of equations is solved by discretizing

it in Nt time steps and that the number of parameters for a given time step is Nθ , the

total number of parameters that are let free to vary in order to minimize the cost func-

tion becomes Nt ×Nθ. A solution to reduce the number of free parameters is to forget

the correlation above a certain characteristic time scale, where the threshold can be

obtained from the physical time scale of the evolutive equation in the system. In the

implementation that we will consider of KER, we will almost always assume each time

slice as independent. Another option could be to let the free parameters to vary only in

few timeslices and interpolate between them. The choice of the time slice could be for

example the sampling rate of the measurements. Another possible choice is to consider

the system to be represented by a Markov process where the next state only depends on

the actual state and inputs, but not on its previous history. This leads to formulation

of recursive estimation of the parameters such as Bayesian filters techniques [Särkkä

2013].

• The last remark is about the error propagation analysis and how to estimate the quality

of the reconstructed parameters. Given the frequentist interpretation of the problem,

this could be achieved by studying the sensitivity of the reconstructed parameters to

variations of the inputs measurements. This can also be done by solving the problem

and sampling the measurements from a Gaussian distribution with the same standard

deviation used in the cost function. However this is very expensive because it requires

to solve the optimization problem for every sample.
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3.3.4 Reduced formulations

In the previous section, after having described the diagnostic set of TCV, we derived a formula-

tion for the Kinetic Equilibrium Reconstruction problem based on a minimum least-squares

principles. However the non-linear nature of the problem together with the combination of

dynamic and distributed models, makes the formulation eq. (3.14) difficult to address.

We discuss in this section two reductions of the problem that will simplify its implementation

in part II of the thesis. The idea, as it was done for the MER, is to eliminate some non-

linearities from the optimization problem in particular, splitting the optimization of the

magnetic measurements from the optimization of the kinetic ones, and to turn them into a

linear optimization problem. This way the solution of the optimization problem will be given

by its normal equation. The problem will become therefore a root-finding problem similarly

to what is done for the MER.

To derive the first reduced formulation we split the free-parameters into the magnetic P m =
{I a , I v } and the kinetic ones P k = {Te (ρ, t),ni (ρ, t),ne (ρ, t)}. Similarly we split the measure-

ments between magnetic ones M̃m = {B̃ m ,F̃ f ,Ĩp ,Φ̃t , Ĩ v , Ĩ a } and kinetic ones M̃k = { T̃ e , ñe },

and we do that also for the forward observer model M(P k , P m) = {M k (P k ), M m(P m)} . This

way the cost function can also be split in the sum of two contributions χ2 = χ2
m +χ2

k , where

χ2
m = ||M̃ m −M m(P m)||2wm

and χ2
k = ||M̃ k −M k (P k )||2wk

.

We now consider some simplification assumptions.

1. No non-linear dependence between the magnetic and the kinetic contribution in the

cost function, hence ∇Pm M k = 0 and ∇Pk M m = 0. This way the original optimization

problem can be split in two independent optimization problems,

P m = argmin
P m

χ2
m (3.15)

P k = argmin
P k

χ2
k (3.16)

2. Linear relation between free parameters and estimation of measurements from the

forward models. This means for example M k =BP k , for a given Bmatrix, such that the

solution of the optimization problem eq. (3.16) becomes Pk = (BTB)−1BT M̃ k . For the

case of the magnetic related problem, this becomes exactly the same problem as for

the MER as discussed in section 3.2.1, except for the fact that only I a , I v are considered

as free parameters. For the kinetic problem, this will depend on the choice of the

representation for Te (ρ, t),ne (ρ, t). We choose a spline representation, such that the

spline coefficients become the P k free parameters and the relation between the spline

coefficients and M k is linear. However the mapping between the (R, Z ) location of the

measurements and ρ will depend on the ψ(R, Z ) solution, hence B(ψ(R, Z )).

3. Time independence of the optimization problem for every time instant. This is a strong
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assumption which reduces the problem to a series of independent linear optimization

problem. This effectively breaks correlation between parameters at different time in-

stant. This can play a role in the time evolving models present in the formulation. For

example, the free parameters Te (ρ, t), solution of the optimization problem at time t ,

that enters in the computation of σ∥(ρ, t) at time t and will affect the solution of the

current profile of the current diffusion equation at t +∆t , hence the T T ′(ρ, t +δT ) and

therefore the χm at t +∆t . This secondary effect is neglected in this simplified problem

and Te is taken such that it minimizes the cost function instantaneously at a given

instant t .

With these hypothesis we can now formulate a new simplified problem starting from eq. (3.14)

Given: M̃ m , M̃ k inputs χi (ρ, t ), Ze f f (t ), nB (ρ, t ), the sources jcd (ρ, t ) , Pi (ρ, t ) and the initial

condition T0(ρ), ψ0(ρ)

Find: P∗
k , P∗

m and all the quantities appearing in the system of equations

such that



P∗
m = (A(ψ)TA(ψ))−1A(ψ)T M̃ m

∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

P∗
k = (B(ψ)TB(ψ))−1B(ψ)T M̃ k

3
2

1
(V ′

ρ̂
)5/3

(
∂
∂t

∣∣∣∣
ρ̂

− Φ̇B
2Φb

∂
∂ρ̂ ρ̂

)
[(V

′
ρ̂

)5/3ni Ti ] = 1
V

′
ρ̂

∂
∂ρ̂

[
g1

V
′
ρ̂

niχi
∂Ti
∂ρ̂ + 5

2 TiΓi g0

]
+Pi

Ti (ρ = 1, t ) = 0, ∂Ti
∂ρ

∣∣∣∣
ρ=1

= 0, T (ρ, t = 0) = T0

ni (ρ) = ne (ρ)
Zc−Ze f f

Zc−1 −nB . in ρ ∈ [0,1]

p(ρ, t ) = ne Te +ni Ti + pB ,∥+pB ,⊥
2 +p f ast in ρ ∈ [0,1]

σ∥
(
∂ψ
∂t − ρ̂Φ̇B

2ΦB

∂ψ
∂ρ̂

)
= T 2

16π2µ0Φ
2
B ρ̂

∂
∂ρ̂

(
g2g3

ρ̂
∂ψ
∂ρ̂

)
− B0

2ΦB ρ̂
V ′
ρ̂

( jbs + jcd ) in ρ ∈ [0,1]( g2

4π2µ0

1
V ′
ρ̂

∂ψ
∂ρ̂

)∣∣
ρ̂B

= Ipl (t ), ∂ψ
∂ρ̂

∣∣
ρ̂=0 = 0, ψ(ρ, t = 0) =ψ0

(3.17)

We would like to make some remarks first on the consequences to the simplification assump-

tions taken,

• The linear dependence assumption allowed to turn the problem into a root finding

making it easier to solve.

• The solution of eq. (3.17) is not a solution of eq. (3.14). With the first assumption we

effectively removed a non linear dependence between the kinetic and the magnetic part

of the system of equations. It is possible therefore that a solution of eq. (3.17) indicated

with the suffix 0 will have a smaller χ2
k,0 than the corresponding part of the cost function
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in eq. (3.14), but globally χ2
k,0 +χ2

m,0 >χ2 where χ2 is the total one of eq. (3.14) problem.

This problem can be interpreted as an overfitting issue. To explain further, consider the

case of fitting ne : for the same number of basis functions as in eq. (3.14) to represent

ne (ρ, t) in eq. (3.17), when the cost function is split, there will be effectively a lower

number of measurements to fit, the magnetic ones being not present in χk .

• Due to the simplification assumption 1, the magnetic measurements are effectively

used only to estimate Ia and Iv , since P m = {I a , I v }. This is a very poor usage of their

information content. The plasma profiles p ′ and T T ′ indeed are fully specified from the

modelling and the kinetic measurements, through p and jtor from the current diffusion,

however the magnetic measurements are known to retain at least information on the

global scaling of the internal plasma profile and of some integrated quantities, such as

the total stored energy.

• Due to the simplification assumption 2, theΦt measurement is effectively not used since

in eq. (3.17) it has a null linear variation with respect to I a , I v . This quantity indeed

depends linearly only on T T ′, which is directly provided by the kinetic modeling in eq.

(3.17). The information content of this quantity, which is very important in MER to

disentangle the contribution of p ′ and T T ′ to the RHS of the Grad-Shafranov equation,

is lost in the simplified problem eq. (3.17). This might be either an advantage or a

disadvantage in terms of the resulting fit depending on the case. If the estimation of

the kinetic profiles from the kinetic measurements and model is reliable removing the

dependencies on the DML measurement, which is always difficult to calibrate, would

be positive. But if instead the kinetic profile estimation is not accurate, for example

because the Ti estimation is not accurate, it would neglect the information of a crucial

measurement.

In order to partially address these issues, we would like to present also a second simplified

formulation starting from eq. (3.14) and eq. (3.17). The simplification assumptions, in

particular 1, which lead to eq. (3.17) had the effect of braking some non-linearities between

the equilibrium part of the modelling and the transport one. In the following we would like

obtain a trade-off of partially retaining these non-linearities but keeping a linear optimization

problem, hence a root finding problem to simplify its implementation in part II. We will

maintain the time-independence as in the 3r d simplification hypothesis.

We start from the equations related to the kinetic modeling, considering for the moment that

all the quantities dependent on the magnetic equilibrium are known without uncertainties,

where we included also explicitly the formula to compute p ′ and T T ′ from the pressure and
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current density modelling.

P k = (B(ψ)TB(ψ))−1B(ψ)T M̃ k

3
2 (V ′)−5/3

(
∂
∂t − Ḃ0

2B0

∂
∂ρ

)[
(V ′)5/3ni Ti

]− 1
V ′

∂
∂ρ

[
V ′G1niχi

(
1+2

(
ρ
ρB

)2)
∂Ti
∂ρ

]
= Pi in ρ ∈ [0,1]

Ti (ρ = 1, t ) = 0, ∂Ti
∂ρ

∣∣∣∣
ρ=1

= 0, T (ρ, t = 0) = T0

ni (ρ) = ne (ρ)
Zc−Ze f f

Zc−1 −nB . in ρ ∈ [0,1]

p(ρ, t ) = ne Te +ni Ti + pB ,∥+pB ,⊥
2 +p f ast in ρ ∈ [0,1]

σ∥
(
∂ψ
∂t − ρ̂Φ̇B

2ΦB

∂ψ
∂ρ̂

)
= T 2

16π2µ0Φ
2
B ρ̂

∂
∂ρ̂

(
g2g3

ρ̂
∂ψ
∂ρ̂

)
− B0

2ΦB ρ̂
V ′
ρ̂

( jbs + jcd ) in ρ ∈ [0,1]( g2

4π2µ0

1
V ′
ρ̂

∂ψ
∂ρ̂

)∣∣
ρ̂B

= Ipl (t ), ∂ψ
∂ρ̂

∣∣
ρ̂=0 = 0, ψ(ρ, t = 0) =ψ0

jtor (ρ̂, t ) = 2πR0
1

16π3µ0Φb

1
V ′
ρ̂

∂
∂ρ̂

(
T g2g3

ρ̂
∂ψ
∂ρ̂

)
in ρ ∈ [0,1]

T T ′(ρ̂, t ) = µ0

g3

( 1
R0π

jtor −p ′) in ρ ∈ [0,1]

(3.18)

We can interpret eq. (3.18) as synthetic diagnostic/estimator, hence an independent recon-

struction problem, for the quantities p̃ ′(ρ, t) and ˜T T
′
(ρ, t). Given our working assumption

4 of no modelling errors, the uncertainty on p̃ ′ and ˜T T
′

can be estimated performing an

error propagation analysis starting from the uncertainties of the kinetic measurements in eq.

(3.18). We can now, similarly of what is done in MER, extend the set of free parameters for

the magnetic problem to be P m = {I a , I v , p ′(ρ, t ),T T ′(ρ, t )}, and include p̃ ′(ρ, t ) and ˜T T
′
(ρ, t )

as measurements with their uncertainties in χ2
m as ||p̃ ′−p||2wp′ +|| ˜T T

′−T T ′||2wT T ′ . As for the

MER, p ′(ρ, t ) and T T ′(ρ, t ) are expanded into a series of basis functions, the coefficients of the

expansion will become the free parameters and the forward model for the observer remains

linear. It is important to notice that one could pass directly the estimate of p(ρ, t ) and jtor (ρ, t )

to the cost function χm while keeping a linear forward observer model with respect to the

P m = {I a , I v , p ′(ρ, t ),T T ′(ρ, t )}, through eq. (2.41).

The new formulation for the kinetic equilibrium reconstruction becomes

Defining: M̃ m = {B̃ m , F̃ f , Ĩp ,Φ̃t , Ĩ v , Ĩ a , p̃ ′(ρ, t ), ˜T T
′
(ρ, t )}, M̃k = {T̃ e , ñe }

Given:The magnetic measurements {B̃ m , F̃ f , Ĩp ,Φ̃t , Ĩ v , Ĩ a}, kinetic measurements M̃k = {T̃ e , ñe }

and the χi (ρ, t), Ze f f (t), the sources jcd ,Pi , the initial condition Ti ,0 and ψ0(ρ). Notice that

p̃ ′(ρ, t ), ˜T T
′
(ρ, t ) are not given inputs even if they appear in M̃ m .

Find: P m = {I a , I v , p(ρ, t ),T T ′(ρ, t )} and P k = {Te (ρ, t ),ne (ρ, t )}

such that
P m = (A(ψ)TA(ψ))−1A(ψ)T M̃ m

∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

{p̃ ′(ρ, t ), ˜T T
′
(ρ, t )} = Kin

(
ψ(R, Z ), M̃ k ,χi (ρ, t ), Ze f f (t ), Ip (t ), jcd (ρ, t ),Pi (ρ, t ),Ti ,0,ψ0

)
(3.19)
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We would like now to make some remarks for the problem formulated in eq. (3.19).

• Notice that in eq. (3.19) M̃ m has a different definition with respect to eq. (3.17) and eq.

(3.14).

• The "Kin" operator in eq. (3.19), represents the solution of the problem eq. (3.18) to

estimate the p̃ ′ and ˜T T
′

from the kinetic measurements, the pressure and the current

diffusion modelling.

• As for the case of eq. (3.17), the solution eq. (3.19) is not a solution of the original

problem eq. (3.14). In fact in eq. (3.19) we are still neglecting the coupling between the

magnetic parameters and the kinetic cost function ∇Pmχk = 0 and vice versa ∇Pkχm = 0.

The problem of overfitting the cost function is also present in eq. (3.19) as it was in eq.

(3.17).

• In eq. (3.19) there is a better usage of the information content of the magnetic measure-

ments since they are used together with the kinetic modeling to estimate the internal

plasma profiles p ′ and T T ′. This was one of the issues in eq. (3.17). Moreover, adding

p ′(ρ, t) and T T ′(ρ, t) allows to make use of all the magnetic measurements including

Φt which has a linear dependence on only the free parameter T T ′ in eq. (3.19).

• The problem formulated in eq. (3.19) does not violate the principle of consistent models

within a system of equations. For example, j̃tor appearing in eq. (3.19) can also be

computed from p ′(ρ, t ),T T ′(ρ, t ) and the flux mapψ(R, Z , t ) in the Grad-Shafranov with

eq. (2.42) that we will call ĵtor in this context. When the problem eq. (3.19) is solved in

general j̃tor 6= ĵtor . However the two quantities have a different interpretation in the

problem formulated in eq. (3.19). The ĵtor has to be considered as the reconstructed

quantity, the one provided as an output of KER, since it combines the information of

the magnetic and indirectly the kinetic measurements through p̃ ′(ρ, t ), ˜T T
′
(ρ, t ). The

j̃tor instead has to be considered only as an estimate of the quantity jtor affected by

uncertainties coming from the error propagation of the uncertainties in the kinetic

measurements, at the same level as the other measurements entering in χm . Of course,

if magnetic measurements and kinetic measurements are consistent then j̃tor ∼ ĵtor .

• The choice of introducing p̃ ′(ρ, t ), ˜T T
′
(ρ, t ) can be seen as an improvement to prevent

the overfitting problem that might arise from having neglected some non-linearities in

the cost function. One could indeed almost perfectly match the kinetic measurements in

χk by choosing a high number of basis functions to represent Te (ρ, t ) , ne (ρ, t ), causing

the problem of fitting also the noise present in the measurements. This will produce a

poor quality j̃tor and therefore p̃ ′(ρ, t), ˜T T
′
(ρ, t) which will not be consistent with the

magnetic measurements which will re-scale p ′ and T T ′ resulting in a sensibly different

ĵtor . This "feedback" was not present in the formulation eq. (3.17) and it is just a

tentative way to recover part of the non-linear interaction between equilibrium and

kinetic modelling that has been broken by previous simplifying assumptions.
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• It is important to notice that similar variation of this formulation can be obtained. For

example, one can consider jtor to be strictly given from the current diffusion equation,

and let only the parameter for p ′ to be varied and T T ′ computed from eq. (2.40). This

would cover the case when more confidence is given to the current diffusion equation

and less to the transport modelling, which is in general affected by poor knowledge of

Ti . The resulting problem would still be "quasi-linear" in the free parameter p ′, but the

evaluation of some geometrical flux surface integral such as < 1
R2 > would be required.

3.4 Summary and outlook

In this chapter we discussed the formulation of the inverse/reconstruction problems which

aims to estimate some unknowns parameters combining first principle modelling and avail-

able measurements.

First, in section 3.1, we discussed how to pass from a forward/predictive problem to the recon-

struction problem by making assumptions on the type of uncertainties of the measurements

and models and use a statistical framework. We discussed the differences between the fre-

quentist approach, which led to the minimum least-squares fitting problem, and the Bayesian

approach. We showed that interpreting the problem with a statistical framework allows to

derive measures of the quality of the reconstructed parameters and provides technique to deal

with the error propagation analysis. The minimum least-square fitting problem is the building

block for the formulation of reconstruction problems in 3.2 and 3.3.

Then, in section 3.2, we discussed the formulation of the Magnetic Equilibrium Reconstruction

(MER) problem, which aims to find a free boundary equilibrium solution that best matches in

least-squares sense a set of external magnetic measurements. We defined the set of external

magnetic measurements available in TCV, which are common to most tokamaks, and the

relation with the solution of the free boundary problem. We formulated the MER problem as

a "quasi-linear" least-squares optimization problem with equality constraints and provided

a simplified version to facilitate numerical implementation, which is widely used in fusion

community. We discussed in 3.2.2 some critical aspects of MER, in particular due to the fact

that the external magnetic measurements are little sensitive to internal modifications of the

plasma state which results in a poor identification of the plasma pressure and current density

profiles.

Then in section 3.3 we discussed the formulation of the Kinetic Equilibrium Reconstruction,

which at first aims to improve the reconstruction of the internal plasma profiles. While for MER

the fusion community has reached a consensus or at least a standard practice, the definition of

KER is still debated due to the large set of diagnostics and models that can provide information

to the internal plasma state, which are briefly listed at the beginning of the chapter. We derived

our definition based on few working assumptions focused on the diagnostic set of TCV based

on the minimum least-squares principle as it was done for the MER. Since in the formulated

problem, a current diffusion model and Ti diffusion model is coupled to the free-boundary
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equilibrium, differently to the MER, the KER is a dynamic state and parameter reconstruction.

However, only resistive time scales have been considered hence instabilities are excluded from

the reconstruction. KER presents a strong non-linear coupling between the equilibrium and

the transport. We discussed therefore two possible simplifications based on breaking some

non-linearities between the equilibrium and transport, considering only linear solution of the

optimization problem and neglecting correlation of parameters between time instants. We

discussed in details the consequences of the simplifications. All the proposed simplifications

have been considered only to simplify the numerical implementation in part II of the thesis,

however given the level of today’s knowledge on methods to solve the forward problem and

the available computational power it would not be unrealistic to tackle the original complete

formulation.

As a last remark, for ITER high power operation, a kinetic equilibrium reconstruction approach

is foreseen as demonstrated by the increasing attention on the topic in recent conferences

[Mazon et al. 2020]. This will benefit also thanks to the effort in developing a unified and

standardized data structure called IDS/IMAS [Pinches et al. 2017] which will allow to share

analysis tools between different tokamaks.

There are various approaches to perform KER in literature that will be explained in 5. In this

chapter we attempted to provide a formal derivation of the problem starting from its equivalent

forward one, specifically for the set of TCV measurements, highlighting the simplification

assumptions, in particular how breaking non-linearity between the equilibrium and transport

might generate inconsistencies in the system, identifying the critical issues.
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4 New free-boundary equilibrium for-
ward static/ evolutive / and inverse
solver
A new suite of codes is presented in this chapter:

• "FGS" ( Forward Grad-Shafranov Static) solving the forward static free-boundary equi-

librium problem eq. (2.22).

• "FGE" ( Forward Grad-Shafranov Evolutive) solving the free-boundary equilibrium

coupled to the evolution of the coils in conductors and the current diffusion equation in

a 0D integral form eq. (2.63).

• A linearization of FGE including its state space representation.

• Preliminary implementation of the inverse magnetic equilibrium reconstruction prob-

lem with generic non-linear least-squares solver and a Bayesian approach to perform

uncertainty quantification.

First, in section 4.1, the historical motivation for the project and similar examples available in

literature are summarized.

Then, in section 4.2 and 4.3, the details of the numerical implementation will be presented.

The strategy will be to formulate all the problems as discrete root finding problems of the type

find x such that F (x) = 0 and use a single numerical scheme, the Jacobian Free Newton Krylov

(JFNK), to solve them all.

In section 4.4 we present some first validation of the time evolutive code FGE. These include

vertical stabilization cases with the real-time control system of TCV, validation of current

diffusion equation implemented with experimental data and benchmark of the linearized

code with respect to the linear rigid plasma displacement RZIP model for vertical stability

controller design.

In section 4.5.1 FGS is applied to MER problem, removing some of the limitations of the equi-

librium reconstruction code LIUQE and investigating their importance. This will give more
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insights on the accuracy of the LIUQE code which is now considered as a potential candidate

for the real-time equilibrium reconstruction in ITER. We will also consider a preliminary use

of the code FGS to perform equilibrium reconstruction based on a Bayesian approach and

compare the result with the frequentist approach, which leads to the non-linear least-squares

problem.

In section 4.6, we will develop magnetic equilibrium reconstruction tools, together with LIUQE,

to investigate numerically how they would perform for the future tokamak ITER during a

stationary phase of an H-mode 15MA scenario. This aims in particular to address the effects of

the internal features of the plasma profiles, present "by design" during the operation phase as

necessary ingredient to achieve the desired performance. These results will show the limitation

of the magnetic equilibrium reconstruction whenever a precise identification of the internal

plasma profiles and internal plasma geometry is sought and motivate the development of

techniques to perform kinetic equilibrium reconstruction discussed in the next chapters of

this thesis.

At the end of this chapter we will list the many potential applications which can be addressed

thanks to the new suite of codes developed in this thesis.

4.1 Historical motivation and literature investigation

The code LIUQE [Hofmann 1988] was developed starting in 1980s at SPC (at that time CRPP) to

perform magnetic equilibrium reconstruction both in post-discharge analysis and real-time,

in the highly shaped TCV tokamak. More recently [Moret et al. 2015], it was rewritten in Matlab

[MATLAB 2017] with a library of C compiled low-level routines to perform the most computa-

tionally expensive sub-parts contained in the free-boundary equilibrium problem. This allows

to compromise between the flexibility, thanks to the Matlab high-level programming language,

and the computational time, thanks to the compiled C functions. The library includes in

particular the identification of the plasma domain, the solution of the Laplace-like operator in

the Grad Shafranov equation, the computation of the boundary conditions for the Poisson

problem and the post-processing of the integrated and profile quantities from the ψ(R, Z )

solution. With this solution, LIUQE achieves real-time performances for TCV without the need

for parallelization.

The first aim of the project is therefore to investigate whether we can use the same optimized

library to obtain fast predictive solvers for shot preparation and controller design. The first

code developed, FGS, solves the forward static free-boundary equilibrium problem in section

2.2.1, given the current in the conductors Ia , Iv and the description of the plasma profiles

p ′,T T ′. The numerical scheme solving the free-boundary static equilibrium problem based

on Picard iteration implemented in LIUQE is numerically unstable [Lackner 1976]. The stabi-

lization solution adopted in LIUQE, based on the magnetic measurements, can hence not be

used in forward codes. This motivated the implementation of a more stable scheme, called Ja-

cobian Free Newton Krylov (JFNK) solver. The scheme combines the stability properties of the
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Newton iterations without the need to compute the Jacobian, which is unknown analytically

for the free-boundary equilibrium [Heumann et al. 2015] due in particular to the non-linearity

of finding the plasma boundary. Advantages and disadvantages of the numerical scheme are

discussed in Appendix D.

The literature of codes solving the free-boundary equilibrium problem is wide and will be

discussed later in this section. Developing FGS was just the starting block for several applica-

tions. It was first used to solve the magnetic equilibrium reconstruction (MER) problem in

section 3.2 to investigate the impact of some simplifications in the LIUQE algorithm: remove

the stabilization algorithm leading to a vertically shifted solution, extend the possibility of

including measurements non-linearly dependent on the free parameters. We also realized

that the algorithm implemented in LIUQE to solve the constrained least-squares optimization

in MER can not converge to the minimum of the cost function, as it neglects the variation with

respect to the flux map. This last point is discussed extensively in Appendices E and F. This

is common to many equilibrium reconstruction codes such as EFIT[Lao et al. 1990], EQUAL

[Zwingmann 2003], and CLISTE [McCarthy et al. 1999], as noticed also in [Faugeras 2020].

With the MER implemented with FGS, based on a Levenberg-Marquardt algorithm [Van Tol

1963], we can check the magnitude of this difference.

Uncertainty quantification is useful whenever MER or KER are used as inputs for further

analysis such as gyrokinetic transport investigations [Zakharov et al. 2008; White 2019]. The

Bayesian approach, discussed in section 3.1, provides the framework to correctly propagate

the measurements and model uncertainties to the MER result, and is getting progressively

more attention in fusion community [Fischer et al. 2010], [Fischer et al. 2019], [Mazon et al.

2020]. FGS is used to perform Bayesian analysis on magnetic equilibrium reconstruction in

section 4.5.2, making use of the Markov Chain Monte Carlo [Gamerman and Lopes 2006]

sampling routines available in the statistical Matlab package. Few similar examples are

present in literature. Within the generic framework MINERVA [Svensson et al. 2010], which

allows to perform Bayesian inference for several different problems, magnetic equilibrium

reconstruction code have been included [Hole et al. 2010b], in particular one of the first code

performing this analysis BEAST [Von Nessi et al. 2013]. Differently to previous works, we

assume the free-boundary equilibrium model to be strictly respected, instead of appearing in

the prior distribution function as a weak constrain. This allows us to make a direct comparison

between the frequentist approach, which leads to the least-squares optimization problem

solved in LIUQE and FGS with Levenberg-Marquardt algorithm, and the Bayesian approach.

After developing FGS, we coupled the free-boundary equilibrium solution with the dynamic

evolution of the current in the passive and active conductor together with 0D model for the

resistive decay of the total plasma current, obtaining the FGE code described in section 4.3.

The aim is to obtain a simulator, which can simulate the dynamics of the early phases of

vertical displacement events, to be used for designing the vertical stability, position and shape

controllers. The research in developing a predictive code for the plasma dynamics described

in section 2, which couples the evolution of the kinetic profiles on resistive time-scales to the
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free-boundary equilibrium and the evolution of the external conductor coils was particularly

active in the ’80s as summarized in [Blum and Le Foll 1984]. We cite here only a few of the

codes which have been used in the recent years, similar to FGE approach. We focus only on

codes addressing the free-boundary problem.

• NICE/FEEQS.M [Faugeras 2020]: NICE was developed by INRIA to unify and update

three former codes CEDRES++ [Heumann et al. 2015], EQUINOX [Blum et al. 2012] and

VacTH[Faugeras et al. 2014]. It solves several problems related to free-boundary plasma

equilibrium in tokamak including forward and inverse, static and dynamic evolution

coupled to the conductor currents evolution. The main strength is that a single finite

element (FEM) framework is used for all the declination of the problem, solved with a

Newton method, for the forward models, and sequential quadratic programming for

the inverse solution. This was enabled by the derivation of an analytic gradient for the

FEM discretization presented in [Heumann et al. 2015]. The same numerical methods

were implemented also in FEEQS.M [Blum et al. 2019], a Matlab version of NICE to

test different problems and numerical algorithms. The codes, in its forward predictive

usage, still lacks the implementation of the transport modelling to evolve the plasma

current and kinetic profiles consistently with the equilibrium, which will come in future

development according to [Faugeras 2020]. NICE and FEEQS.M are used regularly for

WEST operation and are coupled to IMAS [Pinches et al. 2017] environment to enable

porting to other devices.

• CREATE-NL [Albanese et al. 2015]: The code developed by CREATE solves the forward

coupled dynamics of the free-boundary plasma equilibrium and the conductors cur-

rents. It is a Matlab based code designed mainly for control purposes, implementing

FEM discretization and a Newton method. The Jacobian is approximated numerically

with finite differences, but the a priori knowledge of the sparsity pattern is used to

reduce the computational cost. It has been used extensively to study the vertical stabil-

ity, position and shape control in many present and future tokamaks, such as DEMO

[Maviglia et al. 2018], DTT [Ambrosino et al. 2017], EAST [Castaldo et al. 2018], ITER

[Parail et al. 2013], . It provides a linearized version of the code for faster simulation, and

the evolution of the kinetic profiles, including the current diffusion equation. It can be

coupled with an iterative scheme, exchanging I/O information with a transport code

during a single simulation time step. It does not include yet the possibility of performing

inverse reconstruction problem or inverse static coil current fitting problem.

• DINA [Khayrutdinov and Lukash 1993]: It allows the simulation of the free-boundary

equilibrium coupled to the evolution of the currents in the coils and the flux surface

averaged transport equation for the current, heat and particle transport. It has been used

in full-discharge simulation, scenario development and vertical displacement event

analysis of many different tokamaks [Sugihara et al. 2004; Leuer et al. 2003], including

the ITER operation design [Kim et al. 2009]. The coupling between the equilibrium and

transport is based on an iterative scheme. The code uses a particular solution to solve
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the free-boundary equilibrium based on the inverse variable technique [Degtyarev and

Drozdov 1985]. The resulting flux aligned grid allows to quickly compute the flux surface

averaged geometrical coefficients, which are needed in the transport equation and

numerically expensive to compute in a Cartesian grid. The DINA code was more recently

wrapped into a Simulink block to enable a more flexible development of controllers

resulting in DINA-CH [Lister et al. 2005], which for example was validated against VDEs

in the TCV tokamak [Lukash et al. 2003; Khayrutdinov et al. 2001].

• TSC [Jardin et al. 1986]: The code simulates the evolution of the free-boundary equi-

librium coupled to the flux surfaced averaged transport equations. It has been used in

the design and VDE simulation of several tokamaks [Nakamura et al. 2010; Sayer et al.

1993; Takei et al. 2003; Jardin et al. 2000], including TCV design [Marcus et al. 1985] and

now used at EAST [Bo et al. 2018] as simulation suite for plasma control developments.

The peculiarity of the code is that, instead of solving the force balance GS equation

at each time step, it evolves a velocity field through a modified equation of motion

which, by ad-hoc choice of the transport coefficients, is forced to remain very close to

the equilibrium solution. This solution is convenient in coupling the free-boundary

equilibrium with a transport simulation since it avoids the need of matching the plasma

region and the vacuum region.

• ASTRA-SPIDER [Fable et al. 2013a]: The coupling between the transport code ASTRA

[Pereverzev and Yushmanov 2002] and the free-boundary equilibrium code SPIDER

[Ivanov et al. 2005], developed mainly at IPP-Garching, allows to simulate the evolution

of the plasma equilibrium together with the currents in conductors and the transport

equations of current, heat and particles. It was wrapped into Simulink resulting in the

flight-simulator FENIX [Janky et al. 2019; Treutterer et al. 2019], based on the PCSSP plat-

form developed for ITER (Plasma Control System Simulation Platform PCSSP [Walker

et al. 2014]). This has allowed to simulate the ASDEX Upgrade plasma discharges before

the operation [Janky et al. 2019]. An iterative coupling between the free-boundary equi-

librium solver and the transport equation is applied [Fable et al. 2013b] which relies on

the computation of the geometrical coefficients by the free-boundary equilibrium code

SPIDER [Ivanov et al. 2005].

• TokSys [Humphreys et al. 2007]: Is the flight-simulator environment developed for

DIII-D, and used extensively also at [Walker et al. 2015; Bao et al. 2020] EAST, KSTAR and

MAST, wrapping the different models for the equilibrium evolution with Simulink. Its

original implementation was at the basis of the development of PCSSP for ITER. TokSys

embeds, in a Simulink wrapper, DINA as a core component. This is proprietary software

and not freely available.

The different codes mentioned have different level of plasma physics complexity, compu-

tational cost and numerical solutions, even though they all share the coupling between a

free-boundary equilibrium and a transport equation. Each of them are more suited for specific
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applications, ranging from magnetic control design to full discharge simulation and scenario

development, as well as flight simulator for experiment preparation. Some specific features of

FGE are:

• No iterative coupling between the GS, the CDE and the evolution of the coil currents.

The problem is formulated as a monolithic system of equations thanks to the flexibility

of JFNK solver.

• 0D current diffusion equation derived in section G, obtained from the integration of

1D CDE. This novel contribution of this thesis provides a rigorous link between the 1D

current diffusion equation used in transport codes and a 0D version used when solving

the free-boundary equilibrium problem. As we will discuss later, this formulation can

potentially be used to couple the 1D CDE to a free-boundary code avoiding the calcula-

tion computing the geometrical coefficients gi eq. (2.34) to eq. (2.37), which requires to

identify the plasma flux surfaces via a cpu-expensive contour finding algorithm.

In section 4.3.1 we provide also a linearization of FGE on subsequent states of equilibrium

problem based on [Walker and Humphreys 2006], to allow fast simulation of the system around

linearization points. We also derive a state space representation, using as state variables the

current in the conductors Ie , and the total plasma current Ip , in order to conform to the

RZIP model [Wainwright et al. 1997] to enable linear controller developments. Differently

to previous linearization in literature, we consider deformable plasma and the consistent

linearization of the current diffusion equation.

In summary, the newly developed FGS and FGE, together with the previously available LIUQE

and FBT, compose the suite of codes named "LIUQE-suite". The most common usage and

I/Os are listed in table 4.1. The suite aims to cover the full pipeline of tokamak operation: the

computation of the feedforward traces to be used to run a tokamak experiment with FBT; the

simulation of the equilibrium and conductor coils evolution for controller design with FGE;

the reconstruction of the plasma state from synthetic data simulation and real measurements

with LIUQE. Some of its peculiar features are:

• Finite difference discretization on square structured grid which allows fast solution of

the GS operator (DFT method [Wendroff et al. 1976]).

• Grid only in regions containing the tokamak vacuum chamber, giving a much smaller

numerical problem than including large vacuum regions outside the tokamak.

• Conductor equations solved as filamentary (discrete) structures leading to few equations

for conductors.

• Real-time implementation of LIUQE in Simulink and routine use in real-time on TCV.
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4.2 Forward free-boundary Grad-Shafranov Static (FGS)

In this section we present the discrete implementation of the static free-boundary equilibrium

forward problem eq. (2.22). This results in the code FGS (Free-boundary Grad-Shafranov

Static). The purpose is first to discretize the problem in space by means of finite difference

and then derive a root finding type problem find x such that F (x) = 0. Since in this section we

discuss only the static solution of the free-boundary equilibrium problem, all the quantities are

considered at the same time instant. We do not write explicitly t in this section to simplify the

notation, while instead it will be important to specify it when dealing with the time evolutive

problem in the next section. Since the new developed suite of codes use most of the low level

routines of the LIUQE code [Moret et al. 2015], most of the numerical discretization techniques

are common and we tried also to conform the notation.

As for the case of the continuous problem formulation in fig. 2.1a, we start by defining the

discrete version of the domains, listed in table. 4.2 and displayed in fig.4.1a and fig. 4.1b. The

computational domain Ωc is discretized into a rectangular grid uniformly spaced in R and

Z , with spacing ∆R, ∆Z respectively. The choice of a rectangular grid is made to simplify

the finite difference discretization of the spatial differential operator at the boundary. We

call Y (green dots in fig. 4.1) the set of pairs of coordinates {Ri , Zi } identifying the point i in

the poloidal plane with Y = {{Ri , Zi } ⊂Ωc }, without the boundary δΩc . We define a discrete

version of the computational boundary δΩc calling it O = {{Ri , Zi } ⊂ δΩc } (blue dots in fig.

4.1). We call X = Y ∪O. The X grid has a total number of points nR,x ×nZ ,x , where nR,x and

nZ ,x are the number of discrete points in R and Z direction respectively. Finally we call P ⊂ Y

the discrete region where jpl 6= 0, and δP its boundary. We will better define this region after

having discussed the discrete representation of jpl in eq. (4.2). For the moment we anticipate

that δP (green line in 4.1a) is not a discretization of δΩp (red line in 4.1a), hence in particular

P 6⊂ δΩp .

Taking the poloidal flux ψ(R, Z ) as an example for all the scalar fields defined in the poloidal

plane, we will refer to ψx as ψ(Ri , Zi ) ∀{Ri , Zi } ∈ X , and equivalently to ψy for ψy =ψ(Ri , Zi )

∀{Ri , Zi } ∈ Y and finally to ψo as ψo =ψ(Ri , Zi ) ∀{Ri , Zi } ∈O.

Y discretizedΩc

O discretized δΩc

X = Y ∪O discretizedΩc ∪δΩc

P discretized plasma region where jpl 6= 0
δP continuous boundary of P ( It can differ from a discretization of δΩpl )

Table 4.2

The finding of the plasma boundary from the knowledge of ψy is explained in details in

section 2.4 of [Moret et al. 2015]. We provide here only a simplified description. In case of a

diverted plasma, fromψy one needs first to identify the coordinate (RX , ZX ) of the saddle point

(called X point) and its poloidal flux valueψ(RX , ZX ) which is usually calledψb =ψ(RX , ZX ) to

indicate the flux at the plasma boundary. The capital X in this case must not be confused with
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Figure 4.1 – Discrete domains for TCV: discrete inner computational grid Y (green small dots)
excluding computational boundary O; discrete computational boundary O (blue dots), and
continuous computational boundary δΩc ( blue line); discrete plasma current jpl represented
with rectangular patches from yellow to red, color scaled to represent jpl intensity, and one
of these rectangular regions is highlighted in black in figure (a); discrete plasma region P
where jpl 6= 0 delimited by δP (green line); space plasma boundary δΩp represented here with
red line for comparison with fig. 2.1a; limiter (black line), location of active coil filaments
(pink dots), location of vessel current filaments (gray small dots), location of Bm probes (violet
crosses) and location of flux loop diagnostics F f (violet stars).

81



Chapter 4. New free-boundary equilibrium forward static/ evolutive / and inverse solver

the label for the discretized computational grid X . The X point location (RX , ZX ), from ψy as

well, is essentially never one of point of the Y grid, hence it needs to be found by interpolation.

The same applies also for ψb . The isoflux lines, from the flux value at the plasma axis to the

flux value at the plasma boundary ψb , describe closed nested regions in the poloidal plane.

To identify P one needs therefore to extract {Ri , Zi } ∈ Y in the closed region inside the isoflux

line at ψb value, which is shown with the red line in fig. 4.1 and corresponds to δΩpl in the

continuous space representation. We introduce here the numerical choice that the plasma jpl

is represented by piecewise constant rectangles of dimension ∆R and ∆Z equal to the spacing

of the Y grid, centered in the Y grid point locations. These rectangles can be seen clearly in

figure 4.1b, where the jpl is represented with the yellow to red patches, to indicate its intensity.

One of this rectangle box has been highlighted in black in 4.1a to help the visualization. P is

the region where the discrete piecewise constant jpl are different from 0, hence the boundary

of this region called δP (green line in fig. 4.1a and 4.1b) follows this rectangular representation.

This explains why δP 6⊂ δΩpl which is clear by comparing green and red lines in fig. 4.1. In our

codes we assume at this stage that the plasma current is contained inside δP , hence we do not

consider currents in the scrape off layer.

Supposing for the moment to know P , we rewrite the relation between the plasma toroidal

current density jpl (R, Z ) and the free functions p ′(ψ(R, Z )) and T T ′(ψ(R, Z )), making use of a

basis functions {gg (ψ(R, Z )} expansion:

jpl (Ri , Zi ) = 2π

(
Rp ′(ψ)+ T (ψ)

µ0R
T ′(ψ)

)
=

Ng∑
g=1

ag Rνg

ψB −ψA
gg (ψ̂(Ri , Zi )) ∀{Ri , Zi } ∈ P. (4.1)

The expansion eq. (4.1) is identical to the one presented for the magnetic equilibrium recon-

struction problem eq. (3.5) in sec. 3.2. A polynomial set of basis functions is typically used

[Moret et al. 2015]. In eq. (4.1) we call a = {a1, ..., aNg } the basis functions coefficients and

define the exponent νg as νg = 1 for the basis functions related to p ′ and νg =−1 for the basis

functions related to T T ′. One can compute jpl in the discrete grid Y as,

jpl (Y ) =
{ ∑Ng

g=1
ag Rνg

ψB−ψA
gg (ψ̂(Ri , Zi )) ∀{Ri , Zi } ∈ P

0 ∀{Ri , Zi } ∈ (P )c
(4.2)

As already stated, we will always consider the plasma current density as represented by

piecewise rectangles centered around {Ri , Zi } ∈ Y with magnitude jpl (Ri , Zi ). We define

Iy = jpl (Y )∆R∆Z such that the total plasma toroidal current Ip takes the following form,

Ip ≡
∫
Ωpl

jpl dRd Z =∑
i

Iy,i =
∑

i
jpl (Ri , Zi )∆R∆Z ∀{Ri , Zi } ∈ Y . (4.3)

It is important to notice that I y can be considered a nonlinear function of (ψx , a), for a given

set of basis functions, such that Iy = Iy (ψx , a). In fact, in order to compute I y , given ψx and a,

one needs first to identify the plasma domain P and then use eq. (4.2). As discussed earlier

the subscript y in Iy = { jpl (Ri , Zi )∆R∆Z ∀{Ri , Zi } ∈ Y } is to indicate that the quantity Iy is a
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collection of values computed on the grid Y .

The next step, to formulate the discretization of the free-boundary equilibrium problem, is

to discretize the differential operator ∆∗ in the Grad-Shafranov equation eq. (2.17), as in the

LIUQE code [Moret et al. 2015]. We use a 2nd order finite difference centered scheme defined

as

(∆∗ψ)

∣∣∣∣
(Ri ,Z j )

= (∆Z 2)−1(ψRi ,Z j+1 +ψRi ,Z j−1 +aiψRi+1,Z j +biψRi−1,Z j − ciψRi ,Z j ) (4.4)

for (Ri , Z j ) ∈ Y , with the following definition,

ai =
(
∆Z

∆R

)2 Ri

Ri +∆R/2

bi =
(
∆Z

∆R

)2 Ri

Ri −∆R/2

ci = 2+ai +bi .

The discrete version of the operator ∆∗ is therefore a linear operator D applied to quantities

defined on the grid X with results in the grid Y . We recall that Y is identical to X , without

the boundary points O. To compute the operator D at the outermost location in the Y grid,

since the operator uses the neighboring points of a given location, the value of the flux at O are

needed. (centered finite difference scheme, hence the boundary points are excluded). From

the definition eq. (4.4) we can express the action of D on ψx as a matrix vector multiplication

Dψx .

The last equation needed before providing the discrete formulation of the problem requires to

express the relation for the boundary condition eq. (2.19) in its discrete form. We have already

seen in eq. (3.7), the relation between ψ(Rb , Zb) at a generic location {Rb , Zb}, the external

currents I e and the plasma current density jpl (R, Z )∀(R, Z ) ∈Ωc . If we define the matrixMboy

as the collection of the Green’s mutual inductance from the grid Y to the boundary points O,

Mboy ;i , j =G(Ri , Zi ;R j , Z j )∀(Ri , Zi ) ∈O ∧∀(R j , Z j ) ∈ Y (4.5)

we can write:

ψo =Mboa I a +Mbov I v +Mboy I y (4.6)

where ψo =ψ(Ri , Zi )∀ {Ri , Zi } ∈O. We notice in particular thatMboa , and Mbov , equivalently

to M f e defined in eq. (3.7), take into account the series connection between the filaments

composing the I a and shown in 4.1a in pink dots, and the parallel connection between the

filaments of the vessel I v shown in gray dots. Moreover since we choose the representation of

jpl (R, Z ) as piecewise constant rectangles in the Y grid, the integral eq. (3.7), which allows to
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compute the contribution of the plasma current density to poloidal flux at a given location,

becomes just a matrix vector multiplication Mboy I y . This multiplication is very expensive,

of the order of O(N 3) machine operation where N is the size of Y grid. It can be avoided

by solving an homogeneous Laplace like problem for the GS operator and exploiting the

Gauss theorem as explained in [Lackner 1976], reducing the cost to O(N ln N )+O(N 2). This is

implemented in our code, however to simplify the reading we keep the relation eq. (4.6) in this

formulation.

We can finally formulate the forward free boundary static equilibrium problem in its discrete

form:

Given: {a, I a , I v } and the basis functions {gi (ψN )} functional forms with i = [1, ..., Ng ]

Find: ψx on the discrete grid X (equivalently find ψy on the grid Y and ψo on O)

which solves the following system of equations:{
Dψx =−2π

µ0Ry

∆R∆Z I y (a,ψx )−2πµ0Ry I e in Y

ψo =Mboe Ie +Mboy Iy (a,ψx ) in O
(4.7)

remembering that Iy (ag ,ψx ) is a nonlinear operator which requires to find the discrete plasma

boundary P from ψx and then compute Iy from eq. (4.2). Ry is the radial coordinate in

poloidal plane computed at the Y location. We note in particular that there are Nx unknowns,

ψx = {ψy ,ψo} , and Nx equations.

We now make two small modifications to the problem which will reflect the actual imple-

mentation of the code and will simplify the description of the time evolving solver in the next

section, in particular when also the current diffusion equation will be coupled to the system.

First we defined D−1
ψo

as the inverse of the linear operator D, such that given the boundary

condition ψo and applied to the RHS of the Grad-Shafranov equation (first equation in eq.

(4.7)) it allows to obtain ψx . This is equivalent to solving numerically the Laplace like operator

appearing in the Grad-Shafranov equation. In the actual implementation of the code, we do

not invert D explicitly and, whenever needed, we solve the corresponding linear problem

efficiently by Fourier decomposition of structured rectangular grids as in our case. However to

simplify the notation it is convenient to introduce D−1
ψo

, but the reader should remember that

this in practice means solving the corresponding linear problem.

Secondly we generalize the problem and instead of providing the d p
dψ (ψ̂) and T (ψN ) dT

dψ (ψ̂)

through the specification of a basis function coefficients, we provide Nc number of constraints

of physical quantities that can be computed out of the knowledge of ψx and all the other

quantities appearing in eq. (4.7). These can be scalar values such as the total stored energy

Wk , the internal inductance li , the safety factor at the axis qA , the total plasma current Ip .

In general also profiles, such as q(ρ) profile, can be accepted since once discretized into Np

points on a ρ grid, it becomes Np new constraints. Some of the constraints can be eventually

a subset of the basis function coefficients a. We pack all the constraints in c , for example

c = {βp , li , Ip }. Nc equality equations, the definition relation of how to compute the constraints

from the knowledge of other quantities appearing in the system, are added to the system. The
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goal is to always have the same number of unknowns and equations, hence a correct number

of basis functions need to be considered depending on how many constraints are provided.

We provide now the formulation of the static free-boundary equilibrium problem with generic

constraints in a root-finding form of type find x such that F (x) = 0. Once having defined the

operator F (x), we can use any suitable algorithm available to find its root.

Given: v = {I a , I v ,c} , with c = {ci } constraints and the basis functions {gi (ψN )} functional

forms, with i = [1, ..., Nc ] both for the basis functions and the constraints.

Find: x = {I y , a}, and the basis functions coefficients a of p ′ and T T ′ expansion.

Such that F (x ; v ) = 0, where 0 is a vector of 0 of dimension equal to the number of unknowns,

F (x , v ) is defined as

F (x; v) =
{

I y − Ĩy (I y , a, I e )

Constraints(x , v )Nc

(4.8)

and Ĩy is obtained by computing subsequently the following set of equations given {I y , I e , a, g (ψN )}

ψo =Mboe Ie +Mboy Iy in O (4.9)

ψy = D−1
ψo

(
−2π

µ0Ry

∆R∆Z
I y −2πµ0Ry I e

)
in Y (4.10)

find {P,ψA ,ψB } fromψx (4.11)

Ĩy =


∑Ng

g=1
ag Rνg

ψB−ψA
gg (ψ̂(Ri , Zi )) ∀{Ri , Zi } ∈ P

0 ∀{Ri , Zi } ∈ (P )c
(4.12)

We give a quick explanation on how to use the operator F to help visualize the algorithm.

Suppose that some v = {I a , I v ,c , {gi (ψN )}} and some values of x = {I y , a} are given which are

not the solution of the problem, hence F (x; v) 6= 0. To compute F (x; v), one takes x = {I y , a}

and computes in order eq. (4.9) to eq. (4.12) to get Ĩy . After that one can compute eq. (4.8).

Only if F (x; v) = 0 then x = {I y , a} is a solution of the problem. Since the problem is strongly

non-linear, it might have many solutions [Turnbull 1984], the hope is that they are distinct

enough. We recall that the operator D−1
ψo

depends on the flux at the computational boundary

ψo . In order to find the solution of the problem we make use of the Jacobian Free Newton

Krylov solver as explained in Appendix D.

Some features of the problem formulation eq. (4.8) are:

• The handling of the constraints is very general. One can change between them by simply

replacing the constraint equality equation which provides a lot of flexibility to the code.

• The unknowns of the problem are in terms of the plasma current Iy , which will make it

easier to couple to the evolutionary equation for the current in the coils discussed in the

next section.
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• Using as unknown Iy instead of for example ψx involves to solve the linear problem

corresponding to D−1
ψo

in order to compute Ĩy , but this can be done efficiently without

loosing too much performance.

• Expressing the problem as a root finding problem, having defined F (x), makes it easy to

compute a numerical linearization of the system with respect to the unknowns and the

inputs.

The application of FGS for the forward and magnetic equilibrium reconstruction problems

are presented in section 4.5.

4.3 Forward free-boundary Grad-Shafranov Evolutive (FGE) code

details

From the previous formulation of static problem, it is easier to explain the implementation

of the coupling with the circuit equation for the evolution of the current in the conductors

and the 0D currents diffusion equations obtained in eq. (2.60) and derived in Appendix G. The

complete problem in its continuous form has been derived in eq. (2.63).

The spatial discretization of the problem has already been discussed in the previous section.

For the time discretization we choose to implement a first order Euler implicit scheme. An

explicit time stepping scheme was found to be numerically unstable for discrete time steps

of the order of the growth rate of the VDE instability, which we aim to resolve. On top of

the physical instability contained in the system, the Euler explicit scheme was found to be

numerically unstable and required to use small ∆t becoming too expensive. Every time

derivative d A
d t is approximated with 1st forward finite difference d A

d t = A(t+d t )−A(t )
∆t . We will

define once again the problem in terms of a root finding problem. This time we will make the

distinction in the inputs between the feedforward inputs v and the controller action u, since

the system will optionally be coupled to feedback controller to stabilize the plasma vertical

instability. We will call with the apex t the quantities evaluated at time t and with t +1 the

quantities at t +d t . Since the scheme is first order in time only these two labels will appear.

We define the unknowns x t+1 = {I t+1
y , I t+1

e , a t+1}, the controller action u t =V t
a , and the feed-

forward inputs v t+1 = {c t+1,σt+1
∥ (ρ), I∗,t+1

ni ,ψt
e ,ψt

A ,ψt
B ,Φt (ψ̂)}. The quantities at t , meaning

ψt
e ,ψt

A ,ψt
B ,Φt , come from the previous time step iteration but, considering only the problem

of single Euler time step as in this case, they are effectively inputs. That is why we pack them
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in v . We define the operator F (x t+1, v t+1,u t+1) as follows

F (x ,u, v ) =



ψt+1
e −ψt

e
∆t −V t

a +Re I t+1
e

ψt+1
e −Mee I t+1

e −Me y I t+1
y

I t+1
y − Ĩy (I t+1

y , I t+1
e , a t+1)

Constraints(x t+1,u t+1, v t+1,c t+1)

At+1
1,1 + At+1

2 + I t+1
p − I∗,t+1

ni

(4.13)

Where At+1
1,1 , At+1

2

At+1
1,1 = T t+1

B Φt+1
B

2π

∫ 1

0

σt+1
∥

T 2
t+1(ψ̂)

[
ψ̂

(
ψt+1

B −ψt
B

∆t
− ψt+1

A −ψt
A

∆t

)
+ ψt+1

A −ψt
A

∆t

]
dΦ̂t+1(ψ̂) (4.14)

At+1
2 =−(ψ̃t+1

B − ψ̃t+1
A )

T t+1
B

2π

∫ 1

0

σt+1
∥

T̃ 2
t+1(ψ̂)

Φ̃t+1(ψ̂)−Φt (ψ̂)

∆t
dψ̂ (4.15)

We would like to make some remarks for the system of equations eq. (4.13).

• The controller actions V t
a are computed at the time instant t , since the physical con-

troller can only know the state of the system at t , when applied to a real tokamak in real

time.

• The number of feed-forward constraints are 1 less than the dimension of the basis

functions since the current diffusion equation acts as an additional constraint. If the

CDE equation is not included in the system, the number of constraints must equal the

number of basis functions.

• In case of three basis functions and CDE equation, typical constraints are integral

quantities such as βp and li .

• Ĩy is computed from {I t+1
y , I t+1

e , a t+1} by evaluating in order eq. (4.9) to eq. (4.12) as for

the case of the static solver.

• The choice of the code is to use a fixed in time ψ̂ grid.

• All the quantities appearing in eq. (4.14) and eq. (4.15), which are not given as forward

inputs, can be computed from the knowledge of the unknowns x t+1 = {I t+1
y , I t+1

e , a t+1}.

In particular, given the basis function coefficients and the ψx map obtained when

computing Iy with eq. (4.9) to eq. (4.12), one can compute the value of the toroidal flux

enclosed in a given ψN surface,Φ(ψ̂), from T (ψ̂(R, Z )).

• The formulation of the 0D CDE written above differs from what is typically done e.g. in

rigid plasma models [Coutlis et al. 1999; Walker and Humphreys 2006], where the plasma

is treated as a rigid conductor and a plasma circuit equation is formulated assuming a
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fixed shape of the current distribution. The formulation above is derived as the integral

of the 1D poloidal flux diffusion equation and contains no further approximations or

assumptions.

• Thanks to the formulation of the 0D diffusion equation as in eq. (4.14) and eq. (4.15) one

does not need to compute the geometrical quantities g2 and g3, which would involve

the computation of the flux surface average which is computationally expensive. Also,

as discussed in section 2.4, it should be possible in principle to write a discretized 1D

CDE based on this formulation, that also does not require evaluation of geometrical

quantities. This formulation was not yet attempted in this work, but would be interesting

to attempt in the future.

The root-finding problem is now stated as usual, given u t and v t+1, find x t+1, such that

F (x t+1,u t+1, v t+1) = 0. Also in this case the same JFNK is used to solve the problem.

4.3.1 Linearization of time evolutive system on approximate solution of the free-
boundary equilibrium (Grad-Shafranov)

In this section we discuss the linearization of the system of equations for the quasi-stationary

evolution of the free-boundary equilibrium, conductor current evolution and poloidal flux

diffusion on trajectories of solutions of the free-boundary static equilibrium. We choose to

provide the formulation for the problem already discretized in space for simplicity of the

notation.

We only provide the formulation for the case of a current diffusion equation strictly valid only

during a stationary state phase discussed in Appendix G.



dψe

d t =V −Re Ie

ψe = Mee Ie +Me y Iy
d(ψA+ψB )

d t = 2
I∗ni−Ip

TB
2π

∫ ΦB
0

σ∥
T 2 dΦ

F (Iy , a; Ie ,c) = 0

y = PP (Iy , a, Ie )

(4.16)

The operator F (Iy , ag ; Ie ,c) represents the operator of the static free-boundary Grad-Shafranov

equation with constraints as defined in eq. (4.8) corresponding to the one solved by the FGS

code. We notice in particular that for the operator F , the Iy , ag are the unknowns while Ie ,c

are inputs. This is the most computationally expensive part of the system of equation due to

the several non linearities already explained in previous sections. The goal of this section is

to find a linearization of this operator to obtain a fast simulator and the possibility of using a

linear model for control design.
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In the system of equations eq. (4.16) the unknowns are {Iy , a, Ie }. The forward inputs are {Va ,c}

and {Ini ,σ∥} for the current diffusion equation. In the system of equations eq. (4.31) we called

y = PP (Iy , a, Ie ) all the quantities that can be computed from the knowledge of the solution of

the system of equations, as a post processing. These are sometimes referred to as simulated

measurements. For example, all the quantities appearing in the current diffusion equation, (

T 2(Φ, t ) ,ΦB ...) , together with all the synthetic diagnostics, for example the magnetic field at

the Bm location the flux loops F f , are included in y .

The number of constraints Nc equals the number of basis function coefficients Na . The typical

input constraints are in this case c = {li ,βp ,ψA +ψB }. Since ψA +ψB appears explicitly in the

time evolution of the CDE equation, it is convenient to use it directly as a constraint for the

free-boundary equilibrium in the operator F . The linearization presented in the following will

still be valid also in case the CDE equation is not included in the system of equation and Ip (t )

is provided as an input to the system. In this second case c = {li ,βp , Ip }.

If we call x = {Iy , a,c, Ie }, we consider, 

Iy = I 0
y +δIy

a = a0 +δa

c = c0 +δc

Ie = I 0
e +δIe

(4.17)

We choose the linearization original point to be a solution of the operator F (I 0
y , a0;c0, I 0

e ) = 0

and we aim to find perturbations {δIy ,δa,δc,δIe } such that F (I 0
y +δIy , a0 +δa;c0 +δc, I 0

e +
δIe ) = 0 at first order. To do that formally we perform a Taylor expansion of the operator F (x)

up to the first order,

F (x0 +δx) = F (x0)+∇x F |x0δx +O(δx2) =∇x F |x0δx +O(δx2). (4.18)

Neglecting O(δx2) terms and using F (x0) = 0, we look for those δx∗ such that

∇x F |x0δx∗ = 0. (4.19)

It is now convenient to separate in eq. (4.18) the quantities {Iy , a, Ie } from the constraints c to

write,

[
∇Ie F ∇Iy F ∇aF

]δIe

δIy

δa

=−∇c F ·δc. (4.20)

We notice that all the gradients are evaluated at the linearization point x0, but in order to

simplify the notation we avoid to specify it everywhere. This will be important however when

discussing in the following the linearization of the system on time varying trajectories of

x0 = x0(t ), but for the moment we will consider only a fixed in time linearization point x0.
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Similarly to what is done for the operator we can perform a Taylor expansion for all the post

processing quantities,

y(x0 +δx) ≈ y(x0)+∇x PP ·δx. (4.21)

It is important to note that for practical reason, all the quantities composing the post pro-

cessing quantities y are evaluated when evaluating the operator F , hence PP for most of the

quantities coincides with a sub-part of the operator F . Therefore most of ∇x PP is directly

computed while computing ∇x F , which considerably saves computational time.

We note also that the obtained system of equations eq. (4.20) cannot be inverted since the

matrix containing the gradient of the operator F in the RHS have dimensions (Ny +Na ; Ny +
Na +Ne ), hence it is not a full rank matrix. In order for the system to be invertible, one needs

Ne extra equations. These are provided by the relation between the current and the fluxes in

eq. (4.16). To show that we first define,

ψ0
e ≡ Mee I 0

e +Me y I 0
y

δψe ≡ψe −ψ0
e = MeeδIe +Me yδIy

Putting everything together, we can write the final system of equations, including the lineariza-

tion, which represents the time evolutive quasi-static problem linearized on trajectories of

solutions of the Grad-Shafranov equation.

dψe

d t =V −Re Ie
dψA+ψB

d t = 2
I∗ni−Ip

TB
2π

∫ ΦB
0

σ∥
T 2 dΦ

y = y0 +∇x Pδx∇Ie F ∇Iy F ∇aF

Mee Me y 0


︸ ︷︷ ︸

MG (x0)


δIe

δIy

δa

=
−∇c F ·δc

δψe


(4.22)

We would like to make some remarks on the system of equations obtained eq. (4.22).

• The free-boundary Grad-Shafranov equation is effectively a non-linear relation of {Iy , a}

as function of {Ie ,c}. Thanks to the linearization performed we turned this relation into

a linear problem to be solved, by inverting the matrixMG .

• The resulting matrix MG (x0) is a square matrix. The dependence on x0 is due to the fact

that the gradient of the operator F is evaluated at x0.

• The hypothesis that x0 is fixed in time was never used in the derivation. Hence the for-

mulation eq. (4.22) is valid also considering time traces x0 = x0(t ). In general this would

entail a time-varying MG , with linearizations of F around the time-varying trajectory
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of x0(t ). However, as was demonstrated in [Walker and Humphreys 2006], for flat-top

stationary phases of a tokamak plasma discharge, during which Iy does not change in

time, this linearization stays constant. This is due to the fact that, while Ie and ψe can

change significantly with respect to the original linearization point, their changes are in

directions that do not affect the value ofMG .

• In case MG does not change, then the matrix MG (x0(t k )) needs to be inverted only once,

making the numerical solution of the system very fast with respect to the full non-linear

one and suitable for real-time application. This would allow for example to design

observers, for example for the current in the passive conductors, with techniques such

as Kalman Filter or Unscented Kalman filter.

• It is also important to notice that one of the main problem with the solution of the free-

boundary equilibrium, is that solving the operator F with Picard iterations is numerically

unstable, which motivated the use of the Jacobian Free Newton Krylov solver. Since now

a linear system replaces the solution of the Grad-Shafranov equation, this problem does

not exist for the linearized system eq. (4.22).

• The formulation of eq. (4.22) is very general and one can easily substitute the Grad-

Shafranov equation with another force balance equation with different formulation, for

example considering the fixed-boundary equilibrium problem. One important case is

to consider only rigid displacements of the plasma current distribution and eventually

re-scaling of the total plasma current. In this case Iy = Iy (RA , ZA , Ip ; I 0
y ), where the I 0

y is

the known plasma current density distribution which is rigidly displaced. To formulate

the problem for rigid displacement is trivial from eq. (4.22). One only needs to exploit

the chain rule ∇Iy F ·δIy =∇Iy F∇RA ,ZA ,Ip (Iy · [δRA ,δZA ,δIp ]), where ∇RA ,ZA ,Ip Iy can be

calculated explicitly for rigid displacements as explained e.g. in [Walker and Humphreys

2006].

A simple Euler explicit scheme can be used for the time discretization.

ψt+1
e −ψt

e
∆t =V t −Re I t

e
ψt+1

A +ψt+1
B −ψt

A−ψt
B

∆t = 2
I∗,t

ni −I t
p

T t
B

2π

∫ Φt
B

0

σ∥
T 2,t dΦ

y t = y0 +∇x Pδx t

MG


δI t

e

δI t
y

δat

=
−∇c F ·δc t

∆ψt
e


(4.23)

This way the problem is fully explicit making the numerical implementation very fast to solve.

With the stationary-state current diffusion equation, starting from eq. (4.23) one can put the

system of equations into a state space form. This is discussed in the next section.
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4.3.2 State-space representation of the linearized system

Starting from the results obtained in the previous section, we can re-cast eq. (4.22) into a

state-space form, which is the usual form to study linear stabilization controllers. Moreover we

choose as states {Ie , Ip }, hence the variables that will appear explicitly with a time derivative,

in order to conform our linear system as much as possible to the RZIP model [Wainwright et al.

1997].

The RZIP code solves a linear system of equations as the linearized FGE presented in the

previous section, but it assumes only rigid plasma displacements and a simplified equation

for the total plasma current evolution. Our linear model should have a similar unstable

dynamics for the VDE but allows at the same time to design plasma shape controllers. We

follow the formulation in [Walker and Humphreys 2006], where it was demonstrated that the

obtained formulation is also valid during stationary plasma states. Differently to [Walker and

Humphreys 2006] however, we consider the case of deformable plasmas.

The final goal is to get the linearized system eq. (4.22) into the following form,[
Mee +Me y∇Ie GS Iy Me y∇Ip GS Iy

∇Ie GSψAB ∇Ip GSψAB

][
dδIe

d t
dδIp

d t

]
=

[
V −Re (Ie +δIe )

Q0 +∇Ie QδIe +∇Ip QδIp +∇ci n Qδci n

]

+
[
−Me y∇cci n GS Iy dci n

d t

−∇cci n GSψAB dci n
d t

]

where we indicate with GS Iy and GSψAB , the solution of the free-boundary Grad-Shafranov

problem for quantities Iy and ψAB =ψA +ψB obtained with FGS given Ie and c = {Ip , li ,βp },

i.e the roots of the operator F eq. (4.8). We call the given input constraint ci n = {li ,βp } to

distinguish them from Ip , which is one of the state of the system evolved dynamically and

not provided as an input for the system. In particular since Ip instead of ψA +ψB is evolved

as a state, to conform with RZIP, Ip enters as one of the constraints for the free-boundary

Grad-Shafranov. With ∇Ie GS Iy we intend the gradient with respect to Ie of the solution of FGS

for the quantity Iy about an initial solution {I 0
y , a0; I 0

e ,c0}. With Q we refer to the RHS of the

stationary state current diffusion equation specified later in eq. (4.39).

However, what we aim to achieve in this section is to express the previous linearized system in

terms of the gradient of the operator of the free boundary Grad-Shafranov equation F eq. (4.8)

and not in terms of the gradient of its roots, as for example in term ∇Ie GS Iy . This will result in

a much more computationally efficient solution, since for example estimating ∇Ie GS Iy with

first order finite differences requires to solve, i.e. to find the roots, of the operator F a number

of times equal to the dimension of Ie . Instead, to find the gradient of only the operator F with

first order finite differences, and not the gradient of its solution, one needs only to evaluate

the operator F a number of time equal to Ie dimension. Moreover, if the analytical expression

for the gradient is available, the following formulation will be directly applicable.

We consider only the steady-state current diffusion equation. To simplify the notation, we
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define

K (Iy , Ie , a,σ∥) = TB

2π

∫ ΦB

0

σ∥
T 2 dΦ. (4.24)

We split the F operator of the free-boundary equation into two parts as we already did when

presenting the solver FGS eq. (4.8).

F (Iy , a;c, Ie ) =
Iy − Ĩy (Iy , Ie , a) = Fy (Iy , Ie , a)

Constraints(Iy , Ie , a,c) = Fg (Iy , Ie , a,c)
(4.25)

Ĩy (Iy , a, Ie ) is a function which, from the inputs, performs the subsequent operations in order,

ψo = Mboy Iy +Mboe Ie (4.26)

ψy = (D−1
ψo

)

(
−2πµ0Ry

∆R∆Z
Iy −2πµ0Ie

)
(4.27)

find P (ψy ),ψ̃A(ψy ),ψ̃B (ψy ) (4.28)

Ĩy =


∑
g ag gg (ψy )∑

Y
∑

g ag gg (ψy ) Ip in P

0 in (P )c
(4.29)

(4.30)

that is why we write explicitly only the {Iy , Ie , a} dependency. We call ψAB =ψA +ψB and the

resulting system of equations including the linearization of the free-boundary equilibrium is

Mee
d Ie
d t +Me y

d Iy

d t =V −Re Ie

1
2

d(ψAB )
d t K (Iy , Ie , a) = I∗ni − Ip

y = y0 +∇x Pδx

∇Iy Fy ∇aFy ∇Ie Fy 0

∇Iy Fg ∇aFg ∇Ie Fg ∇c Fg



δIy

δa

δIe

δc

= 0

(4.31)

Where we exploited the former knowledge that ∇c Fy = 0.

The goal is now to write the explicit (linear) relation δIy = δIy (δc,δIe ) and δa = δa(δc,δIe )

from the normal equations in terms of ∇i F , for appropriate i . From the second line of the

gradient matrix we can explicitate δa,

δa =−
(
∇aFg

)−1(
∇Iy Fg ·δIy +∇Ie Fg ·δIe +∇c Fg ·δc

)
. (4.32)
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Notice that we can invert

(
∇aFg

)−1

, provided that the set of constraints c are not linearly

dependent, since the number of constraints Nc are always equal to the number of basis

functions, Na , hence ∇aFg is a full rank matrix. Replacing δa from eq. (4.32) into the first line

we get,

{
∇Iy Fy +∇aFy

[
−

(
∇aFg

)−1

∇Iy Fg

]}
︸ ︷︷ ︸

Z1

δIy+

+∇aFy

[
−

(
∇aFg

)−1

∇c Fg

]
︸ ︷︷ ︸

Z2

δc+

+
{
∇Ie Fy +∇aFy

[
−

(
∇aFg

)−1

∇Ie Fg

]}
︸ ︷︷ ︸

Z3

δIe

= 0

Therefore the relation sought becomes,

δIy =−Z−1
1 Z2δc −Z−1

1 Z3δIe = D
Iy
c δc +D

Iy

Ie
δIe (4.33)

where, −Z−1
1 Z2 ≡ D

Iy
c and D

Iy

Ie
≡ −Z−1

1 Z3. We can also use eq. (4.33), to eliminate the δIy

dependence in eq. (4.32). We define,

Da
c ≡−(∇aFg )−1[(∇Iy Fg )D

Iy
c +∇c Fg ] (4.34)

Da
Ie
≡−(∇aFg )−1[(∇Iy Fg )D

Iy

Ie
+∇Ie Fg ] (4.35)

such that eq. (4.32) becomes,

δa = Da
c δc +Da

Ie
δIe . (4.36)

It is important to notice that all the matrices encountered in this section are all dependent

on the initial state x0 since the different gradients of the operator are evaluated at x0. So far

the derivation in this section was correct also in case x0(t). However from now on we will

enforce d x0

d t = 0, so that Da
c , ... matrices become time independent in order to extract them

from the derivative sign. Again we refer to [Walker and Humphreys 2006] for the validity of

this assumption. Moreover, with this assumption d x
d t = dδx

d t .

We will now choose our states xs = {Ie , Ip } and thanks to eq. (4.33) and eq. (4.36) we will be

able to obtain the system of equations into a state-space form. If we introduce eq. (4.33) into
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the first equation of eq. (4.16) we obtain.

(Mee +Me y D
Iy

Ie
)

d Ie

d t
+Me y D

Iy
c

dc

d t
=V t −Re Ie (4.37)

For comparison we notice that Me y D
Iy

Ie
= Xee in [Walker and Humphreys 2006]. We can bring

the input ci n to the RHS side and keep the state Ip to the left.

(Mee +Me y D
Iy

Ie
)

d Ie

d t
+ (Me y D

Iy
c )

d Ip

d t
=−Re Ie − (Me y D

Iy
c )ci n

dci n

d t
+V t (4.38)

We now move to the linearization of the stationary state current diffusion equation. We call,

Q(Ip , Ie , a, I∗ni ,σ∥, Iy ) = 2
I∗ni − Ip

K (Iy , Ie , a,σ∥)
(4.39)

and we Taylor expand up to the first order to compute Q(I 0
p +δIp , I 0

e +δIe , a0 +δa, I∗,0
ni +

δI∗ni ,σ0
∥+δσ∥, I 0

y +δIy ),

Q ≈ 2
I 0

p − I∗,0
ni

K 0 +2
δIp

K 0 −2
δI∗ni

K 0 −2
I 0

p − I∗,0
ni

(K 0)2 ∇Iy ,Ie ,a,σ∥K · [δIy ,δIe ,δa,δσ∥]

We can now use the relation eq. (4.36) and eq. (4.33) to eliminate the δIy , δa dependencies.

We define,

DQ
k,c ≡ (∇Iy K )D

Iy
c + (∇aK )Da

c (4.40)

DQ
k,Ie

≡ (∇Iy K )D
Iy

Ie
+ (∇aK )Da

Ie
+∇Ie K (4.41)

such that,

Q ≈
(

2

K 0 −2
(I 0

p − I∗,0
ni )

(K 0)2 (DQ
k,c )Ip

)
︸ ︷︷ ︸

DQ
Ip

δIp +
(
−2

(I 0
p − I∗,0

ni )

(K 0)2 DQ
k,Ie

)
︸ ︷︷ ︸

DQ
Ie

δIe

+
[
−2
K 0 −2

(I 0
p−I∗,0

ni )

(K 0)2 ∇σ∥K −2
(I 0

p−I∗,0
ni )

(K 0)2 (DQ
k,c )ci n

]
︸ ︷︷ ︸

DQ
I∗
ni

,σ∥ ,ci n

δI∗ni

δσ∥
δci n

+Q0

(4.42)

where we have defined DQ
Ip

, DQ
Ie

, DQ
I∗ni ,σ∥,ci n

accordingly. We can now express dψAB

d t in terms of

the state variables {Ie , Ip }. We remember that ψAB =ψAB (Iy , Ie ), hence we perform a Taylor

expansion and replace in the RHS of the Ohm’s law,
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dψAB

d t
=∇IeψAB

d Ie

d t
+∇IyψAB

d Iy

d t
. (4.43)

We make use of eq. (4.33) to replace the expression for δIy in terms of {Ie ,c} to get

dψAB

d t
= (∇IeψAB +∇IyψAB D

Iy

Ie
)

d Ie

d t
+ (∇IyψAB D

Iy
c )Ip

d Ip

d t
+ (∇IyψAB D

Iy
c )ci n

dci n

d t
. (4.44)

We can finally combine eq. (4.44), eq. (4.38) together to get the state space representation. We

define,

M1 =
[

(Mee +Me y D
Iy

Ie
) (Me y D

Iy
c )Ip

(∇IeψAB +∇IyψAB D
Iy

Ie
) (∇IyψAB D

Iy
c )Ip

]
(4.45)

M2 =
[
−Re 0

DQ
Ie

DQ
Ip

]
(4.46)

M3 =
[

−(Me y D
Iy
c )ci n

−(∇IyψAB D
Iy
c )ci n

]
(4.47)

M4 =
[

0

DQ
I∗ni ,σ∥,ci n

]
(4.48)

So that we can write,

M1

[
d Ie
d t

d Ip

d t

]
= M2

[
Ie

Ip

]
+M3 · dci n

d t
+M4

δI∗ni

δσ∥
δci n

+
[

V

Q0 −DQ
Ip

I 0
p −DQ

Ie
I 0

e .

]
(4.49)

Finally, inverting M1, one gets the state-space representation of the system. In particular

A = (M1)−1M2 is the matrix which regulates the free dynamics of the system. The eigenvalue

of A are the one to be compared to RZIP to compute the growth rate of the VDE instability in

its initial phase.

We would like to make some remarks,

• The formulation has been derived in terms of derivative of the operator F . One can

therefore replace the operator for the force balance equation for example with a rigid

displacement of the plasma or an analytic solution of the GS equation. However, since

96



4.4. Time evolutive free boundary code FGE validation

65668 65299 63783 40000
0

100

200

300

400

500

600
Growth rate comparison

shot

G
ro

w
th

 r
at

e 
[H

z]

RZIP
FGE

Figure 4.2 – Growth rate comparison of free evolution during vertical displacement events
between RZIP and linearized FGE. 65665 limited plasma. 65299 diverted plasma. 63783
Negative triangularity limited plasma. 40000 Snowflake plasma.

during the derivation we exploited some a priori known dependencies of the operator

F , one needs to be careful to reconsider them for a different operator.

4.4 Time evolutive free boundary code FGE validation

In this section we present a preliminary validation of the quasi-static evolutionary code FGE

against TCV experiment. First we will present a benchmark of the linearized version of the

code against an RZIP model often used to design vertical stability controllers in TCV, in order

to validate the dynamics of VDE instability implemented in FGE. Then we will check the

performance of the code when coupled to the real r A , zA , Ip control system of TCV, called

"hybrid" controller [Lister et al. 1997], re-simulating an actual discharge and comparing the

results with the experimental data.

We compare in fig 4.2 the growth rates of the most unstable eigenmode for the free-dynamic

evolution (constant inputs) of the linearized FGE, computed from A = M−1
1 M2 matrix eq.

(4.49), and RZIP. The same equilibrium reconstruction computed with LIUQE is used to com-

pute both matrices for the linearized FGE and for the RZIP model. Very different shapes and

with different stability properties are considered. We find an excellent agreement between the

two codes for all cases providing confidence on the time dynamics of the physics implemented

in FGE.

To further validate FGE we couple it to a digital emulation of the TCV Hybrid control system.

The goal is first to check that the controller stabilizes the system and to validate the current

diffusion equation model implemented. Starting from an equilibrium reconstruction solution,

we simulate 0.3s, equivalent to 2−3 current diffusion time during an almost stationary phase

of plasma operation, for the shot 65668. The simulation used a time step of 5×10−5[s], with a

controller sampling time of 1×10−4[s] as during TCV operation. The forward inputs provided

to FGE are qA(t ) and βp , shown in fig. 4.3a, obtained from the LIUQE magnetic equilibrium
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reconstruction of the real discharge. The state is almost stationary because a slow evolution of

qA is still present. We used only three basis functions to represent the p ′ and T T ′ profiles, two

constraints are given by the forward inputs and the third comes directly from the 0D current

diffusion eq. (4.13). The feedforward commands for the voltages and references for coils

current, position and total plasma current r A , zA , Ip are taken directly from the ones provided

in the experiment. In fig. 4.3b,4.3c,4.3d we compare the simulation of FGE (blue) with the

equilibrium reconstruction performed by LIUQE from the magnetic measurements of the

experiment (red). The "hybrid" controller stabilizes the FGE simulation as it was the case for

the real experiment. Since we started the simulation directly from a stationary phase of the

plasma current, the integral part of the controller in the real-experiment had accumulated

the error from the previous time instants while the FGE simulation started from a null initial

state. This explains the initial oscillation of FGE simulation. Moreover what seems to appear

as a high frequency numerical noise in FGE is in reality the result of the noisy qA(t) and βp

inputs obtained from the equilibrium reconstruction. We could have smoothed the inputs

before providing to FGE, but it is interesting to keep it as an indication of the typical noise in

the equilibrium reconstruction in inputs and the corresponding sensitivity of FGE simulation.

During a stationary state phase of constant plasma current Ip , the current diffusion equation

relaxes to a state of constant V = ∂ψ
∂t , in particular V = ∂ψA

∂t = ∂ψB

∂t , over the radius. This is

shown in fig. 4.3f with an excellent agreement between the simulation and the experiment.

The σ∥ was estimated with the ICDBSEVAL routine described in Appendix B, which from the

stationary state integral current diffusion equation, given the Thomson profiles for Te and ne ,

looks for the Ze f f to best matches the Ip and the measured Vloop in a given time interval of the

experiment. The otherwise natural resistive decay of the plasma current requires that, in order

to sustain a constant plasma current, the constant emf V at the plasma edge is maintained by

an almost constant d IOH
d t of the dedicated OH coils as shown in fig. 4.3e. This is an indirect

validation of the current diffusion model implemented in FGE. The same controller applied to

the real tokamak and to FGE requires the same
d Ip

d t in a stationary phase in order to control

and keep the same Ip .

In the future, the code will be benchmarked with similar codes such as CREATE [Albanese et al.

2015] and NICE [Faugeras 2020]. The dynamics of the code will be validated more extensively

against VDEs in TCV, and also during transient phases such as ramp-up, ramp-down, limited

to diverted and L-H transition phases. The code has started to be used to develop vertical

position and shape controllers in TCV.

4.5 Magnetic equilibrium reconstruction with FGS

In this section we will show the application of the free-boundary static equilibrium code FGS

to perform magnetic equilibrium reconstruction, extending in particular some limitations

of the equilibrium reconstruction code LIUQE and making a comparison between the fre-

quentist and Bayesian approaches to perform MER. The second will also show how to perform
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Figure 4.3 – Comparison between FGE re-simulation of shot 65668 and the magnetic equilib-
rium reconstruction with LIUQE from experimental data.
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uncertainty propagation for the magnetic equilibrium reconstruction problem. The examples

presented have the dual purpose of showing potential applications of FGS code and validate

its numerical implementation. We remark that they have to be considered as preliminary

analyses and proof-of-principle applications of the code.

4.5.1 Investigate limitations of LIUQE "quasi-linear" least-squares optimization

LIUQE has become in the latest years a potential candidate to perform real-time equilibrium

reconstruction in ITER. An extensive benchmark with EFIT against synthetic free-boundary

equilibrium data generated by the forward equilibrium code CREATE-NL [Albanese et al. 2015]

for relevant plasma condition is ongoing with this purpose. It is important therefore to address

any possible source of errors and limitations of the code and, in case of simplifying hypotheses,

to test their impact on the final reconstruction.

Thanks to the contribution of this thesis with FGS, we can now solve the forward free-boundary

equilibrium problem in the same code framework as LIUQE. Hence we can revise the equilib-

rium reconstruction performed by LIUQE and remove the following simplification hypothesis.

1. Solve the equilibrium reconstruction problem without the numerical vertical stabiliza-

tion used in LIUQE, based on a vertical shift of the flux map which provides solutions

that (slightly) violate the Grad-Shafranov equation. This is achieved thanks to the

Newton-like solver developed.

2. Correctly solve the least-squares constrained optimization problem MER which, due to

the algorithm simplification in LIUQE, did not allow to find the proper minimum for

the cost function χ2 in case of noisy measurements. This is detailed in the following.

3. Extend the capability of including measurements and constraints non-linearly depen-

dent on the free parameters of the reconstruction problem.

We would like to explain better the second point.

Summary of difference between the simplified assumption in solving the "quasi-linear"

least-squares problem in LIUQE compared to the correct solution of the problem

The problem is explained in general terms in Appendices E and F. We invite the reader to read

first the Appendices since we will report here only the summary of the most important steps.

The equilibrium reconstruction problem aims to solve the non-linear least-squares optimiza-

tion problem eq. (3.9), that we copy here for convenience, where x =ψ(R, Z ) and θ are the

free parameters for the equilibrium reconstruction problem. In LIUQE case θ = {I a , I v , a,d z}

where we notice that the shifted stabilization parameter d z is one of the free parameters to be

inferred from the optimization. All the external magnetic measurements are contained in M̃ .
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We call with θ∗ and x∗ the solutions of the problem.

{x∗,θ∗} = argmin
x,θ

||M̃ −A(x)θ||2w
such that
∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

jpl =
∑Ng

i=1 ai Rνi gi (ψ̂(R, Z )) in Ωpl

jpl = 0 in (Ωpl ∩Ωc )c

(4.50)

The problem is a non-linear least-squares optimization problem with non-linear equality

constraint represented by the Grad-Shafranov equation. However the forward modelA(x)θ for

the simulated measurements, meaning the relation that from the knowledge of the state x and

parameters θ allows to compute the synthetic estimation of the measurements, is represented

by "quasi-linear" relationA(x)θ. This means that the relation with the free-parameters θ is

linear while the non linearity with respect to x is contained only in the dependency of the

matrix A(x).

To solve the problem one needs to consider variations with respect to the free parametersθ and

x , making use of Lagrange’s multipliers to take into consideration the equality constraint as

explained in appendix F. However, if one allows only variation of the parameters θ, forgetting

the variation of A(x) with respect to x, an explicit solution of the optimization problem can

be found θ∗ = (AT (x)A(x))−1AT (x)M̃ . This is explained in appendix F. With this assumption,

which is adopted in LIUQE, the optimization problem turns into the following root-finding

type problem.

θ∗ = (AT (x)A−1(x)AT (x)M̃

∆∗ψ=−2πµ0( jpl + je ) in Ωc

ψ(R, Z ) =∑
i=[pl ,a,s]

∫
Ωi

Gi (R, Z ;R ′, Z ′) jϕ,i (R ′, Z ′)dR ′d Z ′ in ∂Ωc

jpl =
∑Ng

i=1 ai Rνi gi (ψ̂(R, Z )) in Ωpl

jpl = 0 in (Ωpl ∩Ωc )c

(4.51)

LIUQE solves eq. (4.51) with Picard iterations where θ = {I a , I v , a,d z} and the flux map is

vertically shifted by d z for numerical stabilization purposes. This strictly violates the GS

equation at convergence [Moret et al. 2015]. With FGS and the JFNK we can solve it without

the d z stabilization.

The static free-boundary equilibrium problem eq. (2.22), contained as an equality constraints

in eq. (4.50), finds x =ψ(R, Z ) given θ. If we formally call G(θ) the operator which given θ

solves the free-boundary equilibrium problem finding x, we can formally replace x =G(θ) in

the A(x) dependence of the cost function. The non-linear optimization problem eq. (4.50)

becomes therefore an optimization problem only for the parameter θ.

θ∗ = argmin
θ

||M̃ −A(G(θ))θ||2w = argmin
θ

χ2
w (4.52)
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This problem eq. (4.52) is fully equivalent to eq. (4.50). The equality constraint is hidden

in finding the solution by computing G(θ), which provides solutions of the Grad-Shafranov

equation. G(θ) is exactly the problem solved by the code FGS.

We can therefore solve eq. (4.52) by looking for stable point of the cost function, finding

θ such that ∇θχ2
w = 0. We use the subscript w in the cost χ2

w to indicate that the different

measurements in the cost function can be weighted independently, e.g. by their noise level

content. Differently to what is performed in LIUQE, which leads to eq. (4.51), we will now

properly consider the dependencies ∇θA.

In order to solve eq. (4.52), we implemented a steepest descendent-like algorithm called

Levenberg-Marquardt [Van Tol 1963]. We are aware of the fact that the algorithm is not the

most robust algorithm nor the numerically cheapest one to solve the problem, also because it

requires the estimation of the gradient of G(θ), meaning the gradient of the solutions of the

Grad-Shafranov equation, which we perform brute force with second order finite differences.

Sequential quadratic programming [Nocedal and Wright 2006] can be used more effectively

for this purpose and also Jacobian free algorithms [Xu et al. 2016] are available for this scope.

However, the purpose of the results that we present in the following is just to show a proof of

principle of our findings, meaning the difference in the solution between eq. (4.52) and eq.

(4.50), without aiming yet to develop an efficient and robust implementation.

Without changing the algorithm, we can now easily include constraints on the cost functions

which are non-linearly dependent on the free parameters θ, since the Levenberg-Marquardt

algorithm, as well as any fully non-linear optimization algorithm, is able to deal with general

non-linear forward models for the simulated measurements and not just "quasi-linear" ones

as in eq. (4.52). This removes the 3r d limitation of the LIUQE code listed above.

In the following, with the label "LIU" we will refer to the solution of the LIUQE algorithm

solving eq. (4.51) with Picard iterations and stabilization parameter d z. With "L" we will refer

to the solution of eq. (4.51) but without the d z stabilization making use of the JFNK algorithm.

We call it "L", because it is effectively solving the "quasi-linear" original optimization problem

as if it was a linear one, forgetting the dependencies of the matrix A(x). Finally with "NL" we

will refer to the solution of the original non-linear optimization problem eq. (4.50), expressed

as in eq. (4.51) and solved with Levenberg-Marquardt algorithm.

We want now to demonstrate numerically the following.

• Suppose that we take a given set of parameters θ∗ = {Ia , Iv , a}. We compute the solution

of the forward free-boundary problem x = G(θ∗). This is obtained for example with

FGS with high convergence requirements or with an analytic solution. We consider

as measurements M̃ exactly the estimation of the forward model for the simulated

measurements computed at the given parameters θ∗ such that M̃ =A(G(θ∗)θ∗. This

way the solution of the forward problem clearly has χ2
w = 0. This case represents the

artificial situation when the forward model perfectly describes the physical reality and
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Figure 4.4 – Convergence comparison over iterations of magnetic equilibrium reconstruction
codes for noise free synthetic data. LIUQE (blue, label "LIU") over Picard iterations. FGS with
Levenberg-Marquardt (red, label "NL") over steepest descendent steps. FGS solving LIUQE
like formulation but without d z stabilization and JFNK solver (yellow, label "L") over Newton
iterations.

there is no noise in the measurements nor uncertainty in the model. What we want to

show is that in this specific case, all the three solution "LIU", "L","NL" must converge to

the same solution at χ2
w = 0. This is demonstrated analytically at the end of the appendix

E.

We compute a solution of the free boundary equilibrium with FGS and the related synthetic

measurements M̃ in the same location as the physical diagnostics of TCV. We feed the three

equilibrium reconstruction algorithms "LIU", "L", "NL" with this noise free perfect measure-

ments and we check the convergence of the χ2 to zero over iterations till machine double

precision. This is shown in fig. 4.4. All the three algorithms converge until machine double

precision 1×10−14 to the original solution generating the measurements.

The original equilibrium computed with FGS was obtained with exactly the same set of basis

functions used in all the equilibrium reconstruction codes. This means that the original

solution is contained among the set of solutions of the three codes spanned by the free

parameters θ to be estimated with the optimization.

The codes were initialized with the same plasma current distribution and free parameters

Ia , Iv , a. The iteration index in the horizontal axis of the plot has different meaning for the

three cases. For "LIU" it refers to the iteration of the Picard scheme. For "L" the iterations refer

to the Newton steps of the JFNK algorithm to solve eq. (4.51), hence the LIUQE equivalent

problem with d z = 0. For the "NL" case the iteration refers to the Levenberg-Marquardt

updating step which is almost a steepest-descendent Newton step. The Newton algorithm

has a faster convergence in terms of iterations than Picard, but every iteration step requires

several evaluations of the FGS solution, hence it is overall much more expensive.

The results shown in fig. 4.4 have two important consequences. It demonstrates that LIUQE
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would find the correct solution in case of completely noise free data and if the solution is

contained in the space of solutions spanned by the free parameters of LIUQE. This is an

important validation for the LIUQE code. This can happen only when the basis functions

of LIUQE can perfectly represent the plasma profiles of the equilibrium which generated

the measurements. The result is also an indirect benchmark for the FGS code. To reach

the machine precision was expected since FGS shares all the low-level routines of LIUQE,

for example for the search of the plasma boundary and the inversion of the Grad-Shafranov

operator, but it is important to demonstrate it.

We will now perform a second numerical test:

• Suppose the measurements have noise or the true equilibrium generating the data is

not contained in the set of equilibria spanned by the free parameters of the forward

model. For example this is the case when the pressure profile shows a pedestal feature

and the basis functions for the equilibrium reconstruction are composed of simple

polynomials which cannot reproduce it. More generally this is the case whenever M̃

cannot be simply computed from the solution of the forward model for the simulated

measurements given a set of parameters θ∗ = I∗a , I∗v , a∗. This means more specifically

M̃ 6=A(G(θ∗))θ∗. This is the opposite to the previous numerical test and reproduces a

simplified synthetic case of what happens when performing equilibrium reconstruction

from real measured data. In these cases the three algorithms, "NL","L" and "LIU" will

find different solutions. At the three solutions in general χ2
LIU 6=χ2

L 6=χ2
N L 6= 0. Moreover,

since χ2
L is not a proper solution of the original optimization problem eq. (4.50) but only

has the "linear-like" simplification hypothesis eq. (4.51), we expect χ2
L >χ2

N L . Instead

for χ2
LIU , since LIUQE has an extra free parameter, d z, a priory one cannot establish the

relation of χ2
LIU with the other χ2, and potentially it could be smaller than all the others.

We consider the case of a typical single null plasma in TCV. We compute a solution of the free

boundary equilibrium problem with FGS in order to get noise-free synthetic data as in the

previous numerical experiment. In this case however we add a constant offset of 2 σ to one

of the flux loop in the upper high field side, fig. 4.5. The σ is the standard deviation of the

expected noise of the measurements which enter in the reconstruction problem as a weight

for the χ2
w . This is a very extreme case since a perturbation of this order, supposing that the

noise of the measurements is well estimated by this σ, should be very unlikely to occur in a

statistical sense. The σ used is the one estimated for TCV among a large number of discharges.

We feed the three reconstruction algorithms, "LIU", "L", "NL" with this perturbed data and we

look at the solutions at convergence.

The obtained flux surfaces for the different cases are shown in fig. 4.5, with a zoom in the

region near by the noisy probe in fig. 4.5. The resulting total χ2
w are shown in fig. 4.6. The

χw =
√∑

i (M̃ −A(x)θ)i /wi is computed with respect to the noisy data since that is the cost

function that the several algorithms try to minimize.
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Figure 4.5 – Flux surfaces of magnetic equilibrium reconstruction codes with synthetic data
with single flux loop (red square) noise. LIUQE (red). FGS with Levenberg-Marquardt (blue,
label "NL"). FGS solving LIUQE like formulation but without d z stabilization and JFNK solver
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coefficients obtained with LIUQE. "NL" for FGS magnetic equilibrium reconstruction with
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• LIUQE, with the stabilization d z 6= 0 (label "LIUQE"), finds the absolute minimum

value of χw among all the other codes. This could not be predicted a priori but it is not

surprising since "LIUQE" has an extra free-parameter, d z, to vary in order to find the

minimum of χw . The resulting d z in this case is d z = 0.8mm.

• However, the solution of LIUQE is not a proper solution of the free-boundary equilib-

rium problem, because of the stabilization vertical shift which enters in the equation.

Moreover, it is not true that if one takes the solution of LIUQE and shifts it back by d z

the flux map obtained is a proper solution of the free boundary problem either with the

same Ia , Iv , a of the reconstruction. It violates (slightly) the GS equation.

• In fact, if one takes {Ia , Iv , a} computed from the LIUQE solution and solves the forward

free-boundary equilibrium problem with FGS with these inputs one gets a different χ2,

shown in in fig. 4.6 with the label "FGS L".

• The solution of "FGS L" is now a proper solution of the forward free-boundary problem,

nevertheless it is not the solution which minimizes the χw . Indeed, the non-linear

optimization "NL" with Levenberg-Marquardt algorithm finds another solution which

is at the same time both a solution of the forward Grad-Shafranov and a minimum for

the χw . This of course could be a local minimum and not an absolute one. But at least

it is a solution of the original magnetic equilibrium reconstruction problem eq. (4.50).

Differently stated a solution with ∇θχ= 0 where all the non linear dependencies of χw ,

including ∇x A(x) neglected by LIUQE, have been considered.

• The linear optimization problem "L" finds a bigger χ than the "NL" as expected. This is

true for all the cases we investigated, and it must be the case since "L" is not properly

solving the original optimization problem eq. (4.50).

• It is instructive to compare the previous χw for the several codes, with the one com-

puted from the original FGS solution which generate the noise free data. The χ2
w for

this original FGS is equal to the perturbation added artificially scaled by the weight.

This is called FGS0 in fig. 4.4. It is interesting to notice that both LIUQE and the NL

optimization finds a χ2
w which is smaller than the one of the original FGS. This should

have been expected since both LIUQE and the NL algorithm try to minimize the χ2
w

computed from the noisy measurements. Hence they can find a proper solution of the

optimization problem eq. (4.50) and eq. (4.51), which overfits potentially the noise in

the measurements resulting in a lower χ while still respecting the equality constraint

represented by the free-boundary equilibrium. This teaches a very important point

when comparing different equilibrium reconstruction solutions. In presence of noisy

data one cannot judge two different reconstructions, in terms of how close they get to

the real noise free solution originating the data, only based on the resulting value of

χ2. If one finds a very big χ for a given solution, much higher than the σ, and believe

that the σ well describes the noise content of the measurements, in that case one can

doubt that the reconstruction solution is accurate. But two different solutions with a

difference in χ within σ cannot be compared based only on the χ2.

106



4.5. Magnetic equilibrium reconstruction with FGS

• If we take the NL flux map solution, and use it to compute the A(x) matrix for the

"quasi-linear" problem eq. (4.51) and we solve the "quasi-linear" optimization with the

normal equation θ∗ = (ATA)−1AT M̃ , we do not get the same basis function coefficients

as for the NL solution. This means that in case of noisy data, the solution of the NL eq.

(4.50), is not a solution of the L problem eq. (4.51) and vice-versa.

In summary in this section we explored some applications of the forward equilibrium recon-

struction code FGS to perform magnetic equilibrium reconstruction. The aim was first to

remove some of the limitations of the equilibrium reconstruction code LIUQE, in particular:

eliminating the artificial vertically shifted solution introduced for numerical stability reason,

which violates the Grad-Shafranov equation at convergence; check the difference between

the "quasi-linear" optimization with respect to the full non-linear optimization problem; po-

tentially extend the capability of handling measurements non-linearly dependent on the flux

map and the free-parameters for the problem Ie , Iv , a, without considering only "quasi-linear"

problems.

The results presented in this chapter have to be considered as preliminary analyses which

aim first of all to show the potential of the new suite codes developed to address many

different reconstruction problem, rather than making conclusive statement on quantitative

differences between the different optimization techniques. However, from our preliminary

analyses we find that the simplifications adopted in the code LIUQE do not affect strongly

the final reconstruction solution. A broader validation towards many different plasma shapes

and different noise content is undergoing to identify potential pathological cases when the

simplification hypothesis in LIUQE is no longer valid.

4.5.2 Bayesian vs frequentist magnetic equilibrium reconstruction

In this section we would like to complete the understanding of the magnetic equilibrium

reconstruction problem making a comparison between the frequentist approach, which leads

to the least-squares optimization problem presented in the previous section, and exploiting

FGS to address the Bayesian approach. The Bayesian approach has the important application

to perform the uncertainty propagation of the magnetic equilibrium reconstruction problem.

In the introduction section 3.1 we discussed how to derive the formulation of an inverse

problem which we summarize here both for reading convenience and to explain the analysis

performed in this section.

1. Start from a forward model. For the MER problem this is the free-boundary equilibrium

problem solved by FGS eq. (3.9), where the input parameters are θ = {I a , I v , a}, with a

the coefficients for the basis function expansion.

2. Make assumptions on the type of errors and model uncertainties. For example one can

consider that the measurements are only affected by additive white noise, described by
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the likelihood probability distribution function,

p(ỹ |θ) ∝
N∏

i=1
exp

(
− (ỹi − gi (θ))2

2σ2
i

)
(4.53)

where ỹ are the magnetic measurements table 3.2, σi describes the noise level of the

measurement i provided as an assumption, and gi (θ) is the estimate of the measure-

ment i given the parameter θ. To compute gi (θ) one needs to solve the free boundary

equilibrium problem with FGS eq. (2.22) and eq. (4.8) for the parameters θ and compute

the relevant post processing.

3. Adopt a statistical approach to estimate θ. The frequentist approach estimates θ looking

for the values which maximize the likelihood which leads to the minimum least-squares

problem eq. (3.9), solved with FGS with the Levenberg-Marquardt algorithm and with

some approximations by LIUQE as shown in section 4.5.1. In the Bayesian approach

one looks instead for the posterior distribution function p(θ|ỹ) which from the Bayes

theorem p(θ|ỹ) ∝ p(ỹ |θ)p(θ) where p(ỹ |θ) is the likelihood and p(θ) the prior belief

on the parameters.

When does the two approaches coincide when a point estimate of θ is sought?

To provide a single estimate of the parameter θ from the posterior p(θ|ỹ), one can compute

the maximum a posterior (MAP) of the distribution function. If the prior p(θ) is assumed

as a uniform distribution function with a wide range, than the θ which maximizes the like-

lihood p(ỹ |θ), hence the solution of the least-squares type problem solved in section 4.5.1,

maximizes also the posterior p(θ|ỹ). Wide in this context means wider than the support of the

resulting posterior distribution for the parameters, which can be checked when the analysis is

concluded.

To demonstrate the previous statement we perform the following analysis for the TCV shot

65561@1s. We take the definition of the likelihood for white noise eq. (4.53). We use as σi the

standard values used in TCV for the magnetic measurements which enter as weights in the

magnetic equilibrium reconstruction with minimum least-squares approach. We perform the

magnetic equilibrium reconstruction with LIUQE and with FGS with the Levenberg-Marquardt

algorithm as in section 4.5.1. We assume as prior for the coefficients of the basis function

a a wide uniform distribution function. For I a ,I v we do not assume any prior since these

quantities enter as measurements and compose part of the likelihood distribution. The

posterior p(θ|ỹ) is therefore in the form,

p(θ|ỹ) ∝
N∏

i=1
exp

(
− (ỹi − gi (θ))2

2σ2
i

) Na∏
i

U (ai ) (4.54)

where with U we indicate a uniform distribution. Thanks to FGS, which can solve gi (θ), we

can perform a Monte Carlo sampling to estimate the posterior p(θ|ỹ).
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The settings for the simulations are the following. The free parameters are composed by 19

poloidal field currents I a , the 256 vessels filaments are grouped into 38 segments connected

in parallel, sharing the same voltages, located around the location of the flux loops (fig. 2.1a).

Three polynomial basis functions are considered, 1 linear in ψ̂ for p ′ called a1, 1 linear plus 1

quadratic for T T ′ called a2 and a3 in the following. This is the standard set of basis functions

used to perform equilibrium reconstruction in TCV. In total the dimension of the free parame-

ters is 60. To estimate the posterior we used a Markov Chain Monte Carlo (MCMC) technique

based on the slice sampler algorithm [Neal 2003] provided by the statistical Matlab package.

The algorithm allows to sample from a general non-normalized probability distribution func-

tion, as it is the case for eq. (4.54), since when performing Bayesian parameter estimation we

are not interested in estimating the "evidence" (eq. (3.3) for reference). We computed 1×105

samples which, looking at the marginal traces of the parameter, was considered to be the more

than enough for the algorithm to converge to a random realization from the target distribution,

forgetting about the initial condition. There are cases in which the forward model FGS does

not converge. This can be due both to physical reasons that an equilibrium solution for the

set of trial parameters θ does not exist or potentially from stability issues with the Newton

algorithm in FGS. In case the FGS fails to find a solution, the sampled parameters are removed

from the distribution, as if their prior probability was null. Only 90 failed cases were found

out of 1×105 samples. The sampling is initialized from the solution parameters θ obtained

with LIUQE equilibrium reconstruction. A normal kernel smoothing function is then used to

obtain a smooth representation of the posterior distribution from the samples obtained with

MCMC.

The first finding that we wanted to check is that the solution of least-squares optimization

problem solved with FGS and the Levenberg-Marquardt algorithm, labeled with "NL", which

is supposed to correspond to the maximum of the likelihood, is also the maximum of the

posterior (MAP) when defined as eq. (4.54). This is shown in fig. 4.7a,4.7b,4.7c for the 3

coefficients of the basis functions a1, a2, a3 where the solution "NL" (yellow vertical line) is

indeed found at the maximum of the marginal posterior (blue line). The LIUQE solution is

also shown with the red vertical line and, as already discussed in section 4.5.1, since it is not

a proper minimum of the least-squares problem due to the simplifications adopted in the

algorithm, it cannot correspond to the MAP in this analysis.

All the marginal distribution functions have been normalized to their maximum value. We

decided to show the cases only for the coefficients of the basis function, rather than for

the other free parameters represented by the conductor currents, since these are the main

parameters that the magnetic equilibrium reconstruction, in whatever formulation, aims to

infer from the measurements since for the conductor currents the measurements are already

well constraining a small range of possible solutions. Moreover, the chosen uniform prior is not

influencing the final distribution for the marginal posterior of the basis function coefficients

since we chose a very broad uniform distribution where the resulting posterior (blue line) is

well contained inside.
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It is also worth noticing that the previous analysis can also be considered as another bench-

mark for the "NL" algorithm. Indeed the estimated posterior (blue) and the solution of

the "NL" (yellow) has been obtained with two completely independent algorithms. One by

sampling with Monte Carlo technique and the other by solving a non-linear least-squares

optimization problem.

The previous analysis can be considered an academic example, even if applied to an unusual

forward model. However one of the most useful application of Bayesian approach is to not

just provide a point estimation for the inferred parameters θ but to estimate full posterior

distribution function which allows to then compute the uncertainty quantification of the

parameters and, more importantly Iy and all the quantities that can be computed as a post

processing from the parameters. As an example, from fig. 4.7d to 4.7h, we show the marginal

posterior for some of the main global quantities of interest when performing the equilibrium

reconstruction problem in order, the internal inductance li , the total stored energy Wk , the

total plasma current Ip , the radial and vertical position of the magnetic axis r A ,zA , but could

be extended to 1D profiles. Since Ip enters as a direct measurement, we also displayed the

likelihood distribution with violet line.

The Bayesian approach is finding increasing interests and applications for many reconstruc-

tion problem in fusion, and since the equilibrium reconstruction is an ubiquitous input for

many forward diagnostic models, the free-boundary equilibrium should be treated at the

same level to perform a consistent Bayesian inference, in the same direction as [Hole et al.

2010b; Fischer et al. 2010]. However performing MCMC on a relatively large parameter space

as for the case of MER is computationally demanding, that is why frequentist approach is still

the essential tool for post-discharge and real-time analyses.

4.6 Limitation of MER for realistic ITER kinetic profiles

The main limitation of magnetic equilibrium reconstruction is due the low sensitivity of the

external magnetic measurements to internal plasma profile features. The result, well known

in the fusion community, is that magnetic equilibrium reconstruction provides accurate

results to reconstruct the external plasma shape. However providing additional information to

internal plasma profiles, hence performing kinetic equilibrium reconstruction as described in

3.3, is necessary to obtain a good knowledge of the shape of the internal flux surfaces. This is

especially true when the plasma profiles have local features given from both external actuators

(heating/fueling/current drive) and plasma transport physics (H-mode pressure pedestal

profile, advanced scenarios with reversed shear, transport barriers...). This is of particular

interest for high performance discharges in particular for ITER where these profile features will

be present "by-design", meaning they are necessary components of the scenario to achieve

the performances sought by the experiment. It is important therefore to be able to identify

these features and their contribution in the final reconstruction, potentially also in real-time

during the experiment in order to be able to control them.
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with MCMC, the maximum likelihood estimate (standard MER with minimum least-squares)
computed with FGS and Levenberg-Marquardt algorithm (yellow) and with LIUQE (red). Shot
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We consider a realistic ITER H-mode base scenario of 15 MA during stationary state operation.

We take the internal plasma profiles and coils currents from a transport simulation of JETTO

[Romanelli et al. 2014] code. These profiles present the characteristic pedestal pressure profiles

of H-mode plasmas, including the bootstrap contribution to the current density profile in

particular at the plasma edge.

We first compute a solution of the forward free-boundary equilibrium with FGS. This provides

a synthetic data for the magnetic measurements which are clean from measurement noise.

We use the full set of magnetic diagnostics designed for ITER. We consider the case of no

currents in the passive structures surrounding the plasma. It is only during transient phases

that they play an important role. During the stationary phase, instead, they would provide a

small contribution with respect to the active conductor currents. To estimate them one would

need a full dynamic simulation, for example with FGE, CREATE-NL or DINA-CH which is not

yet considered in this analysis.

Given this noise-free data, we perform the magnetic equilibrium reconstruction. The final

aim is to recover at best the original equilibrium which generated the data. To perform the

equilibrium reconstruction we use the best settings of LIUQE estimated during the bench-

mark with EFIT. In particular a set of 6 polynomial basis functions is used together with a

penalization in the cost function to avoid high current density at the plasma edge. Using

these settings with the described synthetic data provides the important information of what

would be so far the "best" magnetic equilibrium reconstruction that could be achieved with

LIUQE. As a continuation of the investigation computed in the previous section, the magnetic

equilibrium reconstruction with the LIUQE equivalent code without stabilization solved with

the JFNK algorithm and the non-linear optimization computed with the Levenberg-Marquardt

algorithm. All of the reconstruction codes share the same settings for the basis functions and

measurements weights.

The main difference in this analysis with respect to the numerical investigation performed in

the section 4.5.1 is that the set of basis functions used to perform the equilibrium reconstruc-

tion cannot recover perfectly the features of the equilibrium which originated the synthetic

data. In particular they do not allow for a pedestal "knee". In other words, the real solution of

the problem is not within the space of solutions spanned by all the possible solutions of the

reconstruction codes with the chosen set of basis functions. This feature emulates a realistic

situation in which magnetic equilibrium reconstruction is performed in tokamaks during this

type of scenarios. Before entering in the analysis of the results one can understand quickly

this point by having a glance to the original ∂p
∂ψ from JETTO (black line in fig. 4.10b and the

reconstruction ones which shapes come mainly from the basis function choice.

The important point to understand is that it is not just an arbitrary choice to limit the basis

functions to this reduced set of few polynomial and to not allow pedestal features. It is an

intrinsic limitation of the magnetic equilibrium reconstruction problem. Even if we were to

use more basis functions, the external magnetic measurements are not sufficiently sensitive to

112



4.6. Limitation of MER for realistic ITER kinetic profiles

4 6 8

-5

-4

-3

-2

-1

0

1

2

3

4

5

cg 1
cg 2

g1

g2

cg 6

g4

g5

g6

g7

g8 g9cg 5

g11

cg 4

g13

g14

cg 3

g16

g17

g18

g19

R [m]

Z
 [

m
]

LIU
NL
L
Original
B probes
Flux Loops

Figure 4.8 – Comparison of flux surfaces between magnetic equilibrium reconstruction per-
formed with LIUQE (blue, label "LIU"), FGS with Levenberg-Marquardt (red, label "NL"), FGS
solving LIUQE-like formulation but without d z stabilization (green, label "L"), original data
(black, label "Original").

internal profile features to be able to distinguish among their contributions. Hence, we could

not obtain much better results than the current settings in any case. As in the previous section

we call with the label "LIU" (blue) the solution of the LIUQE equilibrium reconstruction,

with "L" (green) the solution of the LIUQE equivalent "quasi-linear" optimization problem

without the artificial "dz" stabilization and with "NL" (red) the solution of the full non-linear

optimization problem with Levenberg-Marquardt algorithm. The original equilibrium from

which the synthetic data have been generated, labeled "Original", are shown with the black

lines. The black lines are therefore the reference target that all the reconstruction algorithms

aim to reproduce at best.

First in fig. 4.8 we present the result for the flux surfaces. We show with the blue red bullets the

location of the magnetic field probes and flux loops respectively which are inside the vessel but

outside obviously of the limiter. The first expected result is that there is a very good agreement

between all the reconstructions on the last closed flux surface as expected. The magnetic

equilibrium reconstruction provides accurate enough information of the plasma shape to
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prevent the plasma touching the wall and indeed plasma shape controllers are designed

receiving the real-time magnetic equilibrium reconstruction as an observable input.

This can be measured quantitatively by measuring the spatial gaps between the plasma last-

closed flux surface and the few points distributed on the wall around poloidal direction,

indicated with the names gx and cgx in fig. 4.8. In fig. 4.9a we call with ∆ gaps the difference

between the gaps of the original solution and the different reconstructions with the same color

convention as in the other plots. We also show in fig. 4.9b the percentage difference of the

gaps with respect to the gaps of the original solution. All the reconstructions perform better

in absolute terms in the poloidal region where the LCFS is close to the actual measurements,

which are the two sides of the tokamak corresponding to the diagnostic g1 to g5 and g13 to g16,

but equally well in relative terms for all the diagnostics. All the reconstructions achieve few

percent differences with respect to the original gap. The non-linear optimization performed

slightly better than the other reconstructions in terms of the gaps, but this is not a general

finding. Hence, the only meaningful expected result in the previous plot is to confirm that

magnetic equilibrium reconstruction can well identify the shape of the LCFS as already stated.

The magnetic equilibrium does not provide the same accuracy in reconstruction of the shape

of the internal flux surfaces and plasma profiles. In fig. 4.10c, 4.10b, 4.10a, 4.10d we show

in order the pressure profile, the ∂p
∂ψ and T ∂T

∂ψ profiles resulting from the basis functions

expansion, the coefficients obtained by solving the least-squares optimization problem and

the T profile. All the reconstructions provide as a result a significantly different pressure

profiles, not only because they cannot reproduce the pedestal feature, but also because they

have a different dependency towards the axis with a decreasing derivative. This results in a

difference of the total stored energy with respect to the equilibrium data of the order of 10%.

This is even more clear in the ∂p
∂ψ profile in fig. 4.10b. The small pedestal feature cannot be

recovered by the simple basis representation used for the equilibrium reconstruction.

Overall the difference in the profiles result in a noticeable difference in the shape of the

internal flux surfaces location within ρ < 0.4. Moreover, features like the flat jtor profile in the

center (fig. 4.10e) or the bootstrap component of the current density at the pedestal cannot

be recovered precisely. In fig. 4.10e one can see that the MER reconstruction provides only a

qualitative correct estimate of the edge current. All these limitations result in a significantly

different q profile towards the axis, fig. 4.10f. It is interesting to note that for this specific case,

since the surfaces at q = 1.5 and q = 2, where the NTMs instability might appear and will have

to be controlled with the use of electron cyclotron current drive, are fairly outside the plasma

all the reconstructions perform relatively well in identifying them for this particular case of

investigation.

The final comment, for an accurate identification of the shape of the internal flux surfaces and

plasma profiles in presence of plasma profile features, the external magnetic measurements

are not sufficient and direct information on the profiles should be provided. This would be

useful for example when the magnetic reconstruction is used as starting analysis for stability

calculations, transport analysis with gyrokinetic codes, mapping of plasma diagnostics into 1D
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Figure 4.9 – Differences original solution and different reconstruction algorithm plasma-wall
gaps.
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Figure 4.10 – Comparison of reconstructed profiles. LIUQE (blue, label "LIU"), FGS with
Levenberg-Marquardt (red, label "NL"), FGS solving LIUQE-like formulation but without d z
stabilization (green, label "L"), original data (black, label "Original"). With the subscript A,0
we indicate the absolute value of the original profile (black) at plasma axis.
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radial profiles, to perform core profile control in real time. With this aim in the next chapters

we will investigate different techniques to perform kinetic equilibrium reconstruction which

we will be applied to TCV both for the post-discharge analysis and in real-time during plasma

experiments.

The analysis performed in this section considered a very ideal case and had the aim to show

how in the best conditions the magnetic equilibrium reconstruction would perform in pres-

ence of realistic plasma profiles. There are two important missing features in our analysis.

The first is investigating the results in presence of measurements noise. We only started to

perform some preliminary sensitivity analysis on the reconstruction codes with white noise.

However to make conclusive statements one should consider all the potential sources of error

with realistic importance such as electronic errors, calibration and thermal errors, cross-talk

and absolute measurements errors during ramps as explained in [Peruzzo 2012].

The second missing aspect is the introduction of the current in the passive structure during

transient phases such as current ramp-up/ramp-down, L-H transition and limited to diverted

shape transition. An agreed strategy to measure them and to take them into account when

performing magnetic equilibrium reconstruction has not been achieved yet. We will discuss

about this topic in some more details in the outlook section.

4.7 Summary

In this chapter we presented the new suite of codes developed in this thesis to solve forward

and inverse problems related to the free-boundary equilibrium in tokamaks. In particular we

developed a forward free-boundary static equilibrium code called FGS and a dynamic code

FGE based on the evolution of the free-boundary equilibrium coupled with the evolution of

the currents in the active and passive conductors. The dynamic solver includes a 0D Ohm’s

law for the resistive dissipation of the total plasma current. We presented also a linearized

version of the dynamic code which includes a linearized free-boundary equilibrium coupled

to the current diffusion equation. Moreover we presented some first applications of this suite

of codes for the solution of both forward and inverse problems summarized in the following.

The original idea was to re-use the optimized low level routines developed for the equilibrium

reconstruction code LIUQE [Moret et al. 2015] to address a larger set of problems. The main

issue was to resolve the numerical instability of the Picard type iterations previously used

when solving the free-boundary Grad-Shafranov equation by replacing the numerical scheme

with a Newton like scheme. The scheme, called Jacobian Free Newton Krylov (JFNK) and

explained in Appendix D, while retaining the stability properties of a Newton scheme, does

not require to explicitly form the Jacobian of the problem. Thanks to its flexibility, it allowed

us to quickly test many different applications.

The main novelty of our code stands in the way the 0D current diffusion equation is coupled

to the equilibrium and currents evolution, in a monolithic system of equations without
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iterative approaches. They are eventually needed only to compute the post-processing of

some quantities.

FGE is already coupled to the real-time control system of TCV and is currently being exploited

to develop the shape and vertical stability control system of our tokamak. Among the prelimi-

nary validations of the code presented, we showed in particular how the implemented current

diffusion equation in our simulator makes the TCV hybrid control system to require currents

in the Ohmic coils closely comparable to the experimental one, in order to maintain a fixed

plasma current.

We presented a linearized version of the FGE code.

• Our formulation is based on the linearization of the time evolutive system on approxi-

mate solutions of the free-boundary equilibrium problem as in [Walker and Humphreys

2006]. This constraint of considering only approximate solutions of free boundary

problem is given by a normal equation for the operator representing the force bal-

ance, hence the Grad-Shafranov equation in our case. The advantage of considering

the linearization only in terms of derivative of the force balance operator is that the

same linearization approach can be applied easily to different force balance models like

for example considering rigid displacements of the plasma or analytic solution of the

Grad-Shafranov.

• We provided also a state-space representation of the linearized system, using as states

the current in the conductors and the total plasma current, to conform at most to the

RZIP model, which has been widely used to design vertical stability controller in TCV

[Sharma et al. 2005]. As a validation of our model, we compared the growth rates for the

most unstable mode of the free dynamics of the system for plasma of different shapes.

We found an excellent agreement between linearized FGE and RZIP, giving us confidence

that our code well represents the physical dynamics of the system for the early phases of

vertical displacement events.

In this chapter we also exploited the new forward free-boundary equilibrium static code FGS

to address the magnetic equilibrium reconstruction problem with some proof of principle

applications which have a potential general interest for the fusion community. The first appli-

cation aimed to remove some of the limitations of the equilibrium reconstruction code LIUQE

and investigate the importance of its simplification hypothesis. With FGS we implemented a

Levenberg-Marquardt optimization algorithm to solve the least-squares non-linear optimiza-

tion problem with non-linear equality constraints represented by the Grad-Shafanov equation.

We summarize the main findings in the following.

• We can remove the numerical stabilization of the Picard iterations scheme in LIUQE,

which is common to EFIT [Ferron et al. 1998] and the fast version of CLISTE [McCarthy

et al. 1999], thanks to the stability of the Newton like scheme implemented. The previous
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stabilization scheme indeed was based on solving a vertically shifted Grad-Shafranov

equation where the amplitude of the vertical shift was part of the free parameters to be

estimated in the least-squares problem. From our preliminary investigation we found

that the difference of the solution removing this non-physical stabilization is small but

still measurable.

• LIUQE code allowed to consider only measurements and constraints in the cost func-

tion whereas the forward model between the free-parameters to be estimated by the

reconstruction problem and the estimation of the measurements must be a "quasi-

linear" relation. The parameters θ are in general the coefficients for the basis function

expansion of the plasma profiles and the currents in the conductors. Thanks to the

Levenberg-Marquardt algorithm implemented, we can now handle any non-linear

relations.

• We found that LIUQE, due to the simplification adopted in solving the MER problem rep-

resented by a non-linear least squares optimization problem with equality constraints,

was not converging to the proper minimum of the cost function in presence of noisy

measurements or features in the profiles that cannot be represented by the chosen basis

functions. We discuss this analytically in Appendices E and F and demonstrated this

numerically applying FGS with the Levenberg-Marquardt algorithm.

From the investigations conducted, the impact of all these limitations have been found small

when comparing to the final reconstruction, however further investigations are undergoing to

discover potential pathological cases.

As a second application of FGS, we addressed the magnetic equilibrium reconstruction prob-

lem comparing the Bayesian approach to the frequentist one, which leads to the least-square

optimization problem solved by LIUQE, and with FGS with the Levenberg-Marquardt al-

gorithm. The goal was twofold: to show when these approaches coincide and benchmark

the different solvers developed; to show how, with the Bayesian approach, the uncertainty

quantification of the magnetic equilibrium reconstructed quantities is obtained.

As a last investigation presented in this chapter, we investigated the intrinsic limitations of per-

forming magnetic equilibrium reconstruction due to the low sensitivity of external magnetic

measurements to internal plasma profile features. We considered an ITER H-mode 15 MA

standard scenario with pressure and current profiles taken from a transport code JETTO. This

scenario includes the standard pedestal feature and the consequent edge bootstrap current.

With our suite of codes we computed noise-free synthetic measurements. We considered

a single stationary state time-slice and we neglected the contribution of the current in the

vessel which is supposed to be small during this phase. We then performed magnetic equi-

librium reconstruction with LIUQE and the other techniques developed in this thesis. The

results showed that the magnetic equilibrium reconstruction can accurately reconstruct the

external plasma boundary. However to accurately identify the internal flux surfaces shape

and internal plasma profiles, extra internal measurements are needed. Since these features
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will be present by design during ITER operation in order to achieve the desired performances,

this advocates to move from magnetic equilibrium reconstruction to kinetic equilibrium

reconstruction. In the next chapters therefore we will discuss techniques to perform kinetic

equilibrium reconstruction applied to TCV tokamaks both in the post-discharge and in the

real-time analysis.

In conclusion, thanks to the codes developed in this thesis, we extended the LIUQE-suite

to address free-boundary equilibrium problems ranging from predictive forward static and

dynamic problems to inverse/reconstruction problems applied to several devices. The FGS

and FGE are still in their infancy and will need further developments to make them robust

and speed up the computation as described in Appendix D.

4.8 Outlook

We would like to list in the following some of the future developments and analyses that would

be a natural prosecution of the work developed in this thesis.

• While being very flexible, the computational cost of the JFNK algorithm implemented

is still demanding compared to other existing codes such as CREATE-NL [[Albanese

et al. 2015]], or NICE [[Faugeras and Orsitto 2019]]. Improvements will move in two

directions. One will be investigating different algorithms for the solution of the root-

finding problem, or at least finding numerically cheap solutions to precondition it.

These are briefly described in appendix D. The other will be to adopt hardware solutions

by parallelizing the most expensive parts of the code.

• Within the present framework, we can easily extend the system of equations to take into

account different transport models. One of the first foreseen attempt will be to add a

1D version of the current diffusion equation in order to be able to simulate both the

magnetic control and the current density profile control. Eventually the addition of the

halo currents will be investigated, as done in DINA code, for a better description of the

VDE events.

• During this thesis work, the porting of the equilibrium code LIUQE to be able to read the

IMAS/IDS data structure has been developed. This allows the code to be able to run for

many different devices providing data in that format, which is also the format chosen by

ITER. Since the new suite of codes have been developed sharing most of the LIUQE low

level routines, it will be easy to extend our suite of codes to address different devices.

• A proper study of the sensitivity of the magnetic equilibrium reconstruction in presence

of noisy measurements will be conducted, especially for the ITER case with a realistic

noise content of the measurements. This will provide important information to the

reliability of the equilibrium reconstruction and the need for kinetic equilibrium recon-

struction. This study could be first tested on TCV where many real data are available

from different experiments.
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• A robust observer for the evolution of the current in the passive structures during

transient phases to improve the equilibrium reconstruction. These include in particular

the ramp-up/ramp-down phases, the L-H transition, the limited to diverted transition

and during vertical displacement events. The study could start by simulating these

events with our forward time evolutive solver FGE. Test the reliability during these

events of the linear model. Develop a state and parameter estimation, hence an inverse

problem for the time evolving model, based on the forward model and the unscented

or extended Kalman filter technique to take into account process and measurements

noise. These approaches are suited to perform inverse problem of dynamic system in

a recursive fashion (see Appendix A). Test this observer in simulations with artificial

noise. Analyse what are the limitations of the static equilibrium reconstruction when

considering different estimators for the vessel currents during these events. Test the

observer against real data during these events. The currents in the passive structure

might significantly impact the shape of the plasma during these transient events also

in ITER. Developing a robust estimation of these currents during these events will be

beneficial during plasma operation to improve the plasma control and avoid the ITER

plasma to approach too closely the limiter during transient phases.
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5 Kinetic Equilibrium Reconstruction in
TCV (post experiment)

In the last part of the previous chapter we showed how magnetic equilibrium reconstruction

performs well on the task of identifying the external shape of the plasma but fails on accurate

identification of the internal plasma profiles and internal distribution of the flux surfaces. To

improve the reconstruction, direct information from the plasma inside the last closed flux

surface is needed. To this end, in this chapter, we present the implementation of kinetic

equilibrium reconstruction for TCV tokamak for the post discharge analysis based on the

formulation of the problem described in sec. 3.3.

Kinetic Equilibrium Reconstruction (KER) aims to identify the poloidal flux distribution

ψ(R, Z ) and the internal plasma profiles to obtain a solution of the plasma equilibrium force

balance consistent with the magnetic and kinetic measurements and/or transport modelling.

In this chapter we will first in sec. 5.1 provide an overview of the different implementation of

KER available in literature. Then in sec. 5.2, we will discuss the implementation of KER with

the set of codes used for TCV post-shot analysis, based on the simplified formulation derived

in sec. 3.3.2. In presenting the result of the developed tools we will first focus on a sensitivity

analysis of magnetic equilibrium reconstruction using realistic plasma profiles from kinetic

measurements and modelling on a TCV database in sec. 5.4.1. We will then compare in sec.

5.4.2 the difference between KER and MER for few discharges with internal profile features,

such as H-mode pedestal and reverse shear, coming from both external heating and current

drive and/or plasma transport. Finally we will list in details the critical aspects of the present

implementation and provide outlooks for future development.

5.1 Literature investigation

The magnetic equilibrium reconstruction MER became a widely used analysis in the tokamak

operation starting from [Lao et al. 1985; Blum et al. 1981] when the code EFIT, in particular,

was developed and after that used in many different tokamaks and later followed by its first

real-time implementation [Ferron et al. 1998]. Many different codes were developed in the

same period to perform magnetic equilibrium reconstruction [Brusati et al. 1984],[Blum and
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Thooris 1985], [McCarthy et al. 1999] including the first version of the code LIUQE [Hofmann

and Tonetti 1988].

Kinetic equilibrium reconstruction started by adding progressively more information from

internal measurements principally to constrain the current density profile with MSE and

polarimetry and the pressure profile from kinetic measurements in the free-boundary equi-

librium problem. Examples for EFIT are found in [Lao et al. 2005, 2016; Burrell et al. 2018].

Many other groups developed similar techniques [Giannone et al. 2016; McCarthy et al. 1999;

Faugeras 2020; Jiang et al. 2019; Li et al. 2013] or more developed integrated data analysis

techniques including Bayesian approach [Fischer et al. 2010], [Fischer et al. 2019]. Kinetic

equilibrium reconstruction was performed at the beginning mainly after the experiment rather

than during the operation since some of the diagnostics, especially for the reconstruction of

the internal plasma current, are difficult to calibrate or require human intervention and the

computational requirements are significant.

Kinetic Equilibrium Reconstruction has become one of the standard analyses performed after

the experiment in many devices. It is the starting point to provide the geometrical description

to map the internal diagnostic into 1D profiles, to run gyrokinetic transport analysis [White

2019] and MHD stability analysis.

At the same time progressively more complex modelling were added, including time evolving

models to better estimate the evolution of the plasma profiles. Two main frameworks have

emerged and used in different tokamaks. The “Integrated Data analysis Equilibrium” (IDE)

[Fischer et al. 2016], developed at IPP-Garching, couples the free-boundary equilibrium with

the current diffusion equation. Magnetic measurements and constraints to internal plasma

profiles are provided to the cost function of the equilibrium reconstruction problem which is in

the form of a weighted least-squares type as we discussed in eq. (3.9). One interesting feature

is the use of a Bayesian framework to perform what is called "Integrated Data Analysis" (IDA)

[Fischer et al. 2010] to combine internal kinetic measurements from several diagnostics while

propagating measurements uncertainties. This combined information is then used to provide

constraints to the internal plasma profiles p and j in the free-boundary equilibrium problem.

This approach is a hybrid between the frequentist interpretation, for the free-boundary inverse

problem, and the Bayesian one described in sec. 3.1 for the kinetic measurements handling. A

Bayesian analysis for the free boundary equilibrium problem has been obtained in [Von Nessi

et al. 2013], however due to the high dimensionality of the state to be reconstructed, theψ(R, Z )

map, it is computationally expensive for routine use. The IDA approach at present is the one

treating different diagnostics and their uncertainties in the most consistent way, providing

also their uncertainty propagation. Similar Bayesian approaches have been developed for

the framework Minerva [Hole et al. 2010a] used in JET and W7-X to combine the information

of several diagnostics. Bayesian analysis is typically computational demanding, however a

real-time application framework has been achieved recently in the Minerva framework using

Neural-Networks [Pavone et al. 2019].
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A second popular approach is performed with the integrated modeling tool called “One

Modeling Framework for Integrated Tasks” (OMFIT) [Meneghini et al. 2015; Lao et al. 2005].

This performs in a loop the magnetic equilibrium reconstruction, the fitting of the kinetic

measurements in a ψ(R, Z ) map, runs a transport code (TRANSP [Hawryluk 1981], ONETWO

[Owen et al. 2010]) to estimate the fast ions contribution to the total plasma pressure and

density and finally performs equilibrium reconstruction with pressure constraints and current

constraints from MSE measurements and neoclassical contribution. The loop is eventually

repeated till convergence. This analysis process is mostly known with the name of "kinetic-

EFIT". It allows to make a scan on unknown parameters and estimate the sensitivity of the

obtained reconstructed quantities via Monte-Carlo sampling. The "kinetic-EFIT" [Huang

et al. 2020] is very similar to the kinetic equilibrium reconstruction problem formulated in the

previous chapter. The main difference is that the current density profile is directly constrained

from measurements, since good quality MSE is available in DIII-D and most other tokamaks

where this tool is used. The strength of OMFIT tool stands in its high flexibility which allows to

easily couple different analysis codes and provides tools for I/O handling. Using the OMFIT

environment, starting from Kinetic-Efit, KER has progressively been automatize resulting in

the package CAKE [Roelofs et al. 2017], used to provide a database of KER for stability analysis.

The tool that will be presented in the following to perform kinetic equilibrium reconstruction

in TCV is very similar to the "Kinetic-EFIT" one. The main difference is that, since no current

profile diagnostics are available in TCV at present, a flux surface averaged current diffusion

equation will be used to compute and provide that constraint.

5.2 Historical background of integrated data analysis in TCV

Among the motivation to perform a kinetic equilibrium reconstruction described in sec. 3.3.2

there were two specific needs for TCV before this thesis work started which were considered to

impact significantly the reconstruction of the plasma states.

The first was the lack of direct measurements of current density profile in TCV. The second

was the installation of a neutral beam [Fasoli et al. 2015], [Vallar et al. 2019]. The beam allowed

to reach higher performance discharges were the internal plasma profiles features play a

significant role for both the global performance of the experiment and the stability of the

plasma.

In order to address these needs, a standard post discharge analysis, that we will call integrated

data analysis in this section, was conducted by running in order the steps listed in the follow-

ing where the name of the relative codes solving each individual problem is provided. The

formulation of the forward problem solved for each of them was already explained in part I of

this thesis.

1. LIUQE [Moret et al. 2015]: Free boundary Magnetic Equilibrium Reconstruction (MER)
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problem as explained in sec.3.2, in particular eq. (3.9) under the linear optimization

assumption described in sec. 3.2.1. The result is the ψ(R, Z ) map and all the related

geometrical quantities.

2. ANAPROF (Container for a set of routines):

• PROFFIT: Automatic mapping of the {T̃e (Ri , Zi )}, {ñe (Ri , Zi )} Thomson’s scattering

measurements [Arnichand et al. 2019] to the ρ(R, Z ) from LIUQE MER. Fitting of

the resulting {T̃e (ρi , t )}, {ñe (ρi , t )} with a cubic spline representation to obtain 1D

profiles.

• CHIE_TCV: Computing ni (ρ, t ) from ne (ρ, t ) quasi-neutrality hypothesis given the

Ze f f eq. (3.12). In case Ti (ρ, t) is not solved with ion energy transport equation

(option 2 eq. (2.64)), it estimates Ti by matching the WM HD of MER from LIUQE.

It also computes the heat diffusion coefficients from the experimental profiles of

TCV to be used eventually for heat diffusion modeling.

• ICDBSeval: Estimating Ze f f (t) from current diffusion equation and stationary

state assumption. Details are provided in Appendix B.

• Toray-GA [Matsuda 1989]: Compute the current density jcd and heat deposited

into the plasma by gyrotron beams. It needs the electron density ne (ρ, t) and

temperature Te (ρ, t) from PROFFIT, Ze f f (t) from ICDBSeval and the flux map

ψ(R, Z ) from LIUQE.

ANAPROF



Te (ρ̂, t ) = F i t (Te ,ψ(R, Z ))

ne (ρ̂, t ) = F i t (ne ,ψ(R, Z ))

}
PROFFIT

ni (ρ) = ne (ρ)
Zc−Ze f f

Zc−1

}
CHIE_TCV

jcd (ρ̂, t ) = Toray(Te ,ne ,ψ(R, Z ))
}

Toray-GA

Ipl =<Vloop >t Ω(Ze f f )+ Ini (Ze f f )∂ψ∂ρ̂
∣∣
ρ̂=0 = 0 in_few_t∗

}
ICDBSeval

(5.1)

3. ASTRA [Pereverzev and Yushmanov 2002]: Generic 1.5D transport solver. In this thesis

it is used to solve primarily the current diffusion equation eq. (2.56) to estimate j∥.

It is also used to solve the Ti heat diffusion equation particularly when neutral beam

heating and current drive is used during the experiment. The current density and

heat deposited by the beam are computed by internal dedicated routines [Polevoi

et al. 1997], referenced as "Polevoi" in the following. In case the predictive Ti equation

is solved, a diffusion coefficient χi is used based on neoclassical estimation with a

correction factor tuned on CXRS data from TCV discharges when this diagnostic is

available. This takes into account different transport level for L-mode and H-mode

discharges. Otherwise Ti is provided externally. In the version of ASTRA code used in

this work, two different fixed boundary eq. (2.23) equilibrium solvers are coupled to the

1D transport equations. The geometrical coefficients g1,2,3 needed for 1D transport are
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5.2. Historical background of integrated data analysis in TCV

provided by the internal equilibrium solver which receives from the LIUQE magnetic

equilibrium reconstruction (MER) the description of the plasma last closed flux surface.

The internal plasma profiles to be used in the magnetic internal equilibrium solver

are computed directly from the p and j coming from the transport equations. This

means that the internal equilibrium solver already has a well constrained internal profile

description from transport modelling and measurements. A summary of the equations

solved by the code ASTRA is provided here for convenience. The inputs are, χi (ρ, t ), jcd

from Toray-GA and the neutral beam contribution, ne and Te from Thomson PROFFIT,

Ze f f from ICDBSeval, ni from quasi-neutrality assumption, Ip (t ) and LCFS description

from LIUQE magnetic equilibrium reconstruction.

ASTRA
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(5.2)

The two codes used for the internal fixed boundary solver within ASTRA are the SPI-

DER [Ivanov A A and Yu 2006] code which solves the Grad-Shafranov equation and

the so called "3 moments" (referred here as 3M) which solves a Fourier expansion in

the poloidal direction of the Grad-Shafranov equation, and provides a simplified faster

solution of the problem. We would like to anticipate at this point that the fact that ASTRA

uses an internal fixed boundary equilibrium solver will limit the choice of which kinetic

equilibrium reconstruction formulation we will implement in TCV and investigate in

this chapter. This limitation could be however easily removed by providing the necessary

geometrical information to the transport equations directly from LIUQE.

4. CHEASE [Lütjens et al. 1996]: Fixed boundary equilibrium code used to compute a more

refined equilibrium solution as input to Toray-GA, taking the description of the LCFS

and the internal plasma profiles from LIUQE.

5.2.1 Steps from historical integrated data analysis towards KER

In the previous section we described the set of available tools run sequentially, which consti-

tuted the standard post-shot analysis at the time of start of this work. We would like now to
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Chapter 5. Kinetic Equilibrium Reconstruction in TCV (post experiment)

make the link between the previous standard procedure and the formulation of the kinetic

equilibrium reconstruction presented in sec. 3.3.2, and investigated in this chapter. More

specifically we refer to the first reduced formulation derived in eq. (3.17), reported in eq. (5.3)

for reading convenience which will be the one implemented and analyzed in the next section.

We will then comment on the possibility of implementing the second reduced formulation eq.

(3.19). 
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ASTRA

(5.3)

In eq. (5.3) we dropped the boundary conditions for readability. We also recall that the set

of measurements are composed by M̃m = {B̃ m ,F̃ f ,Ĩp ,Φ̃t , Ĩ v , Ĩ a } and M̃k = { T̃ e , ñe }, with T̃ i

including available.

Comparing the equations of each code independently used in the standard post discharge

analysis (eq. (2), eq. (5.2)) to the formulation of KER in eq. (3.17), eq. (5.3) one can notice that

the tools to solve every sub-part of the problem were already available before this thesis. In eq.

(5.3) we labeled every part of the problem with the code dedicated to solve it.

What was missing in the standard post processing analysis was to feedback the plasma profiles

p ′ and T T ′, obtained with the kinetic measurements and transport modelling in ANAPROF

and ASTRA, to compute a new equilibrium reconstruction with constraints on the internal

profiles, and finally re-use this new equilibrium solution in the measurements fitting and the

transport modelling. In other words what was missing was to consider the system of equations

in eq. (5.3) as a "proper system of equations", meaning trivially that a solution of the system

requires that a given quantity appearing in different places of the system must have the same

value. This could be called also consistency between the different codes or self-consistency of

the kinetic equilibrium reconstruction problem in eq. (5.3). It is important to repeat that the
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5.2. Historical background of integrated data analysis in TCV

ASTRA internal fixed boundary equilibrium solver (SPIDER/3M) is already computed with

essentially self-consistent profiles of p and jtor , or equivalently p ′ and T T ′, coming from the

kinetic measurements ne ,Te , the transport modelling for Ti and jtor from the current diffusion

equation within ASTRA, except for the remapping of the diagnostics on the new equilibrium.

It only receives the description of the LCFS information from the free boundary equilibrium

code LIUQE.

We will see in the result section 5.4 that solution of eq. (5.3) will produce a LCFS almost

identical to the one obtained with the magnetic equilibrium reconstruction, at least for TCV

case. Hence solving the eq. (5.3) mainly means making LIUQE to match the SPIDER solution

of the equilibrium equation inside the plasma volume and use this solution in ANAPROF to

map the kinetic measurements into 1D profiles and compute the current deposited by the

ECCD. This enables the next step which was also missing, to analyze if the diagnostics and

models are consistent, that is integrated data analysis.

We would like now to comment on the possibility to implement the 2nd reduced formulation

presented in eq. (3.19) which aimed to restore some of the non-linear relations between the

equilibrium problem and kinetic modelling neglected when passing from the general formula-

tion of KER eq. (3.14) to the simplified one eq. (5.3) described previously in this section and

implemented in the following. The main difference between the first reduced formulation eq.

(3.14) and the second, eq. (3.19), is to extend the set of free parameters in the equilibrium re-

construction problem to include p ′(ρ) and T T ′(ρ). Moreover, the estimate of p̃ ′(ρ) and ˜T T
′
(ρ)

provided by the kinetic measurements and transport modeling, affected by the uncertainties

coming from the uncertainties of the inputs to the transport modelling, are added as extra

measurements to the equilibrium reconstruction problem at the same level as the magnetic

measurements. To implement eq. (3.19) from the available tools one would first require that

the equilibrium reconstruction code includes p̃ ′(ρ) and ˜T T
′
(ρ) as extra measurements, which

is a trivial extension for the actual state of the code. The second requirement could be consid-

ered as an issue to the present I/O handling of the version of ASTRA code used in this thesis.

The geometrical coefficients g1,2,3,T,Φb . are computed inside ASTRA by the fixed boundary

equilibrium code (SPIDER/3M). In order to solve the fixed boundary equilibrium problem one

needs the description of the LCFS and the definition of the functional form p ′(ρ) and T T ′(ρ).

In ASTRA these last two profiles are provided self-consistently from p(ρ) and jtor (ρ) computed

from current diffusion equation and transport modelling. We can consider therefore formally

that all the quantities computed from the equilibrium problem needed in the transport mod-

elling are non-linear functions of p ′(ρ), T T ′(ρ) and the set of pair of coordinates {Ri , Zi }LC F S

describing the plasma boundary. Hence for example g2(p ′(ρ),T T ′(ρ), {Ri , Zi }LC F S). Let us

assume one would like to use ASTRA and SPIDER/3M, together with the other codes, to

solve eq. (3.19). The description of the LCFS would be provided by LIUQE, which solves

the equilibrium reconstruction problem with p ′(ρ) and T T ′(ρ) coming from the equilibrium

reconstruction optimization problem. However SPIDER/3M would solve the fixed boundary

problem with p̃ ′(ρ) and ˜T T
′
(ρ) profiles and not p ′(ρ) and T T ′(ρ). This would mean that all

the geometrical related quantities in ASTRA would not be consistent with the ones of LIUQE.
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Chapter 5. Kinetic Equilibrium Reconstruction in TCV (post experiment)

This violates the basic requirement for the solution to be a solution of the system of equation

eq. (3.19), meaning the same quantity appearing in different places of the system must have

the same value. For example g2(p ′(ρ),T T ′(ρ), {Ri , Zi }LC F S) 6= g2(p̃ ′(ρ), ˜T T
′
(ρ), {Ri , Zi }LC F S).

Indeed, we would effectively have in the system of equation two times the same equation, the

Grad-Shafranov equation, with two slightly different solutions.

We would like to stress that the issue for the non-consistency of the geometrical quantities

within the same system of equation does not apply to the difference between p ′,T T ′ and

p̃ ′, ˜T T
′
. We already discussed during the formulation of eq. (3.19) the different meaning of

these 2 quantities. In short, p̃ ′, ˜T T
′

are estimates affected by the uncertainties of the inputs

of the kinetic measurements, while p ′,T T ′ are the reconstructed states solution of the KER

problem.

In order to be able to use ASTRA to solve eq. (3.19) one would therefore need to remove the

internal fixed boundary equilibrium solved and provide the geometrical information directly

from LIUQE, or use the LIUQE p ′,T T ′ in SPIDER/3M. This was not attempted during this

work for the off-line kinetic equilibrium reconstruction.

5.3 Implementation details

In this section we would like to explain the approach adopted during this thesis to solve the

kinetic equilibrium reconstruction problem as formulated in eq. (5.3).

In the previous sections we discussed extensively the formulation of the problem with its sim-

plification assumptions (sec. 3.3.4) and provided the list of codes available in our institution to

solve sub-parts of the problem (sec. 5.2). What we obtained is a non-linear root-finding type

of problem eq. (5.3). Having already dedicated codes to solve sub-parts of the problem, the

most straightforward numerical scheme to implement is a Picard fixed point iteration method

[Hoffman and Frankel 2018]. This means solving recursively each sub-part of the problem

providing the I/O and checking the convergence from one iteration to the next. To help the

numerical convergence successive over-relaxation (SOR [Hadjidimos 2000]) is used between

iterations.

To help visualizing the algorithm we provide a schematic picture of the loop in fig. 5.1.

Moreover in table 5.1 a summary of some of the main inputs and outputs of the different codes

is given, distinguishing in particular the quantities that are iterated between codes (labeled

"iterated") to the ones which are provided as input only once (labeled "fixed"). The color in

the second column of the input is related to the code that compute and provide the output to

the other module. Interfacing heterogeneous codes requires flexibility in checking the results

of the sub-parts, detect faults and provide recovery strategies. To obtain this flexibility the

decision was to exploit Object Oriented programming with Matlab. For each of the codes, at

each iteration, a dedicated object is specified, called "runner". Each "runner" once initialized

is completely independent of the others and in particular provides methods to run the code,
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Figure 5.1 – Kinetic Equilibrium Reconstruction implementation: fixed point iteration scheme.
All the quantities have to be considered as function of time.

check the results and take actions in case of failure. Incrementally more checks and recovery

actions can be implemented by the users and developer. Moreover this strategy allows to

easily change the order of the loop chain for example avoiding to recompute some of the

sub-modules when computationally expensive and not very sensitive to small inputs variation.

5.4 Analysis of results

In this section we will discuss the analysis performed with the implemented kinetic equi-

librium reconstruction in TCV described in sec. 5. We will first investigate the sensitivity of

the equilibrium solution to the plasma profiles, by taking an existing database of previous

integrated data analysis performed for TCV discharges. After having checked the numeri-

cal properties of the scheme, we will investigate a comparison between KER and MER for

two shots where the internal profile features are expected to contribute significantly to the

equilibrium solution.

5.4.1 Sensitivity analysis of MER to plasma profiles for TCV

One of the main reasons to move from magnetic equilibrium reconstruction to kinetic equi-

librium reconstruction was to improve the equilibrium solution by providing constraints

in particular to the pressure profile p(ρ, t) and current density profile j (ρ, t), which are re-

flected in p ′(ρ, t ) and T T ′(ρ, t ) constraints, making use of kinetic measurements and transport

modelling. In this section we want to quantify the sensitivity of the magnetic equilibrium

reconstruction when these profiles are provided as constraints.
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Table 5.1 – I/O for Kinetic Equilibrium‘ Reconstruction

Measurements B̃ m F̃ f Ĩ a Ĩ v

Ĩp ñe T̃ e <Vloop >t

INPUTS
LIUQE fixed B̃ M F̃ f Ĩ a Ĩ v Ĩp

iterated p ′ T T ′

ANAPROF fixed ñe T̃ e <Vloop >t

iterated ψ(R, Z ) V ′
ρ̂

ASTRA fixed Ĩp

iterated Ne (ρ) Te (ρ) Ze f f

LCFS description

In TCV, the magnetic equilibrium reconstruction is performed for all the shots as a standard

post-discharge analysis with LIUQE. This is true also for the Thomson scattering profile fitting

and current deposition evaluation performed by ANAPROF. Moreover a database of solutions

of the ASTRA transport code is available and constantly increasing and it is composed currently

of roughly 600 discharges with different physics content and heating and current drive mix.

It is therefore relevant to investigate the sensitivity of the equilibrium solution performed by

LIUQE with respect to the p ′ and T T ′ profiles when these are provided from ASTRA interpre-

tative solutions in the database. This is indeed one of the steps in the iteration loop to solve eq.

(5.3). The analysis performed in this section corresponds to the first iteration of the loop to

solve eq. (5.3) when no relaxation is applied and p ′ and T T ′ are directly fed to LIUQE from

ASTRA.

It is important to recall that there is a significant difference between the equilibrium recon-

struction problem in MER eq. (3.9) and the equilibrium reconstruction problem in KER eq.

(5.3). In the first, together with I a and I v , the set of parameters which are allowed to vary

includes also the coefficients of the basis functions for the p ′ and T T ′ representation. The

basis functions set, a polynomial representation, is very limited in MER to keep the problem

well conditioned, and the choice of these basis functions ultimately decide the functional

form of the internal plasma profiles. In KER p ′ and T T ′ are imposed and considered instead

as part of the "given" parameters for the equilibrium problem. Because of this choice and the

simplification hypothesis that led to a linear optimization formulation of the problem, the

measurement of Φt cannot be included in the equilibrium reconstruction problem in KER,

since it has a null linear variation on the only remaining free parameters I a and I v . Moreover,

Φt is crucial in MER to disentangle the contribution of p ′ and T T ′ to the jφ since it depends

only on T , hence on one of the two. The final estimate of p and related quantities such as

Wk are therefore strongly affected by this measurement in MER. In the kinetic equilibrium

reconstruction presented, the separation between p ′ and T T ′ is instead provided by the

kinetic measurements and transport modeling, hence making the DML measurement less

132



5.4. Analysis of results

fundamental for the analysis. However, this means relying more on the transport modelling

and kinetic measurements which might not be accurate either.

We anticipate here that performing the full converged KER iteration with this particular

formulation eq. (5.3) for typical TCV discharges gives only a small difference to the poloidal

flux distribution. In particular no significant differences are found in the LCFS which is

the only input from LIUQE to ASTRA internal equilibrium solver (tab. 5.1). This will be

demonstrated in the following. This means that the solution of the internal ASTRA equilibrium

solver, where the profiles are not taken from LIUQE, will remain almost unchanged. As a

consequence, performing a full converged KER almost reduces to make LIUQE matching

the equilibrium solution of the ASTRA internal equilibrium solver. Therefore, performing

the analysis proposed, meaning imposing the p ′ and T T ′ directly from ASTRA in LIUQE,

gives meaningful indication of what the result would be of a full converged KER with specific

formulation used in this chapter.

The following statistical analysis is computed on a basis of 1000 independent time-slices

sorted randomly from 100 different discharges with different physical performances out of

the 500 available in the ASTRA database. We chose to not considered the first 200 discharges

in the database because related to old experiments during which TCV was in a different state

and hence not relevant for this investigation.

Since the main purpose is to provide physical constraints on p(ρ, t ) and j (ρ, t ) we will focus

first on investigating quantities closely related to these profiles. In fig. 5.2 we compare the total

stored energy, Wk = 3/2
∫

pdV , computed from the standard MER Wk,MER and computed

with LIUQE as in eq. (5.3) where the p ′ and T T ′ are taken from ASTRA Wk,L−AST R A . We

considered in fig. 5.2 only cases when the Ti (ρ, t) was computed by solving the transport

equation eq. (2.64) within ASTRA, which corresponds to case 2. It is interesting to notice that

there is a non-negligible difference between the two Wk estimates: the MER is on average

13% larger than the one estimated using ASTRA. The transport equation which solves for Ti in

ASTRA, hence relying on the given parameter χi , is essentially systematically underestimating

the total stored energy with respect to the MER in the available database. On top of that, a

relatively large standard deviation of 30% is found, although standard in transport analyses.

One cannot state a priori which of the two estimates is more correct, but the analysis gives a

warning that the choice of χi might lead to pressure profiles not consistent with the magnetic

measurements. This will be one of the issue for the KER formulation adopted as already

explained.

We focus in fig.5.3 on quantities related to the j profiles which are constrained by the current

density diffusion equation. In fig. 5.3a we compare the minimum value reached by the safety

factor profile qmi n reconstructed with the standard MER performed with LIUQE (blue) and

the one obtained by using the ASTRA profiles (orange). We notice that the ASTRA profiles

produce on average a minimum value of the safety factor below 0.8, a condition that it is

physically hardly reached because of the onset of the sawtooth like instability, which relaxes
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(W k,MER  - W k,L-ASTRA )/W k,MER *100
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Figure 5.2 – Statistical investigation of percentage different between total stored energy com-
pute with standard MER Wk,MER and equilibrium reconstruction imposing p ′ and T T ′ from
ASTRA modelling and kinetic measurements Wk,L−AST R A . Only the case where ASTRA is
solving the diffusion equation for Ti are considered.

the current profile, and brings periodically qA above 1. To describe this phenomenon a model

for the sawtooth physics should be included in the forward models [Kadomtsev 1987] used

and this requires a finer temporal resolution. This model is available in ASTRA and we will

show an application later in this section. In fig. 5.3b the percentage difference of the internal

inductance between the two reconstructions is compared. In summary, most of the Ohmic

plasma discharges in TCV, which constitute the majority of the database, present a peaked

current at the plasma axis leading to sawtooth behavior hence when precise reconstruction

of the q profile up to the plasma axis is sought, the dedicated physics should be included in

the analysis, at least on average, to avoid for unrealistic qA < 0.8 eventually synchronizing the

crashes with the information from fast diagnostics.

A good localization of the ρψ̂ and ρΦ̂ at the q = 1.5/2 location is important to target the

deposition location of ECC D during suppression and prevention of 2/1 and 3/2 NTMs. With

this purpose we compare in fig. 5.3c and fig. 5.3d the absolute value of the difference of

this location between the standard MER and the equilibrium solution using ASTRA profiles

δρΦ̂ or δρψ̂. The average difference of ρ ∼ 0.1/0.2 is of the same order as the current density

deposition by ECCD. To show this in fig. 5.4a,5.4b,5.4c we compare the q profile of MER (red)

to the LIUQE solution with the p ′ and T T ′ profiles of ASTRA (blue), for cases where off-axis

current drive at the q = 1.5 surface was applied. The current density deposited by the ECCD is

computed by Toray-GA (yellow) and an interpolated Gaussian normalized in order to have

the same height as the maximum q is shown in violet. We consider the full width at half

maximum of the interpolated Gaussian (2.35σ) as a measure of the width called wdep in the

figures. With the green and light blue vertical dashed lines we show the location of the q = 1.5

surface for the recomputed LIUQE with ASTRA profiles and the standard MER respectively.

The absolute value of this difference, corresponding to what is computed in fig. 5.3c, is called

in the figures |∆ρ|. The deposition width at a given q can vary substantially, on a typical range

of 0.02−0.15, depending on many factors such as the injection angle of the gyrotron and

the local density of the plasma. This is clear looking at fig. 5.4a with respect to fig. 5.4c. In

all cases the difference in ρ is of the same order as the width. For instance in fig. 5.4b, even
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Figure 5.3 – Difference between j related quantities between MER and equilibrium recon-
struction imposing p ′ and T T ′ from transport modelling and kinetic measurements from
ASTRA.
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thought the two q have the same value at the plasma axis and at q95, and the gyrotron was

aiming to the ρ(q = 1.5) as computed by the MER the location of this surface provided by

the current diffusion model in ASTRA was completely outside the deposition width of the

gyrotrons. This means that, if the profile from ASTRA was the real one, aiming the beam based

on the MER would have failed in stabilizing the NTM, since it needs to be within half the

deposition width [Kong et al. 2019]. Moreover cases of non-monotonic q profile, such as in fig.

5.4c, cannot be reconstructed by MER with the standard set of basis functions. In summary,

the reconstruction of the location of ρ(q = 1.5) and ρ(q = 2) can change significantly, with

respect to the width of the deposition of the gyrotrons current density, when passing from the

MER to a profile constrained by kinetic measurements and current diffusion modelling. The

question is therefore whether the kinetic measurements and current diffusion modelling can

reach a level of accuracy on the order of fraction of wdep . Unfortunately with the present set

of diagnostics and modelling, the uncertainties associated to a poor knowledge of Ze f f and Ti

can provide variation of q of the same order of wdep as shown also in Lucas Marietan’s master

thesis [Marietan]. This will be even worse in real-time KER presented in the next chapter

where a limited set of diagnostic is available. Performing KER therefore will be good in general

to recover more macroscopic features such as non monotonic q profiles or local features

of the plasma current density like the bootstrap contribution, but would fail in providing q

profiles with accuracy of fraction of wdep as it would be needed for NTM control in real-time.

Probably in TCV only with a dedicated diagnostic for the current density profile and a proper

uncertainty analysis one could achieve information to that level of precision. On the other

hand the MER has no physical constraints for the q profile and is not sufficient when the q

profile is important.

After having considered the sensitivity of the quantities directly related to p and j profiles

in the equilibrium, we would like to address now the differences to the shape of the plasma

in particular the LCFS which is the only geometrical input provided in the KER formulation

addressed in this chapter eq. (5.3) from LIUQE to the transport modelling. In fig. 5.5a we

compare the percentage variation of the minor radius between the LIUQE solutions with

standard basis functions and with imposed profiles, at the mid plasma height. In fig. 5.5b

we compare the percentage difference of plasma elongation κ. In fig. 5.5c we compare the

percentage difference of the triangularity. For the definition of these quantities we refer to

[Sauter and Medvedev 2013]. The percentage difference of all these plasma shape moments

are significantly below 10%. From the database analysis also the plasma volume was found to

have a variation < 10%. We remind that for typical TCV plasma triangularity can be ∼ 0, hence

the standard deviation of the percentage difference of this quantities, which is still < 10% but

larger than the other geometrical quantities could be enhanced by that.

From the previous investigation we conclude that, since the plasma shape is not much influ-

enced by the internal plasma profiles when they are provided by ASTRA results, the main part

of performing KER as formulated in eq. (5.3) will consist in making LIUQE solution consistent

with the internal solver of ASTRA, meaning in particular having the same internal profiles.

This also allows other diagnostics to be mapped on an equilibrium consistent with the kinetic
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(a) (b)

(c) (d)

Figure 5.4 – Comparison between ECCD deposition profile (yellow original Toray-GA evalu-
ation, violet Gaussian interpolation) and location of q = 1.5 surface computed with LIUQE
with standard polynomial basis functions ("LIUQEMER " vertical dashed light blue line) and
LIUQE with p ′ and T T ′ profiles from ASTRA ("LIUQEAST R A" vertical dashed green line). The
difference of the location between "LIUQEMER " and "LIUQEAST R A" is called δρψ. Deposition
width wdep is computed as the full width at half maximum of interpolated Gaussian (violet).
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Figure 5.5 – Statistical investigation of differences for LCFS shape parameters (minor radius a,
elongation κ, triangularity δ) LIUQE with standard polynomial basis functions ("MER") and
with LIUQE with p ′ and T T ′ from ASTRA ("L-ASTRA") over the set of ASTRA databases

measurements, which is a necessary condition for integrated data analyses. Moreover the

analysis provided in this chapter on the available database of ASTRA run provides meaningful

information on the expected sensitivity of the full KER.

We can now summarize our findings from the database of TCV ASTRA runs.

• A systematic difference on the total stored energy Wk warns about consistency between

parameters choice for the Ti modelling and magnetic measurements in integrated

data analysis performed in TCV so far. This is also one of the expected issues of the

formulation of KER adopted as a consequence of breaking non-linearities between

the magnetic and kinetic part of the reconstruction. It confirms the need to perform

systematic integrated data analysis and compare various diagnostics and modeling

results in a same framework.

• The need to add in the forward modelling the models to describe sawteeth crash when

present in the discharge for accurate reconstruction of q near the axis.

• The impact on the localization of the ρ(q = 1.5) and ρ(q = 2), important for NTM
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stabilization, can be of the same order as the ECCD deposition width or even larger.

However, the accuracy of the current density modelling to resolve fraction of wdep is a

concern due to uncertainty associated with other quantities such as Ze f f and Ti .

• The impact on the shape of the LCFS will be very small. It is well known that the external

shape of the plasma is well identified already with the MER, as was shown also for the

ITER cases in previous chapter.

We would like to remark that the results discussed here are valid only for TCV standard scenar-

ios. Internal profile features, which are at the basis of some of the advanced tokamak operating

modes were not present in the database as they are more difficult to obtain experimentally

[Piron et al. 2019] and out of the scope of this thesis. Therefore, most part of the plasma

discharges analyzed in the presented database are low performances discharges. Thus the

statistical comparison performed here is biased by this fact. We will therefore now investigate

the difference between MER and KER for cases where more significant internal plasma profile

features are present due to either external actuators or plasma physics features. Performing

the database analysis was nevertheless instructive to provide the expected order of magnitude

of differences passing from MER to KER.

5.4.2 KER vs MER comparison in TCV

In this section we will compare the Magnetic Equilibrium Reconstruction to the Kinetic Equi-

librium reconstruction for a TCV H-mode and a reversed shear case. These are representative

of some of the most extreme cases of physical interest, in terms of internal plasma profile

features, achieved in TCV as opposed to the low performance discharges mostly seen in the

database of the previous section.

We will consider shot 64770 and adopt the simplified formulation eq. (3.17), where the p ′ and

T T ′ are fed directly from the kinetic measurements and transport modelling to the equilibrium

reconstruction. In particular Ze f f is estimated with the stationary state option for the current

diffusion described in B. Ti (ρ, t ) is computed by solving the diffusion equation eq. (2.64). The

shot was characterized by electron cyclotron heating but no current drive. There was instead

heating and current drive from neutral beam injection. The fast particle contribution to the

total pressure is estimated as in [Polevoi et al. 1997] within ASTRA. The simulation was carried

out in the interval t = [1.15s,1.5s] during ELMy H-mode phase.

When performing Kinetic Equilibrium Reconstruction the first step is assessing the numeri-

cal convergence of the Picard iteration scheme summarized in 5.1. We usually add a small

sub-relaxation between iterations for the different I/O listed in 5.1 provided between codes.

For each run we analyze the convergence at different levels of the loop. However, since we are

mostly interested in the effect of the equilibrium solution, we present here only the conver-

gence of the flux map and of profiles input to LIUQE. In fig. 5.6b we show the convergence of

the flux map ψ(R, Z ) computing the sum over all times of the two norm in space of the incre-
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Figure 5.6 – Converge of Picard iterations in KER implementation

ment between iterations (blue) and the difference between given iteration and last iteration

(red), normalized to the number of iterations. After few iterations, the flux map is converged

to its minimum considering the spatial and temporal resolution of the simulation. From other

investigation we found that already after one iteration with low relaxation the flux map of the

equilibrium was close to the converged solution. In fig. 5.6a the same analysis is carried out

for the sum over all times of the two norm over the ρ grid of the p ′(ρ, t ) and T T ′(ρ, t ) provided

as inputs to the equilibrium reconstruction code.

We focus on the time instant 1.4s, during the ELMy H-mode phase. In fig. 5.7a with the red

dots and error-bars the Thomson data for Te are provided while with the continuous line, one

can see the spline fit performed by PROFFIT routine. Similarly in fig. 5.7b the ne and ni are

shown. In particular we stress the presence of the pedestal feature in the profile typical to

H-mode discharges. In larger tokamaks these feature might be relatively more prominent.

With the blue line the estimation of Ti from the diffusion equation is provided remembering

that the fast particle from the beam provides the source term for the ion energy transport

equation.

The Ze f f (t = 1.4s) = 1.6 was estimated with ICDBSEVAL routine. We recall that Ze f f con-

tributes to different parts of the transport modelling. It is used to estimate ni with the quasi-

neutrality assumption eq. (3.12) but enters also in the current diffusion equation to estimate

the neoclassical conductivity and the non-inductive contribution. Affecting ni , it also affects

the Ti diffusion equation in its energy flux term ni Ti . It also affects the computation of the

deposited power by the neutral beam. Overall therefore it contributes to both the p ′ and T T ′.

In fig. 5.8b the resulting total pressure profile is shown. The functional form of MER profile

(blue) is given by the choice of basis functions adopted for p ′. A usual choice for TCV is a

linear term in ψN , hence quadratic in ρψN shown in fig. 5.8c (blue). The obtained profile

computed with eq. (3.11) is shown in green taking into account also the contribution of the

fast ions pressure (violet). In the same fig. 5.8b we show also the pressure profile resulting from

equilibrium reconstruction part of KER computed by LIUQE at convergence of the iteration
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Figure 5.7 – Comparison of kinetic profiles shot 64770 at 1.4s. Thomson scattering Te ,ne

measurements (red dot with error bars, "TS") and interpolation of Thomson scattering data
(red line), ni computed from quasi-neutrality given Ze f f = 1.6 and Ti from the heat diffusion
equation.

loop (red dots label with KER) which matches the ASTRA one as expected. We remark that the

violet line is only the contribution of the fast ions from the beam to the total pressure while

the part of the fast ions which thermalized provided their contribution to the source of the

energy diffusion equation for the ion. We can notice also in the pressure profiles the small

pedestal feature which is indeed the improved information that KER provides with respect to

MER thanks ultimately to including the Thomson scattering measurements.

The other contribution in KER is the improvements in the reconstruction of the plasma

current density profile, in particular for TCV where no direct measurements are available.

The j∥ current density profile resulting from ASTRA modelling is shown in fig. 5.8e. In blue

the current density profile for the MER is shown computed with eq. (2.40). We stress that

its functional form is strongly affected by the choice of basis function for p ′ and T T ′. In the

same figure we see in green the profile obtained by the current diffusion modeling with ASTRA

composed by the Ohmic component (violet), the bootstrap component (light green) and the

current drive by the neutral beam in yellow. We notice that the current drive from the beam

provides a very small contribution while instead the bootstrap (light green) contribution has

a larger influence. The bootstrap contribution in particular presents features coming from

the dependency of the neo-classical coefficients to the ne and Te (ρ) measured by Thomson.

We notice in particular the contribution of the bootstrap current due to the pedestal feature

typical of H-mode discharges. This would be even larger before en ELM-crash, but it is out

of the scope of the present study. With the red-line we show the j∥ profile resulting from the

equilibrium reconstruction at convergence of the KER loop.

From p and j∥, p ′ and T T ′ can be computed. In fig. 5.8c and 5.8d we show the original profiles

of the MER (blue), the profiles obtained from the kinetic measurements and the transport

modelling (green) and the profiles used in the equilibrium reconstruction at convergence of

the iteration loop (red).
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Figure 5.8 – Comparison of several kinetic profiles between MER, KER and ASTRA 64770@1.4s
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Figure 5.9 – Comparison of flux surfaces shape between "MER" and "KER". "Rescaled" indi-
cates the case when p ′

LIUQE =αp ′
AST R A and T T ′

LIUQE =βT T ′
AST R A , where α, and β are found

minimizing the least-squares differences with magnetic measurements.

We now investigate the effects of these new features in p ′ and T T ′, to the free-boundary

equilibrium solution. The difference of the flux map between the two reconstructions is

shown in fig. 5.9a. In blue the flux surfaces from MER and in red the flux surfaces from KER are

shown. With the black bullet we indicate the tangent point of the injection line of the neutral

beam which is slightly shifted to the high field side. Also for this H-mode case the difference of

the flux surfaces is quite small as observed during the database analysis performed in previous

section. This is in agreement with the comparison of the p and j∥ profiles between MER

and KER which have globally the same scaling and only higher order features. The LCFS in

particular is basically not affected by these features as expected.

As a last analysis in fig. 5.10 we compare the difference between the reconstructed synthetic

magnetic diagnostics and the measurements scaled by their uncertainties for the MER (blue)

and the KER (red). The sum of the squares of these signals (adding the Ip ) composes the χ2
m

cost function which is minimized by the equilibrium reconstruction in the KER problem (

LIUQE part of eq. (5.3)). We notice in particular that the magnetic probes and the flux loops

are distributed in the poloidal plane starting from the mid-plane high-field and circulating

clockwise. Hence in the first plot in fig. 5.10, the first (1) and last ( 38) signal, corresponds

to probes and flux loops close to the high field side mid-plane, while the 20th to the mid-

plane low-field side. We would like clarify the interpretation of fig. 5.10 which might be

easily misunderstood. In particular one cannot judge on the quality of the solution by only

comparing the χ2
m . First of all, if the measurements were perfect, hence without noise, and the

free-boundary equilibrium problem would represent perfectly the reality then one would have
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χ2
m = 0. In that case the quality of two different equilibrium reconstructions could be compared

based on χ2
m directly. However this is not the case when performing the reconstruction on a

real experiment. This means that an equilibrium solution which obtains a lower χ2
m ∼ 0 by

increasing the number of free parameters would just be over-fitting the data, by fitting also

the noise in the measurements. Secondly, the MER formulated in eq. (3.9) with respect to

the equilibrium reconstruction in the KER formulation used in this section eq. (3.17) has a

different number of free parameters, in particular KER does not allow freedom in p ′ and T T ′.
This means that most of the time MER will have a lower χ2

m than KER. It is just a matter of

coincidence that for the specific shot and time slice shown KER has a slightly smaller χ2
m than

MER but it is often the opposite due to the more freedom of MER. This point was already made

clear during the formulation of the problem in particular when discussing the simplification

hypothesis which led to eq. (5.3), and an in-depth discussion was presented for synthetic data

with noise in the previous chapter. Braking the non-linearities in the optimization problem,

between the equilibrium and the kinetic modeling, means that there might exist solutions

which have a smaller χ2
m , but are not a minimum for the total χ2

m +χ2
k . This is the case for

the MER that can match better the magnetic measurements but do not have the pedestal

feature in the pressure which are measured by the Thomson scattering. Therefore as long as

the χm of two different reconstructions is within the error-bars and similar to one another, it

makes no sense to judge on the quality of one or the other based only on χm . If instead when

providing the constraints for p and j∥ one results in a huge discrepancy between the magnetic

measurements and synthetic signals one can doubt on the kinetic modelling, meaning that

the kinetic modelling is not consistent with the magnetic measurements. All these difficulties

in interpretation arise from having broken the non-linearity between the equilibrium and

transport or for having considered wrong assumptions for the transport modelling for χi . For

the case presented in 5.10, the χ2
m from KER is similar to MER and well within the error-bars

hence providing us confidence that the kinetic modelling is consistent with measurements for

this case. Note that this is remarkable, since the p ′ and T T ′ are fully fixed by the modelling,

thus providing confidence in our models.

We consider now a second discharge 65565 at 1s, where a reversed shear in the current density

profile is obtained with off-axis heating and current drive from both NBH and ECH. The shot

was performed in order to study advanced steady state scenarios.

A peaked Te profile is obtained as shown in fig. 5.11a due to the ECH contribution and most

probably the improved core confinement. However the discharge at the selected time-slice

was not operating in H mode, as one can see from the absence of a pedestal feature in the

kinetic profiles as well as in the total pressure profile 5.11b.

In fig. 5.11c, the off-axis current drive (yellow), together with the bootstrap (light green)

contribute to obtaining an off-axis maximum (in absolute amplitude) of the total current

profile (dark green) computed from the current diffusion equation and well matched at

convergence by the Kinetic Equilibrium Reconstruction (dashed red line). This leads to an

off-axis minimum of the q profile as shown in fig. 5.11c, with a region of reversed shear (a
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Figure 5.10 – χ2 component comparison between MER and KER reconstruction. "Rescaled"
indicates the case when p ′

LIUQE = αp ′
AST R A and T T ′

LIUQE = βT T ′
AST R A , where α, and β are

found minimizing the least-squares differences with magnetic measurements α=β= 1
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Figure 5.11 – MER vs KER 65565 at 1s. "Rescaled" indicates the case when p ′
LIUQE =αp ′

AST R A
and T T ′

LIUQE =βT T ′
AST R A , whereα, andβ are found minimizing the least-squares differences

with magnetic measurements while in "KER" α=β= 1
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Figure 5.12 – Comparison between first and last Picard iteration in KER loop.

change of sign of the q profile derivative) within ρψN < 0.4. Looking at χ2
m we found a similar

results for both MER (blue) and KER (red), meaning that the resulting p and j KER profiles are

consistent with magnetic measurements. We will discuss later the meaning of the black line

labeled with "rescaled".

The internal profile features slightly affect the shape of the flux surfaces inside the plasma,

while the LCFS remains unchanged as shown in the zoom in fig. 5.9b. Since the flux surfaces

shape was only slightly affected by the modification of the profiles, we do not expect that

neither the mapping of the kinetic profiles nor the results of the transport solver have sig-

nificant modifications. This is shown in figs. 5.12a, and 5.12c comparing the Te , Ti , J∥, and

q profiles between the first and the last iteration. This demonstrate the statement that was

anticipated at the beginning of this chapter, i.e. that performing KER with the formulation

and tools as implemented in this section and summarized in fig. 5.1 means mainly making

LIUQE to match the internal equilibrium solver of ASTRA while all the non-linear relation of

the remapping of the diagnostics and the change to LCFS for the internal equilibrium solver of

ASTRA do not make significant differences.

We show now an example of KER for shot 58499 in presence of sawtooth instability. The analysis

for this shot was performed by M. Vallar [Vallar]. In the previous examples we considered
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to perform kinetic equilibrium reconstruction only on resistive time scales. Considering the

typical heat and current diffusion time in TCV ranging from 5−200ms, in order to follow the

evolution of the profiles we could perform KER with a time sampling of 5ms. The information

for the Thomson profiles are available every 17ms. However in most discharges, unless

off-axis heating is used, a peaked central current density profile leads to the triggering of

sawtooth instability, which causes periodical sudden relaxations of the current density profiles

in the center, called "sawtooth crashes", bringing the safety factor on axis to q ∼ 1. The

typical period of these events is in the ms order in TCV but depends on several plasma

parameters. The Kadomstev model [Kadomtsev 1975] can be used in ASTRA to describe this

physics, and was found to well describe the ∆q0 during a sawtooth event [Fischer et al. 2019].

Performing KER, the local effects to the current density profile provided by this instability

will be consistently included in the equilibrium reconstruction. We consider the shot 58499

in the interval 0.9−1.1s, where this instability was present with a crash period of 6ms as

shown in fig.5.13b. The experimental period is measured from the central channel of soft-X ray

diagnostic which provides enough time resolution to resolve the instability. The Kadomtsev’s

model triggers a crash when a given threshold on the shear s = ρ
q
∂q
∂ρ is reached during the

evolution of the current density profile [Porcelli et al. 1996],[Sauter et al. 1999a]. Tuning the

threshold value one can match the experimental sawtooth period. A better way would be to

synchronize the crashes in the model with the soft-X ray measurements directly. We show

in fig. 5.13a the evolution of the q profile on axis using the sawtooth module in ASTRA (red),

without using the sawtooth module (black) end estimated by the MER (blue). The resulting

q profile immediately after a crash is shown in fig. 5.13c with the same color code. Without

including the sawtooth physics the current diffusion equation provides an unrealistic qA ∼ 0.6.

The MER, due to no significant features in the plasma profiles, was providing a qA close to

the minimum value reached by the current diffusion modelling before the crash, though this

finding is specific to this shot and cannot be generalized since sometimes MER provides qA > 1

even when sawteeth are present. A benchmark of the solution was conducted with the code

TRANSP (green lines) by M.Vallar [Vallar]. To follow the evolution of the current density profiles

during the sawtooth event, ASTRA needs to be run at a faster sampling (0.5ms), hence a longer

time is required to perform KER. Moreover in order for the instant of the crash to converge

more iterations are required between the equilibrium and transport. This is shown in 5.13d,

where the convergence of the p ′ profile over Picard iteration is given with color from blue to

red, and the jump of the crash from one time instant to the next causes the oscillation in the

initial iterations. This problem would be mitigated by imposing directly the crash instant from

diagnostic. As a last analysis, we come back to the shot 65565 and we take again a look to fig.

5.10b to elaborate further on the meaning of matching the magnetic χ2 and the relation with

the kinetic profiles. We notice that both the MER and the KER seem to have a worse match

of the magnetic probes in the low-field side mid-plane (Bm around 20). Since this could be

an indication of internal profiles not consistent with the magnetic measurements for both

of the cases, we recompute only the equilibrium reconstruction by letting the possibility to

re-scale the p ′ and T T ′ profiles coming from the last converged iteration of ASTRA in order

to better match the magnetic signals. This case is in the same direction as the 2nd proposed
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Figure 5.13 – Comparison between KER including sawtooth module ("KER ST"), KER with-
out the sawtooth module ("KER No ST") and MER. Courtesy of M.Vallar [Vallar]. TRANSP
simulation benchmark in green
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simplified formulation of KER presented in section 3.3.4, that aims to try to recover part of the

non-linearities between the reconstruction of the equilibrium and transport model, broken by

the simplification assumptions to the numerical implementation. To be more precise, we only

recompute the equilibrium reconstruction and not the KER Picard iterations. The result of

the re-scaled equilibrium reconstruction is shown with the black line in all the plots related

to 65565 reversed shear shot fig. 5.9b, 5.10b, 5.11b and 5.11d. Letting more freedom, the

magnetic measurements are better matched 5.10b in particular in the low field side mid-plane

resulting in a displacement of ∼ 1cm of the LCFS in this region as shown by the zoom. While

the poloidal flux distribution is slightly affected, a bigger impact is found on the profile of q

fig.5.11c and the profile of j∥ fig. 5.11c. It is important to notice that also the opposite might be

happening. Meaning that the kinetic profiles from the modelling are correct and the magnetic

probes around the low field side mid-plane are affected by systematic error since they are

close to one another..

A natural question arises: which of the two q profiles is more realistic? Unfortunately, the

answer cannot be given within the formulation of KER implemented in this chapter. The

analysis therefore shows just another example of ambiguity which arises when neglecting

some non-linear relations between the magnetic and kinetic reconstruction. At the same time,

it also shows that the q profile is a sensitive quantity to reconstruct compared to geometrical

quantities for instance. The implemented KER while providing global improvements such as

being able to include reversed shear features in the equilibrium, cannot provide localization

of the surfaces with accuracy of fraction of the current deposition for instance. Since many

applications can be sensitive to small modification of q profiles, such as transport analysis

with gyrokinetic code, more developments are needed: to move to a different formulation

as discussed in section 3.3.4 which at least would solves some ambiguities; to estimate the

sensitivity of the solution to the most uncertain parameters like Ze f f and the assumption

for Ti and ni transport; to develop uncertainty quantification to provide information on the

accuracy of the reconstructed profiles. Overall we remind that a dedicated diagnostic could

provide a major improvement in the reconstruction of this quantity for TCV.

Why did we make the choice of imposing p ′ and T T ′ from the transport modelling? In the

derivation of the formulation we made the hypothesis of no errors in the forward model,

putting all freedom in the variation of the parameters χm and Ze f f that we imposed. We stick

then with this assumption at least in the post-discharge reconstruction in TCV, considering

also that in the off-line analysis the estimate of the temperature profile is very well resolved by

the Thomson scattering and in any case we do not have extra measurement of j to rely on at

the moment in TCV, hence there are no better information than the current diffusion model

in any case. We chose to use the best estimate for each diagnostic also because there is not

much of redundancy in the TCV set. Moreover we could not implement the second simplified

formulation in section 3.3.4 due to the constraints in the available codes as explained in the

formulation section, in particular for the internal solver of ASTRA. This is a relatively simple

development that will be implemented in the near future.
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5.5 Critical aspects of formulation and implementation in TCV

We would like to comment and summarize the critical aspects of the formulation and imple-

mentation of Kinetic Equilibrium Reconstruction adopted and presented in this chapter. Most

of them are specific to TCV case and the suite of codes we have been using in the implementa-

tion at the current date of this thesis, hence they do not have to be considered as critiques to

KER in general.

• No diagnostics available to measure the plasma internal current density and test the

current diffusion modelling.

• None of the adopted strategies provide an accurate estimate of Ti , when good CXRS

measurements are not available (which is the case at present in H-modes). Solving the

diffusion equation with ASTRA requires to provide χi (ρ, t). One could leave this as a

free-parameter to be optimized with a further external optimization loop procedure.

The easiest implementation would require a scan of different solution for the value of

the parameter. Another option is to consider Ti =αTe , in this case again α needs to be

considered as one of the free parameter. If α is taken to match the total stored energy of

the MER, this implicitly means relying mostly on the measurement of the diamagnetic

flux loop (DML) which is known to be difficult to calibrate and prone to systematic

errors. Note that this is a generic difficulty when transport models are an important

input to KER, as is expected in real-time in particular in most machines.

• No direct measurements of Ze f f is available. This is also the case in most tokamaks in

real-time in particular. It is a usual practice to estimate it from the current diffusion

equation under stationary state assumption as explained in section B even though this

is not fully consistent with the rest of the formulation, which may lead to inaccuracies

in particular during transient phases.

• An important issue is the uncertainty of χi and Ze f f combined with the sensitivity of

some of the results on these values, in particular the estimation of Ti and q . They can

be of the same order of magnitude as the improvements obtained with a consistent

modelling as a result of KER. This shows also the non-linearities involved and the need

for an integrated analysis.

• Another important shortcoming in the implemented procedure is the lack of a proper

error propagation analysis.

There are then specific limitations to the formulation of the simplified problem that we already

explained in details in sec 3.3.4, and we recall a few here for convenience.

• Using the single best diagnostic for each quantity might be limiting. In devices with

higher number of diagnostics this is not desirable. To combine the different information

we refer to sec. 3.1.
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• The formulation adopted where p ′ and T T ′ are directly imposed from kinetic modelling

provides a low usage of the information content of the magnetic data and relies heavily

on the kinetic modelling. The second simplified formulation should be implemented.

5.6 Summary and outlook

Kinetic equilibrium reconstruction (KER) is an inverse problem to infer the plasma poloidal

flux distribution and internal kinetic profiles from available magnetic and kinetic measure-

ments, which combines in its forward model a free-boundary equilibrium solution and kinetic

transport modelling.

It started as an improvement of magnetic equilibrium reconstruction, providing constraints

to internal profiles, and progressed towards more integrated data analysis where many dif-

ferent diagnostics and models, including dynamical models, are coupled together to provide

the best estimate of plasma state. Its application is nowadays ubiquitous in post discharge

experimental analysis for tokamaks, ranging from the mapping of diagnostics into 1D profiles,

computation of MHD stability limits and transport investigation with gyrokinetic codes [White

2019]. The worldwide effort in developing the multiple aspects of this integrated data analysis

approach were summarized in [Mazon et al. 2020], with the focus in particular of bringing

together the knowledge and tools in view of ITER operation.

In this chapter we revised the main approaches available in the literature to perform kinetic

equilibrium reconstruction and the historical integrated data analysis performed in TCV before

this thesis. After having discussed in the previous chapters a formulation of the problem suited

for the TCV diagnostic set, including several hypothesis to simplify its numerical solution, we

presented its implementation and application to TCV post-discharge analysis.

We focused on comparing KER with the standard magnetic equilibrium reconstruction MER

specifically for TCV. First we investigated the sensitivity of the equilibrium solution to internal

profiles, to gain intuition on the effect to physical quantities related to pressure profile, current

density profile and plasma shape. To do that we took a database of previous integrated data

analysis performed in TCV. We used the profiles obtained from kinetic measurements and

modelling to re-compute the equilibrium free-boundary problem. Small difference in the

magnetic topology was found, in particular negligible changes to the last close flux surface.

This confirms the previous results in the community that the magnetic measurements alone

provide good information to reconstruct the external plasma shape. We also showed how

between the magnetic equilibrium reconstruction and the current diffusion modelling a

difference of localization of ρ(q = 1.5) and ρ(q = 2) surfaces of the same order as the width of

the current deposition is found, which can be relevant in real-time for NTM control.

Most of the available database however was composed by low performance discharges with

no significant internal profile features, hence we focused on performing the full converged

KER developed in this chapter for an H-mode shot and a reversed shear plasma. We discussed
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in particular the meaning of the χ2 and the matching of the magnetic measurements when

comparing MER against KER, and presented an example of reconstruction during the sawtooth

crash.

For most of TCV discharges in the database, which are low performance discharges, full

converging KER does not provide any relevant modification to the poloidal flux map, hence to

the mapping and to the solution of the transport equations. Differently stated the previous

"one pass through" integrated data analysis performed before this thesis was already almost

equivalent to what is achieved in this thesis. Internal changes of the magnetic topology,

which in any case are small for TCV discharges analyzed, can be appreciated for high external

current drive scenario or internal transport barrier features. Also in these cases however

the LCFS is barely modified. These small modifications can still be relevant when using the

poloidal flux map and plasma profiles for stability analysis or gyrokinetic studies. We stress

that with the current formulation the solution of the internal ASTRA equilibrium solver is

already close to the consistent solution found with KER without the need to perform any

iteration in the loop. The main gain is therefore in a reconstructed equilibrium consistent with

kinetic measurements, which is necessary for comparing different diagnostics and modelling

results. In addition, it provides the constraint of the current diffusion equation, not available

in MER.

We identified several critical aspects for the implemented KER for TCV, which are shared

also by the previous integrated data analysis performed before this thesis. They have been

explained in details in this chapter and are related to both the simplifications adopted in the

problem, the restricted set of diagnostics available and tools themselves that have been used.

In particular having broken non-linearities between the different models with the purpose

of simplifying the numerical implementation could lead to significant mismatch between

kinetic measurements/modelling and the magnetic measurements. Although the main source

of discrepancy is usually due to diagnostics mismatch, for example between Wmhd and ion

transport predictions. We proposed a different formulation of the problem which is very close

to Kinetic-EFIT, but it was not yet implemented in this work. The main source of uncertainty

is found on the reconstruction of Ti and Ze f f , which can have an impact in the final solution

of KER, for example in the localization of internal surfaces, and should be analyzed further.

All these aspects make us conclude that the present KER implemented in TCV, while providing

improvements to the free-boundary equilibrium solution, such as providing a reconstructed

equilibrium consistent with kinetic profiles and current diffusion equation in particular,

including reversed shear and pedestal features, is not conclusive yet and overall it would

largely benefit from an improvement of the diagnostic set.

The next steps should include a proper sensitivity analysis of all the components, starting from

synthetic predictive data, including an uncertainty estimation analysis. Knowing the original

solution which generated the data allows to disentangle the discrepancy in the reconstruction

associated to the formulation of the reconstruction problem, to its numerical solution and to

153



Chapter 5. Kinetic Equilibrium Reconstruction in TCV (post experiment)

eventual synthetic noise contribution. Since the forward predictive models are the same which

enter in the reconstruction problem, we are always in favour of this end-to-end validation

approach. This could be: first investigate the static equilibrium reconstruction problem;

try different solution to pass information on the internal profiles and investigate the most

sensitive quantities also in presence of measurement noise; move to the reconstruction on

resistive time scales; investigate sensitivity of the transport solution; investigate the sensitivity

of the measurement mapping; consider different formulation of the kinetic equilibrium

reconstruction problem; investigate the uncertainty propagation with Monte Carlo sampling,

Bayesian analysis or recursive Bayesian analysis for dynamic systems. This plan should be the

preferred direction to check systematically the accuracy of kinetic equilibrium reconstruction

and integrated data analysis in general.

Developing integrated kinetic equilibrium reconstruction tools, having to integrate many

different aspects, is a complex problem. There exist proper ways to take into account consis-

tently all the different measurements and uncertainties, both in the frequentist and Bayesian

approach as explained in the introduction to the inverse problem. Steps in this direction

are for example described in [Faugeras and Orsitto 2019], where all the non-linearities of the

several models are considered consistently in the same properly stated optimization problem

in the mean least-squares formulation. Full Bayesian approach such as IDA [Fischer et al.

2019] and Minerva [Svensson et al. 2010] are exploited in tokamaks such as AUG and JET to

combine consistently different diagnostics with their uncertainties.

It is a fact that the forward models involved in kinetic equilibrium reconstruction are now

well established and are composed by relatively simple diffusion equations at least for the

models discussed in this thesis. Estimation of transport from gyrokinetic codes are improving

in precision to recover big uncertainty of transport coefficients. Fast transport solvers are

available (RAPTOR) and Neural Network have become in the last years a solid reality and, if

properly trained, can speed up any computational problem including the most expensive

computation part of the forward model involved in KER. A brilliant example in this sense

is [Boyer et al. 2019; Kremers 2020] where a Neural Network was trained to provide real-

time capable estimation of NUBEAM [Pankin et al. 2004] solution for fast ion transport, with

high fidelity of the results. This is then used as a Kalman filter observer for Ze f f and ion

anomalous transport diffusion coefficients. Another example is [Pavone et al. 2019] where a

neural-network was trained on the results of the Minerva framework to approximate a full

model Bayesian inference of plasma profile from x-ray imaging diagnostic system for W7-X.

We can imagine in the near future to have them trained the forward coupled model and build

a Bayesian estimator based on this. This would allow then to have both between shot analysis

and real-time estimation including error on the reconstructed state and parameters.

Stressing on the importance of the original formulation of the problem will be helpful for

the community to reflect on which direction the integrated data analysis is going to focus to

take into account error propagation analysis and to provide meaningful information to the

reconstructed parameters for example.
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6 Kinetic Equilibrium Reconstruction in
TCV (real-time)

This chapter is in most part taken from [Carpanese et al. 2020]. All the figures are directly

taken from the paper and some plain text extracts are included. In particular section 6.2.1

6.3.1, 6.3.2, 6.3.3, 6.3.4 6.4 are directly taken from the paper. Permission was granted by the

Nuclear Fusion journal, in agreements with EPFL copyright policy to include the extracts.

As a request of the Journal copyright office we include the cover page of the paper as in the

online version.

In the previous chapters we implemented a tool to perform kinetic equilibrium reconstruction

during post discharge analysis in TCV based on the available set of diagnostics and modeling.

In this chapter we present a real-time implementation of kinetic equilibrium reconstruction

and test it during TCV experiment.

First in section 6.1 we discuss the motivation to perform kinetic equilibrium reconstruction in

real-time. Then in section 6.2 we present the real-time implementation for the TCV tokamak.

After describing the codes RAPTOR [Felici et al. 2014] and RAPDENS [Blanken et al. 2019] to

reconstruct the Te (ρ, t ), ne (ρ, t ) and j∥(ρ, t ) combining dynamic modelling with available real-

time measurements, we provide a novel approach suited for real-time application, to couple

them with the magnetic equilibrium reconstruction performed by LIUQE [Moret et al. 2015].

In section 6.3 we present the result of real-time kinetic equilibrium reconstruction performed

during a TCV experiment which presented different profile dynamics due to both external

sources and plasma events. We also compare real-time KER with the standard real-time

magnetic equilibrium reconstruction performed routinely during TCV operation. In section

6.4 we discuss in details the limitations and future developments of the current approach.

Finally in section 6.5 we summarize our findings.

The goals of this chapter is not to compare extensively KER with MER in its real-time implemen-

tation, rather to develop a technique suited for real-time implementation and demonstrate its

application to TCV operation. What is demonstrated for TCV in this chapter can be directly

applied to other present and future tokamaks.
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6.1 Motivation and challenges for real-time application

Kinetic equilibrium reconstruction is becoming a standard post-shot analysis in many toka-

maks as the basic post-discharge analysis to interpret experimental results and also as a

starting point for MHD stability investigation and microscopic transport simulation with

gyrokinetic codes [White 2019].

In order to reliably achieve and maintain the performances required for future tokamaks

such as ITER, real-time control of the kinetic and current density profiles, together with the

plasma equilibrium, will be needed [Humphreys et al. 2015]. Not only control algorithms but

also supervisory control functionalities, such as real-time plasma monitoring for disruption

avoidance, rely on the quality of the reconstruction of the plasma state [Blanken et al. 2019;

Vu et al. 2019]. Therefore, improving both the real-time reconstruction of internal profiles

and plasma equilibrium with consistent profiles will be useful for plasma operation especially

during high performance scenarios. A better identification of the internal flux surfaces during

the experiment would also allow to better aim the gyrotrons for NTM suppression.

Implementing a real-time kinetic equilibrium reconstruction presents additional challenges

with respect to post-discharge analysis.

• Diagnostics might fail or degrade during the operation

• Fewer diagnostics can be used in real-time because of availability or computationally

expensive post processing or need for human intervention.

• The measurements might be available at several different time rates and spatial resolu-

tions.

• The computational time to perform the analysis must be smaller than the characteristic

time of the phenomena of interest in order to allow the possibility to react and control

the plasma state.

The first objective of kinetic equilibrium reconstruction is to identify the internal plasma

profiles, in particular p and j , hence the time scales of interest for being real-time are set

by the heat and particle transport time scales and the current diffusion time scale. Control-

oriented codes that are ‘faster-than-real-time’ have been developed for this purpose. They

present a departure from traditional aims of physics-oriented codes in terms of accuracy

and completeness in order to achieve the real-time computational target. Grad-Shafranov

solvers aimed at real-time implementation satisfy the computational time requirements via

optimized algorithms as in LIUQE [Moret et al. 2015] or hardware solutions like parallelization

and GPUs [Huang et al. 2017; Rampp et al. 2016]. For the transport models efforts are made to

reduce the complexity of the modeling while retaining the most relevant features [Felici et al.

2011; Teplukhina et al. 2017; Barton et al. 2015], as well as using machine learning techniques

to emulate the solutions of the most computational expensive part of the model [Meneghini
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et al. 2017; Citrin et al. 2015; Felici et al. 2018; Boyer et al. 2019]. Another approach is to entirely

substitute physics-based models with data driven models trained on databases of previous

experiments [Moreau et al. 2013], which is receiving increasing attention in the last years with

the gain of popularity of neural networks and machine learning.

One of the main requirement for developing real-time reconstruction tools, which are then

used as observers for controllers, must be the robustness, to be used reliably during the

experiment without causing failure of the experiment. For this reason we will not directly

feed the equilibrium reconstruction with additional information from the available internal

measurements, which in real-time suffers from the limitation listed above. Instead it is

preferable in general to always have a forward predictive model, meaning in these cases a 1D

transport code, and combine the information from the transport model and the measurements

before using this information for the equilibrium reconstruction. This was achieved by the

transport code RAPTOR [Felici et al. 2018] and RAPDENS [Blanken et al. 2018], in real-time

making use of the Extended Kalman-Filter (EKF) [Särkkä 2013] technique, which we also make

use of in this thesis. In this way we have the double advantage to always have an estimation

of the internal profiles with arbitrary spatial and time resolution, which is correct within the

assumption of the transport model, and also to correct the modelling whenever measurements

are available.

6.2 Real-time implementation in TCV

A detailed description of the kinetic equilibrium reconstruction problem specific for the set

of diagnostics of TCV has been derived and implemented in the previous chapter for the

post-discharge analysis. However, some additional constraints need to be considered when

approaching the real-time implementation in TCV.

A reduced set of diagnostics is available in real-time, in particular for the kinetic measurements.

These include at present only an estimation of the central Te from soft X-ray diagnostics and a

measure of the ne integrated profiles from far infrared interferometer FIR [S.Barry 1999]. The

full set of the external magnetic measurements are also available with high time resolution.

Inclusion of more diagnostics will be discussed in the outlook section.

There are stringent computational time requirements to achieve the real-time target. This is

particularly true for TCV since, due to its relatively small size, the heat diffusion time scale

(2-50ms) and current diffusion time scales (100-200ms) are much shorter than in larger devices

such as ITER. Before this thesis, the magnetic equilibrium reconstruction code LIUQE and

the transport code RAPTOR were already available, both capable of real-time performances

with 1ms computational time to compute independently their solution at a given time instant,

which made possible the coupling in real-time between the two codes presented in this

chapter.

As for the case of the formulation of the kinetic equilibrium reconstruction problem presented
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in the post-discharge analysis, the steps to derive the one implemented in real-time are:

• Start from the complete kinetic equilibrium reconstruction problem eq. (3.14), where

the free-boundary equilibrium problem is coupled to the profile transport problem,

all the unknowns quantities enter as free parameters to be found by minimizing the

least-squares error which includes both the magnetic and kinetic measurements.

• Split the magnetic equilibrium reconstruction part (LIUQE), where only external mag-

netic measurements are used, from the kinetic reconstruction part (RAPTOR) where

only the real time kinetic measurements are used.

• Coupling the two reconstruction problems, which together define the kinetic equilib-

rium reconstruction, in order to achieve a certain degree of consistency for the internal

plasma profiles. This was explained for example in eq. (3.17) for the post-discharge

analysis.

In this thesis, we developed a simple and efficient two way coupling technique suited for

real-time application in particular, described in the following, which does not deteriorate

the ∼ 1ms performances of the LIUQE and RAPTOR codes. This coupling technique was

proposed to take into account both the computational requirements and the low accuracy of

kinetic profile estimation due to the reduced set of measurements available in real-time. The

resulting formulation of the problem is similar to eq. (3.19) presented in section 3.3.4.

In the following we start by describing the reconstruction problem solved by RAPTOR. We then

provide the formulation of the problem for the real-time kinetic equilibrium reconstruction

developed and tested during TCV operation in this thesis.

6.2.1 Kinetic profiles reconstruction: RAPTOR and RAPDENS

The target for the transport part of the reconstruction is to estimate p(ρ, t ) and j (ρ, t ), com-

bining the real-time kinetic measurements with first principle modelling to be then used as

additional information in the equilibrium reconstruction part. This is obtained by making use

of RAPTOR [Felici et al. 2018] and RAPDENS [Blanken et al. 2018].

The current profile j (ρ, t ) is obtained directly from forward modeling by solving the current

diffusion equation with RAPTOR, since no direct measurements of this quantity are available

in TCV at the moment. The current diffusion equation has been explained already in section

2.4. In the real-time implementation the non-inductive contribution jni is composed of the

bootstrap contribution jbs from Sauter’s formula [Sauter et al. 1999b, 2002] and the current

driven by Electron Cyclotron Current Drive (ECCD) jcd given by a parametrized Gaussian-like

model [Felici et al. 2011],

jcd (ρ̂) = ccd e ρ̂
2/0.52 Te

ne
e−4(ρ̂−ρ̂dep )2/w 2

dep Pg (t ), (6.1)
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where the central deposition location ρdep and width wdep are prescribed, Pg (t ) is the power

of each source of ECCD obtained in real-time, ne is computed from its transport equation

and ccd is a machine-dependent proportionality factor. The neutral beam current drive is

neglected in the current implementation.

The total pressure p(ρ, t ) is considered as given by,

p = ne Te +ni Ti . (6.2)

The electron temperature Te and density ne are reconstructed by RAPTOR and RAPDENS

respectively combining the prediction from a 1D transport model with the estimation of

the central Te from XTe (for RAPTOR) and the ne profile measurements from far infrared

interferometer FIR [S.Barry 1999] (for RAPDENS), making use of the Extended Kalman filter

technique. The ion temperature Ti and density ni profiles are assumed proportional to the

electron ones. In the present work for the real-time implementation, we will not consider the

contribution of fast ions hence in the analysis we will consider only discharges without NBH.

The electron temperature Te is estimated by RAPTOR from the thermal energy diffusion

equation,
3

2(V ′
ρ̂

)5/3

∂

∂t

[
(V ′

ρ̂)5/3ne Te
]= 1

V ′
ρ̂

∂

∂ρ̂

[ g1

V ′
ρ̂

neχe
∂Te

∂ρ̂

]+Pe , (6.3)

The electron particle flux Γe to the heat diffusion equation (eq. (6.3)) is assumed negligible

[Teplukhina et al. 2017] and ne (ρ̂, t ) is given by the electron density diffusion equation specified

later. In this work, for simplicity, an ad-hoc diffusivity coefficient χe , tuned for TCV discharges

has been used [Felici et al. 2011]. The total power density for electrons is written as Pe =
POH +Pe,aux−Pei −Pe,r ad , where POH is the Ohmic heating, Pei the power exchanged between

electrons and ions and Pe,r ad the radiated power. In this work Pe,aux is composed only by

ECRH modeled with a Gaussian deposition of prescribed width and location. The merge

of transport model prediction and central Te measurements from XTe is obtained with EKF

[Felici et al. 2014].

The electron density ne is estimated in RAPDENS [Blanken et al. 2018] with the particle

diffusion equation,
∂

∂t
[V ′
ρ̂ne ] =−∂Γe

∂ρ̂
+V ′

ρ̂Se (6.4)

where the electron particle flux Γe is given by,

Γe =− g1

V ′
ρ̂

De
∂ne

∂ρ̂
+ g0Ve ne , (6.5)

with g0 = 〈∇V 〉, and the diffusion coefficient De and pitch velocity Ve are estimated to rep-

resent empirical system behavior. The model includes empirical expressions for thermal

ionization of other neutral species, thermal recombination of ions, the particle sink in the

scrape-off layer due to wall impact of particles exiting the plasma through the scrape-off layer.
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Details on the diffusion coefficient and particle sources are found in [Blanken et al. 2018].

The merge of transport model prediction and far infrared interferometer FIR measurements

[S.Barry 1999] is obtained with EKF [Blanken et al. 2018].

Given a forward dynamic model (the transport heat and particle equations), assuming Gaus-

sian additive noise on the model and measurements, the EKF finds recursively an estimate

of the state (T̂e and n̂e ) which maximizes the condition probability of T̂e and n̂e given the

measurements and the state at previous time instants.

The ion temperature Ti in this work is considered to be proportional to Te . The ratio is

either provided as given input, or estimated in real time by matching the total stored energy

computed from the p estimated with RAPTOR with the one estimated from the equilibrium

reconstruction with a Proportional Integral (PI) controller (more details later in sec. 6.3.4).

The ion density ni is computed in order to match the quasi-neutrality hypothesis ni (ρ) =
ne (ρ)

Zc−Ze f f

Zc−1 assuming for TCV carbon as the main impurity. The effective charge Ze f f is

provided as an input to the system.

In conclusion, the transport codes RAPTOR and RAPDENS receive Ip from the magnetic

measurements, the geometric information g0,...,3 , V ′
ρ̂

and Φb from the equilibrium recon-

struction given by LIUQE, and source terms for the transport equations. They evolve the

current diffusion equation, the electron heat and the particle diffusion equations combining

the modeling with available measurements T̃e (0, t ) and ñe (ρ, t ). From the solution of RAPTOR

and RAPDENS the total plasma pressure p = ne Te +ni Ti and

j∥ =
1

8π2B0

1

µ0ΦB

T 2

V ′
ρ̂

∂

∂ρ̂

[
g2g3

ρ̂

∂ψ

∂ρ̂

]
,

are computed. From these profiles an estimate for p ′
R AP = d p

dψ and T dT
dψR AP

is obtained using

the relation:

T T ′
R AP

=
(
µ0p ′

R AP
− j∥,R AP

µ0B0

2πT

)[
g3 + g2

4π2T 2(V ′
ρ̂

)2

(
dψ

d ρ̂

)2]−1

. (6.6)

6.2.2 Equilibrium and transport coupling methodology

In the real-time implementation we needed to make a compromise due to both a reduced

set of diagnostics and the strict computational time requirements. As a consequence p ′
R AP

and T T ′
R AP will be less accurate than the post discharge analysis, since they will rely more on

the simplification hypothesis for the transport coefficients. For this reason, we prefer to not

impose them directly as fixed profiles for the free boundary equilibrium.

We already proposed a solution in eq. (3.19) section 3.3.4, which is similar to what is performed

in Kinetic EFIT [Li et al. 2013] and IDE [Fischer et al. 2016]. The idea was to include the estimate

of the internal profiles coming from the transport as additional measurements for the magnetic
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Chapter 6. Kinetic Equilibrium Reconstruction in TCV (real-time)

equilibrium reconstruction part, considering them at the same level as the other magnetic

measurements. The profiles for the computation of the free boundary equilibrium p ′
LIU and

T T ′
LIU , which we call with the subscript "LIU" to indicate that they are used in LIUQE as RHS

of the Grad-Shafranov equation, will be expanded into a set of basis functions. As usual in

magnetic equilibrium reconstruction the coefficients for this basis function expansion will

be computed minimizing the least-squares error with the measurements that in this case

will include also p ′
R AP and T T ′

R AP . The intuition behind is that the magnetic measurements,

though not sensitive to small internal profiles features, are aware of global scaling at least of

the total pressure profile. However, in order to be able to represent the features contained in

p ′
R AP and T T ′

R AP a larger number of basis functions would be needed for p ′
LIU and T T ′

LIU but

this would affect the computational time requirements to achieve real-time performances.

We propose therefore the following coupling scheme suited for real-time application in partic-

ular. p ′
R AP (ψN ), T T ′

R AP (ψN ) are used as directly unique basis functions for p ′
LIU and T T ′

LIU

respectively such that,

p ′
LIU =αp ′

R AP ,

T T ′
LIU =βT T ′

R AP ,

where α and β are scalar coefficients to be found by matching the magnetic measurements in

least-squares sense.

We can finally state the kinetic equilibrium reconstruction problem implemented in real-time,

which is very similar to eq. (3.19) in section 3.3.4 except for the handling of p ′
LIU and T T ′

LIU .

Given: The magnetic measurements M̃ m = {B̃ m , F̃ f , Ĩp ,Φ̃t , Ĩ v , Ĩ a}, kinetic measurements

M̃k = {T̃ e (0, t), ñe (ρ, t)}, the transport heat and particle models, the sources jcd and Pe , and

the forward inputs Ze f f and Te /Ti ratio.

Find: I a , I v ,α(t ),β(t ) and all the quantities related to the free-boundary equilibrium in partic-

ular and kinetic transport, in particular ψ(R, Z ; t ),Te (ρ, t ), ne (ρ, t ), ni (ρ, t ), Ti (ρ, t ), j∥(ρ, t )

such that 
{I a , I v ,α,β} = (A(ψ)TA(ψ))−1A(ψ)T M̃ m

∆∗ψ= 2π

[
R(αp ′

R AP )+ 1
µ0R (βT T ′

R AP )

]
{p ′

R AP ,T T ′
R AP } = R APT OR(g0,..,3,Mk , Ip , sources)

(6.7)

In real-time, the problem is solved with a Picard iteration scheme between LIUQE, RAPTOR

and RAPDENS, summarized in figure (6.1). At every computational time step, one equilibrium

solution (with p ′
R AP , T T ′

R AP from the previous time step) and one transport solution (with

the new equilibrium geometry) are performed. We will show that achieving a cycle time to

compute a single iteration faster than the characteristic timescales of the transport evolution

allows to obtain a good level of consistency between codes, measured in terms of how the

kinetic profiles in the equilibrium reconstruction matches the information coming from the
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6.2. Real-time implementation in TCV

transport one. Convergence is therefore achieved also during time-evolving events of j∥,Te ,ne

as long as these changes follow the diffusive time scales. We recall that the current diffusion

time in TCV is 100-200ms, the energy confinement time τe ranges from 2ms to 50 ms, the

particle confinement time from 5τe to 10τe . Larger devices like ITER will have much longer

time scales allowing eventually for multiple Picard iterations for a single time step and/or a

more refined spatial grid. A relaxation procedure, which in time acts as a low pass filter, is used

to help the convergence of the algorithm.

LIUQE

𝒑𝑳𝑰𝑼
′ = 𝜶 ෡𝒑′

𝑹𝑨𝑷

𝑻𝑻𝑳𝑰𝑼
′ = 𝜷 ෢𝑻𝑻𝑹𝑨𝑷

′

Magnetic 

meas.

Geometrical 

information

ෝ𝒑𝑹𝑨𝑷
′ , ෢𝑻𝑻𝑹𝑨𝑷

′

RAPTOR

Correction 

EKF

Predictive 
𝑇𝑒,𝑛𝑒,𝑗∥

𝑷𝒆, 𝑱𝒄𝒅
sources

XTe𝑻𝒆 𝝆 = 𝟎
FIR 𝑵𝒆(𝝆)

Init 𝒑′, 𝑻𝑻′
from MER

switch

Figure 6.1 – Iterative LIUQE/RAPTOR coupling scheme. Closed iteration loop indicated with
green arrows. Inputs indicated with red arrows (color online). Initialization from MER in
yellow.

We would like to comment the coupling technique proposed. The least-squares minimization

problem in the magnetic equilibrium reconstruction needs to find only two scaling coefficients

α and β to describe p ′
LIU and T T ′

LIU . This heuristic solution mimics the intuition that while

the modeling and the measurements provide good knowledge of the profile features, the

magnetic measurements better represent their global scaling. This assumption could be

proven now with the suite of codes developed in this thesis in sec. 4 to solve the forward

free-boundary equilibrium, though this was not addressed yet extensively. We expect to obtain

α,β≈ 1 whenever p ′
R AP , T T ′

R AP profiles are consistent with the magnetic measurements and

vice versa. This will be investigated in detail in section 6.3.2 and the implication of this choice

discussed further in this section. We will show in sec. 6.3 that this coupling is sufficient to

achieve a good matching of j∥ and p profiles between LIUQE and RAPTOR/RAPDENS, which

is the end goal of kinetic equilibrium reconstruction.

There are several numerical advantages for the proposed coupling technique: the codes LIUQE,

RAPTOR and RAPDENS required very little I/O modifications keeping them separated and

allowing for their independent developments; with only two coefficients α and β to be found,

the least-squares problem is linear and did not increase the computational cost with respect

to the independent solution of the two codes; since only two basis functions are used, the

solution avoids the ill-posed problem of magnetic equilibrium reconstruction, which requires

to either reduce the number of basis functions or to introduce regularization techniques. In

addition, the spatial details of the shape of the internal kinetic profiles depend only on the

spatial resolution of the transport solver, without requiring a large number of basis function

coefficients for the Grad-Shafranov equilibrium reconstruction. For example, reverse shear q
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profiles can be represented in this way as well as steep pressure gradients and highly localized

edge bootstrap current density in H-modes.

We would like to stress the fact that the coupling technique adopted was mainly used to achieve

the real-time computational target. However both for the real-time, if the computational

time would allow that, and off-line we would prefer to provide p ′
R AP and T T ′

R AP as extra

measurements for the magnetic equilibrium reconstruction extending the number of basis

functions used to represent p ′
LIU and T T ′

LIU , or using p ′
R AP and T T ′

R AP as basis function or

within the basis function set. This would make it consistent with the formulation eq. (6.7) in

section 3.3.4 and allow to provide weights for p ′
R AP and T T ′

R AP , and considering eventually,

when available, extra measurements on the χ cost function. With the approach used in

this chapter instead we only check a posteriori whether α,β ≈ 1 as a test whether kinetic

estimations are consistent with magnetic data.

We also stress the fact that the Kalman Filter technique used in RAPTOR and RAPDENS could

provide directly not just p ′
R AP and T T ′

R AP , but also the propagation of the measurements

and model uncertainties, assuming additive Gaussian noise to the measurements and the

process, which could be used directly as weights for p ′
R AP and T T ′

R AP in the cost function of

the equilibrium reconstruction.

6.2.3 Differences between real-time and post-discharge kinetic equilibrium re-
construction in TCV

To help understanding the relation between the different parts of this thesis we would like to

summarize here the differences between the real-time and off-line implementation of kinetic

equilibrium reconstruction in TCV. In particular the different sources for the kinetic quantities

appearing in the reconstruction of the kinetic profiles. The usual settings are summarized in

table 6.1.

Post-discharge Real-time

p ne Te +ni Ti +P f ast ne Te +ni Ti

ne Thomson RAPDENS transport + FIR
Te Thomson RAPTOR transport + XTe

ni ni (ρ) = ne (ρ)
Zc−Ze f f

Zc−1 ni (ρ) = ne (ρ)
Zc−Ze f f

Zc−1
Ti ∝ Te /transport model/CXRS ∝ Te given/ Wk matching
jeccd Toray-GA Gaussian deposition
P f ast ASTRA To be implemented
jN BC D ASTRA To be implemented
Ze f f Imposed/ICDBSEVAL Imposed

Table 6.1 – Comparison between assumption for real-time and post-discharge KER

The differences at present are justified by either lack of availability in real-time of the diag-
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nostics or numerical expensive requirement to compute the modelling or simply ongoing

development. More details on the present limitation of the real-time implementation are

provided in the outlook section of this chapter.

6.3 Results of real-time KER in TCV

The results of the real-time KER performed in TCV during the discharge 62958 are presented

in this section. The discharge, summarized in figure (6.2), was selected because several

interesting physical events involving internal plasma profile evolution occurred (figure 6.3).

First, the initialization methodology and the computational cycle time achieved will be re-

ported (sec. 6.3.1), then the effectiveness of the coupling methodology to provide the desired

constraints to the equilibrium will be shown (sec. 6.3.2) and finally the results of the real-time

KER will be compared to MER in presence of ECCD and during the formation and locking of

an NTM (sec. 6.3.3).

Figure 6.2 – TCV discharge 62958 main physical parameters using standard off-line magnetic
equilibrium reconstruction.

Figure 6.3 – TCV discharge 62958 event intervals.
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6.3.1 Initialization and computational cycle time

In previous work, the LIUQE, RAPTOR and RAPDENS codes were implemented in Simulink

and integrated in a node of the TCV plasma control system based on a i7-5930K 3.5 GHz

processor [Maljaars et al. 2017]. On this node, four threads are active, each running a different

part of the algorithm. Thread 1 runs the density model with the EKF filter (RAPDENS) and

two instances of LIUQE, the first performing the magnetic equilibrium reconstruction (MER)

with standard basis functions and the second computing the KER with p ′
R AP and T T ′

R AP as

basis functions. Both instances evaluate also the geometrical quantities (flux surface integrals)

needed for the transport code. Thread 2 is dedicated to solve Ohm’s law and the electron

heat diffusion equation with RAPTOR. The remaining threads were not used in this paper.

LIUQE solves the GS based on a finite difference approximation, it uses a spatial (R,Z) grid

of 28x65 points to match the TCV elongated aspect ratio and 17 points on ρψ for the flux

surface averaged integrals g0,...,3, T (ρψ) and V ′
ρ̂

computed using 32 values of the poloidal

angle. The linear minimization problem includes all 133 available measurements and ∼ 60

free parameters including the vessel and active coil currents together with the two basis

function coefficients α, β. In RAPTOR, which solves the equations based on a finite element

approximation, the ne equation is solved by the RAPDENS module using cubic splines with

4 knots packed at the edge [Blanken et al. 2018], while Te and ψ(ρ) are represented by cubic

splines with 11 knots [Felici et al. 2011].

LIUQE MER RUN

RAPTOR 𝑇𝑒, 𝑗||

KER 

INIT
KER 

RUN

Thread 1

Thread 2

RAPDENS 𝑛𝑒

Comput.
time [ms]

1.5
1

0.5

0.1 0.15 0.2 0.25 0.3 0.35
t [s]

Figure 6.4 – Shot 62958. Start-up of the coupling scheme up to closed loop convergence. Com-
putational time of thread 1 (blue) and thread 2 (orange) during different tasks and sampling
period communication between threads 1.6ms (green).

The initialization procedure for the scheme (sec. 6.2.2) is shown in figure (6.4).

• The first instance of LIUQE, performing the standard MER, is initialized in thread 1.

• After waiting some time steps, to let the computation of the geometrical coefficients

converge, RAPTOR starts running in thread 2 (∼ 0.18s) using the geometrical coeffi-

cients from LIUQE MER; when RAPTOR has relaxed from the initial conditions, the

second instance of LIUQE, performing KER using p ′
R AP and T T ′

R AP as basis functions,

is initialized (∼ 0.27s) from the last available solution of the MER.

• As for the MER also the KER instance of LIUQE requires some time steps for the ge-

ometrical coefficients to converge. Note that here we chose to let LIUQE evolve for
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approximately 18 iterations over ∼ 30ms. A smaller number of iterations would proba-

bly have sufficed however in this work we wanted to be sure to have a well converged

geometrical coefficients before switching to the full coupling without investigating how

early in the discharge we could have achieved it.

• At ∼ 0.31s the loop is closed and the convergence is obtained after few iterations, i.e.

RAPTOR uses geometrical information from the LIUQE KER, while providing p ′
R AP and

T T ′
R AP for the next time step of LIUQE KER.

• Meanwhile, the standard LIUQE MER continues to run in background for comparison

and as a restarting point in case of a failure of the coupling scheme.

The computational times are displayed in figure (6.4) (bottom). The communication period

between threads was set to ∼1.6ms, thread 1 runs during the full coupling phase in ∼0.75ms

including two instances of LIUQE (∼0.25 ms each) and the density observer (∼ 0.15ms) while

thread 2 runs in ∼1.1ms. Summing up all the computational times, considering only 1 LIUQE

instance, the consistent KER could in principle run in a single thread in less than 1.6ms. Similar

performances have been obtained in other discharges not reported in this work. Nevertheless,

the converged coupling is achieved before the transition from limited to diverted configuration

at ∼0.31s and before the ECCD and NTM phases (see figure 6.3), and continues to work without

failures till the end of the ECCD phase (∼1.67s) and of the plasma discharge.

During the analysis of the results, some erroneous settings of the real-time KER set-up were

discovered due to earlier application of the code for other purposes, in particular the tempera-

ture ratio Te /Ti was set to 4. This value is not the typically observed one TCV, as checked with

the charge exchange radiation spectroscopy diagnostic to measure Ti unless strong ECRH

power is applied which is not the case for the discharges analyzed in this paper. Moreover

the ECCD source in the current diffusion equation was turned off. Since these discharges

were obtained at the end of the then running TCV experimental campaign 2018, these shots

could not be rerun immediately after. The quantitative results shown in the next section are

therefore based on a re-simulation with the same real-time measurements, grid resolution

and computer hardware but corrected transport model settings. In particular the Te /Ti was

set to 1.42 during the ECCD phase and 1.2 otherwise, values that are within the typical bounds

observed for this type of discharges. This modification does not affect the performance of

the code, reproduces exactly how the code would have performed during the discharge and

therefore does not invalidate the findings of this chapter. We could have chosen to present

the results of other experiments, however the erroneous settings were there during the full

campaign and the physical content of the selected one was the most relevant to compare with

MER.
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Figure 6.5 – Shot 62958. Comparison of j∥ profile (left) and p profile (right) between RAPTOR
KER(blue), LIUQE KER(red) and LIUQE MER(black) during three plasma phases: Ohmic
diverted (0.3s), off-axis current drive (0.9s) and off-axis current drive in presence of NTM
(1.4s).

6.3.2 Investigating the coupling methodology results

As a first result, we will prove that the coupling methodology detailed in section 6.2.2 is

effective in providing p(ρ, t ) and j∥(ρ, t ) constraints from measurements and modeling to the

equilibrium solver. In figure (6.5) we compare the profiles reconstructed by RAPTOR KER

(blue), with the ones computed by LIUQE KER (red) when p ′
R AP and T T ′

R AP are used as basis

functions during three different experimental phases: at the beginning of the transition from

limited to diverted shape (0.3s), during the ECCD phase (0.8s) and finally when the NTM is

fully developed (1.4s). We find a good match for the quantities of interest, namely p(ρ, t ) and

j∥(ρ, t ) demonstrating consistent profiles in the equilibrium and transport codes. In particular,

when the profiles from RAPTOR are consistent with the magnetic measurements, we expect

that α, β ≈ 1 as is indeed the case in figure (6.6). Figure (6.5) aims only to show that the shape

and amplitude of the profiles are coherent while a quantitative measure of them this is given

directly by the coefficients in figure (6.6). We notice from figure (6.6) that a larger discrepancy

is found during the limited and NTM phases, indicating that the transport modeling is less

accurate in these phases. Note also that with α, β about 20% away from the ideal value of
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one, the pressure and j∥ profiles shown in Fig. 6.5 are relatively consistent. We will elaborate

further on these topics in section 6.4.

0.3 0.9 1.4
t[s]

0.5

1

1.5

Figure 6.6 – Shot 62958. α, β basis function coefficients

6.3.3 Comparison between real-time MER and KER

In this section we will show how the implemented KER, achieving real-time performances,

is able to reconstruct well the expected internal profile features and profile dynamics due

to particular physical events during the plasma discharges. Every time we will refer to MER

in this section we will intend the standard real-time MER routinely computed during TCV

operation. In the standard MER the set of basis functions has been chosen ([Moret et al. 2015]

and references therein) in order to find a compromise between having a low error of the

reconstruction with respect to the magnetic measurements and keeping the least squares

minimization problem well-conditioned, while avoiding under-fitting for a large range of

experimental conditions. The KER, having constraints on the internal profiles coming from

measurements/modeling, needs less a priori assumptions on the profiles. As expected, this

allows the KER to better represent the true physical profiles. It is instructive to compare in

this section the KER with the standard MER which was the only equilibrium reconstruction

available in real-time so far for TCV.

We address first the contribution provided by the internal kinetic measurements to the recon-

structed solution. In figure (6.5) the p and j∥ profiles from KER (red cross) are compared to the

MER (black). The central flattening of the pressure profile in KER at 0.9s is due to the broad

central density profile as shown in figure (6.7) and computed by RAPDENS (red) constrained

in real-time by the FIR measurements. The flattening is confirmed by the post-shot Thomson

scattering data in fig.6.7 (black) [Arnichand et al. 2019] . This flat feature is propagated to the

equilibrium through p ′
R AP . The MER pressure profile instead has the dependence p ∝ (ρ2−1)2,

imposed by the basis functions adopted, hence it cannot reproduce the flattening. Given the

consistency between the RAPTOR-KER and LIUQE-KER profiles provided, by the coupling

and demonstrated in the previous section, we will no longer make the distinction between

them as in figure (6.5) (blue and red line) . We will consider from now on the LIUQE- KER to

be representative of the reconstruction, calling it simply with the label “KER”.
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Figure 6.7 – Shot 62958@0.9s. Comparison between Te and ne profiles reconstructed in real-
time by RAPTOR/RAPDENS and the Thomson scattering measurements available after the
experiment.

We consider now the contribution provided by the j∥ constraint. A small off-axis external

current drive contribution from ECCD with constant power and deposition location is added

at 0.4s while the total current is kept constant through feedback control of the central solenoid

current. At 0.9s, when the current profiles are relaxed and in stationary condition, the different

components of j∥ computed in real-time by RAPTOR are shown in figure (6.8). The small

contribution from ECCD (green) produces a broadening of the total current density profile

(red) while the contribution of the bootstrap current (violet) is very small. In figure (6.9) we

compare the j∥ profile from KER and MER before the gyrotron is turned on (0.3s, dashed

lines) and after when the current profile reaches a new stationary state (0.9s, continuous lines).

The profiles from KER (red and magenta) reproduce the expected broadening highlighted

with the green zone between the arrows. The MER instead seems to be little affected by this

contribution as a result of both the limited choice of basis functions and the low sensitivity of

external magnetic measurements to small internal profile features. In this experiment the very

small amount of externally driven current provided a small difference between MER and KER

results localized only in the plasma center as found in figure (6.10) where the relative difference

in percentage of the flux map∆ψ(R, Z ) = 100∗(ψMER−ψK ER )/ψMER is displayed. A difference

of 8% is found within the ρψN = 0.5 flux surface (blue line) and less than 1% everywhere else.

This is comparable with the findings of the post-discharge kinetic equilibrium reconstruction

presented in the previous chapter.

The last result addresses the importance of including dynamical models together with the

measurement constraints in order to reconstruct the time evolution of internal plasma profiles
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Figure 6.8 – Shot 62958@0.9s. j∥ components computed by RAPTOR
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Figure 6.9 – Shot 62958. Comparison of j∥ profiles between MER (blue, light blue) and KER
(magenta,red) before (dashed lines, 0.3s) and during (continuous lines, 0.9s) the applied
external ECCD.

in their correct time-scales caused by physical events during the experiment. Thanks to the

closed loop introduced (figure 6.1), the KER provides improvements to the reconstruction

of single time instants, as shown above, but also to the full dynamic evolution as discussed

in the remaining part of this section. From t ∼ 1.2s an NTM develops causing the central

temperature to slowly drop in ∼ 100ms (figure 6.11). This evolution is detected in real-time by

the XTe measurement of the central Te (green) and followed by the RAPTOR observer (red) in

the correct time scale thanks to the EKF. As a direct consequence, the neoclassical conductivity

σ∥ in the Ohm’s law, which scales as ∝ T 3/2
e , drops in the central region ρψN < 0.5 (lines

from red to yellow). The j∥ profile reconstructed by the KER follows this expected evolution.

Indirectly this is also an example of a dynamical model, the current diffusion equation, that

supplements the missing diagnostic for the internal plasma current density profile. The

evolution of standard MER profiles (lines from blue to teal) are also shown for comparison.
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Figure 6.10 – Shot 62958@0.9s. Relative poloidal flux map difference ∆ψ(R, Z ) = 100∗ (ψK ER −
ψMER )/ψMER in percentage (green to yellow colormap), with ρψN = 0.5 surface (blue) and last
close flux surface (red).

Figure 6.11 – Shot 62958. From left to right: comparison of the evolution of central Te

form real-time XTe and RAPTOR estimation during NTM formation and locking; evolution of
neoclassical conductivity σ∥ during the event (from red to yellow); reconstructed evolution of
j∥ from KER (red to yellow) and MER (blue to teal).

6.3.4 Estimate Te /Ti ratio from matching the total kinetic energy between equi-
librium reconstruction and transport solution

In the absence of real-time Ti measurements and reliable transport modeling for this quantity,

we propose in this section an approach to estimate the Te /Ti ratio within the implemented

real-time KER, avoiding in this way to provide it as an given fixed input. This is based on the

heuristic assumption that the magnetic measurements all together retain reliable information
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on global plasma parameters such as the total kinetic energy Wk , i.e. the volume integral of

the total plasma pressure profile p. Moreover, among the free parameters to be imposed in the

transport modelling (Ze f f , transport coefficients, ...), Te /Ti influences the most the estimate

of the total pressure of the transport code, Te and ne are constrained by the available real-time

measurements in our implementation.

As discussed in this chapter, we consider p ′
LIU = αp ′

R AP , T T ′
LIU = βT T ′

R AP . Again we let α ,

β be found in order for the equilibrium solution to best match the magnetic measurements.

From the total plasma pressure of the equilibrium reconstruction pLIU , we compute the total

stored energy Wk,LIU . In this approach, differently to section 6.2.2, we add a PI (proportional

integral) [Ogata and Yang 2010] controller that changes the Te /Ti input of the transport

code such that Wk,R AP matches Wk,LIU . In this way the magnetic measurements are used to

constrain Wk,LIU which is then used to estimate Te /Ti and ensure consistency of the total

stored energy between the equilibrium and the transport codes.

In figure (6.12) we compare the results obtained with Te /Ti = 4, as used during the experiments,

and an offline re-simulation using a PI controller. The top figure compares the total stored

energy Wk for the case of Te /Ti = 4 (black line LIUQE, blue line RAPTOR) and the estimation

with the PI controller technique (green line LIUQE, red line RAPTOR). The middle figure shows

the obtained α and β coefficients, dark/light green for the case of Te /Ti = 4 and dark/light

blue for the estimate with the technique explained in this section. The bottom figure shows

the Te /Ti ratio obtained from the PI controller.

As a result, the PI controller is effectively changing the Te /Ti ratio in order to make RAPTOR Wk

(red line top figure) match the LIUQE one (green line figure). This results in α, β coefficients

of the simulation using this technique (dark/light blue middle figure) closer to 1 with respect

to the case Te /Ti = 4 (dark/light green middle figure). This confirms that the value Te /Ti =
4 used during the TCV discharge provided pressure profiles not consistent with magnetic

measurements.

The controller is forced to provide Te /Ti between 1 and 4, the typical values found in TCV,

at least for cases without direct ion heating as for the discharge presented in this paper. In

particular we do not allow Te < Ti since in this discharge we expect dominant electron heating.

During the first 0.3s, the controller would request a ratio lower than the minimum bound,

explaining the poor matching of Wk during this time interval.

In previous sections we chose to fix Te /Ti ratio equal to 1.2 during the ECCD phase and 1.4

otherwise (from comparison with offline simulations) which provided results similar to the

ones obtained with the technique proposed in this section.

As a last caveat, we would like to point out that magnetic measurements are sensitive to the

total plasma pressure including supra-thermal components and thus Wk,LIU can contain a

supra-thermal contribution as well. Without a proper description of those components in

the transport model, this method could still be used yielding an effective ion temperature
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Figure 6.12 – Shot 62958. Comparison between KER with constant Te /Ti = 4 and with Te /Ti

controlled by PI controller aiming at Wk consistency between LIUQE and RAPTOR as explained
in section 6.3.4. Top figure: Wk comparison between Te /Ti = 4 (blue RAPTOR , black LIUQE)
and with PI controller (red RAPTOR, green LIUQE). Middle figure: α, β comparison between
Te /Ti = 4 case (dark/light green) and re-simulation with PI controller (dark/light blue). Bottom
figure: Te /Ti estimate from PI controller case.

but at the cost of a reduced fidelity in particular when computing quantities depending on Ti

such as the energy transfer between ions and electrons or the bootstrap current. Additionally

these supra-thermal pressure components could be anisotropic whereas LIUQE assumes an

isotropic pressure. No significant supra-thermal pressure nor anisotropy are present in the

discharge presented here. Modelling for fast ions should be included in the transport code as

done in ASTRA in the off-line reconstruction.

6.4 Limitations of current approach and outlook

We have shown that the formulated KER in 6.2.2 can be implemented in real-time with very

little modifications to both the equilibrium reconstruction and transport codes. The present

technique has several limitations in part due to practical constraints in TCV. We summarize

them and propose improvements since they are typical of what is needed in present and future

machines.

The electron density ne profile in the current implementation is computed by solving the

diffusion equation constrained by the FIR measurement and fringe jumps can be avoided
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thanks to the model-based approach included in RAPDENS [Blanken et al. 2018]. However

using the FIR diagnostic is less precise than using Thomson scattering [Arnichand et al. 2019].

As an example in shot 62958 at 0.9s, the FIR measurements provides an edge steep gradient

feature (figure 6.7 bottom) which is not confirmed by the Thomson scattering measurements.

The electron temperature Te profile in the current implementation is computed by solving the

electron heat diffusion equation. Only the central value of the temperature is constrained by

the real-time XTe estimation. Therefore, localized features (H-mode pedestal or flattening due

to an internal mode) cannot be captured unless included somehow in the predictive modeling

(which is the case for RAPTOR but this was not tested here).

Both Te and ne real-time reconstruction will benefit from the real-time Thomson scattering

system, and such a system is planned to be commissioned in the coming campaign on TCV.

Eventually an EKF technique will be implemented to combine the 1D diffusion modeling

with the real-time Thomson measurements as done for the FIR in the current approach. In

parallel, the predictive capability should be improved as well, in particular regarding the

transport coefficients. RAPTOR can already include transport coefficients obtained from

neural networks trained on gyrokinetic simulation results [Citrin et al. 2015] and this should

be included in our approach as well which will help applying it to other machines.

The parallel current density ( j∥) is obtained by solving the current diffusion equation (eq.

(2.56)). Unfortunately no internal measurements (MSE, polarimetry) are available at present

in TCV neither to constrain the modeling nor to confirm it. In other tokamaks these diagnostics

are used to constrain the equilibrium solution directly, also in real-time as in [Lao et al. 2005;

Brix et al. 2008; Qian et al. 2016; Li et al. 2011; Coelho et al. 2009; Holcomb et al. 2006].

In principle, real-time MSE measurements can also be included in RAPTOR with the EKF

technique as described in [Messmer et al. 2018]. We favour the EKF approach when eventually

porting this tool to other tokamaks that have real-time MSE measurements, or other relevant

diagnostics in general.

An improvement on the description of the current sources can be obtained making use of

the real-time capable ray tracing code TORBEAM [Poli et al. 2018], instead of the Gaussian

deposition model adopted in this chapter. This code has already been coupled in real-time to

RAPTOR in AUG and TCV and provides the real-time deposition location and deposited power

of the ECRH sources.

The lack of modelling for the fast-ions contribution from external sources is the main missing

feature for the transport modelling with RAPTOR in the present implementation, with respect

to the off-line analysis performed with ASTRA. A real-time capable code for simulating the

effects of NBI sources (RABBIT, [Weiland et al. 2018]) will also be included in the near future.

Another important aspect that has not been considered in the current implementation is the

internal profile crash due to the presence of sawtooth instabilities. This leads, in the present

implementation, to non-physical central safety factor much below 1. In [Fischer et al. 2019] it
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was shown that the CDE coupled to the equilibrium solution is able to reproduce the measured

q-profile evolution associated to a sawtooth crash, when sawtooth-induced current relaxation

is accounted for by reconnection models [Kadomtsev 1987], and the fast ions contribution is

correctly modeled. These reconnection models are already implemented in RAPTOR [Piron

et al. 2017] but were not used yet in this analysis.

The fast particle contribution to the current drive and the total pressure has not been consid-

ered in the current approach, however the previously mentioned RABBIT code [Weiland et al.

2018] includes these effects.

In the first results presented, Ti profile is assumed to be proportional to Te and the propor-

tionality constant is considered as a parameter to be specified a priori. A sensitivity analysis

revealed that the j profile reconstructed by the transport solver is not very sensitive to this

parameter, since mainly Te is important for σneo , jeccd and jbs . However, a wrong choice of

this parameter leads to a poor estimate of the total plasma pressure in the transport solver. To

mitigate this problem we let p ′ free to be scaled in the equilibrium solver by the coefficient α

in order to match the magnetic measurements in the least squares sense. Hence, α different

than 1 indicates that the total plasma pressure of the transport solver is not consistent with the

magnetic measurements. Another possible approach is to include the Ti evolution equation

in case a reliable transport modeling is available and/or benefit directly from CXRS real-time

measurements if available. In the absence of that, another solution is to adjust in real-time

the Te /Ti ratio in order to match the total stored kinetic energy Wk between the equilibrium

solution and transport solution. This approach is detailed in section 6.3.4 and was found very

promising but has limitation in presence of fast-ions contribution.

The ni profile is presently considered to be proportional to ne in order to respect the quasi-

neutrality assumption given the knowledge of effective charge Ze f f . The lack of a reliable

estimation of Ze f f is shared with the post-discharge implementation analysis. In other toka-

maks more precise estimate from charge exchange diagnostic may be available, which can

help in its identification. A possible solution in real-time could be estimating Ze f f to match

the loop voltage between the current diffusion and the equilibrium reconstruction as in [Felici

2011]. In the off-line analysis, this was estimated from matching the loop voltage on an integral

stationary state current diffusion equation as discussed in Appendix B. Models to study the

radial impurity transport are under investigation but not yet sufficiently mature to consider

their use in real-time. More consistent approach will be investigate for example to consider

Ze f f as one of the many free-parameters to be estimated from the reconstruction problem

as done in [Boyer et al. 2019]. This would however add non-linearities to the optimization

problem making it more difficult to solve. The estimation of Ze f f is an active field of research

so for the moment in the current implementation imposing a priori constant value based on

results from post-discharge analysis is the best we can obtain at this stage.

To conclude this section we would like to comment on one of the most natural continuation

of this work. In [Messmer et al. 2018] the LIUQE and RAPTOR codes, without a self-consistent
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coupling, were used in TCV to develop a model predictive control technique to control ι

profile and β. In the present paper we did not close the loop with the real-time controllers

yet. However, the difference between the ι profile between LIUQE and RAPTOR observed in

[Messmer et al. 2018] is now resolved thanks to the achieved KER. Moreover, the RAPTOR

results depend on the geometrical coefficients given by LIUQE which non-linearly depend on

the ι profile of the latter. Therefore, having consistent profiles in LIUQE removes one source

of uncertainty for the ι estimation of RAPTOR which is the only estimate that the controllers

rely on due to the lack of direct measurements of the current density profile in TCV. For this

low plasma current discharge the difference is not expected to be significant, but we argue

that it might become important in case of hybrid or reversed shear scenarios for example. A

dedicated investigation will be carried out on the influence of KER to the performance of the

real-time profile controllers in particular for advanced scenarios.

6.5 Conclusions

Whenever an accurate reconstruction of the internal flux surface shapes and plasma profiles

is required, external magnetic measurements are not sufficient and kinetic equilibrium re-

construction should be addressed, as shown in section 4.6 especially when internal profile

features are present due to both external control sources or plasma transport physics. This is

particularly true for high performance scenario where these features are present "by design"

as intrinsic component to achieve desired performance. For example turbulent transport

depends on the safety factor and its derivative in advanced scenarios. With this aim in chapter

5 we showed the implementation of KER for post-discharge analysis in TCV.

However, to achieve and maintain the performances required for future tokamaks, such as

ITER, a real-time control of the kinetic profiles but also supervisory control functionalities

such as plasma monitoring for disruption avoidance will benefit from the improved quality of

the reconstructed plasma state.

In this chapter we implemented and tested during TCV plasma operation a real-time kinetic

equilibrium reconstruction. New challenges had to be faced compared to the post-discharge

analysis, related mainly to the reduced number of measurements available and the require-

ment to achieve computational time faster than the diffusion time scales of the kinetic profiles,

which is particularly stringent for the relatively small tokamak TCV.

We proposed a simple coupling suited in particular for real-time application to allow providing

internal profile information to the equilibrium problem. This is based on using the estimation

of the internal profiles from the transport modelling and real-time measurements as basis

functions for p ′ and T T ′ to be used in the solution of the equilibrium. Only two coefficients

for the basis function expansion, one for p ′ and one for T T ′, are then left free to be re-scaled

to match the external magnetic measurements in the least squares sense.

The choice of the coupling technique proposed was based on the good results obtained with
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the off-line KER (previous chapter) and aimed to meet the real-time computational target.

When tested on the TCV real-time control system, it required negligible additional compu-

tational time with respect to running the equilibrium and transport codes independently.

Nevertheless it enables the full freedom for functional dependence while keeping small num-

ber of free coefficients. Furthermore, our results show that a tight coupling between the codes

is not strictly necessary for real-time purposes, allowing their independent development. The

coupling technique proved to converge in few iterations and to provide globally correct p

and j∥ evolution for the equilibrium solution, while accurate reconstruction of local features

depends more on the limitation of the diagnostic set.

We stress the importance to be able to obtain robust estimation of the plasma state, especially

in real-time when the control algorithm and supervisory control rely on this reconstruction.

For this reason we always prefer to perform the reconstruction of the kinetic profiles by merg-

ing the information of a forward transport model with the available real-time measurements,

in order to always have at least an estimation, prevent non-physical behavior of potentially

failing diagnostics but at the same time correct the error in modelling with the available

measurements. This is achieved by the RAPTOR code (estimating Te and j∥) and RAPDENS

code (estimating ne ) exploiting the extended Kalman filter technique.

For the first time, kinetic equilibrium reconstruction has been performed in real-time during

tokamak operation, coupling consistently an equilibrium reconstruction code (LIUQE) with

transport codes (RAPTOR and RAPDENS) used as state observer, thanks to the simple coupling

technique developed. This technique is directly applicable to other devices and indeed its

implementation in ITER Plasma Control System Simulation Platform has started.

We also compared the results of the KER with the real-time standard magnetic equilibrium

reconstruction routinely performed in TCV, which considers external magnetic measurements

only, for cases where we expected internal plasma profile modifications due to physical events.

In all cases, contrary to MER, the implemented KER was able to reproduce these expected

modifications, improving not only the reconstruction on a single time instant but also allowing

the equilibrium solution to follow the time evolution of internal profiles driven by the transport

modeling and real-time measurements. Moreover, the limitations of the approach together

with the improvements expected in future developments have been discussed in details.

To conclude we would like to notice that, thanks also to the suite of forward codes developed in

Chapter 2, we will aim to have the full pipeline from simulating the plasma behavior in many

different conditions, both on static instant and during the most important transient phases, to

generate synthetic data and eventually modelling the measurements and process noise, and

then perform magnetic and kinetic equilibrium reconstruction both with the off-line approach

and the real-time simplification hypothesis. A proof-test example of that was shown for a static

free-boundary equilibrium case during standard H-mode scenario in ITER. This will allow us

to study in depth the improvements provided by kinetic equilibrium reconstruction, knowing

the real solution which generated the data, and most importantly to test the relevance of every
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simplification hypothesis adopted in performing post-discharge and real-time reconstruction.

This will be an extremely useful analysis to assess the accuracy and robustness of all our suite

of codes in primis for TCV but also for other devices.
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7 Conclusions

This thesis focuses on two topics directly relevant for tokamak operation: the development

of a tokamak simulator and the consistent reconstruction of plasma equilibrium and kinetic

profiles both in post-discharge analysis and in real-time.

"LIUQE-suite" for free-boundary static/evolutive and forward/inverse problems

A fully Matlab-based suite of routines called "LIUQE-suite", sharing the same optimized low

level routines, has been developed at SPC-EPFL addressing multiple problems related to the

free-boundary equilibrium. Before this thesis it included the computation of the coil currents

for a sequence of desired plasma equilibria (FBT code), the MER from synthetic/experimental

data both in post discharge analysis and in real-time (LIUQE code). In this thesis the optimized

low level routines were exploited aiming to develop a fast control oriented simulator to test,

design and verify the controllers for plasma shape, position and vertical stability control.

Free-boundary Grad-Shafranov Evolutive (FGE) code The FGE code developed in this thesis,

and presented in chapter 4, solves the evolution of the current, through plasma state equi-

libria, coupling a 0D resistive evolution of the total plasma current obtained from the radial

integration of the flux surface averaged current diffusion equation. The novelty, among the

several other codes available in literature to perform similar analysis, stands in the numerical

monolithic coupling of the current diffusion equation with the other equations of the system.

A novel linearization of the system, on approximate free-boundary equilibrium solutions,

is presented including the 0D current diffusion equation. This enables faster approximate

simulations and the design of linear controllers. Previously, either the linearization of the free

boundary without the CDE or with the CDE but for fixed plasma displacement were presented

in literature. We validated FGE, comparing the linear growth rates of vertical displacement

events, against the RZIP model which assumes rigid displacement of the plasma. The CDE

model was further validated, after coupling FGE to the "hybrid" real-time control system used

for position control in TCV, against the actuator requests of a re-simulation of TCV experi-

ment, finding good agreement in all cases. Many potential uses are foreseen including adding
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progressively more physics, addressing reconstruction problems with dynamic evolution of

the current in conductors during transient plasma events and develop controllers for unusual

plasma shapes such as doublets in TCV.

Free-boundary Grad-Shafranov Forward Static (FGS) code The FGS code developed in this

thesis solves the free-boundary equilibrium forward static equilibrium problem given the

currents in the external conductors and specification of the plasma profiles. The code was

used as a starting point to investigate different formulations and aspects of the magnetic

equilibrium equilibrium (MER) problem. A generic MER solver, for the related non-linear

least-squares optimization problem, was developed starting from FGS to investigate the

impact of some simplification hypotheses adopted by LIUQE, presented in section 4.5: the

non-physical numerical stabilization strategy, which results in a vertically shifted solution that

does not strictly respect the Grad-Shafranov equation; neglecting the variation of the synthetic

diagnostics with respect to the plasma flux map when minimizing the least-squares errors

relative to the measurements, which does not allow finding a proper minimum of the least-

squares problem. All these contributions when tested on noise-free and real experimental

data provided small modifications to the final reconstruction of the plasma shape and profiles.

We notice that the purpose of the project was not to develop another code solving MER for the

LIUQE-suite, rather to test and confirm the robustness of the LIUQE one.

Uncertainty quantification for MER solution is useful since this analysis is ubiquitous as a

starting point for many other analyses, for example for kinetic equilibrium reconstruction

discussed later. The Bayesian approach provides a formal framework to propagate correctly

the uncertainties of all measurements to the final reconstructed plasma state. However, due

to the necessity of solving many times the free-boundary equilibrium problem in order to

sample from the posterior distribution, few applications for the MER problem are found

[Von Nessi et al. 2013, 2014]. A fast forward solver could enable to bring this analysis to a more

routine use. We used FGS to implement, only as a proof-of-principles, a Bayesian approach

and compute the uncertainty propagation of the magnetic equilibrium reconstruction. We

confirmed in addition, as a benchmark, when this Bayesian approach coincides with the

frequentist approach.

FGS and FGE base their numerical solutions on the Jacobian Free Newton Krylov (JFNK) solver,

which combines the stability properties of Newton algorithm and does not need the explicit

knowledge of the Jacobian of the problem. The latter is not known analytically for the free-

boundary equilibrium problem in continuous space representation, due to the non-linearity

of finding the plasma boundary. Thanks to the flexibility of the JFNK, all the forward and

reconstruction problems developed in this thesis, once formulated as monolithic root finding

problem, could be solved with the same solver. Another novel contribution of this thesis is

also the derivation of the analytic Jacobian in Appendix C for the free-boundary problem,

specific to the finite differences discretization, which can enable the use of a standard Newton

method. This was inspired by [Heumann et al. 2015] where the Jacobian was obtained for the

finite elements discretization. The implementation was not attempted in this work, but could
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potentially speed up FGS and FGE.

Kinetic equilibrium reconstruction (KER)

Post-discharge KER. Kinetic Equilibrium Reconstruction is the consistent reconstruction

of the plasma shape and kinetic profile making use of free-boundary equilibrium, external

magnetic measurements, internal kinetic measurements and modeling.

Starting from the integrated data analysis tools available before this thesis, which did not

consider using internal profile information to constrain the equilibrium reconstruction, we

formulated the KER problem suited for the diagnostic set of TCV for post-discharge analysis,

carefully highlighting the simplification hypotheses and criticisms. What is implemented for

TCV is very similar to the Kinetic-EFIT approach [Meneghini et al. 2015].

The implementation is then based on a simple loop performing in order: the equilibrium

reconstruction code with LIUQE, map the Thomson scattering and CXRS (when available)

measurements into 1D profiles, compute the current and heat deposited by gyrotrons with the

TORAY-GA, compute diffusion equation and neutral beam deposition with ASTRA, provide

the plasma profiles information to the equilibrium reconstruction.

We compared in chapter 5 MER against KER, finding that for most of the TCV experiment

analyzed in this thesis, which are low performance discharges, KER does not provide important

modifications to the internal flux surface shape, hence to the diagnostic mapping and to the

solution of the transport equations. Internal changes of the flux surfaces can be appreciated

for external current drive scenarios or internal transport barrier features. These can still be

relevant when KER is used for stability analysis or gyrokinetic studies. However several sources

of uncertainties due to the limited set of diagnostics, simplification hypothesis and model

uncertainties such as in particular large uncertainty on Ti and Ze f f , have effects on the final

solution potentially at the same order as the improvements obtained by having a consistent

equilibrium. This indicates that KER implemented in TCV, while globally improving MER

by providing physically expected features to the pressure and current density profiles of the

equilibrium solution, is not conclusive, still has significant uncertainties, and would largely

benefit from an improvement of the diagnostic set and/or physical models as well as a proper

sensitivity and uncertainty propagation analysis, as for example performed in the integrated

data analysis IDA [Fischer et al. 2010]. On the other hand, the possibility for routine use of KER

analysis developed in this thesis provides insights on which diagnostics and physics models

need first to be improved and/or verified.

Real-time KER. Internal plasma profile features, a natural characteristic of high performance

operation, need to be maintained in real-time during the plasma experiment in order to

achieve the desired performances. Moreover they are associated to the trigger of plasma

instabilities which degrade the plasma performances and might damage the tokamak. KER is

therefore useful also in real-time to improve the reconstruction of the plasma state in order to
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inform the real-time controllers for profile shaping and plasma supervision. However the real-

time implementation requires to solve additional challenges due to the tight computational

time requirements, the reduce set of diagnostic availability and their potential degradation

during experiment.

In this thesis, for the first time, KER was performed in real-time during tokamak operation

[Carpanese et al. 2020], coupling a free-boundary equilibrium code with a flux surface averaged

transport code. The results were presented in chapter 6. The equilibrium reconstruction code

LIUQE receives the current density and pressure profiles from the transport code RAPTOR

[Felici et al. 2011] and from RAPDENS [Blanken et al. 2018]. These combine the evolution of the

flux surface averaged current density equation, the electron temperature and electron density

diffusion equations with the available kinetic measurements, making use of the extended

Kalman filter technique.

We developed a simple technique to couple the free-boundary equilibrium solution with

the transport code, suited for real-time application, and applied KER during TCV operation

showing how the plasma profiles in LIUQE follows the dynamics of the internal profile features

better than MER. We stated already for off-line KER that many source of uncertainties are still

present in the current implementation, which for the real-time cases are enhanced by the

smaller set of diagnostics available. What is shown in this thesis has to be intended therefore

as a demonstration that KER can be performed in real-time, especially in bigger tokamaks

such as ITER where resistive time scales are much longer than in TCV. The accuracy will be

progressively improved including more and more diagnostics and better physics models in

the formulation.

In conclusion, this thesis provides significant improvements to both the kinetic equilibrium

reconstruction for the post-discharge and real-time analyses, developing techniques which

could be of direct use for future reactor relevant experiments, where internal profiles feature

is a necessary requirements to achieve and control the desired performances. Moreover, the

predictive solver developed will be the basis for many new applications in TCV, where highly

shaped plasmas can be obtained and need to be controlled accurately.
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A (Extended) Kalman Filter for parame-
ter and state estimation

The Kalman Filter (KF) [Kalman 1960] is an algorithm to estimate the state x and parameter θ of

a dynamical system combining a forward model with the available measurements. It is part of

the so called Bayesian filters family, which are techniques to estimate recursively the posterior

distribution p(xk |y1:k ) for the state, at the time instant k, given the measurements y1:k up to k.

The parameter θ estimation can be included by considering them as extra states. In this thesis

it was used in the implementation of the real-time KER [Carpanese et al. 2020] by RAPTOR

[Felici et al. 2011] and RAPDENS [Blanken et al. 2019], to estimate the Te (ρ, t) and ne (ρ, t)

from the X Te and F I R diagnostics. However it is not only suited for real-time application but

it can be exploited in every reconstruction problem that involves a dynamic forward model,

such as KER or the estimation of Ze f f as in Appendix B. We provide in this section a simple,

not complete, explanation to help the reader in understanding the corresponding part of the

thesis and the connection with the Bayesian inverse problem described in section 3.1.2. The

content of this Appendix is largely taken from [Särkkä 2013].

To perform Bayesian inversion for a dynamic model, one could in principle use the Bayes’ rule

to compute the joint posterior distribution given all the states and all the measurements at all

the time slices.

p(x0:T |y1:T ) = p(y1:T |x0:T )p(x0,T )

p(y1:T )
(A.1)

where x0:T = {x0, ..., xT } is the estimate of the state and y1:T = {y1, ..., yT } the observed mea-

surements. As in section 3.1.2 the likelihood p(y1:T |x0:T ) is the probability of experiencing

the measurement y1:T given the knowledge of the state x0:T , the prior p(x0,T ), describes our

prior belief on the state, and the evidence is defined as p(y1:T ) = ∫
p(y1:T |x0:T )p(x0:T )d x0:T .

Unfortunately when the number of time steps increases the dimensionality of the posterior in-

creases as well, making the computational problem intractable, particularly when the forward

model contained in the likelihood is numerically expensive to compute.

First of all, one needs to reduce the correlation between time steps. This is achieved by

assuming Markovian processes, where the state xk depends only on the previous time step
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xk−1, defined in terms of transition probability distribution p(xk |xk−1). Suppose to have a

forward deterministic model such that xk = F (xk−1, vk−1) and assuming that the model has

no error, then p(xk |xk−1) = δ(xk −F (xk−1)), where δ is the Dirac distribution. If the model

is assumed to have errors, for example some of the parameters present white noise, then

p(xk |xk−1) would be the corresponding distribution function. In case of RAPTOR for the real-

time KER for example, F (xk−1, vk−1) is the temperature diffusion equation. An additive white

noise is assumed, hence p(xk |xk−1) ∝ N (F (xk−1),σ) and σ is a given input which describes

the process uncertainty.

Secondly the purpose of the Bayesian filter is not to estimate the full distribution eq. (A.1), but

only the marginal posterior distribution recursively,

p(xk |y1:k ) k = 1, ..,T (A.2)

where we notice that xk , differently then eq. (A.1), is only considered at the instant k and

depending on all the previous measurements up to k. The idea behind is to use as a prior the

posterior computed at k −1, in order to compute the marginal posterior at the instant k. The

recursive steps, which we will refer to as Bayesian filter equation, are given by

1. Initialization: Initialize a prior distribution p(x0).

2. Prediction: Compute the predictive distribution of the state xk

p(xk |y1:k−1) =
∫

p(xk |xk−1)p(xk+1|y1:k−1)d xk−1 (A.3)

3. Update step: Given the new measurement yk , use the Bayes’s rule

p(xk |y1:k ) ∝ p(yk |xk )p(xk |y1:k−1) (A.4)

The Kalman Filter (KF) is a particular closed form solution of the Bayesian filter, when the

forward model governing the state evolution F (xk−1, vk−1) is a linear function of the previous

state and inputs. A Gaussian noise is assumed both for the measurements and the process.

The Extended Kalman Filter, as the name suggests, is the extension of the KF to non-linear

models, which is based on local linearization of F (xk−1, vk−1).

To clarify it, we make the example of the estimation of Te with RAPTOR. In order to use the

EKF one needs:

• A forward dynamic model xk = F (xk−1, vk−1), the Te diffusion equation, able to pre-

dict the evolution of the state xk = Te (ρ, tk ), given the state at k −1, the inputs vk−1,

represented by the transport coefficients, the heat sources and boundary condition.

• A model for the simulated measurements yk = H(xk ), which provides the synthetic

diagnostic from the knowledge of the state xk . For the case of the Te this is the value of
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the central temperature to be compared in real-time to the estimation from XTe soft

X-ray measurements.

• Assume additive Gaussian type of noise both for the measurements and the process

noise. This defines the likelihood p(yk |xk ) and the state transition probability p(xk |xk−1)

as a Normal distribution. The covariance matrices Q,R, which potentially can be time

dependent, describe respectively the noise content of the process, hence of the Te

diffusion equation, and of the measurements. The matrices Q,R are given inputs to

the Kalman Filter. They correspond to provide assumptions of the type of error. In the

frequentist interpretation this correspond to providing the weights for the χ2. Indeed

most of the time the covariance matrix is assumed simply as a diagonal matrix with the

standard deviation of the different measurements in the diagonal.

• The EKF assumes a marginal posterior distribution p(xk |y1:k ) = N (xk |mk ,Pk ), where xk

is the prediction for the forward model F . The goal of the EKF is therefore to compute

the mean mk and the covariance matrix Pk of the marginal posterior, in order to respect

the Bayes filter equations eq. (A.3),eq. (A.4). This means to compute an estimate T̂e (ρ, t )

including its uncertainty estimation.

The EKF update rule for the computation of mk can be expressed as,

mk = xk +Kk ∗ (yk − ỹk ) (A.5)

(A.6)

where Kk is called the Kalman Filter Gain, which depends on the previous state mean mk−1, the

covariance matrices Q,P and all the previous measurements, and guarantees that p(xk |y1:k ) =
N (xk |mk ,Pk ). A similar equation can be written for the state covariance Pk . We refer to [Särkkä

2013] for the actual definition of the Kalman filter gain.

In summary, to perform parameter and state reconstruction with a Bayesian approach, when

the model involved is a dynamic model, Bayesian filters, such as EKF, allow to obtain a recursive

estimation of the posterior distribution function. This provides at the same time an estimate

of the parameters and the state which combines the information from the forward models

and the measurements, providing also an estimate of the uncertainty propagation. The EKF

was implemented in the code RAPTOR and RAPDENS before this thesis to estimate Te and ne

in real-time. We are planning to apply this to FGE to estimate the evolution of the current in

passive structures during transient events, and potentially also to perform KER.
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B Estimate Ze f f using the current diffu-
sion equation

In most general cases, as discussed in eq. (3.14), Ze f f is considered as one of the free-

parameters to be estimated from kinetic equilibrium reconstruction in order to minimize the

least-squares error composed by both magnetic and kinetic measurements constrained by the

several transport and equilibrium modelling. However one can estimate Ze f f from an inverse

problem starting only from the current diffusion equation, possibly under the assumption of

stationary-state. We discuss here this approach since it is at the basis of the SPC-ICDBSeval

[O.Sauter 2016-2020] routine often used in the KER implemented in TCV (section 3.3).

As always, when deriving an inverse problem, we start from the forward model for the current

diffusion equation [Hinton and Hazeltine 1976].
σ∥(Ze f f )

(
∂ψ
∂t − ρ̂Φ̇B

2ΦB

∂ψ
∂ρ̂

)
= T 2

16π2µ0Φ
2
B ρ̂

∂
∂ρ̂

(
g2g3

ρ̂
∂ψ
∂ρ̂

)
− B0

2ΦB ρ̂
V ′
ρ̂

[ jbs(Ze f f )+ jcd ](
g2

4π2µ0

1
V ′
ρ̂

∂ψ
∂ρ̂

)∣∣∣∣
ρ̂=1

= Ipl (t ), ∂ψ
∂ρ̂

∣∣∣∣
ρ̂=0

= 0
(B.1)

We consider that Φb(t), T (ρ, t), g2(ρ, t),g3(ρ, t),B0(t),V ′
ρ̂

are known, for example provided

by the magnetic equilibrium reconstruction with LIUQE. Also Ip (t) is given either directly

from the measurements or from the MER with LIUQE. The external current drive jcd (ρ, t ) is

assumed to be known including both the contribution of the gyrotrons and the neutral beam

when used.

The previous eq. (B.1) contains the parameter Ze f f , which enters both in the σ∥ and the

bootstrap current contribution jbs , and with a smaller dependency to jcd which we neglect in

this derivation. We consider here Ze f f (t ) is constant over the radius. The inverse problem aims

therefore to reconstruct the unknown free-parameter Ze f f (t) given a set of measurements.

We consider only one measurement 〈∂ψ̃B

∂t 〉t , which is the time derivative of the ψ̃B obtained

from the equilibrium reconstruction where with <>t we indicate a time average to remove

high frequency oscillation ( equivalent to applying a non-causal low pass filter to the signal).

We use the symbol ∼ to indicate that it is considered as measurement for the system. 〈∂ψ̃B

∂t 〉t is

typically close to the time derivative of the flux loop measurements, hence sometimes this
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Appendix B. Estimate Ze f f using the current diffusion equation

measurement is directly used.

As discussed several times starting from section 3, there are several ways to combine the

forward model and measurements to estimate Ze f f . Being a dynamic forward model, the

Extended Kalman Filter technique, explained in appendix A, can be applied as performed for

this specific problem in [Boyer et al. 2019]. Another option is to use the frequentist approach

leading to non-linear least-squares problem,

σ∥
(
∂ψ
∂t − ρ̂Φ̇B

2ΦB

∂ψ
∂ρ̂

)
= T 2

16π2µ0Φ
2
B ρ̂

∂
∂ρ̂

(
g2g3

ρ̂
∂ψ
∂ρ̂

)
− B0

2ΦB ρ̂
V ′
ρ̂

jni(
g2

4π2µ0

1
V ′
ρ̂

∂ψ
∂ρ̂

)∣∣∣∣
ρ̂=1

= Ipl (t ), ∂ψ
∂ρ̂

∣∣∣∣
ρ̂=0

= 0

Ze f f = argmin(< ∂ψ̃B

∂t >t −∂ψ
∂t

∣∣
ρ̂B

)2

(B.2)

where ∂ψ
∂t

∣∣
ρ̂B

is computed from the solution of the CDE equation. Many different measure-

ments dependent on the state could eventually be added.

We discuss here the particular case of eq. (B.2) under stationary state assumptions. We recall

the distinction between the steady-state ∂ψ
∂t = 0 and the stationary state where ∂ψ

∂t (ρ̂) 6= 0 and
∂ψ
∂t (ρ̂) is constant over the radius ρ̂, i.e. ∂

∂ρ̂

[∂ψ
∂t (ρ̂)

]= 0. We call ∂ψ∂t as Vloop , hence Vloop ≡ ∂ψB

∂t .

We consider Φ̇B = 0. We recall the definition of jtor ≡ R0〈 jϕ
R 〉,

jtor = 2πR0
1

16π3µ0Φb

1

V ′
ρ̂

∂

∂ρ̂

(
T

g2g3

ρ̂

∂ψ

∂ρ̂

)
(B.3)

One can show that jtor = 2πR0
d Ip

dV , and Ip (ρ̂) ≡ ∫ V (ρ̂)
0 jϕd Aϕ can be expressed as,

Ip (ρ̂) = T
1

16π3µ0Φb

g2g3

ρ̂

∂ψ

∂ρ̂
. (B.4)

We recall that j∥ ≡< j ·B
B0

>, can be expressed as in eq. (2.38),

j∥ =
2πT 2

B0

1

16π3µ0Φb

1

V ′
ρ̂

∂

∂ρ̂

(
g2g3

ρ̂

∂ψ

∂ρ̂

)
(B.5)

If we want now to compute the total plasma current Ip = Ip (ρ̂B ), from eq. (B.5) and eq. (B.4)

we obtain,

Ip = Ip (ρ̂B ) = T (ρ̂B )
B0

2π

∫ ρ̂B

ρ̂A

V ′
ρ̂

T 2 j∥d ρ̂ (B.6)

where ρ̂B = 1 and ρ̂A = 0. We consider only the stationary state condition ∂ψ
∂ρ̂

∣∣
ρ̂A

= 0, and as-

sume Φ̇B = 0. For a given quantity A(ρ̂) we define formally the functionalΓ(A) = TB B0
2π

∫ 1
0

1
T 2 V ′

ρ̂
Ad ρ̂,

where inside the integration signal T = T (ρ̂), and TB = T (ρ̂B ). This operator is the same as

what will be used in Appendix eq. (G.1) to derive the 0D current diffusion equation without
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the stationary state assumption. The CDE equation eq. (B.2) is written in terms of j∥ and jni

as,

j∥ =σ∥
∂ψ

∂t
+ jbs + jcd (B.7)

We apply the operator Γ to all terms in eq. (B.7) obtaining,

Ip =VloopΩ(Ze f f )+ I∗ni (Ze f f ) (B.8)

where in particular I∗ni = Γ( jbs(Ze f f )+ jcd ), and Ω = Γ(σ∥). The I∗ni is not exactly equal to

the total toroidal current of the non inductive sources, that is why we introduce here the

∗. Providing Ip and Ṽloop = dψ̃B

d t , for example from the equilibrium reconstruction with

LIUQE, eq. (B.8) becomes a non-linear root finding problem for Ze f f (t). This is solved by

the ICDBSeval routine and used to estimate Ze f f in KER performed in TCV and presented in

previous chapters.

The hypotheses considered to obtain eq. (B.8) are sufficient to find the stationary solution for
∂ψ
∂ρ̂ (ρ̂). Indeed calling K (ρ̂) = 2πT 2

B0

1
16π3µ0Φb

1
V ′
ρ̂

, replacing eq. (B.1) into eq. (B.7) one obtains,

∂

∂ρ̂

(
g2g3

ρ̂

∂ψ

∂ρ̂

)
= 1

K

(
σ∥Vl oop + jbs + jcd

)
(B.9)

that can be easily integrated using eq. (B.4) evaluated at ρB as boundary condition.

In summary, under the stationary and Φ̇B = 0 assumptions, provided Ipl , Vloop , the conductiv-

ity σ∥, all the geometrical quantities, the external current drive sources jcd and the formula

for the bootstrap current jbs , ICDBSeval estimates the Ze f f from an integral Ohm’s law and

computes the corresponding stationary state ∂ψ
∂ρ̂ , j∥ and jtor . The Ip is taken from the equilib-

rium reconstruction. The Vloop is either estimated from equilibrium reconstruction as well or

taken from the Vl oop measurements of one of the flux loops close to the plasma boundary.

We would like to comment on the approach adopted by ICDBSeval.

• No reliable measurements of Ze f f are available at TCV at the moment of this thesis.

• The assumption of constant Ze f f over the plasma radius is a strong assumption to be

confirmed.

• The Ze f f dependence enters in many equations of the 1.5D equilibrium and transport

model as seen in section 3.3 and not just in the current diffusion equation. For example

it enters in the quasi-neutrality equation for the estimation of the ni , which affects p.

Choosing to infer Ze f f from the CDE exclusively means implicitly trusting the Ze f f

dependence in this model more than the other.

• Using the approach of ICDBSeval and the stationary state assumption provides a compu-

tationally very cheap estimation of Ze f f (t ). However, using it in KER to run the current

diffusion equation is ASTRA is formally incorrect. Indeed, from the stationary assump-

tion one can obtain directly j∥ from eq. (B.9), which would not be consistent with the
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Appendix B. Estimate Ze f f using the current diffusion equation

time evolving equation. In other words, if the state is truly stationary one could simply

perform KER on a single time slice using j∥ from eq. (B.9) without running the ASTRA

time evolution, if it is not stationary instead a source of inconsistency is introduced.

In conclusion the estimation Ze f f , as already stated in previous chapters, is affected by large

uncertainties, due primarily to the lack of a direct measurement in TCV. Estimating it with the

stationary state assumption as in ICSBSeval provides a reasonable estimate during stationary

state phases and though it is a source of inconsistency when using in the current diffusion

model in ASTRA performing KER at TCV, we use it for its simplicity. A better option would be to

consider instead Ze f f as a free parameter of the global KER problem, making use therefore of

both magnetic and kinetic measurements to estimate with EKF technique or with least-squares

type problem. This however was not attempted during this work.
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C Analytic Jacobian for free boundary
Grad-Shafranov finite differences
discretization
The non-linear problem of finding the plasma boundary in the free-boundary equilibrium

solvers leads to the fact that an analytic Jacobian in continuous space representation has

not been found yet in presence of diverted plasma. However, it is possible to find an ana-

lytic expression gradient for specific spatial discretization as show in [Heumann et al. 2015].

Inspired by that work, we present here the formulation of the analytic gradient specific to

the finite differences discretization used in the LIUQE suite of code discussed in [Moret et al.

2015]. The Jacobian obtained is valid everywhere except exactly at the plasma boundary. The

implementation has not been attempted yet.

We recall first of all the Newton algorithm to find the root x such that F (x) = 0 for a generic

non-linear operator F (x)

(∇x F )

∣∣∣∣
xk
∆x =−F (xk ) (C.1)

xk+1 = xk +∆x (C.2)

In eq. (C.1) with |xk we indicate that the Jacobian ∇x F is evaluated at the iterative solution

xk . To use the Newton algorithm one needs to be able to evaluate the operator F and to know

its Jacobian ∇x F . When implementing the codes FGS and FGE, we avoided this problem

by making use of the JFNK algorithm explained in Appendix D. However the JFNK requires

several evaluations of F for a given Newton step k in order to approximate the application

of the Jacobian on ∆k x, which is the expensive part of the algorithm. If the analytic ∇x F was

known, the Newton algorithm would require only 1 evaluation of F per Newton step.

We state the free boundary equilibrium problem in its discrete form, making use of a slightly

different formulation to eq. (4.7), which will simplify the derivation of the Newton algorithm

in the following. We use the same notation for the spatially discretized problem as in section
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4.2. Given {I a , Ie , a}, find x = {ψy ,ψo ,ψA ,ψB } such that F (x) = 0 where F (x) is defined as,

F (x) =


Dψx +2π

µ0Ry

∆R∆Z I y +2πµ0Ry I e in Y

ψo −Mboe Ie −Mboy Iy in O

ψA −FψA

bo (ψx )

ψB −FψB

bo (ψx )

(C.3)

With Fbo(ψx ) we indicate the operator that extracts the ψA and ψB from the discrete map

ψx . This operator, which will be described in details in the following, is the same one used to

extract RA , ZA ,RX , ZX . As opposed to eq. (4.7) we included ψA and ψB as explicit unknowns,

adding two equations to the system. This is convenient only to understand and simplify

the derivation but can be removed in the implementation by replacing the RA , ZA ,RX , ZX

dependencies in eq. (C.8) directly with the operator Fbo(ψx ). We recall that ψx is not the

flux at the X point but the flux in the X grid, which is X = Y ∪O, hence the full discretized

computational grid including points at the boundary. In eq. (C.3) we do not invert D as

in eq. (4.8). The formulation in eq. (C.3), without inverting the D, was the first tested for

the code FGS. We moved to eq. (4.8) because has the advantages of having only currents as

unknowns, and was found to be better conditioned numerically. However, using D−1 would

also complicate the formulation of the analytic Jacobian and we do not discuss the case in this

section.

The goal is to be able to compute analytically ∇x F (x) , for x = {ψy ,ψo ,ψA ,ψB }. In the following

we show this for Iy , the application of D to ψx , hence Dψx , and Fbo , which are the most

complicated part of F . We start by recasting the Iy into a more convenient form. We recall its

definition,

Iy ≡ Iy (Ri , Zi )∀(Ri , Zi ) ∈ Y =
{ ∑Ng

g=1 ag Rνg gg (ψ̂(Ri , Zi ))∆R∆Z ∀{Ri , Zi } ∈ P

0 ∀{Ri , Zi } ∈ (P )c
(C.4)

where Y is the discrete computational grid without the boundary points contained in O. P is

the discrete region where the plasma current Iy 6= 0 and (P )c its complement in Y . We refer

to fig. 4.1 for details. Moreover gg and ag with g = [1, .., Ng ] are the basis functions for p ′ and

T T ′, and their coefficients, respectively. We will specify later some functional forms for gg , for

the moment we consider them to be C 1 functions in 0 < ψ̂< 1. The exponent νg is either 1 or

-1 depending whether a given basis function refers to p ′ or T T ′ respectively.

Looking at fig.C.1a showing an example LCFS in presence of an X point, which is a saddle

point for the flux map. In this there exist a region in Y , called the private flux region (see fig.

C.1a), which is a region without plasma current, i.e. Iy = 0, but where 0 < ψ̂(Ri , Zi ) < 1 due

to the saddle point nature of the X point. To remove these points from P , we separate the

Y domain with a line perpendicular to the segment (RA , ZA)(RX , ZX ) where (RA , ZA) is the

location of the plasma axis and (RX , ZX ) the location of the X point (which is not necessarily

one of the point of the Y grid), and passing through the X point. This is the same approach

used also in LIUQE, FGS, and FGE, where also the case for more X points is considered, [Moret
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et al. 2015]. This can be formally written as,

P = {Ri , Zi }∀(Ri , Zi ) ∈ Y such that (C.5){
0 < ψ̂(Ri , Zi ) < 1

(Ri −RX )(RA −RX )+ (Zi −ZX )(ZA −ZX ) > 0.
(C.6)

We consider the Heaviside function,

H(x) =
{

0 x < 0

1 x ≥ 0
(C.7)

which is a piece-wise continuous function with d H
d x = 0 everywhere except exactly at x = 0

where the derivative is not defined (at least not as a function but only as a distribution). We

can use H to embed the relations which defines P and recast the Iy into a more convenient

form.

Iy (Ri , Zi ) =
Ng∑

g=1
ag Rνg gg

[
ψ̂(Ri , Zi )

]
H

[
1− ψ̂(Ri , Zi )

]
H

[
ψ̂(Ri , Zi )

]
×

×H

[
(Ri −RX )(RA −RX )+ (Zi −ZX )(ZA −ZX )

] (C.8)

valid ∀(Ri , Zi ) ∈ Y . If we define ψy,i =ψy (Ri , Zi ), Iy,i = Iy (Ri , Zi ) with (Ri , Zi ) ∈ Y , we can see

explicitly the following dependencies,

Iy,i = Iy,i (ψy,i ,ψA ,ψB ,RA , ZA ,RX , ZX ). (C.9)

We would like to make some remarks, recalling that the final goal will be to evaluate the gradi-

ent of Iy,i with respect to all its inputs to form the Jacobian of the free-boundary equilibrium

problem.

• We consider in this section that the coefficients of the basis functions are given, hence

they do not enter in the set of inputs for which the gradient will be computed. This

hypothesis can easily be relaxed.

• The eq. (C.9) is C 1 with respect to its inputs everywhere except exactly at the plasma

boundary ψ̂ = 1, at the plasma axis ψ̂ = 0 and on the line separating the private flux

region. Since we will consider the plasma current Iy evaluated only in a set of discrete

points (Ri , Zi ) ∈ Y , and Y is not a flux aligned mesh, all the points of Y will be infinitesi-

mally close to the non differentiable region, but very unlikely on top of them. This could

happen due to numerical finite precision. In those cases one could consider the value

of the gradient to be in one of the to side of the Heaviside function, but we have not yet

test this solution.

• If we were considering the presence of scrape of layer current we could have used,

instead of a Heaviside function, a C 0 smooth function from the plasma region to the 0

195



Appendix C. Analytic Jacobian for free boundary Grad-Shafranov finite differences
discretization

current region. This was not considered in this work.

• IY = 0 outside P and moreover ∂H
∂k = 0 outside the plasma for any input k due to the

properties of Heaviside function H , and in particular
∂Iy (Ri ,Zi )

∂k = 0 everywhere outside P .

• Since s = {RA , ZA ,RX , ZX } only enters in the Heaviside function H , and ∂H
∂s = 0 except

exactly at the points where the argument of H is null, then
∂Iy,i

∂s = 0 everywhere in Y and

not just inside P .

The goal is to compute the Jacobian
∂Iy,i

∂k for all its inputs everywhere in Y . We have already

seen that this is null in all the grid points for {RA , ZA ,RX , ZX }, hence we only need to compute
∂Iy,i

∂ψy,i
,
∂Iy,i

∂ψA
and

∂Iy,i

∂ψB
. Looking at eq. (C.8), since the derivative of the Heaviside function are null

in all grid points, we are left with computing only the contribution of the gg (ψ̂y,i ). Hence,

∂Iy

∂{ψy,i ,ψA ,ψB }
=

Ng∑
g=1

ag Rνg
∂gg (ψ̂i )

∂{ψy,i ,ψA ,ψB }

∏
k

Hk , (C.10)

where we indicate with
∏

k Hk the product of all the Heaviside functions which defines the

plasma region.

We provide as an example the case of the most used basis functions in the LIUQE, FGS, FGE

codes, but this can be easily generalized to any set of C 1 basis functions in ψ̂ ∈ (0,1).

g1,i = g1(ψ̂y (Ri , Zi )) = g1(ψ̂y,i ) ≡ ψ̂y,i −1 = ψy,i −ψA

ψB −ψA
−1 (C.11)

∂g1,i

∂ψy, j
= δi , j

ψB −ψA
(C.12)

∂g1,i

∂ψA
=− ψB −ψy,i

(ψA −ψB )2 (C.13)

∂g1,i

∂ψB
= ψA −ψy,i

(ψA −ψB )2 (C.14)

and

g2,i = g2(ψ̂y (Ri , Zi )) = g2(ψ̂y,i ) ≡ (ψ̂y,i −1)ψ̂y,i = g1,i ψ̂y,i (C.15)

∂g2,i

∂ψy, j
=−ψA +ψB −2ψy,i

(ψA −ψB )2 (C.16)

∂g2,i

∂ψA
=− (ψB −ψy,i )(ψA +ψB −2ψy,i )

(ψA −ψB )3 (C.17)

∂g2,i

∂ψB
= (ψA −ψy,i )(ψA +ψB −2ψy,i )

(ψA −ψB )3 (C.18)

(C.19)

Typically g1 is used as unique basis function for p ′ and g1 and g2 for T T ′. We are now able

to compute
∂Iy,i

∂ψy,i
,
∂Iy,i

∂ψA
and

∂Iy,i

∂ψB
. We note that there is no need to evaluate nor even to define
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(a) Domain regions (b) Grid labeling

Figure C.1

the basis functions outside P since the Heaviside functions in eq. (C.10) will make that

contribution zero.

The operator D is an operator mapping from X → Y grid and represents the Grad-Shafranov

operator discretized with 2nd order finite differences. It was defined in eq. (4.4) and reported

here below for reading convenience,

(Dψx )

∣∣∣∣
(Ri ,Z j )

≡ (Dψx )i , j = (∆z)−2(ψRi ,Z j+1 +ψRi ,Z j−1 +aiψRi+1,Z j +biψRi−1,Z j − ciψRi ,Z j )

(C.20)

The value of (Dψx )|(Ri ,Z j ) depends on the value of the four neighboring points of Ri , Z j in the

2D map of ψx . Note that we use two distinct indices for the R and Z coordinate to properly

represent proximity in the poloidal plane of the grid points, while before we were considering

the ψx as a straight vector evaluated at (Ri , Zi ) pairs of coordinates. It is straightforward from

eq. (C.20) to compute
∂(Dψx )i , j

∂ψx,l ,m
with (Ri , Z j ) , (Rl , Zm) ∈ Y , which will result in a combination

of the coefficients a,b,c,d for a given point in the grid and the value of the fluxes ψx,l ,m . Note

that (Dψx )|(Ri ,Z j ) does not depend onψA ,ψB . We stress that we are not looking at the gradient

of the operator, which is not well defined, but to the gradient of the application of the operator

to the flux map ψx .

In order to complete all the terms missing and to obtain the Jacobian, we need to define Fbo

and its derivatives with respect to the unknowns x = {ψy ,ψo ,ψA ,ψB }. This is the most less

intuitive part of the derivation, which analytically in continuous space representation cannot

be handled exactly. The plasma axis is a maximum/minimum (depending on the Ip sign) of

the ψy map while the X point is a saddle point of the map. From the rectangular grid Y we

select a subset of points, contained in a square box, and we number the 7 points from 0 to 6

(see fig. C.1b). In order to identify the boxes containing the critical points of a 2D discrete map

(points where the spatial derivatives are zero, hence saddles points and extrema), an algorithm
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[Kuijper 2004] taken from computer vision is used. It scans the ψx map identifying the boxes,

all the combinations of 9 adjacent points on the ψx map, selecting the relevant subset of 7

points, and identifies those that contain an critical points. To compute the (Rc , Zc ) location of

the critical point, both minimum or saddle point type, and the value of its flux ψc ,a six points

quadratic interpolation is used. If we define x = R−R0
∆R , y = Z−Z0

∆Z , the functional form of the

quadratic interpolation is given by,

ψ(x, y) =ψ0 +ax +by + cx2 +d y2 +ex y. (C.21)

Interpolating on the 1,2,3,4,6 points we can compute the coefficients obtaining,

a = ψ1

2
− ψ4

2
(C.22)

b = ψ6

2
− ψ2

2
(C.23)

c = ψ1

2
−ψ0 + ψ4

2
(C.24)

d = ψ2

2
−ψ0 + ψ6

2
(C.25)

e =ψ0 −ψ2 +ψ3 −ψ4 (C.26)

(C.27)

It is easy to look for critical point (xc , yc ) such that (∇ψ)|xc ,yc = 0,

xc = ψ0ψ2 −2ψ0ψ1 +ψ1ψ2 +2ψ0ψ4 +ψ2ψ3 −ψ0ψ6 −2ψ2ψ4 +ψ1ψ6 +ψ2ψ6 −ψ3ψ6 −ψ2
2

2
(
2ψ0ψ1 +2ψ0ψ3 −ψ1ψ2 −2ψ2ψ3 +2ψ0ψ6 +ψ2ψ4 −ψ1ψ6 −2ψ3ψ4 −ψ4ψ6 −3ψ0

2 +ψ2
2 +ψ3

2 +ψ4
2
)

(C.28)

yc = 2ψ0ψ2 −ψ0ψ1 +ψ0ψ4 −ψ1ψ3 +ψ1ψ4 −2ψ0ψ6 −2ψ2ψ4 +ψ1ψ6 +ψ3ψ4 +ψ4ψ6 −ψ4
2

2
(
2ψ0ψ1 +2ψ0ψ3 −ψ1ψ2 −2ψ2ψ3 +2ψ0ψ6 +ψ2ψ4 −ψ1ψ6 −2ψ3ψ4 −ψ4ψ6 −3ψ0

2 +ψ2
2 +ψ3

2 +ψ4
2
)

(C.29)

We have therefore an expression for the location of the extremum (xc , yc ) in a box as a function

of the fluxes ψ{0,1,2,3,4,6} which can be substituted in the quadratic expression to obtain the

value of the flux at the extremum ψ(xc , yc ) ≡ψc as a function of ψ{0,1,2,3,4,6}. This way we can

compute ∂ψc

∂ψ{0,1,2,3,4,6}
. We obtained the final result with Matlab symbolic operation package.

Since the final expression is very long, we rather prefer to provide the Matlab script to generate

it, which we think could be more useful for a potential user.

1 syms f0 f1 f2 f3 f4 f5 f6 x y r0 z0 % Define symbolic variables

2 xi = [ 1; 0; −1; −1; −1; 0]; % Quadrature x points

3 yi = [ 0; −1; −1; 0; 1; 1]; % Quadrature y points

4 A = [xi yi xi.^2 yi.^2 xi.*yi];

5 tmp = A([1 2 3 4 6],:)\[f1−f0;f2−f0;f3−f0;f4−f0;f6−f0]; % Interpolate

6 % Get coefficients

7 a = tmp(1); b = tmp(2); c = tmp(3); d = tmp(4); e = tmp(5);
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8 % Get psi quadratic expression with interpolated coefficients

9 psi = f0 + a*x + b*y +c*x^2 + d*y^2 + e*x*y;

10 % Find critical points

11 [xc,yc] = solve( [diff(psi,x);diff(psi,y)]==0 ,x,y);

12 % Compute flux at extremum

13 psie = f0 + a*xc + b*yc +c*xc^2 + d*yc^2 + e*xc*yc;

14 % Compute derivative of the flux at extremum

15 dpsicdf0 =diff(psic,f0);

16 ...

The Matlab script gives the expression to compute ∂Fbo
∂ψy,i

, provided to know in which cells the

critical points are found. The derivation of ∂Fbo
∂ψy,i

done for the Y map extends directly to the X

grid, hence allowing to include the computational boundaries.

We completed therefore how to compute the Jacobian with respect to the unknowns x =
{ψy ,ψo ,ψA ,ψB } for all the terms appearing in eq. (C.3).

Some additional remarks:

• In order to perform one step of the Newton algorithm given xk = {ψk
y ,ψk

o ,ψk
A ,ψk

B } , one

needs first to evaluate F (xk ). This requires first to search for the extremum points of ψx ,

in particular obtaining ψk
A ,ψk

B ,Rk
A , Z k

A ,Rk
B , Z k

A . Then to compute (∇x F )|xk . In particular,

to evaluate
∂Iy,i

∂ψy,i
,
∂Iy,i

∂ψA
and

∂Iy,i

∂ψB
at xk requires to know ψk

A ,ψk
B ,Rk

A , Z k
A ,Rk

B , Z k
A which enter

in the Heaviside definition eq. (C.8). At the same time from ψk
y one needs to extract the

cells containing the extrema, in order to compute the ∂Fbo
∂ψy

.

• We provided in this appendix the derivation of the analytic Jacobian only for the case

where the basis function coefficients a are given. However it would be easy to extend to

the cases where the basis function coefficients enter as additional unknowns, as in FGS

and FGE eq. (4.8), and an adequate number of constraints are given, provided that is

possible to compute an analytic gradient for the equations of the constraints.

• As we stated at the beginning, the Jacobian obtained is not valid exactly at the plasma

boundary due to the Heaviside function. Since the grid used is not flux aligned, the

point on the grid could be eventually infinitesimally close but never exactly on top of

this region, unless for very unluckily cases due to finite machine precision. It still needs

to be proven that this does not cause numerical problem for the implementation of

Newton algorithm. However we notice that the Jacobian would be correct in all the

other points of the grid, hence it could still be used as a preconditioner for example for

the JFNK method.

• The derivation provided so far assumes the presence of only 1 X point. Extension to

several X points is possible but requires a careful analysis on how to define the plasma

region P , define the correct Heaviside functions to describe it and extend the unknowns

to consider all the X points.
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• The sparsity pattern of the Jacobian is not fixed for subsequent Newton iterations,

however is known a priori given xk . Indeed the sparsity of (Dψx )|(Ri ,Z j ) is fixed, but
∂Iy,i

∂ψy,i
,
∂Iy,i

∂ψA
,
∂Iy,i

∂ψB
, ∂Fbo
∂ψy

depends on the location of the plasma boundary at xk .

• We considered in this derivation ψA and ψB as independent unknowns only to simplify

the derivation. However, one can directly embed Fbo into the expression for Iy , and

exploit the chain rule while computing the Jacobian in order to reduce the number of

unknowns only to ψy and ψo .

• Also in case of limited plasma it is possible to derive an analytic expression for the gradi-

ent. It is sufficient to interpolate the ψx with a quadratic interpolation as done for the

diverted case. Then, instead of looking for the global critical point of the interpolation,

one needs to search the critical point of the map constrained to stay on the location of

the limiter.

• A different derivation of the Jacobian should be investigated to include the Lackner’s

[Lackner 1976] solution to computeψo , and avoid the expensive computation ofMboy Iy .

However we have not investigated this option yet.

The proposed analytic Jacobian will be implemented and tested in future and compared

against finite difference approximation. If working effectively, it could provide a significant

improvement in the computational cost of FGS and FGE, since the operator F (x) = 0, and in

particular the scan of the whole grid to find the extremum points, needs to be performed only

once per Newton iteration.
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D Solving the root-finding problem
with a Jacobian Free Newton Krylov
algorithm
In this appendix, we will summarize how to solve a root-finding problem of the type "find x

such that F (x) = 0" with the Jacobian Free Newton Krylov (JFNK) algorithm. This algorithm is

used to solve most of the root-finding problems described in this thesis, in particular for the

FGS and FGE code. We will discuss in the end of the section pros and cons of the algorithm,

commenting in particular on the approaches to reduce its computational cost. The description

in this section is mostly taken from [Knoll and Keyes 2004].

Every non-linear root-finding problem can be written as finding x such that F (x) = 0, with

F (x) a non-linear (vector) function of the unknown x. We stress the importance of formulating

every problems in this form in the part I of the thesis in order to use the same solver for all of

them. Most of the time the operator F (x) can be re-written in the form F (x) = x −h(x), for a

properly defined non-linear operator h(x). A usual approach to solve the problem is typically

to apply Picard iteration scheme,

xk+1 = h(xk ) (D.1)

where k is the iteration index. This is typically the first attempt for any code since it is

very simple to implement and only needs to loop on the different subparts of the problem.

However, Picard iterations for non-linear problems are often numerically unstable. Relaxation

techniques are often used to recover this issue but they slow down the convergence rate of the

algorithm.

The free-boundary equilibrium problem, is numerically unstable when Picard iterations are

implemented also, even when including surrelaxation [Lackner 1976]. When performing the

magnetic equilibrium reconstruction with LIUQE, the problem was stabilized by allowing the

Grad-Shafranov solution to be computed in a shifted grid and using the magnetic measure-

ments to find the appropriate shifting [Moret et al. 2015]. This approach is common to many

equilibrium reconstruction codes, including EFIT [Ferron et al. 1998] and the fast version

of CLISTE [McCarthy et al. 1999]. However, this stabilizing solution is not suitable when

addressing the forward problems since no measurements can be used to infer the position of
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the plasma.

A possible solution is to adopt Newton algorithm, which is known to be more stable than

Picard iterations. The Newton scheme is based on taking an iteration step ∆x in the direction

of the gradient of the operator F (x). The Newton algorithm is given by

(∇x F )xk∆x =−F (xk ) (D.2)

xk+1 = xk +∆x. (D.3)

The algorithm is composed in two parts. The computation of the step ∆x, solving eq. (D.2),

and the update of the new guess of the solution xk+1, from eq. (D.3). It requires at every

iteration to compute the gradient of the operator F (x), evaluate at its value at xk and invert

the linear problem eq. (D.2) to get ∆x.

The algorithm relies on the possibility to compute (∇F )xk , which will be referred to in the

following as Jacobian. Unfortunately, due to the non-linearity of finding the plasma bound-

ary boundary from a ψ(R, Z ), which requires to find a saddle point of the map, an analytic

expression for this gradient is not known for the formulation of the problem in continuous

space. An analytic gradient has been obtained for a spatially discretized representation of

the problem with finite element in [Heumann et al. 2015] and implemented in the codes CE-

DRES++, FEEQS.M [Heumann et al. 2015] and now to NICE [Faugeras 2020]. Another option is

to approximate numerically the Jacobian with finite differences, exploiting eventually the a

priori knowledge of the sparsity of the matrix. This approach, together with a accurate use of

parallelization has been adopted for the code CREATE-NL [Albanese et al. 2015].

In this thesis we adopted a different approach. The aim was to re-use most of the low-level

routines from the equilibrium code LIUQE, which was based on finite difference spatial

discretization as already explained in previous sections, hence we could not directly use the

analytic formulation of the Jacobian for the discretized problem obtained in [Heumann et al.

2015]. In appendix C we derived the analytic gradient for the finite differences discretization

suited for FGS and FGE code, but is was not tested yet. We decided initially to implement

therefore the Jacobian Free Newton Krylov method, which is still based on a quasi-Newton

step, hence it keeps the stability properties of the algorithm, but it does not need the explicit

calculation of the Jacobian (∇F )xk . This is the reason why the algorithm is called "Jacobian

Free". The main idea is that in eq. (D.2), one does not need to compute explicitly (∇F )xk since

what is needed is only the application of the Jacobian on a given direction x +δx, which can

be approximated with finite differences,

∇x F (x)δx ≈ F (x +δx)−F (x)

||δx|| (D.4)

We will explain this with more detail, but we thought it was better to provide the intuition

behind before discussing the details of the algorithm.

We focus now on the first operation in the Newton algorithm eq. (D.2), which we rewrite as the
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standard notation for a linear problem in terms of the matrix A and known vector b to simplify

the notation

(∇x F )xk∆x =−F (xk )

A(xk )∆x = b(xk )

From now on, we will discuss a single Newton step hence we will neglect the index k. The

linear problem is solved with the Generalized Minimal RESidual (GMRES) method. In order to

do that we express ∆x =∑
i µiUi with a basis functions {Ui } expansion and find the coefficient

by solving the least-squares minimization problem,

µ= argmin||∑
i
µi AUi︸︷︷︸

Ki

−b||2. (D.5)

Collecting all the columns of Ki in a single matrixK, the solution of the problem is given by

µ= (KTK)−1KT b. Recalling the definition of A, computing Ki means applying the Jacobian of

F to the Ui direction, which can be approximated with finite differences, giving this way the

Gradient Free Nature of the algorithm.

AUi =∇Fx ·Ui ≈ F (x +Ui )−F (x)

||U || (D.6)

In order to make use of the GMRES algorithm, a particular set of basis functions Ui needs to

be used to guarantee the convergence, the so-called Krylov space [Saad and Schultz 1986]. If

we define r0 =−F (xk ), the initial residue for a given Newton step, then U = {r0, Ar0, A2r0...},

which means applying recursively the Jacobian in different directions to build the Krylov

space. This part gives the "Krylov" name to the algorithm. Since the basis functions might

become collinear, an Arnoldi orthonormalization technique is used while building the Krylov

space [Björck 1967]. The advantage of this approach is in the dimension of the Krylov space

NK needed to solve the problem to a desired precision is typically much smaller than the

dimension of the unknown x. This results in a significant saving of computational time with

respect to computing the full Jacobian directly with finite differences.

The algorithm therefore is composed of two nested loops. We call with NN the total number of

Newton steps.

U0 =−F (x0)

i = 1

while i < NN and ||Ui || < threshold Perform Newton step do

for j = 1 : Nk Construct the Krylov basis do

U j = F (x j+εU j−1)−F (x j )
ε Evaluate the new basis function

Ortho-normalize the new basis function (Arnoldi)

end for

∆i x =µ= (KTK)−1KT b Solve leasr-squares problem
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xi+1 = xi +∆i x Advance Newton step

U0 =−F (xi+1) Compute residual and new initial base function vector

i = i + 1

end while

This is a very basic outline of the algorithm. In the actual implementation the computation

of the Krylov space would not be performed up to the maximum number of selected basis

function but is stopped when the orthogonal component of the new basis with respect to the

already computed space is smaller than a given threshold.

We would like to make some remarks about the procedure.

• The costly part of the algorithm is the evaluation of the non-linear operator F (x), hence

one is interested to reduce as much as possible the total number of evaluation, called

NF , to achieve a desired convergence, measured either as the norm of the residual or as

the norm of the increment.

• The total number of evaluation of F is equal to NF = NN ×NK +1. The cost of the solution

is therefore a trade-off between NF and NK . Reducing the number of Krylov basis

provides a worse "estimate" of the Jacobian, hence more Newton iterations are needed

and convergence issues might occur. To reduce the computational cost, preconditioning

technique allows to reduce NK to obtain the same precision in eq. (D.5). This allows

to cluster the eigenvalues of the iterating matrix in GMRES. This means solving the

problem PAδu = Pb, instead of the original one. The ideal preconditioner for each

Newton iteration would be A−1, which would require to compute the inverse of the

Jacobian that we wanted to avoid by using the JFNK technique.

In FGE, where the problem to be solved is very similar from one time step to the next, we

approximate the full Jacobian with finite differences for the first time step and use its inverse

as a preconditioner for all the subsequent iterations. To provide an example the typical

dimension of the unknowns x for the FGE problem is ∼ 1600, hence to evaluate the Jacobian

∇F (x) with 2nd order finite differences requires ∼ 3200 evaluations of the operator F . We

simulate a VDE with a computational time step of 0.05[ms]. The initial solution (black), from

which the preconditioner is computed, and the final one (green) are shown in fig. D.1a. In

fig. D.1b the total number of evaluations of the operator F to reach the same convergence

threshold at a given time instant is shown along the simulation time. In red for the case when

no preconditioner is used and in blue for the case with the preconditioner. Thanks to the

preconditioner the dimension of the Krylov space is reduced substantially (from 50 to 6) which

results in the need of only ∼ 30 evaluation of F instead of 250. While is true that quality of the

preconditioner progressively degrades when the plasma departs from the solution used for

the linearization. However, as shown in fig. D.1b, the degradation is slow even for the very

different shape (green) reached at the end of the simulation. The simulation was performed

with high convergence threshold requirements, but when using FGE to perform simulation
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(a) Initial solution (black)
and final displaced solu-
tion (green)

(b) Number of evaluation of F operator to
reach convergence vs simulation time

Figure D.1 – VDE simulation for TCV

for TCV, we usually achieve NF ∼ 7 per time step with the code at the state of this thesis.

We are considering to test the following techniques to improve the computational cost: update

the preconditioner while forming the Krylov space as proposed in [Chen and Shen 2006];

re-use the Krylov basis functions for multiple Newton iterations and time steps. This leads

to the so called "deflation" technique to extract the Krylov basis functions during the JFNK

algorithm [Al Daas et al. 2018]. In any case, we will explore also hardware solutions parallelizing

the code. We will also test the analytic Jacobian derived in Appendix C either to directly

implement a Newton method, which would solve the problem of finding a preconditioner, or

as a preconditioner for the JFNK solver.
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E Difference between linear and "quasi-
linear" least-squares optimization
problems
We discuss in this appendix the difference between the solution of the least-squares optimiza-

tion problem when the forward model y = f (θ), which provides the estimate of the quantities

y = {yi } with i = 1, .., Ny given the set of parameters θ = {θi } with i = 1, .., Nθ , is represented by

a linear model f l =Aθ, whereA= {Ai j } with i = 1, .., Ny and j = 1, .., Nθ is a constant matrix,

and when the model is "quasi-linear" f ql =B(θ)θ, where B(θ) = {Bi j (θ)} with i = 1, .., Ny and

j = 1, .., Nθ and all the elements of the matrix B(θ) depend non-linearly on the parameters

θ. This is relevant to the problem of performing magnetic equilibrium reconstruction, in

particular when discussing the differences between LIUQE and FGS solutions in section 4.5.1.

In this appendix we will indicate with Aθ the matrix vector product, hence yi =∑Nθ

j=1 Ai jθ j

and in order to simplify the notation we will also make use of Einstein’s notation to sum over

repeated indices, such that yi =∑Nθ

j=1 Ai jθ j = Ai jθ j .

The least squares optimization problem searches for the parameters θ such that y = f (θ) best

matches in the least squares sense a set of known measurements ỹ , where typically Ny >> Nθ.

Formally the problem can be stated as,

Given: The forward model functional form f (θ) and a set of measurements ỹ

Find: The set of parameters θ∗

such that,

θ∗ = argmin
θ

Ny∑
i=1

( f i (θ)− ỹ i )2 (E.1)

In case of a linear forward function f l =Aθ the explicit solution and is θ∗ = (ATA)TAT ỹ . This

solution will be derived in the following. For the "quasi-linear" forward model f ql = B(θ)θ

instead, a close form of the solution is not available, but a set of Nθ non-linear equations can

be found in terms of B and
∂Bi j

∂θ j
. We will derive this set of equations and compare them with

the linear case.
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We first define the least-squares cost function Γ(θ) in matrix like form using Einstein’s notation.

Γ(θ) =
Ny∑
i=1

( f i (θ)− ỹ i )2 = (Ai jθ j − ỹi )(Ai jθ j − ỹi ) (E.2)

The solution θ∗ of eq. (E.1) must be found among the (possibly several) minima of Γ(θ),

which respect ∂Γ(θ)
∂θk

= 0 for k = 1, .., Nθ. We can write explicitly this set of equations Ck = 0 with

k = 1, .., Nθ

Ck = ∂Γ(θ)
∂θk

= 2
∑Ny

i=1(Ai jθ j − ỹi ) ∂
∂θk

(Ai jθ j − ỹi )

= 2
∑Ny

i=1(Ai jθ j − ỹi ) ∂
∂θk

(Ai jθ j )

= 0

(E.3)

where we made use of the fact that ∂ỹi

∂θk
= 0,∀i ,k. The difference between the linear and the

"quasi-linear" problem is found in the next step.

For the linear case,

∂

∂θk
(Ai jθ j ) =Ai jδ j k =Ai k (E.4)

since the matrix components Ai j do not depend on any θk . In eq. (E.4) we made use of the

Kroneker’s δ j k defined as

δi k =
1, if i = k,

0, if i 6= k.
(E.5)

For the "quasi-linear" case instead

∂

∂θk
(B(θ)θ j ) = θ j

∂Bi j

∂θk
+Bi jδ j k = θ j

∂Bi j

∂θk
+Bi k (E.6)

We complete now the derivation of eq. (E.3) for the linear case and we will then discuss the

difference with the "quasi-linear". We will use Einstein’s notation to sum over repeated index

to simplify the notation. We also drop the multiplication factor 2 since this does not change

the location of the minimum hence the solution of the problem.

Ck = (Ai jθ j − ỹi )Ai k

=Ai k (Ai jθ j )−Ai k ỹi = 0
(E.7)

We remember now the definition of the transpose of a matrix,

(A)T = (Ai j )T =A j i (E.8)
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Hence we can write,

AT
kiAi jθ j =AT

ki ỹi (E.9)

which in standard matrix/vector product form becomes,

(ATA)θ =AT ỹ . (E.10)

The solution θ∗ of problem eq. (E.1) for a linear forward model f l = Aθ is therefore as

anticipated,

θ∗ = (ATA)−1AT ỹ . (E.11)

In case of the "quasi-linear" forward model f ql = B(θ)θ instead, given eq. (E.6), we can

provide the following Nθ set of non-linear equations Zk , with k = 1, .., Nθ, for the θ∗ unknowns,

but not an explicit closed form solution as in eq. (E.11).

Zk =
Ny∑
i=1

(
Bi j (θ∗)θ∗− ỹi

)[
θ∗j

(
∂Bi j (θ)

∂θk

)
θ∗

+Bi k (θ∗)

]
= 0 (E.12)

Ultimately the difference between the linear case and the "quasi-linear" case comes from the
∂Bi j

∂θk
term when computing the gradient of the forward model, comparing eq. (E.6) and eq.

(E.4). Nevertheless, looking at eq. (E.12) we notice that there exists a case when the solution

θ∗ of the linear and the "quasi-linear" problem coincide. This happens when ỹi =Bi j (θ∗)θ∗,

hence eq. (E.12) is respected anytime independently of the value assumed by
∂Bi j

∂θk
. This case is

found when the measurements are exactly given by the forward model, hence the solution is

found when the minimum of the least-squares error is exactly 0. Practically when performing

reconstruction problem this corresponds to the ideal case when the model f (θ) has no uncer-

tainties and the measurements ỹ have no noise. This is also the case when the measurements ỹ

are obtained as synthetic measurements from the forward model. We showed this numerically

in section 4.5.1 when performing magnetic equilibrium reconstruction comparing LIUQE,

which uses a linear approach, with FGS which uses the "quasi-linear" one to minimize the

least-squares problem, providing noise free synthetic data.
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F Lagrange’s multipliers solution of
linear vs "quasi-linear" least-squares
optimization with equality constraints
The aim of this appendix is to explain the differences between the simplification adopted

in LIUQE to solve the "quasi-linear" least-squares optimization with equality constraints

representing the magnetic equilibrium reconstruction eq. (3.9) and its correct solution imple-

mented with FGS code. Numerical investigation have been shown in section 4.5.1. Here we

will explain the difference analytically, making use of Lagrange multipliers to solve the MER

"quasi-linear" least-squares with equality constraints.

We will use in the following a prototype problem equivalent to eq. (3.9) in order to focus only

on the relevant aspect of LIUQE simplification, but having a simpler notation. As for the case

presented in appendix E, we consider one single state ψ and one single parameter θ to be

reconstructed with the inverse problem. We consider two forward models. The first G =G(θ)

relates the parameter θ to the state ψ, ψ=G(θ) and could be in general a non-linear function

of the parameter. The second A(ψ) relates the estimate of the measurements y to the state ψ

with a linear relation y =A(ψ)θ, which is often called the measurement model. The dimension

of y is Ny , henceAθ is a vector of dimension Ny . A set of Ny measurements ỹ is considered

and the following "quasi-linear" least squares problem with non-linear equality constraint is

addressed.

Given: The set of measurements ỹ , the relation ψ=G(θ) and y =A(ψ).

Find: The parameter θ∗ and the state ψ∗

such that

{θ∗,ψ∗} = argmin
θ,ψ

||A(ψ)θ− ỹ ||22
such that

ψ=G(θ)

(F.1)

where || · ||22 is the square of the 2 norm of the vector.

The analogy with the MER problem is given by considering ψ to be the solution of the free
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boundary equilibrium problem given the inputs {I a , I v , ag } which are represented here by

the single parameter θ, and A(ψ) the matrix connecting the parameters to the magnetic

measurements, which depends on the Grad-Shafranov solution. Then eq. (F.1) can be seen as

equivalent to eq. (3.9).

There are two possibilities to solve the problem eq. (F.1). The first is to replace ψ=G(θ) in

the cost function. The problem becomes therefore finding the minimum for the functional

||A(G(θ))θ− ỹ ||2 with respect to the single variable θ. This is the approach adopted in FGS

discussed in section 4.5. The solution can be found by solving the system of equations

eq. (E.12). However this approach requires to be able to evaluate the function G(θ) and its

derivatives. In case of MER, evaluating G(θ) means solving the free-boundary equilibrium

forward problem and both solving and estimating its derivative is expensive, in case of MER.

In section 4.5 it was done numerically exploiting finite differences.

The second option to solve eq. (F.1) is applying the Lagrange’s multipliers technique for con-

strained optimization. We consider a single Lagrange multiplier λ, since a unique constraint

is present in eq. (F.1), and we define the cost function Γ as,

Γ(θ,ψ,λ) = ||A(ψ)θ− ỹ ||22 +λ(ψ−G(θ)). (F.2)

To solve the problem one can look for a local minimum of Γ(θ,ψ,λ) by solving the set of

normal equations obtained by setting ∇θ,ψ,λΓ= 0, hence
∂
∂θ ||A(ψ)θ− ỹ ||22

∣∣∣∣
ψ

−λ∂G
∂θ

∣∣∣∣
ψ

= 0

∂
∂ψ ||A(ψ)θ− ỹ ||22

∣∣∣∣
θ

+λ= 0

ψ=G(θ)

(F.3)

The eq. (F.3) is a system of non-linear equations for the unknowns {θ,ψ,λ}.

If and only if the matrix A does not depend on ψ , ∂
∂ψ ||A(ψ)θ− ỹ ||22

∣∣∣∣
θ

= 0 , hence λ= 0 from

the second equation in eq. (F.3), and the solution θ∗ of the first equation would be given by

the normal equation θ∗ = (ATA)−1AT ỹ as derived in eq. (E.11).

In conclusion, LIUQE solves a system of equation equivalent to,{
θ = (AT (ψ)A(ψ))−1AT (ψ)ỹ

ψ=G(θ)
(F.4)

without checking that the condition ∂
∂ψ ||A(ψ)θ− ỹ ||22

∣∣∣∣
θ∗

= 0 is satisfied which is not generally

true as proved numerically in section 4.5. This provides a solution θ∗ and ψ∗ that respects the

equality constraint ψ=G(θ), hence the free-boundary Grad-Shafranov, but is not generally

a solution of the original problem eq. (3.9) equivalent to eq. (F.1), hence a minimum for

212



||A(ψ)θ− ỹ ||22. As discussed at the end of section E, the solution of LIUQE coincides with

the real minimum only in the special case when ỹ =A(ψ)θ, hence only in case of noise free

measurements and model with no uncertainty.
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G Derivation of the integral OD current
diffusion equation

We derive in this appendix the integral version of the current diffusion equation implemented

in the FGE. The credits for most part of the derivation go to [A.Merle, private communication].

We recall here the current diffusion equation for reading convenience,

σ∥
(
ρ̂2Φ̇B

V
′
ρ̂

∂ψ

∂ρ̂
− 2ΦB

V
′
ρ̂

ρ̂
∂ψ

∂t

∣∣∣∣
ρ̂

)
︸ ︷︷ ︸

< jΩ·B>

= T 2

8πµ0ΦB V
′
ρ̂

∂

∂ρ̂

(
g2g3

ρ̂

∂ψ

∂ρ̂

)
︸ ︷︷ ︸

< j ·B>

−< j ni ·B > (G.1)

We define the integral operator,

Γ(A) = TB

2π

∫ 1

0

V
′
ρ̂

T 2 Ad ρ̂ (G.2)

and apply eq. (G.2) to eq. (G.1). The first term on the RHS of eq. (2.56) becomes directly Ip .

Defining,

A1 = TBΦB

π

∫ 1

0

σ∥
T 2 ρ̂

∂ψ

∂t

∣∣∣∣
ρ̂

d ρ̂ (G.3)

A∗
2 =−dΦB

d t

TB (ψB −ψA)

2π

∫ 1

0

σ∥
T 2 Φ̂dψ̂ (G.4)

equation eq. (G.1) becomes,

−(A1 + A∗
2 ) = Ip −Γ(< jni ·B >) (G.5)

Since all the quantities computed from the equilibrium part of the FGE are expressed in a fixed

in time ψ̂ grid, we would like to express A1 in the same terms, manipulating in particular ∂ψ
∂t

∣∣∣∣
ρ̂

.

215



Appendix G. Derivation of the integral OD current diffusion equation

Starting form the definition,

ψ=ψ(ψ̂, t ) = ψ̂(ψB (t )−ψA(t ))+ψA(t ) (G.6)

we can write,

∂ψ

∂t

∣∣∣∣
ψ̂

= ψ̂(ψ̇B − ψ̇A)+ ψ̇A . (G.7)

Moreover, from the definition

Φ=Φ(ψ) =
∫ ψ

0
ι(ψ′)dψ′ =Φ(ψ(ψ̂, t )) =

∫ ψ(ψ̂,t )

0
ι(ψ′)dψ′ (G.8)

hence, since ρ =
√
Φ̂

ρ̂ = ρ

ρB (t )
= ρ̂(ψ, t ) (G.9)

and therefore,

ψ=ψ(ρ̂(ψ̂, t ), t ) (G.10)

Performing the derivative of eq. (G.10) at fixed ψ̂.

∂ψ

∂t

∣∣∣∣
ψ̂

= ∂ψ

∂ρ̂

∣∣∣∣
t

∂ρ̂

∂t

∣∣∣∣
ψ̂

+ ∂ψ

∂t

∣∣∣∣
ρ̂

. (G.11)

We can now combine eq. (G.7) and eq. (G.11) to obtain an explicit expression for ∂ψ
∂t

∣∣∣∣
ρ̂

to be

used in eq. (G.3).

∂ψ

∂t

∣∣∣∣
ρ̂

= ψ̂(ψ̇B − ψ̇A)+ ψ̇A − ∂ψ

∂ρ̂

∣∣∣∣
t

∂ρ̂

∂t

∣∣∣∣
ψ̂

(G.12)

Remembering that ψ̂ is a fixed coordinate in time, we now write,

∂ψ

∂ρ̂

∣∣∣∣
t
= ∂ψ(ψ̂, t )

∂ρ̂

∣∣∣∣
t
= ∂ψ

∂ψ̂

∣∣∣∣
t

∂ψ̂

∂ρ̂

∣∣∣∣
t
= (ψB −ψA)

∂ψ̂

∂ρ̂

∣∣∣∣
t

(G.13)

Finally we split the A1 term in eq. (G.3) into the two following terms A1,1 eq. (2.62) and A1,2 eq.

(G.15),

A1,1 = TBΦB

π

∫ 1

0

σ∥
T 2 ρ̂

[
ψ̂(ψ̇B − ψ̇A)+ ψ̇A

]
d ρ̂ = TBΦB

2π

∫ 1

0

σ∥
T 2

[
ψ̂(ψ̇B − ψ̇A)+ ψ̇A

]
dΦ̂ (G.14)

A1,2 =−(ψB −ψA)
TBΦB

π

∫ 1

0

σ∥
T 2 ρ̂

∂ρ̂

∂t

∣∣∣∣
ψ̂

dψ̂=−(ψB −ψA)
TBΦB

2π

∫ 1

0

σ∥
T 2

∂Φ̂

∂t

∣∣∣∣
ψ̂

dψ̂ (G.15)
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By making use of the chain rule and the definition of Φ̂,

∂Φ̂

∂t

∣∣∣∣
ψ̂

= 1

Φb

∂Φ

∂t

∣∣∣∣
ψ̂

− Φ

Φ2
b

dΦb

d t
(G.16)

one can conveniently combine A1,2 and A∗
2 into a unique term,

A2 =−TB (ψB −ψA)

2π

∫ 1

0

σ∥
T 2

∂Φ

∂t

∣∣∣∣
ψ̂

dψ̂. (G.17)

The A2 and A1,1 terms can be rewritten in a cleaner way as,

A1,1 = TB

2π

∫ ΦB

0

σ∥
T 2

∂ψ

∂t

∣∣∣∣
ψ̂

dΦ (G.18)

A2 =−TB

2π

∫ ψB

ψA

σ∥
T 2

∂Φ

∂t

∣∣∣∣
ψ̂

dψ. (G.19)

The additional information that has to be computed from the equilibrium solution isΦ(ψ̂,t)

in the fixed grid ψ̂ at each time t . The integral current diffusion equation eq. (2.56) becomes,

−(A1,1 + A2) = Ip −Γ(< jni ·B >) (G.20)

We remember that the sign convention is chosen in order to respect COCOS 17 [Sauter and

Medvedev 2013]. The 1D CDE equation admits a stationary state solution where Φ̇B = 0 and
∂
∂ρ

∂ψ
∂t = 0 meaning that the ∂ψ

∂t is constant over the radius ρ hence it can be extracted from the

integration signal in the A1,1 term. In particular ∂ψA

∂t = ∂ψB

∂t ≡VSS .

VSS = Γ(< jni ·B >)− Ip

TB
2π

∫ ΦB
0

σ∥
T 2 dΦ

(G.21)

(G.22)

We take inspiration from the Stationary State condition to derive an approximated current

diffusion equation which is correct only in case a truly stationary state, but provides a good

estimate during plasma phases which do not present rapid transient. We first define the

following effective poloidal flux time derivative at constant ρ̂,

Ve f f =

∫ 1
0
σ∥
T 2 ρ̂

∂ψ
∂t

∣∣∣∣
ρ̂

d ρ̂∫ 1
0
σ∥
T 2 ρ̂d ρ̂

(G.23)

Given eq. (G.23) in case of a stationary-state Ve f f =VSS , that due to the ∂
∂ρ̂

(∂ψ
∂t

∣∣
ρ̂

)= 0, can be

considered as VSS = ψ̇A = ψ̇B , otherwise on can see Ve f f is as an averaged ∂ψ
∂t

∣∣∣∣
ρ̂

opportunely
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Appendix G. Derivation of the integral OD current diffusion equation

weighted as defined in eq. (G.23). We assume the following heuristic estimate Ve f f = (ψ̇A +
ψ̇B )/2 of the average. The integral version of the current diffusion equation on stationary state

condition eq. (G.5) takes the following form,

1

2

d(ψB +ψA)

d t
= Γ(< jni ·B >)− Ip

TBΦB
π

∫ 1
0
σ∥
T 2 ρ̂d ρ̂

= I∗ni − Ip

TBΦB
π

∫ 1
0
σ∥
T 2 ρ̂d ρ̂

(G.24)

We define in particular I∗ni = Γ(〈 jni ·B〉), where the symbol ∗ is used to indicate the fact that

I∗ni is not exactly equal to the total toroidal current of the non inductive current sources. The

choice for Ve f f and Φ̇B = 0 is correct in the limit of stationary state. It suffers in particular

for fast varying plasma shapes when the term Φ̇B cannot be considered small and during

fast transient phases of current relaxation for example after a rapid change of non inductive

sources.
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