

1

1. INTRODUCTION

Hands-on laboratory practice has always been an
essential ingredient to sustain the learning activities in
engineering education. It is recognized as an efficient
approach for students to effectively assimilate
knowledge and to develop a professional approach to
solve real-world problems. Since laboratory exercises
are often a combination of individual preparatory
activities followed by experimentation and analysis
stages carried out in team, it is also valuable for
reinforcing both the students’ autonomy and their
teamwork skills.

Around 1995, with the general acceptance of the
Internet as the common worldwide communication
channel and the migration of most control devices
instrumentation to personal computers, many trials
for remote monitoring and for the control of
laboratory equipment have been carried out in
academic institutions. Nowadays, this paradigm
designated as remote experimentation is becoming a
key feature for deploying distance and flexible
engineering education. In addition to the removal of
time and location constraints for students access, the

key advantage of the remote experimentation
paradigm is the possibility for educational institutions
to share costly laboratory resources. Consequently,
various distributed laboratory initiatives have been
launched recently, one of them being a distributed
laboratory composed by a network of experiments
that are made accessible to an authorized group of
teachers and students (Schmid

et al.

, 2001).

Because of the etherogenous nature of laboratory
equipment, it is almost impossible to standardized the
implementation of remote experimentation solutions.
However, it is essential to define some best practices
for the implementation of new remotely accessible
laboratory setups or for the upgrade of existing ones.
It is obvious that the students’ benefit of using
distibuted laboratory resources will be lost by a
cognitive overload if they get completely new
interfaces and behaviors when they access different
experiments.

Best practices can be defined for the selection of the
physical systems in automatic control education as
detailed in Section 2, at the level of the client-server
architecture as illustrated in Section 3, at the level of

CONTRIBUTION TO THE DEFINITION OF BEST PRACTICES FOR THE
IMPLEMENTATION OF REMOTE EXPERIMENTATION SOLUTIONS

Xavier Vilalta, Denis Gillet and Christophe Salzmann

EPFL, CH - 1015 Lausanne, Switzerland

Abstract: This contribution presents a general framework for implementing and
deploying remote experimentation solutions. Along with the described guidelines and
recommendations, a real online experiment is depicted. In addition, different solutions
for the development of the necessary software tools are analyzed, and a comparison is
given to help on the choice of an optimal solution when implementing these real-time
internet services.

Copyright 2001 IFAC

Keywords: Automatic control, Remote Experimentation, Flexible Learning, Real-Time
Internet Services.

2

the user interface to provide a seamless look and feel
as described in Section 4, and finally at the level of
the communication layers implementation to provide
the best possible level of interaction as shown in
Section 5.

2. PHYSICAL SYSTEM SPECIFICATIONS

The introduction of physical equipment as didactic
resource is the fundamental principle of laboratory
experimentation. The nature of the equipment is
strongly related with the pedagogical goal of the
laboratory sessions. We can distinguish three different
objectives that can be targeted using physical
equipment:

• Illustration of a concept that has been presented in a
textbook or taught in the classroom (knowledge). In
such case, the equipment is introduced to sustain
the concept appropriation according to its relevant
physical peculiarities.

• Development of a pertinent methodology for
scientific experimentation or for technical
implementation (general know-how). In such case,
the equipment is introduced as a media according to
the spectrum of activities that it helps to cover.

• Acquisition of operational skills on professional
equipment (specific know-how). In such case, the
equipment is simply the one that has to be
mastered.

There is only one latitude in the choice of the
equipment for the two first objectives. Balchen has
summarized the characteristic that such equipment
has to exhibit (Balchen

et al.

, 1981). It has to be:

• Relevant with the pedagogical objectives.

• Realistic compared to its possible industrial
counterpart but simple enough to make it
understandable in a limited time.

• Adequate from a dynamical point of view. That is
fast enough to make it interesting but slow enough
to make it observable using typical Web cameras.

• Multimodal. That is addressing student perception
at different levels (visual, auditive, haptic, …).

• Safe in itself as well as for the operator.

Wellstead has proposed in addition to the above
mentioned characteristics (Wellstead, 1990) to chose
scale-model systems. His reasons are similar to the
previously ones. As a matter of fact, the time constant
of dynamic system is often inversely proportional to
its size. Usually, smaller systems present less danger
and require less power.

The mentioned characteristics are applicable either
for local or remote experimentation. When a remote
access is provided to the laboratory equipment, it is
required that the physical system and its instruments
are completely operable using a computer. This also

means that it has to have all the necessary sensors and
actuators. Furthermore, advanced perception
solutions have to be introduced to compensate for the
remoteness.

The EPFL’s main interest is to implement remote
experimentation setups for educational purpose with
applications for the control of mecatronic systems.
Such systems have time constants in the same order
of magnitude that the delay usually introduced by the
Internet communication. Therefore, the main
constraint is to reproduce the dynamical behaviors of
the distant equipment and to provide adequate
sensorimotor functionalities to enable effective
interaction (Gillet

et al.

, 2001a).

3. CLIENT-SERVER ARCHITECTURE

In order to illustrate the components that are
necessary to implement the client-server architecture
dedicated to remote experimentation, a real example
is introduced. This example is the implementation of
the online Internet access of an inverted pendulum
located at the EPFL (Gillet

et al.

, 2001b).

The proposed solution is a three-layered architecture
(also called three-tier model) which is build up
around the following main components: an
experiment server, an administrative server and a
remote client as can be seen on Figure 1.

Figure 1. Client-server architecture. This figure
depicts the experiment server that controls the
experiment, the administrative server containing
the business-logic components and the client
software.

The experiment server includes a real-time kernel that
executes the local control of the real system, I/O
peripherals to interface the experiment with the
equipment, sensing peripherals such as microphones
and video cameras, the communication layer to

3

broadcast the collected information to remote clients
and the Java glue for users’ validation.

The administrative server contains a database that
stores all the necessary information about the users
and the necessary Java glue to provide this
information to the experiment server. If a user
registration is possible online, using a web browser
for example, another Java component has be added.
The checking of user privileges is only necessary at
the beginning of and at the end of a remote
experimentation session, respectively to set up the
communication parameters and to release the used
resources.

According to this structure, the last component of the
system is the client, the software that remote users
employ to connect and control the distant setup and to
display the received information. The feedback
provided to the client graphical user interface (GUI)
shows the effects of the actions taken by the user on
the experiment. It can contain real-time video and
audio information, as well as the values of relevant
signals read on the experiment. The received
information is displayed in a cockpit like GUI as
detailed in the next section.

4. COCKPIT-LIKE GRAPHICAL USER
INTERFACE

Carrying out a remote experiment is a matter of
observing and acting on a system that is located at
distance using convenient sensors and actuators.
Hence, end users in remote experimentation can be
seen as pilots acting in airplanes. They observe the
reality through the plane windshield (video image)
and through the instruments (scope window) and they
act (pilot) the plane using a joystick and other means.
To take advantage of this similarity, a general cockpit
metaphor is chosen to design the graphical user
interface (GUI) for the remote experimentation client
software.

In a remote experimentation cockpit, all the relevant
information necessary to grasp the experiment
behaviors (the environment state and the controller
settings) is integrated on a single screen. The
following parts (or components) can be distinguished
on the user interface (as seen on Figure 2):

• An administration part allows the user to login/
logout and to adjust some software settings (such as
video refresh rate, image size, sound level …).

• A perception part including the real-time display of
video images and, if implemented, the
representation of virtual or augmented reality views
showing the remote experiment and its surrounding
environment.

• An operation part that lets the user modify the
experiment settings to change the behavior of the

system under experimentation, the operating
conditions or the instruments configuration.

• A data management part that enables information
storage and retrieval.

These parts could appear on the screen alone or
grouped into a bigger component, in order to enhance
the clarity of the user interface. However, cognitive
considerations lead to a user interface design as
versatile as possible. The key point is to let the users
choose and organize as much as possible the different
parts as they deem it necessary, while providing
default configurations to ease the comprehension of
the basic client-software functionalities.

Figure 2. Screenshot of the LabVIEW inverted
pendulum client software.

The details of the user interface parts are given below.
These details have to be seen as good practices more
that as definitive recommendations.

The administrative part.

 It has to be kept as reduced
as possible. Most of the administrative settings have
to be chosen at a stage that occurs before entering the
cockpit. The administrative settings that are parts of
the cockpit are mainly remainders of key information
and elements required to configure the general mode
of operation. The typical information of relevance for
remote experimentation includes:

• An identifier of the operated experiment (such as its
IP number).

• A user login/logout mean (usually fields to provide
username and password, and a login/logout button).
For such an access button, it is useful to use icons
similar to the ones founded on a real life equipment,
such as cell phones, since it is a matter of opening/
closing a communication channel.

• An operation mode indicator/selector, to specify
modes such as administrator, observer (if looking at
the experiment carry out by another user) or master
(if being the one that as the control of the
experiment), on queue (if waiting for the access) or
on line (if having the access), default or demo (to
limit inappropriate operations in certain
circumstances).

• An experiment start/stop mean (once connected, it
has to be possible to start and stop the experiment,
which is different of being logged in). For such

4

action buttons, it is useful to use icons similar to the
ones funded on remote control devices for audio/
video systems.

• A reset button that brings the experiment back into
a safe (initial) state.

• A language selection (local language + at least
English).

• A surrounding environment setting (light on/off,
power supplies on/off, …).

• Links to extra features or resources, such as online
help and support, documents related with the
experiment or collaboration tools.

The perception part.

 Perception is a difficult
challenge when considering providing the necessary
information to catch the changes and the dynamical
evolution of a remote physical experiment. No single
tool can bring a solution, it is necessary to combine
various representation means to provide information
on both the internal state and the external conditions.
It is also necessary to introduced advanced solutions
to compensate for the remoteness from a telepresence
point of view (Schmid

et al

., 2001) (that is providing
the feeling on being in the real laboratory) as well as
for an interaction point of view (that is avoiding as
much as possible the effect of transmission delay).
Typical components that enhance the level of
perception are:

• Scope for versatile selection and visualization of
measurement or internal signals.

• Real-time video views of the remote equipment and
its surrounding environment, including the
necessary zooming and orientation mechanisms to
control the cameras or any other sensing devices.

• Audio feedback (oppositely to video-conferencing,
audio has a lower priority than the video in remote
experimentation).

• Switch to commute between the real
experimentation and the simulation mode (if
available). Built-in simulation capabilities are
convenient for off-line tuning and training, on-line
validation, fault detection and data recovery, as well
as for augmented reality (discussed below).
Simulation requires a mathematical model of the
experiment, which is something difficult or too
complex to create/develop. When using simulation
the additional difficulty of updating the model
parameters and the initial simulation conditions
arise.

• Virtual reality representations of the remote
equipment and of its surrounding environment. The
virtual representations can be either driven by real
measurements or simulated data (if built-in
simulation capabilities are available). To create an
augmented view, virtual reality representations can
be combined with video views. This required the
implementation of mechanisms to synchronize real
and virtual views both spatially and temporally.

• Additional sensorimotor functionalities such as
force feedback produced by haptic devices. Such an
addition can be highly valuable but is usually
inaccessible for most of the remote users.

• A progress bar displaying the remaining connecting
time or the elapse time for batch experiment.

• A replay button to show logged data or store video
sequence of the experiment.

It is not mandatory to combine all these components
together, but at least video or virtual reality should to
be available.

The operation part.

 Compared to the administrative
settings, the operation settings are the ones that
interactively change to sustain the students learning
activities. Typical settings are:

• Various control algorithms and structures.

• Operating points and reference trajectories.

• Controller parameters, including the sampling
period.

• Remote perturbation functionality (to remotely
apply perturbations while the operations are
running). This functionality is essential in
automatic control education to validate the
achieved controller performances.

The data management part.

 Data management is a
key feature to sustain the learning process. Such a
component has to be design to provide ways to save
and restore the individual experimentation context,
and to allow later exploitation of the experiment
results. From basic to advanced data management
features, ones can mention:

• Printing and saving (screen shots or data with
decimation option).

• Continuous data logging (with decimation option).

• A save/restore context functionality (to save the
current settings of the experiment for a later access
or to bring the experiment in a previous state in
order to resume an interrupted activity).

It is important to mention that not only data have to be
logged, but also the experiment configuration such as
the state of the experiment and the control device
settings.

5. COMMUNICATION LAYER AND CLIENT
SOFTWARE IMPLEMENTATION

5.1 Communication layer.

The IP protocols (IP, TCP and UDP) are the de facto
protocols used for Internet communications and
should be chosen as the core tools to build the
communication layer to support remote
experimentation. There are two types of information

5

transmission between the server and the client. The
first type of transmission, used to setup the
communication, should use a reliable transport
protocol (TCP). The second type of transmission,
containing time-critical information exchanged
between the experiment server and the client, should
use an efficient transport protocol (UDP). This
permits a fine control of the interaction, as well as the
implementation of advanced adaptation schemes to
compensate for the Internet bandwidth variation.

The communication between the server and the client
is composed by the following stages: Negotiation,
operation and termination. The negotiation stage (also
called login) requires various data to be transmitted in
a secure manner. For this purpose, the Real Time
Streaming Protocol (RTSP) has been designed
(Schulzrinne

et al

, 1998). The benefits of using a
RTSP-like protocol is that the system will follow a
standard method to negotiate and establish the
connection and to identify the user. For typical needs
the full RTSP implementation might not be necessary.
Once the user access has been granted, the operation
stage begins. On the top of the IP protocol the RTP/
RTCP protocol (or a subset of it) carries the
information between the server and the client and
vice-versa (Schulzrinne

et al

, 1996). The RTCP
protocol provides the state of the link estimated by the
client. Based on the client information, the server
makes the necessary adjustments to adapt the flow of
information to the available bandwidth. Finally, at the
termination stage, the client sends a logout command
to the server to close the connection and to free used
resources, by using again an RTSP-like protocol.

5.2 Client software implementation.

When implementing client software, it is important to
take into consideration the multiplatform nature of the
computer resources own by students, especially with
the emergence of Linux. To provide solutions as open
as possible, LabVIEW and Java implementations can
be considered as good alternatives.

LabVIEW is a proprietary software, but it is possible
to use it as a development environment to compile
stand-alone applications for various target platforms.
Such instrumentation-oriented applications can be
used freely for educational purposes. Moreover, it is
also possible to sign Virtual Instruments (LabVIEW
codes) that can be executed using the LabVIEW
player. This player is freely available on various
platforms and operates in the same manner as the well
know RealPlayer from RealNetworks.

Java applications can take different forms. For
example, it is possible to run a Java application in a
Java Virtual Machine (JVM) embedded within a Web
browser (Applet) or into a JVM running directly on
top of the OS (Application). These approaches which
are compatible with the previously mentioned

recommendations, have benefits and limitations.
Their peculiarities for the implementation of remote
experimentation solutions are described in Table 1.

For further analysis it is interesting to take into
consideration the remarks given below.

Platform

. The LabVIEW distribution depends on the
availability of either the application builder or the
player relevant for the targeted platforms. The
possibility of running the Java applet is dependent on
the existence of a Java-compliant browser for the
desired platform. The version of the JVM is also an
important aspect to ensure a smooth, trouble-free
execution of the Java solutions.

Performance

. Currently, LabVIEW applications are
more efficient than the Java solutions. This difference
is quite significant when extensive decoding is
necessary to render the video images.

Deployment

. LabVIEW stand-alone client software
needs no additional tools to be executed. As a
counterpart, they are quite large to download. When
running Java client software, it is necessary to take
into account the fact that different systems can have
different requirements for the launching. Some
commercial tools, such InstallAnywhere can be used
to help in the software deployment by providing
installers for all the platforms. Moreover, it could be
necessary to have special OS access rights to install
the necessary components to run the application. Such
a situation can be encounter when using personal
computers on campus. In this case, it is preferable to
provide client software as applets.

Security

. There is no way to restrict the system access
to a stand-alone LabVIEW application. To increase

Table 1. Client software implementation peculiarities.

LabVIEW Application Applet

Platform Windows,
MacOS
UNIX/
Linux

Windows,
MacOS,
UNIX/
Linux

Windows,
MacOS
UNIX/
Linux

Performance High Medium Medium

Deployment Easy OS
dependant

Very
Easy

Security Medium Medium High

Development Proprietary Broad
range

Broad
range

Reusability High High High

6

the degree of trust and the certification of the origin of
the code, signed virtual instruments can be used. Java
also provide such signature capabilities in addition to
the security implemented at the JVM level. When
running an applet, the security is more a browser-
dependent point. There are some browsers which
have a finer tuning system for security, where the user
can manually choose the applet privileges. In other
browsers the security model allows only the user to
grant or deny a group of actions to the applet,
restricting the flexibility of the choice.

Development

. There are many tools for Java
development, ranging from the simpler Java
Development Kit, freely available from Sun, to many
commercial Integrated Development Environments
for a broad range of platforms.

Reusability

. In LabVIEW, the source code is common
to all platforms, but a compiled version is needed for
each platforms/ OS. Using Java, different browsers or
different versions of the same browser can have
slightly different Java implementations that could
make the environment incompatible with the applet,
requiring accurate programation or the development
of browser-adapted solutions, such as code that
detects the browser vendor and version and that runs
the apropiated applet for this precise setup.

Figure 3. Screenshot of the inverted pendulum client
software implemented as a Java application.

Figure 4. Screenshot of the inverted pendulum client
software implemented as a Java applet.

The aspect of the cockpit-like user interface can be
seen on Figure 3 for the Java application and on
Figure 4 for the Java applet.

6. CONCLUSION

This paper describes guidelines for implementing
remote experimentation solutions, covering the
physical system specifications, the client-server
architecture and the user interface. Following this
guidelines, the advantages of an open and
multiplatform solution based on Internet standards is
shown, and the comparison between three different
software approaches covers a broad range of cases
with diverse requirements. Java shows promising
cross platform solutions and security management.
However for highly demanding applications,
LabVIEW compiled code is more efficient and should
be preferred.

ACKNOWLEDGMENTS

This work was partially supported by the Swiss
National Science Foundation, grant #5003-045347 as
part of the Swiss Priority Program for Information
and Communications Structures and by the EU IST
Programme under project contract IST-1999-20827.

REFERENCES

Balchen, J.G., M. Handlykken and A. Tysso (1981).
The Need for better Laboratory Experiments in
Control Engineering Education. P

roc. 8th
Triennial IFAC World Congress,

7

, Kyoto.
Gillet, D., H.A. Latchman, Ch. Salzmann and O.D.

Crisalle (2001a). Hands-On Laboratory
Experiments in Flexible and Distance Learning.

Journal of Engineering Education,

April, pp.
187-191.

Gillet, D., Ch. Salzmann and P. Huguenin (2001b). A
Distributed Architecture for Teleoperation over
the Internet with Application to the Remote
Control of an Inverted Pendulum.

Lecture Notes
in Control and Information Sciences 258:
Nonlinear Control in the year 2000”

,

1

, pp. 399-
407, Springer-Verlag, London.

Schmid, Ch., T.I. Eikaas, B. Foss and D. Gillet
(2001). A Remote Laboratory Experimentation
Network.

1st IFAC Conference on Telematics
Applications in Automation and Robotics

,
Weingarten, July 24-26.

Schulzrinne, H., S. Casner, R. Frederick and V.
Jacobson (1996). RTP: A Transport Protocol for
Real-Time Applications.

RFC 1889

, January.
Schulzrinne, H., A. Rao and R. Lanphier (1998). Real

Time Streaming Protocol (RTSP).

RFC 2326

,
April.

Wellstead, P.E. (1990). Teaching Control with
Laboratory Scale Models.

IEEE Transactions on
Education,

33

,

Number 3.

