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Abstract

This thesis aims at investigating the performance of figure-9 (figure-of-nine) optical
fiber resonators as a practical solution for light storage, light generation and manip-
ulation. The first part of the thesis focuses on a theoretical and experimental study
describing the performance of the figure-9 laser as a function of different coupling
strengths and output coupling conditions. The study provides new insights on Sagnac
interferometer-based fiber lasers, which can be useful also for other types of cavities
that include this structure, such as the figure-8 (figure-of-eight) or the theta cavity laser.
The work on the figure-9 laser is then followed by a generalized theoretical model,
validated by numerical results, to demonstrate that resonant systems with a decoupled
input and output energy rates can exhibit an arbitrarily high time-bandwidth perfor-
mance, thus providing a longer delay/storage time. The developed model shows that
the time-bandwidth product (TBP) of such a resonant system is only limited by the cav-
ity finesse. This description fits with the time-bandwidth limit (TBL), which states that
the cavity bandwidth Aw,,, is the inverse of the photon lifetime 7 (i.e. Awcay - 7 = 1),
only when the resonator is reciprocal. The results also show that a longer storage time
is accompanied by a significant improvement of the intra-cavity power enhancement,
with respect to that provided by a reciprocal resonator, which is strongly desirable in all
the applications that demand high efficiency in nonlinear processes. By comparing the
total power enhancement in the reciprocal and nonreciprocal case, we prove that the
TBP can be used as a figure of merit that characterizes the gain of total power enhance-
ment, attained over one free spectral range (FSR) through nonreciprocal coupling, with
respect to the reciprocal case considering the same amount of in-coupled power. The
model is then used as a reference for an experimental implementation of such a system,
at telecommunication wavelengths (around 1.55 ym), using a time-variant figure-9
cavity. The results report a TBP that exceeds by a factor of 30 the TBL and is limited only
by experimental constraints of the setup used. Lastly, the Sagnac interferometer in the
context of generation of light is explored as to achieve electro-optic comb generation
with a flat-topped spectral shape.

Keywords: Figure-9 resonator, figure-9 laser, Sagnac interferometer, nonlinear am-

plifying loop mirror, time-bandwidth product, time-bandwidth limit, nonreciprocal
coupling, time-reversal symmetry, electro-optic frequency combs.
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Résumeé

Cette these vise a étudier les performances des résonateurs a fibre optique a figure-
9 (figure-de-neuf) en tant que solution pratique pour le stockage, la génération et
la manipulation de la lumiére. La premiére partie de la these se concentre sur une
étude théorique et expérimentale décrivant les performances du laser a figure-9 en
fonction de différentes forces de couplage et conditions de couplage de sortie. Létude
fournit de nouvelles informations sur les lasers a fibre a base d’interférometre de Sa-
gnac qui peuvent étre utiles également pour d’autres types de cavités qui incluent
cette structure, comme le laser a figure-8 (figure-de-huit) ou le laser a cavité theta. Le
travail sur le laser figure-9 est ensuite suivi d'un modele théorique généralisé, validé
par des résultats numériques, pour démontrer que les systemes résonants avec des
débits d’énergie d’entrée et de sortie découplés peuvent présenter des performances
temps-bande arbitrairement élevées, offrant ainsi un temps de retard/stockage plus
long. Le modele dévelopé montre que le produit temps-band (PTB) d’'un tel systeme
résonnant n'est limité que par la finesse de la cavité. Cette description correspond a la
limite de temps-bande (LTB), qui indique que la bande passante de la cavité Aw.,, est
I'inverse de la durée de vie du photon 7 (c’est a dire : Aw,y - 7 = 1), seulement quand
le résonateur est réciproque. Les résultats montrent également qu'un temps de sto-
ckage plus long s’accompagne d'une amélioration significative de I'augmentation de
puissance intra-cavité, par rapport a celui fourni par un résonateur réciproque, ce qui
est fortement souhaitable dans toutes les applications qui exigent une efficacité élevée
dans les processus non linéaires. En comparant 'augmentation de puissance totale
dans le cas réciproque et non réciproque, nous prouvons que le PTB peut étre utilisé
comme une facteur de mérite qui caractérise le gain d’augmentation de puissance
totale, atteint sur un free spectral range (FSR) par couplage non réciproque, par rapport
au cas réciproque en considérant la méme quantité de puissance couplée. Le modele
sert ensuite de référence pour une implémentation expérimentale d'un tel systéeme,
aux longueurs d’onde de télécommunication (environ 1.55 ym), utilisant une cavité a
figure-9 temps-variant. Les résultats rapportent un PTB qui dépasse d'un facteur 30
le LTB et n’est limité que par les contraintes expérimentales du setup utilisé. Enfin,
I'interférometre de Sagnac dans le contexte de la génération de lumiere est exploré
pour obtenir une génération de peigne électro-optique avec une forme spectrale a
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Résumé

sommet plat.

Mots clefs : Résonateur a figure-9, laser a figure-9, interférometre de Sagnac,miroir
de boucle d’amplification non linéaire, produit temps-band, limite de temps-bande,
couplage non réciproque, symétrie d’'inversion du temps, peignes de fréquence électro-
optiques.
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| Introduction

1.1 Thesis motivation

Signal generation, processing and storing are the main tasks required (not necessarily
together) by any kind of optical system. These tasks involve the generation, storage
and manipulation of light, subjects that cover most of the scientific research in Photon-
ics. Although the generation of light has reached an unquestionable level of maturity,
thanks to the growing and rapid development of light sources and lasers, it still remains
among the most investigated research topics. In particular, fiber lasers have received
increasing attention during the last thirty years, due to their undoubted advantages
compared to traditional solid-state lasers. They are becoming one of the most used
sources in various applications including distributed [1] and remote sensing [2], mate-
rial processing, spectroscopy, medicine [3]. A key factor that contributed to the rapid
technological evolution of fiber lasers is the well-established class of gain media repre-
sented by the rare-earth doped optical fibers, which provide very broad absorption
and emission lineshapes. Moreover, multimode semiconductor diode lasers used as
optical excitation for the gain medium are efficient and low-cost devices, and available
for most of the absorption bands of the rare-earth doped materials.

The storage of energy through the alteration of the speed of a light wave or simply by
spatial confinement is one of the most intricate missions in Photonics. The capability
to slow down or trap light without imposing an excessive distortion to the signal is
a key tool of many research areas such as optical communications [4, 5], quantum
information processing [6], metamaterials [7] and photovoltaics [8-10]. In particular, it
is of fundamental importance in all the applications requiring optical signal processing
or light storage [11-17]. For instance, in wavelength division multiplexed (WDM)
multichannel systems, the temporary storage of data has proved necessary to overcome
critical problems such as synchronization and packet contention resolution. Storage
devices and delay lines are used at the receiver end to store high-rate data packets as
they are read out at a slower rate or for queuing while the transmitter awaits access to
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the network [18, 19]. Optical buffers have also been considered in other research fields
such as optical computing or short-range optical transmission systems, where they are
useful to store large amounts of data transmitted from different sources (cameras, RF
over fiber, etc.) without passing through optoelectronic conversion. However, despite
the significant efforts made to enable the all-optical transport of data, switching and
routing are still operations mostly performed in the electrical domain. Light trapping
is even more crucial for energy technology. In fact, the performance in trapping and
absorbing light strongly affect the efficiency of photovoltaic solar-energy conversion.
In this sense, photonic crystals have been proved a promising technology as they can
provide a photocurrent four times higher than a standard thin-film silicon solar cell
built with the same amount of silicon [8, 20].

Generally, what is required from the practical point of view is the ability to impart a
delay to a signal that is independent of the signal’s bandwidth. The easiest way to fulfill
this requirement is to use a long piece of waveguide such as an optical fiber. However,
to delay a telecom pulse for 1 us, the length of a silica optical fiber must be of the order
of 200 meters, a value that is considerably large in terms of footprint. A light pulse can
also be delayed, while keeping the device footprint relatively small, by circulating it
through many round trips in a resonator, which may be in the form of a ring resonator
or as a defect mode in a photonic crystal. As already discussed, there are two main
requirements that an ideal delay line needs to fulfill: it should provide a large delay and
it should operate over a wide range of frequencies with low insertion loss. In the last
two decades, different implementations of resonant structures have been explored for
the realization of delay lines and storage devices [21-27]. As it is well known, increas-
ing the interaction time requires the cavity bandwidth to be proportionally narrow.
However, this leads to a constraint that unavoidably imposes a trade-off between the
storage/delay time achievable and the width of the operational spectral bandwidth
[28-30]. In mathematical terms, this trade-off is described by the time-bandwidth
limit (TBL), a fundamental rule that arises from Fourier-reciprocity considerations,
which dictates that the time-bandwidth product (TPB) must be Aw -7 = 1, with Aw the
system bandwidth and 7 the energy decay time [31-33]. Both high-finesse and losses
limit the storage capacity of microresonator-based devices [34]. Any attempt to realize
broadband devices that provide a considerable delay, without suffering too much the
limitations produced by dispersion and losses, means that somehow this seemingly
fundamental rule needs to be overcome. A TBP larger than 1 offers the capability to
control the storage time without suffering from the restriction dictated by the cavity
bandwidth. This allow to release the system from the compromise imparted by the
TBL that prevent to realize an ideal delay line. One more benefit that would follow from
realizing a TBP > 1, stems from considerations on the power balance of the resonant
system. In fact, light confined in a localized spatial region is also accompanied by a
dramatic increase of the energy stored within the resonator. This is crucial specially
in nonlinear optics applications, such as frequency comb and Kerr soliton generation
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[35, 36], where a large intra-cavity power enhancement factor reduces the input power
required to reach the threshold for nonlinear effects.

An alternative approach for delaying a light pulse is to reduce the group velocity of
the signal by exploiting strong resonances resulting from energy transfer between the
electromagnetic wave and the medium (atomic resonances) or between two or more
modes of the electromagnetic radiation (photonic resonances). A propagating wave
packet having a central frequency in the vicinity of one of these strong resonances
experiences a significant reduction of its group velocity, the so called “slow light phe-
nomenon”, owing to a large variation of the refractive index [11]. Over the last twenty
years, several slow light schemes aiming at overcoming the TBL have been proposed,
where the resonances exhibit an optical [37-43] or electronic nature [44-47]. They
were proven capable of providing performance beyond the TBL by exploiting the char-
acteristic refractive index dispersion near resonances, due to the intrinsic electronic
transitions or induced by stimulated Brillouin or Raman scattering, or Bragg reflections
in periodic structures [11-13, 15, 21, 48]. However, despite the initial excitement for
their promising benefits of being capable to support relative wide-band signals, they
are not yet considered as the definitive technology for the realization of ideal delay
lines. In fact, these systems are still characterized in terms of a group-index-bandwidth
limit [14] or a time-delay-bandwidth-footprint limit. In both of these terms, slow-light
waveguides are intrinsically limited, and - similarly to resonant systems — the achiev-
able delay times remain inversely proportional to (a power of) the guide’s bandwidth,
At ~ Aw™%, where typically o = 2 or 3 [11, 29, 30]. Here, the trade-off arises from pulse
temporal broadening owing to various dispersion phenomena (2nd and 3rd order
dispersion, dispersion of gain/absorption), preventing significant slowing-down (i.e.,
storage times) of broadband signals.

Recently, a theoretical proposal [49] was put forward stating that the TBL can be over-
come by breaking Lorentz reciprocity [50, 51] in a resonant system in which the input
and output energy rates are decoupled one from the other. In such a system, it was
shown that the TBL can be exceeded by orders of magnitude, without accompanying
adiabaticity or signal distortion limitations. The theoretical proposal has reinvigorated
an avid, and still ongoing, debate about whether (or not) the time-bandwidth limit can
indeed be exceeded in resonant systems, by considering symmetry, mode coupling and
even thermodynamics-based arguments [52-55]. However, much of this recent, and
fully theoretical, activity has focused on nonreciprocal but time-invariant resonant
systems.

1.2 Thesis goal and description of the work

This thesis aims at investigating the performance of figure-9 (said figure-of-nine)
optical fiber resonators as a practical solution for light storage, light generation and



Chapter 1 Introduction

manipulation. A figure-9 cavity, consists of a Sagnac interferometer connected to a
highly reflective element. The Sagnac interferometer has been widely used in the past
for the realization of optical gyroscopes [56]. More recently, this type of structure has
also attracted interest, for the development of nonlinear all-optical switches, where
the nonlinear switch is obtained, via optical Kerr effect, exploiting the relative phase
shift between the two counter-propagating waves. An interferometer in a Sagnac
configuration has the unique feature of providing the same physical path for the two
counter-propagating waves. This allows to remove all the issues due to path instabilities
that are caused by environmental disturbances. A Sagnac interferometer can easily
turn into a laser cavity by placing a doped fiber inside the loop and connecting a
highly reflecting element to one of the input ports of the coupler, thus earning it the
moniker of figure-9 cavity. This type of laser, first proposed by Cowle et al. [57], offers
a clear benefit in terms of simplicity of the configuration since it requires only one
reflective element or even none if one uses a fiber loop mirror. As a consequence,
figure-9 cavities can be fully fiberized and thus robust. The figure-9 laser has been
intensively investigated to develop pulsed fiber lasers. Mode-locking operation has
been demonstrated using a figure-9 cavity with a SESAM (semiconductor saturable
absorber mirror) at the place of the reflective element [58]. The SESAM is used to
initiate the mode-locking, while the doped fiber placed within the Sagnac loop acts
as a nonlinear amplifying loop mirror (NALM) leading to a significant suppression of
the pulse pedestal. In a recent work carried out by Kharitonov et al. [59], a dissipative
soliton resonance (DSR) mode-locked laser was built using this layout with a Thulium-
doped fiber, obtaining nanosecond pulses with a record value of the pulse energy,
for this type of laser, of 400 nJ. Despite the wide interest aroused by such lasers, very
little efforts have been made to fully understand their performance, in particular,
the interesting aspect of the influence of the coupling ratio of the output coupler.
Therefore the first part of this thesis work was devoted to a theoretical and experimental
investigation of the performance of this type of laser at different coupling conditions.

The deep understanding of the operating principles of the figure-9 cavity was then used
to pursue the objective of the light storage. Moved by this objective, we first carried
out a theoretical study on a resonant system with a nonreciprocal coupling interface
to unveil the condition required for overcoming the TBL. The topic was addressed by
developing a time-variant figure-9 resonator since it represents one of the simplest
methods to realize a resonant system with a nonreciprocal coupling interface. In
fact, the reflection and transmission coefficients of the figure-9 cavity can be easily
changed in time by just imparting a phase difference between the two wave traveling
within the fiber loop. The time-bandwidth performance of the resonator was evaluated
through a detailed theoretical study, supported by numerical simulations, followed by
an experimental implementation. Overall the study aimed at providing an accurate
understanding of the benefits of the nonreciprocal coupling on the time-bandwidth
performance of a resonant system.
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The last part of the thesis is focused on the generation and equalization of electro-optic
(EO) frequency combs. The equalization of EO frequency combs plays an important
role in all those applications where even a power difference of few dB between each
comb line can represent a measurement handicap. Several methods aiming at generat-
ing flat EO combs have been proposed, but all of them require the use of two or more
EO modulators (EOMs) [60-66] or a further processing of the driving RF signal [67-70].
In the wake of realizing a more simple and cost-effective scheme, we developed a
system capable of providing flat-topped EO frequency combs using only one phase
modulator integrated in a fiber optic Sagnac interferometer.

1.3 Thesis structure

Chapter 2 contains all the fundamental basics required to understand the content of
the thesis. It starts with a description of passive optical resonators using two different
approaches: the power coupling formalism and the temporal coupled-mode theory.
Then the discussion moves towards the main characteristics of fiber lasers. Chapter
3 covers the theoretical and experimental investigation on the figure-9 laser. The
chapter begins with the description of the theoretical model of the laser and ends with
a comparison of the theory with the experimental results. In chapter 4 I introduce
the theoretical model of a generic resonant system based on a Fabry-Perot structure.
Through an analysis of the frequency response and power balance of the resonator the
model provides the required conditions on how to overcome the TBL by implement-
ing a nonreciprocal coupling interface. Numerical simulations are also presented to
support the work, confirming the results of the theory. This analytical work is then
put in practice in chapter 5, where an arbitrarily high TBP is demonstrated using the
resonant system described in chapter 4. Moreover, the reported results are compared
with numerical simulations to demonstrate that the TBP of such a resonant system is
only limited by the cavity finesse when the intra-cavity losses are kept sufficiently low.
In chapter 6, we exploit the characteristics of the Sagnac interferometer to develop
a system for the generation and equalization of electro-optic frequency combs. The
motivation of this scheme is explained by the significant improvement in terms of
complexity and cost of the entire system, compared to other approaches proposed in
literature. The quality and effectiveness of the frequency combs obtained with such a
system are then compared to those generated from a single-stage phase modulator in
terms of maximum power variation over the comb lines.






¥4 Analytical models of passive and
active optical resonators

Optical resonators, in their passive configuration, are generally used to confine and
store light over a certain frequency range. Their structure forces light to propagate
repeatedly within its boundaries, resulting in a regenerative feedback of the electro-
magnetic wave that enhances the interaction between light and matter. An essential
aspect of trapping electromagnetic energy within a resonant cavity;, is the efficiency
of the coupling process. Specifically, the total power that can be transferred into a
conventional resonator depends on the coupling coefficient of each coupling element
and the intra-cavity losses experienced by a given resonant mode. The design and
implementation of the coupling elements is therefore crucial for the realization of
resonant structures that must be capable of efficiently trap the electromagnetic energy
over a certain spectral bandwidth.

Optical resonators also represent a key element of a laser system. They have the fun-
damental task of providing, under specific conditions on the balance between gain
and loss, the positive feedback for the laser oscillation, thus turning a simple amplifier
into an optical oscillator. Moreover, the optical resonator is responsible for the spectral
selectivity of the laser beam and the sharpness of the resonance mode, two character-
istics that play a crucial role in many research areas and practical applications.

This chapter aims at providing a fundamental background for a complete understand-
ing of the experimental and theoretical work included in this thesis. The discussion
starts with an introduction to the physics of resonant cavities analyzing two different
approaches for the evaluation of the transfer characteristic and key parameters of a
generic passive optical resonator. Then we will have a look into the working principles
of an optical oscillator by examining and modeling an optical resonator that includes a
gain medium. The chapter ends with a general description of the characteristics of a
fiber laser, which is the topic of the next chapter.
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2.1 Analytical model of an optical resonator according to the
power coupling formalism

Optical resonators have been intensively investigated since the birth of photonics.
In general, two main formalisms are used for their analysis depending on the case
of study: the energy coupling formalism, also known as temporal coupled-mode
theory (TCMT) [31, 71-73], and the power coupling formalism [74, 75]. In the energy
coupling formalism the response of the resonant system is derived considering the
energy exchange between the resonator and the external bus waveguides, that is
quantitatively represented by the rates of energy coupled into and out of the resonator.
The power coupling formalism is based on the analysis of the power exchange between
the resonant system and the external waveguides. In this case the coupling junctions
are modeled by lumped coupling elements described by proper coupling coefficients,
which, in the case of a directional coupler, can be retrieved from the solution of the
coupled mode equations in space [31, 75].

2.1.1 S-parameters of a generic coupling element

Transmission and reflection at the boundaries between different media are the primary
aspects to consider when treating the coupling of light inside a cavity. To understand
how energy is transferred to an optical resonator we need the transfer characteristic of
the coupling element, which represents the interface element between the cavity and
the outside world. This coupling element can be, for instance, a directional coupler, a
partially reflecting mirror or a simple thin dielectric slab.

Port 1 Port 2
1

A(+)
_A
A(—)

<

W
B
|

Figure 2.1 — Two-port optical device representing a generic coupling element of a reso-
nant system. The transfer characteristic of the device is obtained from the scattering
matrix S.

Let us represent this coupling element as a generic two-port optical system, as depicted
in Fig. 2.1, and express the complex fields of the outgoing waves A5 and A; in terms of
those of the incoming waves A} and A; . The subscript 1,2 indicates the corresponding
input/output port, while the superscript symbol +,- indicates if the wave propagates
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2.1 Analytical model of an optical resonator according to the power coupling
formalism

towards the positive or negative direction of the z axis. Using the scattering matrix
formalism [76] we can relate these four fields as follows:

AT
o ] (2.1)

Ay
A

_|tiz I
Iig (o1

where the parameters t1, and ry, are the complex transmission and reflection coeffi-
cients, respectively, of a wave incident from port 1, while ty; and r9; are the complex
transmission and reflection coefficients, respectively, of a wave incident from port 2.
We can write Eq. 2.1 in a more compact form as:

Aout = S % A 2.2)

where S is the scattering matrix, while A;;, and A,y are the vectors of the complex am-
plitudes of the incoming and outgoing waves respectively. In general, for a multi-port
system, the diagonal elements t;; of the S matrix represent the complex transmission
coefficients of a wave entering and exiting the system from port : and j respectively,
while the off-diagonal elements r;; are the reflection coefficients at each port i.

Energy conservation and symmetry relations

The optical powers of the incoming and outgoing waves are given by the square magni-
tudes of their complex amplitudes \Afg |2. Using the matrix notation we can write the
power flowing out of the optical system as a function of the complex amplitudes of the
incoming waves and the scattering matrix:

Pour = Aj)ut Aout = (SAin)T(SAin) = (AiTnST)(SAin) = AiTn(STS)Ain (2.3)

where the symbol { as superscript denotes the transpose conjugate of the vector. In
deriving Eq.2.3, the following rules have been used: (i) the associative property of
the matrix multiplication i.e. A(BC) = (AB)C and (ii) the equivalency between the
transpose conjugate of any vectorial product and the product of the individual conju-
gate of each vector taken in reverse order, i.e. (ABC)! = C'BfAT. If the optical system
is lossless, this relation must ensure the conservation of energy, meaning that the
power flowing out of the system must be equal to the total input power, which is just
P, = AiTn Aj,. This leads to a condition on the scattering matrix of the system which
dictates that the inverse of the S matrix must be equal to its transpose conjugate, i.e. S
must be a unitary matrix [50]:

sf=s! or SiS=1I (2.4)

where I represents the identity matrix. Most common optical components used as
coupling elements are also reciprocal, meaning that the transmission and reflection
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in the two directions are identical. Specifically, the scattering parameters of a lossless
reciprocal two-port optical system must obey the following relations [76]:

ltio] = |tor]| = Jt], |rio| = [t = v, [tP+ (1> =1, tiorh + 12ty =0 (2.5)

These relations must be satisfied by any coupling element that is lossless and reciprocal.
Standard optical devices such as highly reflective optical mirrors, directional couplers
and beam splitters, for which the internal losses are sufficiently small to be neglected,
fall in this category.

2.1.2 Frequency response of a Fabry-Perot resonator

In order to derive the frequency response of an optical resonator we can consider its
simplest form: the Fabry-Perot (FP) cavity, which consists of two parallel planar mirrors
enclosing a center medium characterized by a refractive index n.. Although this struc-
ture is a simplification rather than a generalization of a generic optical resonator, we
will see later on, that this configuration is fundamentally equivalent to other resonator
layouts and the equations we will obtain are also valid, with the appropriate equiva-
lencies, for optical resonators of different kind. An illustration of the FP resonator is
depicted in Fig. 2.2. Let L4 be the distance between the two mirrors, so that the total
length of one cavity round-trip is then Lgrr = 2L4.

FM\ [rM
<z L ’ -

Figure 2.2 — Schematic illustration of a Fabry-Perot resonator enclosing a medium with
refractive index n.. FM: front mirror; RM: rear mirror.

Light incident on this structure bounces back and forth between the two mirrors
repeatedly and, under specific conditions on the frequency, interferes with the new
incoming light from the front mirror.

To determine the total power transmitted and reflected by the FP cavity let us consider
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a monochromatic light wave of frequency w normally incident on the front mirror of
the resonator. Its electric field E;, (r, t) can be expressed as:

Ein(r,t) = EoA(z, y)el @ =52 (2.6)

In this expression A(zx, y) describes the transverse spatial distribution of the electric
field,  is the propagation constant along the direction of propagation z, which corre-
sponds to the longitudinal axis of the resonator. We then define the complex amplitude
of the wave as:

Aip = Eye 757 (2.7)

and the scattering matrices of the front and rear mirror respectively as:
th, 1o 2, 15
SA — 12 21 SB — 12 21 (28)
A B B
[@2 53] Iy )

whose parameters, we recall, are complex quantities. For a cleaner form of the equa-
tions that will follow, let us rewrite these scattering matrices as:

ta T th T
Sa= | A Sg—| B P (2.9)
where the apostrophe indicates that the coefficient is related to the wave coming

from inside the cavity. Using these scattering matrices, we can calculate the complex
amplitudes of the reflected wave at every cavity round-trip [75]:

Ay = 1aAjn
’o —j
Ay = tAtArBaRTAine JoRr

/g2 2 —J2
A3I’ = tAtArArB QRTAine 720w

ANy = tA'[fAI‘/A(Nim (I‘% CLRT) (N-1) Aine_j(N_1)¢RT (2.10)

where agr = e~ (*/2)Lr1 ig the intra-cavity attenuation factor (with « being the attenua-
tion constant), that describes the exponential attenuation of the optical field over one
cavity round-trip due to absorption and scattering losses occurring in the intra-cavity
medium, while ¢rr = BLgr is the round-trip phase delay experienced by the wave
during one cavity round-trip. The first of equations 2.10 is the complex amplitude of
the field directly reflected from the front mirror, while the other expressions represent
the multiple reflections between the two mirrors. The total overall reflection is given

11
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by the sum of all these contributions:

A = Ain{rA + tAtgr{gaRTe_j(z’RT[l + (I‘;\I‘%CLRTG_MRT) + (I‘IIAI‘%CLRTQ‘B_jQﬁRT)2 + -
-+ 4 (thrgagre RN (2.11)
Recalling that, as long as the number of terms of the series in square brackets ap-

proaches infinity, the series converges to 1/(1—r}rgagre /%), Eq. 2.11 can be rewritten
as:

A= Ay |+ ’[Atgl‘gaRTe_j(bRT s A + (tA’[;\ — rAI'j\)I‘%aRTe_jd’RT 2.12)
r n 1— rgr%aRTe—j@aT n 1— rj\r%aRTe—ﬁi?RT :
Analogously, the complex amplitudes of the transmitted waves are given by:
Ay = taty/agr Ajpe 7 M/2
At = tatprATg/agrarr Ape IO eI oR1/2
Az = WRIRTE Jarragp Aine /208 e~ %1/2
ANt = tAtig (I‘;\I‘/BaRT) (N-1) \/ aRTAine_j(N_1)¢RT€_j¢RT/2 (2.13)

and the sum of all the contributions gives the complex amplitude of the overall trans-
mitted wave:

Ay = tAtig\/@Aine_j(’bRT/Q[l + (I‘AIJBCLRTe_j(bRT) + (I‘;\I'/BaRTe_j(bRT)Q + -
oo+ (Phrhagre 7o)V -D1L(2.14)
which can be rewritten as:

I —jérr/2
Ai = A; tatpvarre /
t — n ] 3l _ ¢
1— TpIgagre™ J9RT

(2.15)

In this introductory section we will assume that both mirrors are lossless and reciprocal.
Later on, in the next chapters, we will encounter other situations in which one or both
of these assumptions no longer hold. For lossless mirrors made of dielectric materials,
the scattering parameters are related by the Stokes relationships [77], which dictate
thatry = —r1s, 1y = —1p and tat) — rary = 1. Based on these considerations and
imposing the conditions in Eq. 2.5, equations 2.12 and 2.15 become:

. . 9
Ip — Igagre JORT A tatg/arre J¢rr/

. - t p— 1 N

- IAIgagre J9RT my— IATBaRTE J¥RT

Ar=A (2.16)

Assuming that Aj,, A; and A; are normalized such that the corresponding optical
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Figure 2.3 — Power spectral distribution of a symmetric Fabry-Perot resonator. (a)
Reflectance and (b) transmittance as a function of the round-trip phase delay for
different values of the power transmission coefficient of the two mirrors and with
art = 0.996.

powers are given by the square modulus of their electric field amplitude, we can obtain
the reflectance R and transmittance 7" of the FP resonator by multiplying equations
2.12 and 2.15 with their complex conjugates and dividing by the input power. After
some simple algebraic passages the following expressions are obtained:

2

e |Ac"_ (= |rB|aRT)22+ 4|rA|\rB|aRTsif122¢ ©2.17)
Ain (1 — [ral|rBlarr)? + 4ra||rB|agrT sin®
A I? tatp)?
T = ’t - (A2B) ORT — (2.18)
Ain (1 — ‘rA"rB‘aRT) + 4’rAHrB’aRT sin“ )
In the above equations the phase v is given by:
2¢ = drr + Yry + Uy (2.19)

where ¢y, and v, are the phase shifts experienced by the wave in reflection from the
front and rear mirror respectively.

Assuming that ¢, + ¢, = 0, the harmonic term in equations 2.17 and 2.18 depends
only on the round-trip phase delay ¢grr. In Fig. 2.3, R and T are plotted as a function of
¢rt, imposing ¢r, + ¥, = 0. The plots are related to a symmetric FP resonator (where
ta = tg = tand [t|? + |r|? = 1) with different values of |t|> and with agr = 0.996. We note
that the spectral distribution at the transmission port takes the form of an Airy func-
tion, i.e. a series of equally-spaced transmission peaks, called cavity resonance modes,
centered at specific values of the phase ¢gr for which ¢rr = 2mm, while the spectral
response in reflection shows corresponding dips. This is due to the fact that the total
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Figure 2.4 — (a) Reflectance and (b) transmittance of a symmetric Fabry-Perot resonator
as a function of the round-trip phase delay for different values of the intra-cavity
attenuation factor and with |t|? = 0.2.

power reflected R is the result of the superposition of the wave directly reflected by the
front mirror and the portion of the wave circulating inside the cavity that is transmitted
through the same mirror. Contrarily, the total transmitted power T is given by the
portion of the intra-cavity power that is transmitted through the rear mirror, which
is the result of the superposition between the intra-cavity circulating wave and the
portion of the input wave transmitted through the front mirror. At resonance, the
phases of the intra-cavity circulating wave and the incoming wave transmitted by the
front mirror are such that the two waves constructively interfere and the transmittance
is maximized, while in reflection, they interfere destructively. The opposite scenario
occurs at anti-resonance where the transmittance is minimum because the two waves
destructively interfere while the reflectance takes its maximum value. For a lossless
(agt = 1) symmetric FP resonator at resonance, the transmittance is equal to 1, mean-
ing that the whole input power is transmitted at the output port through the resonator,
while the reflectance is null given that the intra-cavity circulating wave and the portion
of the input wave transmitted through the front mirror totally cancel each other. This
can be seen in Fig. 2.4, where the power spectral response of a symmetric FP resonator
with [t|2 = 0.2 is plotted for different values of agr. It should be noted that a zero
reflection can be achieved even in presence of loss if ry = rgagr, a condition denoted
as critical coupling.

The same spectral response described in equations 2.17 and 2.18 would be obtained
considering an add-drop micro-ring resonator (ADMR) having the two directional
couplers with cross- and straight-coupling coefficients equal to ta, tg and ra, 1, respec-
tively. The two resonant structures can therefore be considered equivalent from the
point of view of the frequency response, with the obvious difference that the transmit-
ted wave at the through port of the ADMR is physically isolated from the input wave,
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while in the FP resonator it is reflected back into the input port.

Resonant condition and free spectral range

The corresponding wavelengths for which the relation ¢rr = 2mr is satisfied are
called resonance wavelengths. They can be easily determined by considering that
¢rt = nc(27/X\) Lrr. In fact, we can write the following resonance condition:

N¢

2mm = nC(ZW/)\)LRT = )\m = fLRT (2.20)
m

or in terms of frequency:

C

(2.21)

e L

with m being an integer indicating the mode number and c is the speed of light in
vacuum. The spacing between two consecutive resonant modes is called free spectral
range (FSR). Its expression can be derived by computing the wavelength variation
required to obtain a round-trip phase change equal to 27. This can be done by taking
the derivative of the round-trip phase delay with respect to the wavelength, which is:

X N ) IR = ST T g e (2.22)

a Y A\ A2

where ng = n¢ — A(dnc/d)) is the group index of the intra-cavity medium. Imposing
the condition A¢rr = 27 we finally get the expression of the FSR:

27 A2
Alpsp = = (2.23)
PSR dgrr/dN —  ngLgr
which in terms of frequency becomes:
Avpsg = — 5 Adpsp = —— = - (2.24)
FSR = — 13 AARSR = nglrr  Trr .

Where Txr is the cavity round-trip time, i.e. the time the wave takes to travel the whole
cavity length Lgr. It should be noted that, in general, the intra-cavity medium exhibits
frequency dispersion. In such a case, the FSR will be frequency-dependent resulting in
a corresponding shift of resonance frequencies.

2.1.3 Intra-cavity field and power enhancement

Using the circulating field approach, as we did for the derivation of equations 2.12
and 2.15, we can also find the complex amplitude of the total electric field circulating
inside the cavity. It is simply given by the interference between the wave circulating
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FSR

Adpw

=27 0 27
Round-trip phase delay (¢rr)

Figure 2.5 — Intra-cavity power enhancement of a symmetric Fabry-Perot resonator as
a function of the round-trip phase delay with |t|?> = 0.1 and agr = 0.9.

within the cavity after the first round-trip and the new incoming wave transmitted
from the front mirror:

. t
A = ta Ay, + TaTgapre TRA = A = Ay, A (2.25)
1 — rargagpeJ¥rr
The corresponding intra-cavity power is then:
a2
|A]? = | Ain|? [l (2.26)

1+ |ra|?[rg|2afy — 2|ra|rB|agT cos 2¢

where the phase v is given by Eq. 2.19. Dividing Eq. 2.26 for the total input power, the
intra-cavity power enhancement is obtained:

2 [ta]?

— (2.27)
1 + [ra|?|rp[?ajy — 2[ral|rs|arr cos 2¢

’ A
Ain

which, at resonance, gives the intra-cavity power enhancement factor or build-up factor
of the resonator:

A 2

B=|-—
Ain

2
= [t (2.28)

p=mr (L —[ra||r8lagr)?

The corresponding plot of Eq. 2.27 as a function of ¢rr and for [ta|? = |tg]?> = |t|?> = 0.1
and agr = 0.9, is shown in Fig. 2.5. We note that the intra-cavity power enhancement
exhibits the same spectral distribution as the transmitted power, with equally-spaced
resonance peaks centered at ¢y = mm. Eq. 2.28 is a measure of the build-up of optical
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power within the cavity due to the constructive interference at resonance between the
intra-cavity circulating wave and the input wave at the front mirror. To give an idea
of how much this factor is impactful, we can note that, in a symmetric resonator with
small internal loss (agT =~ 1), B is inversely proportional to the transmissivity of the
mirrors, i.e. B ~ 1/|t|%. For cavities with highly reflective mirrors (|t|* ~ 0.1-0.01) this
leads to an intra-cavity power amplified by 1-2 orders of magnitude. This intrinsic
feature, characteristic of every resonant system, is widely used in many applications
and specially in nonlinear optics, where the build-up factor significantly contributes
to reducing the threshold power for triggering the nonlinear effects.

Spectral bandwidth and cavity finesse

To derive an expression of the bandwidth of the resonance modes we can start rewriting
Eq. 2.27 as following:

AP ta]?
‘ _ il - (2.29)
Ajn (1 — |ra||rBlarT)? + 4|ral|TB|aRT Sin”
By substituting Eq. 2.28 into Eq. 2.29 we obtain:
A B
e (2.30)
Ain 14 Fsin“ v
where F' is given by the following expression:
4
F— |ral|rB[arT (2.31)

(1 — |ral|rplarr)?

F is called the contrast of the resonator since it represents a measure of the sharpness
of the resonance peak. Since the bandwidth of the resonator is defined as the full width
at half maximum (FWHM) of the cavity resonance mode we have to find the specific
value of the phase difference A4 for which Eq. 2.30 drops to half of its maximum
value, i.e. B/2:

A2
Al _ 5 _B (2.32)
Ain Agpggy L+ F'sin® Agpggg 2
Imposing again the condition v, + ¢, = 0 on Eq. 2.19 we obtain:
A ‘ 2 arcsin — (2.33)
= Ircsin —— .
RT 2dB arcs Nia
and therefore the bandwidth of the resonance mode is:
1
A¢pw = 4 arcsin — (2.34)

VF
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For resonators with highly reflective mirrors and small intra-cavity absorption loss, the
small-angle approximation can be applied to Eq. 2.34, which therefore becomes:

Adpw ~ 4 — 21— Irallrs|agr) (2.35)

VF \/ |1al|rB|arT

The corresponding formula in terms of angular frequency w can be obtained by taking
the derivative of ¢grr with respect to w:

L L
dowr _ (e | Wine) g (e 4 oie) L _ bRt _ g (2.36)
dw c c dw dw c ng

where ng = nc¢+w(dnc/dw) is the group index of the intra-cavity medium. Equation 2.36
tells us that the bandwidth in terms of phase is related to a corresponding frequency
bandwidth by A¢gw = AwpwTkrr- It follows that we can write the bandwidth of the
resonance mode in terms of angular frequency as:

Awopy — Agpw _ ng 2(1 — |ra||rp|arr) (2.37)

TRy cLrr  \/|ra||rB|agrT

Another important parameter that contributes to characterize the spectral response
and the intra-cavity power enhancement of a resonator is the cavity finesse 7 which is
defined as the ratio of the FSR with the resonance mode bandwidth:

A T/
o WFSR \ﬁ ’rA\ |rB|agr (2.38)

Awpw 1 — |ra|[rg|arr

The cavity finesse can be related to the build-up factor simply by considering that for
low loss and symmetric resonators with highly reflective mirrors the above expression
simplifies to F ~ m/|t|?. Therefore, recalling that in this scenario B ~ 1/|t|?, the cavity
finesse can be written as:

F=nB (2.39)

2.2 Temporal coupled-mode theory for optical resonators - En-
ergy coupling formalism

Temporal coupled-mode theory (TCMT) is a powerful theoretical framework used to
describe the coupling of energy between a resonant system and an external waveguide,
where the former is identified by localized modes, while the latter by propagating
modes. It relies on an abstract formulation of few parameters characteristic of the
resonant system, such as the resonance frequency and the energy coupling coefficients,
which depend on the specific geometry of the cavity. The TCMT is widely used to
describe the behavior of resonant structures of different kinds ranging from ordinary
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resonant cavities, such as Fabry-Perot or ring resonators, to photonic crystal cavities
or even atomic oscillators. As we already mentioned at the beginning of the previous
section, the TCMT describes the behavior of the device from the point of view of
energy exchange between the resonator and the external waveguide. Unlike the power
coupling formalism, which is more rigorous since no assumption is made about the
coupling strengths, the TCMT is valid only under the assumption of weak coupling, so
that the spatial distribution of the energy within the cavity can be considered uniform.

2.2.1 Temporal coupled-mode equations

We will now review the basic principles of TCMT by considering the simple resonant
structure schematically illustrated in Fig. 2.6. The cavity has a resonance frequency wy
and is connected to the outside world through two single-mode waveguides with cou-
pling coefficients x; and x, respectively. For the sake of simplicity, let us first consider
the cavity without any input signals but which is already charged with an initial energy
|a(0)[%.

Resonant cavity

Waveguide 1 Waveguide 2
Si —
A Sy

Figure 2.6 — Illustrative drawing of a resonant structure coupled to two external waveg-
uides through the coupling coefficients x; and k2 and characterized by a resonance
frequency wy.

The evolution of the amplitude « of the optical field inside the resonator can be de-
scribed using the well known equation of motion [71, 78, 79]:

da

w (Jwo =0 — M — 72)a (2.40)

where 71, 72 and -y are the decay rates of the intra-cavity field amplitude owing to the
coupling with the two waveguides and the intra-cavity absorption loss, respectively.
More generally, we can classify the losses of a resonator in two categories: (i) radiative
losses, which are caused by a loss of energy due to coupling to external waveguides,
and (ii) non-radiative or dissipative losses, that take into account the absorption and
scattering occurring in the intra-cavity medium or losses due to imperfection of the
coupling junctions. In the case we are investigating, 7; and -, are the radiative losses,
while v, represents the non-radiative component of the losses of the system. Moreover,
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Chapter 2 Analytical models of passive and active optical resonators

in Eq. 2.40, we assume that a is normalized such that |a(t)|? gives the electromagnetic
energy stored within the cavity at time ¢. The above equation is a simple first order
differential equation that can be easily solved obtaining the amplitude of the intra-
cavity field as a function of time:

a(t) = a(0)e VeIt (2.41)

where v = v9 + 71 + 72 is the total amplitude decay rate. The expression of the time-
evolution of the energy stored within the cavity is then given by:

la(t)[? = |a(0)|2e™*" = |a(0)[?e /" (2.42)

where 7 = 1/2+ is the energy cavity lifetime, i.e. the time after which the energy stored
in the cavity drops to 1/e of its initial value a(0). We can note, in fact, that the energy
stored in an isolated resonator decays exponentially with time at a rate that depends
on the strength of the coupling with the external waveguides and the intra-cavity
absorption loss (since v = v + 1 + 72).

Let us now suppose that an input wave s;, coming from waveguide 1, is incident on
the cavity. If we denote the rate of in-coupling energy from waveguide 1 with p;,, we
have that the input wave s; supplies energy to the cavity at a rate given by ,/pjns;. In
this case, the equation of motion becomes:

da

i (Jwo — 70 — 71 — Y2)a + \/PinSi (2.43)

where s; is normalized such that |s;|? is the power flowing in the input waveguide
(waveguide 1). The solution of the above equation can be found by assuming that both
s; and a(t) have the same harmonic time dependence (s;, a(t) o e/“!). Therefore we
can write:

Jjwa = (jwo — ¥)a + /PinSi (2.44)
By isolating a, we obtain:

__ /Pinsi
a(w) = o —wo) T (2.45)

This expression gives the amplitude of the intra-cavity field as a function of the fre-

quency. The expression of the energy stored within the cavity is therefore:

la(w)[? = il (2.46)
(W —wo)? + 72

Once we have obtained the frequency distribution of the intra-cavity field, we can
derive the spectral response in transmission and reflection of any weakly-coupled
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resonant system. The formula of the transmitted field s; can be found by noting that
the signal exiting the cavity from port 2 is simply s = |/pout,2a, Where poy 2 is the rate
of out-coupling energy from waveguide 2. Then, substituting Eq. 2.45 we have:

St _ v/ Pin+/Pout,2 (2.47)
si jlw—wo)+7 '

The signal s, reflected by the resonator is the sum of two contributions: (i) the portion
of the incident signal directly reflected by the cavity at port 1 and (ii) the portion of
intra-cavity field lost through port 1. In mathematical terms:

Sr = CsSi + 4/Pout, 10 (2.48)

where ¢ is a scattering coefficient that describes the behavior of the system in ab-
sence of resonance, while poy 1 is the rate of out-coupling energy from waveguide 1.
Substituting Eq. 2.45 we obtain:

v/ Pin\/ jcs(Ww — wo) + s + +/Pin/
n Piny/Pout,1 8'$ﬁ:] s( 0) s7Y Pin+/Pout,1 (2.49)

jlw—wo) +77" 7 s J(w —wo) +7

Sr = CsSi

Equations 2.47 and 2.49 represent the transfer functions of the resonant system in
transmission and reflection respectively. The corresponding power spectral responses
T'(w) and R(w) are given by the following expressions:

2
St PinPout,2
T(w) = || = Finfoutz 2.50
«) 5 (W —wo)? + 72 (250
Rw) = | ?_ (w—w0)’ + (¢s7 + v/Piny/Pout)? 2.51)
2 2
Si (w—wo)* +7

Linewidth of the resonance mode and time-bandwidth limit

We note that both, the intra-cavity energy and the transmitted power have a spec-
tral distribution that takes the form of a Lorentzian function centered around the
resonance frequency wy. To find a mathematical expression of the linewidth of this
Lorentzian function, we can equate Eq. 2.50 to half of its peak value, which occurs at
w = wy, thus obtaining:

PinPout,2 __ PinPout,2

_ = Awsgp = 7 (2.52)
(Awsgp)? + 2 22 SdB

Finally we find that the bandwidth of the Lorentzian resonant mode is:

1
Awpw = 27 = - (2.53)
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10 15 20 25 -
t/Trr (w —wo) Trr

Figure 2.7 — Fourier transform relationship between (a) the exponentially decaying
evolution of the energy stored inside a resonant system and (b) its corresponding
Lorentzian-shaped power spectrum. The graphs, plotted for different values of v are
related to a resonant cavity with pj, = pour2 = 108s~! and with a cavity round-trip time
TRt of 1 ns.

From this expression we note that the bandwidth of the resonant mode of any resonant
system is strictly correlated to the losses of the system. This is graphically shown in Fig.
2.7b, where the Lorentzian resonance mode for a resonant cavity with pi, = pout2 =
108s~! and Tgr = 1 ns, is plotted for different values of the total decay rate . It is clear
from the graph that the bandwidth of the mode gets wider with increasing ~.

Rewriting Eq. 2.53 as:
Awpw -7 =1 (2.54)

it takes the form of a mathematical tenet known as time-bandwidth limit (TBL), which
is the result of the Fourier transform relationship between the exponential decay of the
energy stored inside the resonant system and its corresponding Lorentzian-shaped
power spectrum. In fact, we could achieve the same result for the bandwidth by using
Eq. 2.46, which is nothing else but the Fourier transform of Eq. 2.42. The Fourier
relationship between the resonance mode of a resonant cavity and its corresponding
energy decay curve, is illustrated in Fig. 2.7 through a plot of Eq. 2.42 and 2.46 for
different values of v and with pi, = pout2 = 103571 and Ty = 1 ns.

The TBL simply dictates that the product between the bandwidth of a resonant mode
and the corresponding decay time, i.e. the time-bandwidth product (TBP), must be
equal to 1. What this simple rule means is that a larger bandwidth of the resonance
mode, which can be obtained with a stronger coupling, is always correlated to a
reduced cavity photon life-time, therefore limiting the interaction time between the
light and the intra-cavity medium or simply the storage time of the resonant system. A

22



2.2 Temporal coupled-mode theory for optical resonators - Energy coupling
formalism

recent theoretical study [49] suggesting that the TBL can be overcome by breaking the
reciprocity of the system (whose implications will be explained in the next section),
opened an interesting debate [52-55] about whether or not this can be possible in linear
and time-invariant resonant systems. Furthermore, the TBL finds its confirmation
in the TCMT framework, which is not straightforwardly applicable to open resonant
systems. In fact, although at the first glance it looks that this fundamental rule cannot
be violated, its foundation relies on the assumptions of linearity and time-invariance
of resonant systems whose energy exchange with the outside world concerns only the
single-mode resonance. Therefore the validity of the TBL is to be considered limited
to resonant systems that fulfill these conditions. In the above treatment we used the
TCMT to model a resonant cavity coupled to two external waveguides. Doing so, we
implicitly took for granted the linearity and time-invariance assumptions, given that no
nonlinear terms have been included in the equation of motion and all energy coupling
coefficients and decay rates are assumed to be independent on the time parameter.
We will see in the next chapters that by breaking the time-invariance property of a
resonant system and inducing a nonreciprocal coupling results in a decoupling of the
bandwidth that the system can accept from the cavity life-time, thus leading to an
overall TBP much greater than 1.

Quality factor

An important parameter that is used to give a measure of the sharpness of the reso-
nance mode with respect to its central frequency is the quality factor (Q-factor). It is
defined as:

Averaged stored energy

Q=2r (2.55)

Power loss x Optical period

Considering that the intra-cavity field has an harmonic dependence with time, the
stored energy at time ¢ is given by:

W (t) = Wy cos? (wt)e ™27t (2.56)

where W} is the initial stored energy. Assuming that the rate of energy decay is much
smaller than the angular frequency of the optical field (27 <« w), we have that the
time-averaged energy stored in the resonator over one optical cycle is:

(W(t)) = %Woe‘M (2.57)
while the power loss is nothing else but the rate of change of the energy:
d(W (1))

~EE o) (2.58)
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Substituting equations 2.57 and 2.58 into 2.55 we finally get the expression of the
Q-factor as the ratio of the angular frequency to the cavity bandwidth:

W) _w _ v

O awal s T 2y T Awaw

(2.59)

Energy coupling coefficients

From Eq. 2.42 we can derive a relationship between the energy coupling rate coeffi-
cients pout,1, Pout,2 and the decay rates 1, v2. We first assume that the cavity, charged
with an initial energy |a(0)|?, exhibits no dissipative loss (7o = 0) and is coupled only
to waveguide 2. By taking the derivative of Eq. 2.42, we obtain the rate of change of
energy stored in the resonator:

dla(t)|”

e —27ys]a(t)|? (2.60)

Then, recalling that the signal exiting the cavity from port 2 is expressed by s; =
/Pout20, the corresponding power leaving the cavity is |s¢|?> = pout2|a(t)|?. Based on
these considerations we can deduce the following:

Pout,2 = 272 (2.61)

Following an identical procedure we can find the same relation between pout,1 and
~1. Also, by denoting with pg the rate of energy dissipated within the cavity due to
non-radiative losses and assuming the cavity perfectly isolated from the external
waveguides, a similar relation exists for py and .

2.2.2 Time-reversal symmetry and conservation of energy

Most of the scientific material found in literature that uses the TCMT for the model-
ing of resonant structures, usually assumes the simultaneous presence of three main
constraints: time-reversal symmetry, Lorentz reciprocity and energy conservation.
Applying these constraints, the TCMT equations take a simpler form, as we will dis-
cover soon. However, there are several optical systems that do not fulfill all these three
conditions and, therefore, need to be treated using the more generic TCMT equations
that we have previously obtained. Within the framework of the TCMT these three
constraints act mainly on the in-coupling and out-coupling energy rates, and the
scattering coefficient of the system in absence of resonance.
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Time-reversal symmetry and Lorentz reciprocity

For the resonant system depicted in Fig. 2.6, the time-reversal symmetry and Lorentz
reciprocity are strictly correlated to each other since the breaking of the time-reversal
symmetry of the system requires a nonreciprocity of the coupling junctions. In fact
the time reversal operation consists of assuming the set of mathematical functions
that describe the system as running backwards in time [80]. In mathematical terms,
this results in changing the sign of the time parameter in Eq. 2.42 obtaining that the
stored energy builds up in the cavity, instead of decaying, since its evolution in time is

described by an exponentially growing function:

la(t)]* = |a(0)[e*"" 2.62)

However, during the loading process, i.e. the time-reversed version of the decay pro-
cess, the energy is being transfer from outside towards inside the cavity at a rate +2+

that now takes the role of an energy loading rate pr..

a,(D0ay()
] 4,(0)> a,(0)

/- a(0)=ap(0)

pL¢pD 3('
Decay
process
A \ e P
-~ Loading
=~ processes
s +p,t aD(T)
! e N
T 0 L T

Figure 2.8 — Illustration representing the time-reversal operation applied to the time
evolution of the energy stored in a resonant system in case of reciprocal and nonre-
ciprocal coupling. The orange and the dashed-green curves represent the loading
processes in case of a time-reversal symmetric and asymmetric system respectively,

while the red curve represents the decay process.

Now, assuming for simplicity that the cavity is connected only to waveguide 2, if
the coupling junction at port 2 is characterized by a symmetric scattering matrix
(S = S7) the loading and decay energy rate coefficients are identical p;, = pp and the
resonant system is said time-reversal symmetric. Conversely if the coupling element is
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a nonreciprocal optical component, p;, # pp, meaning that the system changes during
the time-reversal operation and therefore, the time-reversal symmetry property no
longer holds [50].

This concept is schematically illustrated in Fig. 2.8, where the evolution of the energy
stored inside the resonant system is illustrated for both scenarios. In particular, the
intra-cavity energy is monitored from its initial value until time ¢ = 7. Then, under
time-reversal operation, the sign of the time variable is flipped and the system evolves
from ¢ = —T until ¢ = 0. We note that p;, = pp implies that the decay and loading
curves (red and orange curves) are identical, meaning that the system remains the
same after the time-reversal operation and, therefore it is said time-reversal symmetric.
Conversely, if pr, # pp, the time-reverse (loading) process (green-dashed curve) is
different (i.e. the time-reversal symmetry is broken) and leads the intra-cavity energy
to reach a value at ¢t = 0 that does not match its initial value, a condition that is not
physically admittable. In such a case the system is said time-reversal asymmetric. I
want to stress here that the nonreciprocity condition on the coupling element requires
the infringement of one of the two assumptions: the linearity or the time-invariance
of the system. As we will see in Chapter 3, this is an important concept that must be
taken into account when designing the coupling element. Also, it should be noted that
the loading process does not represent how the energy of the input wave is effectively
coupled into the cavity. The evolution in time of the energy coupling within the cavity
is related to the time dependence of the input signal. Nevertheless, the exponentially
growing time evolution is proved to be the optimum coupling of any linear resonant
system [81, 82].

Conservation of energy

The condition of the conservation of energy is useful to derive an expression for the
scattering coefficient ¢ in Eq. 2.48. In fact, if we consider the net power flowing into
the resonator, |s;i|?> — |sout|?, this is given by the sum of the total energy build up in the
cavity with the total power dissipated through non-radiative loss:

dal?
dt

|si]2 — |sout|* = + polal? (2.63)

where sout = sr + 5t = ¢s8i + \/pouta and /pout = /Pout,1 + /Pout2- The total energy
build up in the cavity can be calculated from Eq.2.43 as following [79]:

djal? N ]
‘dt’ = —(po + poudlal® + /pin(a”si + as}) (2.64)
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where the asterisk indicates the complex conjugate, while from Eq. 2.48 we get the
total power leaving the cavity is:

|sout|® = c2|si|* + pout|al® + 2 Re [cssipouta”] (2.65)
Substituting Eq. 2.64 and 2.65 into 2.63 and recalling that a, s; o< ¢/“* we obtain:
cs = —1 (2.66)

and thus sgut = —si. The physical meaning of this result can be understood by con-
sidering that in absence of resonance a = 0, therefore no energy is present inside the
cavity. As a result, the incoming power must be fully reflected back by the resonator.

2.3 Characteristics of fiber lasers

In this last section we examine the fundamental concepts of fiber lasers that will be
useful for a complete understanding of the operating principles of the figure-9 laser
described in the next chapter.

The laser is fundamentally different from the other conventional light sources since it is
based on the stimulated emission rather than spontaneous emission. The fundamental
ingredient of the laser is the optical amplifier, an optical device capable of amplifying an
optical signal. However, to make a laser, an internal intensity and wavelength selection
mechanism is also needed, known as positive feedback. Owing to this mechanism the
optical amplifier turns into an optical oscillator, i.e. a resonant system that provides
an optical signal characterized by a high level of monochromaticity, brightness and
directionality that distinguish it from the other ordinary light sources.

2.3.1 Basic scheme of an optical oscillator

The laser can be considered as the analogous of the electronic oscillator extended at
the optical frequencies. A simple scheme of an oscillator includes an amplifier inserted
in a positive feedback loop as illustrated in Fig. 2.9a. The signals Sj, and S,y represent,
in the case of optical oscillator, the input and output electric fields respectively. The
input signal, while propagating through the gain medium, is amplified by a factor G.
At the output of the amplifier a portion /5 of the amplified signal is transferred back to
the input port of the system and added to the input signal. The output signal Sy is
thus given by the sum of the infinite feedback contributions:

Sout = GSin + BG*Sin + 2G3Sin + - - = GSin(1 + G + B2G? + --) (2.67)
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Figure 2.9 — (a) Basic layout of an oscillator consisting of an amplifier with a positive
feedback and (b) its corresponding power transfer function plotted for different values
of the loop gain SG( imposing Gy = 2 and 7 = 3 ns.

where GG and S are in general complex function of the angular frequency w. Assuming
that |3G| < 1, the geometrical series in Eq. 2.67 converges to 1/(1 — 8G). Therefore we
obtain:

G

Sout = Sinm

(2.68)
In this expression the term 5G is called loop gain. The transfer function 7' of the
oscillator is easily obtained:

Sout G
T = =
Sj 1-pBG

(2.69)

Now let us suppose that the gain medium exhibits a power spectral distribution of a
Lorentzian shape, as it occurs in most practical cases, while 5 does not depend on w.
Then, the expression of G as a function of w is given by:

and the power spectral response:
2
G = %! .7

14+ (w—wp)?72

where G is the peak value of the gain, while 7! is the FWHM of the Lorentzian
function. By substituting Eq. 2.70 into 2.69 we obtain the spectral response of the
oscillator:

_ Go _ Gy
1-BGo+j(w—wo)r 14 j(w—wo)Ty

T(w) (2.72)
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where Gy = Go/(1 — fGp) and 74 = 7/(1 — pG)). From the above expression we note
that the effect of the positive feedback is duplex: (i) on the one hand it increases the
peak value of the gain, while (ii) on the other hand the bandwidth of the gain is pro-
portionally reduced. Particularly, this twofold effect is a result of the gain-bandwidth
product for which an increase of the amplifier gain for a certain frequency range follows
a bandwidth narrowing in the same frequency range [83]. In Fig. 2.9b a plot of |T'(w)|?
is shown for different values of the loop gain in the range 0 < G < 1. The condition
BGo = 1, where Gy becomes infinite, is called threshold condition for the system to
work as oscillator. At this value of the loop gain the system gives a finite output signal
for an infinitely small input signal. After a first inspection of Eq. 2.72, it looks that
for values above the threshold condition, the output signal can take an infinite value.
However, this is not the case simply for considerations on the energy conservation,
which dictates that the energy provided by the oscillator must be equal to the energy
provided by the pumping mechanism acting on the gain medium. What ensures the
conservation of energy is the gain saturation. Specifically, when the system goes above
the threshold, the output power start decreasing until it reaches the saturation value
Ss, pulling the loop gain down to the threshold value.

2.3.2 Optical amplification

Without entering into the details of the quantum mechanical treatment of the light-
matter interaction, we will now briefly review the main conditions for optical amplifi-
cation.

The operation of a laser require that energy provided by a pump source is stored in
the atoms of the gain medium. This occurs through a transfer of the electrons from a
lower to a higher energy level, which are identified as ground state and excited state
respectively. An electromagnetic wave, incident on the gain medium, can be amplified
only in case of population inversion, i.e. if the number of atoms N, in the excited
state is larger than the number of atoms N; in the ground state. In fact, thanks to the
stimulated emission process, the energy stored in the atoms is released through the
interaction with the electromagnetic wave and it is transferred to its radiation field. In
addition the frequency of the wave must be equal to that corresponding to the energy
levels difference for the amplification to occur.

To describe the concept of population inversion, we have implicitly assumed an atomic
system consisting of only two energy levels. However, it is impossible to produce popu-
lation inversion with such a system, since once the transparency condition is reached
(N2 = Nj) the absorption and stimulated emission processes would compensate each
other. Real laser materials are usually composed at atomic level by a very large number
of levels, each of them with their excitation and relaxation processes. Therefore a more
appropriate representation of an optical amplification process must involve more than
two energy levels. Typical gain material can be however modeled using a three- or
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Figure 2.10 — Schematic representation of the energy level diagram of (a) a three-level
and (b) a four-level laser system. Adapted from ref. [84].

four-level system. A schematic illustration of such system is shown in Fig. 2.10.

In a three-level system, after an atom is excited to level 3 (the pump band), it rapidly
decays to level 2, through a non-radiative process characterized by a relaxation time
T39. After a time 791, which represents the fluorescent lifetime of level 2, the atoms
return to the ground state by emitting a photon. This photon emission is spontaneous
or stimulated (and thus coherent) depending on whether the pump intensity is below
or above threshold. The general condition for population inversion is that the non-
radiative process is faster than the radiative one, i.e. 751 > 732. In the three-level
system, given that the ground state coincides with the lower laser transition level, this
condition is fulfilled only if the number of atoms in level 2 is such that:

Ntot

Ny > 5

(2.73)

where N is the total number of atoms. Therefore the pump rate must be strong
enough to satisfy this condition.

The four-level system is characterized by the presence of another energy state below
the lower level of the laser transition. This allows to reach population inversion much
more easily than what happen in the three-level system. In fact, the lower energy level
of the laser transition can be considered relatively empty and, therefore, the condition
Ny > Nj is reached almost immediately, provided that 7o < 721, where 7y is the
relaxation time of the 1— 0 transition.

2.3.3 Gain of a generic optical amplifier

Let us now examine how a small optical signal is amplified by an optical amplifier by
using the main parameters involved in this process. In Fig. 2.11 a basic scheme of an
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F N
v

Figure 2.11 — Basic scheme of an optical amplifier of length L showing how the optical
intensity increases in a thin slice of gain medium dz.

optical amplifier of length L is depicted, where I, and I, are the intensities entering
and leaving the amplifier respectively.

We define the amplification factor G of the amplifier as G = I,/ Ijn, while the gain co-
efficient g is related to the fractional increase in intensity d/I of the wave propagating
through a small slab of thickness dz as following:

dI(z) =1(2)g(z)dz (2.74)

The solution of the above equation gives the total single-pass gain G of the amplifier:

5((5)) — G = exp [ /0 ' g(z)dz] (2.75)

In general the gain coefficient depends on the coordinate z. For sufficiently high
pumping level of the gain medium, the gain g(z) at position z of the gain medium is
given by [84]:

g(z) = S E— (2.76)

where gy is the small-signal gain coefficient, characteristic of the gain medium, 7(z) is
the intensity of the signal at position z and I; is the saturation intensity defined as the
signal power for which the small-signal gain is reduced by one half of its initial value.
Specifically, the saturation intensity is given, depending on the type of the atomic
system of the gain medium, by [85, 86]:

h
Iy = v (for a four-level system) (2.77)
OesT2
hvg
Iy = (for a three-level system) (2.78)
206572

where 1 is the Planck constant, v5 is the frequency of the signal, 7» is the upper-state
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lifetime, while o¢s is the emission cross-section of the quantum transition at the signal
wavelength. In the case of fiber amplifier, the saturation intensity can be expressed
with the following general formula [87]:

Is = . - (2.79)

(U es O as)7'2

where o, is the absorption cross-section of the quantum transition at the signal wave-
length.
In Eq. 2.76, the parameter z indicates the nature of the spectral broadening of the
lineshape function that characterizes the gain medium. Specifically, x = 1 for homo-
geneously broadened lineshape functions, while = = 0.5 holds for inhomogeneous
broadening. Assuming, for simplicity, an homogeneous broadening, the integration of
Eq. 2.74 over the length of the gain medium yields the following result:

/II (I(lz) i ;) ar:) = | " gudz

Iout Iout - Iin
1 ot T _ oL
" < Iin > * Is 90

In(G — 1)

InG+ -2 7 = goL
S

Iin o 1H(GO/G)

.7 -1 (2.80)
where Gy = exp(goL) is the small-signal single-pass gain for the whole length of the
amplifier.

A plot of the above equation is shown in Fig. 2.12 for different values of Gy. We note
that from this expression, the steady-state gain at any level of the input signal can be
retrieved by knowing the small-signal gain coefficient of the gain medium.

Small signal approximation

In the case where the intensity of the signal is small enough such that I < I, g = gy,
and Eq. 2.74 can be written in the following simple form:

dl(z)
I(2)

= godz (2.81)
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Figure 2.12 - Single-pass gain of an optical amplifier as a function of the the optical
intensity of the input signal plotted for different values of the small-signal single-pass
gain Gj.

which can directly integrated to give:

I(z) = 1(0)e%* (2.82)
The total gain in this case is given by:

G = el = b (2.83)
where G|, in the case of fiber amplifier, is given by [87]:

Cbp(o'es + O'as)7'2Pa

= L =
Go = 9o Ahw,

— Qqp (2.84)

where:

¢p = quantum pumping efficiency

P, = absorbed pump power

A = core area cross section

a) = total absorption loss in the amplifier
vp = frequency of the pump

Large signal approximation

For signal intensities that fulfill the condition I > I, Eq. 2.74 simplifies to:

dI(z)
dz

~ gols (2.85)
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and, integrating over z, we obtain:
Tout — Iin >~ golsL (2.86)

We note that, unlike the small-signal case, the output intensity of the amplifier in-
creases linearly with the length of the gain medium rather than exponentially. Similarly,
the total gain, which can be found by dividing the above equation by Ij,, is also linear
with L:

Gt £goL (2.87)
Iin

2.3.4 Gain of a fiber amplifier

So far, we have assumed that the excitation rate is uniform over the length of the
gain medium, meaning that the number of atoms excited state is constant over the
z coordinate. Although this assumption represents a good approximation for most
practical cases, it loses its validity when dealing with fiber lasers and amplifiers, where
the intensity of the pump decreases while propagating through the doped fiber. In
such cases we have to solve Eq. 2.74 taking into account the dependence of the gain
on the z coordinate.

I,(2)]

Pump intensity

Cladding 14 ',’

L> _________________ c 1 ]out
| (]]__Rare-earth doped core _ [} :>
Iin (V ) T

V'S
v

Figure 2.13 — Section of a rare-earth doped fiber amplifier with an illustrative graph of
the pump intensity evolution along the doped fiber.
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Let us consider a fiber of length L doped with a certain concentration NV of rare-earth
ions, and let suppose that the pump light at frequency v, is coupled into the core
with cross-sectional area A, as schematically illustrated in Fig. 2.13. Assuming for
simplicity that most of the rare-earth ions remains in the ground state (Ny ~ N), we
can consider the absorption coefficient o, approximately independent on the position
z along the fiber. Therefore, the pump light exponentially decreases with z according
to the Beer’s law [88]:

Ip(2) = Ipoe™P* (2.88)

where ap ~ Nyop, with Ny the number of ions per unit volume in the ground state
and o,p the pump absorption cross-section. To correlate the gain coefficient of the
amplifier to the pump light evolution along the fiber, we first express it in terms of
level populations. Without entering into the detail of every rare-earth material and
its spectroscopic characteristics, we will assume here that the gain medium can be
modeled with a four-level atomic system. In such a case, the gain coefficient can be
expressed as [89]:

9(2) =~ Na(2)0es = R(2)T20es (2.89)

where N is the population of the excited-state level of the laser transition, and R(z) is
the excitation rate, which can be expressed as [32]:
I
R = NWy(z) = N2 (2.90)
hvp

where W), is the transition probability per unit time for the single rare-earth ion. Insert-
ing Eq. 2.90 into 2.89, we obtain the gain coefficient in the doped-fiber as a function of
the z coordinate:

g(z) o NIp(Z)UpJesT2 o OépO-es7-2

I 2.91

To find the expression of the total (single-pass) gain of the amplifier we solve Eq. 2.74
using the formula we just derived for g(z), obtaining:

Tout dI L
/ T :/ g(z)dz
I 0

1

Tout TpooesTo —apL
In (fout) — Tp0TesT2 (q  —ay
. < I ) hig (1—e?)

i TpooesT2

1
nG h

(2.92)
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where, in the last step, we have assumed that the pump light is completely absorbed by
the doped fiber (o, L >> 1). We note that, in such a case, the total gain depends neither
on the ion concentration nor on the length of the doped fiber.

2.3.5 Threshold condition for fiber laser oscillation and laser output effi-
ciency

The positive feedback in a fiber laser can be realized in different ways. Cavity configura-
tions based on Fabry-Perot cavity are usually designed with fiber Bragg gratings (FBGs)
or fiber loop mirrors as reflective elements. Layouts that include external dielectric
mirrors are also common, although this solution may lead to a significant loss of power
if the alignment between the lens and the mirror is not perfect. A cost effective solution
is represented by the ring configuration, which can be made by simply connecting
together one input and one output port of a directional coupler to the two ends of
a doped-fiber. This type of laser, used in unidirectional configuration (e.g. inserting
an isolator to block one of the two counter-propagating waves), does not suffer of
spatial-hole burning given that there is no standing-wave interference pattern along
the gain medium.

VN
v

Figure 2.14 — Basic scheme of a fiber laser in a Fabry-Perot configuration in which two
FBGs act as reflective elements. WDM: wavelength division multiplexer.

To derive the threshold condition for laser oscillation, we will consider (without loss of
generality) a fiber cavity in the Fabry-Perot configuration with two FBGs as reflective
elements, as the one depicted in Fig. 2.14. Let be E(t) = Eyexp(jwt) the electric field
of the wave at the FBG 1 (z = 0), and 1 = /Ry exp(j1) and ro = /Rs exp(ji2) the
field reflective coefficients of the FBG 1 and 2 respectively. The doped-fiber provides
a total gain G = I,/ Iy for the intensity and is characterized by a length [, a cross
section core area A and a refractive index nq. Taking into account the attenuation and
the phase delay experienced by the wave within the cavity, which are given respectively
by exp(—aL) and ¢rr = 2w/cL’, the electric field E’(t) at the FBG 1 after one cavity
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round-trip will be:
E'(t) = EyrireGexp{jlwt — (2w/c)L'] — aL} (2.93)

where L' = L. + ngql is the optical path in the cavity, with L. = L — [, and c is the speed
of light in vacuum. To fulfill the threshold condition for lasing oscillation, for which
the loop gain must be equal to 1, we impose that £’ = F, obtaining:

riroGexp{j[(2w/c)L'] — aL} =1 (2.94)

From this equation we note that the loop gain is a complex quantity. Therefore the
threshold condition breaks down into two conditions: one for the modulus, which
must be equal to 1, and one for the phase, which, as we have already seen in paragraph
2.1.2, must be equal to 2mm, with m positive integer. The corresponding equations are:

VR1RyGipe =1 (2.95)
2(w/c)L + 11 + 1ho = 2mm (2.96)

From the condition on the phase we obtain the longitudinal modes of the laser:

_ < Y1+ 9o
Y = 50 <m L8 > (2.97)

which, likewise the resonance modes of a passive resonator, are equally spaced over
the frequency at discrete intervals Av = vy, 11 — v,

The condition on the modulus gives, instead, the threshold value Gy, of the total gain
of the doped-fiber and, therefore, the threshold value g, of the gain coefficient per
unit length:

1 1 1 1
lnGth:OéL—|—§ln <.R1.R2> = gth:@+ln< > (2.98)

By comparing the above equation with Eq. 2.92 and using the relation I;,p = P, /A, we
can derive the threshold value of the pump power to achieve laser oscillation:

AhvoIn Gy, Ah 1 1
Py, = Tt SO [aL+ ln< )] (2.99)
OesT2 OesT2 2 RiRs

Laser output in continuous-wave (cw) regime

The discussion made in section 2.3.1 showed that the behavior above threshold of an
oscillator depends on the saturation effect of the gain medium. Below threshold, the
pump power is used to perform the population inversion required to bring the loop
gain to 1. Part of the pump energy absorbed by the gain medium is converted into
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light spontaneously emitted by the atoms (fluorescence). During this time any increase
of pump power leads to an increased fluorescence since the threshold has not been
yet reached. When the system reaches the threshold value, the spontaneous emission
acts as "seed" light and the intra-cavity intensity exponentially increases until it gets
to the saturation value and saturates the gain. At this point the gain gets clamped to
its threshold value since the population of the excited state becomes constant and,
therefore, any increase in pump power results in an increase of the laser output. From
the saturated gain formula in Eq. 2.76 we can derive the expression of the intra-cavity
intensity at threshold:

=1 (90 _ 1) (2.100)

Jth

The intra-cavity intensity is the result of the superposition of the two counter-propagating
waves inside the cavity. Each of them carries one half of the intra-cavity intensity, so
that I(-) = 1(+) = 1/2, where I(-) (I()) is the intensity of the left (right) propagating
wave within the cavity, as depicted in Fig. 2.14. The total output intensity of the laser is
then given by:

Tout = Ti ) + oI (2.101)

Where 77 and 75 are the power transmission coefficients of mirror 1 and 2 respectively.
In most laser systems, however, only one of the two mirrors is partially transmitting,
e.g. T, = T, in which case we can write:

1 1
Tow=TID = -11 = -1, [ L2 1 (2.102)
2 2 Gth

Now, considering that the pump power absorbed by the laser material can be expressed
as [32]:

atoms excited ] [absorbed energy

= ! =TRh 2.103
P [time X volume excited atom } [Volume] =R vV ( )

with V' = [ A the volume of the doped fiber, and given the relation between gy and the
excitation rate R, which is: go(v) = Rme0es(v), we can write the laser output power as:

1 R 1 P
Py = —ATI [ — — 1) = —ATI, [ =2 — 2.104
= b (1) = arn (B ) 201

where P, = Ry,hipV is the threshold pump power. A more intuitive formula can be
obtaining rearranging Eq. 2.104 as following:

Pout = ns(Pp — Pyp) (2.105)
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N = LATS. (2.106)

is the slope efficiency which is defined as the corresponding change in output power to
an incremental variation in the pump power, i.e. 75 = dPout/dFp. Substituting Eq. 2.99
and 2.77 into the above equation we obtain an expression of the slope efficiency that is
a function of two terms: (i) the ratio of the coupling loss to the total loss and (ii) the
ratio between the photon energies at the laser and pump frequency:

hug 1 hvg T
7T ) 2.107
s hvp (2111Gth> hvp [ZaL—Hn(l/Rg)] ( )

A more general formula of the slope efficiency is the following [87]:

hvs T

s = Malle [QaL +1n (1/R2)] (2109
which takes into account also the efficiency 7, with which the pump photons are
absorbed by the gain material and the efficiency 7. with which absorbed pump photons
are converted to photons at laser frequency.

2.4 Summary

In this chapter, we developed analytical models for passive optical resonators and
explored the main characteristics of fiber lasers. Two alternative approaches for the
analysis of optical resonators have been presented: a rigorous model also known as
power coupling formalism, and the more abstract model of the temporal coupled-
mode theory, which is based on energy coupling. Using these two theories we derived
the equations of the transfer functions of a generic resonator that will be used in the
subsequent chapters. Also the expressions of the main parameters that characterize
the performance of optical resonators have been determined. In the second part
of the chapter, the discussion moved towards the review of the basic principles of
fiber laser. This topic started with a brief introduction on the main characteristics
of an optical oscillator. We first derived the threshold condition for achieving laser
oscillation. Then, we discussed the basic equations that govern the gain in a generic
optical amplifier and, specifically, those for the fiber amplifier. Finally, the chapter
ended with the description of the scheme of a fiber laser in a Fabry-Perot configuration
and the derivation of its most important parameters.
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2] Experimental and theoretical
study on the Figure-9 laser

In the last twenty years, lasers incorporating NALM have been paid much attention
owing to their capability to perform self-switching, pedestal suppression and pulse
duration shortening by exploiting the fast nonlinear Kerr effect [90-92]. Specifically,
when a short pulse at the input of the NALM is split in two by the coupler, the asymmet-
ric position of the active fiber inside the loop causes an unequal intensity-dependent
phase shift, which results in a different effective nonlinear length for the two counter-
propagating pulses. This effect is also more pronounced for unbalanced splitting ratio
of the coupler. The overall result is that the high-intensity portions of the pulse are
transmitted and amplified, while the low-intensity portions are reflected back. This
feature has been exploited to obtain mode-locking operation [58]. The figure-9 cavity
is the most basic resonant structure for NALM-based fiber laser but can also be a
sub-unit of more complex laser systems such as the figure-of-eight [93] and the theta
cavity laser [94].

In this chapter I will present a theoretical model, describing the dependence of the
figure-9 laser output power on the coupling ratio of the output coupler. Such theoretical
model was developed considering all the relevant parameters of the laser cavity (loss
coefficients, length, coupling coefficient of the coupler, reflectivity of the reflective
element) and the characteristics of the gain unit (signal and pump wavelength, length
of the doped fiber, doping material etc.) operating in the steady-state regime. The
validity of the model will be demonstrated by comparing the theoretical curves with
the experimental measurements performed using a home-made figure-9 Erbium-
doped fiber laser having a fiber Bragg grating (FBG) as a reflective element. The model
and results show that the laser output power is strongly dependent on the coupling
coefficient of the coupler and the phase difference between the two waves traveling
within the fiber loop. Also, we will see that an asymmetric behavior of the laser output,
over the values of the coupling coefficient, occurs when the losses are not distributed
uniformly within the loop.
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Chapter 3 Experimental and theoretical study on the Figure-9 laser

3.1 Basiclayout and theoretical models of the figure-9 laser

Among the numerous types of passive and active devices used in optical fiber commu-
nication systems, fiber loops and rings have been capable of fulfilling several critical
functions such as those of optical filters, resonators, interferometers and delay lines
[95-98]. Sagnac interferometers, nonlinear optical loop mirrors (NOLM) and the non-
linear amplifying loop mirror (NALM), are all devices based on the fiber loop structure,
which consists of a directional coupler with the two output ports connected together
[97,99-101]. Moreover, many configurations of ring resonators containing one or more
directional couplers in different positions within the cavity have been studied and
investigated from the point of view of resonance condition, transmitted and reflected
output and finesse [102-105]. Relying on these works, it did not take long to realize
that these fiber layouts could represent ideal cavities for efficient and cost-effective
fiber lasers. A fiber laser based on the Sagnac geometry, also called figure-9 (said figure-
of-nine) laser, was first proposed by Cowle et al. in 1991 [57] and is basically a modified
fiber loop reflector with a doped fiber placed inside the loop, i.e. a NALM, with a FBG
connected to one of the remaining ports of the output coupler. A schematic illustration
of such a fiber laser is shown in Fig. 3.1a. Its operating principle is based on two
counter propagating waves undergoing amplification within the loop and interfering
at the coupler. The resulting reflected and transmitted fields depend on the coupling
ratio of the coupler and the phase shift acquired across the loop.

In order to explain the operating principles of the figure-9 laser, we can recall the
expressions of the transmitted and the reflected fields of the geometrical core of this
system, i.e. the fiber loop reflector [99]. The power amplification provided by the gain
unit is represented by the block GU, while all the losses given by the passive compo-
nents (WDMSs, polarization controller, connectors...) placed in the path between the
27d and the 3" port of the coupler, are concentrated in the block labeled I, which is
the power loss coefficient experienced by the two counter-propagating fields. For the
moment, we will assume that these losses are uniformly distributed on both sides
of the loop and that there is no birefringence in the fiber. The FBG serves both as
wavelength selective element and highly reflective mirror of the cavity.

3.1.1 Theoretical scalar model

Let us consider the complex amplitudes of the electric field E;, of a light beam coming
into the loop from port 1 of the coupler. Light incident on the coupler is split in two
portions traveling in the loop in opposite directions (clockwise - CW and counter-
clockwise - CCW) with respective electric field complex amplitudes FE.,, and E..y.
Recalling that for a coupler, there is a 7/2 phase lag on the cross term with respect to
the bar (or through) term, we can write the reflected and the transmitted fields, Fr
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Figure 3.1 — (a) Basic scheme of the figure-9 laser with an FBG as a reflective element. (b)
Plot of the output power of the figure-9 laser as a function of the coupling coefficient of
the coupler for three different pump powers and assuming no intra-cavity (absorption)
losses | = 0. GU: gain unit; CW: clockwise; CCW: counter-clockwise.

and Er, respectively, as the superposition of the counter-propagating fields multiplied
by the coupling ratio they had experienced passing through the coupler:

Er = /1 =9V1 = KEeew + jVE\/1 — 7YEey (3.1)
Er = \/1=9V1 = KEey + jVE\/1 = YEcew (3.2)

In the above equations ~ is the power excess loss coefficient exhibited by the coupler,
while K is the power cross-coupling coefficient. Assuming for the moment that the
two counter-propagating fields go through the same optical path length, which means
that there is no birefringence in the fiber, the expressions for the amplitudes of the
electric fields of the CW and CCW waves are simply given by:

Eew = /1 =7V1 = EV1 = I\/G ey Eine’?t (3.3)

Eeew = .7\/1 - ’Y\/E\/l - l\/GccwEinejBL (3.4)

where (3 is the propagation constant and L is the length of the portion of fiber between
the second and the third port of the coupler. At the steady state regime, the gain in
one direction equalizes the gain in the other direction, i.e. G.w = Gecw. Applying this
condition and inserting equations 3.3 and 3.4 into 3.1 and 3.2 gives:

Er =2j(1—-9)vV1=IK(1 — K)VGEj,e/* (3.5)

Er = (1 — V1 —=1(1 - 2K)VGEpeP" (3.6)
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and the corresponding reflected and transmitted powers are therefore:
Pr = |Er|* =4(1 -7)*(1 - )K(1 - K)GP, 3.7)
Ppr=|Er]*>=(1-7)%1-1)(1-2K)*GP, (3.8)

Once we derived the reflected and transmitted powers, we can find the expression for
the steady state gain by imposing the threshold condition for lasing oscillation, which
is:

RepaPr = Pin 3.9)
where Rppg is the reflectivity of the FBG. Imposing this condition into Eq. 3.7 we find
the following expression for the steady-state gain:

1 1

== 3.10
4 Rppa(1 —7)?(1 - 1)K(1 - K) (3-10)

and, substituting into Eq. 3.8 we obtain the output power of the figure-9 laser as a
function of the intra-cavity power:

(1-2K)?

Poy =
" ARppoK (1 — K)

P (3.11)

In order to apply this analytical expression to our case, we need to include the equation
of the gain of the amplifier which, in the saturation regime, can be expressed as
following [106]:

Ay P
Gamp =1+ =2

P (3.12)

where PI" is the total signal power entering the amplifier. In this case, since we have
assumed that the losses are uniformly distributed on both sides of the fiber loop, P" is
given by P* = (1 — ~)y/1 — [ Py,.
Finally, by imposing that G = G anmp We can express the intra-cavity power as a function
of the pump power and the parameters of the laser cavity:

4RppcK(1 — K)(1—y)V1—=1 X

P, = —P, 3.13
I~ 4Rppa(l —7)2(L - DK —K) A P G.13)

Therefore, if the loss coefficients v and /, and the reflectivity of the FBG are known, by

including the above equation into 3.8 we can write the output power of the figure-9

laser as a function of the pump power injected into the doped fiber:
(1—V1—=1(1-2K)? Ap

Pyt = —P 3.14
T 1 —4Rppc(1—1)2(1-DK(1—-K) A P (3-14)
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Figure 3.2 — On top: Basic scheme of the figure-9 laser assuming local loss placed
(a) on the same side or (b) the opposite side with respect to the FBG. On the bottom:
Corresponding output power of the figure-9 laser, obtained with 70 mW of pump power,
plotted as a function of the coupling coefficient for three different values of the local
loss factor [.

The corresponding plot as a function of the coupling coefficient of the coupler and,
assuming no intra-cavity absorption loss (I = 0), is shown in Fig. 3.1b for different
pump powers. As expected, the output power increases with unbalanced coupling
coefficients and the minimum transmission is reached with the 50/50 coupler. This is
due to the intrinsic effect of the fiber loop mirror, which, in absence of birefringence,
forces the intra-cavity power to go towards the branch containing the FBG.

A less intuitive behavior is found when the losses are not uniformly distributed across
the loop, in which case the two contributions to the total signal power entering the
amplifier are no longer equally affected by the losses. In fact, assuming a local loss
factor [, as shown in Fig. 3.2a and 3.2b, the total signal power entering the doped
fiber depends on the position of the local loss within the loop with respect to the FBG.
Specifically, denoting P{* and Pg™ the power entering the gain unit from port 1 and
port 2 respectively, their expression, as a function of the local losses and the coupling
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coefficient, are listed below for the two cases:

Case 1 Case 2
P =(1-9V1-1(1-K)1-1I)Py P =(1-vV1-1(1-K)P
P& = (1 —4)V1 — 1 KPy, PEY = (1 —)V1I—1K(1—1)Py

where case 1 refers to the layout in Fig. 3.2a, while case 2 corresponds to the layout
in Fig. 3.2b. From the total signal power entering the amplifier Pi* = P$¥ + P&Y, we
obtain the total intra-cavity power for the two cases, which is given by:

Case 1
o 4RppcK (1 — K)(1 = n)vVI—1(1 - L) X
TOK+ (- KA =B - 4Rppa(l - )1 - D1 - K1 - K) A"
(3.15)
Case 2
P 4RppcK(1 — K)(1 —v)vV1—=1(1— 1) 2o b
POEQ =)+ (1= KL - 4Rppa(l - )21 = D1 =) K1 - K)] A7
(3.16)

We note that in Case 1 the local losses term in the expression of P, is multiplied by K,
while in Case 2 by 1 — K. This results in an asymmetry of the output power of the laser
with respect to the coupling coefficient when K # 0.5, as clearly shown in Fig. 3.2a and
3.2b (on the bottom), in which P, is plotted as a function of K for different values of
the local loss factor. We can see that the higher the losses the more asymmetric the
behavior, as one could expect. It should be noticed that this asymmetry is not given by
the effect of the NALM as it is not caused by any nonlinear phase difference.

3.1.2 Theoretical vectorial model

In developing the theoretical scalar model, we have assumed that there is no bire-
fringence in the fiber, which means that apart from the phase lag of = /2 given by the
coupler, the light does not suffer any other phase delay and its state of polarization
remains unchanged across the loop. In practice, there is always a small birefringence
in the fiber that leads to a non-perfect superposition between the waves at the coupler.
Therefore we built a vectorial model considering the two counter propagating waves
with their respective orthogonal polarization components and propagation constants
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along the two axis. The expressions of their electric fields are listed below:
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Figure 3.3 — Output power of the figure-9 laser as a function of the coupling coefficient
of the coupler for different values of A5 L obtained from the theoretical vectorial model
(Eq. 3.21).

where X (Xeow) and Y (Yeew) are the attenuation factors respectively for the x and y
components of the electric field of the CW (CCW) wave, while 8%, (8%.,,) and % (B%w)
are the respective propagation constants. Substituting the above equations into 3.1
and 3.2 we obtain the vectorial form of the reflected and transmitted field from the

fiber loop:

Er = j(1 —v)VEV1 - KVGE;,

G Yeowe?Peewl

T Xeew eIPeew L]

3 XoyelBewl
G YowedPowl

+j(1 =y)WEKV1 - KVGE,

] (3.19)
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Er = (1-7)(1 - K)VGEy

& XowelPowl
§ YoyelBewl

& X ooy Beewl

— (1 -9)KVGE;, .
(1 =) G YoowePeewl

] (3.20)

By following the same procedure as for the scalar model, we can derive the output
power of the laser, which is now also dependent on the birefringence of the CW and
CCW waves:

(1 — K)%a2, + K2a2,,] — 2K (1 — K)(XewXeew0s(ABewL) + Yoy Yeew05(ABeew L))

P = ccw P
out K(l - K)RFBG[(CLEW + a’gw) + 2(XCWXCCWCOS(ABCWL) + YVCWY;ZCWCOS(AﬁCCWL))] '
(3.21)
where:
a’(2:w = X(?W—"_}/C%N azcw = XCQCW+Y;2CW A/BCW = gw_ gw A/BCCW = (g:ch_ (Q:ccw
(3.22)

This dependence is clearly shown in Fig. 3.3, where the output power curves, obtained
with a pump power of 78 mW, are plotted for different values of Af.L = ABccw L =
ABL ranging from 0 to 3 radians and imposing Xc, = Xeew = Yew = Yeew = 1/v/2 and
Rrpc = 0.9. Interestingly, with values of AGL approaching to 7, that is equivalent to
have a 7 phase difference between the two counter-propagating waves, the output
power is no longer dependent on the coupling coefficient of the coupler.

We also investigated the case in which the attenuation is not the same for the two
counter-propagating waves, i.e. in presence of nonreciprocal losses (a2, # aZ.,,). To
simplify the study, yet obtaining an overall understanding of the laser output power
in such scenario, we conducted the study under the assumption of no birefringence
(ABew L = ABcewL = 0). Also, we assumed an horizontal linear polarization for the
electric field (Y., = Yeew = 0), thus varying the attenuation factor of the x component
of only one of the two counter-propagating waves while leaving the other one unaltered.
Figure 3.4 shows the result of this study where the output power was plotted as a
function of K varying X, in Fig. 3.4a and X, in Fig. 3.4b and imposing X.., = 1
and Xy, = 1, respectively, in Eq. 3.3.

We note that the symmetry between the two branches of the model is broken when the
horizontal components of the two counter-propagating waves are not equal and the
minimum value is shifted towards unbalanced coupling coefficients with increasing the
difference | X, — Xccw|- An interesting insight of this result can be found considering
that, such symmetry breaking with respect of the coupling coefficient, provide one
more degree of freedom on the laser output power. In fact, by inserting an optical
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Figure 3.4 — 3-d plot of the output power of the figure-9 laser as a function of the
coupling coefficient of the coupler obtained from the theoretical vectorial model
varying (a) X and (b) X . and imposing X..,, = 1 and X, = 1, respectively. The
curves were obtained assuming no birefringence and an horizontal linear polarization
of the electric field.

element capable to provide nonreciprocal attenuation, one can control the output
transmission of the laser without the need of replacing the coupler or acting on the
polarization controller.

3.2 Experimental investigation on the output power as a func-
tion of the coupling coefficient

To validate the theoretical model we built this fiber laser and tested it in laboratory.
The experimental setup is illustrated in Fig. 3.5a. The laser cavity consists of a fiber
loop reflector, formed between the input ports of a directional coupler, and a FBG
plugged to one output port of the coupler. The gain unit, composed of 4 m of Erbium
doped fiber (EDF) bi-directionally pumped by two 980 nm laser diodes through two
1x2 wavelength division multiplexers (WDMs), was placed at the center of the loop,
while the output of the laser is taken from the other output port of the directional
coupler.

Before evaluating the performance of the laser in terms of output power, the character-
izations of the FBG and gain unit were performed. The reflection spectrum of the FBG,
shown in Fig. 3.5b, was acquired using an high resolution (0.04 pm) optical spectrum
analyzer (OSA). The spectral bandwidth, centered at 1551.35 nm, was found to be 40
pm, while the reflectivity, measured by taking as a reference a high reflectivity fiber
reflector, was about 87%. The single-pass gain as a function of the input and output
signal powers is shown in Fig. 3.6a and 3.6b respectively. The measurements were
taken for five values of the total pump power at 21, 31, 78, 124 and 170 mW. From the
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Figure 3.5 — (a) Experimental setup of the figure-9 laser. (b) Reflection spectrum of the
FBG used as reflective element.

graphs we note that the saturation effect occurs at different values of the input and
output powers. The insets, where the saturation powers are plotted as a function of the
pump powers, show more clearly this behavior. We can see a linear dependence of the
saturation powers with the pump powers as predicted by the theory [89].

After the characterization of the gain unit and the FBG, the measurements of the output
power were performed for five pump powers above the threshold. Six directional
couplers were used in the experiments with coupling ratios of 50/50, 60/40, 70/30,
80/20,90/10 and 95/05. From the characterization of the couplers, a value of excess
loss of about 0.2 dB was found for each of them. During the experiment the intra-cavity
power was monitored using two 99/1 couplers connected to power meters, which
measured the incoming and outgoing powers from the gain unit. In this way, we
were able to evaluate the variation with the pump of the gain and the extinction ratio
between the two counter propagating powers. Also, a polarization controller (PC) was
placed inside the loop in order to change the phase difference between the two waves
from 0 to = corresponding to the states in which the laser transmittance is minimized
or maximized respectively.

The experiments were conducted in two separated steps. Firstly, the values of the
output power were taken adjusting the PC to have the minimum transmission from
the laser. Secondly, the values were taken for the opposite case, i.e. maximum laser
transmission. The measurements of the output power as a function of the pump power
collected minimizing and maximizing the laser transmission are shown in Fig. 3.7a
and 3.7b respectively. These measurements were performed for all the configurations
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the input signal power and (b) the output signal power; insets show (a) the saturation
power and (b) the saturation output power as a function of the pump power.

of the laser, one for each coupling ratio of the couplers. From Fig. 3.7a, we note that
the slope efficiency (values shown in the inset) increases with increasing the coupling
ratio of the coupler used. The configuration with the 95/05 coupler shows the best
slope efficiency, resulting in a good trade off with a greater value of the threshold
pump power, which was about 18 mW. The measurements in Fig. 3.7b, relative to
the maximized laser transmission, were taken adjusting the PC in order to have a 7
phase difference between the two counter-propagating waves. This was achieved,
by setting the polarization controller as a half wave plate with its fast axis at 45°, so
that when the waves re-entered the coupler, their field vectors pointed in opposite
directions leading to a full output transmission [99]. In this case, we can see that the
slope efficiencies show less variations, ranging from 25.3% to 33.4% and symmetrical
configurations behave with better efficiencies. The output power is also plotted as a
function of the coupling coefficient of the couplers in Fig. 3.8a, for the highest values of
the pump power, and compared with the curves resulting from the theoretical model
presented in the previous section. The theoretical curves in the case of minimized laser
transmission, were plotted assuming there was not any birefringence in the cavity, i.e.
imposing X.w = Xcew = Yew = Yeew = 1/v2 and ABew L = ABeewl = 0in Eq. 3.21,
while the theoretical curves relative to the case of maximized laser transmission were
plotted setting AB.w L and Af..w L to 7. The good agreement of the theoretical curves
with the experiments demonstrates that the model describes rather well the behavior
of the laser when the gain is saturated. The measured values of 0.44 and 0.32 were used
in the expression of the intra-cavity power for the total loss coefficient [ and the local
loss coefficient /s respectively. The presence of a local loss factor was due to the slightly
higher insertion loss exhibited by one of the two 99/1 monitoring couplers and the
PC. The effect of the local loss is visible in the inclination of the curves that slightly
increases with increasing the coupling coefficient. Interestingly, by maximizing the
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Figure 3.7 — Experimentally measured output power of the figure-9 laser as a function
of the pump power (a) minimizing and (b) maximizing the laser transmission. Insets
show the slope efficiency for each figure-9 configuration, one for each coupler used.

laser transmission the output power is no longer dependent on the coupling coefficient
of the coupler. This is due to the complete destructive interference at the coupler when
the PC is set as a half wave plate.
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Figure 3.8 — (a) Comparison of the curves extracted from the theoretical models with the
measured experimental values of the output power of the figure-9 laser as a function
of the coupling coefficient of the coupler and for different pump powers in the case of
minimized and maximized laser transmission. (b) Plot of the OSNR, measured using
the optical spectrum analyzer, as a function of the coupling coefficient of the coupler
in the case of minimized and maximized laser transmission.

The optical signal-to-noise ratio (OSNR) was also measured as a function of the cou-
pling coefficient of the coupler for three different pump powers and plotted in Fig.
3.8b. The graph shows that the OSNR increases with increasing pump power for all the
laser configurations, and the maximum value corresponds to 61.5 dB, which is reached
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at a pump power of 170 mW using the 80/20 coupler. Moreover, we note that almost
the same trend of the output power is obtained in both minimizing and maximizing
the laser transmission.

3.3 Summary

The Figure-9 laser has recently attracted significant attention owing to its ultra-simple
configuration that requires only one reflective element and because it can provide
pulse shaping and pulse pedestal reduction in mode-locking operation, thanks to the
nonlinear amplifying loop mirror (NALM) incorporated in its structure.

In this chapter a theoretical vectorial model of the Figure-9 laser, accompanied by
experimental measurements, was described. The model aimed at investigating the
performance and the characteristics of the laser in continuous wave operation, rep-
resenting an initial foundation for a further understanding of the laser behavior in
the pulsed regime. The results of the experimental measurements, well predicted by
the model, showed a strong dependence of the Figure-9 laser output power on the
coupling ratio of the directional coupler and the phase difference between the two
counter-propagating waves within the fiber loop. In particular, we found that the
laser exhibits a duplex behavior: when there is no phase difference between the two
waves, the output power increases with unbalanced coupler and the minimum laser
transmission is reached with the 50/50 coupler; however, when the phases of the two
counter-propagating waves reach a difference of 7, the laser transmission becomes
independent on the coupling coefficient of the coupler. We have also seen that the
presence of a nonreciprocal attenuation within the loop, offers the capability to con-
trol the laser transmission with any coupling ratio without acting on the polarization
controller. However, to be implemented, this feature requires an optical nonreciprocal
element, which contributes to increase the complexity and cost of the whole laser
system. The noise performance of the laser was evaluated measuring the OSNR for
all the different coupling coefficients. The results demonstrated that the best OSNR is
obtained using the 80/20 coupler.
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Time-bandwidth performance of
resonant cavities with
nonreciprocal coupling

The time-bandwidth limit (TBL) is a mathematical tenet, affecting all the reciprocal
resonators, stating that the product between the bandwidth that can be coupled in
aresonant system and its characteristic energy decay time is always equal to 1. Any
attempt to reduce the losses of the resonant system, and hence store a wave for more
time, will inevitably also reduce the bandwidth of the system. Photonics is particularly
affected by the time-bandwidth limit. On the one hand, long interaction times are
required for storage of optical pulses and efficient light-matter interaction (such as
absorption, emission and nonlinear optical effects). On the other hand, broadband or
rapidly varying, e.g. ultra-fast, signals are desirable since they are normally associated
with larger amount of information and higher peak power.

In this chapter I will present an analytical and numerical model showing that the TBL
can be overcome by implementing a nonreciprocal coupling in a generic resonant
system. First, we will see how the spectral distribution and power balance of the
reflected and intra-cavity fields are affected by the nonreciprocal coupling in such
modeled resonant system. Then, by performing a full evaluation of the time-bandwidth
product (TBP) of the modeled system, [ will show that it represents a measure of the
increased delay imparted to a light wave, with respect to what the bandwidth of the
resonant structure would allow, in the reciprocal case, to the same amount of in-
coupled power. Moreover, we will see that the TBP can be used as a figure of merit to
indicate the increase in intra-cavity power enhancement, due to the nonreciprocal
coupling, with respect to a reciprocal resonator.
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4.1 General definition of the time-bandwidth product for a
resonant system

The time-bandwidth product (TBP) is a relational property characterizing all individual
resonators, whether they are of mechanical, acoustic, electrical or optical nature. It
is usually defined as the product between the cavity linewidth (Aw.,,) of a resonant
system, and its characteristic decay time (mp) [31-33]. However this is a specific defini-
tion related to the particular case of a reciprocal, linear and time-invariant resonant
system. A general definition of the TBP can be formulated in terms of the system’s
loading (pr,) and decay (pp) energy rates as:

AWace _ PL

TBP = Awaee - ™D = e s
cav

(4.1)

where Aw,.. and Aw.,, are the full width at half maximum of the Lorentzian functions
associated, through the Fourier transform, respectively to the loading and decay curves
of the intra-cavity energy.

As we already mentioned in chapter 2, the decay of the energy stored within a cavity is
caused by the loss of power through radiative (transmission through coupling elements
such as mirrors, couplers etc.) and non-radiative processes (absorption losses), which
are taken into account by the out-coupling p,,; and intrinsic py energy decay rates,
respectively. The total decay rate can therefore be expressed as: pp = pout + po- The
Fourier transform relates pp to Awcay by:

1 1 1

L1 (4.2)
Tout 70 ™D

Aweay = Pout + po =

where 7,,; and 7y are the decay times associated with the decay of the energy due to
the radiative and non-radiative losses, respectively. Similarly, the loading curve depicts
how fast the intra-cavity energy would exponentially grow if the resonator was ‘fed’
through the same processes but reversed in time. As a result, the loading rate can
be expressed as p1, = pin + po, with pip, and pp that now are the in-coupling rate and
intrinsic loading rate of energy, respectively. In the same way as for the decay process,
we can then relate the loading rate to the acceptance bandwidth of the resonator
through the Fourier transform by:

Awgee = Pin + po = i + i = i (4.3)

Tim  T0 TL

(see Appendix A). In this case, p;, and pg play the role of energy sources instead of energy
sinks like in the decay process. This concept is schematically illustrated in Fig. 4.1. In
resonators with reciprocal coupling, the loading and decay processes are characterized
by the same energy rate (p;, = pp) and the system is said time-reversal symmetric.
This translates in frequency to two identical Lorentzian distributions where, therefore,
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Figure 4.1 — Illustration of the energy loading and decay processes in resonators with
reciprocal (left panel) and nonreciprocal (right panel) coupling and their associated
resonance mode profiles. The TBP is given by the ratio between the acceptance and
the cavity bandwidth which are the FWHM of the Lorentzian functions associated,
through the Fourier transform, to the loading and decay curve respectively.

Awace = Aweay. From Eq. 4.1 this results in a TBP = 1, a value referred to as the time-
bandwidth limit (TBL). For such a system, the bandwidth of an incoming pulse must
be equal to or smaller than the measured resonance linewidth in order to be entirely
coupled in the reciprocal cavity. This means that long storage times automatically
require narrow input bandwidths, while large bandwidths can be retained only for
short periods of time. Conversely, in case of nonreciprocal coupling the time-reversal
symmetry no longer holds since p;, # pp, and the time-reversal operation leads to a
loading process and its corresponding mode profile that are different from the decay
process. In this case, the acceptance bandwidth does not coincide with the measured
cavity linewidth and if the loading process can be made faster than the decay process,
meaning that p;, > pp, the system can show an arbitrary large TBP. Such scenario,
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however, implies that the input energy rate must be decoupled from the cavity decay
time, an operation that, in closed resonators, is achievable only through nonlinearity
or breaking of time-invariance property of the system.

It should be noted that, even if the incident light is an arbitrary waveform, the optimum
coupling in a resonator is the time reversed version of the decay curve, which corre-
sponds to an exponentially increasing waveform [81, 82]. Therefore, the acceptance
bandwidth should not be confused with the bandwidth of the actual injected signal
as it represents the maximum input Lorentzian linewidth allowed by the resonator in
one free spectral range (FSR). As a matter of fact, in practice, the energy within the
resonator does not grow exponentially as light is being injected through the coupling
element (usually a mirror or a coupler), but it rather depends on the time evolution of
the input signal.

Based on these considerations, a nonreciprocal coupling is the necessary requirement
to overcome the TBL. However, such condition can be achieved only through the
breaking of the reciprocity property of the coupling junctions, through which the
energy exchange of the resonant system with the outside world occurs. But why
overcoming the TBL is so important? The answer to this question can be found looking
beyond the purely mathematical aspect. We have explained so far that the TBL imposes
a trade off between the bandwidth and the decay time of a resonant system. In practical
terms, this trade off has a twofold effects: (i) the maximum amount of energy that
can be stored within a time interval is dictated by the bandwidth of the Lorentzian
resonance mode of the system; (ii) the time during which this energy is trapped is
always the inverse of the resonance mode bandwidth. This means that if one wants to
store a higher amount of energy, which then requires a larger bandwidth, the storage
time will be inevitably reduced. On the other hand, any attempt to reduce the losses of
the resonant system, and hence store energy for more time, will inevitably also reduce
the bandwidth of the system. A TBP larger than 1 offers the possibility of decoupling
the resonance mode (cavity) bandwidth from the input bandwidth of the system
allowing to arbitrarily control the storage time without suffering from the restriction
dictated by the cavity bandwidth. A further confirmation of this possibility can be
obtained by rewriting the expression of the TBP as a ratio between the finesse related
to Aweay and Aw,. which we name cavity and acceptance Lorentzian finesse, F., and
Facc TESpECtively:

Awaee Awrsr _ Feay

TBP = (4.4)

Awrsr Awcay B Face
The physical meaning of this expression can be found by recalling that the cavity
finesse calculated using the Lorentzian linewidth represents the number of round-
trips (times 27) before the energy stored in the resonator decays to 1 /e of its original
value [31]. Applying this definition also to the loading process, we can say that F,.. is
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the number of round-trips the intra-cavity energy takes to reach its final value, starting
from 1/e of this value. Therefore, considering a certain amount of energy stored inside
a resonator with pj, > pout, @ TBP > 1 implies that the decay time 7 = 1/pout + 1/p0
experienced by this energy is longer than that provided by a reciprocal resonator (TBP
=1) by an amount equal to the ratio F.,y/Facc. It is thus obvious that overcoming the
TBL would bring remarkable benefits for several applications ranging from the simple
delay line system to nonlinear resonant systems, where coupling an amount of energy
larger than that allowed by the system, would enhance the light-matter nonlinear
interaction.

Moved by this objective, we developed a generalized theoretical model of a resonant
cavity having a nonreciprocal coupling element to study the implication of the de-
coupling of input and output energy rates on the TBP of the system. The analysis is
focused on the spectral distribution and the power balance between the reflected and
intra-cavity fields, showing how their associated power spectra and the TBP of the
system change depending on the degree of nonreciprocity, i.e. the difference between
the in-coupling and out-coupling energy rate.

4.2 Theoretical model of a resonant system with nonrecipro-
cal coupling

To analyze aresonant system with nonreciprocal coupling, we consider a Gires-Tournois
(GT) resonator, which is an asymmetric Fabry-Perot resonator having one partially
reflective mirror, while the other one is fully reflective [75]. An illustration of such
system is depicted in Fig. 4.2, where A, A;, and Ar represent the complex amplitudes
of the intra-cavity, the incoming and the (total) reflected wave respectively, while p is
the intrinsic, or non-radiative, energy decay rate that accounts for the energy loss due
to absorption and scattering occuring in the intra-cavity medium. The mirror M2 is
fully reflective, while p;, and p,y¢ are the total in- and out-coupling radiative energy
rates, respectively, acting through the partially reflective mirror M1. A Gires-Tournois
resonator is perfectly suitable for modeling a resonant system with nonreciprocal
coupling since the partially reflective mirror constitutes the only coupling junction.
Therefore, the energy exchange of the resonant system with the outside world can be
assessed using one dimensional vectors for the input and output energy rates. The
treatment can easily be extended to multi-port resonant systems just by summing up
the contribution of the in- and out-coupling energy rates of each port.
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Figure 4.2 — Layout of a Gires-Tournois resonator with a nonreciprocal front mirror,
whose transmission coefficients depend on the direction of wave propagation.

4.2.1 Parameters of the nonreciprocal coupling element

We can describe the transfer characteristic of the two mirrors by using the scattering
matrix formalism that we have introduced in chapter 2, as shown below:

Saii = [t12 r21] Sae = [O 1] (4.5)

15D t21 1 0

where t15 (to1) and 112 (r21) are the complex transmission and reflection coefficients,
respectively, of a wave incident from outside (inside) the resonator. The total in- and
out-coupling energy rates p;, and p.ys, of the system can be expressed as following:

_Jtio)? |ty ]?

in = Pout =
Trr Trr

(4.6)

where Trr is the cavity round-trip time.

A nonreciprocal coupling implies that p;, and p,, are different due to a nonrecipro-
cal transmittance of the front mirror (|t;2|? # |t21]?). Consequently, the difference
|t12]? — |t21|? can be seen as a measure of the degree of nonreciprocity of the system. It
should be noted that this analytical model aims at studying the implication of decou-
pling input and output energy rates in a resonant system irrespective of the mechanism
used to induce the nonreciprocal coupling, which, in any case, must ensure the conser-
vation of energy [50, 52]. In particular, the model does not presume how the scattering
matrix for the mirror M1 in Eq. 4.5 is generated, thus the origin of the nonreciprocity
(e.g. external magnetic field bias, temporal variance, nonlinearity, etc.) [50, 107] does
not have any impact on the TBP and the power balance of the system: as long as the
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coupling junction has such scattering matrix, it can exhibit nonreciprocal coupling. In
the following sections, we show that temporal variance is one way to reach this state,
but other mechanisms, such as external magnetic field bias or nonlinearity, could
also lead to the same outcome. One example can be found in Ref. [49], where the
in-coupling and out-coupling energy rates are made unequal by exploiting the uni-
directional propagation of surface magnetoplasmon in a magnetized semiconductor
heterostructure.

4.2.2 Derivation of the frequency response

While the temporal coupled mode theory (TCMT), can be used to describe the spectral
distribution of a resonant mode in an optical cavity, even in the context of nonreciproc-
ity [80, 108], the equations on which it is based can approximate the spectral response
of a resonator only under the assumption of weak coupling. Therefore, to derive the
frequency response of the system, we use the power coupling formalism (PCF), since
it allows to carry out an analysis unconstrained by coupling strength assumptions
and that can also consider multiple resonant mode profiles. Another distinction is
that the PCF gives, as a final result, the frequency response of the resonator, which
has the shape of an Airy function, while the TCMT models the resonant system as
a Lorentz oscillator, which is characterized by a single longitudinal resonant mode.
This concept becomes clearer by looking at Fig. 4.3 that shows a comparison between
the Airy distribution (solid lines) of the light transmitted through a FP resonator with
the Lorentzian resonance mode profile (dashed lines) calculated using the TCMT at
different mirrors reflectivity [109]. We note that at high mirrors reflectivity, meaning for
weak couplings, there is a close to perfect agreement between the spectral shape of the
Airy distribution (solid purple line) and its underlying Lorentzian lines (dashed purple
line), i.e., the Airy function is rather well represented by the Lorentzian. However, with
decreasing reflectivity of the mirrors, the linewidth of the Airy distribution broadens
faster than that of the underlying Lorentzian lines so that the discrepancy between
the two sets of spectra becomes more pronounced as we move away from the center
resonance mode. This is explained by the fact that the Airy distribution is nothing
else but the sum of the mode profiles of the longitudinal resonator modes and the
faster broadening of the Airy linewidth (Avaiy,) simply arises from the fact that it sums
up mode profiles (with the same linewidth Av. as the Lorentzian lines) that resonate
at different frequencies. However, later on, we will see that the resonator losses are
related to the linewidth of the Lorentzian lines rather than the linewidth of the Airy
distribution.

The spectral distribution of the intra-cavity (A) and reflected (Ar) fields can be found
starting from the general equations obtained for the Fabry-Perot in chapter 2, i.e. Eq.
2.12 and 2.25. Imposing rg = r; = 1 and inserting the parameters for the GT resonator,
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Figure 4.3 — Comparison between the Airy distribution of the light transmitted through
a standard Fabry-Perot resonator (solid lines) with the Lorentzian resonance mode
profile (dashed lines) calculated using the temporal coupled-mode theory at different
mirrors reflectivity. (Adapted from ref. [109]).

gives:

ti2
A= —— A; 4.7

1 — |11 |age—7om 1 .7
tiota age J (PRT—21)

AR = |1 .
! 2F 1 — [ra1|age7om

Ain 4.8)

where ag = e @4 is the field inner circulation factor that accounts for the non-
radiative loss of the resonator, while ¢gr is the total round-trip phase delay, which, in
this case, is given by the sum of the cavity round-trip phase delay ¢4 = (2L4) and the
phase of ra; (¢5,). Lq, aq and j3 are the cavity length, the intra-cavity power attenuation
coefficient and the propagation constant, respectively.

Now, given that ¢rr = 2mm + A¢rr, where Aggr is the phase detuning from resonance,
the exponential term in equations 4.7 and 4.8 can be rewritten as e~/ AwTrr | in which
Aw = w — wg, and Trr = 2L4/v, is the cavity round-trip time, with v, the group
velocity and wy the resonance frequency. Also, defining the intrinsic energy decay
rate as py = aqv,, we can rewrite the inner circulation factor in the denominator of
equations 4.7 and 4.8 as aq = e~ (?07kr)/2_ Using these relations and those in Eq. 4.6, we
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4.2 Theoretical model of a resonant system with nonreciprocal coupling

finally obtain the spectral distribution of the intra-cavity and reflected fields of the GT
resonator as a function of Aw, pin, pout and po:

Alw) = Vpin Trr
1 — explIn(|ry, [) — (po/2 + j Aw)Tkr]

V/PinPoutIRraq exp [—j(AwTrr — ¢§1)]]
1 — exp|In(|ra1]) — (po/2 + jAw)TRr]

Ajn(w) (4.9)

AR(w) = |:I‘12 + Ain(w) (4.10)

where the field of the incident wave A;,(w) is assumed having a flat frequency distribu-
tion over one free spectral range (FSR = 1/Txr).
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Figure 4.4 — On the top: Power spectra of (a) the intra-cavity and (b) reflected fields,
normalized to the input power, of the GT resonator in case of reciprocal coupling
(Jti2|?> = |t21]? = |t|*) and for different values of the power transmission coefficient of
the front mirror. On the bottom: Power spectra of (c) the intra-cavity and (d) reflected
fields, normalized to the input power, of the GT resonator in case of nonreciprocal
coupling (|t12|? # |t21]?) and for different degrees of nonreciprocity of the front mirror
(Jti2]? — [ta1 ).

Figures 4.4a and 4.4b show the power spectra of the intra-cavity and reflected fields,
normalized to the input power, of the GT resonator in case of reciprocal coupling
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(It12]? = |t21]? = |t|?). The curves are plotted for different values of the power transmis-
sion coefficient of the front mirror imposing a? = 0.9, Trr = 100 ns and setting the
phases of r12 and ry; to 7 and 0 respectively. We note that, for both the graphs, the spec-
tral distribution is identical to that obtained in chapter 2 for the Fabry-Perot resonator,
for all the values of |t|2. A different scenario is found in Fig. 4.4c and 4.4d, where the
power spectra are plotted in case of nonreciprocal coupling for different degrees of
nonreciprocity of the front mirror (|t;2|? — |to1|?) imposing that [ti5]? + |t21]? = 1 with
|ti2]? > [to1|%. Here a slightly lower value (0.8) of a2 has been used to better show the
curves in the 3-D plot. The more evident difference can be seen in the power spectrum
of the reflected field (Fig. 4.4d), in which the classical transmission dips turn into peaks
with increasing the degree of nonreciprocity, meaning that more light is coupled in the
cavity than what is reflected by the front mirror. We also note that the reflected power
vanishes at the highest degree of nonreciprocity (Jti2|? = 1, [to1|> = 0), since the light is
completely trapped inside the resonator.

4.2.3 Theoretical analysis of the power balance

To study the effect of the nonreciprocal coupling on the energy trapping capability, an
investigation on the power balance of the resonator is required. To do so, we calculated
the total intra-cavity and reflected powers encased in one FSR. When normalized to
the input power and the FSR, expressed in angular frequency (Awpsg = 27/Trr), they
are given by the following expressions respectively:

1 2 1
e [ A9 L 1
Y Awrsr Jrsr Awrsr, Jrsr

where the argument of the integral of G.,, is nothing else but the intra-cavity power
enhancement. Therefore, G.,, represents the total power enhancement attained over
one FSR.

2

Aw) do  (4.11)

Ain (w)

AR(OJ)
Ain (w)

First, we studied the problem focusing on a purely theoretical analysis, plotting the
values of G¢,, and G as a function of the in- and out-coupling transmittance. Figure
4.5a shows the case with a?i = 0.1dB, Tgr = 100ns and the phases of r;5 and ry; both
set to 0. The red lines indicate the states where coupling is reciprocal (|ti2|? = |t21]?).
The maximum value of G.., occurs when |t12|> = 1 and |tg;|?> = 0 (top left corner of the
plot), i.e. when there is total inwards transmission and zero outwards transmission
through the front mirror. Conversely, when |t12|? = 0, nothing enters the resonators
and, as expected, G,y = 0. More importantly, we note that, owing to the nonreciprocal
coupling, the intra-cavity power can be enhanced by more than a factor of 40 with
respect to the reciprocal case (red line). The graph of G shows an inverse behavior,
with a peak value occurring at |t;2|> = 0, where the incoming power is totally reflected
by the front mirror, while the minimum value is reached when |t;|> = 1 and |tg;|> = 0
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(top left corner of the plot), where the incoming power is fully coupled and totally
dissipated within the resonator. The graphs in figures 4.5b and 4.5c show the result for 1
and 2 dB of internal (round-trip) loss, respectively. We can see that G,, decreases with
increasing internal loss for all combinations of |t2|? and [ty;|?, while the maximum
value of G does not change because, in this case, the contribution of the out-coupled
power, that is affected by the internal loss, is missing. We also note that G exhibits
smoother variations as a function of |ty; | when the contribution of the internal loss
increases.
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Figure 4.5 — Graphs in color scale of the total intra-cavity power enhancement (top
row) and reflected (bottom row) power encased in one FSR, normalized to the input
power and to Awrgg, plotted as a function of the in- and out-coupling transmittance
|t12]? and |t21|? respectively. The values are related to a resonator with (a) 0.1 dB, (b) 1
dB and (c) 2 dB of internal loss, while the red line indicates the points relative to the
reciprocal coupling.

Overall this theoretical model shows a remarkable enhancement of the intra-cavity
power in resonators with nonreciprocal coupling where pi, > pout. The impact of this
power enhancement, we will see in the next sections, can be quantified by the TBP,
which then plays the role of a figure of merit for the energy coupling efficiency in all
kind of resonant systemes.

4.3 Validation of the theoretical model

To validate the theoretical analysis, we compared these results with those obtained
from simulations based on a full-wave analysis conducted using the software VPIpho-
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tonics (https://www.vpiphotonics.com). To induce the nonreciprocal coupling, we
implemented the Gires-Tournois resonator in the form of a figure-9 cavity where the
nonreciprocal front mirror is simulated by a time-modulated Sagnac interferometer.

4.3.1 Simulation setup

The setup used in the simulations is schematically shown in Fig. 4.6. As illustrated in
the picture, such a particular configuration of the figure-9 resonator, can be seen as a
GT resonator, in which the Sagnac interferometer represents the partially reflecting
mirror whose reflection and transmission coefficients depend on the interference,
occurring at the coupler, between the two counter-propagating waves in the loop.
Using localized time-varying phase modulation asymmetrically positioned inside the
Sagnac loop, allowed us to change in time the in-coupling/out-coupling transmission
coefficients of the front mirror, which results in a dynamic control of the in- and
out-coupling energy rates of the resonators. This can be explained by examining the
equations that govern the wave interference at the coupler.

Let us consider an optical pulse incident on the R port of the coupler, whose pulse
duration is smaller than the cavity round trip time. The nonreciprocity of the coupler
imposes that the cross and straight coupling coefficients depend on the direction of
the light wave. In particular, «x, and 7, are the cross and straight coupling coefficients
respectively for the wave propagating from R or T port towards inside the loop, while
kp and 1, are the cross and straight coupling coefficients respectively for the wave
going from inside the loop towards the R or T port. More specifically, the coupler is
characterized by two distinct scattering matrices, one for each direction of propagation
of the wave. We therefore can define Sc,, the scattering matrix for the wave propagation
towards the inside of the loop, and Sy, for the wave coming from within the loop:

—JkKa Ta —Jkb Tb

A device with such characteristic is included in the VPIphotonics software library as
a generic coupler in which it is possible to arbitrarily set the scattering parameters.
However, the same behavior can be performed in practice by a time-variant tunable
directional coupler made of a 4-port Mach-Zehnder interferometer [27].

Passing through the coupler the incoming pulse is split in two smaller pulses whose
complex amplitudes can be written as following:

Al = TaAin Aga = _j/{aAin (4.13)

where Aj, is the original complex amplitude of the pulse. If there is no phase mod-
ulation the complex amplitudes of the two counter-propagating waves are simply:
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Acw = 7_aAine_j(z)p Acew = _]‘""3aLAiIl€_j¢p (4.14)
where ¢, is the phase delay acquired by the optical pulse through the fiber loop.
: Squared
' pulse

Driving electrical
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Loop
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Phase
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Figure 4.6 — Schematic representation of the setup used in VPIphotonics for the numeri-
cal simulations. The phase modulation in combination with the nonreciprocal coupler
both integrated in a Sagnac interferometer ensures a total control of the transmission
coefficient of the fiber loop, allowing to emulate the nonreciprocal front mirror of the
Gires-Tournois resonator.

Then, by denoting At and Ay the complex amplitudes of the transmitted and reflected
portions of the pulse respectively, the field transmission and reflection coefficients t,
and r, respectively, are easily found:

A1 = ThAcw — JEbAcew = to = T _ (TaTh — Kakb) e I% (4.15)
in
. AR . —jd
AR = —jkpAcw + ThAcew = o = e —Jj (Takp + KaTp) €779 (4.16)
mn

where the subscript 0 indicates the absence of the phase modulation. Conversely,
if the phase modulator is electrically gated to shift by 7 the phase of one of the two
counter-propagating pulses only, say the CCW pulse, the complex amplitude A in
Eqg. 4.14 becomes:

Acw = TaAine_j¢p Acew = —j’iaAine_j((z)p—i_w) = jKIaAine_j(bp (4.17)
and therefore, the complex transmission and reflection coefficients exhibited by the
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Figure 4.7 — Schematic representation of the GT resonator in the form of a figure-9
cavity during the process of (a) in-coupling ¢; < ¢ < t5 and (b) out-coupling of energy
t > to. PM: phase modulator; NRC: nonreciprocal coupler; RE: reflective element.

Sagnac interferometer will be:
ty = (a7 + Kasis) €% (4.18)
Tr = —j (Takt, — Kam) €77 (4.19)

where the subscript 7 indicates the presence of the 7 phase shift imparted by the phase
modulator. In the above expressions and in equations 4.15 and 4.16 the value of ¢, can
be arbitrarily set to 0 without loss of generality.

When the electrical signal is applied at the phase modulator at a time ¢;, and for a
duration ¢t; < ¢t < t9, the Sagnac interferometer exhibits a transmission coefficient
t(t1) = tr, while for the rest of the time (¢ > ¢5), the transmission coefficient is t(¢2) = to.
Therefore, the localized time-varying phase modulation in combination with the non-
reciprocal coupler allowed to arbitrarily vary in time the power transmission coefficient
t of the Sagnac interferometer. The final result is two effective different coupling energy
rates of the figure-9 resonator, one for ¢t; < ¢ < ¢t and one for ¢t > t, which are given
respectively by:

_ [

~ Trr

)

= (4.20)
Trr

p(t1) p(t2)
If the incoming optical pulse is synchronized with the electric signal, it is coupled in
the resonator through the Sagnac interferometer with a power transmission coefficient
|t.|?, as it is depicted in Fig. 4.7a. However, while it resonates within the cavity, it is
coupled out with a power transmission coefficient |ty|? (Fig. 4.7b). Doing so, although
the Sagnac interferometer exhibits a unique transmission coefficient at any given time,

the incoming pulse experiences a transmission coefficient that is different from the
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one experienced by the intra-cavity pulse (t; # ty). We can therefore identify t, and
to with the transmission coefficients t;2 and tyy, respectively, and p(¢1) (p(t2)) with the
in-coupling (out-coupling) energy rate pi, (pout) Of the theoretical model of the Gires-
Tournois resonator. Analogously, we identify r, and ry with the reflection coefficients
112 and ry; respectively. In such a system, the acceptance bandwidth corresponds to
the bandwidth that the figure-9 resonator exhibits in the time window between ¢; and
t9, that is Awaec = p(t1) + po, while the cavity bandwidth is the bandwidth that the
system exhibits when there is no signal applied to the phase modulator (i.e. for ¢ > t5),
which is given by Awcay = p(t2) + po.

Table 4.1 — Table summarizing the correspondences between the parameters of the
VPIphotonics simulative setup and those of the GT resonator model.

VPIphotonics simulation setup GT resonator model

tr = (TaTh + Kakin) € 9% tio
to = (TaTh — Kakb) € 9% 21
Ip = —j (Takp — KaTp) €% o
To = —j (Takb + KaTp) € 9% I
p(t1) = [tz|*/Trr Pin
p(t2) = [to|*/Trr Pout

Therefore, in such a system the nonreciprocity property of the coupling junction,
represented by the time-modulated Sagnac interferometer, is induced by breaking
its time-invariance, that is, by changing in time the transmission coefficient of the
front mirror in the two directions. Nonetheless, this methods ensures the conservation
of energy since, the time-variant Sagnac interferometer exhibits always the same
scattering parameters at any given time, meaning that t;2(¢) = to;(¢) and r12(¢) = 191(¢)
for any ¢. In mathematical terms this is confirmed by the fact that the scattering matrix
of the front mirror at any time fulfills the condition of unitary matrix that we have seen
in Eq. 2.4.

It should be noticed that this time-variant nature of the nonreciprocal coupling pre-
vents this method to be used for storing signals in time-invariant structures. Specif-
ically, a linear and time-invariant system made of a closed cavity with a coupling
interface, cannot exhibit a nonreciprocal behavior, due to the considerations on energy
conservation described above. However, other approaches that involve open resonant
systems, such as the one proposed in [49], can be well described by using the theory
presented in the previous section.

69



Chapter 4

Time-bandwidth performance of resonant cavities with

nonreciprocal coupling

(a) Case (A)

| ()| /|4, (@)

| (@) /|4, (@)

10 © Simulations

—_ ——Theory

40 _Gcav
_GR

3 307 —Theory

©

bt ¢ Simulations
Q20 ol + Jeor[* = 1
)

Q10

0° 2
0 02 04 06

[t12]* — [t21]?

(b) Case (B)
40 _Gcav ‘
330 — Theory
1’2 ¢ Simulations
2200 =0 F2
g o
10 P
by
o i,
0 02 04 06 08
[t12]>

(w 70J())/7TFSR

-
o
N

o
(9}
- -

-1 0 1
(w 7W[))/7TFSR

Figure 4.8 — Left-hand side: comparison of the values obtained from the simulations
with those retrieved from equations 4.11 of the total power enhancement and reflected
power, encased in one FSR and normalized to it. The graphs are related to (a) case
(A) and (b) case (B) and plotted as a function of the degree of nonreciprocity and the
in-coupling transmittance respectively. Right-hand side: spectral distribution over
one FSR of the intra-cavity power enhancement and the reflected power. The curves
are related to a degree of nonreciprocity equal to 0.4 (violet-dashed panel), 0.8 (black-
dashed panel) and 1 (green-dashed panel) for the case (A), and to 0.4 (brown-dashed

panel) and 0.8 (yellow-dashed panel) for the case (B).
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4.3.2 Results of the simulations and comparison with the theoretical model

Through this numerical model, we could arbitrarily and independently vary the in-
and out-coupling transmission coefficients of the front mirror. However, for the sake of
clarity, we analyzed the system for two different cases. As the degree of nonreciprocity
is equivalent to the minimum distance from the line of reciprocity for any point in the
parameter space considered in Fig. 4.5, in case (A) we evaluate the spectral response
of the system for different degrees of nonreciprocity by considering points meeting
the conditions: |t2]? + |t21]/? = 1 and [ty2]? > |t2;]?; in case (B), aiming at investigating
on the behavior of the resonator in the situation where the light is totally trapped in
the cavity, we performed the analysis for |to1|* = 0 while varying |t;2|?. In both cases a2
and Trr are set to 0.1 dB and 100 ns respectively, while the phases of rj2 and ry;, were
retrieved by equations 4.19 and 4.16 respectively. For all the simulations performed in
this theoretical work, a 500 ps-long Gaussian pulse was used.

The results for case (A) are shown in Fig. 4.8a. We can see that G.,, and Gy have roughly
the same value in the reciprocal case, given that the internal loss is small. However,
by decoupling |t12|? from |to1 |, Geay €xponentially grows with increasing degree of
nonreciprocity, taking its maximum value at the highest degree of nonreciprocity, while
Gr decreases. A rather different scenario occurs in the case (B) described in Fig. 4.8b,
where both G.., and Gy vary linearly with [t;2|?. In this case, since |ty;]? is set to 0,
Gr is a linear function of the reflection coefficient of the front mirror and no cavity
resonant mode is coupled out, while the growth of G, is due only to the in-coupling
energy rate pj,, as predicted by Eq. 4.9 and Eq. 4.10 respectively. In fact, in the extreme
case where also |t12|? = 0, then G, = 0, while Gy has a finite value since the incoming
power is totally reflected by the front mirror. The right-hand side of the figure shows
the spectral distribution over one FSR of the intra-cavity power enhancement and the
normalized reflected power related to some values of Figs. 4.8a and 4.8b. As expected,
the bandwidth of the intra-cavity spectrum, which is given by:

4 1—
Aw— 2 ot | Lo Iradaa 4.21)
TRT 2 (|I'21|ad)

gets narrower with increasing degree of nonreciprocity since |to1 |2, (which is equal to
1 — |r21]?), decreases. We also note that the zero out-coupling transmission (|t;|? = 0,
green-, brawn- and yellow-dashed panels) leads to a reflection spectrum that is no
longer dependent on the frequency, since it includes only the contribution of the
power reflected by the front mirror. Particularly, in the specific case of fully coupled
input power (|t;2|? = 1, i.e. - maximum degree of nonreciprocity, green-dashed panel),
the reflected power is null, meaning that the light is completely trapped inside the
resonator, and dissipated via the internal loss. Importantly, in both cases, (A) and
(B), the numerical results are in a good agreement with equations 4.9, 4.10 and 4.11.
Therefore, the decoupling of the in- and out-coupling energy rates in a resonant system,

71



Time-bandwidth performance of resonant cavities with
Chapter 4 nonreciprocal coupling

as a consequence of the induced nonreciprocity, can dramatically affect the balance
between the reflected and intra-cavity power and significantly improve the power
enhancement provided by the resonator.

4.4 Evaluation of the time-bandwidth performance

Following the above analysis, we evaluated the TBP for different degrees of nonre-
ciprocity. We have seen in chapter 2 that the resonator losses, which include both the
radiative and non-radiative out-coupling energy rates, are quantified by the linewidth
of the Lorentzian profile of the single resonant mode and not by the full-width-at-
half-maximum (FWHM) of the Airy function characteristic of the resonator spectral
response. This is a rule that is valid regardless the strength of the coupling. Therefore,
to properly derive the TBP, we used the TCMT to retrieve the Lorentzian mode profile
associated to the loading and decay processes of the resonator.

We calculated the TBP of the resonator in the case of reciprocal and nonreciprocal
coupling, and we plotted the values in Fig. 4.9a as a function of |t;2|?. For the nonre-
ciprocal case, we plotted three curves corresponding to three values of the absorption
loss a2: 0.1, 1 and 2 dB, while |ty |* was set to 0.1. Owing to the decoupling of the in-
and out-coupling energy rates, the TBP linearly increases with the increasing of |t;|?
in case of nonreciprocal coupling, while it is always equal to 1 in case of reciprocal
coupling.

In Fig. 4.9b, 4.9c and 4.9d the TBP of a resonator with afl = 0.1dB, 1dB and 2dB
is plotted for all the combinations of [t;2|? and |ts;|?, with the red line indicating
reciprocal coupling (|t;2|? = |t21|?), where the TBP turns into the TBL. We note that the
highest TBP occurs at the maximum degree of nonreciprocity, while it becomes smaller
than 1 when the degree of nonreciprocity is negative (|ti2|? < |t21]?). It is interesting
to note that the values of the TBP follow those of G.,, in Fig. 4.5 showing a strict
correlation between the TBP and the total power enhancement attained over one FSR.
In fact, both show their peak at the maximum degree of nonreciprocity. However, while
G ayv is always null when |t;|? = 0, the TBP is greater than zero (and smaller than 1)
because py # 0, and decreases with increasing |t | along the line |t12|?> = 0, reaching
its minimum at |ty;|? = 1. This is also visible in Fig. 4.9b and 4.9c where the highest
and lowest value of the TBP get close to each other given a larger value of the internal
loss.

The benefit of the nonreciprocal coupling in a resonant system shows up more clearly
by evaluating the total power enhancement in the nonreciprocal case with respect
to the power enhancement achievable in the reciprocal case for the same amount of
in-coupled power. This can be illustrated by plotting GNE/GR , where GNE is Gy

cav
for the nonreciprocal system calculated with py, > pout, and G, for the reciprocal
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Figure 4.9 — (a) Comparison between the TBP of a reciprocal and a nonreciprocal
resonator plotted as a function of the in-coupling transmittance. The curves of the
nonreciprocal cases are relative to resonators with different absorption losses. (b),
(c) and (d): graphs of the TBP in color scale as a function of the in- and out-coupling
transmittance for a resonator with 0.1, 1 and 2 dB of internal loss respectively. The
red line indicates the values relative to the reciprocal coupling (i.e. TBP = 1), which
corresponds to the TBL.

system. The results, obtained from the simulations, are plotted in Fig. 4.10 as a
function of the degree of nonreciprocity (with the same conditions of Case (A) in
Fig. 4.8) and compared with the corresponding values of the TBP. Clearly, the ratio
GYR/GR increases exponentially with the degree of nonreciprocity, proving that by
tailoring the decoupling of p;, and pout, the intra-cavity power can be enhanced much
more than what could be done with a reciprocal resonator. We also note that the
values of the TBP are in good agreement with those of GXX/GE, , meaning that it can

be used as a figure of merit to indicate the gain of total power enhancement due to
nonreciprocal coupling, with respect to a reciprocal resonator, for an equal amount
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Figure 4.10 — Comparison between the values of the ratio GYE /GR  calculated using

cav cav
the values of G.,, obtained from the simulations, and the TBP as a function of the

degree of nonreciprocity of the system (bottom horizontal axis) and the in-coupling
transmittance (top horizontal axis).

of in-coupled power. Such a parameter may have a fundamental role specially in
nonlinear optics applications, where the large build-up of light intensity contributes
to the enhancement of the nonlinear optical effects.

4.5 Summary

In this chapter we explored the possibility to overcome the fundamental TBL that
characterizes all resonant systems, by implementing a nonreciprocal interface as a
coupling junction.

The chapter started by introducing the general definition of the TBP for a resonant
system. Here, the concept of the acceptance bandwidth has been distinguished from
the more common cavity bandwidth, which is simply the inverse of the cavity photon
life-time. The acceptance bandwidth, in fact, identifies, through its association with
the energy loading rate, how fast the intra-cavity energy would exponentially grow
if the resonator was 'fed’ through a time-reversed version of the decay process. In
reciprocal resonators there is no reason to make this distinction since the two band-
widths coincide and the TBP takes the value of 1, that is referred to the TBL. In such
resonators a long storage time, which can be achieved only through a reduction of the
losses, inevitably implies a narrowing of the bandwidth of the Lorentzian resonance
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mode of the system. On the other hand, in resonators with nonreciprocal coupling
the in-coupling energy rate can be decoupled from the cavity bandwidth and can be
increased at will to obtain an arbitrarily large TBP. However, this can be possible only
through the breaking of one of two fundamental properties that characterizes most
ordinary resonant systems: linearity or time-invariance.

To obtain a measure of the increased storage time offered by resonant systems with a
TBP > 1, we expressed the TBP in terms of acceptance and cavity Lorentzian finesse.
This provided us a new insight of the TBP as a measure of the increased delay/storage
time imparted to a light wave, with respect to what the bandwidth of the resonant
structure would allow to the same amount of in-coupled power.

We then investigated the implications of the nonreciprocal energy coupling on the TBP
and the power balance of a generic resonant cavity modeled as a GT resonator. The
results, obtained performing a theoretical and numerical analysis of the intra-cavity
power enhancement and the total reflected power, showed that the decoupling of
the in- and out-coupling energy rates, can effectively overcome the TBL, reporting a
value of the TBP that is more than 40 times above this limit for the specific value of
loss used. The model was based on the derivation of the frequency response of the
GT resonator, using the PCE while the evaluation of the TBP was performed based
on the definition given at the beginning of the chapter. Finally, by comparing the
total power enhancement in the reciprocal and nonreciprocal case, we have seen that
the TBP can be used a figure of merit that characterizes the gap between the total
power enhancement attained over one FSR with the nonreciprocal coupling from that
achievable in the reciprocal case considering the same amount of in-coupled power.
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dJ Arbitrarily high time-bandwidth
performance in a nonreciprocal
optical resonator with broken
time-invariance

The theoretical work illustrated in the previous chapter showed that, although the time-
bandwidth limit (TBL) is a fundamental rule that arises from basic Fourier reciprocity,
it can be overcome, under certain conditions, by decoupling the rate of in-coupling
energy from the bandwidth of the cavity resonant mode. However, despite several
techniques based on slow-light waveguides and temporal adiabatic tuning of resonant
structures [12, 40, 43, 110, 111] have previously been investigated with the purpose of
demonstrating a time-bandwidth-unlimited resonator, their inherent limitations have
so far prevented them from successfully achieving this goal.

In this chapter I will show that a resonant system like the one modeled in the previous
chapter can be implemented using a simple macroscopic, fiber-optic resonator where
the nonreciprocity is induced by breaking its time-invariance. During the experiments
the resonator is switched from a completely open to a completely closed state by
means of a spatially asymmetric time-varying phase modulation. Unlike previous
adiabatic cavity modulation schemes [43, 111], the measurements are conducted in a
non-adiabatic regime, so that the retrieved pulses exiting the resonator do not exhibit
detectable temporal nor spectral distortions. The experimental results I will show
report a TBP 30 times above the fundamental time-bandwidth limit. However, we will
see that, in general, the TBP of an individual resonator with such characteristics is
ultimately limited only by the Lorentzian cavity finesse and can be increased at will
above the limit, provided that internal, dissipative losses are kept sufficiently low.
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5.1 The figure-9 resonator with broken time-invariance!

To experimentally prove that overcoming the TBL is truly possible by using a resonant
system with a nonreciprocal coupling, we implemented such a system, at telecommu-
nication wavelength (around 1550 nm), by building a figure-9 resonator similar to that
used for the simulations conducted with VPIphotonics software. We performed the
experiments on this simple known fiber configuration, similar in some ways to a recir-
culating fiber loop [112], to demonstrate for the first time a corroboration of the theory
that a resonant system with a nonreciprocal coupling can exhibit an arbitrarily high
TBP. The resonator was made of polarization maintaining fibers with a Tyt of about
48 ns, while the reflective element is a fiber Bragg grating with a center wavelength
at 1551.3 nm and a stop bandwidth of about 28.2 GHz. To mimic the nonreciprocal
mirror we break the time-invariance by using localized time-varying phase modulation
asymmetrically positioned inside the Sagnac interferometer, as already explained in
details in section 4.3. The pulse length specially chosen to be shorter than the distance
between the phase modulator and the center of the Sagnac loop, allowed to apply the
phase shift to only one of the two counter-propagating pulses. The Sagnac interferom-
eter was built using a 50/50 standard directional coupler, instead of a nonreciprocal
coupler. By developing the equations that govern the wave interference at the coupler
as we did in section 4.3 and, imposing 7, = 7, and k, = k3, we find that the complex
transmission coefficients exhibited by the Sagnac interferometer, with and without the
presence of the 7 phase shift, are given by the following expressions:

tr = 72\ fape 9% — k2 fape eI = (72 4+ k%) Jape I = | /ape I 6.1
to = 72 /ape 1 — k*\Jape I = (72 — k%) /ape I (5.2)

where we have assumed an ideal coupler (72 + k2 = 1), while the complex reflection
coefficients are:

I = —jKT\/ape I — jrT\/ape 1Pel™ =0 (5.3)
Ip = —jm-\/@tfjd’l’ — jm'\/@efj‘ﬁp = —_]'2&7'\/@67%% (5.4)

In the above expressions a, is the field attenuation factor that accounts for the losses
in the Sagnac interferometer. Then, taking the modulus square and inserting the

'The results of this section are partially adapted from the article: 1. Cardea et al., Arbitrarily high time
bandwidth performance in a nonreciprocal optical resonator with broken time invariance Sci. Rep. 10,
15752 (2020) (2.
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5.1 The figure-9 resonator with broken time-invariance

coefficients values for the 50/50 coupler (|7|? = |x|?> = 1/2), we obtain:
te]? = ap t:2=0 (5.5)
lto]* =0 Iro|? = ap (5.6)

Therefore, a light pulse incident to the R port of the 50/50 coupler is split in two
identical (in amplitude) portion. When the phase modulator is electrically gated,
through an electrical squared pulse (of appropriate amplitude and duration at least
equal to the one of the optical pulse), to shift by = the phase of the CCW pulse, a
perfect constructive interference at the T port occurs. This interference is independent
of the coupling coefficient of the coupler, as we can see from Eq. 5.1, leading to
a full in-coupling transmittance. As a result, during the modulator gating time, say
t1 <t < ty, the system is a completely open cavity capable of fully accepting the light
without any reflection, so that the incident pulse is totally transmitted (and partially
attenuated) through the Sagnac interferometer, experiencing the power coefficients
of the cavity given in Eq. 5.5. This case is depicted in Fig. 5.1b. The pulse switched
to the port T of the Sagnac interferometer is reflected by the FBG and travels again
through the fiber loop mirror. At this point, no other phase shift is applied and the
pulse bounces back and forth between the fiber loop and the FBG until it is extracted
after a desired number of round trips (RTs) applying a second electrical “gate”. During
this time (¢t > t5), the system acts as a completely closed cavity formed by the Sagnac
interferometer and the reflective element (Fig. 5.1c), and the power coefficients seen
by the pulse already stored in the resonator are those of Eq. 5.6. The corresponding
energy loading and decay curves, with their associated Lorentzian profiles, that the
system exhibits during the open and closed state respectively, are illustrated in Fig.
5.1a. After a desired number of cavity round-trip, we can extract the pulses from the
resonator by gating once again the phase modulator (for t3 < ¢ < t4), leading to switch
the constructive interference to the R port, as illustrated in Fig. 5.1d. In this case, the
power coefficients experienced by the pulse are again those of the open cavity. The
pulse train is designed such that a given pulse coupled into the cavity does not overlap,
inside the phase modulator, with the subsequent pulse.

It is important to note that during each stage of operation, i.e. injection, storing and
release, the system is reciprocal and therefore the acceptance bandwidth coincides
with the cavity bandwidth. However, the breaking of time-invariance renders the
system nonreciprocal [50], since the system exhibits two different bandwidths during
the injection and the storing stages.

2we found the same result in the vectorial model of the figure-9 laser treated in section 3.1.2
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Figure 5.1 — (a) Exponential loading and decay curves of a time-variant nonreciprocal
resonator. If pr, > pp, the exponential energy loading process is faster than the decay
process, and their associated bandwidths, Aw,.. and Aw.,y, respectively, are different,
with Aw,ee > Aweay. Implementation in a Figure-9 resonator: (b) Injection - The
optical input pulse is fully coupled in the cavity owing to constructive interference of
the CW and CCW pulses at the T port when a 7 phase shift is solely applied to the CCW
pulse. (c) Storing - Once loaded, if no other gate signal is applied to the modulator,
the CW and CCW pulses interfere constructively at the T port and the pulse is stored
in the resonator until it is dissipated through internal loss. (d) Extraction - The pulse
is extracted after a desired number of RTs by opening again the cavity, i.e. applying a
second “gate” signal to the phase modulator to the CCW portion of the pulse. A gain
unit (GU), can be incorporated to partially compensate for the dissipative loss.

To express the TBP as a function of the parameters that characterize the figure-9
resonator, we need to derive its in- and out-coupling energy rates in the case of fully
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open and fully closed cavity state. Recalling the relations in Eq. 4.20 we can write:

t.|2 t1o]? 2 4+ k?2)2q a
Din = p(tl) _ | 7T| — ’ 12| —_ ( ) p — 1% (57)
TRT Trr Trr Trr

ol el (77— s2)ap

~ Trr  Trr Tkt

Pout = P(t2) =0 (5.8)
where we have identified t, and ty with the transmission coefficients t;5 and ty;, re-
spectively, of the numerical model of the GT resonator.

In the numerical model of the GT resonator described in the previous chapter, we
assumed a lossless nonreciprocal mirror. The Sagnac interferometer used in the exper-
iments, however, exhibited some absorption loss which are taken into account by the
attenuation factor a,. We then decided to include this loss as a part of the attenuation
experienced by the pulse in one round trip and consider the Sagnac interferometer
itself part of the figure-9 resonator. The in-coupling and out-coupling energy rates of
the figure-9 resonator, in this case, need to be normalized to the attenuation factor,
obtaining:

1 |tyo)? 1

Lo - 5.9

Pin ap Thr Trr (5.9
1 [tor|?

pout = 1217 _ g (5.10)
CLp TRT

By summing the coupling energy rates of the figure-9 resonator and the energy rates
due to the internal (non-radiative) losses, we obtain the loading and decay rates, pr,
and pp, associated to the loading and decay process respectively:

1 1

PLZPin+po=7T + = (5.11)
RT 70
1

PD = Pout + Po = — (5.12)

70

where 7y is the internal, non-radiative decay time, associated with absorption or energy
dissipation inside the cavity, which in this case, includes also the loss exhibited by the
Sagnac interferometer. In the parameter 7y we also included the decay of energy due
to the small leakage from the reflective element. From Eq. 5.11 we note that when
the resonator is in the fully open state at time ¢; < t < 5, the system is actually not
a cavity, but an ordinary delay line/waveguide with a reflective termination, and the
delay experienced by the pulse is simply Trr. It thus seems not possible to associate
a linewidth to the cavity in the open state. However, as we have already mentioned
in the previous chapter, the acceptance bandwidth is by definition the FWHM of the
Lorentzian profile associated to the energy loading process of the cavity. In this way, a
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linewidth related to a “fictitious” loading resonant mode, which is quantified by the
in-coupling energy rate, p;, and the intrinsic energy rate pg, can always be associated
to the cavity even in this extreme case of fully open state.

Inserting Eq. 5.11 and 5.12 into the general expression of the TBP (Eqg. 4.1) we obtain
the following simple relation:

TBP:&—lﬂ-l:fdosed

pp  Trr 2

+1 (5.13)

with Fjoseq the finesse of the closed cavity. As a result, by decoupling in time the cavity
photon lifetime m (or equivalently the cavity bandwidth Aw.,y), from the acceptance
bandwidth Aw,.. such that p;, > pp, the TBP of the system can be higher than 1. The
fully open state represents an extreme situation where we can couple in all the power
without observing any reflection. Nevertheless, a TBP > 1 is possible also for not
completely open cavity, as we have seen in the previous chapter. We stress that, even if
the actual bandwidth physically coupled inside the cavity is in practice only limited
by the operating frequency region of the 50/50 coupler, the acceptance bandwidth
that has to be considered in calculating the TBP is the FWHM of the Lorentzian profile
associated to the energy loading process. It is thus not given by the bandwidth of the
incoming pulse. As a matter of fact, the energy of an incoming pulse that is shorter
than the cavity round-trip time (i.e. with a bandwidth larger than the FSR) decays over
more than one cavity resonance mode and this does not change the value of the TBP
of the system, which has to be always evaluated considering one single Lorentzian
resonance mode.

It should be noticed that, as any other fiber optic resonator based on standard sin-
gle mode fiber, this system is subject to the limitations dictated by dispersion and
nonlinearity. Specifically, in case of storing of a data pattern made of a sequence of
ultra-short pulses, the storage time would be limited by dispersion since the pulses
would broaden and could cause the loss of information originally contained in the pat-
tern. This can be dealt, to a certain amount, by dispersion management of the cavity.
Besides, an excessively high peak power would induce nonlinear effects, leading to
spectral broadening and distortion of the optical bit stream [113]. Another constraint
is represented by the limited time-window permitted by the system for coupling the
input signal. In fact, due to the time-variant nature of the front mirror, the duration
of the signal that has to be stored, cannot be longer than the cavity round-trip time,
since any superposition at the phase modulator, during the in-coupling process, would
also couple part of the signal out of the resonator. However, this work did not aim at
proposing a novel device, rather at demonstrating a theoretical principle according
to which a resonant system with a nonreciprocal coupling can exhibit an arbitrarily
high TBP. Besides that, a correct evaluation of the TBP requires an output signal and
spectrum free of distortions, as they can affect the central frequency or the duration
of the original pulse. Therefore, in the experiments, we chose the peak power and
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the pulse duration in order to have negligible effect of dispersion and nonlinearity,
although, in the theoretical context of the time-bandwidth performance, there is no
restriction regarding the peak power and the pulse duration.

5.1.1 Experimental setup

The experimental setup used to perform the experiments is illustrated in Fig. 5.2. The
input to the resonator consists of an optical input pulse train at 1551.3 nm obtained
from a laser, modulated in intensity to give 500 ps-long Gaussian pulses with 894 MHz
bandwidth, and a repetition rate corresponding to about 30 cavity RTs.

AWG
chi Cch2
CW Laser o (o]
1550 nm
7T
e /
cCwW cw
Reflective
element
¢ T
Tunable : GU :

Circulator

Figure 5.2 — Exponential setup used for the experiments of the catch-and-release of
a 500 ps long Gaussian pulse in a time-variant figure-9 resonator. PC: polarization
controller.

We synchronized an electrical pulse of 4 ns with the optical signal to activate the phase
modulator when it is traversed by the CCW pulse only. The characteristics of the optical
input signal and the electrical driving signal are shown in Fig. 5.3. Once extracted,
the pulses are detected at the third port of a circulator, placed before the R port of the
Sagnac interferometer, by using a high-speed sampling oscilloscope. Both the electrical
signals used to drive the phase and the intensity modulator (IM) were generated by
the same arbitrary waveform generator (AWG) (Tektronix model 7122B). The phase
modulator used for the experiments was a LiNbO3 electro-optic modulator (Photline
model MPZ-LN-10) with an electro-optic bandwidth of 12 GHz. The synchronization
between the electrical “gate” and the optical signal was performed directly from the
AWG by imposing a delay on the electrical signal that drove the phase modulator.

Since according to Eq. 5.13, the cavity finesse limits the TBP, we experimentally con-
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Figure 5.3 — (a) Optical signal entering the figure-9 resonator made of a train of 500
ps-long Gaussian pulses with a period of about 30 cavity RTs. (b) Electrical signal used
to drive the phase modulator made of a train of 4 ns-long squared pulses with a period
of an arbitrary number of cavity RTs. The entry gate pulse was synchronized with the
optical input pulse to perform the pulse injection, while the exit gate pulse was used to
extract the intra-cavity optical pulse at a desired number of RTs.

trolled Fjoseq by inserting a gain unit, which consists in a homemade bidirectional
optical amplifier, inside the resonator. As such, we could tune 7y by varying the ampli-
fier gain. The gain unit was made of 90 cm-long Erbium-doped fiber (EDF) connected
with two fused fiber wavelength division multiplexers and pumped by a semiconductor
laser diode at 980 nm. We measured the cavity round-trip time to be 48 ns and 120.3 ns,
without and with the EDFA respectively. It is important to note that the addition of an
EDFA was a means to overcome relatively high absorption losses, adding gain without
exceeding the losses, while not affecting the general principle. In fact, an analogous
amplification would never increase the TBP beyond one (1) in a reciprocal resonator,
as more power would simply also leak out the system at every round trip.

5.2 Results and discussion

We assessed the performance of the system by measuring the energy of the pulse
released after different numbers of RTs. Figure 5.4a shows the results for the passive
cavity (no EDFA). The exponential decay fit of the experimental data corresponds to a
decay time 7 of about 65.69 ns, which allowed us to extract a pulse above the noise
level after up to 10 RTs. This corresponds to a closed cavity decay-time of about 1.37
times longer than the cavity RT time, leading to a TBP of 2.37. According to Eq. 5.13,
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the maximum achievable TBP can be in principle infinite, providing an infinitely long
closed-cavity decay time 7y, i.e. a loss-less cavity. However, in our case 7y is limited by a
technological constraint, specifically the absorption losses at the modulator measured
to be ~3.17 dB/RT, whereas the excess loss and the reflectivity of the FBG were 0.2
dB and 97%, respectively. We therefore used the active cavity configuration (with
EDFA) to support the claim of arbitrarily large TBP by experimentally controlling the
decay time of the system. We progressively adjusted the power of the EDFA to partially
compensate the intra-cavity loss over three different steps resulting in a net loss of 0.4,
0.25, 0.15 dB/RT. The measurements are shown in Fig. 5.4b, where the experimental
data is normalized to the energy of the pulse extracted after the first cavity RT. As the
addition of the EDFA increases Trr, according to Eq. 5.13, this might actually reduce
the TBP of the system. However, the significant increase in 7y allowed sustaining the
pulse for up to 120 RTs (red curve). The decay time strongly increased from 65.69 ns up
to 3.57 us, resulting in a maximum TBP of 30.7. For this measurements, the period of
the input pulse train lied between 30 and 31 RTs, to avoid time overlap between the
intra-cavity pulse in its 315 round trip and the new incoming input pulse. In this way,
we could couple multiple pulses in the resonator and extract an individual pulse after
more than 30 RTs without affecting the others.

In principle, we could achieve an even higher TBP value by intensifying the pump
power of the EDFA as to fully compensate the round-trip loss. Under these conditions
the TBP is higher, but now limited by dispersion, nonlinear effects and the amplifica-
tion of noise by the EDFA. However, in practice, we were limited by the gain saturation
of the doped fiber. This effect can be seen in Fig. 5.4b for the configuration with 0.15
and 0.25 dB/RT of effective losses. In fact, here the pulses retrieved at the first RT have
energies sufficiently high to saturate the gain of the amplifier, which cannot compen-
sate for the cavity losses in the same way as for the pulses extracted after more RTs.
This results in higher effective cavity losses at the first experimental point, which we
therefore excluded from the fit. Further increasing the diode pump power would have
affected even more points, misleading the estimate of the TBP. In order to confirm this
concept and prove that the gain unit was necessary only to overcome a technological
constraint, but without affecting the general principle behind the TBP, we conducted
detailed simulations of the pulse storing operation using VPIphotonics software. The
simulations were performed using the tool VPItransmissionMaker Optical Systems
whose numerical solver is based on a full-wave analysis. We reproduced the setup in
the graphical environment using built-in blocks with customized parameters. Our
experimental resonator was numerically modeled in 4 passive configurations (without
EDFA): in the first one we have reproduced the exact passive experimental cavity, while
in the other three configurations we have set the total loss and Trr as to mimic the
three values of the experimental active setup. The normalized energy of the pulses
collected at different RTs is plotted in Fig. 5.4c for the first case and in Fig. 5.4d for the
other three cases. For all, the TBP value is in excellent agreement with the one calcu-
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Figure 5.4 — (a) Experimentally measured energy decay curve for the 500 ps Gaussian
pulse extracted from the full polarization maintaining fiber passive resonator at every
round trip time (Tgr = 48ns). (b) Experimentally measured energy decay curves
for the pulses extracted from the amplified resonator every ten round trips (with
Trr = 120.3 ns) for different values of loss per RT. Error bars in (b) come from fast
polarization rotation due to the non-polarization maintaining erbium doped fiber in
the gain unit, resulting in a 20% of uncertainty. (c) Simulated energy decay curve of the
passive cavity with the same actual value of loss/RT as for (a). (d) Simulated energy

decay curves of a passive cavity configuration with the same actual value of loss/RT as
for (b).

lated after fitting of the experimental data. In particular for Fig. 5.4d, the exponential
decay fits almost perfectly the experiments, showing decay times from 1.36 to 3.56 us
as the dissipative losses progressively decrease. The simulations not only confirm the
improvement in TBP but also that we can indeed treat our active cavity as a passive
cavity with reduced dissipative losses.

In Fig. 5.5 we provide an example showing the temporal traces of a 4 ns squared pulse
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Figure 5.5 — Temporal traces over one period of the optical pulse train extracted af-
ter different RTs. The diode pump power of the gain unit was adjusted to obtain a
configuration with about 0.5 dB of loss per round trip.

stored in the resonator and extracted after different RTs, with loss of about 0.5 dB/RT.
The pulse can be extracted after up to 25 RTs and no leakage is observed between two
subsequent extracted pulses. This confirms that we can couple the entire pulse energy
(Jti2|> ~ 1) without any out-coupling loss (|ts;]? ~ 0), switching the cavity from the
completely open to the completely closed state. For this specific measurement we used
alonger and square-shaped pulse because the acquisition memory of our oscilloscope
was not sufficient to detect the 500 ps-long Gaussian pulses over the entire time period
of the pulse train (about 3.6 us).

I want to remark here that, using this system we do not need to adiabatically compress
the input pulse bandwidth to match the closed cavity resonance and avoid scattering
between different resonant modes, as proposed in other works [40, 43, 110, 111]. In
fact, we are in a non-adiabatic regime, as Trr is longer than the tuning time, which is
given by the rising time of the phase modulator. Moreover, with Tzt being longer than
the pulse duration, the injected pulse does not interfere with itself and cannot ‘see’
the closed-cavity resonant modes. Therefore, the pulse does not need to adapt to the
closed-cavity resonances and, once released, it exhibits a spectrum that is unaffected
by the switching between the two different cavity states.

To clearly show that the characteristics of the released pulses are preserved over all the
RTs, we collected temporal waveforms and radio-frequency (RF) spectra of the 500 ps
Gaussian pulse after 1, 40 and 80 RTs (Figs. 5.6b, 5.6c and 5.6d) and plotted together
with those of the pulse collected before entering the cavity (Fig. 5.6a). The temporal
traces were registered by detecting the extracted pulses on a sampling oscilloscope
with 20 GHz of optical bandwidth. Given the limited resolution of our OSA, a direct
measurement of the pulse spectrum in the optical domain did not provide the suitable
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Figure 5.6 — Pulse waveforms and radio-frequency spectra acquired before the cavity
(a) and after 1 RT (b), 40 RTs (c) and 80 RTs (d). The product of the pulse duration and
the bandwidth (FWHM) gives values close to the transform-limited pulse for all the
three cases.

resolution to detect variations in the spectrum of the order of the cavity free-spectral
range (about 8 MHz). We thus implemented a zero-delay self-heterodyne technique
[114], to map the optical spectrum of the pulses into the radio-frequency domain. The
pulses retrieved from the resonator were modulated using a 40 GHz Mach-Zehnder
modulator to create sidebands at 16 GHz from the central pulse frequency and sent to
an Electrical Spectrum Analyzer (ESA). The bottom row of Fig. 5.6 reports the radio-
frequency spectra, given by the convolution of the beating lines acquired with the ESA
and centered at the modulation frequency. The origin of the noise seen in the spectra
is the amplified spontaneous emission generated by the EDFA. This amount of noise
was quite sensitive to the polarization alignment, which was always hard to achieve
during the measurements mainly because the gain unit was not made of polarization
maintaining fiber. From a comparison with the pulse acquired before entering the
resonator, we note that the resonating pulses do not suffer any measurable distortions
and their spectra are well preserved over all 80 RTs. This is also confirmed by the
product of the pulse duration and bandwidth (FWHM) retrieved from the Gaussian fit,
which was always about 0.44 for the investigated RTs.

5.3 Summary

In this chapter an experimental implementation of the resonant system with a non-
reciprocal coupling based on the time-variant figure-9 resonator has been presented.
The system was designed such that the Sagnac interferometer acted as a nonreciprocal
front mirror. This was possible owing to a localized phase variation provided by an
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electrically-driven phase modulator, which was placed at an offset position from the
loop midpoint to ensure that the phase shift was imparted only to one of the two
counter-propagating pulses. This spatial asymmetry together with the temporal modu-
lation allowed to perform the nonreciprocal coupling. In fact, by means of an electrical
squared pulse synchronized with the optical input to bias the phase modulator when it
is traversed by the CCW propagating pulse, we were able to fully coupled a pulse inside
the resonator and store it for an arbitrarily amount of time. In such a system we could
then identify an open state and a closed state during which the resonator exhibits two
different Lorentzian bandwidths: the acceptance bandwidth and the cavity bandwidth,
associated respectively to the energy loading and decay process of the resonator. We
have seen that the TBP of an individual resonator with such characteristics is ultimately
equal to 7o/Trr + 1 and can be increased at will above the limit, provided that internal,
dissipative losses are kept sufficiently low.

By measuring the energy of the released pulses after different numbers of RTs, we then
retrieved the intrinsic decay time 7y and calculated the corresponding TBP. Given the
significant absorption loss of the phase modulator, we could obtain a TBP value of 2.37,
which is just above the fundamental limit. We therefore inserted an EDFA to partially
compensate for the intra-cavity loss. By using this active configuration the decay time
strongly increased up to 3.57 us, resulting in a maximum TBP of 30.7. To demonstrate
that the gain unit, used to compensate for the strong intra-cavity (non-radiative) loss,
did not affect the general principle of the TBP, we conducted detailed simulations
of the pulse storing operation using VPIphotonics software. The simulations were
performed reproducing the system in the passive configuration imposing for the intra-
cavity absorption loss the value given by the difference between the gain provided
by the EDFA and the actual intra-cavity loss. The results obtained were in excellent
agreement with those calculated after fitting of the experimental data, proving that
it is perfecly allowble to treat the active system as the passive system with reduced
dissipative losses.

The chapter ends by showing the traces of the temporal waveforms and RF spectra of
the released pulse acquired after different round-trips. The results show that neither
the temporal width nor the spectrum of the pulse is distorted compared to the pulse
at the input of the resonator. The confirmation of the preserved characteristics of
the released pulse was crucial for a correct evaluation of the TBP, which requires an
output signal and spectrum free of detectable distortions, as they can affect the central
frequency or the duration of the original pulse, thus leading to an unreliable estimation
of the energy decay time.
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Equalization of electro-optic
frequency combs

The need for a frequency ruler as a means to measure optical frequencies has been
continuously moving the interest of researchers and scientists since the realization of
the first mode-locked laser (MLL) in 1964. Such laser exhibited an optical spectrum
characterized by a series of coherent equally-spaced spectral lines that we now use
to call optical frequency comb (OFC). Since then, the technology for the generation
of OFCs has been significantly growing [92, 115-117] and nowadays it includes other
techniques such as those based on the acousto-optic [118] and electro-optic (EO)
modulation [119] or those that exploit the nonlinear Kerr effect in passive optical
microresonators [120, 121]. The OFCs are used in a wide and diverse set of applications
ranging from spectroscopy [122], optical metrology [123] and light detection and
ranging (LIDAR) [124, 125] to optical communications [126] and microwave photonics
[127]. The reasons of this success lie in the remarkable feature that such combs allows
to link the photonic to the microwave frequencies.

Among the various techniques used for OFC generation, EO modulators-based combs
[119] have recently attracted more attention thanks to the significant improvements
of the lithium niobate waveguide technology, which enabled EO modulators with an
increased bandwidth (40 GHz or more). This allows the repetition frequency of the
EO comb to be easily tuned simply by changing the frequency of the radio-frequency
(RF) sinusoidal source that drives the modulator. In addition, the central frequency
of the comb can be tuned since the EO modulators work over a wide range of optical
frequencies, e.g. 30-40 nm in the C-band. However, this technology exhibits some
drawbacks. For instance, nowadays most of the commercially available EO modulators
are designed to operate in a specific optical communication band, meaning that to
generate an OFC at a given wavelength, the EO modulator working at the correspond-
ing operating band must be used. Moreover, given their dependence on the Bessel
functions of the first kind, the comb lines exhibit a strong variation in amplitude,
even in the central region of the comb. This represents a limitation for all applica-
tions requiring a flat-topped comb, such as arbitrary waveform generation, optical
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communications and sensing.

After a brief introduction, where the fundamental concepts behind the OFC generation
are explained, I will present in this chapter an experimental realization of a cost-
effective EO comb generation and equalization method using a single phase modulator
in a Sagnac interferometer scheme.

6.1 Fundamental concepts of optical frequency comb
generation

An OFC is a series of equidistant spectral lines that are mutually coherent. Their main
characteristics can be easily explained by looking at their corresponding form in the
time domain, which is a train of short pulses, as schematically illustrated in Fig. 6.1. As
a matter of fact, one of the most common way to generate an OFC is through a train of
ultra-short pulses emitted by a MLL. We will therefore start from here to analytically
describe their origin.

6.1.1 Theory of frequency comb generation

Let us consider a pulse train emitted by a MLL at a carrier frequency w.. Let us denote
with A and 7 = 27 /w, the pulse envelope and the pulse repetition rate respectively,
with w, the repetition frequency, and suppose that between two successive pulses,
there is a phase shift ¢ that is due to the difference between the group velocity of
each pulse and the phase velocity of the wave. This phase shift is fundamental for the
definition of the OFC since it confers the mutual coherence between each comb line.
Under the theoretical limit of infinite waveform, we can write the pulse train in the
time domain as following [119]:

o0

F#) = D [A(t) cos(wet — ngp) x 5(t — n)] (6.1)

n=—oo

where n is an integer, ¢ is the Dirac distribution and x is the convolution product. Then,
by taking the Fourier transform we obtain the spectrum of the pulse train:

FO =300 = [ 10 = o A —w0) 3 o — w0 — )+

n=—oo

+ murg(w + we) Z (w4 wo — nwy) (6.2)

n—=—oo

where A(w) = §[A(t)] is the spectral envelope, while wy = ¢/ is the carrier envelope
offset frequency, which represents the overall shift of the entire comb from the origin of
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the frequency axis. From the above equation we note that each frequency of the comb
can be determined by the following relation:

Wy, = Wo + Nws (6.3)

For typical conventional MLL, w, goes from few megahertz (MHz) up to several gi-
gahertz (GHz) and also wy lies into the RF domain. This allows to measure optical
frequencies with an extreme accuracy provided that w, and w, are known.

E(1)

Fourier
Transform
E(w)
wo Wr e Alw-we)
.. ., ~
Wy = NWy + Wy :: ,’/‘|,[ y\
: : i ==L 1 [ [ |\ [ w
I 717 T
0 We

Figure 6.1 — Representation of a pulse train emitted by a MLL and its corresponding
frequency spectrum. A phase shift ¢ exists between two successive pulses due to the
different velocity between the pulse envelope and the carrier. The frequency spectrum
is characterized by a frequency spacing between each comb line, that is equal to the
repetition frequency of the pulse train, and an offset frequency that is related to the
phase shift ¢. Adapted from ref. [119].

6.1.2 Comb generation using an electro-optic phase modulator

EO frequency combs, among other sources like MLLs and recent chip-scale Kerr micro-
combs [128], provide a simple yet fully flexible comb generation technique in terms of
free spectral range (FSR) and bandwidth. Generally, the FSRs achieved by the EO combs
also fill the gaps between MLLs and micro-combs. EO combs are typically generated
by the external modulation of a continuous-wave laser in an electro-optic modulator
(EOM). To date, various types of EOMs have been explored for EO comb generation,
including but not limited to phase modulators [129, 130], Mach-Zehnder modulators
(MZMs) [64, 131], polarization modulators [61], dual-drive [132, 133] or dual-parallel
[134] MZMs, resonant phase modulators [135], as well as the combinations among
them [67, 136, 137].

I will now introduce the fundamental theory behind the generation of EO frequency
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Figure 6.2 — (a) Plot of the first four Bessel functions of the first kind. (b) Plot of a
simulated EO comb generated using a phase modulator with 3, = 10. The amplitude
of the comb lines follows the Bessel functions of the first kind. Adapted from ref. [119].

combs. Specifically, the treatment will focus on EO combs generated using phase
modulators (PM).

Let us consider a PM with modulation index K driven by an electrical sinusoidal signal
whose electric field is given by V' (t) = V} sin(wy,t), where V} is the peak voltage and w,,
is the modulation frequency. Owing to the Pockels effect, an optical signal traversing
the PM acquires a phase A9 = KV (t) and its electric field after exiting the modulator
can be represented by the following Fourier series [138]:

Eout(t) = Eoe™" >~ Ju(By) exp(jkwmt)  with k€ Z (6.4)

k=—o00

where w, is the frequency of the optical carrier, 3, = KV} is the peak phase deviation,
while Jj, are the Bessel functions of the first kind, which are plotted in Fig. 6.2a until
the third order. By taking the Fourier transform we get the frequency spectrum of the
phase modulated optical signal, namely:

BE(w) =3Bt = Eo Y Ju(Bp)d(w — kwm — we) (6.5)

k=—o00

where the frequencies of the comb lines are related by:
wr = kwp, + we (6.6)

An example of the frequency comb generated using a PM with 5, = 10 is shown in
Fig. 6.2b. We can note how the amplitude of the comb lines, resulting from a pure
phase modulation of a single RF tone, follows the Bessel functions of the first kind,
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which show a large power imbalance at a fixed modulation index and thus prevent
to obtain a flat-topped frequency comb. This is an issue that has been addressed by
many researchers and, as we will see in the next section, several approaches have been
studied for this purpose.

6.2 Equalization of electro-optic frequency combs using
a Sagnac interferometer

The equalization of EO comb-line power are desired in many occasions. For instance,
it is required when the EO combs are used as the independent data carriers in optical
communication systems [126], or for some applications related to fiber sensing [130]
and molecular spectroscopy [122]. Several setups aiming at generating a flat EO comb
have been proposed, but all of them require the use of two or more EOMs [60-66] or
a further processing of the driving RF signal [67-70]. A more simple and effective EO
comb equalization scheme has been demonstrated using a dual-drive MZM driven by
two RF sinusoidal signal slightly offsetted in amplitude [132, 133]. They theoretically
showed and experimentally verified, that a flat-topped EO frequency comb can be
obtained, at large powers of the driving RF signal, if the sum of the peak-to-peak phase
deviation induced in each arm and the dc bias difference between the two arms is
equal to 7. In mathematical terms this condition takes the following form:

AB+Ap=n 6.7)

where AB = fp1 — Bp2 and Ap = ¢1 — ¢ with 1 and 2 indicating the two arms of the
MZM. At large powers of the driving RF signal the power conversion efficiency from
the optical carrier to each harmonic mode results to be independent on the harmonic
order of the driving signal and it is maximized when A = A¢ = = /2. Under this
condition the resulted comb presents a spectrum with a maximum power variation of
3 dB between each comb line within a spectral region equal to 1/2 of its bandwidth.

Following the idea of using the interference to achieve a flat comb, we experimentally
implemented a system for the generation and equalization of EO combs, by using
a more cost-effective structure that consists in a standard PM inserted in a Sagnac
interferometric scheme. Figure 6.3 shows a basic illustration of such a system, whose
operating principle is described below.

6.2.1 Principles of operation

The PM is connected between the two output ports of a polarization maintaining
50/50 fiber optic coupler. The branches of the coupler have different lengths so that
the position of the PM within the Sagnac loop results shifted of a length AL/2 from
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Optical carrier
193.414 THz

Figure 6.3 — Schematic illustration and operating principles of the Sagnac
interferometer-based system for the generation and equalization of EO frequency
combs.

the loop midpoint. Let be ., and .. the peak phase deviations imparted by the
PM respectively for the CW and CCW direction, and let us suppose that it is driven
by an electrical sinusoidal signal whose electric field is given by V' (t) = V{ sin(wnt),
where 1} is the peak voltage and w,, is the modulation frequency. If an optical carrier
Ey = Epe/»<! at optical frequency w. = 193.414 THz (~1550 nm) enters the Sagnac
interferometer from port R of the 50/50 coupler, the electric fields of the CW and CCW
wave after passing through the PM are given by the following expressions:

Ein s . .
Eow(t) = 5 Z Jk(Bew) exp(jkwmt) exp (—jkoew) (6.8)
k=—o00
Ein > . .
ECCW(t) = 9 Z Jk (Bccw) eXp(] kwmt) €xp (_]k¢ccw) (6.9)
k=—oc0

In the above expressions fow = 7Vo/View and Beew = 7Vo/ Vi cow With Vi o, and
Vz cew the voltage needed to induce a = phase shift in the CW and CCW direction,
respectively, while J;, are the Bessel functions of the first kind. Also, ¢cw = (nwp,/¢) Lew
and ¢eew = (nWi, /) Leew, Where Ley, and L., are the path lengths traveled by the CW
and CCW combs, respectively, while n is the refractive index of the fiber, and c is the
speed of light in vacuum.

The electric field of the signal exiting the interferometer from the T port of the coupler
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is then given by:
En - nw nw .
== —jk—" — gL m Fkwmt
Eout(t) = 9 kz_: [Jk(ﬁcw) exp ( ]k B Lcw) Jk(ﬂccw) exp ( ]]{j - Lccw)} e
(6.10)
from which we can retrieve the power of each comb line as follows:
Ein 2
P, = | . | [J]?(Bcw) + J2(Beew) — 2Tk (Bew) Tk (Beew) €OS (kAg)] 6.11)

where A¢p = n(wy,/c)AL, with AL = L.y, — L being the difference in length between
the paths traveled by the two counter-propagating combs. In principle, to obtain
a perfectly flat comb, the condition in Eq. 6.7 must be fulfilled. This is a situation
that occurs when the PM operates at modulation frequencies where it works in both
directions and exhibits two slightly different modulation indices. Conventional PMs
typically works only in one direction at high modulation frequencies, due to the mis-
match of the propagation speeds between the RF wave and the optical wave inside the
EOM [139-141]. However, the conversion efficiency in the two directions converges
to the same value when decreasing the modulation frequency. Besides, the phase
delay difference A¢ is ensured by the asymmetric position of the PM inside the loop.
However, we can immediately notice that this phase difference is dependent on the
harmonic order k. Although, this prevents to obtain a perfectly flat comb due to the
different phases acquired by each comb line, an equalization in the central region
of the comb can be still achieved even when the above condition in Eq. 6.7 is not
strictly satisfied. This can be clearly seen from Fig. 6.4a where the equalization of
EO combs related to the system in Fig. 6.3 is evaluated, by using Eq. 6.11, for all the
combination of g, and A¢, ranging from 7 to 16 and from 0 to 7 respectively, and
imposing A5 = 0.11. To obtain this graph, we calculated the difference between the
powers exhibited by the highest and the lowest comb line within a certain spectral
bandwidth around the central frequency and varied AS until the best flatness was
achieved. For small values of A3, the comb exhibits a "rabbit-ears"-like shape [127],
therefore, to have a quantitative measure of the flatness of the comb, we evaluated the
power variation within an interval AN around the central frequency defined as:

AN = £(N, — 3) (6.12)

where N, is the comb number of the highest comb line. From Fig. 6.4a we note that
although the best result is found for A¢ = 1.3 rad and ., = 9.6 rad, a good flatness is
obtained also for other combinations of A¢ and S .
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Figure 6.4 — (a) Flatness of EO frequency combs theoretically evaluated by using Eq.
6.11 for all the combination of 8., and A¢, ranging from 7 to 16 and from 0 to =
respectively, and imposing A5 = 0.11. (b) Top panel: Peak phase deviation exhibited
by the phase modulator at 11.5 dBm, in the CW and CCW direction for different values
of the modulation frequency between 300 and 500 MHz. Bottom panel: Comb spectra
acquired in the two directions in single-pass configuration at a modulation frequency
of 340 MHz. The theoretical fit of the Bessel functions of the first kind corresponds to a
peak phase deviation of 13.85 and 15.40 for the CW and CCW direction respectively.

6.2.2 Experimental results and discussion

To find the bidirectional operating point of the PM corresponding to a value of A3
lying around 0.11 rad, we first evaluated the peak phase deviation imparted by the
PM in the two directions varying the modulation frequency from 300 to 500 MHz with
intervals of 20 MHz. For this purpose, we measured the frequency combs generated
by the PM in a single-pass configuration and fitted with the theory. The spectra were
acquired in the RF domain using an electrical spectrum analyzer (ESA). To do so,
we inserted the PM in a self-heterodyne setup, as illustrated in Fig. 6.5. The optical
carrier at 193.414 THz, provided by a continuous-wave tunable laser, was split in two
equal parts by a 50/50 polarization maintaining coupler. One part was sent to the PM
for the comb generation, while the other part was modulated using a 40 GHz MZM
to create side-bands at 17 GHz. The signal exiting the MZM then passed through a
wave-shaper to filter out one of the two side-bands and the high-order harmonics.
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Figure 6.5 — Experimental setup used for the acquisition of the EO comb spectra in
single-pass configuration. The PM is implemented in a self-heterodyne interferometer
to register the combs in the RF domain using an electrical spectrum analyzer. IM:
intensity modulator; PC: polarization controller; EDFA: Erbium-doped fiber amplifier;
pm: polarization maintaining; PD: photodetector.

Finally, the spare side-band beat in another 50/50 polarization maintaining coupler
with the comb generated by the PM, which is then mapped in the RF domain through
a photodetector. The operating regime at large powers of the driving RF signal, in this
case 11.5 dBm, was ensured by using a high power RF amplifier. The values of the peak
phase deviation, retrieved for the CW and CCW direction, are shown in Fig. 6.4b as a
function of the modulation frequency. From this study we found that the peak phase
deviation corresponding to A5 = 0.11 rad lied around 340 MHz. The bottom part of
Fig. 6.4 shows the comb power spectra with the theoretical fit of the Bessel functions
of the first kind corresponding to this modulation frequency.

Using this value of the modulation frequency we then performed the experiments
using the Sagnac interferometer scheme. The experimental setup used, that includes
the self-heterodyne interferometer for the acquisition of the EO combs in the RF
domain, is illustrated in Fig. 6.6a. A 500 m-long polarization-maintaining fiber was
placed within the loop to ensure the asymmetric position of the PM from the loop
midpoint. The reason for such a long fiber will be clarify later. The spectrum was
collected by slightly adjusting the modulation frequency around 340 MHz and the RF
power around 11.5 dBm, until the optimum equalization was found. Figure 6.6b shows
the comb spectrum acquired at a modulation frequency of 340.474 MHz. The effect of
the equalization can be observed in the central region of the comb characterized by
an almost flat behavior with a relatively small spectral ripple. In this case we found a
flatness of about 4 dB over 21 comb lines, which is a significant improvement compared
to the values obtained in the single-pass configuration which were 13 dB in the CCW
direction and 17 dB in the CW direction.
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Figure 6.6 — (a) Experimental setup used for the acquisition of the equalized EO comb
spectra. The Sagnac interferometer replaces the PM in the self-heterodyne setup.
(b) Comb spectrum acquired at the output of the Sagnac interferometer setup at a
modulation frequency of 340.474 MHz and RF power of 11.4 dBm. The effect of the
equalization results in a maximum power variation of about 4 dB over 21 comb lines.
The measured comb is compared with the theoretical fit obtained setting the phase A¢
to 0.19 rad. (c) Phase delay difference A¢ as a function of the modulation frequency
for AL =500 and 1 m. The right panel shows a magnification of the graph between
400 and 420 MHz for better clarity.

As a confirmation that the equalization effectively results from the interference be-
tween the two combs in Fig. 6.4b, we implemented Eq. 6.10 and 6.11 in a MATLAB
script and varied A¢ to fit the equalized comb of Fig. 6.6b. The theoretical fit was
obtained with a A¢ of 0.19 rad and setting (.., and (.. to 14.8 and 13.2, respectively.
The reason why these values differ from those retrieved from the experimental mea-
surements in the single-pass configuration is due to the slightly different level of RF
input power used, which in the case of the single-pass experiment was 11.5 dBm, while
the equalized comb was acquired at 11.4 dBm. Nonetheless, Fig. 6.6b shows a good
agreement between the theory and the experimental measurements, confirming that
the interference between the frequency combs carried by the two counter-propagating
waves within the Sagnac loop leads to an effective equalization of the output comb.
Obviously, any phase value A¢’ such that cos (A¢') = cos (0.19) would give the same
theoretical fit. Specifically, if A¢ is the angle value between 0 and = that leads to the

100



6.2 Equalization of electro-optic frequency combs using a Sagnac interferometer

(a) (b)
. ' 15 : .
10 -@-9 comb lines 0 __ |-®-Single-pass
= -9-15 comb lines KRN o - % -¢-Sagnac Int. o
_ _ . ’ \\ _’ ~ ’, .\\ II’
S q @-21 comb lines /P - g0 (‘{’,10 . o »
%’ / o{&fe A GCJ o e o
GC'> 5 g: : \ ,‘_0,"\‘_0-- E ° A
® RS f ol ol o kR E 5 o R
L “0-0|ol®le)®leofle o C-e- ol RURSNUSE
m Yy
0 L L L 0 .
320 340 360 380 400 5 10 15 20 25
Modulation Frequency (MHz) Number of comb lines
E 09 i ithin 1.65 dB E 09 lines within 1.72 dB E 09 lines within 1.86 dB
g 0 Ines within g | witni g o
§-10 g-10 g-10]
s s S 2
a -20 a -20 o
£ £ E.
£-30 NI EEI! L |E Ll{ I
=z =z =z —
-10 0 10 -10 0 10 -10 0 10
B 0 15 lines within 3.23 dB € 0 15 lines within 3.19 dB 3 ol 15 lines within 3.53 dB
S S S —
8 -10 5-10 5 -107
E
520 ” H $-20 g 20
£ .30 [ h £ .30 L £-30 ‘
S m S ul S ol |
-10 0 10 -10 0 10 -10 0 10
5 0 21 Ii(rE within 5.77 dB g 0 21 lines within 6.69 dB g 0 21 I|nes within 7.83 dB
g-10 5-10 ©-10
5 2 g
5-20 &-20 £-20
E-30( | E 30 u £
o I L (o] | | o Il
z P4 - z
-20 0 20 -20 0 20 0 20
Comb Number Comb Number Comb Number

Figure 6.7 — (a) Flatness of the equalized EO comb spectra acquired at different modu-
lation frequencies between 320 and 400 MHz for three different number of comb lines
in the flat region. (b) Comparison of the best flatness obtained from the equalized
combs acquired in the experiments with that calculated theoretically in case of single-
pass configuration, plotted for different numbers of comb lines. Bottom panel: Comb
spectra corresponding to a modulation frequency around 350 (green-bounded panel),
360 (violet-bounded panel), and 370 (brown-bounded panel) MHz. The spectra with a
flat region of 9, 15 and 21 lines were acquired at RF powers of about 9.2, 10.4 and 11.5
dBm, respectively.

best flatness at a certain modulation frequency, an identical flat-topped comb can be
attained at values A¢/ = A¢ + 2Nw or A¢' = 27 (N + 1) — A¢, where N is an integer
number.

Based on the above results, it seems that the comb equalization in this system is re-
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stricted to only one modulation frequency, i.e. the frequency that provides the best
bidirectional operation of the PM and the exact value of A¢ for the linear phase. How-
ever, we could obtain a quasi-flat-topped comb also at other modulation frequencies
between 300 and 400 MHz at interval of about 5 MHz. This was possible thanks to
the long fiber placed within the Sagnac loop. In fact, a much larger AL results in a
steeper variation of the phase with the modulation frequency that leads to a more
dense periodicity and, thus, allowing to find the right value of A¢ for a larger number
of modulation frequencies. This concept is explained in Fig. 6.6c, where A¢ is plotted
as a function of w,, setting AL to 1 and 500 m. We note that, setting AL = 500 m the
phase span from 0 to 27 in a short range of frequencies, and harmonically repeats all
over the frequency axis. Contrarily, with AL = 1 m, the phase covers less than one
harmonic cycle between 300 and 400 MHz.

By varying w,,, also the power of the driving RF signal was slightly adjusted in order
to find the corresponding bidirectional operation point of the PM. The values of the
flatness calculated for the frequency combs acquired at different modulation frequen-
cies between 300 and 400 MHz are shown in the top graph of Fig. 6.7a, while, on the
bottom, there are the corresponding comb spectra at 350, 360 and 370 MHz. Each
comb spectrum was acquired at different levels of power of the driving RF signal, re-
sulting in directly proportional numbers of comb lines exhibited by the comb, which
are identified on the graph by different colors and markers shapes. This variation of
the RF power was much larger than that applied for finding the bidirectional operation
point of the PM, where a more sensitive adjustment was required. From the graph in
Fig. 6.7a we note that by increasing the number of comb lines the best flatness occurs
at lower modulation frequencies. This might be due to the fact that by increasing the
power of the RF signal, the best bidirectional operating point of the PM moves towards
lower values of the modulation frequency. From the graphs of the comb spectra, we
can see that they all show a flat-topped behavior, confirming a wide spectral range of
effectiveness of the equalization effect. However, while the spectra with 9 and 15 comb
lines in the flat region are characterized by a fairly constant flatness value, the combs
with 21 lines show a strong degradation of the flatness with increasing the modulation
frequency.

As a benchmark for these results, we calculated the theoretical values of the flatness
for different number of comb lines in the central region, in case of combs generated
in single-pass configuration, and compared with the best flatness obtained from the
equalized combs acquired in the experiments. Figure 6.7b shows this comparison as a
function of the corresponding number of comb lines in the central region. Since in
the single-pass case the central region of the comb is not flat, the number of comb
lines is determined within an interval AN = +(/NV, — 2) around the central frequency.
We note that the values of the flatness obtained in the single-pass case are much
larger then those obtained experimentally with our system showing a flatness im-
provement ranging from 4 to 10 dB owing to the equalization provided by the Sagnac
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Table 6.1 — Table showing a comparison in terms of performance and system complexity
between the most common methods for the equalization of EO combs present in
literature and the method proposed in this work. Pol. Mod.: polarization modulator;
PS: phase shifter; DD-MZM: dual-drive Mach-Zehnder modulator.

Complexity of the system

Ref. N° of comb lines Flatness (dB)  Modulation RF driving signal

[60] 29 1.5 1MZM + 2 PM 1 RF source + 2 PS

[61] 25 <1 2 Pol.Mod. 2 RF source

[64] 15 <1 2 MZM 2 RF source

[67] 38 1 2MZM +1PM 1RF source + 1 PS

(68] 11 <1 1 DD-MZM 2 RF source + 2 PS

[69] 9 <2 1 DD-MZM 1 RF source + 1 PS
This work 9/15/21 1.65/3.19/4 1 PM 1 RF source

interferometer.

Table 6.1 shows a comparison in terms of performance and system complexity between
the most common methods for the equalization of EO combs present in literature and
the method proposed in this work. We note that, in terms of flatness, the performance
of the Sagnac interferometer-based system, is competitive with that of the other pro-
posed schemes in the case of 9 comb lines in the flat region, but less for the cases of 15
and 21 comb lines. However, there is a significant improvement in terms of complexity
and cost compared to the other setups, thus offering a clear advantage from the point
of view of the cost/performance ratio.

6.3 Summary

OFCs generated by a single-stage EOM, usually show a strong power imbalance be-
tween the comb lines, given their relationship with the Bessel functions of the first kind.
Many setups have been proposed to solve this issue but most of them are implemented
in relatively complex systems that require the use of two or more EOMs or a further
processing of the driving RF signal. A simplified scheme, that provides an effective
broadband EO comb equalization, has been demonstrated by driving a dual-drive
MZM with slightly offsetted RF powers. In this chapter we have seen that a similar
results can be obtained even in a fiber optic Sagnac interferometer using a conven-
tional PM placed in an offset position from the loop midpoint and driven by only one
RF sinusoidal signal. For the equalization to be effective, the PM must operate in a
range of frequencies where it works bidirectionally and exhibits two slightly different
modulation indexes such that the two counter-propagating combs in the loop are
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complementary one with the other. The results have shown that an equalization, with
various widths of the flat region, can be obtained for modulation frequencies between
320 and 400 MHz at intervals of 5 MHz. A comparison with the spectra obtained from
the theory in case of combs generated in single-pass configuration, demonstrated a
significant improvement of the flatness of the central region of the comb owing to the
equalization provided by the Sagnac interferometer. Although limited to a specific
range of frequencies, this setup offers a simple and cost-effective approach for the gen-
eration and the equalization of EO frequency combs since it requires only conventional
off-the-shelf optical components.
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The dream of an all-optical router capable to absolve all the functions of its electronic
counterpart still presents several challenges that prevent it from becoming reality.
Specifically, the buffering, i.e. the operation of delaying or storing of an optical signal,
is a function that greatly affects the efficiency of modern optical transmission systems
and is the most difficult to implement. In fact, there are three main characteristics that
an ideal optical delay device has to fulfill: (1) the delay it provides should be tunable;
(2) the characteristics of the delayed signal must be identical in every aspect to those
of the input signal and (3) the system must be capable to accept signals with a wide
frequency bandwidth.

The easiest way to delay a broadband pulse is to use an optical fiber. In this case, the
delay achieved is simply related to the length of the fiber and the group velocity of the
pulse. Obviously, this does not represents a compact solution for an optical buffer due
to its considerable footprint. Optical resonators seem to offer a more compact and
practical solution for the storage of pulses. Particularly, integrated photonic technology
has reached a high level of maturity with the development of extremely high quality
factors microresonators. However, as we have seen, they suffer from the restriction
dictated by time-bandwidth limit (TBL), that forces to make a compromise between
delay offered and bandwidth accepted.

This thesis addresses this issue either from the theoretical and experimental point
of view, providing not only a practical method on how to overcome this limit, but
also, and more importantly, a new insight of the time-bandwidth performance of a
resonator. Inspired by a theoretical study that propose the breaking of the reciprocity
property as a way to overcome the TBL [49], we imagined a resonant system with a
nonreciprocal time-variant coupling interface. We performed a deep study on the
spectral response and power balance of the system, showing that such a method pro-
vides effective benefits from the point of view of the intra-cavity power enhancement
and the storage time. We chose to carry out this work through a simple macroscopic
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fiber optic resonator based on the figure-9 cavity, since it allows to perfectly mimic a
generic optical resonator in all the scenarios involving the storage of energy in case of
nonreciprocal coupling. Although it does not represent the best efficient and compact
solution, owing to the limitations mainly ascribable to the dispersion, in this contest
it is actually used to demonstrate and implement a new insight of a physical princi-
ple. Also, its well known structure helped us in the mission of bringing the reader’s
attention more to the methods rather than the particular system used and its actual
technological and practical advantages.

Certainly, an integrated device capable of providing the same remarkable time-bandwidth
performance shown by the time-variant figure-9 resonator, would represent a more
interesting approach. An exciting possibility, in fact, would be implementing the
nonreciprocal coupling exploiting nonlinearity in coupled-microresonators [142, 143]
or the spatiotemporal modulation in metamaterials [144]. In particular, the use of
nonlinearity would allow to operate at a regime where the pulse duration is longer
than the cavity round-trip time. However, in this case, the main challenge would be
preserving both the waveform and spectral shape of the output pulse, a capability that

is missing in the previous attempts [40, 43].

Beyond the experimental results obtained, which demonstrate that the nonrecipro-
cal coupling in a generic resonant system unleashes arbitrarily high time-bandwidth
performance, the theoretical analysis shows that the TBP is no longer related only
to a limitation. Conversely, it represents a figure of merit, applicable to all kind of
resonators, that gives an immediate estimation of the quantitative advantage, in terms
of storage time and intra-cavity power enhancement, with respect to a standard recip-
rocal resonator. For instance, if a resonator exhibits a TBP of 40, I can immediately
say, without any information on its structure, that it can provide an intra-cavity power
enhancement 40 times stronger than a reciprocal resonator with the same cavity band-
width, or it can store a signal for a period 40 times longer than its reciprocal counterpart
with the same acceptance bandwidth.

Based on the versatile characteristics of the figure-9 resonator, we explored its potential
also in the field of light generation. The features of its Sagnac-based structure have
been first exploited for the development of a continuous-wave fiber laser using an
Erbium-doped fiber as a gain element. The main aim of the project was to investigate
theoretically and experimentally the dependence of the laser output performance from
the coupling coefficient of the coupler. Interestingly, we found that the laser exhibits a
strong dependence also on the phase difference between the two counter-propagating
waves within the loop and, with a = phase difference, the laser transmission becomes
independent on the coupling ratio of the coupler.

As a final stage of this thesis work, the Sagnac interferometer scheme has been used to
realize a system for the generation and equalization of EO frequency combs. Although
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the results obtained already show a significant improvement in terms of complexity
and cost of the system, compared to the other approaches proposed in literature, the
capabilities of this setup have not reached their highest level. In fact, we were limited
technologically by the maximum RF input power provided by the RF amplifier. This
prevented us to achieve larger widths of the flat region of the comb (more than 23 comb
lines). Also the PM was already functioning at its maximum value of permitted input
RF power. Therefore, we believe that a more performing set of equipment, that allow
to overcome this technological constraints, would bring to even wider flat-topped
frequency combs.
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:\ Derivation of the acceptance

bandwidth of a generic resonator

During the loading process the electric field ay,(¢) inside the resonator grows exponen-
tially at a rate py,/2, therefore we can write its expression as following:

ar(t) = aL(O)e%t eI @0ty (—t) (A.1)

where u(t) is the Heaviside step function, wy is the resonance frequency, while ar,(0) is
the final value of ay,(¢). The corresponding Fourier transform is:

ap,(w) = /OO ar,(t)e 79t = /O ar,(0) exp [% + j(wo — w)} tdt =

—0o0 —0o0

_ exp [G +j(wo —w)|t B ar,(0)
ar,(w) = ar,(0) b - jo—wo) =B (A.2)

The expression of the energy inside the cavity is therefore:

2
an(w)? = O A3
2 _ PL

(w _WO) 4

This is the Lorentzian function associated to the loading process, whose FWHM repre-
sents the acceptance bandwidth Aw,.. of the resonator and is given by:

Awace = AL (A.4)
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