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Abstract

The development of new space missions with novel high-performance and very sensitive

payloads for Earth observation or scientific missions has imposed considerably tougher re-

quirements in terms of the satellite’s pointing accuracy and stability, and thus on the maximum

allowed on-board micro-vibrations. The main sources of on-board disturbances are any mov-

ing or rotating parts in the satellite, such as cryocoolers, momentum or reaction wheels (RWs)

and control moment gyroscopes (CMGs). These actuators generate narrow-band harmonic

vibrations dependent on the actuator’s speed, which are transmitted and amplified through

the satellite’s structure and reach the sensitive payload such as high-resolution cameras, mirror

structures or telescopes.

A very promising alternative to overcome these limitations is the use of magnetic bearings

(MBs), as identified by the European Space Agency (ESA), to levitate the rotor during oper-

ation, and thus allow a contact- and friction-less operation with virtually infinite life-time.

Furthermore, due to the active control of the position of the rotor it is possible to actively

suppress any other rotor vibrations such as exported forces due to rotor residual unbalance,

creating a very-low disturbance actuator that can satisfy the needs of future high-performance

space missions.

In the present dissertation, a study of the main aspects of magnetic bearings for space ap-

plications is undertaken, and more specifically of a promising magnetic bearing reaction

wheel configuration: a fully active, Lorentz-type, self-bearing, slotless magnetic bearing and

permanent magnet synchronous motor. The main goal of this thesis is to identify the key

factors and characteristics of a magnetic bearing system, for its use in reaction wheels for

attitude control of satellites, in terms of requirements and performance criteria, and undertake

the required analysis and modifications in order to address such aspects.

As a result of requirements from in-orbit conditions and on-ground qualification and testing,

the key features of magnetic bearings in reaction wheels are: generated micro-vibrations

during operation, magnetic bearing and motor efficiency affecting power consumption and

heat dissipation, and system complexity linked to the actuator’s failure risk and cost.

Regarding micro-vibration generation it is necessary to study its sources, countermeasures

and active suppression control techniques, to materialise the advantages of magnetic bear-
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Abstract

ings and achieve very-low disturbances. Through the micro-vibration characterisation of the

studied magnetic bearing system, the main sources of vibrations are identified and several

countermeasures are undertaken: highly-symmetric bearing and motor windings reduce

cross-couplings and asymmetries in the bearing and motor forces, and a multi-harmonic force

rejection control technique is proposed and successfully implemented, achieving a reduction

in the generated vibrations of at least one order of magnitude.

In order to limit in-orbit power consumption and guarantee on-ground testing, a high mag-

netic bearing and motor efficiency should be sough, minimising thermal and power consump-

tion constraints. For this reason an accurate electromagnetic modelling of the studied slotless

magnetic bearings and motor, combined with a general optimisation technique allowing the

maximisation of the overall machine efficiency, and resulting in important reductions of power

consumption during operation ranging from 30 % to 60 % and its associated losses.

Lastly, system complexity should be addressed for missions in which risk and cost are key

drivers for technology selection. A simplification of the studied system is proposed by employ-

ing iron-less passive magnetic bearings which can reduce the number of actuators, sensors,

power electronics and computational power, and its viability is verified through simulation.

The work and results presented in this dissertation show the great potential of employing

magnetic bearings in reaction wheels for attitude control of satellites, due to their very low

exported vibrations, through the removal contact between moving parts and the use of multi-

harmonic force rejection control. Moreover, the proposed optimisation process for active

magnetic bearings and motor shows the great margin of improvement in terms of efficiency

that can facilitate the mitigation of thermal and power consumption concerns for space appli-

cations, and the addition of iron-less passive magnetic bearing can greatly simplify the overall

system complexity and cost if needed.

Keywords: satellite attitude control, reaction wheel, magnetic bearing, micro-vibrations,

vibration control, electromagnetic modelling, slotless windings, force and torque models,

optimisation.
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Résumé

Le développement de nouvelles missions spatiales avec de nouvelles charges utiles très perfor-

mantes et très sensibles pour l’observation de la Terre ou les missions scientifiques a imposé

des exigences considérablement plus strictes en termes de précision de pointage et de stabilité

du satellite, et donc sur le niveau maximal autorisé de micro-vibrations. Les sources princi-

pales de perturbations à bord du satellite sont tous les actionneurs qui disposent des pièces

mobiles ou rotatives, telles que les compresseurs dans des systèmes cryogéniques, les roues de

réaction et les actionneurs gyroscopiques faisant partie du système de commande d’attitude

et d’orbite (SCAO). Ces actionneurs génèrent des vibrations harmoniques dépendantes de

la vitesse de l’actionneur, qui sont transmises et amplifiées par la structure du satellite et

atteignent la charge utile, comme caméras de haute résolution, structures de miroirs ou les

télescopes.

Une alternative très prometteuse pour éliminer ces limitations est l’utilisation de paliers ma-

gnétiques pour soutenir le rotor en levitation pendant le fonctionnement, et permettre ainsi

un fonctionnement sans contact et sans friction avec une durée de vie pratiquement infinie.

En outre, grâce au contrôle actif de la position du rotor, il est possible de supprimer activement

toute autre vibration du rotor, comme les forces exportées dues au balourd résiduel du rotor,

créant ainsi un actionneur à très faible perturbation qui peut satisfaire les besoins des futures

missions spatiales à haute performance.

Dans cette thèse, une étude des principaux aspects techniques des paliers magnétiques pour

les applications spatiales est entreprise, et plus particulièrement, d’une configuration promet-

teuse de roue de réaction à paliers magnétiques : un moteur synchrone à aimants permanents

et à paliers magnétiques sans fente, entièrement actif et bassé sur les forces de Lorentz. L’objec-

tif principal de cette thèse est d’identifier les facteurs et les caractéristiques clés d’un système à

paliers magnétiques, pour son utilisation dans les roues de réaction pour le contrôle d’attitude

des satellites, en termes d’exigences et de critères de performance, et d’entreprendre l’analyse

et les modifications nécessaires afin de traiter ces aspects.

En raison des conditions et des exigences en orbite et sur Terre pour sa qualification, les

principales caractéristiques des paliers magnétiques pour des roues de réaction sont les sui-

vantes : les micro-vibrations générées pendant son fonctionnement, le rendement des paliers

magnétiques et moteur affectant la consommation de puissance et la dissipation de chaleur,
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Résumé

et la complexité du système liée au risque de malfonctionnement de l’actionneur et au coût.

En ce qui concerne la génération de micro-vibrations, il est nécessaire d’étudier ses sources,

les contre-mesures et les techniques de régulation pour la suppression active des vibrations.

Grâce à la caractérisation des micro-vibrations du système étudié à paliers magnétiques, les

principales sources de vibrations sont identifiées et les contre-mesures suivants sont prises :

les bobines symétriques des paliers et des moteurs réduisent les couplages et les asymétries

dans les forces des paliers et des moteurs, et une nouvelle technique de régulation est propo-

sée pour rejeter les forces harmoniques, permettant d’obtenir une réduction des vibrations

générées d’au moins un ordre de grandeur.

Afin de limiter la consommation d’énergie en orbite et de garantir les essais au sol, une mo-

délisation électromagnétique précise des paliers magnétiques et du moteur sans fente est

faite, et combinée avec une technique d’optimisation générale permettant de maximiser le

rendement global de la machine, des réductions de consommation de puissance de 30 à 60 %

et donc d’augmentation du rendement, sont obtenues.

Pour conclure l’analyse, la complexité du système doit être prise en compte pour les missions

dans lesquelles le risque et le coût sont les principaux facteurs de sélection des actionneurs.

Une simplification du système étudié est proposée en utilisant des paliers magnétiques passifs

sans fer qui peuvent réduire le nombre d’actionneurs, de capteurs, d’éléments dans l’électro-

nique de puissance et la puissance de calcul. La viabilité d’une telle configuration est vérifiée

par simulation.

Les travaux et les résultats présentés dans cette thèse montrent le grand potentiel des paliers

magnétiques pour son utilisation dans les roues de réaction pour le contrôle d’attitude des

satellites, grâce au très faible niveau de vibrations exportées. De plus, le processus d’opti-

misation proposé pour les paliers magnétiques actifs et le moteur montre la grande marge

d’amélioration en termes de rendement permettant la reduction des problèmes thermiques et

de consommation de puissance électrique pour les applications spatiales, et l’ajout de paliers

magnétiques passifs sans fer peut grandement simplifier la complexité et le coût du système

si nécessaire.

Mots-clés : contrôle d’attitude des satellites, roue de réaction, paliers magnétiques, micro-

vibrations, contrôle des vibrations, modélisation électromagnétique, bobinage autoportant,

modèles de force et de couple, optimisation de machines eéléctriques.
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1 Introduction

The development of new space missions with novel high-performance and very sensitive

payloads for Earth observation [1]–[3] or scientific missions [4]–[6] has imposed considerably

tougher requirements in terms of the satellite’s pointing accuracy and stability, and thus on

the maximum allowed on-board micro-vibrations.

The main sources of on-board disturbances are any moving or rotating parts in the satellite,

such as cryocoolers, momentum or reaction wheels (RWs) and control moment gyroscopes

(CMGs). These actuators generate narrow-band harmonic vibrations dependent on the actua-

tor’s speed, which are transmitted and amplified through the satellite’s structure and reach the

sensitive payload like high-resolution cameras, mirror structures or telescopes. Missions with

very strict requirements either mount these actuators over isolation platforms, as in the James

Webb Space Telescope [6], or force the actuators vibrations to be outside the frequency range

of interest during measurement by adjusting the rotor speed, as done in the SWOT mission

[3], or force the actuators to be completely stopped during measurement phases, as in Euclid

mission [5], or even not mounting any of these actuators to avoid moving parts, as in Gaia

mission [4].

Long before the use of rotating machinery in space applications, the vibrations generated

by these actuators have been an important field of study in engineering since the industrial

revolution due to the importance of steam machines and turbines in the development of

modern technology [7]–[9]. These vibrations generate mechanical disturbances that create

stresses in the actuator’s housing, rotor and environment that may result in a system failure,

and thus they need to be minimised to guarantee a substantial life-time of the machine.

Extensive studies have been performed to analyse the main sources and propose counter-

measures for these vibrations for both space [10], [11] and terrestrial applications [12], [13],

being identified to be linked to rotor residual unbalance, bearing disturbances and motor

noise [11]. Whereas rotor balancing can considerably reduce the magnitude of vibrations,

allowing the operation of the machine for much longer time and at higher speeds, in practice it

is impossible to achieve a perfectly balanced rotor [14] and thus some residual vibrations will
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always be present. Furthermore, the use of conventional ball bearings will generate additional

vibrations, in the form of higher harmonic narrow-band disturbances, resulting from ball

bearing imperfections such as uneven bearing race and rolling element sizing. Also, the use

of ball bearings impose strict requirements on the lubricant, specially for space applications,

where temperature, vacuum and micro-gravity may significantly limit the expected life-time

of the actuator.

A very promising alternative to overcome these limitations is the use of magnetic bearings

(MBs) to support the rotor during operation, and thus allow a contact- and friction-less

operation with virtually infinite life-time. Furthermore, due to the active control of the position

of the rotor it is possible to actively suppress any other rotor vibrations such as exported

forces due to rotor unbalance, creating a very-low disturbance actuator that can satisfy the

needs of future high-performance space missions. Magnetic bearings are identified by the

European Space Agency (ESA) as the most promising technology that will greatly enhance the

characteristics of actuators such as reaction wheels [15].

While magnetic bearing reaction wheels (MBRWs) saw an initial interest and developments

in the decade of 1980 and 1990, due to the broader extension of rare-earth magnets that

greatly improved the efficiency of such machines, being successfully used in the French Earth

observation SPOT [1], [2], HELIOS and ENVISAT missions [16], the limited computational

power and high cost caused most developments to stop. The availability in recent years of

high-performance and cost-effective embedded controllers, digital signal processors (DSPs)

and even field-programmable gate arrays (FPGAs) with more than sufficient computational

power, combined with novel motor and bearing control techniques [15], make magnetic

bearings a competitive solution to enable novel agile and high-performance missions.

In this thesis a study of the main aspects of magnetic bearings for space applications is under-

taken, and more specifically of a promising magnetic bearing reaction wheel configuration,

focusing on micro-vibrations, machine efficiency, power consumption, and system complexity.

In the following sections an overview of the available actuators employed in space applications

is performed, and more specifically for attitude control of satellites, which can most profit

from the advantages of MBs. Subsequently, the main scientific contributions and outline of

the thesis are detailed.

1.1 Space Actuators for Attitude Control of Satellites

As described in [17], the attitude determination and control system (ADCS), is in charge of

controlling the orientation (attitude) of a satellite, or in the case of a guidance, navigation and

control, or attitude and orbit control system (GNC/AOCS), the orientation and linear velocity

(attitude and orbit). Depending on the goals and requirements of the space mission, the

attitude can be uncontrolled, simply passively stabilised by spin stabilisation or interaction

with Earth’s magnetic or gravitational fields, or actively controlled, usually three-axis stabilised,

by a system of sensors, controller and actuators.

2



1.1. Space Actuators for Attitude Control of Satellites

The main actuators employed for attitude control are:

• Thrusters: eject a propellant at a certain speed creating a reaction force on the satellite.

Multiple thruster types exist such as chemical (hot or cold gas) or electric (ion) propul-

sion [18], [19]. Both linear and angular thrust can be achieved at the cost of consuming

fuel.

• Momentum wheels: in momentum-biased satellites, a wheel with big inertia is kept at

high and almost constant speed [10], usually with spin axis normal to the orbit plane,

to provide gyroscopic stiffness to the satellite, in a similar way to spin stabilisation

techniques.

• Reaction wheels (RW): big inertial wheels similar to momentum wheels, but operated

at varying speeds, applying reaction torques during acceleration or deceleration to the

satellite to counteract disturbances [10]. Generally three or more RWs are employed,

eventually requiring desaturation manoeuvres to avoid the saturation of the wheel and

bring its speed back to zero using thrusters or magnetic torquers [17].

• Control moment gyroscopes (CMG): a big inertial wheel rotating at high speeds and

mounted over one- or two-axis gimbals, which apply torque to the satellite by changing

the direction of the spin axis of the wheel and generating gyroscopic forces. The torque

applied by CMGs is significantly higher than the one of RW, allowing for mass and

power consumption reduction [20] and at least two units are required for three-axis

stabilisation.

• Magnetic torquers or magnetotorquers: coils or permanent magnets that generate a

magnetic dipole on the satellite and by interaction with external magnetic fields, such as

Earth’s field, they exert a moment to the satellite. Magnetotorquers are usually employed

for reaction wheel desaturation and attitude control [21].

Due to fuel consumption in thrusters, low or limited torques in magnetotorquers, and com-

plexity and big torques applied by CMGs, making them mainly employed in very large plat-

forms such as the international space station (ISS), reaction/momentum wheels are the most

common actuator type used for three-axis attitude control of satellites [17].

The main drawbacks of RWs are the relatively high power consumption and the micro-

vibrations originated from the rotating body, mainly due to rotor unbalance, bearing distur-

bances, motor noise or structural resonances [10], which greatly affects the pointing stability

that the satellite can achieve [22]. For this reason, in some missions with high sensitive pay-

loads, such as ESA’s Gaia space astrometric mission [4] where rotating and moving parts are

strictly minimised, RWs are either directly avoided. Other options rely on mounting the RWs

over some complex passive [6], [22] or active [23] isolation or damping platforms.

The main limitation in the level of vibrations and limited life-time of reaction wheels resides

in the conventional ball bearings that are commonly employed. As mentioned before, the
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rotating bodies in the bearings generate high-harmonic disturbances, require lubrication and

extensive tribological studies, which limit its expected life-time in space due to temperature

changes and wear [24]. As clearly stated by ESA in its AOCS Sensors and Actuators Harmonisa-

tion Dossier [15], the technology featured in reaction wheels has remained greatly unchanged

in the last 20 years, and thus there is a clear need to develop novel state-of-the-art technologies

to greatly overcome these limits in conventional designs.

Other alternative bearings exist to achieve contact-less, vibration-free rotation, such as gas/air

bearings or magnetic bearings, which will be briefly described in the following section, in-

cluding a comparison between these technologies. Magnetic bearings are identified by ESA

in [15] as the most promising and ground-braking technology for RWs to achieve these high

performance goals of vibrations and life-time, due to recent developments in electronics,

materials and control theory, while keeping complexity and cost in reasonable levels. An

overview and classification of the different types of magnetic bearings is shown in the next

section to understand their basic principles and available options.

1.2 Magnetic Bearing Systems

As previously mentioned, several approaches can be followed to achieve a contact-less levita-

tion of a rotor or body, and overcome the limitations imposed by conventional ball bearings. It

is possible to generate the levitation forces through high-pressure fluids, as performed in gas

or air bearings, or by electromagnetic interaction between static and moving parts, yielding

magnetic bearings. Each of the bearing options, ball, gas and magnetic bearings have their

respective advantages and disadvantages, as summarised in [25].

Gas bearings allow rotation with very-low friction and a passive stabilisation of the rotor

(self-acting) and they are best suited in applications where the rotating machine already

employs some gas, such as compressors or pumps [26], [27]. In self-acting machines the

fluid pressure is generated by the rotation of the rotor inside a stator, both of which generally

feature thin patterns of grooves to help the pressure increase, and thus it can only be operated

above certain speeds, and the bearing properties like stiffness and damping greatly depend on

the speed [28]. This is generally not an issue in applications where a more or less constant

regime is employed, such as turbomachinery, but it considerably limits the use in cases where

constant acceleration or deceleration of the rotor are required, such as reaction wheels. Other

possibility is to conceive an externally pressurised bearing that will allow a stable levitation

even at standstill, but at the expense of increasing the system complexity.

In any case, the use of pressurised fluids in space applications can be achieved but may not

be the most appropriate choice due to vacuum in space. Magnetic levitation is perfectly

compatible with these conditions as no matter is required to transmit electromagnetic fields.

In this case the levitation can be achieved by a combination of permanent magnets or electro-

magnets in rotor and stator, yielding a friction- and contact-less operation. A great variety of

configurations exists to achieve the magnetic levitation, and thus it is necessary to identify the
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1.2. Magnetic Bearing Systems
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Figure 1.1 – Classification of main types of magnetic bearings according to its physical principle, based
on reluctance or Lorentz forces, and identifying active (A) and passive(P) types (Source: [29], [30]).

most appropriate topologies for space applications.

Whereas multiple ways of classifying magnetic bearings (MBs) exist, such as by their need of

active control or not for stabilisation, by application field or by number of degrees of freedom

(DoF) it is able to control, the most useful classification was originally performed in [29]

and later included in [30], which organises the multiple types of magnetic levitation systems

according to their physical principle, as summarised in figure 1.1. All magnetic bearings can

be classified in two main groups: reluctance-force or Lorentz-force types, depending on the

origin of the levitation forces.

For the first group, the reluctance forces are the electromagnetic forces appearing at the

interface of two materials, normal to the surface, with different relative permeability µr , such

as iron and air, as a result of the minimisation of the energy contained in the magnetic field.

Depending on the type of materials and configurations, reluctance-force magnetic bearings

can be classified in:

• Type 1: active reluctance-force bearings, in which the strength of the magnetic field

and forces are actively controlled by an electromagnet and both rotor and stator and

composed of ferromagnetic (µr À 1) materials. This corresponds to the most extended

magnetic bearing type. Power consumption can be considerably reduced if perma-

nent magnets are also included in the magnetic circuit, creating a constant bias flux

over which the electromagnet actuates to stabilise the system, as identified in early

developments of magnetic bearings for space applications [31].
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• Type 2: a passive levitation system can be achieved by a simple tuned LCR circuit

composed by the electromagnet with iron core (µr À 1), bearing coil and a capacitor

operated near resonance. This type is rarely used due to its intrinsic lack of damping

and requiring other auxiliary system for consistent stability.

• Type 3: another passive levitation system can be obtained by a combination of perma-

nent magnets (µr ≈ 1). Due to Earnshaw’s theorem, only some DoF can be passively

stabilised and they need to be combined with other active magnetic bearings for the

unstable directions.

• Type 4: complete passive stabilisation can be achieved by superconductive materials

(µr = 0) as a result of the Meissner–Ochsenfeld effect. These superconductive magnetic

bearings have seen an increasing interest in the last years as a result of recent high-

temperature superconductive (HTS) materials, including in space applications [32]–[34],

but with limited applicability due to the very low temperatures required.

For the second group, the Lorentz forces are the electromagnetic forces generated between

the interaction of a moving charge in a magnetic field. As before, depending on the employed

materials and arrangements, Lorentz-force bearings, also known as electrodynamic bearings,

can be classified as follows:

• Type 5: passive levitation forces can occur in a conductor, in which electric currents are

induced, moving at high speeds relative to a magnetic field generated by permanent

magnets. This electrodynamic levitation has been studied in the frame of magnetically-

levitated (MAGLEV) vehicles [35]–[37] and rotating machinery [38], [39]. This bearings

are only stable above a certain threshold speed, and usually feature very low damping.

• Type 6: a passive levitation system can be achieved if a conductor is placed inside a

magnetic field generated by an alternating current (AC), generating induced currents in

the conductor and repelling forces. In general this bearing type, commonly known as

AC bearing, features low forces and efficiency and poor damping behaviour [40].

• Type 7: an active magnetic levitation can be achieved in the same configuration as type

6 when the AC current is actively controlled, resulting in induction magnetic bearings.

This configuration is equivalent to induction motors, and are both usually combined to

create magnetic bearing inductions motors [41]. If both magnetic bearing and motor

actuators are combined, sharing the same magnetic circuit, the machine is generally

known as self-bearing motor.

• Type 8: another active magnetic levitation system is obtained if the magnetic flux density

generated by permanent magnets located in the rotor or moving body are combined

with an actively controlled current flowing through a conductor in the stator. This same

principle is employed in permanent-magnet synchronous motors (PMSMs), and can be

combined with this types of bearings to create a self-bearing motor [42].
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When considering combined motor and magnetic bearing systems (self-bearing or bearingless)

another possible classification of the magnetic bearing types is by considering the electrical

type of actuator [43], similar to the classification of electric motors: induction, switched

reluctance, synchronous reluctance, permanent magnet or homopolar. All these types of

self-bearing motors can be classified as in figure 1.1, being switched reluctance, synchronous

reluctance and homopolar of type 1, induction of type 7, and permanent magnet of type 8. In

any case, the parallelisms between magnetic bearings and motors are clear, consisting both of

electrical machines that generate forces or torques to the rotor by electromagnetic interactions.

In self-bearing machines, the bearing and motor actuators are simply differentiated by the

combination of number of poles of rotor and stator [30], [43].

Having identified the different types of magnetic bearings available, an overview of the past

developments of magnetic bearing actuators for space applications, and more specifically

in reaction wheels, will be undertaken in chapter 2, where the different advantages and

drawbacks of each configuration will be identified in order to appropriately select the most

promising one for the studied application.

In the following sections, the work undertaken in this thesis is presented, describing the

general structure of the document and highlighting the main scientific contributions, also

including the list of publications.

1.3 Outline of the Thesis

In the present dissertation, a study of the main aspects of magnetic bearings for space applica-

tions is undertaken, and more specifically of a promising magnetic bearing reaction wheel

configuration. The main goal of this thesis is to identify the key factors and characteristics

of a magnetic bearing system for its use in reaction wheels for attitude control of satellites

in terms of requirements and performance criteria, and undertake the required analysis and

modifications in order to address such aspects.

The presentation of the work developed throughout the present thesis is structured in a total

of eight chapters that deal with the characterisation, modelling, optimisation, and control

of magnetic bearing systems for space applications. The overall thesis structure can be

summarised as follows:

• In chapter 1, an introduction to the work presented in this thesis is included, describing

more in detail the context and main goals of the present investigations.

• A review of the past investigations linked to the present research is detailed in chapter

2. This chapter more specifically highlights the most important magnetic bearing

actuators for space applications and their main limitations that justify the present work.

Furthermore the chapter briefly describes the actuator in which this thesis is based on.

• In chapter 3, an overview of the main identified sources of micro-vibrations for magnetic
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bearing systems can be found, from the sources themselves to the possible approaches

to measure them. A novel micro-vibration measurement method for active magnetic

bearing reaction wheels called current-to-force is detailed, also described in [44]. These

sources are then included into a modular closed-loop simulation model, based upon

the work presented in [45], which combines rotordynamics, bearing, sensor and control

models to perform performance and stability analysis.

• In order to be able to quantify the efficiency of the machine and perform its design, the

electromagnetic modelling of the studied slotless active magnetic bearings and motor

is detailed in chapter 4. Due to the different combinations existing in the machine, a

modular approach is employed, capable of calculating the electromagnetic forces and

torques generated by different permanent magnet arrangements, with and without back

iron, and different slotless winding types, as also described in [46] and [47]. Moreover,

the electromagnetic model of iron-less passive magnetic bearings is also presented,

making use of equivalent magnetic flux density models employed for the active bearings,

as also detailed in [48].

• Having defined the electromagnetic models of both active and passive magnetic bear-

ings required for machine design, in chapter 5, an optimisation procedure is proposed

for both fully active and hybrid magnetic bearing systems. For the former, a global

efficiency optimisation is undertaken to minimise the machine losses in all actuators

while also reducing bearing-dependent disturbances by appropriate winding selection,

as also described in [49], and for the latter, a design procedure that guarantees the

stability and quantifies the expected performance of the closed-loop system is executed.

• In chapter 6, a multi-harmonic force rejection control technique is presented and anal-

ysed. The general structure of the technique is introduced and its stability is studied for

general control systems and more specifically for magnetic bearing systems, enabling a

substantial reduction of vibrations generated by the machine during operation, as also

shown in [50].

• All experimental measurements and validation of models, measurement methods and

control techniques are included in chapter 7. All employed test equipments are first

detailed, followed by the validation of all models presented in previous chapters, con-

cluding with the micro-vibration characterisation of the studied fully active magnetic

bearing system and the quantification of the impact of the implemented improvements

and modifications.

• Finally, in chapter 8, a summary of all the work presented in this thesis is included, and

an overview of the identified future work that would be of great interest to continue the

research undertaken in the frame of the thesis.
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1.4 Contributions of the Thesis

The main scientific contributions of the work undertaken in the frame of the present thesis

are the following:

• A novel micro-vibration measurement method for active magnetic bearings is proposed

and validated. The proposed current-to-force method is based on the measurement

of the forces directly applied by the active magnetic bearing currents. As such mea-

surements are already available for control purposes, the measured vibrations and

forces are directly obtained in real-time, allowing its use for monitoring purposes of

control parameter adaptation for optimal performance. The current-to-force method is

successfully validated by comparison to a reference multi-component dynamometer

commonly employed for micro-vibration characterisation and qualification of space

equipment.

• The main sources of micro-vibrations for magnetic bearing actuators are identified and

detailed. Due to the particularities of magnetic bearing systems, when compared to

conventional and very well studied actuators with ball bearings, disturbances of different

nature need to be analysed and accounted for to characterise their sources of micro-

vibrations. These sources can be as diverse as rotor unbalance, sensor noise, winding

and permanent magnet imperfections and asymmetries, high-frequency inverter noise

in power electronics, computation delays or fixed-point rounding errors in controller

implementation.

• A modular closed-loop simulation model for active and passive magnetic bearing capa-

ble of studying stability and general behaviour of rotating systems. The model combines

multiple options of rotordynamics, bearing, sensing and control models with different

possible levels of complexity or simplification to analyse the impact of specific factors

in the closed-loop system. Frequency and time-based analysis tools are available to

determine stability, micro-vibration or general performance of a given system.

• An accurate and computationally efficient electromagnetic model for slotless active

magnetic bearings and motors is proposed and validated. The model employs elliptic

integrals to define the three-dimensional magnetic flux density distribution in the

machine’s airgap for several possible combinations of permanent magnet arrangements

with and without back iron, and combined with a selection of slotless winding types,

like skewed, rhombic, hexagonal and axial, it is capable of accurately calculate the force

and torque applied by the actuator.

• A general efficiency optimisation procedure for active magnetic bearing motors is de-

tailed, allowing the simultaneous consideration of multiple actuators for global optimisa-

tion of magnetic bearing machines. This optimisation technique enables the possibility

of selecting the appropriate permanent magnet, winding and back iron dimensions and

parameters by means of a global constrained multi-objective optimisation that seeks
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the maximisation of the machine overall efficiency, defined by the linear combination of

motor and bearing constants, i.e. ratio between applied force/torque and Joule losses.

• A multi-harmonic force rejection control technique for unbalance and other synchronous

vibration suppression in magnetic bearing systems. The proposed generalised notch

filter features improved stability properties enabling easier design of multi-harmonic

suppression when compared to conventional techniques, which usually require gain-

scheduling internal parameters to maintain stability. This technique is successfully

implemented on the studied magnetic bearing system for the first three harmonics

achieving at least one order of magnitude reduction in vibrations.

• An electromagnetic model for ironless passive magnetic bearings is developed and vali-

dated. The model is based on the formulation of the magnetic flux density distribution

of permanent magnet rings using computationally-efficient elliptic integrals, resulting

in an accurate calculation of the passive magnetic stiffness of massive magnetic bearing

arrangements.

• Several hybrid magnetic bearing configurations, combining active and passive magnetic

bearings, are proposed to reduce the complexity of fully active configurations while

retaining most of the high performance and low vibrations. The stability and general

behaviour of such configurations is validated and proven using the developed closed-

loop simulation models showing promising capabilities.

1.5 List of Publications

Throughout the development of the present thesis several conference and journal articles have

been submitted for publication and published or are currently under review. The complete

list of publications is included hereafter.

Conference Papers

[45] G. Borque Gallego, L. Rossini, E. Onillon, T. Achtnich, C. Zwyssig, R. Seiler, D. Martins

Araujo, and Y. Perriard, “Magnetic Bearing Reaction Wheel Micro-Vibration Signature

Prediction”, in 18th European Space Mechanisms and Tribology Symposium, Munich,

Germany, Sep. 2019.

[46] G. Borque Gallego, L. Rossini, T. Achtnich, C. Zwyssig, D. Martins Araujo, and Y. Perriard,

“Force Analysis of a Slotless Lorentz-Type Active Magnetic Bearing Actuator”, in 2018

21st International Conference on Electrical Machines and Systems (ICEMS), IEEE, Oct.

2018, pp. 75–80, ISBN: 978-89-86510-20-1. DOI: 10.23919/ICEMS.2018.8549038.

[48] ——, “Force and Torque Model of Ironless Passive Magnetic Bearing Structures”, in

2019 IEEE International Electric Machines & Drives Conference (IEMDC), IEEE, May

2019, pp. 507–514, ISBN: 978-1-5386-9350-6. DOI: 10.1109/IEMDC.2019.8785411.
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Journal Articles

Journal Articles

[44] G. Borque Gallego, L. Rossini, E. Onillon, T. Achtnich, C. Zwyssig, R. Seiler, D. Martins

Araujo, and Y. Perriard, “On-line micro-vibration measurement method for Lorentz-

type magnetic-bearing space actuators”, Mechatronics, vol. 64, p. 102 283, Dec. 2019,

ISSN: 09574158. DOI: 10.1016/j.mechatronics.2019.102283.

[47] G. Borque Gallego, L. Rossini, T. Achtnich, D. Martins Araujo, and Y. Perriard, “Three-

Dimensional Force and Torque Models of Slotless Magnetic Bearing Machines”, IEEE/ASME

Transactions on Mechatronics, May 2020, under review.

[49] ——, “Efficiency Optimisation and Vibration Reduction in Slotless Magnetic Bear-

ing Machines”, IEEE/ASME Transactions on Industry Applications, Special Issue on

Magnetically Levitated Motor Systems, Nov. 2020, under review.

[50] ——, “Novel Generalised Notch Filter for Harmonic Vibration Suppression in Magnetic

Bearing Systems”, IEEE/ASME Transactions on Industry Applications, Special Issue on

Magnetically Levitated Motor Systems, Dec. 2020, under review.
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2 Magnetic Bearing Actuators for Space
Applications

As mentioned in the previous chapter, magnetic bearings are identified as a key technology in

the development of very-low disturbance actuators, and more specifically for reaction and

momentum wheels, of strategic interest for the European Space Agency (ESA). For this reason,

it is necessary to identify the state of the art in terms of past activities that have targeted

to integrate magnetic bearings into reaction or momentum wheels for attitude control of

satellites, in order to better focus the present research.

Firstly, an overview of the previously developed magnetic bearing reaction wheels (MBRWs) is

performed in section 2.1, identifying its main target applications in terms of satellite size and

characteristics through the analysis of the physical characteristics of the reaction wheels (RWs).

Furthermore, the topology and configuration of the magnetic bearings (MBs) employed in

these actuators is studied to identify the limitations seen in these past developments. Finally, in

section 2.2, the magnetic bearing reaction wheel demonstrator developed by Celeroton (CEL)

is described, including the general MB topology, the actuator, sensor and control algorithm,

which will be the base for the investigations undertaken in this thesis.

2.1 Magnetic Bearing Reaction Wheels for Satellite Attitude Control

This section will focus on the different magnetic actuators developed for attitude control of

satellites. Firstly, acknowledging that similar devices exist in attitude and orbit control systems

(AOCS), as reviewed in chapter 1, such as control moment gyroscopes (CMGs), the literature

overview included hereafter will only cover magnetic bearing reactions wheels (MBRWs), due

to being this the main target application highlighted by the ESA in [15]. Moreover, exclusively

the actuators that are equipped with a full magnetic suspension system (active or passive) are

considered.
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Chapter 2. Magnetic Bearing Actuators for Space Applications

2.1.1 General Overview

The main potential advantages, such as virtually infinite life-time due to friction-less opera-

tion or better control of bearing dynamic properties, and the progress in some technological

aspects, like the development of rare-earth magnets (i.e. samarium-cobalt magnets), from

other applications of magnetic bearings in rotating machinery resulted in the first efforts of

developing magnetically-suspended reaction wheel systems for attitude control of satellites

simultaneously in different parts of the world between the end of the decade of 1960 and

beginning of the 1970 decade, mainly by the National Aeronautics and Space Administration

(NASA) [31], [51], [52], and many other contractors [53]–[56] in the United States; by Aerospa-

tiale [57]–[59] in France; and by TELDIX (currently Collins Aerospace) [60], [61] in Germany.

These last designs by Aerospatiale [16], [62]–[65] and TELDIX [66]–[70] were improved and

continued in the following decades.

Several of these Magnetic Bearing Reaction Wheels designed and manufactured by Aerospa-

tiale (currently Thales Alenia Space) were used in different space missions, starting from a

1-DoF axially active MBRW that was sent to space in the French Earth Observation satellite

SPOT 1 in 1986, and then used in others like SPOT 2 and 3, ERS (European Radar Observation

Satellites) 1 and 2. Then a 2-DoF radially active MBRW was developed, also by Aersopatiale,

and launched into space in SPOT 4 and 5, HELIOS 1A and 1B, and ENVISAT satellites, until the

development was discontinued in early 2000.

Since the beginning of 1980, in Japan, the National Aerospace Laboratory in Japan (NAL), in

collaboration with Mitsubishi Electric Corporation (MELCO) and Toshiba, started different

research and development activities that resulted in the generation of several Magnetic Bearing

Reaction Wheel designs [71]–[75]. These activities were undertaken for two decades, and one

of them, a radially-active MBRW was launched to space in the JINDAI platform in 1986 for

in-space testing that lasted three days. Other major developments by NAL and MELCO are a

three-axis active magnetic bearing, with axial and gimballing capabilities [71], [72], and the

most recent five-axis active MBRW, which started focusing on the study of micro-vibration

exported to the satellite’s structure [75].

During the 90’s, other efforts on implementing magnetic bearings in momentum or reaction

wheels for satellite attitude control were undertaken. On the one hand, one of the first research

activities with a main focus on small satellites, was developed by Scharfe et al. for the Dresden

University of Technology in Germany [76]–[79] during mid 90’s and the beginning of 2000’s,

initially intended for the AMSAT Phase 3-D satellite and then miniaturised for its used in

small satellites. On the other hand, a conical MBRW topology was designed and tested by the

Mechatronics Laboratory of the Technical University of Turin (Politecnico di Torino) [80]–[82].

These two projects were discontinued during the decade of 2000.

The most recent developments of magnetic bearings for reaction wheels known by the author

were undertaken in [83], [84] at the Surrey Space Centre (SSC) of Surrey University in the United

Kingdom until 2011, and more recently by Beihang University (BUAA) in China [85]–[94]. Lastly,
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Figure 2.1 – Comparison of the main physical characteristics, reaction torque and angular momentum
storage capacity, of past magnetic bearing reaction wheels which define the possible use and target
application of such actuator.

originated from very-high-speed motors, Celeroton AG (CEL) developed a magnetic bearing

reaction wheel demonstrator to prove the viability of its fully active Lorentz-type magnetic

bearing topology for its use in space applications, and more specifically for small satellites.

2.1.2 Magnetic Bearing Comparison

The main characteristics of a reaction wheel actuator that determines the size of the satellites

in which it can operate are the reaction torque and momentum storage capacity. Even though

the exact RW selection will depend on the specific mission requirements such as agility,

reliability or pointing stability, some examples of missions are given as a reference for RW

sizing:

• Small satellites (<500 kg): the TET-1 mission with around 120 kg of mass, use RWs with

0.34 Nms of momentum storage, and 0.015 Nm of reaction torque [95].

• Medium satellites (500 kg to 1000 kg): the AMSAT phase 3-D with 500 kg of mass, feature

RWs in the range of 13 Nms of momentum storage and 0.03 Nm of torque [76].

• Large satellites (>1000 kg): earth observation (EO) Sentinel-2 satellite, with 1225 kg of

mass, employ RWs of 18 Nms of momentum storage, and 0.3 Nm of torque [96].

In order to identify the sizing of the aforementioned MBRWs, in table 2.1 and their possible

target missions, a comparison between the main technical parameters, such as number of

active DoF, magnetic bearing type, angular momentum storage capacity, reaction torque and

power consumption, is performed. Moreover a graphical comparison in included in figure 2.1,

in terms of reaction torque and angular momentum storage capacity.
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Table 2.1 – Magnetic bearing reaction wheel (MBRW) overview with main technical characteristics,
including number of active degrees of freedom (DoF), magnetic bearing type (number according to
figure 1.1, reluctance or Lorentz), maximum rotational speed, angular momentum storage, reaction
motor (Mot.) and gimballing (Gim.) torque and power consumption in steady state (S.S.) or maximum
(Max.) for both bearings (Bear.) and motor (Mot.).

Developer Active DoF Type
Speed Ang. Mom. Torque Power
(krpm) (Nms) (Nm) (W)

Thales Alenia
(Aerospatiale)

1 (Ax.)
1+3

(Rel.)
2-24 1-100 0.05-0.1 3-25 (S.S.)

2 (Rad.)
1+3

(Rel.)
2.4 40 0.45

13 (Bear.)
80 (Mot.)

2 (Rad.)
1+3

(Rel.)
6-10.3 12-60 0.075-0.15 120

Collins Aerosp.
(TELDIX)

5 (All) 8 (Lor.) 12 100
0.05 (Mot.)

2 (Gim.)
150

5 (All) 8 (Lor.) 5-8 30-150
0.1 (Mot.)
4 (Gim.)

70-120

5 (All) 8 (Lor.) 6-10
63-105 (Mot.)

2 (Gim.)
0.25 (Mot.)
0.6 (Gim.)

14 (S.S.)

5 (All) 8 (Lor.) 6-8
65-87 (Mot.)
2-2.6 (Gim.)

0.1 (Mot.)
0.6 (Gim.)

18-25 (S.S.)
140 (Max.)

NAL
Japan

1 (Ax.)
1+3

(Rel.)
10 34 - -

2 (Rad.)
1+3

(Rel.)
3 7.5 - 3 (S.S.)

3
(Ax. & Gim.)

1+3
(Rel.)

10 70
0.02 (Mot.)

4 (Gim.)
8 (Bear.)
50 (Mot.)

5 (All)
1+3

(Rel.)
5-8 30-64 0.05 15 (S.S.)

TU Dresden

2 (Rad.)
1+3

(Rel.)
3 15 0.03

5 (Bear.)
15 (Mot.)

2 (Rad.)
1+3

(Rel.)
5 0.2 0.01

5 (S.S.)
20 (Max.)

TU Turin 5 (All)
1+3

(Rel.)
10 3.81 0.03

6 (S.S.)
40 (Max.)

Beihang Univ.
(BUAA)

5 (All)
1+3

(Rel.)
6 15 0.06 -

5 (All)
1+3 (Rel.)
& 8 (Lor.)

5 68
0.05 (Mot.)
3.3 (Gim.)

-

In both figure 2.1 and table 2.1, it can be clearly seen that most previous developments in

magnetic bearings were targeted to medium to large satellites, whereas only few efforts by TU

Dresden and Celeroton focused on the growing sector of small satellites. This can be explained
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2.1. Magnetic Bearing Reaction Wheels for Satellite Attitude Control

by the fact that it is generally large satellites the ones that feature high-precision and highly

sensitive payloads for scientific and Earth observation missions, where very-low disturbance

actuators are of most importance [15].

Nevertheless, due to the lower size, mass and inertia of small satellites, its structure is more

sensitive to existing on-board disturbances, which mainly limits the precision and accuracy

of the payloads that the satellite can carry [97]. The use of magnetic bearing, which will

considerably reduce these perturbations, combined with the recent tendency to equip small

satellites with high-performance payloads [15], [97] will enable new missions that previously

may have not been viable.

Another important aspect to analyse is the type of magnetic bearing that is employed. Inde-

pendently of the chosen magnetic bearing type, the actuator should be able to withstand all

load cases that the system will be subject to in-orbit, and allow sufficient on-ground testing

for qualification, including basic functionality checks, requirement and performance verifica-

tions, such as basic levitation, reaction torque, micro-vibration generation, or torque stability.

Due to the micro-gravity conditions in-orbit, the main forces that the bearings will cope with

are the gyroscopic forces during satellites manoeuvres. On-ground, the gravitational forces

during levitation are the most important loads. The dimensioning of the magnetic bearing

system according to the gravitational loads will result in a considerably oversized actuator

for in-orbit conditions, resulting in weight increase due to bigger MBs and power electronics,

and thus increasing system cost, volume and weight, which are also important magnitudes to

limit in space applications. An intermediate solution can be found: it is possible to perform

the actuator dimensioning for in-orbit conditions, while still guaranteeing sufficient testing

in on-ground conditions, by either employing auxiliary cooling or levitation system only for

testing, or by limiting the configurations used for testing, for instance, testing for a limited

time or orientation.

In table 2.1, it can be seen that most developments are based on magnetic bearings of

reluctance-force type, and more specifically, of a combination of types 1 and 3 (PM-bias

active reluctance-force type) according to the classification shown in figure 1.1. This situation

can be justified by two main factors: the fact that most reluctance force bearings feature much

higher load capacities, facilitating the on-ground testing of the heavy MBRW, and because

these configurations enable the active control of some given DoF while passively stabilising

other, greatly simplifying the overall system complexity and making allowing a very compact

actuator.

Even though these advantages allowed the development of a broad selection of magnetic

bearing configurations, some key drawbacks of reluctance-force types are the much higher

passive stiffness due to the attraction between rotor and stator in small air-gaps, compromising

the possibility of achieving a perfect vibration suppression through control techniques, as

any rotor displacement will generate a disturbance force, and due to the fact that these

configurations feature ferromagnetic and generally conductive materials in both rotor and
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stator parts, greater eddy current or iron losses will limit the efficiency and maximum speed

of the actuators. Also, the passive stabilisation of some degrees of freedom will never allow a

perfect vibration suppression, limiting the maximum performance that can be achieved, but

considerably reducing the system’s complexity.

When considering Lorentz-force-based magnetic bearing machines, either slotted or slotless

configurations can be employed. The former features high load and torque capacities with

high passive magnetic stiffness due to small air-gaps, but high-harmonic disturbances due to

uneven field distribution resulting from stator slots that generate force and torque ripples are

unavoidable. Slotless machines are known for its good dynamic response, good linearity and

high reliability [98], featuring very smooth operation due to the absence of stator slots, and

thus reduced force and torque ripple, and very low magnetic stiffness, as a result of the fact

that motor and bearing windings are located in the air-gap. However, this bigger air-gap also

imposes as a result limited load capacities [30]. This limitation can be reduced by employing

high-efficiency slotless winding types, such as rhombic and hexagonal, or even optimised

winding shapes on flexible PCBs [99], [100].

The main difference between the topologies proposed by TELDIX and CEL is the use of

independent actuators of axial, radial and motor, and a homopolar configuration of permanent

magnets in the rotor for the former, and a compact self-bearing heteropolar motor and radial

bearing machine combined with homopolar radial and axial bearing machine for the latter.

Furthermore, due to the fact that the permanent magnets are located at the outer rim of the

wheel for TELDIX’ MBRW and multiple pole-pairs are employed, the field is generated by

discrete permanent magnet blocks in the rotor, which combined with several individual air-

core concentrated windings in stator, allows for greater forces and torques, but generating high-

harmonic field distortions due to discrete magnets and coils. In CEL’s MBRW demonstrator,

the use of self-bearing machine with slotless windings, with single cylindrical PMs in the rotor,

generates a very smooth operation due to the absence of most bearing and motor disturbances,

and showing good properties for very-low disturbance reaction wheels. The main limitation

of such configuration is the limited load capacities due to thermal constraints for on-ground

testing.

On the one hand, if small satellites are targeted, the smaller size of the RW will greatly relax the

common load capacity limitations of Lorentz-type MBs. On the other hand, if medium or large

satellites are targeted, with much larger RWs, due to the micro-gravity conditions in-orbit,

limiting the bearing actuation to sustaining the gyroscopic forces during satellites manoeuvres,

the load conditions that the levitation system needs to withstand are also considerably reduced.

In any case, as previously mentioned, some on-ground levitation capabilities need to be

guaranteed for functional and qualification testing. However, by limiting the configurations in

which the system can be tested or by using auxiliary test systems it is possible to considerably

reduce the constraints imposed on the bearing load capacity, facilitating the design and

dimensioning of the actuators.
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Figure 2.2 – Rotor (left), stator (middle) and controller and power electronics (right) of Celeroton’s
Lorentz-type, dual hetero/homopolar, slotless, self-bearing, fully active magnetic bearing system.

For these reasons, in applications where very-low disturbance actuators are required, fully ac-

tive, self-bearing, slotless, Lorentz-force type magnetic bearings (type 8) like the one proposed

by CEL show very promising capabilities and advantages over the other available alternatives.

During the present thesis, as a detailed study of the aforementioned main aspects in MBRWs,

such as efficiency, complexity and micro-vibrations, will be undertaken for this configuration,

a description of the studied topology is included hereafter, which corresponds with the starting

point of the research.

2.2 Celeroton’s Magnetic Bearing Reaction Wheel Demonstrator

A compact ultra-high-speed magnetic bearing and motor topology was proposed and de-

veloped by the Swiss Federal Institute of Technology in Zurich (ETHZ) and Celeroton AG

(CEL) [42], [101]–[103], with promising capabilities for space applications, such as reaction

wheels for attitude and orbit control systems (AOCS). For studying its capabilities, a magnetic

bearing reaction wheel demonstrator, shown in figure 2.2, has been developed [104], [105].

The topology of the aforementioned demonstrator, as schematically shown in figure 2.3, is a

Lorentz-type, dual hetero/homopolar, slotless, self-bearing, fully active magnetic bearing and

permanent-magnet synchronous motor (PMSM).

The main aspects of the studied configuration, important for understanding the overall work-

ing principle and the work undertaken in the present thesis, are included hereafter. The

complete description of all the elements can be found in [42] and [104].

2.2.1 Topology Overview

On the one hand, the heteropolar side is responsible for generating radial forces and mo-

tor torque to the rotor, by means of the interaction between the magnetic flux created by a

diametrically-magnetised permanent magnet (PM) and the current applied to a radial bearing

for force generation and to a motor winding for torque generation. The heteropolar configura-

tion of this part of the machine requires a synchronous modulation of both motor and bearing

currents with rotor’s orientation, typical in any field-oriented control (FOC) of PMSMs. The
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Figure 2.3 – Schematic cross-sectional view of the initial configuration of the slotless permanent-
magnet magnetic bearing reaction wheel demonstrator, including heteropolar side that generates
radial force and motor torque, and homopolar side that exerts radial and axial forces.

magnetic circuit is shared by both, motor and bearing windings (self-bearing), located in the

machine’s air-gap (slotless design), and depending on the application, it can be closed by a

stator core.

On the other hand, the homopolar side is responsible for generating axial and radial forces.

These forces result from the Lorentz force between the magnetic field created by two axially-

magnetised PMs pointing towards each other and two separated ring-wound coils for the axial

forces, and with a radial bearing winding. A combined magnetic circuit is shared between

axial and radial bearings. Nevertheless, the homopolar configuration is independent from

rotor’s orientation, and thus, actuation control loop is simplified, as no field-oriented control

is required. As before, depending on the application, the machine can be enclosed by a stator

core.

2.2.2 Electromagnetic Actuator

All bearings and motor are slotless and of the Lorentz-type, and thus, the main part of the force

and torque is generated by the Lorentz force resulting from the electromagnetic interaction

between the magnetic flux density distribution in the air-gap created by the rotor’s permanent

magnet, and the current density distribution in the windings.

More precisely, these actuators feature the following characteristics:

• Homopolar axial bearing: a two-piece slotless single-phase ring-wound winding that

generates axial force as shown in figure 2.4.a.

• Homopolar radial bearing: a slotless three-phase winding with a single pole-pair and

also of skewed type. The axially symmetric flux density distribution in the homopo-

lar air-gap, combined with a winding with one pole-pair results in a radial force, as

schematically represented in figure 2.4.b.
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Figure 2.4 – Schematic representation of Lorentz forces generated in homopolar axial and radial bearing
windings and heteropolar radial bearing and motor windings at cutting planes A, B and C defined in
figure 2.3. (Source: Celeroton AG)

• Heteropolar radial bearing: a slotless three-phase winding with two pole-pairs of skewed

type. The two pole pairs in the winding combined with a flux generated by a permanent

magnet with a single pole-pair generates a radial force, as schematically shown in figure

2.4.c. Furthermore, due to the presence of back iron, the flux in it will also contribute to

the total radial force [27], [42], a term commonly known as reluctance force.

• Heteropolar motor: a slotless three-phase winding with one pole-pair of skewed type,

generating the motor torque as schematically shown in figure 2.4.d. In this case, due to

the axial symmetry of the back iron surface, no reluctance torque is generated.

The cut planes of all cross sections included in figure 2.4 are identified in figure 2.3.

2.2.3 Control Architecture

The magnetic bearing control is implemented as a cascaded control loop, as commonly done

for motor control applications, where an inner loop, with much faster dynamics is used

for current control, and an outer one for position control, as shown in figure 2.5. The fast

current control loops are ideally executed synchronously. This approach allows minimising
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Figure 2.5 – Closed-loop scheme of control architecture featuring cascaded control with outer rotor
position control loop and inner actuator current control loop. The closed-loop system is composed
of position controller Rpc and observer Lpc , generalised notch filter for unbalance force rejection N f ,
current controller Rcc , plant electrical dynamics Pe and mechanical system rotordynamics Pq .

the possible error in applied currents and thus reducing its influence in position control, but

requires parallel computation capabilities, as 10 currents have to be accurately controlled with

minimum delay.

Current Control

The force and torque applied to the rotor under levitation is directly controlled by the current

applied to the windings. In the studied topology, three three-phase windings and one single-

phase winding need to be accurately controlled. For the heteropolar side, a modulation

of the three-phase winding currents needs to be performed to apply force or torque in the

desired direction. For the homopolar side, due to the axial symmetry of the magnetic field, no

modulation is needed.

In order to remove this angle-dependency from the current and position controllers, a field-

oriented control (FOC) technique is employed for all three-phase windings. A given electrical

magnitude x, such as phase currents and voltages, can be converted from alternating ABC-

coordinates to the angle-invariant rotor-fixed DQ-coordinates [106] employing an amplitude-

invariant Park transformation

[
xd

xq

]
= 2

3

[
cos(φz ′) cos

(
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(
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(
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being φz ′ the rotor polar angle, and vice versa using the inverse transform
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Employing Park’s direct and inverse transformations on current sensors measurements and

terminal phase voltages, respectively, all control loops are implemented making use of DQ-

coordinates, executed in parallel in a field-programmable gate array (FPGA) to minimise

execution delays, and using a simple proportional-integral (PI) controller.

All currents are sampled at 800 kHz using magneto-resistive current sensors, and controlled

using the actuating voltage on three-phase DC/AC inverters using pulse-width modulation

(PWM). The combination of a FPGA-based current control for synchronous and parallel

execution of the current control with high sampling rate enables the possibility of having

sufficient controller bandwidth for implementing a successful cascaded control.

In order to drive all windings, a three-phase two-level voltage source inverter (2LVSI) is em-

ployed to apply the terminal phase voltages of each three-phase winding and a full bridge

inverter for the axial single-phase winding, powered by two DC/DC converters for motor and

bearings, as schematically represented in figure 2.6.

This way, the position controller simply needs to specify the reference currents in DQ-coordinates.

Position Control

The position controller architecture is based on a linear-quadratic-gaussian (LQG) observer

and controller, and its detailed design is presented in [103]. For the design of the position

controllers, radial and axial dynamics are considered decoupled, allowing the independent

design of both controllers. The position control is implemented on a digital signal processor

(DSP) and executed at a sampling rate of 20 kHz.

The control loop for the multiple-input multiple-output (MIMO) dynamic system for the

radial position, and single-input single-output (SISO) for the axial position, are composed of a

controller Rpc , a Kalman filter state-space observer Lpc , a current limiter and its associated

anti-windup to avoid problems with the integral state during saturation. A generalised notch

filter, N f , is enabled above 50 krpm to reject exported forces due to rotor unbalance, being

1 krpm one thousand revolutions per minute.

In order to extract the state vector from the noisy sensor measurements, a Kalman filter of the

form

x̂(tk ) = Lpc




x̂(tk−1)

u(tk−1)

y̌(tk )


 , (2.3)
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Figure 2.6 – Block diagram of power electronics configuration for active control of three-phase motor
and radial bearing currents and single-phase axial bearing current (Source: Celeroton AG).

is used. The estimated state x̂ at time tk is updated by using the estimated state at the

previous sample time tk−1, previous controller output u, and filtered sensor measurements y̌ ,

multiplied by the observer gain matrix Lpc .

Considering a reference position xr e f = 0, to fix the rotor at the geometrical centre of the

air-gap, the full state feedback LQG controller

upc (tk ) = Rpc
(
xr e f − x̂(tk )

)
(2.4)

is employed, composed of proportional, integral and derivative states. The controller matrix

gain Rpc is obtained by minimising a quadratic cost function dependent on states and currents,

as typically done for LQG control.

In order to limit the overheating in the bearings, the maximum Joule losses in windings are

fixed by imposing a quadratic limit, umax , to the input currents upc . Whenever the threshold

is reached the current is limited by imposing upc = umax , and integration in (2.4) is stopped.

This behaviour, due to its non-linearity, is only present in the time based analysis of the

closed-loop system.
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2.2.4 Position Sensors

The information regarding rotor position and orientation is obtained via two printed-circuit-

board (PCB)-based sensors placed at the two axial extremes of the stator.

On the one hand, the radial position measurements are via eddy-current sensors, more

specifically by transverse flux sensors that can be implemented on a PCB as detailed in [107].

On the other hand, two different axial position sensors are available, using either an Eddy-

current sensor, or the magnitude of the stray field measured by Hall-effect sensors, as detailed

in [42].

The angular position of the rotor φz ′ is obtained by two pairs of orthogonal Hall sensors in

differential connection, which directly yield components that are proportional to sin(φz ′) and

cos(φz ′).

2.3 Conclusions

In this chapter, a review of the past magnetic bearing reaction wheels developed for attitude

control of satellites, where the advantages of magnetic bearings are of most interest, is per-

formed. In this overview the main characteristics of these past developments are analysed to

identify the remaining open points to this technology, which shows that the configuration stud-

ied in this thesis features some important and promising advantages for its implementation in

very-low disturbance actuators for space applications.

Finally, the fully active magnetic bearing system studied in this thesis is detailed, including a

description of its magnetic bearing topology, actuator, sensor, power electronics, and control

configurations.
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3 Closed-Loop Magnetic Bearing Model
and Micro-Vibration Characterisation

In order to quantify the impact of the different modifications and correcting measures im-

plemented and proposed throughout this thesis, it is first necessary to define the different

figures of merit and analysis tools required to quantitatively assess some characteristics such

as stability, performance and vibrations.

In this chapter, two main aspects of the analysis are covered. On the one hand, a presentation of

the different sources and measurement tools available for evaluating the vibrations generated

by rotating machinery is performed. On the other hand, a closed-loop magnetic bearing

simulation model is developed and presented, which will be employed as a benchmark for

the different control measures and evaluate the impact on the stability, performance and

vibrations generated by the system. Furthermore, a measurement method for active magnetic

bearings, called current-to-force method, is presented and compared to state-of-the-art

vibration measurement techniques.

Both the simulation model and the new measurement technique are experimentally validated

in chapter 7. Earlier versions of the model and measurement method were presented in [45]

and [44], respectively.

3.1 Micro-Vibration Sources for Magnetic Bearing Reaction Wheels

Due to the high impact of reaction wheels (RW) on satellite’s pointing accuracy, the noise

signature and the main sources of these disturbances for common ball bearing reaction

wheels (BBRWs) have been extensively addressed in the past [10], [11]. These disturbances are

commonly known as micro-vibrations, due to their low amplitude and periodic components,

dependent on rotor’s speed, and are common to any rotating machinery.

The main sources of periodic reaction wheel micro-vibration can be classified, as performed

in [10], according to their origin or cause in: unbalance-driven , bearing-driven, and motor-

driven disturbances. These type of disturbances for magnetic bearing systems are detailed

hereafter.

27



Chapter 3. Closed-Loop Magnetic Bearing Model and Micro-Vibration Characterisation

3.1.1 Unbalance-Driven Disturbances

This component of the micro-vibrations is caused by uneven distribution of mass in the rotor

around its geometrical axis, and it is acknowledged to be the most significant disturbance in

reaction wheels. It consists of two types of unbalances: static unbalance, which appears as a

periodic force perpendicular to the rotation axis, and dynamic unbalance, measurable as a

radial torque, also perpendicular to the spin axis.

The common definition of the unbalance in unbalance measurement equipment and balanc-

ing machines is expressed as an additional mass at a certain radial position, being

Fs =
[

Fx

Fy

]
= msrsΩ

2

[
cos(Ωt +α)

sin(Ωt +α)

]
,

Td =
[

Tx

Ty

]
= md rd ddΩ

2

[
sin(Ωt +β)

cos(Ωt +β)

]
,

(3.1)

whereΩ is the wheel rotation speed, ms and md are the static and dynamic unbalance point-

masses, respectively, rs and rd the radius between the geometric axis of rotation and the

static and dynamic masses, and dd the axial distance between the dynamic unbalance masses.

These unbalance models consider a centrifugal force and torque in radial direction (Fx , Fy ,

Tx , Ty ), synchronous with rotation speed. Due to the interaction with other bodies of the

stator, other modulations of these unbalance can be measured, appearing as higher integer

harmonic orders of the rotation frequency.

One of the main advantages of magnetic bearings, due to the lack of physical contact be-

tween rotor and stator, is the possibility of including active unbalance control, that would

considerably reduce the exported vibrations of the reaction wheel.

3.1.2 Bearing-Driven Disturbances

For conventional reaction wheels (RWs) featuring ball bearings, other non-integer modula-

tions of the harmonic micro-vibrations appear as a result of imperfections in the bearing

components, originated from the manufacturing process, such as waviness or geometrical

irregularities in the surface of bearing parts. Ball bearings also generate random/transient dis-

turbances, mainly due to lubrication issues, such as performance deterioration at speeds close

to zero, limited number of zero-crossings, momentary non-homogeneous oil distribution

inside the bearings that generate additional friction force or other disturbances originated

from ageing lubricant.

All these disturbances will not appear in a magnetic bearing reaction wheels (MBRWs), due

to the contactless, and thus, frictionless operation of these actuators. In practice, some

permanent magnet and winding imperfections, power electronics and sensors will generate

some parasitic forces to the rotor and stator, appearing as integer or non-integer harmonic
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orders of the rotation frequency. The characteristics of such forces will greatly depend on the

magnetic bearing topology and control approach employed, as happens for the motor-driven

disturbances.

For the studied fully active Lorentz-type magnetic bearing system it can be seen that the bear-

ing disturbances appear at several integer harmonic orders. As it will be analytically studied in

chapter 4 and experimentally shown in chapter 7, the main sources of bearing disturbances are

permanent magnet and back iron attraction, permanent magnet imperfections and winding

asymmetries.

3.1.3 Motor-Driven Disturbances

Torque ripple and torque instabilities are the main components of motor-dependent dis-

turbances that appear about rotation axis as a distorting motor torque (Mz ). The former is

understood as any periodic/deterministic torque disturbance derived from power electronics

switching, variation in airgaps between permanent magnets, current measurement errors and

cogging torque [11]. The latter is referred to as any random or transient disturbance on the

motor torque, such as random torque noise.

3.2 Micro-Vibration Measurement Techniques

3.2.1 Analysis Techniques

In order to characterise the level of vibrations generated by rotating machinery, independently

of the chosen measurement approach, it is necessary to study its behaviour for its whole speed

range. This will allow identifying the behaviour of the machine for every possible working

condition and thus identify possible critical speeds and structural resonances. The common

test procedure is undertaken as follows: the wheel is driven from minimum to maximum

rotation speed by either small and constant acceleration or by small speed steps. This way a

transformation to the frequency or order domain can be performed by applying a fast Fourier

transform (FFT) assuming a constant speed for each window of the time series data.

The main difference between frequency and order domain analysis relies on the fact that the

time signal is re-sampled at constant angle steps of the rotor for the latter, instead of a signal

sampled at constant time steps for the former. This allows the easier identification of the

harmonic orders of the speed-dependent disturbances.

Once the signal is available in frequency or order domain, the following plots are commonly

employed to study the level of vibrations generated by the machine:

• Waterfall plot: a three-dimensional plot of the force or torque amplitude as a function

of frequency/order and rotor speed, as shown, as an example, in figure 3.1.a in the

frequency domain, and in figure 3.1.b in the order domain for the studied fully active
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magnetic bearing reaction wheel. In this plot it is possible to identify both structural

resonances, that appear at constant frequency, and harmonic disturbances dependent

on speed, that appear at constant order. Note that both frequency and order plots are

complementary as all information can be found in both approaches, and thus it is a

matter of preference to use one or another.

• Worst-case plot: a two-dimensional plot of the maximum amplitude at each frequency,

figure 3.1.c, or order, figure 3.1.d, for all the measured speeds. As the limitations on

allowed vibrations is given as a function of frequency [10], [97], this plots allows the

verification of such constraints independently of the rotating speed.

• Noise-vs-speed plot: a two-dimensional plot of the root mean square of the force am-

plitude for all frequencies, figure 3.1.e, or orders, figure 3.1.f, at each rotor speed. This

plot is commonly employed to identify the speeds that feature higher level of vibra-

tions, that usually excite one of the main resonance modes and have higher disturbance

amplitudes.

3.2.2 Measurement Techniques

For space applications, in the qualification process of any reaction wheel assembly, the ex-

ported micro-vibrations to the satellite’s structure have to be estimated, in order to guarantee

that they satisfy the requirements stipulated for the space mission.

In practice, all on-ground qualification process of any reaction wheel is performed using a

state-of-the-art multi-component dynamometer, capable of measuring all exported forces

and torques. Nevertheless, due to the new possibilities provided by the internal measurement

capabilities of a fully active magnetic bearing, it is possible to estimate such vibrations by

employing current measurement data. This measurement technique is named current-to-

force.

Both micro-vibration measurement methods employed throughout this thesis are explained

hereafter. As a comparison, the required steps for calculating the generated vibrations using

a multi-component dynamometer or the current-to-force method are graphically shown in

figure 3.2.

For both cases, it is necessary to first multiply current or voltage measurements by a constant

to obtain the raw force measurements, then a geometric transformation is required to express

the measurements in a desired reference frame, and finally a Fourier transform is applied to

convert the signal into the frequency domain. If order domain is employed a resampling in

angle steps instead of time steps is required before computing the Fourier transform.
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Figure 3.1 – Waterfall, worst-case and noise-vs-speed plots in frequency and order domains of micro-
vibration measurements of studied fully active magnetic bearing system using multi-component
dynamometer at CSEM.

Multi-component dynamometer

The state-of-the-art micro-vibration qualification equipment relies on the use of a piezoelectric-

based multi-component dynamometric platform, fixed over a seismic mass and isolators, as

shown in figure 3.3, representing the equipment available at the Swiss Centre for Electronics

and Microtechnology (CSEM) in Neuchâtel, Switzerland, during the test campaign of the

studied fully active magnetic bearing reaction wheel demonstrator. This multi-component
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Figure 3.2 – Schematic information flow to obtain the exported micro-vibrations of measured equip-
ment for the proposed current-to-force method and the multi-component dynamometer.

dynamometer consists of four pre-loaded three-axis piezoelectric sensors that measure the

strain resulting from the forces generated by the measured equipment. By a simple geometric

transformation of the measurements of the four sensors it is possible to reconstruct the total

force and torque generated during the experiment.

The measurement procedure is simple: during the operation of the motor, the charge output

from the load on the piezoelectric sensors is conditioned and amplified by a charge amplifier

and then sampled by an acquisition system, resulting in a series of measurements in the

time domain. The output voltage v d yn of the charge amplifier is simply multiplied by the

configured sensitivity to obtain the measured forces f̃ t and geometrically combined to obtain

forces and torques with respect to the dynamometer’s centre or mounting plane f t . Then, any

analysis technique previously defined can be employed.

Current-to-Force for Magnetic Bearing Systems

This approach is based on the estimation of the electromagnetic forces applied to the rotor via

the measurement of the currents and the use of the bearings’ electromagnetic models. In some

cases, specially on electrodynamic bearings with slotless windings, whose principle is based

on Lorentz-force law, a linear relation can be considered between currents and forces, and

only a simple multiplication by a constant is required to estimate the applied bearing forces,

giving the possibility of having a real-time measurement of the micro-vibrations for control or

monitoring purposes. Reluctance-force magnetic bearing types could be also considered for

the proposed micro-vibration measurement method, but a more complex relation between

actuator’s currents, displacements and applied forces may be present.

For the studied system, as it is shown in [47], [101] and in chapter 7, the relation between

winding currents, i b and bearing forces, f b is linear, of the form f b = κF i b , being κF the

bearing’s force constant that can be calculated analytically using the electromagnetic models

described in chapter 4.

Then, the measurement procedure is again simple: during the operation of the motor, the
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Figure 3.3 – Multi-component dynamometer mounted over isolation platform, consisting of a seismic
mass over pneumatic isolator, during micro-vibration characterisation of the studied fully active
magnetic bearing reaction wheel (MBRW) demonstrator.

currents i b applied to the motor and bearing windings are logged using Celeroton’s CC-AMB-

500 power converter and controller, resulting in a series of measurements in the time domain.

The measured currents are transformed into forces f̃ b by multiplying by the bearing force

constant κF and geometrically transformed to obtain forces and torques with respect to the

stator’s centre or mounting plane f b . As before, any analysis technique previously defined

can be employed.

This micro-vibration measurement technique is validated in chapter 7 and in [44] by com-

paring the current-to-force micro-vibration measurements with two multi-component dy-

namometers.

3.3 Complete Closed-Loop Magnetic Bearing Simulation Model

The developed closed-loop model of the magnetic bearing system is intended for studying not

only the stability of the system but also the general behaviour and identify possible sources of

instabilities and micro-vibrations. The followed approach corresponds to a general closed-

loop model, as shown in figure 3.4, where each block is modular, and different models of

each component can be considered in order to simplify or study more in detail the effect and

influence of each one of them.

The different implemented options for each component in figure 3.4 will be described here-
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Figure 3.4 – Block diagram of closed-loop simulation model for magnetic bearing systems.

after. For the definition of all the following equations, only the formulation using complex

coordinates will be shown due to its more compact and simple form, under the assumption

that the system has axial symmetry.

3.3.1 Rotordynamic Models

The dynamics of rotating bodies have been extensively studied in the past with multiple ap-

proaches and notations. In this work the approach and notation presented in [108] is followed

with some minor adaptations to avoid naming collision with other sections. Considering

a rigid body with mass m and moments of inertia Ix ′ , Iy ′ and Iz ′ referred to a non-inertial

reference frame S{O′, x ′, y ′, z ′} fixed to the body, the equations of motion of the system sub-

ject to some general forces F = [Fx ,Fy ,Fz ]> and torques T = [Tx ′ ,Ty ′ ,Tz ′]> under an inertial

S{O, x, y, z} and non-inertial S{O′, x ′, y ′, z ′} reference frames, respectively, can be described

using classical mechanics as follows





Fx = mẍ,

Fy = mÿ ,

Fz = mz̈,





Tx ′ = Ω̇x ′ Ix ′ +Ωy ′Ωz ′(Iz ′ − Iy ′),

Ty ′ = Ω̇y ′ Iy ′ +Ωx ′Ωz ′(Ix ′ − Iz ′),

Tz ′ = Ω̇z ′ Iz ′ +Ωx ′Ωy ′(Iy ′ − Ix ′),

(3.2)

known as Newton-Euler equations of motion. For the rotational dynamics the equations

are heavily non-linear and are rarely directly employed to study rotordynamics behaviour.

Generally, the axis of rotation is well defined and coincides with one of the axis of inertia of

the rotor (small unbalance assumption) and the displacements and velocities other than the

rotation about the main axis are small (small displacement assumption), which allows the

simplification and linearisation of the equations of motion as explained hereafter.

Furthermore, it is assumed that the rotor rotational speed Ω is constant or its variation

is considerably slower than the radial and axial dynamics, allowing for the definition of the

rotordynamics model as a linear parameter-varying (LPV) model. Different levels of complexity

can be considered, depending on further simplifications in the model, for the study of the

dynamics of the rotor during operation. Three main models have been implemented and
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employed for the study of the magnetic bearing systems in this work:

• Jeffcott Rotor Model: point-mass model of the rotor where no gyroscopic effect is consid-

ered. Presenting only two degrees of freedom corresponding to the linear displacements

of the center of gravity [7], it is mainly employed for the design of the radial controller

for the proposed hybrid magnetic bearing system.

• Four Degrees-Of-Freedom Model: rigid model of the rotor with consideration of gyro-

scopic effect [108]. This model is employed for the radial controller design of the fully

active magnetic bearing system as well as the closed-loop analysis of all systems.

• Five Degrees-Of-Freedom Model: four degrees-of-freedom model augmented with axial

dynamics as point-mass model. This model considers uncoupled radial and axial

dynamics [108], but allows incorporating couplings in the remaining blocks of the

simulation model. This model is employed for the full system closed-loop analysis.

Independently of the level of simplification, the general linearised equations of motion of the

rotating body, considering a given set of generalised coordinates q(t ), result in

Mq q̈(t )+ (
Dq +Gq (Ω)

)
q̇(t )+ (

Kq +Hq (Ω)
)

q(t ) = f (t ), (3.3)

being Mq the mass matrix, Dq the passive damping matrix, Gq (Ω) the gyroscopic matrix, Kq

the passive stiffness matrix, Hq (Ω) the circulatory matrix, and f a generalised force vector.

The exact form of the matrices are detailed hereafter for the different studied models.

Motor control and dynamics are not considered in the closed-loop simulation and analysis,

and thus the rotational speed of the rotorΩ is externally imposed.

Jeffcott Rotor Model

As detailed in [108], the simplest model of a rotor spinning at constant angular speedΩ is the

consideration of a rotating point mass attached to a massless shaft suspended by some axially

symmetric compliant supports or bearings with stiffness k and damping d , as graphically

represented in figure 3.5.a. Defining the generalised coordinates as the radial displacements

of the rotor in complex coordinates, i.e. q(t) = rc (t) = xc (t)+ j yc (t), being j the imaginary

unit, xc and yc the positions of the rotor’s centre C , the equations of motion of such a system

can be expressed as in (3.3), being the system matrices (single elements in this case)

Mq = m, Dq = dn +dr , Gq (Ω) = 0, Kq = k, Hq (Ω) =− jΩdr , (3.4)

with m the mass of the rotor, dn and dr the non-rotating and rotating damping of shaft and

bearings, k the stiffness of shaft and bearings, and f the generalised (external) forces acting

on the rotor.
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Figure 3.5 – Schematic representation of main rotordynamics models: (a) Jeffcott rotor and (b) four/five
degrees-of-freedom models, consisting of a point-mass (left) or rigid body (right) rotor over compliant
bearings with passive stiffness and damping, and position sensors.

As it commonly happens in practice, if the rotor is not perfectly balanced, the centre of gravity

or location of the point mass, P , is located at a distance ε from the geometric centre, C , the

rotor will be subject to unbalance forces fu dependent on the rotation speed. If the rotor shaft

is not perfectly straight and features a bow of magnitude a, the rotor will be subject to some

synchronous disturbances fa . Furthermore, when considering active bearings, apart from the

passive stiffness and damping, some active forces fb can be applied to the rotor, resulting in

generalised forces f of the form

f (t ) = fb(t )+ fu(t )+ fa(t )+ fg (t ) = fb(t )+Vq e jΩt +V ′
q e jΩt +mg (t ) =

= fb(t )+
(
mεΩ2e jα

)
e jΩt +

(
kae jαa

)
e jΩt +mg (t ),

(3.5)

being Vq and V ′
q the unbalance and shaft bow matrices, α the angle with respect to the x-axis

of the line C −P in the XY plane, αa the phase angle of the shaft bow with respect to the x-axis,

fg the gravitational forces, and g the acceleration of gravity in complex coordinates.

The compact formulation of the equations of motion in complex coordinates reduces the

number of solutions by two and allows identifying the direction (forward or backward) of the

rotordynamic modes by the sign of the poles and solutions of the equation.

Four Degrees-of-Freedom Model

In order to study the behaviour of the rotor and identify some phenomena that depends on

the rotor speed, the Jeffcott rotor cannot be employed. Instead of a point mass, the rotor can

be considered as a rigid body of mass m with non-vanishing moments of inertia, being Ip and

It its polar and transverse moments of inertia. As developed in [108], when considering again

compliant bearings with damping behaviour, as graphically represented in figure 3.5.b, it is

possible to define the equations of motion as in (3.3) by defining the generalised coordinate

vector as q = [rc ,φc ]>, being composed of the radial displacements of the geometric centre in

complex coordinates rc = xc + j yc as well as the tilting of the rigid body about X and Y axes,
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also in complex coordinates, φc =φy ′ − jφx ′ . The resulting system matrices are defined as

Mq =
[

m 0

0 It

]
, Dq =

[
dn11 dn12

dn12 dn22

]
+

[
dr 11 dr 12

dr 12 dr 22

]
, Gq =− jΩ

[
0 0

0 Ip

]
,

Kq =
[

k11 k12

k12 k22

]
, Hq =− jΩ

[
dr 11 dr 12

dr 12 dr 22

]
,

(3.6)

being subscripts 11,12,22 referred to linear r , angularφ or crossed elements rφ of the matrices

respectively. A comprehensive derivation of the previous equations can be found in [108].

Due to the consideration of a rigid rotor, the stiffness and damping coefficients consider only

the bearings’ passive behaviour, such as the attraction of the permanent magnet to the back

iron appearing as stiffness, and the dissipation of energy due to induced eddy currents in

bearing coils as damping.

In this case, an unbalanced rotor would result in forces f u not only in an eccentricity ε but

also in a tilt χ between the main axis of inertia and the symmetry axis of the rotor. Additionally,

when the shaft of the rotor is not perfectly straight, its arc or bow a and angular misalignment

χa will also result in additional excitation forces and torques f a . Including also the active

bearing forces and torques f b and gravitational forces f g , the generalised force vector f

results in

f (t ) = f b(t )+ f u(t )+ f a(t )+ f g (t ) = f b(t )+Vq e jΩt +V ′
q e jΩt + f g (t ) =

=
[

fb,r (t )

fb,φ(t )

]
+Ω2

[
mεe jα

χ(It − Ip )e jβ

]
e jΩt +K

[
ae jαa

χae jβa

]
e jΩt +

[
mg (t )

0

]
,

(3.7)

being Vq and V ′
q the unbalance and shaft bow matrices, {α,β} and {αa ,βa} the polar angles

at which the unbalance and bow forces/torques appear, and K the stiffness matrix defined

in (3.6). It can be seen that the forces due to the shaft bow are equivalent to an harmonic

excitation with constant amplitude, whereas the unbalance ones are proportional to the

square of the speed. The force due to rotor eccentricity is generally known as static unbalance

and the torque generated by the tilt of main axis of inertia couple unbalance.

Such a model is used for the design of the radial position controller of the fully active magnetic

bearing system and to study the behaviour of the closed loop system.

Five Degrees-of-Freedom Model

For a complete description of the rotor’s behaviour, it is needed to also consider the axial

dynamics, which is not possible with the four degrees-of-freedom model. In many situations,

due to the small displacement assumption and having a mainly straight rotor, it is possible to

decouple the radial dynamics from the torsional and axial dynamics of the rotor and study

them independently, as it has been considered in the previous models. While this mainly still

holds true for the studied configurations, some components of the closed-loop system can
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feature cross-couplings between radial and axial dynamics, such as the geometric configura-

tion of the eddy current axial displacement sensor or asymmetries in bearing windings. For

this reason, the four degrees-of-freedom model previously presented is extended with the

consideration of axial dynamics as a point-mass system.

Augmenting the generalised coordinate vector with the axial position of the geometric centre

as q = [rc ,φc , zc ]>, the equations of motion of such a system are defined in (3.3) with matrices

Mq =




m 0 0

0 It 0

0 0 m


 , Dq =




dn11 dn12 dn13

dn12 dn22 dn23

dn13 dn23 dn33


+




dr 11 dr 12 dr 13

dr 12 dr 22 dr 23

dr 13 dr 23 dr 33


 ,

Gq =− jΩ




0 0 0

0 Ip 0

0 0 0


 , Kq =




k11 k12 k13

k12 k22 k23

k13 k23 k33


 , Hq =− jΩ




dr 11 dr 12 dr 13

dr 12 dr 22 dr 23

dr 13 dr 23 dr 33


 ,

(3.8)

being the subscript 3 referred to the axial behaviour. This formulation enables the possibility

of studying the closed-system behaviour with couplings between radial and axial dynamics.

These couplings can be due to non-zero stiffness or damping elements in positions 13 and 23,

or due to some other components such as position sensors or bearing models with couplings

between radial and axial directions, e.g. radial tilting that generates an axial displacement or a

radial bearing generating axial forces.

3.3.2 Bearing Models

The detailed electromechanical models of the studied magnetic bearings are presented in

chapter 4. Nevertheless, such a level of detail is not necessary for the study of the closed-loop

behaviour of the magnetic bearing system during operation.

For this reason, the main characteristics of the magnetic bearings obtained through the

analytical model are extracted and employed in the simulation model. Such parameters

are, for instance, the relation between input current and force (force constant) κF for active

magnetic bearings, cross couplings between radial and axial bearings and forces, and some

possible dependency of this factor with the torsional angle of the rotor κF (φz ′), as it can be

seen in the experimental measurements detailed in chapter 7. Apart from the electromagnetic

characteristics of the bearings, a geometric transformation is required to convert the generated

forces at the bearing planes to the forces and torques at centre of mass reference frame. To

summarise, the implemented models of the magnetic bearing actuators are:

• Ideal bearings: simplest model consisting of a diagonal bearing force constants. Model

employed for controller design and frequency-based analysis, bearings independent

design of axial and radial controllers.
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• Non-ideal actuators with radial-axial cross-couplings: model considering linearised

transformation but with cross-couplings between radial and axial bearings and forces.

• Non-ideal bearings with angle-dependent force constants: model considering again

either linearised or trigonometric transformations with bearing forces dependent on

rotor torsional angle φz ′ =Ωt . The considered dependency is harmonic, with either first

and/or second harmonics of the rotational speed.

Considering the bearing currents also in complex coordinates ucc (t ) = [i r,he (t ), i r,ho(t ), i a,ho(t )]>,

where the superscripts r and a denote the current referred to radial or axial bearing, and he

and ho to heteropolar and homopolar sides, respectively, the general model of the actuators

can be defined as follows

f b(t ) =Uq u(t ) =




1 1 0

l r,he
b −l r,ho

b 0

0 0 1


κF (φz ′)




i r,he (t )

i r,ho(t )

i a,ho(t )


 , (3.9)

being Uq the bearing active force matrix, l r,he
b and l r,ho

b the axial distance between the bear-

ing planes and the centre of mass, κF (φz ′) the linear or non-linear bearing force constants,

and u the input currents to the magnetic bearings. The three-phase currents of the radial

bearing windings are expressed here in a field-oriented manner, by employing an amplitude-

invariant Park transformation, as commonly done for rotational machinery [101] and defined

in equation (2.1). In complex coordinates, i r,he and i r,ho will then be composed of the DQ

components i = id + j iq .

Ideal Bearings

Considering the ideal actuators, the geometric transformation matrix R and the bearing force

factor matrix κF are independent of the rotor angle φz ′ and are defined as

κF =



κr,he

F 0 0

0 κr,ho
F 0

0 0 κa,ho
F


 , (3.10)

where κr,he
F , κr,ho

F and κa,ho
F the force constants of each magnetic bearing, namely, radial

heteropolar, radial homopolar, and axial homopolar as described in chapter 2. The same

nomenclature employed in the electromagnetic bearing models and design is employed here.

Non-Ideal Bearings (Cross-Couplings and Angle-Dependency)

For the case of studying bearing cross-couplings, the bearing force matrix κF remains inde-

pendent of the rotor angle φz ′ , but features now some non-zero elements outside the diagonal.

The off-diagonal elements of κF can be either analytically or experimentally estimated.
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For the most general case with also angle-dependency, some harmonic disturbances depen-

dent on φz ′ will be present. The amplitude of such harmonic disturbances can be analytically

estimated when considering some winding asymmetries or by fitting a sinusoidal from the ex-

perimental measurements shown in chapter 7. The sinusoidal modulation can be performed

not only on the diagonal elements of matrixκF but also on the off-diagonal ones, as it is shown

to happen in experimental measurements.

These models are employed for studying the impact of non-ideal characteristics of the bearings

in the closed-loop behaviour. Due to the non-linear aspects of such studies, it is mainly

exclusive to the time-based analysis of the system.

3.3.3 Position Sensor Models

The position sensors in the model will transform the state of the rotor, expressed under its

centre of mass reference frame, to the radial displacements at the sensor planes located at

the two axial extremes of the shaft, as schematically shown in figure 2.3, and to the axial

displacement measured at the face of the inertia disk.

As in the previous case, several options have been implemented and are available for controller

design and closed-loop analysis. These options can be summarised, similarly to the bearing

models, as:

• Ideal sensors: simplest model consisting of a linearised geometric transformation with

ideal uncoupled sensors. This model is employed for controller design and frequency-

based analysis, allowing independent design of axial and radial controllers.

• Non-linear sensors with radial-axial cross-couplings: similar to previous model, but

considering transformation dependent on trigonometric functions. Model employed

for closed-loop time-based analysis.

Ideal Sensors

Assuming small maximum values of φc due to the small available clearance between rotor and

emergency bearings, it is possible to obtain a linearised transformation of rotor states q and

displacements at sensor planes y , in complex coordinates, resulting in

y(t ) =Wq q(t ) =




1 l r,he
s 0

1 −l r,ho
s 0

0 0 1







rc (t )

φc (t )

zc (t )


 , (3.11)

being l r,he
s and l r,ho

s the axial position of the radial position sensor planes.
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Non-Linear Sensors with Cross-Couplings

Dropping the small-angle assumption, a more precise geometric transformation can be de-

fined. Considering that the axial eddy-current sensor is located at a radial distance l a,ho
s , e.g.

at point [−l a,ho
s ,0,0], some couplings will result from the non-centred location of the axial

sensor and from combination of tilting and displacements, being more precisely

y(t ) =




rc (t )+
(
l r,he

s − zc (t )
)

tan
(
φc (t )

)

rc (t )−
(
l r,ho

s + zc (t )
)

tan
(
φc (t )

)

zc (t )+
(
ℜ (rc (t ))+ l a,ho

s

)
tanℜ(

φc (t )
)


 . (3.12)

Depending on the radial direction in which the axial sensor is located, either ℜ(rc ), ℜ(φc )

or ℑ(rc ), ℑ(φc ), or a combination of both will appear in (3.12), being ℜ and ℑ the real and

imaginary parts of the variables.

3.3.4 Position Control

The most general configuration of the position control is graphically shown in figure 3.6, which

features a controller Rpc , estimator Lpc and a generalised notch filter N f for harmonic or

unbalance force rejection.

Different alternatives exist for stabilising a magnetically levitated rotor [30]. For the proposed

model two main control techniques are considered depending on the application:

1. PID or PD Controller: the simplest controller structure that can be implemented is

a decentralised and diagonal proportional-derivative (PD) or proportional-integral-

derivative (PID) controller Rpc .

2. State Feedback Controller: if an accurate model of the dynamic system to control is

available, it is possible to include such model in the design of a controller Rpc and

observer Lpc in order to have some desired closed-loop performance through a pole-

placement technique, or by solving the linear-quadratic-gaussian (LQG) problem for

optimal control. This technique corresponds to a centralised and coupled control of the

rotor.

In order to be included in the closed-loop model, the previous controllers are defined in a

state-space formulation hereafter. Also, the generalised notch filter is independent from the

employed position control technique and it is included to suppress synchronous vibrations

resulting from rotor unbalance or other possible sources. Its structure is also briefly introduced

here, and detailed in chapter 6.
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Position Control

Rpc

Lpc

N f
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−
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Ω

Figure 3.6 – Block diagram of position controller.

PID Controller

Considering a parallel structure of a PID with proportional kp , integral ki and derivative kd

gains, and a decentralised and decoupled configuration if a multiple-input and multiple-

output (MIMO) system is considered, the resulting transfer function matrix (TFM) of the

controller is

Lpc (s) =O, Rpc (s) = kp I + ki

s
I +kd

wd s

s +wd
I , (3.13)

where I and O are identity and zero matrices, respectively, no state estimator Lpc is required,

as the PID directly takes the error signal epc as input, and a first-order derivative filter with cut-

off frequency wd is considered instead of the non-causal ideal derivative s. The state-space

representation of such a PID controller can then be defined in continuous-time by considering

a state-space vector xR that accounts for the derivative and integral states, resulting in

Rpc =





ẋR (t ) = AR xR (t )+BR epc (t ) =

O O

O −wd I


xR (t )+


 I

−wd I


epc (t ),

upc (t ) =CR xR (t )+DR epc (t ) =
[

ki I kd wd I
]

xR (t )+ (kp +kd wd )I epc (t ),

(3.14)

Furthermore, for the implementation on a digital controller it is necessary to perform the

discretisation of expression (3.14), which can be done considering a first-order Euler discreti-

sation with sampling period Ts , obtaining

R̃pc =




xR [k +1] = ÃR xR [k]+ B̃R epc [k] = (I +Ts AR )xR [k]+TsBR epc [k],

upc [k] = C̃R xR [k]+ D̃R epc [k] =CR xR [k]+DR epc [k].
(3.15)

State Feedback Controller

Combining the rotordynamics, sensor and bearing models defined in the previous sections, it

is possible to define the dynamic system to be controlled Pq in continuous-time state-space
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representation as follows

Pq =




ẋP (t ) = AP xP (t )+BP u(t ),

y(t ) =CP xP (t ),
(3.16)

where the state-space vector xP = [q>, q̇>]> considers the generalised coordinates and their

derivative defined in the rotordynamics model. Note that for the controller design, linear and

ideal bearing and sensor models as per (3.10) and (3.11) are considered.

As before, for the implementation of the controller into a digital processor it is necessary

to perform the design process in discrete-time. For this reason, the dynamic system Pq is

discretised using a first-order Euler discretisation with sampling period Ts , resulting in

P̃q =




xP [k +1] = ÃP xP [k]+ B̃P u[k] = (I +Ts AP )xP [k]+TsBP u[k],

y[k] = C̃P xP [k] =CP xP [k].
(3.17)

It is then possible to define a controller Rpc and observer Lpc to stabilise the closed-loop

system. The state estimator or observer is required in this case as no direct measurement

of the system states, notably velocities q̇ and thus it needs to be estimated from the sensor

measurements y .

The system states can then be estimated x̂ = [q̂>, ˆ̇q
>

]> considering the system dynamics

(3.17), controller output signal upc , measured signal ỹ , and an observer gain matrix LSF , such

that the error between measured and estimated measured signal y − ŷ is minimised, resulting

in

L̃pc =





x̂[k +1] = ÃL x̂[k]+ B̃L


upc [k]

y[k]


= (ÃP −LSF C̃P )x̂[k]+

[
B̃P LSF

]

upc [k]

y[k]


 ,

x̂[k] = C̃L x̂[k] = I x̂[k].
(3.18)

Then the actuation signal upc can be computed by considering a full-state feedback control

with gain matrix KSF such that upc = KSF (xr e f − x̂). Additionally, an integral state can be

included in order to counteract constant disturbances such as gravity, and thus controller

gain matrix can be partitioned into KSF = [Ki ,Kp ,Kd ], with integral Ki , proportional Kp and

derivative Kd gain matrices, which results in a dynamic system with the following discrete-time

state-space representation

R̃pc =




xR [k +1] = ÃR xR [k]+ B̃R epc [k] = I xR [k]+
[

Ts I O
]

epc [k],

upc [k] = C̃R x̂[k]+ D̃R epc [k] = Ki xR [k]+
[

Kp Kd

]
epc [k].

(3.19)

Note that here again, a first-order Euler discretisation is employed to perform the integration

of the position error q r e f − q̂ . Furthermore, if no integral state is considered in the controller,
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Chapter 3. Closed-Loop Magnetic Bearing Model and Micro-Vibration Characterisation

Rpc is reduced to ÃR = B̃R = C̃R =O and simply D̃R = [Kp ,Kd ].

Then, the selection of observer and controller gain matrices LSF and KSF will depend on the

chosen design approach, such as pole-placement to obtain desired closed-loop dynamics or

by solving the linear-quadratic-gaussian (LQG) problem for optimal control [30].

Generalised Notch Filter

Lastly, a generalised notch filter for harmonic disturbance suppression is also considered.

The implemented approach takes the estimation of the bearing forces as input, which are

in this case the currents upc , to generate an harmonic signal that will remove the harmonic

part of the measurements y and thus avoiding reacting to the unbalance or other excitation

at the rotation frequency and higher harmonics. This is achieved for the l-th harmonic by

considering the following state-space dynamic system

ẋ N l (t ) = AN l x N l (t )+BN l upc (t ) =
[

j lΩI O

O − j lΩI

]
x N l (t )+ cc

Ω

|Ω|

[
j I

− j I

]
upc (t ),

y N l (t ) =CN l x N l (t ) = 1

2

[
I I

]
x N l (t ),

(3.20)

being I an identity matrix, O a zero matrix, cc the convergence rate of the filter, which also

defines its bandwidth, and combining for all l ∈ {1,2, . . . ,nh} harmonics that will be suppressed

results in

N f =





ẋ N (t ) = AN x N (t )+BN upc (t ) =




AN 1 · · · O
...

. . .
...

O · · · AN nh


x N (t )+




BN 1

...

BN nh


upc (t ),

y N (t ) =CN x N (t ) =
[
CN 1 · · · CN nh

]
x N .

(3.21)

A more detailed description of the proposed generalised notch filter is performed in chapter 6.

3.3.5 Current Control

As shown in figure 3.4, the magnetic bearing system features a cascaded control loop of

position and currents. Due to the much faster dynamics of the electrical system (current

control) with respect to the mechanical system (position control) it is possible to consider for

the position controller design that the currents circulating through the bearing windings are

exactly the output of the controller.

A detailed description of the dynamics of the electrical system and the design of the current

controller Rcc is performed in [103]. Its execution on the real system is performed on a field-

programmable gate array (FPGA), allowing a parallel and fast execution of the controller
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3.4. Stability Analysis

at 800 kHz. The design of the current controller is performed to guarantee a closed-loop

bandwidth of >10 kHz in order to minimise its impact on the position control that will be

executed at 20 kHz.

Under these conditions, it is considered for the complete closed-loop system model that the

electrical system behaves like a low-pass filter with cutoff frequency, ωbw , equal to the current

control bandwidth, and a delay, τcc , equal to the execution time of the controller in the FPGA.

The exact model of the controlled currents is then obtained as a transfer unction of the form

Rcc (s) = 1
s

ωbw
+e−sτcc

. (3.22)

3.4 Stability Analysis

The previous rotor, bearings, sensor and controller dynamic equations are combined in a

simulation model implemented using MATLAB. This simulation environment is capable of

performing the controller design and analyse the closed-loop behaviour of the system. Two

types of studies are available:

1. Frequency-based analysis: study of the closed-loop stability and performance in the

frequency domain, representative for the steady-state behaviour of the linear/linearised

system.

2. Time-based analysis: study of the closed-loop behaviour in the time domain, capable

of assessing the stability and performance of the system including non-linearities and

transient responses.

For both types of analysis, each component is transformed into a state-space representation

of its dynamics, and each block connected to each other as graphically shown in figure 3.4. If

the considered models are linear, both analysis should provide similar results, but the time

domain study enables the possibility of considering non linearities in the system and thus

making it more versatile.

In both cases, torsional dynamics are not considered, and thus the rotating speed is imposed

externally. In order to study the behaviour and stability of the rotating system, the simulation

is run for several speed steps until the whole speed range of the motor is covered.

3.4.1 Frequency-Based Analysis

A multiple-input multiple-output (MIMO) analysis technique is required for the study of

the dynamics. The analysis in the frequency domain provides a description of the stability

and behaviour of the closed-loop system in steady state and is the common approach used

for control design. As previously mentioned, the use of complex coordinates for the radial
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Figure 3.7 – Example of frequency-based analysis results: closed-loop poles, Campbell and decay-rate
plots.

rotordynamics is preferred to facilitate the identification and differentiation of the different

whirling modes. All analyses shown hereafter are valid under the assumption of constant or

relatively slow varying rotational speedΩ.

The main tools employed for the frequency-based analysis are the following:

• Closed-loop poles: it is possible to study the stability and main behaviour of the system

by analysing its closed-loop poles for the whole speed range. This analysis is commonly

done in the form of a pole-zero map, figure 3.7.a, as well as a Campbell diagram, figure

3.7.b, combined with a decay-rate plot, figure 3.7.c. As it can be seen in the example

figures, both represent the same results but arranged in a different manner, and thus

the Campbell-decay-rate plots allow clearly identifying the dependency of the different

whirling modes’ natural frequency and decay rates on the rotating speedΩ.

By employing complex coordinates the different whirling modes are clearly differen-

tiated by an opposite natural frequency: forward whirling modes are identified by a

positive sign of the natural frequency, whereas the backward whirling modes have neg-

ative frequency, implying the same or opposite rotating direction with respect to Ω,
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Figure 3.8 – Example of frequency-based analysis results: unbalance response and exported vibrations.

respectively.

In figure 3.7, it is shown as an example, the results of a fully passive and stable system,

with positive values of stiffness, k and non-rotating damping, dn , that could represent a

ball bearing motor. This system is considered for its simplicity to show the possibilities

of the developed modelling and design tools.

• Steady-state harmonic disturbance response: when considering a set of harmonic dis-

turbances as described in equation (3.7) it is possible to simulate the response of the

system in the frequency domain. The main results of such an analysis would be the

displacements of the system, generally at the sensor planes to verify that the mechanical

clearings in the stator are sufficient to avoid any crash, or the generated vibrations.

In figures 3.8.a and 3.8.b, the unbalance response of the same simple fully passive system

is shown. It can be seen that at the speed where one of the whirling modes in figure 3.7.b

crosses the rotation frequency a critical speed is present, with big displacements and

forces. This is due to the fact that the unbalance excitation is an harmonic disturbance

with frequency equal to the rotation as shown in expression (3.7).

• Steady-state exported micro-vibrations: performing the same calculations as for the

harmonic disturbance response, but considering the forces appearing between rotor
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Chapter 3. Closed-Loop Magnetic Bearing Model and Micro-Vibration Characterisation

and stator, such as stiffness and damping passive forces, as well as active bearing forces,

it is possible to calculate the level of vibrations that the machine will generate during

operation.

As before, the same passive system is considered, and in figures 3.8.c and 3.8.d the

exported forces and torques per speed, respectively, are shown. With this type of analysis

it is possible to verify not only if the system is unstable, but also if some allowable limits

in displacements or generated forces are satisfied or not.

3.4.2 Time-Based Analysis

In this case, any desired combination of rotordynamic, sensor and bearing models with

position and current controller are employed in the time domain to study the evolution of the

closed-loop system. All dynamic equations are numerically integrated employing a fourth-

order Runge-Kutta method to obtain the evolution of the system with time and investigate

its stability and general behaviour. As previously mentioned, this approach allows for the

consideration of non-linearities in the models for a more precise study of the system.

Furthermore, due to the resulting signals in the time domain, similar analysis techniques to

the ones employed in experimental vibration measurements of rotating machinery can be

employed, such as waterfall or worst-case plots, and thus obtain a more clear comparison

between real and simulated systems.

The time-domain simulation is implemented by considering an initial system state, x0, con-

stant rotor speed, Ω, and evaluating system state at every controller period (20 kHz) and

numerically integrating the system dynamics between sample times, tk and tk−1, until a max-

imum time is reached. This process is repeated for different speeds until the whole speed

range of the wheel is studied.

Then, to complete the stability and performance studies of the closed-loop system, the follow-

ing time-based analysis tools are used:

• Harmonic disturbance response: obtained by considering as input the generalised force

amplitude and direction specified in the rotordynamics models for each speed, as

defined in expression (3.7), and showing the amplitude of the maximum rotor displace-

ments and tilts.

If the considered system model is linear, and the final simulation time is long enough to

reach steady-state, as it is the case for the simple passive system considered as example,

the results obtained here are equivalent to the ones shown in figures 3.8.a and 3.8.b.

• Exported micro-vibrations: obtained by considering the forces appearing between rotor

and stator of the closed-loop system under harmonic disturbance excitation, namely:

bearing passive stiffness and damping, and active bearing forces.
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On the one hand, it can be considered, as before, the maximum value of the forces and

torques generated at each speed, which would result in an equivalent result to the one

obtained using frequency-based analysis in figures 3.8.c and 3.8.d.

On the other hand, as it will be shown in chapter 7 for the validation of the closed-

loop model, due to the availability of a time series of a force and torque signal for the

whole speed range, as generally happening in an experimental vibration measurement

campaign, the same tools employed for analysing machine vibrations [10], [11] can be

employed. These tools have been detailed in section 3.2, and correspond to waterfall,

worst-case and noise-vs-speed plots, which rely on the calculation of a fast Fourier

transform (FFT) of the signal for each speed to convert it to the frequency or order

domain.

Due to the possibility of directly comparing experimental measurements with simulation

results in the time domain, these analysis tools will be employed for the validation of the

simulation model for the studied fully active magnetic bearing system in chapter 7. The

vibration measurements obtained from a multi-component dynamometer and the rotor orbits

measured with the internal displacement sensors will be compared to the simulation results

for validation.

3.5 Conclusions

In this chapter a complete closed-loop simulation model of a magnetic bearing system capable

of analysing the stability, performance and generated vibrations during operation of the system

is presented. Furthermore, an overview of the micro-vibration sources for magnetic bearing

system is performed, and a set of micro-vibration measurement techniques are introduced.

The main contributions of this chapter are:

• The main vibration sources of magnetically levitated systems have been identified and

described. The quantification of the sources is performed for Celeroton’s magnetic

bearing system in chapter 7.

• A novel micro-vibration measurement approach for active magnetic bearing systems is

presented. Its validation is described in chapter 7.

• A modular closed-loop simulation model is developed and presented. The modularity

relies on the possibility of incorporating more detailed or ideal models for elements

such as rotordynamics, bearing, sensors or controller models.

• A comprehensive analysis toolbox is developed in MATLAB and its main characteristics

are described. This toolbox is employed for position, current controllers and unbalance

control design, and its use is shown in chapters 5 and 6.
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4 Magnetic Bearing and Motor Electro-
magnetic Modelling

In order to be able to accurately design and optimise the desired actuators, it is necessary to

have a detailed model of the components. In this chapter, all the required electromagnetic

models of the different studied actuators such as active or passive magnetic bearings and

motor will be presented and developed.

Firstly, in section 4.1, the electromagnetic models of the active slotless magnetic bearings

and motor is detailed, enabling the possibility of calculating the main characteristics of the

actuators, such as force or torque constants, winding resistance for Joule loss estimation, as

well as the force disturbances for some cases. Secondly, in section 4.2, the electromagnetic

models of several iron-less passive magnetic bearing structures are developed, providing a

force, torque and passive stiffness calculation for characterising the bearings. Lastly, in section

4.3, the numerical validation of some core elements of the defined models is performed by

comparing it to a reference finite element model of each studied configuration.

A preliminary version of the active magnetic bearing models is presented in [46] for skewed

and axial windings, and has been completed in [47] for rhombic and hexagonal windings. Also,

the passive magnetic bearing models have been introduced in [48]. The remaining validation

of the models is experimentally performed and detailed in chapter 7.

4.1 Active Magnetic Bearing and Motor Force and Torque Models

The electromagnetic force and torque applied in a electric machine can be calculated by

integrating the electromagnetic force dF and torque dT density over the stator volume V and

back iron inner surface S, where the force density can be divided according to its origin

F =
Ñ

V

dF =
Ñ

V

(dF lor +dF r el ) =
Ñ

V

J ×B dV +
∮

S

T ·n dS, (4.1a)

T =
Ñ

V

v ×dF =
Ñ

V

v × (dF lor +dF r el ) , (4.1b)
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being dF lor the Lorentz force generated in the stator winding, dF r el the reluctance force

generated by the armature flux in the back iron in the machine due to a change in magnetic

permeability, J the current density vector, B the magnetic flux density vector, T the Maxwell

stress tensor, and n normal surface vector of the back iron over which T is integrated.

In order to obtain the expression of the force and torque as a function of the controlled

currents, the following steps need to be undertaken:

1. Definition of the magnetic flux density distribution, B , for each configuration: homopo-

lar and heteropolar sides with and without back iron.

2. Definition of the current density distribution, J , in the winding volumes for each em-

ployed winding type: skewed, rhombic, hexagonal and axial.

3. Perform integration of Lorentz force, F lor , and torque, T lor , over the whole winding

volume.

4. If the configuration features back iron, calculate the amplification factor due to the

reluctance forces, F r el .

All these steps are detailed hereafter.

4.1.1 Magnetic Flux Density Distribution

The accuracy and computational time required to evaluate the electromechanical models of

every actuator will greatly depend on the employed magnetic flux density model, and thus

it is crucial to select the appropriate one depending on the needs. Furthermore, as there are

two sides with different arrangement of the magnets, heteropolar and homopolar, and each of

them can feature or not soft magnetic materials (back iron), the field models will have to be

specific for each of the cases, so no general model will be possible.

In this section, an overview of some of the possible magnetic flux density models will be

performed for each of the cases: heteropolar and homopolar sides with and without back iron.

The procedure shown here below should not be considered an exhaustive overview of possible

modelling alternatives. A more detailed overview can be found in [109].

For all the configurations, only the magnetostatic case is studied due to the following assump-

tions:

1. All materials are linear, i.e. B =µ0µr H , being µ0 the magnetic permeability in vacuum,

and µr the relative permeability of the material.

2. The only source of magnetic field is the permanent magnet, which is considered to be a

hard ferromagnet with magnetisation M 0, i.e. B =µ0µr H +µ0M 0.
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(a) Homopolar Side

r

z
(b) Heteropolar Side

r

z

Figure 4.1 – Schematic cross-sectional representation of homopolar and heteropolar sides with back
iron and its associated reference frames. For heteropolar side the cross-section is shown for ϕ= 0.

3. All materials are non-conductive (no eddy currents).

4. Any dependency in time of the field is neglected (static conditions).

The magnetic field generated by the winding current and its interaction with the back iron will

be considered in section 4.1.4.

Due to the assumption of absence of current sources for the definition of the field in the

machine’s air-gap, the easiest approach is the consideration of the total scalar potential

ΦM , such that H =−∇ΦM , for solving magnetostatic Maxwell’s equations [110], resulting in

Poisson’s and Laplace’s equations inside and outside the permanent magnet, respectively:

∆ΦM =∇2ΦM =




1
µr
∇·M 0, inside magnet,

0, outside magnet.
(4.2)

Depending on the imposed boundary conditions and the performed assumptions, the dif-

ferent cases for each configuration can be considered. For the studied fully active magnetic

bearing system, as described in chapters 2 and 5, four different configurations need to be

analysed: homopolar side (two facing axially-mangetised permanent magnets) without and

with back iron in stator, and heteropolar side (single diametrically-magnetised permanent

magnet) without and with back iron. These configurations are studied more in detail hereafter.

Homopolar side without back iron

This configuration is modelled as two facing axially-magnetised permanent magnets of cylin-

drical shape with remanent flux density Br em , radius Rho
pm and length Lho

pm surrounded by air. It

can then be assumed that no boundaries are present, and thus the free-space Green’s function

can be employed for defining the field around the magnet [110]:

• 2D axisymmetric flux density with elliptic integrals: The potential at position r = (r,ϕ, z)
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is defined as the integral over the magnet volume VM

ΦM (r ) =− 1

4π

Ñ

VM

∇′ ·M 0

|r − r ′|d 3r ′, (4.3)

which is also known as the Coulomb model of a permanent magnet [111]. This integral

can then be transformed into the magnetic flux density B using the definition of the

magnetic potential in vacuum B =−µ0∇ΦM and reformulating it by using elliptic inte-

grals for a fast implementation without any loss in accuracy [112], as already validated

in [47] and in section 4.3.

Following the procedure performed in [112], with some small modifications for a more

homogeneous notation with the passive bearing models by considering r j = {r1,r2} =
{0,Rho

pm} and zk = {z1, z2} = {−Lho
pm/2,Lho

pm/2}, the magnetic flux density distribution

generated by a single magnet can be reformulated using elliptic integrals and some

auxiliary parameters, resulting in

B ho
r i (r, z) = Br em

π

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k

[(
1− 2

m j k

)
K (m j k )+ 2

m j k
E(m j k )

]
, (4.4a)

B ho
zi (r, z) = Br em

π

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k

(z + zk )(1+ξ j )

(r + r j )n j

[
K (m j k )−ξ jΠ(n j ,m j k )

]
, (4.4b)

being the auxiliary parameters σ j k , ξ j , m j k and n j defined as

ξ j =
r − r j

r + r j
, n j = 1−ξ2

j =
4r r j

(r + r j )2 ,

σ j k =
√

(z + zk )2 + (r + r j )2, m j k = 4r r j

(z + zk )2 + (r + r j )2 .
(4.5)

Note that for this case no summation in j is necessary and can be omitted here, but it

allows the possibility of considering hollow cylindrical permanent magnets by using r j =
{r1,r2} = {Rho

pmi ,Rho
pmo}. These functions are a combination of complete elliptic integrals

of the first, K , second, E , and third kind Π, as mathematically defined in appendix A.

Due to the axial symmetry of the domain, the azimuthal component vanishes B ho
ϕ = 0

and no dependency on ϕ is present.

Finally, the total magnetic flux density generated by the pair of facing axially-magnetised

permanent magnets that compose the homopolar side of the machine can be calculated

by using the superposition principle and considering the axial half distance between

both magnets z0, resulting in the expression, in cylindrical coordinates,

B ho(r, z) =




B ho
r i (r, z + z0)+B ho

r i (r, z0 − z)

0

B ho
zi (r, z + z0)−B ho

zi (r, z0 − z)


 . (4.6)
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Heteropolar side without back iron

This configuration can be modelled as one diametrically-magnetised permanent magnet of

cylindrical shape with remanent flux density Br em , radius Rhe
pm and length Lhe

pm surrounded by

air. The same approach defined for the homopolar side without back iron can be applied here:

• 3D flux density with elliptic integrals: by simply changing the magnetisation direction

of the permanent magnet in (4.3), it is also possible to reformulate the expression in

terms of elliptic integrals, as performed in [112], being its applicability for force/torque

models validated in [47].

The expression of the magnetic flux density distribution, employing the same ap-

proach defined in [112], being in this case r j = {r1,r2} = {0,Rhe
pm} and zk = {z1, z2} =

{−Lhe
pm/2,Lhe

pm/2} and auxiliary parameters from (4.5), results in

B he
r (r,ϕ, z) = Br em

2πr
cosϕ

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k
(z + zk )

[(
2

m j k
− 2ξ j

n j
−1

)
K (m j k ) −

− 2

m j k
E(m j k )+

ξ j +ξ3
j

n j
Π(n j ,m j k )

]
,

(4.7a)

B he
ϕ (r,ϕ, z) = Br em

πr
sinϕ

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k
(z + zk )

[(
1

m j k
+
ξ2

j

n j

)
K (m j k ) −

− 1

m j k
E(m j k )−

ξ3
j

n j
Π(n j ,m j k )

]
,

(4.7b)

B he
z (r,ϕ, z) = Br em

π
cosϕ

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k

[(
1− 2

m j k

)
K (m j k )+ 2

m j k
E(m j k )

]
. (4.7c)

It has been considered, for simplicity, that the magnetisation direction is along the X-

axis. Note again that no summation in j is necessary for this case and it can be omitted,

but it allows the possibility of considering hollow cylindrical permanent magnet by

using r j = {r1,r2} = {Rhe
pmi ,Rhe

pmo}.

Homopolar side with back iron

It can be modelled as two facing axially-magnetised permanent magnets of cylindrical shape

with radius Rho
pm and length Lho

pm surrounded by air and a cylindrical shell of radius Rho
sti -Rho

sto

and length Lho
st made of soft magnetic material. Different assumptions can be considered in

this case:

• 2D axisymmetric flux density by Fourier series expansion: considering the most complete

problem, it is possible to solve (4.2) by separation of variables, performing the Fourier

series expansion of the magnet magnetisation and then connecting the solutions in the
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different regions [110], [113]. A general method is described in [113], [114] which is used

for solving the boundary value problem for the homopolar configuration.

• 2D axisymmetric flux density with elliptic integrals: the expression derived using elliptic

integrals can then be generalised to account for the effect of the back iron by a linear

correcting factorΛ= diag(λr ,λϕ,λz ).

The effect of the back iron is quantified by evaluating the relative increase or reduction

of the radial, azimuthal and axial components of the magnetic flux density in the air-gap

using a magnetostatic Finite Element Model (FEM) or Fourier series expansion [113],

[115]. The magnetic flux density distribution in cylindrical coordinates in an air-gap

with back iron, B |Rst i , is approximated by considering the magnetic flux density without

back iron, B |Rst i→∞, and a constant coefficient matrixΛ,

B |Rst i (r,ϕ, z) =Λ B |Rst i→∞ (r,ϕ, z) =



λr 0 0

0 λϕ 0

0 0 λz







Br (r,ϕ, z)

Bϕ(r,ϕ, z)

Bz (r,ϕ, z)




∣∣∣∣∣∣∣
Rst i→∞

, (4.8)

whereΛ is obtained using the expressions

λr =
Ð

V Br |Rst iÐ
V Br |Rst i→∞

, λϕ =
Ð

V Bϕ

∣∣
Rst iÐ

V Bϕ

∣∣
Rst i→∞

, λz =
Ð

V Bz |Rst iÐ
V Bz |Rst i→∞

, (4.9)

calculated over each winding’s volume V using a reference magnetic model. In this case

the reference model obtained using separation of variables and Fourier series expansion,

as described in [113], [115], is used. The advantage of employing such an approximation

is the possibility of exploiting the fast calculations of elliptic integrals for the calculation

of the winding forces and torques, enabling its use in the optimisation process and

design of the actuator, and only requiring the computationally expensive evaluation of

Λwhen the dimensions of the domains are modified. This approach has been validated

in [47] and included in section 4.3.

Heteropolar side with back iron

This configuration can be modelled as one diametrically-magnetised permanent magnet of

cylindrical shape with radius Rhe
pm and length Lhe

pm surrounded by air and a cylindrical shell of

radius Rhe
sti -Rhe

sto and length Lhe
st made of soft magnetic material. The options for this case will

be again similar to the ones defined for the homopolar side:

• 3D flux density by Fourier series expansion: as with the homopolar configuration, it is

possible to solve (4.2) by separation of variables, performing the Fourier series expansion

of the magnet magnetisation and then connecting the solutions in the different regions

[110], [113]. This approach is derived in [115] for slotless machines with diametrical or

radial magnetisation considering a back iron with infinite length and permeability and
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can be directly employed for this configuration.

• 3D flux density with elliptic integrals: exploiting the linear properties of the Lorentz

force it is possible to express B using the expressions of the case without iron [112], and

account for the effect of the back iron in the flux distribution by a linear correcting factor

Λ= diag(λr ,λϕ,λz ), as also done for the 2D approximation, calculated using (4.9). This

approach is equivalent to the one described for the homopolar side and is validated in

[47] and section 4.3.

• 2D flux density: assuming a sufficiently long machine, the effect of the end of the

permanent magnet ends can be neglected, resulting in a 2D polar (r,ϕ) flux model

that can be solved by separation of variables [109], [116]. To consider the effect of

the ends of the magnet (stray flux), it is possible to include a linear correcting factor

Λ= diag(λr ,λϕ,λz ) that will amplify or decrease each component B =ΛB 2D , which is

calculated for each radial, azimuthal and axial component as in (4.9). The reference

model can be calculated by FEA or as described in [113], [115].

Due to the cylindrical geometry of the studied problems, all the previous models will be

expressed in cylindrical coordinates, and can thus be transformed to Cartesian coordinates,

(r,ϕ, z) 7→ (x, y, z), as follows

B =




Bx

By

Bz


=




cos(ϕ) −si n(ϕ) 0

si n(ϕ) cos(ϕ) 0

0 0 1







Br

Bϕ

Bz


 , (4.10)

for its introduction in the Force/Torque models presented in the next sections.

4.1.2 Winding Models

Due to the slotless topology of the magnetic bearings and motor, the force and torque will

be mainly generated by the Lorentz force acting on the air-gap windings. There exists a

broad variety of slotless windings that can be studied, such as straight windings [27], skewed

or Faulhaber windings of figure 4.2.a [101], [117], rhombic windings of figure 4.2.b [101],

hexagonal windings of figure 4.2.c [118], [119], toroidal windings among many others, that

can be manufactured using self-bonding wire or even flexible PCB technology [99].

The procedure that must be undertaken to define the current density distribution was initially

defined in [101] mainly for skewed windings, and in [47] for the remaining winding types. For

all the winding types, it is necessary to perform the following steps:

• Define the parametric curve in space v that specifies the position of an infinitesimal

winding volume. Considering three parameters (ρ,φ,α) to fully define winding volume

with the parametric curve v , in which one of them, φ defines the shape of the winding
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loop, and the other two, ρ and α, the initial position of such a winding loop, the position

in space in Cartesian coordinates of a point in the winding will be defined by a function

of the form

v (ρ,φ,α) =




vx (ρ,φ,α)

vy (ρ,φ,α)

vz (ρ,φ,α)


 . (4.11)

• The unitary tangential vector ev that will define the direction of the current density

vector can be directly computed from the winding parametrisation by computing the

derivatives of each component {v ′
x , v ′

y , v ′
z } with respect to the parameter that defines

the curve direction, being φ for all the parametrisations defined hereafter. It can be

calculated as

ev (ρ,φ,α) = v ′(ρ,φ,α)∥∥v ′(ρ,φ,α)
∥∥ = 1

‖v ′‖




v ′
x

v ′
y

v ′
z


=

∂v
∂φ∥∥∥ ∂v
∂φ

∥∥∥
. (4.12)

• Transform the infinitesimal winding volume in Cartesian coordinates dV = dxdydz

to the infinitesimal volume with respect to the winding parameters (ρ,φ,α) through a

change of variables

dV = dxdydz =
∣∣∣∣
∂(vx , vy , vz )

∂(ρ,φ,α)

∣∣∣∣dρdφdα, (4.13)

being
∣∣∂(vx , vy , vz )/∂(ρ,φ,α)

∣∣ the determinant of the Jacobian matrix of the transforma-

tion (x, y, z) 7→ (ρ,φ,α).

• Define the area A⊥ perpendicular to ev in order to calculate the homogenised cur-

rent density distribution in the windings. It can be calculated as the division of an

infinitesimal winding volume dV and the length of an infinitesimal arc segment ‖v ′‖

A⊥ =
Ï

dV

‖v ′‖dφ
. (4.14)

• Calculate the winding phase length in order to be able to estimate the winding resistance

by calculating the arc length of the previously defined winding parametrisation

Lph = N
∫ ∥∥v ′(ρ,φ,α)

∥∥dφ, (4.15)

being N the number of turns per phase of the winding.

Then the current density distribution can be defined for phase n ∈ {0,1, . . . ,mw −1} using the

expression

J = N îS

A⊥
cos

(
εw − 2πn

mw

)
ev = Jev , (4.16)

where the current density magnitude is defined by the number of turns per phase, N , the phase
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Figure 4.2 – Manufactured windings (top) and their parametrisation (bottom) employed to define the
model’s current density distribution (here shown for pw = 1).

current amplitude, îS , the phase belt area perpendicular to ev , A⊥, the number of phases of

the winding, mw , and the current space vector phase angle, εw .

The parametrisation of each winding type, v , shown in figure 4.2 will be detailed hereafter,

namely: skewed, rhombic, hexagonal and axial slotless windings. The remaining auxiliary

parameters necessary for the calculation of the current density distribution, such as ev , A⊥,

dV and Lph , are detailed in appendix B.

Skewed Winding

Following an equivalent parametrisation to the one shown in [101], a skewed winding can be

described by the number of pole-pairs pw and number of phases mw . For this type of winding,

a phase belt spreads over an angle α ∈ [−π/(mw pw ),π/(mw pw )]. A parametrisation vector

v sk (·), as shown in figure 4.2.a, that defines the winding loop, in Cartesian coordinates, can be

defined as follows

v sk (ρ,φ,α) =




v sk
x (ρ,φ,α)

v sk
y (ρ,φ,α)

v sk
z (φ)


=



ρ cos(φ+α)

ρ sin(φ+α)

v sk
z (φ)


 , (4.17)

being ρ the radius of the winding turn, which can vary from Rwi , the inner winding radius,

to Rwo , the outer winding radius, φ the azimuthal component w.r.t. the initial angle of the

winding turn α, and v sk
z (·) the z coordinate defined as

v sk
z (φ) = Lw ·




−1

2 +
pw

π φ φ ∈
(
0, π

pw

]

1
2 −

pw

π

(
φ− π

pw

)
φ ∈

(
π

pw
, 2π

pw

] , (4.18)
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being Lw the winding length, and resulting in the curve shown in figure 4.2.a for pw = 1.

Rhombic Winding

A slotless rhombic winding of active length Lw , inner and outer radii Rwi and Rwo , respectively,

can be fully defined by the number of winding pole-pairs pw , number of phases mw , and

the total opening angle of the rhombus including both legs φs . The number of pole-pairs in

this winding is forced by including a winding loop with opposite polarisation every π/pw ,

which results in a highly symmetric winding. This also results in a phase belt that spreads over

an angle α ∈ [−π/(2mw pw ),π/(2mw pw )]. The winding loop parametrisation v r h(·), which is

graphically shown in figure 4.2.b for pw = 1, can be defined in Cartesian coordinates as follows

v r h(ρ,φ,α) =




v r h
x (ρ,φ,α)

v r h
y (ρ,φ,α)

v r h
z (φ)


=



ρ cos(v r h

ϕ (φ,α))

ρ sin(v r h
ϕ (φ,α))

v r h
z (φ)


 , (4.19)

being ρ the radius of the winding loop, and the azimuthal v r h
ϕ and axial v r h

z components

v r h
ϕ (φ,α) =





φ+α, φ ∈
(
0, φs

2

]
,

−φ+φs +α, φ ∈
(
φs

2 , 3φs

2

]
,

φ−2φs +α, φ ∈
(

3φs

2 ,2φs

]
,

(4.20a)

v r h
z (φ) = Lw ·




−1

2 +
φ
φs

, φ ∈ (
0,φs

]
,

1
2 −

φ−φs

φs
, φ ∈ (

φs ,2φs
]

.
(4.20b)

The graphical representation of the winding parametrisation is shown in figure 4.2.b.

Hexagonal Winding

A similar parametrisation as the rhombic one can be performed for a slotless hexagonal

winding. This winding can be fully defined by its active length Lw , inner and outer radii

Rwi and Rwo , pw number of winding pole-pairs, mw phases, a total opening angle of the

hexagon including both legs of φs , and a straight (axial) segment of length Ls . As with the

rhombic winding, the number of pole-pairs is forced by winding loops of inverse polarity every

π/pw , resulting in a highly symmetric winding, and in a phase belt that spreads over an angle

α ∈ [−π/(2mw pw ),π/(2mw pw )]. In this case the additional degree of freedom Ls is included

allowing a higher force and torque density thanks to the purely axial segments of the hexagon.

The winding loop parametrisation v hx (·), graphically shown in figure 4.2.c for pw = 1, can be
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defined in Cartesian coordinates as follows

v hx (ρ,φ,α) =




vhx
x (ρ,φ,α)

vhx
y (ρ,φ,α)

vhx
z (φ)


=



ρ cos(vhx

ϕ (φ,α))

ρ sin(vhx
ϕ (φ,α))

vhx
z (φ)


 , (4.21)

being ρ the radius of the winding loop, and the azimuthal vhx
ϕ and axial vhx

z components

vhx
ϕ (φ,α) =





φ+α, φ ∈
(
0, φs

2

]
⊂D,

φs

2 +α, φ ∈
(
φs

2 , φs Lw

Lw−Ls
− φs

2

]
⊂S ,

φs Lw

Lw−Ls
−φ+α, φ ∈

(
φs Lw

Lw−Ls
− φs

2 , φs Lw

Lw−Ls
+ φs

2

]
⊂D,

α− φs

2 , φ ∈
(
φs Lw

Lw−Ls
+ φs

2 ,2 φs Lw

Lw−Ls
− φs

2

]
⊂S ,

φ−2 φs Lw

Lw−Ls
+α, φ ∈

(
2 φs Lw

Lw−Ls
− φs

2 ,2 φs Lw

Lw−Ls

]
⊂D,

(4.22a)

vhx
z (φ) =




−Lw

2 + φ
φs

(Lw −Ls), φ ∈
(
0, φs Lw

Lw−Ls

]
,

3Lw
2 − φ

φs
(Lw −Ls), φ ∈

(
φs Lw

Lw−Ls
,2 φs Lw

Lw−Ls

]
.

(4.22b)

In figure 4.2.c, the graphical representation of the winding parametrisation is shown.

Axial Winding

A ring-wound winding, of length Lw , inner and outer radii Rwi and Rwo respectively, separated

by an axial distance d ax from the centre of each other that ideally only features an azimuthal

component, can be parametrised v ax , following the graphical definition of figure 4.2.d in

Cartesian coordinates, as

v ax (ρ,φ,α) =




v ax
x (ρ,φ)

v ax
y (ρ,φ)

v ax
z (α)


=



ρ cos(φ)

ρ sin(φ)

α


 . (4.23)

Such a winding parametrisation is graphically shown in figure 4.2.d.

4.1.3 Lorentz Force and Torque

Having defined the magnetic flux density distribution for the heteropolar and homopolar sides

of the machine and the current density distribution for each type of winding, the total force

and torque can be calculated by substituting the corresponding expressions into (4.1a) and

(4.1b) and integrating over the winding volume V . Due to the presence of elliptic integrals in

the integrand of the force and torque, this last integration needs to be performed numerically,

and thus no closed-form solution can be obtained.

The general form of the Lorentz force and torque generated by a general winding will result

in the sum of the force generated by each winding phase n ∈ {0, . . . ,mw −1} and pole-pair
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h ∈ {0, . . . , pw −1}

F lor =
mw−1∑

n=0

pw−1∑
h=0

Ñ

Vn,h

Jev (ρ,φ,α)×B (ρ,φ,α)dV , (4.24a)

T lor =
mw−1∑

n=0

pw−1∑
h=0

Ñ

Vn,h

J v (ρ,φ,α)×ev (ρ,φ,α)×B (ρ,φ,α)dV. (4.24b)

The particular expressions for each winding type are detailed in appendix B.

4.1.4 Reluctance Force and Torque

Apart from Lorentz forces, an additional electromagnetic force will appear at the interface

between two materials with different magnetic permeability generally known as reluctance

force. Considering the configuration of a slotless machine, the presence of a back iron will

result in an increase of the total force due to the additional armature field created by the

windings. In slotless permanent-magnet machines this armature field is comparably lower

than the one generated by the permanent magnets and usually neglected, also as a result

of the vanishing surface integral due to the problem’s symmetry when the motor torque is

studied. For magnetic bearing systems this component can result in a noticeable increase of

total electromagnetic force in radial direction, and thus for a correct estimation of forces and

torques it should be included in the models.

Reluctance forces can be obtained independently from other sources when integrating the

Maxwell stress tensor T over the back iron interface surface S as in (4.1a), or combined with

Lorentz forces when integrating over rotor’s interface [27].

In [27], a closed-form solution was found for an ideal radial bearing straight winding, resulting

in a force in the same direction as Lorentz forces. Using this finding as an approximation, the

total force generated in the machine can be calculated including the amplification factor κ as

follows

F = F lor +F r el = F l or +
(
R4

wo −R4
wi

)

4R4
st i log(Rwo/Rwi )

F lor = κF l or , (4.25)

where it is found that κ gets higher when winding outer radius, Rwo , and stator back iron inner

radius, Rst i , are closer to each other, and κ can hold a maximum value of 2. It is also worth

mentioning that due to symmetry only radial forces and torques feature reluctance forces.

The complete validation of the force and torque electromechanical models for the active

magnetic bearings and motor is experimentally performed employing a dedicated force and

torque measurement test bench, and its results are included in chapter 7.
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Figure 4.3 – Studied passive bearing configurations.

4.2 Passive Magnetic Bearing Force and Torque Models

In some cases it may be preferable to have some degrees of freedom of the rotor passively sta-

bilised, in order to considerably reduce cost and complexity of the system. The simplification

of the studied fully active magnetic bearing system can be performed by removing some of

the actuators and including an arrangement of permanent magnets to stabilise the remaining

degrees of freedom. Due to the use of Lorentz-type active magnetic bearings in the system,

with limited force and torque constants when compared to reluctance-types, it is chosen not

to employ any iron in the passive bearing structure and only permanent magnet rings. This

will results in lower passive bearing stiffness and load capacity in the stable direction, e.g. axial

stiffness for an axial bearing, but also in lower force disturbances on the unstable directions,

e.g. negative radial stiffness for the axial bearing.

For any given passive bearing, two main configurations can be envisioned depending on the

magnetisation direction of the permanent magnet rings:

• Configuration A: Attractive. The stabilisation of the rotor is achieved by attraction

between stator and rotor permanent magnets. If the desired passive stabilisation is axial

(axial bearing) a configuration as shown in figure 4.3.a can be employed.

• Configuration B: Repulsive. The stabilisation is achieved by repulsion between rotor

and stator permanent magnets. If an axial bearing is desired, a configuration as shown

in figure 4.3.b can be used.

Note that only passive axial bearings are shown in figure 4.3, as they are the only configura-

tions employed for the design in chapter 5. If passive radial bearings would be studied, the

magnetisation of stator permanent magnet rings can be inverted, and figure 4.3.a would be

transformed into a repulsive passive radial bearing, and figure 4.3.b into an attractive passive

radial bearing.

Furthermore, note that due to the fact that the permanent magnet rings are located at the

outer part of the rotor instead of close to the rotation axis, the axial bearing will also passively
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stabilise any radial tilting in the rotor.

For these configurations, the previously defined electromagnetic models are not valid, and thus

some new models are required. Considering the Ampere’s model (current-loop equivalent) of

a permanent magnet located at the rotor and an external magetic flux density distribution,

created for example by a stator permanent magnet, it is possible to calculate the resulting

Lorentz force applied between magnets. The electromagnetic force F and torque T applied

to a permanent magnet can be calculated by integrating over the whole permanent magnet

volume V the gradient of the external B-field, B st , projected over the magnetisation direction,

M r ot ,

F =
Ñ

V

dF =
Ñ

V

∇(M r ot ·B st )dV =
Ñ

V

∇BM dV , (4.26a)

T =
Ñ

V

r ×dF =
Ñ

V

r ×∇(M r ot ·B st )dV. (4.26b)

being r = (r,ϕ, z) the position vector of every point of the rotor permanent magnet volume V .

As no actuation is possible for the passive magnetic bearings, the main result of the models is

the calculation of the passive stiffness resulting from a given rotor displacement or tilting.

Thus, in order to calculate the force, torque and stiffness resulting from the interaction be-

tween the permanent magnet rings composing the passive bearings, the following steps are

undertaken:

1. Definition of the magnetic flux density distribution, B st , generated by stator’s perma-

nent magnet rings.

2. Consider exclusively the component aligned with the magnetisation of the rotor’s per-

manent magnet ring, M r ot ·B st .

3. Calculate the partial derivatives of the projection and calculate the force dF and torque

dT at an infinitesimal volume dV of the rotor permanent magnets.

4. Integrate the force and torque over the rotor magnet volume V .

5. Repeat the previous calculations for several given displacements and tilting to calculate

the passive stiffness kr , kφ and kz .

All these steps are detailed hereafter. This approach has been presented and validated in

[48] for the repulsive configuration. Apart from axially magnetised permanent magnets, a

Halbach configuration was initially studied, but due to the manufacturing limitations of

radially magnetised permanent magnets, such a study is not included here.
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Figure 4.4 – Studied passive bearing configurations with associated reference frames and permanent
magnet dimension parameters.

4.2.1 Magnetic Flux Density Distribution

Firstly, the magnetic flux density distribution generated by the stator permanent magnet rings

need to be specified. The same assumptions previously defined for the B-field distribution

in the active magnetic bearings are considered here, namely: linear and non-conductive

materials, hard ferromagnets, and no dependency in time.

Due to the absence of iron in the passive bearing structures, and thus no external boundary is

considered, Poisson’s and Laplace’s equations defined in (4.2) can be solved employing the

free-space Green’s function and the same formulation of the flux density distribution as a

combination of elliptic integrals presented in [112].

As shown in figures 4.3 and 4.4, all magnets feature axial magnetisation, and thus the same

models employed for the homopolar side of the fully active machine can be employed here.

By considering a remanent magnetisation Br em and dimensions r j = {r1,r2} and zk = {z1, z2}

as defined in figure 4.4 for a general pair of permanent magnet rings, the magnetic flux density

distribution generated by a single magnet results in (4.4a) and (4.4b). These expressions are

repeated hereafter for convenience:

B pb
r (r, z) = Br em

π

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k

[(
1− 2

m j k

)
K (m j k )+ 2

m j k
E(m j k )

]
, (4.27a)

B pb
z (r, z) = Br em

π

2∑
j=1

2∑
k=1

(−1) j+k r j

σ j k

(z + zk )(1+ξ j )

(r + r j )n j

[
K (m j k )−ξ jΠ(n j ,m j k )

]
, (4.27b)

being the auxiliary parameters σ j k , ξ j , m j k and n j defined as

ξ j =
r − r j

r + r j
, n j = 1−ξ2

j =
4r r j

(r + r j )2 ,

σ j k =
√

(z + zk )2 + (r + r j )2, m j k = 4r r j

(z + zk )2 + (r + r j )2 .
(4.28)

These expressions are then validated in section 4.3 by comparison to a reference finite element
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model of the magnet rings.

4.2.2 Passive Magnetic Force and Torque

The magnetic force and torque generated at an infinitesimal volume dV of the rotor’s perma-

nent magnet rings, can be estimated assuming that the external field is lower than the material

coercivity and by considering the interaction between the rotor magnetisation and stator’s

magnetic flux density distribution as follows

dF (r,ϕ, z) =




dFr (r, z)

0

dFz (r, z)


dV =∇(M r ot ·B st )dV =∇BM dV =



∂BM
∂r

0
∂BM
∂z


dV , (4.29a)

dT (r,ϕ, z) = r ×dF , (4.29b)

being r the position vector of the infinitesimal volume dV with respect to the centre of the

rotor and BM the projection of the stator magnetic flux density over the rotor magnetisation.

The exact expression of BM will depend on the relative position between both permanent

magnets, subject to possible radial displacements or tilting or axial displacements. In any

case, BM will be a linear combination of B pb
r or B pb

z defined in (4.27a) and (4.27b), respectively.

Thus, in order to estimate the magnetic force, the partial derivatives of the radial and axial

components of the magnetic flux density with respect to r and z are needed. Their partial

derivatives can be computed analytically by making use of the mathematical properties and

derivatives of elliptic integrals with respect to their parameters, as defined in appendix A.

The partial derivatives of the B-field generated by axially-magnetised rings result in another

linear combination of complete elliptic integrals of the first, K (m), and second kind, E(m), as

follows

∂B pb
r

∂r
(r, z) = Br em

2r 2π

2∑
j=1

2∑
k=1

(−1)( j+k+1)

[
(z + zk )4 + (r 2 +2r 2

j )(z + zk )2 − r 2
j (r 2 − r 2

j )

σ j k
(
(r − r j )2 + (z + zk )2

) E(m j k ) −

−
r 2

j + (z + zk )2

σ j k
K (m j k )

]
,

(4.30a)

∂B pb
r

∂z
(r, z) = Br em

2rπ

2∑
j=1

2∑
k=1

(−1)( j+k) (z + zk )

σ j k

[
r 2 + r 2

j + (z + zk )2

(r − r j )2 + (z + zk )2 E(m j k )−K (m j k )

]
, (4.30b)

∂B pb
z

∂r
(r, z) = Br em

2rπ

2∑
j=1

2∑
k=1

(−1)( j+k) (z + zk )

σ j k

[
r 2 + r 2

j + (z + zk )2

(r − r j )2 + (z + zk )2 E(m j k )−K (m j k )

]
, (4.30c)

∂B pb
z

∂z
(r, z) = Br em

2π

2∑
j=1

2∑
k=1

(−1)( j+k+1) 1

σ j k

[
r 2 − r 2

j + (z + zk )2

(r − r j )2 + (z + zk )2 E(m j k )−K (m j k )

]
, (4.30d)
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being m j k and σ j k as defined in (4.28).

Total Force and Torque

Finally, for a given relative position and orientation between magnets, the total force and

torque between them can be calculated by simply integrating expressions (4.29a) and (4.29b)

over the rotor’s permanent magnet volume V = [ri ,ro]× [ϕi ,ϕo]× [zi , zo] = [r3,r4]× [0,2π]×
[z3, z4], as schematically defined in figure 4.4.

Given that the field at point P is expressed under stator’s reference frame, in cylindrical

coordinates P = [r ′,ϕ′, z ′], and that the integral limits are expressed under rotor’s reference

frame, in cylindrical coordinates P = [r,ϕ, z], a geometric transformation is needed to convert

from one system to the other. Different cases of relative displacements, such as axial, radial

displacement and radial tilting, and their associated transformations are studied in appendix

C.

Considering the transformation (r,ϕ, z) 7→ (r ′,ϕ′, z ′), the integral over the rotor’s volume V ′

expressed under the stator’s reference frame can be evaluated using integration by substitution,

with expressions (4.26a) and (4.26b) resulting in

F =




Fx

Fy

Fz


=

Ñ

V ′

dF (r ′,ϕ′, z ′)r ′dr ′dϕ′dz ′ =
Ñ

V ′

dF (r ′,ϕ′, z ′)r ′
∣∣∣∣
∂(r ′,ϕ′, z ′)
∂(r,ϕ, z)

∣∣∣∣dr dϕdz =

=
r4∫

r3

2π∫

0

z4∫

z3




dFr (r ′, z ′)cosϕ′

dFr (r ′, z ′)sinϕ′

dFz (r ′, z ′)


r dr dϕdz,

(4.31a)

T =




Tx

Ty

Tz


=

Ñ

V ′

dT (r ′,ϕ′, z ′)r ′dr ′dϕ′dz ′ =
Ñ

V ′

dT (r ′,ϕ′, z ′)r ′
∣∣∣∣
∂(r ′,ϕ′, z ′)
∂(r,ϕ, z)

∣∣∣∣dr dϕdz =

=
r4∫

r3

2π∫

0

z4∫

z3




r ′ cosϕ′

r ′ sinϕ′

z ′


×




dFr (r ′, z ′)cosϕ′

dFr (r ′, z ′)sinϕ′

dFz (r ′, z ′)


r dr dϕdz,

(4.31b)

and being |∂(r ′,ϕ′, z ′)/∂(r,ϕ, z)| = r /r ′ the determinant of the Jacobian matrix of the transfor-

mation.

Due to the presence of elliptic integrals inside the integrand, a numerical integration to

calculate the total force and torque is required and thus no closed-form solution can be

extracted. The numerical validation of the generated force and torque as a function of axial,

∆z, and radial displacement, ∆x, as well as radial tilting, ∆φy , is included in section 4.3.
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4.2.3 Passive Magnetic Stiffness

In order to estimate forces, torque and stiffness generated in the bearing in all directions, three

different cases will be studied, corresponding to the different possible rotor displacements:

axial displacement ∆z, radial displacement, i.e. ∆x, and radial tilting ∆φy . The geometric

transformations required to project the external flux density distribution over the rotor’s

permanent magnet will depend on the studied configuration (attractive or repulsive), as the

arrangement of permanent magnets is specific to each of them. The exact transformations are

detailed in appendix C.

Having expressed the total force and torque as a function of small rotor displacements in

radial, ∆x, or axial, ∆z, directions, as well as small radial tilting ∆φy , the magnetic stiffness of

the bearing can be calculated by

kr =− dFx

d∆x
= k11, kz =− dFz

d∆z
= k33, kφy =− dTy

d∆φy
= k22, (4.32)

where the relation with the 5-DoF rotordynamics model defined in chapter 3 is specified, and

more specifically in equation (3.8), being the rest of the elements zero as a result of symmetry.

Due to the numerical integration performed for calculating the force at each displacement

and tilt, the derivative shown in the previous expression is also implemented numerically. The

validation of the calculated stiffness by comparison to a finite-element model of the passive

bearings is shown in the next section.

4.3 Numerical Validation

In this section, the some elements of the previously developed electromechanical models

for slotless motor and bearings and iron-less passive bearings will be validated using finite

element models of the different configurations, implemented using COMSOL Multiphysics.

Firstly, the proposed three-dimensional magnetic field distribution models are validated,

and secondly, the passive force and stiffness of the passive bearing configurations are also

validated. The experimental validation of the models is performed in chapter 7, and this only

numerical validations are performed here.

4.3.1 Magnetic Flux Density Validation

In order to validate the magnetic flux density distribution defined in sections 4.1 and 4.2, the

analytical expressions using elliptic integrals will be compared to the magnetic flux density

distribution estimated using the aforementioned finite element model of each of the six

studied configurations: homopolar side of the active magnetic bearing with and without back

iron, heteropolar side of active machine with and without back iron, and iron-less passive

bearing attractive and repulsive configurations.
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Figure 4.5 – Analytic and FEM validation results for the magnetic flux density distribution in homopolar
and heteropolar air-gaps. Lines denote the analytical results and the markers the FEM results. For
both cases, the continuous lines and crosses are considered at r = Rwi , and dashed lines and circles at
r = Rwo . For the heteropolar side, the magnetic flux is evaluated at the azimuthal coordinate where
each component is maximum (ϕ= 0 for Br and Bz , and ϕ=−π/2 for Bϕ).

Regarding the models of the active parts, four comparisons are performed and included in

figure 4.5, namely: the magnetic flux density distribution of homopolar side without back iron,

figure 4.5.a, with back iron, figure 4.5.b, and heteropolar side without, figure 4.5.c, and with

back iron, figure 4.5.d. For the heteropolar side, each component is evaluated at the azimuthal

coordinate where its maximum amplitude is reached (ϕ= 0 for Br and Bz , and ϕ=−π/2 for

Bϕ).

It can be seen that the magnetic flux density distribution without back iron in figure 4.5.a and

4.5.c perfectly matches the simulation results of the FEM for both heteropolar and homopolar

sides. This is expected, as the exact B-field has been simply reformulated using complete

elliptic integrals (no simplification was considered in their derivation). Regarding the magnetic

flux density with back iron in figure 4.5.b and 4.5.d, the employed approximation with the

factorΛ is visible in the results, being higher than the FEM simulations at r = Rwi and lower

at r = Rwo . Nevertheless, due to the required integration in the winding volume needed for
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Figure 4.6 – Analytic and FEM magnetic flux density distribution comparison for axially-magnetised
permanent magnet rings for passive bearing models.

calculating the total force and torque, these errors at individual points are compensated thanks

to the integration approach proposed for calculatingΛ, as it will be shown in the validation of

the winding forces and torques.

Regarding the model of the passive bearings, it corresponds to a similar configuration to

the homopolar side without back iron, but with permanent magnet rings instead of full

cylinders. The comparison of the analytical models of the flux density distribution with the

FEM counterpart is shown in figure 4.6.a for the attractive configuration, and figure 4.6.b for

the repulsive one, as presented in figure 4.3.

The plots show the evaluation of the radial and axial flux density components at distance d1

and d2 from the permanent magnet ring. This distance is measured radially for configuration

A and axially for configuration B, as it will represent positions of the rotor’s permanent magnet.

As in the case of the homopolar side without back iron, the analytical model with elliptic inte-

grals perfectly match the FEM results, as it represents an exact solution of the electromagnetic

problem previously defined.

Furthermore, the magnetic flux density distribution created by heteropolar and homopolar

sides without back iron will be experimentally measured in chapter 7 using a three-axis hall

probe and compared to the ideal models presented here for asymmetry detection in the real

magnets.

4.3.2 Passive Bearing Force and Torque Model Validation

Finally, to validate the proposed models for passive stiffness, all three displacement cases

(axial, radial and tilting) are compared with the simulation results of force and torque obtained

using FEM of configurations A (attractive) and B (repulsive) as shown in figure 4.3. Due to the
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Figure 4.7 – Magnetic force/torque and stiffness generated by passive magnetic bearing configurations
A (attractive) and B (repulsive). ∆d represents the displacement in the same direction in which the
force is calculated, being ∆d =∆x for Fx and kx , and ∆d =∆z for Fz and kz .

lost of symmetry when radial displacement or tilting is present, a full three-dimensional FEM

simulation is employed for the comparison.

As shown in figure 4.7, a good agreement is obtained between analytical and simulation results

for all radial, axial and angular displacements for both force/torque and stiffness. Due to the

low number of displacement samples when employing the FEM for computational reasons,

the derivation for estimating the FEM stiffness is computed by considering an cubic spline

interpolation between evaluation points, allowing a lower numerical error in the derivation.

As for the evaluation of the flux density distribution, it is worth mentioning the low computa-

tional cost of the proposed analytical method based on elliptic integrals, requiring from just a

few seconds to a few minutes of computation in a general-purpose dual-core CPU, depending

on the symmetry and available simplifications of each studied case.

In table 4.1, the difference between the analytical and numerical forces, torques and stiffness
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Table 4.1 – Maximum absolute (eabs = fan− fF E M ) and relative (er el = ( fan− fF E M )/ fF E M ) error between
semi-analytical model and FEM.

max eF x eF z eT y ekx ekz ekφ

(N) (N) (Nm) (N/mm) (N/mm) (Nm/deg)

Conf. A
0.208 0.144 0.002 0.226 0.207 0.002
2.28% 1.04% 0.61% 0.92% 0.72% 2.13%

Conf. B
0.011 0.530 0.010 0.025 3.993 0.016
0.05% 0.62% 1.42% 0.12% 5.46% 2.91%

for both configurations is included. When evaluating the force and torque using FEM, some

numerical instabilities are seen at high displacements when no sufficient air-gap is present,

being more visible for the evaluation of Fx for config. A, and Fz and Ty for config. B. To

minimise its impact, the comparison is performed without considering the last FEM evaluation

point. It can be seen that for all cases, the deviation with respect to the finite element results is

always lower than 6%, showing a good correlation between analytical model and FEM results.

4.4 Conclusions

In this chapter, the analytical electromagnetic models of the active and passive magnetic

bearings are detailed. These models will be employed for the optimisation and design of the

fully active and hybrid magnetic bearing systems studied in this work.

The main contributions of this chapter can be summarised as follows:

• A modular electromechanical model for magnetic bearings and motor is presented:

– The model allows the calculation of the magnetic flux density distribution of a

selection of arrangements of permanent magnets with or without back iron.

– For active magnetic bearings and motors, the model can consider a wide variety of

slotless winding topologies, such as skewed, rhombic, hexagonal or axial windings.

– As results for active bearings, it is capable of accurately estimating electromagnetic

forces, torques and Joule losses.

– As results for passive bearings, the model is capable of calculating the electromag-

netic forces, torques and passive stiffness.

– The model is numerically efficient thanks to the use of elliptic integrals for the

definition of the three-dimensional field distribution, instead of relying on Fourier

series expansions or FEM. It features also increased accuracy when compared to

two-dimensional approximations of the field distribution.

• The different configurations for the model are numerically validated. Experimental vali-

dation is performed in chapter 7 including both accuracy and computational efficiency

when compared to other analytical approaches.

72



5 Magnetic Bearing and Motor Electro-
magnetic Optimisation

Having defined both the closed-loop and electromagnetic models in previous chapters, it is

possible to proceed with the detailed design and optimisation of the magnetic bearing system.

Depending on the requirements of a given application, different magnetic bearing topologies

may be better adapted for the needs of each situation and thus two main configurations are

studied hereafter.

For applications that have more strict requirements in terms of performance or allowed vibra-

tions, a fully active magnetic bearing configuration is proposed, allowing the active control

of all degrees of freedom, and thus enabling the possibility of active vibration suppression

in any direction. This comes at the expense of a higher complexity and cost of the systems.

For applications in which requirements are either not as strict, or the increased complexity

makes the system much less competitive, a simpler hybrid magnetic bearing configuration is

presented, featuring the active control of only three out of six degrees of freedom of the rotor,

thanks to the passive stabilisation of axial and tilting dynamics. This configuration allows the

active suppression of the main disturbances, which appear in radial direction, such as the

rotor unbalance, and thus not excessively compromising the system’s performance.

In section 5.1, a general optimisation procedure is presented for active magnetic bearings and

motor, based on the maximisation of the actuators efficiency, which is then applied to the

studied fully active magnetic bearing motor. This optimisation procedure is also presented in

[49]. Subsequently, in section 5.2, the design and optimisation of a hybrid magnetic bearing

motor is presented, which combines the optimised active motor and bearings with the passive

stabilisation of some degrees of freedom to obtain a significant simplification of the system

with respect to the fully active configuration.

5.1 Fully Active Magnetic Bearing Motor Optimisation

As it is shown in chapter 7 in the experimental validation of the electromechanical models

of the active magnetic bearings (AMBs), the originally employed skewed windings and its
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Figure 5.1 – Schematic cross-sectional view of the optimised configuration of the slotless permanent-
magnet magnetic bearing reaction wheel demonstrator. The system consists of hexagonal, rhombic
and axial windings with back iron in homopolar and heteropolar sides.

associated manufacturing process results in some winding asymmetries and disturbances.

Furthermore, due to the use of skewed windings, the axial component of the wire is limited

by the winding length Lw and the number of pole pairs pw , and thus the efficiency and force

capacity of such windings is fixed by these parameters.

Due to these limitations, a new manufacturing process has been developed for manufacturing

highly symmetric and efficient winding types, such as rhombic and hexagonal. These winding

types include some additional degrees of freedom in which the resulting force capacity and

efficiency are no longer limited in the same way by winding length and pole pairs, allowing for

an improved and optimised design of all the actuators. This efficiency can be further improved

by including a back iron for both heteropolar and homopolar sides, as shown for the newer

revision of the fully active machine in figure 5.1, and by optimising all winding and stator

parameters for this configuration.

One of the main advantages of having an analytical model of the windings is the possibility

of performing an optimisation of different bearing and motor winding parameters. This

allows to obtain a desired performance and efficiency without a high computational cost,

when compared to other numerical or finite element methods (FEM). In this section both the

efficiency of the machine and the generated vibrations will be optimised, and the parameters

employed for the evaluation of such characteristics (figures of merit), the followed procedure

and the optimisation itself are explained here below.

All expressions and figures hereafter, including the ones in the results section, are expressed

under the reference frames defined for each winding, as shown in figure 4.2, being the X

and Y components radial, and the Z component referred to as axial. Furthermore, the same

expressions are employed for the experimental validation of the optimisation results.
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5.1.1 Figures of Merit

Efficiency

As commonly done for electric machines, a notable figure of merit for the efficiency of the

machine is the ratio between the applied mechanical force or torque and the power losses

in the winding (Joule losses). For electric motors the ratio is generally known as the motor

constant KM (Nm/
p

W), while for bearings can be defined as bearing constant KB (N/
p

W).

The figures can be calculated, for a three phase machine, as follows

KB = F√
P Joule

= κF îs√
Rph î 2

s

= κF√
Rph

, (5.1a)

KM = T√
P Joule

= κT îs√
Rph î 2

s

= κT√
Rph

, (5.1b)

where F (N) and T (Nm) denote the force and torque applied by the bearing and motor

windings, respectively, îs (A) the current amplitude in the winding, Rph (Ω) the wire resistance

of each winding phase, and κF (N/A) and κT (Nm/A) the force and torque constants of the

bearing and motor.

All these magnitudes can be derived directly from the previously defined models for the

windings and magnetic flux. κF and κT can be analytically calculated or experimentally

measured from the total force and torque applied to the rotor with current amplitude îs as

follows

κF =
∫
εw

‖F‖dεw∫
εw

îsdεw
=

∫ π
−π ‖F‖dεw

îs2π
, (5.2a)

κT = 1

2îs

(∣∣∣∣ max
εw∈[−π,π]

‖T ‖
∣∣∣∣+

∣∣∣∣ min
εw∈[−π,π]

‖T ‖
∣∣∣∣
)

, (5.2b)

which corresponds to the average force and torque per current unit for all electric angles εw

applied by the winding. The phase resistance can be calculated from expression

Rph = ρCu
Lph

Awi r e
, (5.3)

being ρCu the resistivity of the wire material (copper), Lph the wire length of each phase as

calculated in [47] for each winding type, and Awi r e the cross-sectional area of the winding

wire.

Vibrations

Another important measure for magnetically levitated electric machines is the level of vibra-

tions generated during operation. For conventional machinery, apart from the rotor unbalance,
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the main vibration sources are the imperfections in ball bearings and torque disturbances

caused by the motor system such as the torque drift and ripple [10]. In the configuration stud-

ied in the present thesis, as the levitation in all degrees of freedom is performed using active

magnetic bearings, asymmetries and imperfections in the windings, permanent magnets or

any other component will result in the generation of vibrations by the machine. Equivalently

to what is commonly known as torque disturbances and ripple for motor windings, force

ripple and disturbances are generated by bearing windings.

The figures of merit used for evaluating of the level of vibrations generated by the machine are

the force and torque ripple and disturbances. The ripple is defined as the variation with the

electrical angle εw of the main force/torque component controlled by the winding, i.e. torque

in Z for the motor, forces in X and Y for the radial bearings, and in Z for the axial bearing.

The force and torque disturbances are defined as the maximum amplitude of forces/torques

appearing in other direction than the main component controlled by the winding, i.e. torques

in X and Y for motor, forces in Z for radial bearings, and in X and Y for axial bearing. As

previously mentioned, all these components are referred to the winding reference frame as

per figure 4.2.

These figures of merit can then be analytically calculated or experimentally measured, relative

to the force or torque constants, as follows

rF = 1

2κF

(
max

εw∈[−π,π]
‖F‖− min

εw∈[−π,π]
‖F‖

)
, (5.4a)

rT = 1

2κT

(∣∣∣∣ max
εw∈[−π,π]

‖T ‖
∣∣∣∣−

∣∣∣∣ min
εw∈[−π,π]

‖T ‖
∣∣∣∣
)

, (5.4b)

dF = 1

κF

(
max

εw∈[−π,π]
‖F d‖

)
, (5.4c)

dT = 1

κT

(
max

εw∈[−π,π]

√
T 2

x +T 2
y

)
, (5.4d)

being rF , rT the force and torque ripple, respectively, dF , dT the force and torque disturbance,

and F d being either the force in axial direction, F d = [0,0,Fz ]>, for the radial bearing winding,

and in radial direction, F d = [Fx ,Fy ,0]>, for the axial bearing winding. The factor 2 is included

in the ripple to account only for the amplitude with respect to the average.

5.1.2 Optimisation Problem Definition

Depending on the exact needs or the design phase in which the optimisation will be performed,

a different level of generalisation can be approached: from an actuator single-objective op-

timisation to a general multi-objective optimisation for a group of coupled actuators (e.g.

heteropolar or homopolar sides of figure 5.1).

On the one hand, due to the available electromechanical models described in section 4.1, it is

possible to analytically model and study the different magnitudes required for evaluating the
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efficiency in (5.1a) and (5.1b), and thus this figure of merit will be included in the optimisation

procedure described hereafter.

On the other hand, the generated vibrations are mainly a result of the manufacturing and inte-

gration process, and thus difficult (if not impossible) to model analytically. From experimental

measurements it is seen that highly-symmetric windings, such as rhombic (figure 4.2.b) and

hexagonal (figure 4.2.c), will feature much lower force and torque ripple and disturbances

than other less symmetric winding types, such as skewed (figure 4.2.a). For this reason, no

analytical optimisation is required, and only a selection of a symmetric winding type is needed.

The final level of ripple and disturbances are measured and validated in chapter 7.

Due to the intrinsic complexity of a fully active magnetic bearing motor, the simultaneous

optimisation of several actuators (e.g. motor and radial bearing for heteropolar side and axial

and radial bearings for homopolar side) needs to be expressed in the form of a multi-objective

optimisation. If only one actuator needs to be optimised, the same approach can be followed

by considering a single-objective optimisation instead.

Due to the independent nature of each actuator, the objective function is selected to be

a weighted sum of the efficiency measures (5.1a) or (5.1b) for each actuator. In a general

form, the optimisation variables will be a concatenation of the parameters for all N actuators

x = [x1, . . . , x N ]>. Each actuator’s parameters x i , can be composed of winding dimensions

Rwi , Rwo and Lw , permanent magnet dimensions, Lpm and Rpm , back iron dimensions Rst i ,

Rsto and Lst , and winding parameters (dependent on winding type of figure 4.2) like rhombic

and hexagonal opening angle φs and hexagon axial segment length Ls . The optimum set of

parameters x∗ will be a result of the following optimisation problem

min
x

f (x) :=
N∑

i=1
wi fi (x i ) =

N∑
i=1

wi

Ki (x i )
(5.5)

subject to
g i (x i ) ≤ 0, hi (x i ) = 0, ∀i ∈ {1, . . . , N }

g i j (x i , x j ) ≤ 0, hi j (x i , x j ) = 0, ∀ j > i

The optimisation variables are included in vector x i , which can be any combination of desired

actuator parameters to optimise. The optimisation constraints will feature the individual

physical and manufacturing limits in g i (x i ) and hi (x i ), as well as some further coupling

between the actuators in the form of coupled inequality and equality constraints g i j (x i , x j )

and hi j (x i , x j ) that will link parameters of actuator i with j .

As many computational optimisation algorithms are designed for minimisation, the objective

function is defined as a linear combination of K −1
i , being the inverse of the bearing KB and

motor constants KM as defined in (5.1a) and (5.1b), resulting in a minimisation the phase

resistance Rph and thus Joule losses P Joule , while maximising the force κF or torque constants

κT . This selection of objective function, as previously stated, allows the maximisation of the
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Figure 5.2 – Geometric parameters of homopolar (left) and heteropolar (right) sides, ho and he re-
spectively, including permanent magnet Rpm , Lpm , winding Rw , Lw , and back iron Rst , Lst radius and
length, of axial a radial r bearings and motor m.

efficiency independently on the working conditions of each actuator and thus independently

on the required input current for its operation.

Furthermore, N weighting factors w = [w1, . . . , wN ]> are included to add the possibility of

prioritising some actuators over others to better adapt to certain use cases where not all

actuators are equally required, and to normalise the weight of each objective function fi (x i )

that may result from combining functions with different units (
p

W/Nm and
p

W/N) and

actuators with different volumes.

The optimisation problem defined in (5.5) can be solved by using any non-linear computa-

tional optimisation algorithm. In this thesis, MATLAB’s built-in function fmincon is employed

to handle the constrained non-linear optimisation.

5.1.3 Actuators Optimisation

Due to the inherent higher complexity of a fully active magnetic bearing motor, multiple

actuators are present in the same system sharing resources. The optimisation of the complete

system can then be done by studying all the different actuators either all at once by the multi-

objective optimisation, or one by one with the single-objective optimisation. In this section,

the general optimisation procedure previously introduced will be applied to maximise the

efficiency of the studied fully active magnetic bearing motor developed by Celeroton.

For all the performed optimisations the following considerations are taken:

• The electromagnetic models presented in [47] are employed for an accurate and efficient

execution of the optimisation. The models are capable of providing the force kF and

torque kT constants of each actuator, as well as the phase resistance Rph of the windings.

• For radial bearings and motor, the winding type selection is done by the following

priority: hexagonal > rhombic > skewed, due to the increase in efficiency and flexibility
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resulting from the additional degrees of freedom φs ,Ls in hexagonal, and φs in rhombic

windings, as defined in Fig. 4.2. Heteropolar radial bearing and motor will employ

hexagonal windings, whereas homopolar radial bearing will feature rhombic winding

due to manufacturing limitations and tooling availability.

• The copper filling factor of the windings is considered constant for each actuator, taking

as a reference the value experimentally obtained by manufacturing.

• Both heteropolar and homopolar sides are optimised using back iron for improved

efficiency.

• The total volume of the actuators is considered fixed, corresponding to the one employed

in the original machine in order to reuse the same stator parts and compare machines

with equivalent size.

• Due to the impact of the weighting factors in multi-objective optimisations, all are set to

wi = 1 to preserve the physical meaning of the objective function and equally prioritise

all actuators, with the only exception of the motor one, set to wm,he
i = Rhe

max as a change

of units.

• The winding properties for optimum efficiency, denoted as x∗
i , are obtained using

MATLAB’s fmincon function, employing sequential quadratic programming (SQP) solver

to solve the small-case and dense problem.

• The selected winding properties for manufacturing, denoted as x+
i , will be the closest to

the resulting optimum when taking into account the limitations due to the manufactur-

ing process, material and tooling availability.

• The original winding properties, denoted as xo
i , are then compared to the optimisation

results. The original machine is described in [104].

• A parametric sweep of the main optimisation variables is performed as a sensitivity

analysis and its results are included in Fig. 5.3.

The main geometric parameters employed as variables in the optimisation are graphically

represented in figure 5.2 for both homopolar and heteropolar sides. The optimisation of the

machine is performed in two approaches. In the first optimisations (1 to 4) it is considered

that the dimensions of all actuators are fixed (except for the homopolar axial winding in

order to choose the back iron size), and only the winding parameters are optimised. For

the last optimisations (5-6), multi-objective optimisations including winding and back iron

dimensions are performed for the homopolar and heteropolar sides in order to investigate

if further improvement can be achieved by considering the couplings between actuators.

Finally, the selected parameters for manufacturing the optimised machine are investigated

analytically to estimate the efficiency improvement with respect to the original machine.
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Table 5.1 – Analytical results of single and multi-objective optimisations obtained using fmincon
and manufactured windings. Superscript † denote a parameter that is considered fixed in a specific
optimisation.

Parameter
Op. 1 Op. 2 Op. 3 Op. 4 Op. 5 Op. 6 Manufactured
a,ho r,ho m,he r,he a,ho r,ho m,he r,he a,ho r,ho m,he r,he

Lw (mm) 3† 10† 16† 16† 2.62 10.77 16 16 3 10 16 16
Rwi (mm) 4.75† 4.75† 6.5† 4.75† 4.75 4.75 5.77 4.75 4.75 4.75 6.5 4.75
Rwo (mm) 6.19 6.2† 9.5† 6.5† 6.63 6.63 8.58 5.74 7.38 6.2 9.5 6.5
φs (°) - 147 139 85 - 149 144 85.9 - 90 90 90
Ls (mm) - - 3.5 6.5 - - 3.64 6.80 - - 7.5 8.5

wi (-) 1 1 10 1 1 1 10 1 1 1 10 1
Ki
wi

(
Np
W

)
0.312 0.402 0.219 0.451 0.311 0.464 0.250 0.407 0.284 0.351 0.199 0.457

(∑ wi
Ki

)−1
0.176 Np

W
0.147 Np

W
0.186 Np

W
0.155 Np

W
0.157 Np

W
0.139 Np

W

Optimisation 1: Homopolar Axial Bearing

In this optimisation both axial winding outer radius and back iron inner radius will be chosen

in such a way that the efficiency of the axial bearing winding is maximised. For this purpose it is

considered that the single-objective optimisation will maximise the bearing efficiency defined

as K a,ho
B , being the variable to adjust the outer winding radius x1 = Rao

wo , and considering

both the length La,ho
w and inner radius Rao

wi fixed to preserve the stator dimensions. The

single-objective optimisation can then be expressed as

min
Ra,ho

wo

f1(Ra,ho
wo ) := w a,ho

1

K a,ho
B

= 1

K a,ho
B

, (5.6)

subject to

Ra,ho
wi ≤ Ra,ho

wo ≤ Rho
max , Ra,ho

wo = Rho
sti .

As weighting factor, in order to be able to directly compare the results between optimisations,

the same value that is employed in optimisation 5 is used here, being w a,ho
1 = 1. The inverse of

the objective function defined in (5.6) is plotted in figure 5.3.a, where the optimum, x∗
1 , results

in an efficiency increase of 37.2 % with respect to the original actuator with parameters xo
1 and

no back iron. This efficiency increase is a combined result of a more efficient positioning of

the winding, with all winding volume closer to the permanent magnet, and the addition of

back iron. These results are summarised in table 5.1 and will be validated experimentally in

chapter 7.
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Figure 5.3 – Single and multi-objective optimisation results. Single-objective optimisations: homopolar
axial (a) and radial bearing (b), heteropolar motor (c) and radial bearing (d) windings. Multi-objective
optimisations: homopolar (e) and heteropolar (f) sides. All figures show the efficiency measure as per
(5.1a) and (5.1b), thus being f −1

i (xi ).

Optimisation 2: Homopolar Radial Bearing

For this bearing there exist three options for selecting the winding type: skewed, rhombic

and hexagonal. The skewed one is discarded due to the high force ripple and disturbances

featured with this winding, caused by the layered winding structure of rather short and thick
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dimensions, as it will be shown in chapter 7. The hexagonal type is also discarded due to the

maximum length constraint of the winding, making it impossible to manufacture.

The rhombic winding type will be then optimised considering fixed winding dimensions

(Rr,ho
wi , Rr,ho

wo and Lr,ho
w ) and a back iron with inner radius Rho

sti resulting from the previous

optimisation. The single-objective optimisation is performed by adjusting the opening angle

of the rhombus x2 =φr,ho
s , seeking a maximisation of the bearing factor K r,ho

B , by solving the

following problem:

min
φr,ho

s

f2(φr,ho
s ) := w r,ho

2

K r,ho
B

= 1

K r,ho
B

, (5.7)

subject to

0° ≤φr,ho
s ≤ 180°.

The same weighting factor that is employed in optimisation 5 is also used here, being w r,ho
2 = 1.

The inverse of the objective function is plotted in figure 5.3.b, showing an optimum, x∗
2 , that

yields an increase in efficiency of 68.8 % with respect to the original bearing winding without

back iron. This efficiency increase is again a combined result of a more efficient winding

and the addition of back iron. If the optimisation is executed without back iron and thus no

reluctance forces, the optimum would still result in an efficiency increase of 43.6 %. As before,

the results are summarised in Table 5.1 and experimentally validated in chapter 7.

Optimisation 3: Heteropolar Motor

The three options of winding types for this winding are again: skewed, rhombic and hexagonal.

The original system employed a skewed winding type, but it featured considerable torque

disturbances in radial direction, and thus it is targeted to reduce such components by using a

highly symmetric winding type such as rhombic and hexagonal. The latter is finally selected

due to the increased torque density as a result of the additional degree of freedom with respect

to the rhombic one, while keeping a high symmetric structure.

The two free parameters to adjust will be the opening angle of the hexagonφm,he
s and the length

of the hexagon’s axial segment x3 = [φm,he
s ,Lm,he

s ]>, while the dimensions of the winding are

fixed. It is again sought to maximise the efficiency of the winding defined as the motor

constant, K m,he
M . The single-objective optimisation problem is then defined as

min
x3

f3(x3) := wm,he
3

K m,he
M

= Rhe
max

K m,he
M

, (5.8)

subject to

0° ≤φm,he
s ≤ 180°, 0 ≤ Lm,he

s ≤ Lm,he
w .

As weighting factor, the same one that is employed in optimisation 6 is also used here, being

wm,he
3 = Rhe

max , allowing the possibility of directly comparing with bearing factors due to the
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change in units and normalisation of the results. In figure 5.3.c, the inverse of the objective

function is shown, where the optimum, x∗
3 , results in an increase in motor constant (efficiency)

of 55.2 % with respect to the original skewed winding xo
3 . These figures are summarised in

Table 5.1 and experimentally validated in chapter 7.

Optimisation 4: Heteropolar Radial Bearing

The exact same approach and optimisation problem as the motor winding can be performed

for this winding. The hexagonal winding is optimised by seeking the maximum bearing

constant, K r,he
B , varying the opening angle of the hexagon and the length of the axial segment,

x4 = [φr,he
s ,Lr,he

s ]>, while considering the winding dimensions and the copper filling factor

fixed. The single-objective optimisation problem is defined as

min
x4

f4(x4) := w r,he
4

K r,he
B

= 1

K r,he
B

, (5.9)

subject to

0° ≤φr,he
s ≤ 180°, 0 ≤ Lr,he

s ≤ Lr,he
w .

The selected weighting factor is selected as in optimisation 6, being w r,he
4 = 1. This resulting

objective function is shown in figure 5.3.d, where the optimum, x∗
4 , yields an expected increase

of bearing constant of 57.9 % with respect to the original system xo
4 . These results are included

in Table 5.1 and are also experimentally validated in chapter 7.

Optimisation 5: Homopolar Side

In this case, a multi-objective optimisation is studied for the homopolar side, by search-

ing the optimal winding dimensions and parameters of axial and radial bearings. The ob-

jective function is defined as a linear combination of the inverse of the actuators’ bearing

constants in order to maximise its combined efficiency, varying the dimensions and pa-

rameters of the radial bearing, xr,ho
5 = [Lr,ho

w ,Rr,ho
wi ,Rr,ho

wo ,φr,ho
s ]>, and axial bearing winding,

x a,ho
5 = [La,ho

w ,Ra,ho
wi ,Ra,ho

wo ]>. The multi-objective optimisation problem is defined as

min
x5

f5(x5) := w r,ho
5

K r,ho
B

+ w a,ho
5

K a,ho
B

= 1

K r,ho
B

+ 1

K a,ho
B

, (5.10)

subject to

0 ≤ Lr,ho
w ≤ Lho

max , Rho
mi n ≤ Rr,ho

wi ≤ Rr,ho
wo , Rr,ho

wi ≤ Rr,ho
wo ≤ Rho

max , 0° ≤φr,ho
s ≤ 180°,

0 ≤ La,ho
w ≤ Lho

max , Rho
mi n ≤ Ra,ho

wi ≤ Ra,ho
wo , Ra,ho

wi ≤ Ra,ho
wo ≤ Rho

max ,

2La,ho
w +Lr,ho

w ≤ Lho
max , Rho

sti = max
(
Ra,ho

wo ,Rr,ho
wo

)
.
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In the first group of constraints, the physical constraints for each actuator are defined, includ-

ing the maximum available space in the stator casing as Lho
max , Rho

mi n and Rho
max , whereas in the

second set the couplings between actuators are specified, mainly the fact that the radial bear-

ing is located between the two axial coils and that the inner radius of the back iron is limited

by the thickest coil, as in figure 5.1. The weighting factors for the multi-objective optimisation

are selected as w r,ho
5 = 1 and w a,ho

5 = 1 for the radial and axial bearings, respectively, in order

to give the same weight to both actuators.

The results of the optimisation are included in Table 5.1. It can be seen that these results

do not greatly differ from the ones obtained with optimisations 1-2. As expected, the inner

radii of the windings is fixed as close as possible from the permanent magnet to capture more

magnetic flux. Furthermore, the optimum is obtained with a slightly longer radial bearing

winding and shorter axial windings. For the remaining parameters, in order to better study

the dependency of the objective function, a parametric sweep is performed for the outer radii

of radial and axial bearing windings and its results are included in figure 5.3.e. As φs of the

rhombic radial bearing is independent from the remaining parameters, only the optimum for

each winding dimension is considered in the figure.

The optimum will result in an increase of 55.6 % with respect to the original machine xo
5 as per

[104] with no back iron, and of 2.9 %, with respect to the system resulting from optimisations 1

and 2.

Optimisation 6: Heteropolar Side

In this case, a multi-objective optimisation is studied for the heteropolar side, by searching

the optimal winding dimensions and parameters of radial bearing and motor windings. The

objective function is defined as a linear combination of the inverse of the motor and bear-

ing constants in order to maximise the efficiency of both actuators, varying the dimensions

and parameters of the radial bearing, xr,he
6 = [Lr,he

w ,Rr,he
wi ,Rr,he

wo ,φr,he
s ,Lr,he

s ]>, and motor wind-

ing, xm,he
6 = [Lm,he

w ,Rm,he
wi ,Rm,he

wo ,φm,he
s ,Lm,he

s ]>. The multi-objective optimisation problem is

defined as

min
x6

f6(x6) := w r,he
6

K r,he
B

+ wm,he
6

K m,he
M

= 1

K r,he
B

+ Rhe
max

K m,he
M

, (5.11)

subject to

0 ≤ Lr,he
w ≤ Lhe

max , Rhe
mi n ≤ Rr,he

wi ≤ Rr,he
wo , Rr,he

wi ≤ Rr,he
wo ≤ Rhe

max , 0° ≤φr,he
s ≤ 180°,

0 ≤ Lm,he
w ≤ Lhe

max , Rhe
mi n ≤ Rm,he

wi ≤ Rm,he
wo , Rm,he

wi ≤ Rm,he
wo ≤ Rhe

max , 0° ≤φm,he
s ≤ 180°,

0 ≤ Lr,he
s ≤ Lr,he

w , 0 ≤ Lm,he
s ≤ Lm,he

w ,

∣∣∣Rm,he
wo −Rr,he

wo

∣∣∣> 0, Rhe
sti = max(Rm,he

wo ,Rr,he
wo ),

Rm,he
wi = Rr,he

wo , if Rr,he
wo < Rm,he

wo ,

Rr,he
wi = Rm,he

wo , if Rr,he
wo > Rm,he

wo .
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In a similar manner to the optimisation of the homopolar side, in the first group of constraints,

the physical constraints for each actuator are defined, with the maximum available space

Lhe
max , Rhe

mi n and Rhe
max , and, in the second set, the couplings between actuators are specified.

These couplings consist of the fact that the bearing is located at the inner part and the motor

winding in the outer, as in figure 5.1. The weighting factors for the multi-objective optimisation

are selected as w r,he
6 = 1 and wm,he

6 = Rhe
max for the radial bearing and motor, respectively, in

order to normalise and convert to equivalent units for both actuators.

The numerical results of the optimisation are included in Table 5.1. From these results it can

be seen that, as expected, the inner radius of the bearing winding is fixed as close as possible

to the permanent magnet, Rm,he
wi = Rhe

mi n , and the length of both windings is Lw = Lhe
max to

capture the maximum flux possible, and thus these parameters could be removed from the

analysis to reduce the computational complexity of the optimisation. The dependency of the

bearing and motor efficiency with respect to the outer radii of the windings is included in

figure 5.3.f. As parameters φs and Ls of motor winding are independent from the ones of the

bearing, and vice versa, only the optimum for each winding dimensions is considered in the

figure.

The optimum yields an increase of 64 % with respect to the original system xo
6 as in [104],

and of 5.4 % with respect to the resulting actuator from optimisations 3-4. The upper triangle

in the results represent the case where the motor winding is located at the outer part of the

machine and the radial bearing in the inner part (Rm,he
wo > Rr,he

wo ), which corresponds to the

current arrangement of actuators, whereas the lower triangle represents the opposite case

with the motor in the inner part (Rm,he
wo < Rr,he

wo ). From the results it can be seen that the former

arrangement results in a more efficient machine than the latter.

Manufactured Optimised System

Considering the manufacturing limitations and raw material availability for the back iron,

the exact configurations resulting from all the previous optimisations cannot be realised. As

optimisations 1-4 already considered the majority of these limitations, they are used as a basis

for the manufacturing. Then, the closest available winding and stator parameters to these

optimums are selected and manufactured, whose exact dimensions and efficiency as defined

in previous optimisations is included in table 5.1. With respect to the original system defined

in [104], the analytical models show that the manufactured system will result in the expected

efficiency increases detailed in table 5.2, which can be summarised as:

1. Homopolar axial bearing: the manufactured bearing would result in a 20.3 % increase

in efficiency, as per optimisation 1 (5.6), according to available analytical models.

2. Homopolar radial bearing: the manufactured bearing will result in an efficiency increase

of 38.7 %, as per optimisation 2 (5.7), according to the employed analytical models.

3. Heteropolar motor: the manufactured motor is expected to have an efficiency increase
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Table 5.2 – Analytical calculations of original and manufactured optimised winding properties, in-
cluding bearing KB and motor KM constants, force κF and torque κT constants, and winding phase
resistance Rph .

Funct.
Stator

KB , KM κF , κT RphWinding Side Iron

Axial
Bearing

Original (Ax.) Hom w/o 0.236 N/
p

W 1.004 N/A 18.1Ω
Manufact. (Ax.) Hom w/ 0.284 N/

p
W 0.895 N/A 9.93Ω

Relative Difference: +20.3 % −10.9 % −45.1 %

Radial
Bearing

Original (Sk.) Hom w/o 0.253 N/
p

W 0.408 N/A 2.60Ω
Manufact. (Rh.) Hom w/ 0.351 N/

p
W 0.603 N/A 2.95Ω

Relative Difference: +38.7 % +47.8 % +13.5 %

Motor
Original. (Sk.) Het w/ 1.490 mNm/

p
W 1.273 mNm/A 0.73Ω

Manufact. (Hx.) Het w/ 1.997 mNm/
p

W 2.146 mNm/A 1.16Ω

Relative Difference: +34.0 % +68.6 % +58.9 %

Radial
Bearing

Original (Sk.) Het w/ 0.324 N/
p

W 0.387 N/A 1.43Ω
Manufact. (Hx.) Het w/ 0.457 N/

p
W 0.678 N/A 2.20Ω

Relative Difference: +41.1 % +75.2 % +53.9 %

of 34.0 %, as per optimisation 3 (5.8), according to employed analytical models.

4. Heteropolar radial bearing: the manufactured bearing would result in an increase of

41.1 % in efficiency, as per optimisation 4 (5.9).

5. Homopolar side: the manufactured homopolar radial and axial bearings will result in

a global increase of 28.6 % in efficiency for the homopolar side, as per optimisation 5

(5.10).

6. Heteropolar side: the manufactured heteropolar radial bearing and motor will result in

a global increase of 36.2 % in efficiency for the heteropolar side, as per optimisation 6

(5.11).

These results will be experimentally measured and validated in chapter 7 through a measure-

ment of each actuator’s forces or torques and phase resistances. Furthermore, these static

measurements are completed by the measurement of the power consumption of the system

during operation, and thus directly quantifying the efficiency increase.

5.2 Hybrid Magnetic Bearing Motor Optimisation

Depending on the use case, having a total of six degrees of freedom actively controlled may

impose an excessive cost or complexity for the viability of magnetic bearings in a given

application. Each actively controlled degree of freedom requires additional sensing, actuation

and computing power that may be prohibitive in some cases.
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(a) Fully Active Configuration (b) Hybrid Configuration

Acive
Axial and Radial

Bearings

Rotor

Passive
Axial Bearing

Active
Radial Bearing

and Motor

Figure 5.4 – Schematic cross section of fully active and hybrid magnetic bearing reaction wheels.

For this reason, it may be preferred to sacrifice some of the performance of a fully active

magnetic bearing (AMB) system and include some degrees of freedom that are passively

stabilised. Such a configuration is named a hybrid magnetic bearing (HMB) system, which

combines active and passive magnetic bearings. Note that a fully passive magnetic bearing

configuration employing paramagnetic or ferromagnetic materials is not possible as a result

of Earnshaw’s theorem [30].

As it can be observed from the closed-loop models defined in chapter 3 and from the experi-

mental measurements in chapter 7, the most critical dynamics and vibrations are in radial

direction, as unbalance, shaft bow and other disturbances are predominantly radial. Further-

more, axial dynamics are generally decoupled from radial dynamics and a simple single-input

single-output (SISO) control is usually sufficient for its stabilisation.

For this reason in order to simplify the general topology of the studied actuator without greatly

affecting its stability, performance and vibration suppression capabilities, an arrangement of

permanent magnet rings is included in the rotor rim to passively stabilise the axial displace-

ments. The location of the rings at the outer part of the rotor and stator, at a relatively big

radius from the rotation axis also allows the passive stabilisation of the radial tilting of the

rotor. To maintain complete functionality of the machine, it is then needed to actively control

the radial displacements and the torsional (motor) dynamics of the rotor. The heteropolar side

of the original machine, featuring a radial bearing and motor is considered for the stabilisation

of these degrees of freedom, resulting in a configuration such as the one graphically shown in

figure 5.4.b, where it is compared to the fully active configuration in figure 5.4.a.

The simplification of the magnetic bearing topology to include a hybrid configuration comes

at the expense of the inability of actively suppressing radial torque vibrations. As torque

vibrations are generally less critical than forces, specially in space applications, where a force

generated by the reaction wheel, usually located at a relatively big distance from the satellite’s

centre of mass, would generate a much greater torque than the one generated at the actuator

itself, the performance hit of the passive stabilisation of these degrees of freedom would still

be minimum.

Two main configurations are considered for the passive stabilisation of axial and tilting degrees
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(a) Hybrid Configuration A (b) Hybrid Configuration B

Rotor

Passive
Axial Bearing

Active
Radial Bearing

and Motor

Figure 5.5 – Schematic cross section of studied hybrid magnetic bearing reaction wheel topologies with
attractive (a) or repulsive configurations (b).

of freedom, which are shown in figure 5.5, featuring either attractive or repulsive arrangements

of permanent magnets. The previously defined models for calculating the forces, torques and

stiffness for both configurations enable the possibility of precisely dimensioning the passive

structures to target a stable and high-performance system.

5.2.1 Optimisation Problem Definition

Whereas the optimisation procedure presented in section 5.1 can still be employed for the

active parts of the hybrid configuration, a different procedure needs to be followed for the

dimensioning and selection of the appropriate passive magnetic bearing configuration.

As shown in the validation of the passive magnetic bearing (PMB) models in section 4.3, the

passive stabilisation of axial and tilting degrees of freedom, with stiffness coefficients k > 0,

imposes a destabilising effect in radial direction, with stiffness coefficient k < 0, which need to

be overcome by the active radial bearing. For this reason, the ultimate goal is the selection of a

passive configuration that guarantees stable behaviour for the whole target speed range, while

not greatly disturbing the radial dynamics.

In this analysis no detailed design of such a machine is envisioned, and only a high-level

validation of such a concept is sought. In order to achieve this objective, the closed-loop

dynamics, defined in chapter 3, and the electromagnetic active and passive magnetic bearing

models, detailed in chapter 4, are employed, and the following design flow is proposed:

1. System design, {A}.

• Inputs: dimensioning of rotor, active and passive elements.

• Method: electromagnetic models of active and passive magnetic bearings.

• Output: system high-level parameters for rotordynamics models.

– Physical parameters: rotor mass, m, inertia, Ip , It , centre of gravity eccentricity,

εw , and main axis of inertia tilt, χ.

– Magnetic parameters: magnetic stiffness in radial direction, k11, angular direc-

tion, k22, and axial direction, k33, and active bearing force constant, κF . No
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damping (dn and dr ) nor crossed element in stiffness (k12, k13 and k23) are

considered.

2. Reduced rotordynamics definition, Pr ed .

• Inputs: m, ε, kr , κF .

• Method: Jeffcott rotor rotordynamics model (only linear dynamics).

• Output: system plant dynamic system for controller design Pr ed .

3. Controller/observer design, R .

• Inputs: Pr ed and closed-loop requirements and goals.

• Method: pole-placement for homogeneous performance and equal comparison of

bearings.

• Output: controller and observer dynamic systems R.

4. Full rotordynamics definition, P f ul l .

• Inputs: m, Ip , It , ε, χ, k11, k22, k33, κF .

• Method: five degrees-of-freedom rotordynamics model (complete axial and radial

linear and angular dynamics).

• Output: system plant dynamic system for closed-loop system analysis P f ul l .

5. Closed-loop analysis.

• Inputs: P f ul l , R.

• Method: frequency and time-based analysis, considering closed-loop poles, Camp-

bell diagram and unbalance response.

• Outputs: stability and performance check through unbalance response. If closed-

loop system is not stable or unbalance response not acceptable (excessive orbits

or vibrations), iterate from steps 1-5.

In order to have a direct comparison with the available fully active magnetic bearing system, a

hybrid magnetic bearing machine with similar dimension of actuators is considered. The main

factors that determine the practical use of a reaction or momentum wheel are the maximum

angular momentum storage capacity Lmax = IpΩmax and torque Tmax . In a similar way, for

conventional motors, its size is mainly defined by its maximum power Pmax = TmaxΩmax .

Considering that the same heteropolar side of the fully active magnetic bearing motor, Tmax

remains unchanged and the two remaining degrees of freedom are both Ip and Ωmax . It is

then chosen to target a design which will feature the same order of magnitude of maximum

angular momentum storage capacity.

As only a high-level design is envisioned, in the following section, the viability of such configu-

rations is analysed through the study of stability and behaviour of the closed-loop systems.
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Table 5.3 – Passive magnetic bearing (PMB) dimensions for configurations A and B, as defined in figure
4.4. All radial and axial dimensions are expressed in mm.

System r1 r2 r3 r4 z1 z2 z3 z4

Config. A 16 23.5 24 31 -2 2 -2 2

Config. B 19 23 19 23 -4.25 -0.25 0.25 4.25

5.2.2 Viability Validation and Closed-Loop Analysis

In this section, the final high-level design of the hybrid magnetic bearing machine is described.

The previously defined design flow is executed and the final results are explained for each of

the steps.

System Design

For simplicity, the analysis is only focused on the passive magnetic bearing and its influence

on the closed-loop system. It is then considered that the active magnetic bearing and motor

are obtained through the optimisation shown in section 5.1, featuring the properties and

dimensions summarised in table 5.1 for optimisation 6.

To perform the dimensioning of the machine, the following considerations are taken:

• A total rotor mass similar to the fully active rotor is targeted.

• For comparison between configurations A and B of the passive bearing, a similar total

permanent magnet volume in both rotor and stator is considered.

• The maximum speed is chosen in such a way that the total angular momentum is equal

or greater than the one of the fully active machine.

• No critical speed should be present in the considered speed range. For this reason, the

passive stiffness in axial and tilting directions should be such that the axial and conical

modes of the rotordynamic system are always higher than the rotation frequency.

• A minimum thickness of 4 mm in either radial or axial direction is imposed for the

permanent magnet rings.

As no detailed rotor design is intended, the simple rotor configurations shown in figure

5.6 is considered to calculate its mass and inertia. For both configurations, the rotor can

be divided in rim, spokes and shaft, and the only materials employed are titanium, with

density ρT i = 4.506g/cm3, and Samarium-Cobalt magnets, with density ρSmCo = 8.5g/cm3.

To simplify the calculation, the spokes are considered as massless, and the shaft to be like the

heteropolar side of the fully active configuration, being a cylindrical permanent magnet and a

titanium rotor sleeve.
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(a) Rotor Configuration A
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(b) Rotor Configuration B
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Figure 5.6 – Simplified hybrid magnetic bearing rotor structure for mass and inertia calculations with
titanium and Samarium-Cobalt permanent magnet rim and shaft with massless spokes.

Table 5.4 – Closed-loop system parameters of rotordynamics model for fully active (AMB) and hybrid
magnetic bearing (HMB) system configurations A and B.

System Param. Value Param. Value Param. Value

AMB
m 71 g It 18.9 kgmm2 Ip 23.8 kgmm2

k11 -0.3 N/mm k22 -0.1 Nm/rad k33 0.071 N/mm

Ωmax 20 krpm VP M 1.00 cm3 Lmax 49.79 mNms

ε 10 µm χ 100 µrad

HMB
Conf. A

m 94.9 g It 36.3 kgmm2 Ip 72.1 kgmm2

k11 -44.6 N/mm k22 26.7 Nm/rad k33 89.2 N/mm

Ωmax 8 krpm VP M 9.06 cm3 Lmax 60.42 mNms

ε 6.68 µm χ 79.8 µrad

HMB
Conf. B

m 97.8 g It 23.6 kgmm2 Ip 45.3 kgmm2

k11 -67.2 N/mm k22 28.0 Nm/rad k33 134.5 N/mm

Ωmax 10 krpm VP M 8.94 cm3 Lmax 47.39 mNms

ε 6.68 µm χ 135.7 µrad

Then, the rotor rim for each passive bearing configuration is:

• Configuration A: the rim is composed of an outer titanium rim of 3 mm of thickness

and an inner magnet ring with dimensions r3,r4, z3, z4 as defined in table 5.3.

• Configuration B: the rim is composed of an outer titanium rim of 3 mm of thickness,

two permanent magnet rings with dimensions r3,r4, z3, z4 as defined in table 5.3 and

axially separated by 5 mm titanium.

In table 5.3, the final passive magnetic bearing dimensions for both configurations are defined,

and in table 5.4, the main high-level parameters resulting from a system with such dimensions,

calculated using the electromagnetic models validated in chapter 4. Also, for comparison, the

high-level parameters of the studied fully active systems are shown.

It can be seen that the repulsive configuration (B) requires two pairs of permanent magnet

rings instead of a single pair for the attractive configuration (A). The dimensions are then

chosen to contain an equivalent total permanent magnet volume in rotor and stator.
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The unbalance magnitude of the rotor is chosen within the allowed balancing limits for

rotating machinery of equivalent size with balancing grade G6.3 provided by [14].

Reduced Rotordynamics

The design of the radial bearing controller is performed using a rotordynamic model that only

considers the radial displacements, which corresponds to the Jeffcott rotor model defined in

equations (3.3) and (3.4).

It is assumed that there is no damping in the system, that the radial bearing forces are applied

at the center of gravity of the rotor and that the position sensors directly measure the rotor

radial displacements. Under these assumptions the rotordynamics model can be defined as

Mq q̈ +Kq q =Uq u,

y =Wq q
(5.12)

being Mq , Kq , as defined in (3.4), Uq = κr,he
F = 0.5N/A, and Wq = I , q the Jeffcott rotor gen-

eralised coordinates, u the radial bearing currents and y the position sensor measurements.

Reformulating in state-space representation, considering xP = [q>, q̇>]> the plant dynamics

are

Pr ed =





ẋP (t ) = AP xP (t )+BP u(t ) =

 O I

−M−1
q Kq O


xP (t )+


 O

M−1
q Uq


u(t ),

y(t ) =CP xP (t ) =
[

Wq O
]

xP (t ) =
[

I O
]

xP (t ).

(5.13)

Controller/Observer Design

Having defined the dynamics of the system to control, the controller and observer is designed

by considering a full-state feedback control technique. An observer with matrix gain LSF will

estimate the system states, and a controller with gain matrix KSF will stabilise the system to its

reference position.

The design of LSF and KSF is performed by pole placement, to guarantee similar behaviour

between the studied configurations. To simplify the analysis, continuous-time controller

and observer are studied, and the performance is chosen by the desired closed-loop poles of

observer sL = [−1.1,−1] kHz and controller sK = [−0.15,−0.12] kHz.

Then, the radial position observer and controller can be combined into the following dynamic

system in state-space representation

R =




ẋR (t ) = AR xR (t )+BR y(t ) = (AP −BP KSF −LSF CP )xR (t )+LSF y(t ),

u(t ) =CR xR (t ) =−KSF xR (t ),
(5.14)
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where it is considered that the reference position is always 0. Note that, as opposed to chapter

3, to simplify the notation R considers both controller and observer.

Full Rotordynamics

In order to fully analyse the behaviour of the rotor in all directions, the closed-loop analysis

is performed considering the five degrees-of-freedom model defined in equations (3.3) and

(3.8).

The equations of motion of a rotating body with no damping and generalised coordinates

q = [rc ,φc , zc ], including radial displacement rc , tilting φc and axial displacements zc , result

in

Mq q̈(t )+Gq (Ω)q̇(t )+Kq q(t ) =Uq u(t )+Vq ud (t ),

y(t ) =Wq q(t )
(5.15)

being Mq , Kq , Gq , as defined in (3.8), with only diagonal elements of stiffness k12 = k13 = k23 =
0, Uq , Vq and Wq defined as

Uq =



κr,he

F

0

0


 , Vq =Ω2




mεe jα

χ(It − Ip )e jβ

0.1mεe jα


 , Wq =

[
1 0 0

]
, (5.16)

and the physical parameters as defined in table 5.4. An harmonic disturbance in axial direction

with one tenth of the radial unbalance magnitude is artificially included to clearly see any

possible resonance in this direction in the closed-loop system unbalance response.

The state-space representation of such a system is

P f ul l =





ẋP (t ) = AP xP (t )+BP u(t )+B ′
P ud (t ) =

=

 O I

−M−1
q Kq −M−1

q G(Ω)


xP (t )+


 O

M−1
q Uq


u(t )+


 O

M−1
q Vq


ud (t ),

y(t ) =CP xP (t ) =
[

Wq O
]

xP (t ).

(5.17)

Note that only the radial displacements are measured and actively controlled and thus the

tilting and axial degrees of freedom need to be passively stable.

Closed-Loop Analysis

Considering the interconnections graphically shown in figure 5.7, where it is considered

that the reference position is always set to xr e f = 0, and subject to the harmonic excitation

ud = e jΩt , it is possible to study the closed-loop stability of the system and its unbalance
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R P f ul l
y u

ud

Figure 5.7 – Simplified general closed-loop diagram of hybrid magnetic bearing system with controller
and observer R, and full rotordynamics P f ul l for stability analysis.

response.

Such an analysis can be performed by considering the sensitivity functions from the unbal-

ance excitation ud to plant states xP and controller actuation u, denoted as Sux and Suu ,

respectively. As the measurements y only account for the radial displacements, the complete

system analysis is performed by considering the states xP instead.

Defining the closed-loop system states as x = [x>
P , x>

R ]>, Sux and Suu result in

Sux =




ẋP (t ) = Ax(t )+Bud (t ),

xP (t ) =Cux x(t ),
, Suu =





ẋ(t ) = Ax(t )+Bud (t ),

u(t ) =Cuu x(t ),
(5.18)

being

A =
[

AP BPCR

BRCP AR

]
, B =




B ′
P

O

O


 , Cux =

[
I O

]
, Cuu =

[
O CR

]
. (5.19)

The closed-loop system is stable if no eigenvalue of matrix A is located at the right half plane

(RHP), i.e. all eigenvalues have zero or negative real part. Furthermore, to guarantee that the

rotor displacements and actuator currents under unbalance excitation do not exceed some

reasonable limits, the unbalance response of the closed-loop systems Sux and Suu can be

studied either in frequency or time domain.

Firstly, the closed-loop poles are shown in figure 5.8 as Campbell and decay-rate plots. It can

be seen that all radial poles are located at the desired locations chosen by the pole-placement

controller and observer, and that both tilting and axial modes have, as expected, no damping

and they are located at the imaginary axis. On the one hand, due to the disk-shaped rotor, i.e.

Ip > It , there is no critical speed for the radial tilting dynamics, as the conical or tilting modes

never cross the unbalance excitation frequencyΩ. On the other hand, the speed-independent

axial modes do eventually crossΩ, and the maximum rotational speed will then be fixed by

this critical speed.

Secondly, considering the unbalance magnitude given by the standard [14] for rotating ma-

chinery of equivalent size with balancing grade G6.3, as defined in table 5.4, the unbalance

response of the hybrid magnetic bearing systems is shown in figure 5.9.

94



5.2. Hybrid Magnetic Bearing Motor Optimisation

−20 −15 −10 −5 0 5 10 15 20

−0.6

−0.3

0

0.3

0.6

Rotational speed (krpm)

N
at

u
ra

lf
re

q
.(

kH
z)

(a) Hybrid Magnetic Bearings Campbell Plot
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(b) Hybrid Magnetic Bearings Decay-Rate Plot

Config. A: Radial Mode Tilting Mode Axial Mode
Config. B: Radial Mode Tilting Mode Axial Mode

Figure 5.8 – Campbell and decay-rate plots of hybrid magnetic bearing systems defined by high-level
parameters from table 5.4. Rotordynamic modes as a function of rotor speed are shown for both hybrid
systems with attractive (config. A) and repulsive (config. B) passive magnetic bearings.
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(b) HMBs Unbalance Response: Suu (s)

Config. A: rc (µm) φc (mrad) zc (µm) u (A)
Config. B: rc (µm) φc (mrad) zc (µm) u (A)

Figure 5.9 – Unbalance response of hybrid magnetic bearing systems defined by high-level parameters
from table 5.4. Rotor radial displacements rc , radial tilting φc , axial displacements zc and actuator
currents u are shown as a function of rotor speed for both hybrid systems with attractive (config. A)
and repulsive (config. B) passive magnetic bearings under unbalance excitation.

It can be seen that the critical speeds for the axial degrees of freedom appear at approximately

9 krpm and 11 krpm for configurations A and B, respectively, and for this reason, the maximum

speed is chosen at 8 krpm and 10 krpm to avoid infinitely big rotor displacements, which in

practice would result in a rotor crash. Furthermore, the applied currents to stabilise the rotor

in radial direction are not excessively high, being below 3 A for both cases for the considered

Ωmax , which could be applied by the existing bearing and power converter.

Whereas no damping has been considered for the analysis, in practice, some damping should

be considered, as a result from the induced voltage in the radial bearing and motor windings

when the rotor is displaced from its centre. This behaviour would only stabilise the system
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due to its energy dissipation, which would result in a damping of the harmonic disturbances

such as the rotor unbalance or shaft bow.

These high-level results show that both configurations could be further investigated and

eventually manufactured in order to obtain a more simple magnetic bearing topology for

applications where big inertia disks are required, such as reaction or momentum wheels for

space applications, or kinetic energy storage wheels for terrestrial applications.

5.3 Conclusions

In this chapter, two main developments are presented: first, a general optimisation procedure

for active magnetic bearings and motors is described, and second, a hybrid magnetic bearing

topology is designed and its viability validated.

The main contributions of the chapter are the following:

• A general optimisation procedure for active magnetic bearings and motors is presented.

– The optimisation maximises the efficiency of the general machine or single actua-

tor.

– It allows considering the possible interactions between actuators for a general

machine optimisation where several actuators share some given resources, as in

self-bearing machines.

– The optimisation is applied to the studied fully active magnetic bearing system

resulting in a greatly improved efficiency when compared to the original machine.

• A hybrid magnetic bearing configuration that combines active and passive magnetic

bearings is presented and analysed.

– The hybrid magnetic bearing simplifies the magnetic bearing configuration, by

actively controlling only three (radial displacements and motor torque) of the six

degrees of freedom of the rotor.

– The passive magnetic bearings with both repulsive and attractive configurations

are designed and dimensioned.

– The preliminary high-level design is analysed at system level through rotordynam-

ics analysis using the tools described in chapter 3.

– Both configurations show promising capabilities and their viability is proven by

high-level closed-loop system analysis.
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6 Harmonic Disturbance Suppression
for Magnetic Bearings

In this chapter, a greatly stable harmonic force rejection control technique is presented

and its stability and performance is analysed for the studied fully active magnetic bearing

system. The proposed generalised notch filter is based on the unbalance and resonance

suppression control originally proposed in [120], and features the advantage of not requiring

any gain or parameter selection for guaranteeing its stability for a broad range of speeds. Due

to the intrinsic differences between the piezoelectric active bearings featured in [120] and

magnetic bearings, its stability for magnetically levitated rotors is analytically analysed and

experimentally validated using a fully active slotless Lorentz-type magnetic bearing motor.

Firstly, in section 6.1, a brief description of the main previously available unbalance control

techniques is presented, including their limitations. In section 6.2, the general structure of the

proposed generalised notch filter is presented, including the required modifications for its

implementation on a real system and its general stability criterion is derived. Afterwards, the

stability of the technique is investigated in detail for the studied magnetic bearing system in

section 6.3. The experimental measurements of the harmonic force rejection control technique

is included in chapter 7, achieving a complete suppression of the first three harmonics of the

actuating currents and thus significantly reducing the vibrations generated by the machine

during operation by at least one order of magnitude over its whole speed range.

A similar analysis to the one performed in this chapter has been carried out in [50], where the

proposed generalised notch filter is described, analysed and implemented for the studied fully

active magnetic bearing system.

6.1 Harmonic Disturbance Suppression Techniques

Whereas rotor balancing can considerably reduce the magnitude of one of the main sources

of vibrations, allowing the operation of the machine for much longer time and at higher

speeds, in practice it is impossible to achieve a perfect rotor balancing [14] and thus some

residual vibrations will always be present. In some applications such as optics [121] or in
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space [10] where vibrations are critical for the precision of the measurement equipment, some

additional isolation is necessary, by adding for example a passive [22] or even active [23]

isolation platforms.

The absence of mechanical contact between rotor and stator in magnetically levitated rotors

enables the possibility of actively controlling and reducing the vibrations generated during

rotation. These approaches are commonly known as vibration or unbalance force rejection

control (UFRC) techniques and have seen increasing interest in the last decades [122]–[125].

One of the most extended unbalance control techniques that was proposed in [123], known

as generalised notch filter, has seen broad expansion in industry and it has been successfully

employed for suppressing harmonic disturbances in magnetically levitated rotating machines

[30]. The main reason of its success is its adaptive nature, not requiring any model of the noise

and vibration to suppress, only requiring an estimation or measurement of the rotor speed.

Nevertheless, its implementation requires the selection of tunable parameters in a gain matrix

for stable operation over a broad speed range and often requires a gain-scheduling approach.

More recent approaches target at solving these stability issues by substituting the gain matrix

with a phase shift [124], or by employing a polarity shift [125], but still requiring the adaptation

of the parameters with speed to guarantee a stable system.

As initially proposed in [120], an independent development for piezoelectric active bearings

resulted in a stable unbalance and resonance control technique that greatly reduced the

stability problems of previous unbalance control implementations, with no gain adaptation

required for stable operation. In [120], the stability of the approach was generally proven

analytically and experimentally for rotating machinery including single or multiple piezo-

electric bearing actuators, which feature intrinsic stable passive stiffness. Whereas these

conditions do not hold for magnetic bearing systems, with unstable open-loop dynamics,

the employed unbalance and resonance control technique show promising possibilities for

magnetic bearings.

To highlight the main characteristics of the conventional generalised notch filter originally

proposed in [123], a brief presentation of its structure and characteristics is performed here-

after.

6.1.1 Conventional Generalised Notch Filter

Considering a general closed-loop system shown in Fig. 6.1.a, with controller R and plant

P , it is possible to suppress the l-th harmonic component of the measurement signal y by

considering a conventional generalised notch filter N f as presented in [123].

The internal structure of such a generalised notch filter is graphically represented in figure
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(a) Closed-Loop with Conventional N f

R Pq

N f

y y̌ u

y N

Ω ud

−

(b) Closed-Loop with Proposed N f

R Pq
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y y̌ u
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−

(c) Conventional Generalised Notch Filter N f

N f
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∫
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(d) Proposed Generalised Notch Filter N f
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∫
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−

Figure 6.1 – Simplified general closed-loop (top) and internal structure (bottom) of conventional (left)
or proposed (right) generalised notch filter N f , with controller R and rotordynamics Pq .

6.1.c, which corresponds to the dynamic system N f described by

y N (t ) =
[

sin(Ωt )I cos(Ωt )
][

TR −TJ

TJ TR

] t∫

0

cc

[
sin(Ωτ)I

cos(Ωτ)I

]
y̌(τ)dτ (6.1)

being I an identity matrix,Ω the rotational speed of the rotor, cc the rate of convergence of the

filter which also defines the bandwidth of the notch, and TR , TJ two real-valued gain matrices.

The dynamic system defined in expression (6.1) corresponds to the following linear differential

equation

ÿ N +Ω2 ẏ N = cc (TR
˙̌y −ΩTJ y̌). (6.2)

Defining TN = TR + j TJ as complex gain matrix, and T N = TR − j TJ its complex conjugate,

being j =
p
−1 the imaginary unit, it is possible to reformulate the differential equation (6.2)

as a state-space system, resulting in

ẋ N (t ) = AN x N (t )+BN y̌(t ) =
[

jΩI O

O − jΩI

]
x N (t )+ cc

[
TN

T N

]
y̌(t ),

y N (t ) =CN x N (t ) = 1

2

[
I I

]
x N (t ),

(6.3)

being O a zero matrix and x N the internal states of the notch. If a matrix TN is found such that

the closed-loop system is stable, this generalised notch filter actuating over frequency Ω is

able to suppress any harmonic component from the measured signal y . These harmonic dis-

turbances commonly appear due to unbalance forces, and preventing the closed-loop system

to react to these disturbances results in a considerable reduction in generated vibrations and

power consumption.
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As explained in [123], different options exist for choosing the values of matrix TN that will result

in a stable closed-loop system. These techniques rely on the identification and adaptation of

TN depending on the closed-loop dynamics at each speedΩ in terms of the sensitivity transfer

function matrix (TFM) S(s). This results in the necessity of selecting a gain-scheduled matrix

TN (Ω) to guarantee stability over a broad speed range.

The generalised notch filter defined in expression (6.3) can be generalised to suppress not only

disturbances appearing synchronous to the rotation speedΩ, but also in higher harmonics

l ∈ {1,2, . . . ,nh} by simply considering lΩ instead. Nevertheless, doing so implies the selection

of either a single TN (Ω) such that the system is stable for all nh harmonics, or a different TN (Ω)

for each l-th harmonic.

This necessity of finding an appropriate structure for TN (Ω) to guarantee the closed-loop sta-

bility can limit the applicability of this UFRC. The generalised notch filter proposed hereafter is

developed to overcome these limitations and facilitate the implementation of multi-harmonic

force rejection control for magnetic bearing systems.

6.2 Proposed Generalised Notch Filter

Following the development of equations presented in [120], the resulting general closed-loop

diagram with the proposed generalised notch filter N f is shown in figure 6.1.b. The filter takes

the position controller output currents u(t ) as input to generate an harmonic signal yN (t ) to

be removed from the input signal to the position controller y̌(t ). This is achieved for the l-th

harmonic by considering

ẋ N l (t ) = AN l x N l (t )+BN l u(t ) =
[

j lΩI O

O − j lΩI

]
x N l (t )+ cc

Ω

|Ω|

[
j I

− j I

]
u(t ),

y N l (t ) =CN l x N l (t ) = 1

2

[
I I

]
x N l (t ).

(6.4)

The stability of such configuration relies on the use of a fixed structure, and thus absence of

any gain matrix, and the use of the controller output, u, as input signal to the filter. It is also

clear that one requisite for employing such a generalised notch filter is that a measurement or

estimation of the rotor speedΩ is necessary.

The complete vibration control is obtained by combining the expression (6.4) for all l ∈
{1,2, . . . ,nh} harmonics that will be suppressed, resulting in x N = [x>

N 1, . . . , x>
N nh

]> and

ẋ N (t ) = AN x N (t )+BN u(t ) =




AN 1 · · · O
...

. . .
...

O · · · AN nh


x N (t )+




BN 1
...

BN nh


u(t ),

y N (t ) =CN x N (t ) =
[
CN 1 · · · CN nh

]
x N .

(6.5)
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For a configuration that will suppress nh harmonics on a system with nq degrees of freedom,

u ∈Cnq and y ∈Cnq , the notch state-space matrices will have dimensions AN ∈C2nq nh×2nq nh ,

BN ∈C2nq nh×nq and CN ∈Cnq×2nq nh .

6.2.1 Implementation

To implement the proposed harmonic disturbance suppression algorithm into a real system,

it is necessary to transform the dynamic system defined in (6.4) into an algorithm that a digital

signal processor (DSP) or embedded controller can compute in real-time.

To address these aspects, the following steps are taken:

1. To prevent rotor orbits of infinite amplitude at resonance speeds, a virtual stiffness δ is

included into (6.4), as done in [120], which results in

ẋ N l (t ) = (AN l − Aδ)x N l (t )+BN l u(t )

y N l (t ) =CN l x N l (t ),
(6.6)

with Aδ = δI . If δ 6= 0 the integration of the notch states x N l is slowed down, acting

against both the increase in orbits and a perfect harmonic suppression.

2. Using the similarity transformation Fl for the l-th harmonic and its time derivative

x N l (t ) = Fl x̌ N l (t ) =
[

e j lΩt I O

O e− j lΩt I

]
x̌ N l (t ),

ẋ N l (t ) = Ḟl x̌ N l (t )+Fl
˙̌x N l (t ) = AN l Fl x̌ N l (t )+Fl

˙̌x N l (t ),

(6.7)

and defining čc = ccΩ/|Ω|, it is possible to reformulate expression (6.6) using x̌ N l (t)

instead, resulting in

˙̌x N l (t ) =−Aδx̌ N l (t )+F−1
l BN l u(t ) =−δx̌ N l (t )+ čc

[
j e− j lΩt I

− j e j lΩt I

]
u(t ),

y N l (t ) =CN l Fl x̌ N l (t ) =
[

e j lΩt

2 I e− j lΩt

2 I
]

x̌ N l (t ).

(6.8)

3. Considering Euler’s formula, the complex exponentials are expressed only in terms of

pure real numbers and trigonometric functions sin(lΩt ) and cos(lΩt ) as follows

x̌ N l (t ) =−δx̌ N l (t )+ čc

[
−cos(lΩt )I

sin(lΩt )I

]
u(t ),

y N l (t ) =
[

sin(lΩt )I cos(lΩt )I
]

x̌ N l (t ),

(6.9)

and as graphically represented in Fig. 6.1.d.

4. The system is discretised using Euler’s method and the sampling frequency fs of the
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controller, resulting in

x̌ N l [k +1] =
(
1− δ

fs

)
x̌ N l [k]+ čc

fs

[
−cos(lΩtk )I

sin(lΩtk )I

]
u[k],

y N l [k] =
[

sin(lΩtk )I cos(lΩtk )I
]

x̌ N l [k].

(6.10)

5. The discrete-time equations are combined for the l ∈ {1,2, . . . ,nh} harmonics to be

suppressed using (6.5).

Interestingly, it can be observed that expressions (6.9) and (6.10) correspond to a similar

formulation to the one previously presented in [123], which is defined in Appendix 6.1.1, but

considering no gain matrix, i.e. having a fixed structure being TR =O and TJ = I , and using as

input to the filter the controller’s output u instead of input y̌ .

6.2.2 General Stability Condition

Considering the interconnections of the closed-loop scheme shown in figure 6.1.b, with TFMs

Pq (s), R(s) and N f (s) for plant, controller and notch dynamics, the loop TFM L(s) of the

configuration results in

L(s) = Pq (s)R(s)(I +N f (s)R(s))−1. (6.11)

The stability is then guaranteed if the closed-loop sensitivity TFM, calculated as

S(s) = (I +L(s))−1 = (I +Pq (s)R(s)+N f (s)R(s))−1, (6.12)

has no poles located in the right half-plane (RHP). The proposed notch TFM N f (s) can be cal-

culated from the state-space representation using N f (s) =CN (sI − AN )−1BN , and considering

here l = 1 for simplicity, which results in

N f (s) =− čcΩ

s2 +Ω2 I , (6.13)

being čc = ccΩ/|Ω|. Substituting into (6.12), the closed-loop poles are calculated from the

characteristic polynomial of S(s), resulting in

0 = det(I +Pq (s)R(s)+N f (s)R(s))

= det((s2 +Ω2)I − čcΩR(s)(I +Pq (s)R(s))−1)

= det((s2 +Ω2)I + j čcΩ( j R(s)Š(s)).

(6.14)

Note that (I +Pq (s)R(s))−1 is the sensitivity TFM of the closed-loop system without notch filter,

and to simplify the notation it is denoted here as Š(s) = (I +Pq (s)R(s))−1.

It can be seen that if čc = 0 the closed-loop system is stable, having a set of poles over the

imaginary axis s =± jΩ. As čc is chosen small enough to guarantee a sufficient narrow band of
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the generalised notch filter, following the procedure performed in [123], it is possible to obtain

a general condition of stability for each rotor speedΩ by linearising the resulting closed-loop

poles around s =± jΩ for čc = 0.

The closed-loop is stable for sufficiently small convergence rates of the proposed notch filter

čc ¿Ω if for each speedΩ it is satisfied that

∂s(čc )

∂čc

∣∣∣∣
čc=0

=−1

2
eig( j R( jΩ)Š( jΩ)) < 0. (6.15)

When comparing to the stability criteria obtained in [123] for the conventional generalised

notch filter, it is possible to identify the parallelisms with the results derived here. As previously

mentioned, the proposed configuration corresponds to an open-loop notch filter dynamics of

N f defined in [123] but with a fixed gain matrix structure TN = j I . Furthermore, the different

arrangement of N f in the closed-loop results in a stability criteria depending on j R( jΩ)Š( jΩ),

instead of TN (Ω)Š( jΩ) in the conventional notch filter.

Whereas the results obtained here define a theoretical stability condition for the closed-loop

system, its formulation can be difficult to use in practical applications. For this reason, the

dynamics of the closed-loop system are particularised hereafter for the studied magnetic

bearing system, providing a detailed stability analysis for the fully active magnetic bearing

motor here investigated.

6.3 Stability Analysis for Studied Magnetic Bearing System

Before implementing the proposed generalised notch filter into the real system, it is necessary

to study in more detail the stability of such an harmonic disturbance rejection technique for its

configuration. It is first necessary to define the equations of each element of the closed-loop

system.

As detailed in chapter 3, it is possible to select the level of complexity and considered aspects

in the closed-loop simulation model. To simplify the initial stability analysis procedure, the

following assumptions have been considered:

• The current control loop is considered fast enough to have an influence on the position

control, i.e. Rcc = I .

• The reference set point for the position control loop is always zero, i.e. xr e f = 0.

• Linear and ideal bearing and position sensor models are considered, i.e. the models

defined in equations (3.10) and (3.11) are used, respectively.

• Due to the previous assumption, radial and axial dynamics are completely decoupled,

allowing a decoupled radial and axial position control design.
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• As external disturbances in the generalised force vector f , only unbalance forces are

considered, which are purely radial.

The closed-loop scheme presented in figure 3.4 can then be simplified to the one graphically

shown in figure 6.1.b. The dynamics of the plant Pq , controller R and generalised notch filter

N f , can be expressed in state-space representation as

Pq =




ẋP (t ) = AP xP (t )+BP u(t )+B ′
P ud (t ),

y(t ) =CP xP (t ),
(6.16a)

R =




ẋR (t ) = AR xR (t )+BR (y(t )− y N (t )),

u(t ) =CR xR (t )+DR (y(t )− y N (t )),
(6.16b)

N f =




ẋ N (t ) = AN x N (t )+BN u(t ),

y N (t ) =CN x N (t ),
(6.16c)

being u the bearing currents, y the sensor measurements, x the state vector and A,B ,C ,D

the state-space matrices with the subscripts P,R, N referring to the plant, controller or notch,

respectively. Input ud accounts for unbalance or any other harmonic disturbance force acting

on the rotating system.

Considering the interconnections between elements, being y̌(t ) = y(t )− y N (t ), the excitation

harmonic forces ud (t ) as input, and the the rotor displacements measured by sensors y(t ) or

actuating currents u(t) as outputs, the stability and general behaviour of the system can be

analysed. These closed-loop systems can be viewed as a sensitivity transfer function from an

input disturbance to plant’s output Suy or to controller’s output Suu .

The closed-loop systems Suy and Suu both feature the state-space vector x = [x>
P , x>

R , x>
N ]>

and their state-space representations are defined as

Suy =




ẋ(t ) = Ax(t )+Bud (t ),

y(t ) =Cuy x(t ),
, Suu =





ẋ(t ) = Ax(t )+Bud (t ),

u(t ) =Cuu x(t ).
(6.17)

Note the similar state-space equations for both dynamic systems, only differing on the output

equation. The resulting state-space matrices for both systems are

A =




AP +BP DRCP BPCR −BP DRCN

BRCP AR −BRCN

BN DRCP BN CR AN −BN DRCN


 , B =




B ′
P

O

O


 ,

Cuy =
[
CP O O

]
,

Cuu =
[

DRCP CR −DRCN

]
.

(6.18)

The closed-loop system will be stable if no eigenvalues of matrix A are located in the RHP. In

the following sections, the structure of each component of the closed-loop system shown in
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figure 6.1, i.e. rotordynamics equations Pq , the controller dynamics R, and generalised notch

filter N f , will be particularised and its stability analysed for some cases.

To simplify the notation the dependency on time (t ) will be dropped in the following expres-

sions.

6.3.1 Rotordynamics Model: P

As previously developed in chapter 3 for the four and five degrees-of-freedom models, the

rotor is considered as a rigid body with mass m, non-vanishing polar and transverse moments

of inertia Ip and It , suspended over two compliant bearings b1 and b2 with stiffness k, and

non-rotating and rotating damping coefficients dn and dr .

For convenience, the equations of motion described in chapter 3 are repeated here. Consid-

ering the generalised coordinate vector q = [rc ,φc ]> in complex coordinates, the linearised

equations of motion from expression (3.6) and ideal sensor models from (3.11) are

Mq q̈ + (
Dq +Gq (Ω)

)
q̇ + (

Kq +Hq (Ω)
)

q =Uq u +Vq (Ω)ud ,

y =Wq q
(6.19)

being Mq the mass matrix, Dq the passive damping matrix, Gq (Ω) the gyroscopic matrix, Kq

the passive stiffness matrix, Hq (Ω) the circulatory matrix, Uq the ideal bearing force matrix,

Vq (Ω) the unbalance or harmonic disturbance matrix, and Wq the sensor output matrix. To

simplify the analysis, matrix Vq only accounts for unbalance forces as defined in [108], and

thus ud = e jΩt , but could be generalised to account for any other harmonic disturbance.

Finally, the state-space representation of the equations of motion in (3.3) results in the state-

space matrices

AP =
[

AP qq AP qq̇

AP q̇q AP q̇q̇

]
=

[
O I

−M−1
q (Kq +Hq (Ω)) −M−1

q (Dq +Gq (Ω))

]
,

BP =
[

BP q

BP q̇

]
=

[
O

M−1
q Uq

]
, B ′

P =
[

B ′
P q

B ′
P q̇

]
=

[
O

M−1
q Vq (Ω)

]
,

CP =
[
CP q CP q̇

]
=

[
Wq O

]
,

(6.20)

being the state vector xP = [q>, q̇>]>.

6.3.2 Controller: R

Considering the multi-variable state feedback controller defined in chapter 3, with state-pace

observer with matrix gain LSF and controller with matrix gain KSF , and the model of the

system dynamics to be controlled in equations (6.16a) and (6.20), it is possible to express

the resulting dynamic system of such a controller in state-space representation as defined in
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(6.16b).

Due to the use of a digital processor, such as a digital signal processor (DSP), the controller

needs to be implemented in discrete-time. Firstly, the design of the controller is performed

in discrete-time, and secondly, for the stability analysis, a zero-order hold is considered for

converting the discrete-time controller into the continuous-time equations defined in (6.16b).

Employing a first-order forward Euler discretisation of the rotordynamics model Pq in equation

(6.20) with sampling period Ts , including process w and measurement v noise the resulting

discrete-time system dynamic model P̃q is defined as

P̃q =




xP [k +1] = ÃP xP [k]+ B̃P u[k]+w [k] = (I +Ts AP )xP [k]+TsBP u[k]+w [k],

y[k] = C̃P xP [k]+v [k] =CP xP [k]+v [k].
(6.21)

If an integral error e I , the estimated position q̂ and velocity ˆ̇q are included into the controller

state vector xR = [e>
I , q̂>, ˆ̇q

>
]>, the controller gain KSF can be separated in KSF = [Ki ,Kp ,Kd ],

being Ki , Kp , and Kd the integral, proportional and derivative gain matrices, and the observer

gain in LSF = [L>
p ,L>

d ]> with only proportional Lp and derivative parts Ld . The resulting

controller state-space matrices are

R̃ =





xR [k +1] = ÃR xR [k]+ B̃R y[k] =

=




O I O

−B̃P q Ki ÃP qq − B̃P q Kp −LpC̃P q ÃP qq̇ − B̃P q Kp −LpC̃P q̇

−B̃P q̇ Ki ÃP q̇q − B̃P q̇ Kp −LdC̃P q ÃP q̇q̇ − B̃P q̇ Kp −LdC̃P q̇


xR [k]+




O

Lp

Ld


 y[k],

u[k] = C̃R xR [k] =
[
−Ki −Kp −Kd

]
xR [k].

(6.22)

Note that as done in chapter 5 for the hybrid magnetic bearing system analysis, R considers

both controller and observer dynamics.

The design of observer LSF and controller KSF gain matrices is then done by solving the

linear-quadratic-gaussian (LQG) problem for optimal control as follows:

• Linear-quadratic regulator (LQR), KSF : the infinite-horizon discrete-time linear-quadratic

controller gain KSF is calculated by minimising the cost function

min

{ ∞∑
k=0

(
x>

R [k]QK xR [k]+u>[k]RK u[k]+2x>
R [k]NK u>[k]

)
}

, (6.23)

subject to the plant dynamics (6.21) and u[k] = −KSF xR [k]. For this case the weight
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Table 6.1 – Closed-loop system parameters of rotordynamics Pq , LQG controller R and generalised
notch filter N f employed for stability analysis.

System Param. Value Param. Value Param. Value

Pq

m 0.071 kg k11 −0.3 kN/m dn 0 Nsm

It 18.9 kgmm2 k12 −0.1 Nm/m dr 0 Nsm

Ip 23.8 kgmm2 k22 −1 Nm/rad κF 0.4 N/A

lb ±0.03 m ε 10 µm χ 100 µrad

ls ±0.04 m

R

qLp 100 m2/s2 qLd 109 m2/s4 rL 10−9 m2

qK i 108 m−2s−2 qK p 109 m−2 qK d 103 s2/m2

rK 102 A−2

N f cc 10−7 - nh 3 -

matrices QK , RK and NK are chosen as

QK =




qK i I O O

O qK p I O

O O qK d I


 , RK = rK I , NK =




O

O

O


 . (6.24)

• Kalman filter or linear-quadratic estimator (LQE), LSF : the infinite-horizon linear-

quadratic estimator or Kalman filter with gain LSF is calculated such that the steady-state

error between real x and estimated x̂ is minimised, i.e.

min

{
lim

k→∞
E [x[k]− x̂[k]]

}
, (6.25)

subject to the plant dynamics (6.21) and assuming that the additive process w and

measurement noise v in plant dynamics and measurement equations (6.21) follow a

normal distribution with zero mean and covariance matrices

E
[

w>w
]=QL =

[
qLp I O

O qLd I

]
, E

[
v>v

]= RL = rL I , E
[

w>v
]=O, (6.26)

being qL and rL the weighting factors of optimisation (6.25), defining the variance of

process and measurement noise.

The design of the controller KSF and estimator LSF gains is performed by simply choosing the

associated weighting factors q and r in matrices (6.24) and (6.26).

Other control techniques can be considered for the stabilisation of the rotor’s position, such

as pole-placement for another centralised position control or a simple PID for a decentralised

controller, as described in [50].
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Figure 6.2 – Closed-loop poles of controlled system without (left) and with proposed notch filter (right)
with detailed zoom of poles located close to imaginary axis.

6.3.3 Closed-Loop Stability

Having defined the structure of all matrices in equations (6.16a) for the plant dynamics Pq ,

(6.16b) for the controller R and (6.16c) for the generalised notch filter N f , it is possible to

analyse more precisely the behaviour of the closed-loop system of the studied fully active

magnetic bearing motor by using the analysis tools described in chapter 3. As mentioned in

chapter 3, due to the assumption of slow varying rotor speedΩ, the linear parameter-varying

(LPV) system can be studied by considering a linear system dynamics for each rotor speed.

Firstly, the closed-loop system is stable if no eigenvalue of the state matrix A in (6.17) is

located at the right half-plane (RHP). Secondly, the performance of the closed-loop system

can be verified by calculating the unbalance response of the sensitivity functions defined in

expressions (6.17), which yields the rotor displacements y and actuation currents u of the

system excited by a harmonic disturbance corresponding to the rotor unbalance. The studied

system, including dynamics, controller and notch, features the parameters included in table

6.1.

It is worth mentioning that, even though the poles of the open-loop generalised notch filter

N f are located at ± j lΩ, as clearly visible from the notch state matrix AN in (6.4), its use in the

closed-loop system will slightly deviate the poles from the imaginary axis.

To simplify the initial controller design, it is considered that the controller KSF and estimator

LSF gains are calculated for each speedΩ in the range from −20 krpm to 20 krpm. In practice,

a gain-scheduling approach with a few set of matrices is calculated off-line and stored in mem-

ory as a look-up table, allowing fast switching in real-time between controllers for different

speeds.

A stable configuration with and without the proposed generalised notch filter is obtained

choosing the weighting factors as specified in Table 6.1, resulting in the closed-loop poles

shown in figure 6.2.a for R and in figure 6.2.b for N f . Note the change in scale used for the
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Figure 6.3 – Unbalance response of closed-loop system for rotor displacements at sensor planes (left)
and bearing currents (right) with and without the proposed generalised notch filter.

x-axis to clearly visualize the impact of the closed-loop in the notch filter poles.

The resulting poles of N f in the closed-loop are curved into the left half-plane (LHP) for lower

speeds and subsequently approach the imaginary axis for higher speeds. At sufficiently high

speeds, the notch poles will eventually crossing to the RHP if the estimator and controller poles

are not fast enough. This can be observed in figure 6.2.d in the pole branch that bends towards

the imaginary axis, which will eventually cross to the RHP for |Ω| > 20krpm. This situation

could be avoided if other position control technique is employed, such as decentralised

PID control, as shown in [50], but it is not deemed necessary for this case as the stability is

guaranteed for the whole speed range of the system.

Even though the controller poles sK do have a minor effect on the notch closed-loop poles,

the main limiting factor of the stability is the location of the observer poles sL . This effect can

be seen as a delay between the estimated states and real states due to the rate of convergence

of the state estimator, resulting in instabilities at higher speeds.

The unbalance response of the closed-loop system with the state feedback controller is also

included in figure 6.3, showing the exact same behaviour with notch as the closed-loop system

with PID controller for both displacements y and currents u. To prevent infinitely big orbits,

in practice, the notch filter needs to be enabled for |Ω| >Ωth .

To simplify the explanation of the results, only the radial dynamics have been analysed here. An

equivalent study has been performed for the axial dynamics to choose the position controller

and observer parameters for a stable operation with and without the proposed notch filter. In

this case, due to the lower amplitude of the third harmonic for axial dynamics, it is chosen to

suppress only two harmonics nh = 2.

After studying the stability of the closed-loop system, the designed controller, estimator and
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generalised notch filter are implemented into the real system, and the effectiveness of the

proposed harmonic force rejection technique is experimentally quantified by measuring the

reduction in vibrations and actuator currents. These results are detailed in section 7.

6.4 Conclusions

In this chapter, a highly stable harmonic disturbance suppression technique for magnetic

bearing systems has been presented and validated. The proposed approach considerably

reduces the stability problems shown in other unbalance control techniques, not requiring

a time-consuming gain matrix nor phase shift fine-tuning for yielding a stable closed-loop

system, and thus being easily extended to suppress multiple harmonics.

The main contributions of the chapter are:

• An harmonic force rejection force control technique is proposed, which features the

following characteristics:

– Due to its adaptive nature, it does not require any predefined noise nor vibration

model.

– It requires an estimation of measurement of the rotor speed.

– Its internal structure does not have any gain nor phase parameter that needs to be

adapted to guarantee stable operation over a broad speed range.

– It is based on an unbalance and resonance control approach originally developed

for rotating machinery employing active piezoelectric bearings, with stable open-

loop dynamics.

• The general stability condition for a closed-loop system with the proposed harmonic

force control is derived.

– As opposed to the rotordynamics case with piezoelectric active bearings, no uncon-

ditional stability is obtained due to the unstable open-loop dynamics of magnetic

bearings.

– The stability condition sets the boundaries for controller design to guarantee a

stable closed-loop system.

• The proposed vibration rejection technique is successfully implemented and tested

on the studied fully active magnetic bearing system. Experimental validation of the

approach is included in chapter 7.
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Having performed the analytical developments of a novel micro-vibration measurement tech-

nique for active magnetic bearings, closed-loop magnetic bearing models, electromagnetic

force and torque models for active and passive magnetic bearings and motors, machine op-

timisation and harmonic force suppression techniques, it is now necessary to validate such

developments experimentally.

In this chapter, the experimental results and validation for all the analyses presented in

previous chapters are shown. Firstly, in section 7.1, all test benches employed for the validation

of the different models are introduced and described. Secondly, the current-to-force micro-

vibration measurement technique, proposed in chapter 3, is validated in section 7.2, by

comparison to a state-of-the-art micro-vibration characterisation measurement equipment.

Afterwards, the proposed electromagnetic models for active magnetic bearings defined in

chapter 4 are validated in section 7.3. Subsequently, the experimental measurements of the

optimisation results of the studied fully active magnetic bearing system, as performed in

chapter 5, are described in section 7.4, consisting of the quantification of the main force and

torque characteristics and the machine’s efficiency. Finally, in section 7.5, the micro-vibration

characterisation of the studied machine is performed, including the experimental validation

of the harmonic force suppression technique proposed in chapter 6.

7.1 Experimental Test Benches

For the validation of the different analytical models or designs presented in the previous

chapters different equipment has been employed. Due to the different nature of the model or

design, several configurations need to be tested using various measurement set-ups. In this

section, the employed equipment for the experimental validation of the previously presented

models and techniques is detailed.

111



Chapter 7. Experimental Results and Validation

(a) Spokeless Reaction Wheel (b) Spoked Reaction Wheel

Figure 7.1 – Spokeless and spoked reaction wheel rotors of studied fully active magnetic bearing system.

7.1.1 Measured Equipment

The basic configuration of the studied fully active magnetic bearing system is presented in

chapter 2, which corresponds to the initial state as detailed in [104]. During the development

of the present thesis, several modifications or additions are performed to improve different

characteristics of the fully active magnetic bearing system or to study new features for a more

complete understanding of the system.

In terms of hardware, the following options will be available for comparison in the upcoming

sections:

1. Rotors: to characterise the closed-loop behaviour for rotors with different mass and

inertia and to identify some possible rotor-dependent vibration sources, two main rotor

configurations are studied.

• Spokeless Reaction Wheel: rotor with solid inertial disk as shown in figure 7.1.a.

Due to the flat axial surface in the disk, this rotor allows the use of a more precise

eddy-current axial position sensor.

• Spoked Reaction Wheel: rotor with solid inertial rim, linked to the rotor shaft by

six spokes as shown in figure 7.1.b. This rotor is controlled using the axial position

derived from the magnitude of the stray flux measured by Hall sensors.

2. Stators: two main configurations have been studied for performance and efficiency

comparison between different skewed, rhombic and hexagonal windings.

• Original Machine: stator parts as described in chapter 2 and [104], consisting of

skewed radial bearing and motor windings with heteropolar side with back iron,

and homopolar side without iron.

• Optimised Machine: stator parts resulting from the optimisation described in

chapter 5, consisting of hexagonal and rhombic radial bearing and motor windings

with back iron in both heteropolar and homopolar sides.
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Magnetic Bearing
Stator

XYZ Positioning
Stage

Multi-Axis
Force/Torque Sensor

Figure 7.2 – Dedicated force and torque measurement test bench featuring a six-component force/-
torque sensor and three-axis linear positioning stage.

Having two rotors of each type and considering the efficiency limitations of the original

machine, the studied configurations are the following:

• Configuration 1: original machine with first spokeless reaction wheel rotor.

• Configuration 2: optimised machine with first spokeless reaction wheel rotor.

• Configuration 3: optimised machine with second spokeless reaction wheel rotor.

• Configuration 4: optimised machine with first spoked reaction wheel rotor.

• Configuration 5: optimised machine with second spoked reaction wheel rotor.

7.1.2 Measurement Set-Ups

In order to validate the models or quantify the impact of the design and optimisations de-

scribed in previous chapters, the following test equipment is employed:

• Active electromagnetic force and torque: test bench consisting of a positioning stage and

a six-component force and torque sensor capable of measuring the exerted forces and

torques of magnetic bearings and motor.

• Micro-vibration characterisation: test bench consisting of a multi-component dynamome-

ter employed for measuring the generated vibrations of the machine during operation.

Force and Torque Measurement Test Bench

A dedicated set-up for the measurement of the winding forces and torques has been developed

and it is shown in figure 7.2. The test bench consists of fixed stator, where the studied windings

are located, and a Thorlabs XYZ positioning stage, over which a 6-component ATI Mini 40-

E force and torque sensor is mounted. Over the FT sensor a rotor with the diametrically

magnetised or axially magnetised permanent magnets is fixed. After centring the rotor, a
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Isolation
Table

Multi-Component
Dynamometer

MBRW
Demonstrator

XX

ZZ

YY

Figure 7.3 – Micro-vibration measurement test set-up featuring a multi-component dynamometric
platform, a big seismic mass over pneumatic isolators as isolation table and the studied fully active
magnetic bearing system.

rotating current, with a varying phase angle εw ∈ [−π,π], is impressed in the winding using a

Celeroton CC-AMB-500 power converter, and the force and torque applied to the rotor are

measured and logged using a ATI IFPMSC-4 multi-sensor interface.

Micro-Vibration Characterisation Test Bench

For validating the proposed current-to-force method as well as the simulated micro-vibrations

of the developed closed-loop model, a state-of-the-art multi-component dynamometer is

employed. This set-up is commonly employed for the qualification of equipment for space

applications and its working principle has been introduced in chapter 3.

To summarise, the test bench consists of four three-component piezoelectric sensors fixed

on one side to a big seismic mass and isolators for removing possible perturbations from the

environment, and on the other fixed to the equipment to be characterised. The test set-up

available at CSEM is shown in figure 7.3. The vibrations generated by the excitation forces gen-

erate a mechanical stress on the piezoelectric sensors, of type 9047C and 9048C by Kistler, and

combined with a 5080A charge amplifier, also by Kistler, for signal conditioning, it is possible

to measure three components of both force and torque. The voltage signals are sampled at

20 kHz for high-order harmonic disturbance identification by a dSpace MicroLabBox system

with 16-bit A/D converters.

The mechanical design of the multi-component dynamometer is performed such that the

first resonance mode of the structure is located at frequencies >1 kHz, guaranteeing a clean

frequency spectrum up to 1 kHz. This design specification is given by the standard micro-

vibration requirements for micro-vibration qualification is space applications [126]. This is

achieved by the appropriate design in terms of dimensions and materials of the custom-made

bottom and top plates of the dynamometer and the selection of high-stiffness piezoelectric

transducers.
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Figure 7.4 – Dynamic response H(ω) of micro-vibration characterisation test bench composed of
multi-component dynamometer and studied fully active magnetic bearing system.

Furthermore, the resonance mode of the pneumatic isolators with the seismic mass is chosen

to be at approximately 3 Hz to isolate low-frequency disturbances from the environment and

surrounding laboratories.

7.2 Current-to-Force Measurements and Validation

To validate the proposed current-to-force micro-vibration measurement technique, a compar-

ison with the micro-vibration level measured by an external state-of-the-art multi-component

dynamometric platform shown in figure 7.3 is performed. This measurement validation

set-up has been selected because it is extensively used for qualification and micro-vibration

characterisation of space equipment, as mentioned in chapter 3.

7.2.1 Dynamic Characterisation of Measurement Equipment

It is first needed to guarantee that the measurement equipment does not greatly influence the

vibration measurements. If there is a structural resonance in the studied frequency range, it

would be necessary to also consider the dynamic response of the structure in the comparison,

as done in [44].

Considering that the proposed current-to-force method directly measures the forces and

torques supported by bearings f b , and that the reference multi-component dynamometer

directly measures the forces supported by its transducers f t , the transformation from one to
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the other can be defined as the transfer function matrix H(ω)

f t =




Fx,t

Fy,t

Fz,t

Tx,t

Ty,t



=




HF x (ω) 0 0 0 0

0 HF y (ω) 0 0 0

0 0 HF z (ω) 0 0

0 0 0 HT x (ω) 0

0 0 0 0 HT y (ω)







Fx,b

Fy,b

Fz,b

Tx,b

Ty,b



= H(ω) f b . (7.1)

The dynamic response of the structure H(ω), composed by the measurement equipment and

the measured item, can be investigated by experimental modal testing using, for instance, a

miniature impact hammer to excite the structure [44]. In this case, as the excitation forces

are directly measured by means of the actuator currents during levitation, it is also possible

to extract the dynamic response of the structure by comparing the current-to-force and

dynamometer measurements at stand-still. This transfer function H(ω) is shown in figure 7.4.

As opposed to the situation presented in [44], the employed measurement set-up presents

a considerably higher stiffness, featuring its first resonance mode at 1.6 kHz, and thus not

disturbing the investigated frequency range up to 1 kHz. For this reason, and also due to the

considerable noise in the measured H(ω), it is assumed that the structure has no effect on the

excitation and measured forces, i.e. H(ω) = I , and thus current-to-force and dynamometer

micro-vibration measurements can be directly compared, and all subscripts b and t will be

dropped hereafter.

7.2.2 Micro-Vibration Level Comparison

The validation is performed by covering the complete speed range of the fully active magnetic

bearing system, from−20 krpm to 20 krpm in steps of 0.2 krpm, and measuring simultaneously

the forces by both methods: current-to-force and dynamometric platform.

Furthermore, two hardware configurations are studied for a more complete validation: con-

figurations 3 and 4 defined in section 7.1, i.e. the optimised machine stator combined with

a spokeless or spoked reaction wheel rotor. Due to the thermal limitations of the original

machine stator, it is not possible to cover the complete speed range for the heavier spoked

rotor, and thus this validation is not possible. The current-to-force comparison with the

original machine and spokeless rotor is performed in [44].

For the current-to-force method, the analytical bearing force constants κF , obtained by the

electromagnetic models described in chapter 4, are employed. The exact values for the

optimised machine are included in table 7.4.

The same analysis procedure presented in chapter 3 is performed for both dynamometer and

current-to-force measurements to perform the comparison: the force and torque measure-

ments in the time domain for each constant speed step are transformed to the frequency

domain by a fast Fourier transform (FFT). The force and torque amplitude for each speed and
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Figure 7.5 – Waterfall plot comparison between multi-component dynamometer and current-to-
force micro-vibration measurements for configuration 4 (spoked reaction wheel rotor and optimised
machine).

Table 7.1 – Roor mean square (RMS) absolute and relative difference between the proposed method
and the reference dynamometer’s measurements for configurations with spokeless and spoked rotors.

RMS
eF x eF y eF z eT x eT y

[mN] [mN] [mN] [mNm] [mNm]

Spokeless 36.29 28.67 3.289 1.5888 1.6635
RW Rotor 5.01% 3.50% 1.85% 17.76% 17.24%

Spoked 10.76 10.93 33.874 0.78628 0.30318
RW Rotor 8.95% 10.95% 7.68% 9.47% 4.71%

frequency is then merged in a waterfall plot, as shown in figure 7.5 for both dynamometer

and current-to-force methods. All forces and torques are expressed under the motor centre of

mass reference frame, with axes parallel to the ones shown in figure 7.3.

To better compare both approaches, a worst-case plot is employed, where the maximum force

and torque amplitude for all speeds at each frequency is taken, as shown in figure 7.6. In the

top row, the comparison between dynamometer and current-to-force is performed for the

configuration with a spokeless reaction wheel rotor, and with spoked rotor in the bottom row.

For both methods, it can clearly be seen that the current-to-force micro-vibration measure-

ment method provides a force and torque magnitude similar to the one given by the state-of-

the-art multi-component dynamometric platform. To quantify the accuracy in all force and

torque components, the root mean square (RMS) of the difference between dynamometer and

current-to-force in absolute magnitude or relative to the maximum peak of each component

is included in table 7.1.

In these quantitative results it can be seen that whereas the current-to-force measurements

better match the micro-vibration measurements for the three components of the force for the

spokeless rotor, from 2 % to 5 % of difference, the torques present a much higher deviation,
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(d) DYN and C2F Torques Worst-Case Plot (Conf. 4)
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Figure 7.6 – Current-to-force micro-vibration measurement method validation results for configura-
tions with spokeless and spoked reaction wheel (RW) rotors. Worst-case plots comparing dynamometer
(DYN) and current-to-force (C2F) measurements of configurations 3 (top), with spokeless RW rotor,
and 4 (bottom), with spoked RW rotor, for forces (left) and torques (right).

around 17 %. This situation may be due to the reduced axial length of the spokeless rotor,

imposing a reduced resolution for the torques. Regarding the spoked rotor, a more consistent

deviation is measured, being between 5 % and 11 % of relative difference.

In any case, the current-to-force method shows to be considerably accurate when compared

with a state-of-the-art micro-vibration multi-component dynamometer. This method en-

ables the possibility of considering an on-line micro-vibration measurement that could be

employed during operation for possible fault detection or even control parameter adjustment

if a deterioration of the performance is seen.

It is worth highlighting the notable difference in the magnitude of the forces in axial direction

when employing the eddy-current or hall sensor axial position measurement. The higher

sensitivity and reduced disturbances in the eddy-current axial sensor allows for a much lower

magnitude of axial vibrations, as it can be seen in figures 7.6.a and 7.6.b.
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7.3 Active Force and Torque Models Validation

In this section, the electromechanical models for slotless motors and magnetic bearings pre-

sented in chapter 4 are validated. The experimental measurement of the force and torque

using a dedicated test bench is performed to validate the proposed models for the differ-

ent studied configurations. Furthermore, the computational efficiency and accuracy of the

proposed approach is compared to other analytical methods.

7.3.1 Force and Torque Magnitude Validation

All force and torque models are validated by comparing the experimental measurements taken

using the dedicated test bench in figure 7.2 with the model calculations. For all validations the

same test procedure is used:

1. Rotor is fixed to force/torque sensor with fixed orientation. Its magnetisation direction

is considered to be along the X-axis.

2. The stator with the winding type to be tested is fixed to the measurement test bench.

3. A rotating current of amplitude îs = 1A is applied, whose electric phase angle εw is

varied in 41 steps to cover a whole revolution εw ∈ [−π,π].

4. All six components of forces and torques are measured and logged using the Force/-

Torque ATI sensor.

5. The previous steps of the test are replicated using the models defined in chapter 4,

including reluctance forces for all radial bearing windings and radial torques of motor

windings from (4.25).

6. Comparison between measured and analytical forces/torques is performed.

All forces and torques are expressed under the winding’s reference frame, shown in figure 4.2.

For validation, the following combinations of field distribution and winding types have been

studied:

• Skewed winding: the cases of the original machine as per [104], i.e. heteropolar motor

and radial bearing with back iron, and homopolar radial bearing without iron.

• Rhombic winding: the cases for which hexagonal winding is not possible to be manu-

factured, i.e. homopolar radial bearing with and without back iron, due to the reduced

length of this winding.

• Hexagonal winding: all possible cases where manufacturing is possible with available

tools, i.e. heteropolar motor and radial bearing winding with and without back iron.

• Axial winding: only the original winding as per [104], i.e. homopolar without iron,

and a new winding (with modified dimensions in order to fit inside back iron) at the

homopolar side with back iron.
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Figure 7.7 – Analytical and experimental forces and torques for skewed, rhombic and hexagonal
windings. All plots are arranged in rows with windings for the same function: (a) and (b) homopolar
radial bearing windings, (c) and (d) motor windings, and (e) and (f) heteropolar radial bearing windings.

A comparison between original (skewed) and new (rhombic or hexagonal) windings with the

same functionality is included in figure 7.7. As only the most representative cases are included

in figure 7.7, a quantitative comparison between models and experimental measurements for

all combinations (winding types on hetero- and homopolar sides with and without back iron),

is included in Table 7.2.

Due to the importance of winding resistance for the estimation of losses in machine design

and optimisation, the analytical value obtained using the calculation described in (5.3) is

compared to the resistance of each phase measured experimentally in Table 7.2 for 20 ◦C.
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Table 7.2 – Analytical (an.) and experimental (exp.) data for validation of F/T models for all manufac-
tured test windings. Units with superscript ∗ represent motor torque measurements in mNm/A. All
resistance measurements are taken at 20°C

Funct.
Winding Stator

Fig.
κF , κT (N/A) Err. Rph (Ω) Err.

Type pw Side Iron Exp. An. (%) Exp. An. (%)

Sk. 1 Het w/ 7.7.c 1.299∗ 1.338∗ 3.0 0.70 0.68 2.9
Motor Hx. 1 Het w/o - 1.192∗ 1.106∗ 7.2 0.79 0.73 7.6

Hx. 1 Het w/ 7.7.d 1.648∗ 1.509∗ 8.4 0.79 0.73 7.6

Sk. 2 Het w/ 7.7.e 0.364 0.387 6.3 1.53 1.43 6.5
Hx. 2 Het w/o - 0.524 0.523 0.2 2.1 1.97 6.2

Radial
Bearing

Hx. 2 Het w/ 7.7.f 0.541 0.574 6.1 2.1 1.97 6.2

Sk. 1 Hom w/o 7.7.a 0.411 0.408 0.7 2.58 2.60 0.8
Rh. 1 Hom w/o - 0.515 0.495 3.9 3.0 2.98 0.7
Rh. 1 Hom w/ 7.7.b 0.608 0.567 6.7 3.0 2.98 0.7

Axial
Bearing

Ax. - Hom w/o - 0.991 1.004 1.3 19 18.1 4.8
Ax. - Hom w/ - 0.891 0.948 6.4 9.7 9.6 1.0

• Skewed winding: the measured windings correspond to the system as defined in pre-

vious publications, i.e. [104]: 1 pole-pair radial bearing winding on homopolar side

without back iron, figure 7.7.a, 1 pole-pair motor winding on heteropolar side with back

iron, 7.7.c, and 2 pole-pairs heteropolar radial bearing winding with back iron, 7.7.e.

The main novelty in the skewed winding model estimations, with respect to [101] and

[44], relies on the ability of estimating force and torque asymmetries and the consid-

eration of reluctance forces for radial forces and torques, as more clearly seen in Fig

7.7.a and 7.7.c. This is mainly due to the relatively high thickness of both heteropo-

lar motor and homopolar radial bearing windings, making each phase’s layer thick,

and thus increasing the winding asymmetries causing the force and torque ripple and

disturbances.

It can be seen in both figure 7.7 and table 7.2 that the model accurately predicts, not

only the magnitude of force κF and torque κT constants, but also the force and torque

asymmetries, specially for figure 7.7.a.

• Rhombic winding: for this type of windings, only the forces generated by the radial

bearing winding with pw = 1 for the homopolar side without and with back iron are

measured, included in figure 7.7.b for the latter.

As in the previous case, both figure 7.7 and table 7.2 show an accurate matching between

the model and the measured forces. It is also noticeable in this case, thanks to the high

symmetry of the rhombic winding, that both the variation of force magnitude with the

phase angle εw and axial forces are drastically reduced when compared to the equivalent

skewed winding in 7.7.a.

Being the radial bearing winding next to the back iron, the effect of the reluctance forces

are considerably noticeable for this case, resulting in an increase of about 40 % with
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respect to the Lorentz forces alone.

• Hexagonal winding: as previously stated, the following configurations have been mea-

sured: 1 pole-pair motor winding in the heteropolar side without and with back iron

and a 2 pole-pairs radial bearing winding again in the heteropolar side without and with

back iron. The cases with back iron are shown in figure 7.7.d and figure 7.7.f, while the

numerical results for all cases are included in Table 7.2.

Like in the previous cases, the results show a good matching between the model and

the measurements. It is worth highlighting again the identified effect of the back iron in

the measured forces and torques: while a considerable increase in the torque constant

κT (≈38 %) and reduction of radial torques for the motor winding (≈11 %), this effect is

much less intense for the radial bearing force constant κF (increase of ≈4 %), due to the

relatively high distance to the back iron as the motor winding lies between them.

• Axial winding: two different windings with different dimensions and number of turns

had to be used for performing the test with and without back iron due to the difficulty

of holding the two halves of the winding. Furthermore no figure is included due linear

behaviour of the winding, creating only axial force proportional to the input current and

no radial force. The comparison between the model and experimental measurements

in included in Table 7.2. It can be seen the positive effect of the back iron in the mea-

surements: even if a reduction of 49 % in the number of turns (and thus wire length and

resistance), the bearing force constant κF is only slightly reduced (−10 %).

7.3.2 Computational Efficiency

A key element of the electromagnetic models of the magnetic bearings and motor that defines

their computational requirements is the magnetic flux density distribution employed for

calculating the force and torques. As previously mentioned, one of the main advantages of the

proposed models is the use of accurate and computationally efficient 3D flux models that rely

on the use of elliptic integrals, as described in chapter 4. In this section the proposed models

are compared to other analytical approaches such as 2D models [116] and 3D models based

on Fourier series expansions [113]–[115].

All approaches are implemented in MATLAB using built-in functions, apart from EIFun18 tool-

box presented in [127] for elliptic integral calculations. The execution time of each approach is

measured using the same computer and taking the average of five repetitions, running 64-bit

Windows 10 Pro, 64-bit MATLAB R2020a and featuring an Intel Core i7-8565U CPU, being all

results summarised in table 7.3.

As the 2D model and 3D model with Fourier-Bessel series expansions are targeted for configu-

rations with back iron, not all comparisons can be performed. In all cases, the 2D model is the

fastest to execute, in the order of tens of millisecond, followed by the proposed 3D model with

elliptic integrals (3D EI), in the order of seconds, and lastly the 3D model with series expansion
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Table 7.3 – Accuracy and execution time comparison between analytical models for magnetic flux
density distribution: two-dimensional (2D), three-dimensional with elliptic integrals (3DEI) and with
Fourier-Bessel series expansion (3DFB). For execution time calculations, columns withΛ include the
execution time of (4.9). Values with superscript ∗ represent motor torque measurements in mNm/A.

Funct.
Winding Stator κF , κT (N/A) Execution time (s)
Type pw Side Iron Exp. 2D 3DEI 3DFB 2D 2DΛ 3DEI 3DEIΛ 3DFB

Sk. 1 Het w/ 1.31∗ 1.22∗ 1.29∗ 1.30∗ 0.02 1.70 1.06 3.38 11.3
Motor Hx. 1 Het w/o 1.19∗ - 1.11∗ - - - 1.05 - -

Hx. 1 Het w/ 2.15∗ 1.99∗ 2.14∗ 2.15∗ 0.02 1.97 1.22 3.38 11.8

Sk. 2 Het w/ 0.38 0.35 0.42 0.42 0.02 2.23 2.54 5.05 28.2
Hx. 2 Het w/o 0.52 - 0.52 - - - 2.51 - -

Radial
Bearing

Hx. 2 Het w/ 0.64 0.56 0.68 0.67 0.02 2.30 2.53 4.99 26.3

Sk. 1 Hom w/o 0.39 - 0.38 - - - 2.48 - -
Rh. 1 Hom w/o 0.52 - 0.50 - - - 2.88 - -
Rh. 1 Hom w/ 0.59 - 0.60 0.60 - - 2.54 4.87 10.4

Axial
Bearing

Ax. - Hom w/o 0.99 - 1.00 - - - 0.84 - -
Ax. - Hom w/ 0.89 - 0.90 0.90 - - 0.80 2.91 3.48

(3D FB), in the order of tens of second when considering 50 harmonics. On the accuracy side,

the 3D FB and 3D EI show equivalent results, whereas the 2D model shows a greater difference

with respect to the experimental measurements. In general terms, the proposed 3D EI model

proves to have the broadest applicability and a great accuracy while being computationally

light, enabling the possibility of including such models into a numerical optimisation for

actuator design.

Note that different windings have been employed for some cases in this comparison with

respect to the previous validation of the force and torque in table 7.2.

7.4 Final Electromagnetic Design Measurements

In this section, the properties of the magnetic bearing machine resulting from the optimisa-

tions presented in chapter 5 are experimentally validated. Two analyses are performed for

validating the optimisation results: firstly, the generated forces and torques, as well as winding

resistances are measured and compared with the analytical results, and secondly, the power

consumption during operation is measured to quantify the resulting machine efficiency.

7.4.1 Force and Torque Measurements

The dedicated set-up for the measurement of the winding forces and torques, shown in figure

7.2, is employed. For all windings the same test procedure was used:

1. Rotor is fixed to force/torque sensor with fixed orientation. Its magnetisation direction
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Chapter 7. Experimental Results and Validation

Table 7.4 – Experimental measurements of original and optimised winding properties, including bearing
KB and motor KM constants, force κF and torque κT constants, winding phase resistance Rph , and
force and torque ripple rF , rT and disturbances dF , dT , for homopolar axial and radial bearings, and
heteropolar radial bearing and motor. Values with superscript ∗ represent motor torque measurements
in mNm/

p
W or mNm/A.

Funct.
Stator

Fig.
KB , KM κF , κT Rph rF , rT dF , dT

Winding Side Iron (N/
p

W) (N/A) (Ω) (%) (%)

Axial
Bearing

Orig. (Ax.) Hom w/o - 0.227 0.991 19.0 1.89 1.83
Opt. (Ax.) Hom w/ - 0.286 0.891 9.70 3.77 1.59

Relative Difference (%): +25.8 −10.1 −48.9 +1.88 −0.24

Radial
Bearing

Orig. (Sk.) Hom w/o 7.7.a 0.239 0.394 2.73 14.06 39.81
Opt. (Rh.) Hom w/ 7.7.b 0.343 0.594 3.00 3.54 1.33

Relative Difference (%): +43.76 +50.6 +9.8 −10.5 −38.5

Motor
Orig. (Sk.) Het w/ 7.7.c 1.409∗ 1.312∗ 0.87 0.66 42.60
Opt. (Hx.) Het w/ 7.7.d 1.964∗ 2.152∗ 1.20 0.09 16.64

Relative Difference (%): +39.4 +64.1 +38.5 −0.6 −25.9

Radial
Bearing

Orig. (Sk.) Het w/ 7.7.e 0.286 0.380 1.77 7.07 1.71
Opt. (Hx.) Het w/ 7.7.f 0.413 0.644 2.43 3.89 1.20

Relative Difference (%): +44.5 +69.6 +37.7 −3.2 −0.5

is used as the reference X-axis for the measurements (φz = 0).

2. The stator with the winding type to be tested is fixed to the measurement test bench.

The windings tested are skewed, rhombic, hexagonal and axial (concentrated) windings.

3. A rotating current of amplitude îs = 1A is applied, whose electric phase angle εw is

varied in 41 steps to cover a whole revolution εw ∈ [−π,π].

4. The six components of forces and torques applied to the rotor are simultaneously

measured using the Force/Torque ATI sensor.

All forces and torques are expressed under the winding’s reference frame, being X- and Y-

components radial and Z-component axial. Furthermore each winding phase resistance is

measured using a digital multimeter.

The measured forces for all windings were shown in figure 7.7 for the validation of the elec-

tromagnetic models of the bearings and motor. The original windings correspond to the left

column of plots, i.e. homopolar radial bearing with skewed windings in figure 7.7.a, heteropo-

lar motor with skewed windings in 7.7.c, and heteropolar radial bearing with skewed windings

in 7.7.e. The optimised windings results are shown in the right column of plots, i.e. homopolar

radial bearing with rhombic windings in figure 7.7.b, heteropolar motor with hexagonal wind-

ings in 7.7.d, and heteropolar radial bearing with hexagonal windings in 7.7.f. Furthermore,

the quantitative results of bearing/motor constant (KB , KM ), force/torque constant (κF , κT ),

winding phase resistance (Rph), force/torque ripple (rF , rT ), and force/torque disturbance
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7.4. Final Electromagnetic Design Measurements

(dF , dT ), are summarised in table 7.4.

As analytically calculated, a considerable increase in efficiency for all actuators is measured,

ranging between 25 % and 45 % with respect to the original actuators [104], showing the great

accuracy of the analytical models. This drastic increase is a result of the combined action of

more efficient windings for motor and radial bearing windings, and the addition of back iron

for the radial and axial homopolar bearings. Furthermore, as shown in the force magnitudes

in figure 7.7, both disturbances and ripple in force or torque are also considerably reduced for

all cases where possible (with the exception of the axial bearing where a marginal increase is

experienced).

7.4.2 Power Consumption Measurements

To quantify the effect of the efficiency increase during operation, the power consumption

of the magnetic bearing system is experimentally measured using a ZES Zimmer LMG670

power analyser. This power analyser is able to simultaneously measure the three-phase or

single-phase voltage and currents of a single actuator and calculate its active Pw , reactive Qw

and apparent |Sw | =
√

P 2
w +Q2

w power consumption. A tachometer signal is also fed into the

power analyser to synchronise rotational speed and power consumption measurements.

In order to fully characterise the power consumption of the machine, the following test plan is

undertaken:

1. Connect a single actuator (bearing or motor) of a machine to the power analyser.

2. Position the machine in horizontal orientation, with gravity actuating in radial direction.

3. Apply a speed profile from −20 krpm to 20 krpm in steps of 0.5 krpm and acceleration

of 500 rpm/s while logging tachometer and power consumption at a sampling rate of

10 Hz.

4. Repeat steps 2-3 for vertical orientation, with gravity actuating in axial direction.

5. Repeat steps 1-4 for all actuators: heteropolar radial bearing, heteropolar motor, ho-

mopolar radial bearing and homopolar axial bearings.

6. Repeat steps 1-5 for the remaining machine, to cover both original and optimised

machines.

The results are then separated in steady-state and transient power consumption, measured at

constant speed in figure 7.8 and during acceleration in figure 7.9, respectively. It can be seen

that for all actuators and configurations an important reduction in power consumption is

obtained as a result of the optimisation described in chapter 5, and thus considerable increase

in efficiency.

A quantitative comparison of the power consumption is included in table 7.5. All maximum,

minimum and average values for all speeds of active Pw , reactive Qw and apparent |Sw |
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Figure 7.8 – Active Pw , reactive Qw and apparent |Sw | power consumption measurements at constant
speeds for all actuators in original and optimised machines in two orientations: (a)-(c)-(e) horizontal,
with gravity in radial direction, and (b)-(d)-(f) vertical, with gravity in axial direction.

power consumption is shown for both original and optimised machines, including the relative

improvement resulting from the optimisation. Furthermore, the comparison is performed

for each actuator independently as well as the total power consumption resulting from the

combination of all actuators. Due to the different load acting on each actuator depending on

the working conditions, such as constant speed/acceleration or horizontal/vertical orienta-

tions, the values included in table 7.5 correspond to the condition in which the actuator is

more demanded. More specifically, the comparison for each actuator is performed under the
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Figure 7.9 – Active, reactive and apparent power consumption measurements during acceleration from
−20 krpm to 20 krpm for all actuators in original and optimised machines in two orientations: (a)-(c)-(e)
horizontal, with gravity in radial direction, and (b)-(d)-(f) vertical, with gravity in axial direction.

following conditions:

• Heteropolar Radial Bearing: steady-state and horizontal orientation (SS Hor).

• Homopolar Radial Bearing: steady-state and horizontal orientation (SS Hor).

• Homopolar Axial Bearing: steady-state and vertical orientation (SS Ver).

• Heteropolar Motor: transient and horizontal orientation (Tr Hor) during acceleration

from 0 krpm to 20 krpm.
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Table 7.5 – Power consumption comparison between original and optimised machine in steady-state
conditions for all actuators and total consumption. SS and Tr denote steady-state or transient condi-
tions, while Hor and Ver horizontal or vertical configurations, respectively. In dark green and red the
values with relative difference greater than 50 % are highlighted.

Act. Case
P (W) Q (var) |S| (VA)

max min avg max min avg max min avg

Het.
Radial

Orig (SS Hor) 2.80 2.05 2.27 0.29 0.21 0.24 2.82 2.06 2.29
Opt (SS Hor) 1.33 0.82 0.95 0.18 0.05 0.10 1.35 0.82 0.96

Diff. (%): −52.4 −60.0 −58.2 −36.5 −76.5 −60.3 −52.2 −60.1 −58.2

Hom.
Radial

Orig (SS Hor) 3.03 2.16 2.39 0.14 0.08 0.10 3.03 2.16 2.39
Opt (SS Hor) 2.02 1.45 1.60 0.22 0.08 0.13 2.03 1.45 1.61

Diff. (%): −33.5 −32.7 −33.1 +55.0 +0.66 +35.8 −33.1 −32.6 −32.9

Hom.
Axial

Orig (SS Ver) 7.73 6.45 7.36 0.74 0.70 0.73 7.76 6.49 7.40
Opt (SS Ver) 4.81 4.23 4.62 0.53 0.50 0.52 4.84 4.26 4.65

Diff. (%): −37.8 −34.4 −37.2 −28.6 −29.3 −28.6 −37.7 −34.4 −37.1

Motor
Orig (Tr Hor) 4.14 -0.58 1.62 1.26 0.15 0.77 4.29 0.67 2.02
Opt (Tr Hor) 3.36 -0.72 0.61 0.68 0.02 0.27 3.43 0.08 1.07

Diff. (%): −18.8 +23.8 −62.6 −46.1 −86.6 −65.0 −20.0 −88.2 −47.1

Total

Orig (SS Hor) 7.06 4.50 5.46 1.44 0.44 0.97 7.38 4.57 5.71
Opt (SS Hor) 4.22 2.31 2.91 0.68 0.16 0.39 4.30 2.33 2.99

Diff. (%): −40.2 −48.7 −46.7 −52.6 −64.2 −59.7 −41.8 −49.0 −47.7

Orig (SS Ver) 9.43 7.86 8.33 1.51 0.80 1.23 9.65 7.96 8.55
Opt (SS Ver) 6.35 4.90 5.28 0.99 0.56 0.74 6.44 4.94 5.37

Diff. (%): −32.7 −37.6 −36.6 −34.2 −30.3 −39.7 −33.3 −38.0 −37.1

• Total: steady-state for both horizontal and vertical orientations (SS Hor and SS Ver).

From table 7.5, it can be seen that there is a considerable improvement in efficiency and

power consumption for all actuators, and more importantly for the total consumption of the

machine during operation. As the windings of the actuators represent mainly resistive loads,

the total apparent power is mainly composed of active power, with the only exception of the

motor windings.

The biggest reduction is obtained for the heteropolar side of the machine, resulting in a radial

bearing with an average reduction of almost 60 % in power consumption, and the motor,

whose consumption is reduced in 50 % to 65 %. For the homopolar side, the power reduction

ranges from 37 % of the axial bearing, to 33 % of the radial bearing, with the only exception of

the reactive power on the homopolar radial bearing, due to the inductance increase as a result

of the optimisation. The power consumption is mainly resistive, and thus the impact of the

reactive power is minimal for the studied machine. Regarding the total power consumption,

an average reduction of 47 % is obtained in horizontal, and of 37 % in vertical orientation.
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Figure 7.10 – Waterfall plots of current-to-force (C2F) micro-vibration measurements without (left)
and without (right) the proposed generalised notch filter for configuration 3 (optimised machine with
spokeless RW rotor).

7.5 Micro-Vibration Measurements

In this last section, the characterisation of the generated micro-vibrations by the studied fully

active magnetic bearing system is performed. As mentioned in section 7.1, different hardware

configurations need to be tested to quantify the influence of the different rotors and stators in

the magnitude of the exported micro-vibrations. The characterisation is then performed with

both current-to-force and multi-component dynamometer micro-vibration measurement

methods, as the former accounts only for the active electromagnetic forces, i.e. Lorentz forces,

whereas the latter also accounts for passive stiffness or other passive electromagnetic and

mechanical forces.

Furthermore, the effect of the harmonic force suppression control proposed in chapter 6

is measured for each configuration by comparing the measured micro-vibrations with and

without the generalised notch filter. The multi-harmonic suppression technique is enabled

for the first three harmonics nh = 3 in radial direction, and two nh = 2 in axial direction for

rotational speeds above a certain threshold |Ω| >Ωth = 4krpm.

As a result of the much higher efficiency of the optimised machine, as shown in the previ-

ous section, only this stator is capable of covering the complete studied speed range, from

−20 krpm to 20 krpm, with any rotor with and without generalised notch filter. All studied

configurations are defined in section 7.1. Only the most representative cases will be graphically

shown, completed by the quantitative results summarised in table 7.6.

Due to the multiple combinations of hardware to test, the analysis of the generated micro-

vibrations is investigated as follows: first, the effect of the proposed generalised notch filter is

verified, followed by a study of the influence of the employed stator and rotor.
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Figure 7.11 – Current-to-force (C2F) micro-vibration measurements of forces (left) and torques (right)
with and without the proposed generalised notch filter for configurations 3 (top), with optimised
machine and spokeless RW rotor, and 4 (bottom), with optimised machine with spoked RW rotors.

Effect of Generalised Notch Filter

Firstly, the effect of the proposed generalised notch filter using the current-to-force method is

analysed, which directly considers the actuator currents, and thus show the effect on the signal

that is used as input to the filter. As analytically shown in chapter 6, the proposed technique

should completely suppress any component at the desired harmonics.

As shown in the waterfall plots comparing the current-to-force measurements for configura-

tion 3 with and without generalised notch filter, in figure 7.10, and in the worst-case plots for

configurations 3 and 4, in figure 7.11, the proposed generalised notch filter successfully sup-

presses any narrow-band actuator current with a frequency at any of the first three harmonics.

This behaviour matches the analytical results described in chapter 6. The same behaviour is

seen for the remaining configurations.

When considering the micro-vibration measurements taken by the multi-component dy-

namometer, as shown in figures 7.12 and 7.13 for the waterfall plots of configuration 3 and 4,

and in figure 7.14 for the worst-case plots of configurations 3 and 4, it can be seen that some
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Figure 7.12 – Waterfall plots of multi-component dynamometer (DYN) micro-vibration measurements
with and without the proposed generalised notch filter for configuration 3 (optimised machine with
spokeless reaction wheel rotor).

residual harmonic forces are still present in some cases.

On the one hand, for axial forces, the filtering of the axial position controller currents shown

in the current-to-force measurements results also in a complete suppression of the generated

axial vibrations measured by the dynamometer, as shown in figures 7.12.c and 7.12.d.

On the other hand, for radial forces and torques, the filtering of radial position controller

currents is not translated into a complete suppression of radial vibrations, as it can be seen

in figures 7.12.a and 7.12.b, for example. Whereas all unbalance forces and higher harmonic

disturbances are completely removed, a residual first harmonic of constant amplitude can

now be seen.

The effect of the proposed generalised notch filter is quantitatively summarised in table 7.6,

where the maximum amplitude of the first, second and third harmonic forces and torques

measured by the multi-component dynamometer for |Ω| >Ωth and all studied configurations

is shown. It can be seen that the proposed harmonic force suppression control technique
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Figure 7.13 – Waterfall plots of multi-component dynamometer (DYN) micro-vibration measurements
with and without the proposed generalised notch filter for configuration 4 (optimised machine with
spoked reaction wheel rotor).

successfully reduces considerably the magnitude of the exported forces and torques, generally

achieving at least one order of magnitude reduction.

For every studied configuration, the current-to-force measurements at standstillΩ= 0rpm

or very low speeds show that the first harmonic currents do not feature zero amplitude, but

a small ripple is present, as shown in figure 7.11 at 0 Hz. A rotating system under unbalance

forces, a quadratic dependency with speed is expected, as described in chapter 3, and thus

showing a disturbance with amplitude proportional toΩ2. This ripple amplitude at ≈0rpm

measured by the current-to-force method corresponds to the first harmonic disturbance

measured by the dynamometer when the notch filter is enabled.

This implies that the closed-loop position controller is actively compensating an angle-

dependent passive disturbance in the system, such as a shaft bow or an angle-dependent

bearing force constant κF . When the notch filter is enabled, this compensation is suppressed

due to its appearance at a frequency equal to the rotation speed. It can be seen though, that

the amplitude of such disturbance varies with the considered configuration, and thus, the
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Figure 7.14 – Multi-component dynamometer (DYN) micro-vibration measurements with and without
the proposed generalised notch filter for configurations 3 and 4 (optimised machine with spokeless
and spoked reaction wheel rotors).

effect of the stator and rotor on these residual vibrations is investigated hereafter.

It is worth highlighting the impact of the employed axial displacement sensor on the level

of exported vibrations. For configurations 1-3 that use the eddy-current position sensor, the

level of disturbances is considerably low, and they can be easily suppressed by the proposed

generalised notch filter, as shown in figures 7.12.d and 7.14.a. For configurations 4-5 that

employ the hall-effect position sensor, not only the general magnitude of disturbances is

higher, but there are also many more components, e.g. up to four harmonics, parallels to

these harmonics or even constant-frequency disturbances, which reduces the impact of the

proposed notch filter for reducing the maximum vibrations. Even though the first and second

harmonics are successfully suppressed, many other disturbances still remain.

This situation could be improved by simply adding a conductive flat surface, e.g. an additional

metallic disk-shaped sheet over the rotor spokes, to preserve the high inertia-to-mass ratio of

the rotor, while enabling the possibility of employing the eddy-current axial position sensor.
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Table 7.6 – Maximum amplitude of each harmonic of micro-vibrations measured by multi-component
dynamometer (DYN) for all studied configurations with and without generalised notch filter. The
definition of the configurations is available in section 7.1.

System Harm. Notch
Fx Fy Fz Tx Ty Tz

(N) (N) (N) (mNm) (mNm) (mNm)

Conf.
1

1 w/o 0.2969 0.2254 0.0709 2.8744 3.3561 0.4757
1 w/ 0.0745 0.0778 0.0044 0.9510 1.0094 0.4439

2 w/o 0.0490 0.0501 0.0324 1.9282 1.9786 0.4802
2 w/ 0.0086 0.0073 0.0068 0.2475 0.3028 0.1702

3 w/o 0.0576 0.0370 0.0236 1.1053 2.4119 1.1771
3 w/ 0.0076 0.0041 0.0071 0.1046 0.2258 0.0893

Conf.
2

1 w/o 0.3868 0.3697 0.0244 4.7255 4.2299 0.5556
1 w/ 0.0717 0.0771 0.0024 1.0038 1.2018 0.3324

2 w/o 0.0927 0.0541 0.0262 1.8083 2.3167 0.6045
2 w/ 0.0022 0.0052 0.0077 0.0754 0.0759 0.0643

3 w/o 0.0934 0.0481 0.0706 1.3350 5.3547 1.4910
3 w/ 0.0038 0.0081 0.0074 0.1554 0.1720 0.0930

Conf.
3

1 w/o 0.7223 0.8150 0.1779 8.9477 9.6489 0.4386
1 w/ 0.0708 0.0846 0.0021 0.6832 0.8052 0.1413

2 w/o 0.0742 0.0235 0.0136 0.9848 2.2534 0.4456
2 w/ 0.0019 0.0033 0.0087 0.1017 0.0469 0.0722

3 w/o 0.0134 0.0130 0.0058 0.9796 1.1779 0.1767
3 w/ 0.0068 0.0050 0.0045 0.0646 0.1325 0.0537

Conf.
4

1 w/o 0.1188 0.0998 0.4412 8.3018 6.4377 1.5764
1 w/ 0.0159 0.0163 0.0500 0.4820 0.5139 1.9068

2 w/o 0.0385 0.0188 0.1756 1.0616 1.2248 0.2957
2 w/ 0.0036 0.0061 0.1592 0.3608 0.1324 0.3348

3 w/o 0.0453 0.0457 0.2438 1.0969 0.7611 0.4566
3 w/ 0.0577 0.0379 0.2139 0.6256 0.3089 0.4289

Conf.
5

1 w/o 0.0939 0.0806 0.1384 6.4006 5.1149 1.3028
1 w/ 0.0311 0.0347 0.0534 0.8801 0.8729 1.0838

2 w/o 0.0376 0.0587 0.2263 1.0509 0.7837 0.3064
2 w/ 0.0040 0.0063 0.1589 0.1434 0.1893 0.1021

3 w/o 0.0362 0.0599 0.2716 1.4445 0.6323 0.2604
3 w/ 0.0346 0.0253 0.2896 0.6992 0.2361 0.2371

Effect of Stator

Unfortunately, due to the limited efficiency of the original machine, it is not possible to

perform all possible stator comparisons. Only the first spokeless reaction wheel rotor can

be fully tested with both stators, being configurations 1 and 2 for the original and optimised

machines, respectively.
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7.5. Micro-Vibration Measurements

As a linear-quadratic-gaussian (LQG) position controller is used, it is not possible to use

the exact same controller parameters, as there are different bearing force constants for both

stators. Furthermore, the thermal limits of the original stator forces the selection of a less stiff

controller, resulting in lower unbalance forces, as it can be seen in table 7.6 for the magnitude

of the first harmonic without notch for configurations 1 and 2.

It can be seen that the use of a more symmetric windings in configuration 2 considerably re-

duces the axial disturbances resulting from cross-couplings between radial and axial bearings.

This effect has been clearly identified by comparing the homopolar radial bearing forces of the

original machine with skewed windings in figure 7.7.a with the ones of the optimised machine

with rhombic windings in figure 7.7.b.

When comparing the residual radial disturbances with the notch enabled between configu-

rations 1 and 2, no noticeable difference can be seen, implying that the main source of such

disturbances is not the possible asymmetries of windings or negative stiffness of the machine.

Due to the addition of back iron on the homopolar side in the optimised machine, the negative

stiffness is considerably increased, but this is not translated into an increase of residual first

harmonic disturbances.

Preliminary comparisons between both stators with the remaining rotors show the equivalent

results, implying that the stator does not influence significantly the residual first harmonic

disturbances.

Effect of Rotor

Focusing now on the influence of the rotors on the generated vibrations, many more compar-

isons can be performed. Using the optimised machine for all comparisons, it is possible to

study all four available rotors, corresponding to configurations 2 to 5.

The first obvious difference in all comparisons, as shown in figures 7.12 and 7.13 and table 7.6,

is the unbalance vibrations when no harmonic force suppression is enabled due to different

rotor unbalance. For conventional ball bearing motors this magnitude is the main factor that

defines the level of generated vibrations. As proven here, the use of magnetic bearings enables

the possibility of suppressing this component by means of a generalised notch filter.

When the proposed harmonic suppression technique is enabled, as shown in table 7.6, the

use of different rotors shows a noticeable effect on the residual first harmonic disturbance.

The main possible causes of such behaviour are a possible shaft bow, which would generate

a first harmonic disturbance of constant amplitude, as described in [108] and chapter 3, or

an asymmetric magnetisation of the permanent magnets, which would generate an angle-

dependent variation of the bearing force constant κF .

Due to the imposed geometric tolerances on the rotor by design, manufactured from a single

titanium block, the shaft bow is deemed unlikely to be the cause of these vibrations. The
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harmonic vibrations caused by shaft bow are a combined actuation of a physical curvature

of the rotor shaft and stiffness of the bearings. To create a force of such magnitude, the shaft

bow would have to be of considerable magnitude due to the very low magnetic stiffness

characteristic of slotless machines. Furthermore, previously mentioned, no considerable

influence is seen on the residual first harmonic when employing a different stator with different

stiffness.

A preliminary study of the permanent magnet magnetisation has been undertaken, making

use of an external three-axis hall probe and centring system, showing an important deviation

from the ideal magnetisation, specially for the axially-magnetised permanent magnets of the

homopolar side. Whereas a more in depth analysis needs to be performed to fully charac-

terise such behaviour, knowing that a possible source of disturbances is the magnetisation

of the employed permanent magnets, to overcome this limitation for the most demanding

applications, a more strict manufacturing and magnetisation process could be imposed, or if

a magnet characterisation test bench is available, a selection of the most symmetric magnets

on a given batch could be performed.

In any case, all the performed modifications in the system, such as the use of more efficient and

symmetric winding types or the implementation of a multi-harmonic vibration suppression

technique, significantly reduce the magnitude of the generated forces and torques by the

system, achieving an improvement of one order of magnitude for the majority of cases.

7.6 Conclusions

In this chapter, the experimental validation of the models, optimisations and control tech-

niques presented in the previous chapters is performed.

The main contributions presented in this chapter can be summarised as follows:

• The experimental validation of the proposed current-to-force micro-vibration measure-

ment method presented in chapter 3 has been performed.

• The electromechanical models of slotless active magnetic bearings and motors, pre-

sented in chapter 4 have been experimentally validated.

• The optimisation of the fully active magnetic bearing system described in chapter 5

has been experimentally analysed by measuring the key efficiency and force symmetry

figures of merit of the resulting machine.

• The effect of the generalised notch filter proposed in chapter 6 has been experimentally

quantified, showing a significant reduction in the magnitude of the generated vibrations.
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8 Conclusions

8.1 Summary

Throughout the development of the present thesis, a study of the main aspects of magnetic

bearing systems for space applications has been performed. The availability of very-low

disturbance and intelligent actuators are a strategic goal identified by the European Space

Agency (ESA) to enable the development of novel high-precision platforms for future high-

performance scientific and Earth observation missions. Magnetic bearings (MB) are identified

as a key technology to achieve these goals in actuators such as reactions wheels (RWs) em-

ployed for attitude and orbit control systems (AOCS) for satellites. The contact-less and

friction-less operation of magnetically levitated rotors results in a virtually infinite lifetime,

with no maintenance required and no need of lubrication. Moreover, the absence of con-

tact also reduces the emitted micro-vibrations during rotation by the suppression of most

bearing-related disturbances, and if intelligent control techniques are employed, also the

main speed-dependent vibrations, such as unbalance forces.

A compact ultra-high-speed magnetic bearing and motor topology has been proposed and

developed by the Swiss Federal Institute of Technology in Zurich (ETHZ) and Celeroton AG,

with promising capabilities for space applications. The topology of this actuator is a dual

hetero/homopolar, slotless, self-bearing and permanent-magnet synchronous motor (PMSM).

The fully active, Lorentz-type magnetic bearing consists of a heteropolar self-bearing motor

that applies motor torque and radial forces on one side of the rotor’s axis, and a homopolar

machine that exerts axial and radial forces, allowing the active control of all rotor’s six degrees

of freedom. This machine is the basis in which the work of this thesis is based on, focusing

on the analysis of the key aspects for space applications, such as micro-vibrations, machine

efficiency and system complexity.

As a result of the complexity of magnetic bearing systems, and specially of active magnetic

bearings (AMB), which require sensing, actuation and computational power to stabilise the

otherwise unstable dynamic system consisting of a rotor levitated by electromagnetic forces,

multiple factors simultaneously interfere and influence the system under levitation. These
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factors can be as diverse as sensor noise, high-frequency disturbances due to pulse-width

modulation (PWM), permanent magnet (PM) magnetisation imperfections and asymme-

tries, inhomogeneous back iron material, manufacturing imperfections and asymmetries in

windings, rotor unbalance, computation delays, or fixed-point rounding errors, among many

others.

Through modelling and measurement of the studied fully active magnetic bearing system,

some of these factors and disturbances can be analytically or experimentally quantified. In

order to be able to account for such a wide variety of disturbances and assess its possible

impact on the rotor behaviour and generated vibrations, a modular closed-loop simulation

model for magnetic bearing systems is developed. Depending on the specific analysis or

needs, different level of abstraction and simplification is possible for the different elements

of the closed-loop systems, such as position and current control, bearing, motor, sensor and

rotordynamic models. For instance, such a model can be employed for controller design in

its most simplified form, with all linear and ideal elements, or for stability and performance

assessment of different implemented controllers or unbalance force rejection techniques

before its implementation on the real system, facilitating and boosting development phases.

Whereas the micro-vibration characterisation is regularly performed in space applications to

guarantee that the actuator’s noise signature does not compromise the mission’s objectives

and payload performance, it usually requires an extensive measurement campaign using

costly state-of-the-art equipment, consisting of a multi-component dynamometric platform.

Due to the limited availability of such equipment, this characterisation is generally performed

in late stages of development, which could be greatly penalising for complex systems such

as magnetic bearing actuators, which could profit from early identification and corrections

to minimise development risks. For such systems, and specially for fully active magnetic

bearings, where all bearing forces are known due to the active control of all rotor’s degrees of

freedom, it exists the possibility of extracting the mechanical vibrations of the actuator during

operation by measuring the actuator’s currents.

Even though this proposed micro-vibration measurement technique, named current-to-force

(C2F) method, would not substitute the conventional characterisation using a dynamometer

(DYN), it enables the possibility of measuring the systems vibrations from early development

stages without any external equipment, as only internal current measurements are required,

which are usually already available for control purposes. This current-to-force micro-vibration

measurement technique is presented, implemented and validated by comparison with a

conventional multi-component dynamometer, showing great accuracy to be employed as

reference measurements to quantify the impact of any design or control modification in the

magnitude of the generated vibrations. Furthermore, it allows the possibility of monitoring the

behaviour of the system during operation and if necessary adapt certain control parameters

for optimal performance.

As common in rotating machinery, the main source of vibrations is the residual unbalance
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of the rotor, which generates a synchronous rotating vibration with magnitude proportional

to the square of the rotor speed. Due to the physical contact between rotor and stator in

conventional motors, the magnitude of the generated vibrations is directly linked to the rotor

unbalance and thus any improvement can only be achieved through better rotor balancing.

In magnetic bearings, this limitation no longer exists as a result of the magnetic levitation of

the rotor, which allows the free rotation of the rotor about its main axis of inertia, preventing

any reaction to the rotor unbalance. The techniques to achieve this are commonly known

as unbalance force rejection control (UFRC) which rely on the injection and removal of

synchronous harmonic signals into the control loop. If the residual rotor unbalance is perfectly

known, it is possible to directly adapt the reference position of the position controller in order

to force the force-free rotation of the rotor. It is not only really difficult but also considerably

time consuming to accurately measure the residual unbalance of each tested rotor, and for

this reason, the most extended techniques rely on some adaptation of amplitude and phase of

the injected harmonic signal.

One of the most extended adaptive unbalance force rejection techniques is known as gen-

eralised notch filter due to its structure, similar to a notch filter but with a gain matrix that

allows improved stability. Nevertheless, the difficulty in finding stable values for this gain

matrix or phase shift generally requires the implementation of a gain-scheduled technique

to achieve a stable closed-loop over broader speed ranges. To overcome these limitations,

a new generalised notch filter, originally proposed for piezoelectric active bearings, which

does not require any parameter adaptation to guarantee stability, is successfully implemented

and tested in the studied fully active magnetic bearing system. These improved stability

properties greatly simplify the implementation of multi-harmonic force rejection control to

suppress not only unbalance forces but also higher harmonic disturbances. The stability of

such configurations is studied for magnetic bearing systems and its implementation results in

a reduction in generated vibrations of at least one order of magnitude.

Having considerably reduced the magnitude of the micro-vibrations during operation, other

crucial aspect to consider in magnetic bearings for space applications is the machine efficiency,

due to the maximum power consumption limitations from the satellite. For conventional

motors the maximum power consumption is defined by the maximum torque at maximum

speed that the actuator is capable of providing, but for magnetic bearing systems, also the

power consumption of the bearings during levitation needs to be accounted for. Whereas the

machine power consumption for levitation in orbit is negligible due to the micro-gravity con-

ditions, the magnetic bearings need to counteract any external effort, such as the gyroscopic

forces appearing on the rotor during satellite manoeuvre. Furthermore, the magnetic bearing

need to have sufficient load capacity to levitate and operate the rotor on-ground to be able to

perform the required qualification tests, at least in some constraint conditions.

All these conditions define the constraints and requirements imposed on the magnetic bearing

and motor design and dimensioning. For this reason, it is desired to achieve a maximisation

of the machine efficiency by minimising the machine losses during operation. For fully active
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magnetic bearing motors, the formulation of such an optimisation problem requires finding

a global optimum between the different actuators that usually share resources, greatly com-

plicating the manual selection of the multiple variables for all magnetic bearings and motor.

A global optimisation technique for magnetic bearing systems is proposed and successfully

employed to maximise the efficiency of the studied machine. This optimisation procedure

seeks the maximisation of the weighted sum of all the considered actuator’s bearing and motor

constants, defined as the ratio between the applied force or torque and the Joule losses in the

windings. The advantage of employing such a definition of efficiency is its general applicability,

being independent on the load cases and working conditions, and the possibility of deriving it

analytically from the electromagnetic models of each actuator.

For slotless machines, the winding type greatly limits the maximum efficiency that the machine

can achieve, and thus it is of crucial interest to perform a careful analysis for its selection. The

original studied machine featured skewed winding types for all radial and motor actuators,

which showed limited efficiency due to the fact that its geometry is fully determined by the

overall winding dimensions, being the axial component of the wire, the one that determines the

effective force and torque, defined by the winding’s pole pairs and axial length. Furthermore,

the micro-vibration analysis of the studied fully active magnetic bearing reveals that the

residual vibrations remaining after suppression of the unbalance forces are mainly a result of

magnetic bearing disturbances, including permanent magnet and winding asymmetries and

manufacturing imperfections. As a result of the higher symmetry and additional degrees of

freedom in the winding geometry, rhombic and hexagonal slotless winding types are identified

as the most promising options for both increasing machine efficiency and improving both

force and torque symmetry, and thus reducing bearing-dependent disturbances.

In order to accurately choose the winding properties through the optimisation, it is necessary

to develop a electromagnetic models of all actuator types, including different permanent

magnet arrangements, with and without back iron, and different winding types. These models

need to be computationally light in order to be able to employ them in the developed optimisa-

tion. For this reason, the proposed models for slotless magnetic bearings and motors are based

on the analytical evaluation of the magnetic flux density distribution, required for the Lorentz

force calculation, using elliptic integrals, for which efficient algorithms exist. This formulation

allows the evaluation of the three-dimensional flux in the machine airgap, achieving greater

accuracy than common two-dimensional approximations and being capable of estimating

some force and torque disturbances and asymmetries.

In parallel to the model definition, a manufacturing process to produce such types of windings

in-house is developed, enabling the possibility to physically manufacture and test such wind-

ings in the studied machine. The resulting optimisation of the studied fully active machine,

including the limitations in the newly-developed manufacturing process, yields considerable

machine efficiency increases, ranging from 25 % to 45 % depending on the actuator when

measuring the bearing and motor constants, and resulting in average power consumption

reductions from 30 % to 60 % during operation. These results could be further improved if
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some of the manufacturing limitations are overcome, such as the maximum opening angle of

the rhombus and hexagon that defines the maximum flux linkage that the winding can capture,

which could result in additional 10 % to 20 % efficiency increase, as analytically estimated by

the available models.

Although the achieved performance and efficiency results proven throughout the thesis, in

some applications, the necessity of actively controlling all rotor degrees of freedom, and its

associated actuator, sensing and computational power, may result in a system complexity and

cost that will not make such a configuration attractive. An alternative is to consider the passive

stabilisation of some degrees of freedom which would result in a much simpler actuator that

could retain a significant part of its performance and even increase its efficiency. For these

reasons, in space applications, hybrid magnetic bearing (HMB) systems, that combine both

active (AMB) and passive (PMB) magnetic bearings, are the most extended configuration.

Therefore, a HMB configuration is proposed, which guarantees the high performance and low

vibrations due to the actively-controlled radial degrees of freedom, keeping a configuration

equivalent to the heteropolar side of the studied machine, while passively stabilising the axial

displacements and radial tilting by means of a single arrangement of permanent magnets in

the rotor rim. Such a configuration would result in a much compact actuator, with reduced

axial length, allowing higher inertia-to-mass ratio for space applications.

The design of such a hybrid system is performed employing the available magnetic flux density

distribution models based on elliptic integrals to estimate the passive stiffness properties.

Moreover, the viability and performance of the hybrid magnetic bearing actuator is analysed

and proved employing the modular closed-loop magnetic bearing simulation model, showing

very promising stability and performance results, encouraging the further development of

such a system.

As detailed before, in the present thesis a comprehensive study of some of the key aspects of

magnetic bearing systems for space application is performed, such as vibrations, efficiency

and system complexity. The obtained results highlight the great possibilities that magnetic

bearing systems can create for space applications, making very-low disturbance and high-

performance actuators.

Finally, it is worth highlighting that even though the studied modelling and modifications

are mainly focused on the studied dual hetero/homopolar, slotless, self-bearing and PMSM

configuration, the proposed electromagnetic and closed-loop models, optimisation proce-

dure, current-to-force micro-vibration measurement technique and multi-harmonic force

rejection control can be employed in most magnetic bearing configurations. More precisely,

the electromagnetic models can be employed for any slotless magnetic bearing or motor,

whereas the remaining contributions are broadly applicable to any rotating machine featuring

magnetic bearings.
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8.2 Outlook

Having analysed the identified key aspects of magnetic bearings for space applications, some

open points should be investigated to further strengthen the research and results obtained

throughout the present thesis. These open points can be summarised as follows:

• Fully active magnetic bearing system scaling. The analysis and modifications undertaken

in this thesis have been performed maintaining the same machine overall dimensions

in order to have a fair comparison with the original machine and directly quantify

their impact. Nevertheless, some high-performance missions where magnetic bearings

would be of most interest would require a reaction wheel of bigger size, and thus the

scaling of such system is currently being investigated.

• Analysis of residual vibrations. Whereas the use of high-symmetric winding types and the

proposed multi-harmonic force rejection control is proven successful in considerably

reducing the emitted micro-vibrations, by at least one order of magnitude, some residual

vibrations are identified. It is identified that the permanent magnet imperfections

greatly affect the magnitude of these remaining vibrations, and a detailed investigation

is on-going.

• Experimental testing of hybrid magnetic bearing system. Due to the successful simulation

validation of the proposed hybrid magnetic bearing system, a detailed design and

manufacturing of such a configuration needs to be performed to experimentally analyse

its behaviour and make its development progress.

As mentioned in [15], an on-going collaboration between the German space equipment

manufacturer Astro- und Feinwerktechnik Adlershof GmbH (AFW), the Swiss high-speed drive

manufacturer Celeroton AG (CEL), and the Swiss Center for Electronics and Microtechnology

(CSEM), targets the design of a magnetic bearing reaction wheel that can profit from the results

presented in this dissertation and address the main open points mentioned before.
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A Elliptic Integrals

The complete elliptic integrals of the first, K (m), second, E(m), and third kind, Π(n,m) em-

ployed for the definition of the magnetic flux density distribution generated by permanent

magnets are

K (m) =
π/2∫

0

1√
1−m sin2 t

dt , (A.1a)

E(m) =
π/2∫

0

√
1−m sin2 t dt , (A.1b)

Π(n,m) =
π/2∫

0

1

(1−n sin2 t )
√

1−m sin2 t
dt . (A.1c)

Furthermore, the derivatives of the elliptic integrals with respect to their parameters m and n

are defined as follows

∂K

∂m
(m) = 1

2m

[
1

1−m
E(m)−K (m)

]
, (A.2a)

∂E

∂m
(m) = 1

2m
[E(m)−K (m)] , (A.2b)

∂Π

∂n
(n,m) = 1

2n(n −1)

[
n

m −n
E(m)+K (m)+ n2 −m

m −n
Π(n,m)

]
, (A.2c)

∂Π

∂m
(n,m) = 1

2(n −m)

[
1

m −1
E(m)+Π(n,m)

]
. (A.2d)

For the evaluation of the elliptic integrals, the MATLAB toolbox EIFun18 presented in [127]

is employed, which allows a much faster evaluation of the functions than MATLAB’s own

implementation, specially when employing matrix arguments, as required for numerically in-

tegrating the magnetic flux density expressions for evaluating force and torque in the magnetic

bearings.
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B Slotless Windings Parametrisations

In order to complete the description of the current density distribution and Lorentz force for

slotless skewed, rhombic, hexagonal and axial windings, as generally described in chapter

4, the unitary directing vector ev , infinitesimal winding volume dV , area A⊥ and phase wire

length Lph and the volume integration limits V need to be defined.

To summarise, having the definition of the winding parametrisation vector for skewed v sk (ρ,φ,α),

rhombic v r h(ρ,φ,α), hexagonal v hx (ρ,φ,α) and axial v ax (ρ,φ,α) windings as performed in

chapter 4, the integration limits ρ ∈ [
ρi ,ρo

]
, φ ∈ [

φi ,φo
]

and α ∈ [αi ,αo] to cover the whole

winding volume, the unitary directing vector ev , the infinitesimal winding volume dV , the

area A⊥ and phase wire length Lph can be calculated using the following general expressions

V = [
ρi , ρo

]× [
φi , φo

]× [αi , αo] , (B.1a)

ev = v ′(ρ,φ,α)∥∥v ′(ρ,φ,α)
∥∥ =

∂v
∂φ∥∥∥ ∂v
∂φ

∥∥∥
, (B.1b)

dV =
∣∣∣∣
∂(vx , vy , vz )

∂(ρ,φ,α)

∣∣∣∣dρdφdα=
∣∣∣∣(ρdα×dρ) · ∂v

∂φ
dφ

∣∣∣∣ , (B.1c)

A⊥ = 1

2

ρo∫

ρi

αo∫

αi

dV∥∥∥ ∂v
∂φ

∥∥∥dφ
, (B.1d)

Lph = N

ρo −ρi

ρo∫

ρi

φo∫

φi

∥∥∥∥
∂v

∂φ

∥∥∥∥ dφdρ, (B.1e)

where the factor 1/2 in A⊥ is included to consider that two overlapping wires need to share a

given volume, and the average winding loop length for the winding thickness ρ ∈ [
ρi ,ρo

]
is

employed to calculate the phase wire length Lph .

Furthermore, the resulting integral for calculating the generated Lorentz force F L and torque

T L by each winding type is also defined hereafter.
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Appendix B. Slotless Windings Parametrisations

B.1 Skewed Windings

The integration limits ρ ∈ [
ρsk

i ,ρsk
o

]
, φ ∈ [

φsk
i ,φsk

o

]
and α ∈ [

αsk
i ,αsk

o

]
, the unitary directing

vector e sk
v , the infinitesimal winding volume dV sk , the area Ask

⊥ and phase wire length Lsk
ph for

a skewed winding as defined in (4.17) results in

V sk
n,h =

[
ρsk

i , ρsk
o

]
×

[
φsk

i , φsk
o

]
×

[
αsk

i , αsk
o

]
=

[
Rwi +

Rwo −Rwi

mw /n
, Rwi +

Rwo −Rwi

mw /(n +1)

]

×
[

0,
2π

pw

]
×

[
2πn

mw pw
+ 2hπ

pw
− π

mw pw
,

2πn

mw pw
+ 2hπ

pw
+ π

mw pw

]
,

(B.2a)

e sk
v = 1√

ρ2 +
(

pw Lw

π

)2



−ρ sin(φ+α)

ρ cos(φ+α)

± pw Lw

π


 , (B.2b)

dV sk = pw Lw

π
dφρdαdρ, (B.2c)

Ask
⊥ = Lw

mw



√

(
ρsk

o
)2 +

(
pw Lw

π

)2

−
√

(
ρsk

i

)2 +
(

pw Lw

π

)2

 , (B.2d)

Lsk
ph = Nπ

Rno −Rni


ρsk

o

√
(
ρsk

o
)2 +

(
pw Lw

π

)2

+ p2
w L2

w

π2 log


ρsk

o +
√

(
ρsk

o
)2 +

(
pw Lw

π

)2



− ρsk
i

√
(
ρsk

i

)2 +
(

pw Lw

π

)2

− p2
w L2

w

π2 log


ρsk

i +
√

(
ρsk

i

)2 +
(

pw Lw

π

)2



 ,

(B.2e)

where it has been considered, due to the manufacturing process, that each phase is in an

independent layer in radial direction, and thus occupying each one third of the thickness.

Considering each winding phase, n ∈ {0, . . . ,mw − 1}, and pole, h ∈ {0, . . . , pw − 1}, volume

V sk
n,h and summing up for all of them, the total Lorentz force and torque can be expressed by

substituting all previous expressions into (4.1a) and (4.1b) resulting in the form

F sk
L = 1

2

mw−1∑
n=0

pw−1∑
h=0

Ñ

V sk
n,h

J sk

√
1
ρ2 + π2

p2
w L2

w



−ρ sin(φ+α)

ρ cos(φ+α)

± pw Lw

π


×B (ρ,φ,α)dφdαdρ, (B.3a)

T sk
L = 1

2

mw−1∑
n=0

pw−1∑
h=0

Ñ

V sk
n,h

J sk

√
1
ρ2 + π2

p2
w L2

w

v sk (ρ,φ,α)×



−ρ sin(φ+α)

ρ cos(φ+α)

± pw Lw

π


×B (ρ,φ,α)dφdαdρ,

(B.3b)

being B(ρ,φ,α) = B(v r h(ρ,φ,α)), the flux B evaluated at each position identified by the

winding parametrisation v sk , and the current density magnitude J sk as generally defined in

(4.16). The choice of sign in ev will depend on the value of φ as per (4.18).
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B.2. Rhombic Windings

B.2 Rhombic Windings

The integration limits ρ ∈ [
ρr h

i ,ρr h
o

]
, φ ∈ [

φr h
i ,φr h

o

]
and α ∈ [

αr h
i ,αr h

o

]
, the unitary directing

vector er h
v , the infinitesimal winding volume dV r h , the area Ar h

⊥ and phase wire length Lr h
ph for

a skewed winding as defined in (4.19) results in

V r h
n,h =

[
ρr h

i , ρr h
o

]
×

[
φr h

i , φr h
o

]
×

[
αr h

i , αr h
o

]
= [Rwi , Rwo]×

[
0, 2φs

]

×
[

2πn

mw
+ hπ

pw
− π/2

mw pw
,

2πn

mw
+ hπ

pw
+ π/2

mw pw

]
,

(B.4a)

er h
v = 1√

ρ2 +
(

Lw
φs

)2



∓ρ sin(v r h

ϕ (φ,α))

±ρ cos(v r h
ϕ (φ,α))

±Lw
φs


 , (B.4b)

dV r h = Lw

φs
dφρdαdρ, (B.4c)

Ar h
⊥ = πLw

2φs pw mw

(√
R2

wo +
(

Lw

φs

)2

−
√

R2
wi +

(
Lw

φs

)2
)

, (B.4d)

Lr h
ph = 2pw Nφs

Rwo −Rwi

[
Rwo

√
R2

wo +
(

Lw

φs

)2

+ L2
w

φ2
s

log

(
Rwo +

√
R2

wo +
(

Lw

φs

)2
)

− Rwi

√
R2

wi +
(

Lw

φs

)2

− L2
w

φ2
s

log

(
Rwi +

√
R2

wi +
(

Lw

φs

)2
)]

.

(B.4e)

Substituting in this case all previous expressions into (4.1a) and (4.1b), integrating over each

phase and pole winding volume V r h
n,h and summing up all their contributions, the total Lorentz

force F r h
L and torque T r h

L generated by a rhombic winding is

F r h
L = 1

2

mw−1∑
n=0

pw−1∑
h=0

Ñ

V r h
n,h

(−1)h J r h

√
1
ρ2 + φ2

s

L2
w



∓ρ sin(v r h

ϕ (φ,α))

±ρ cos(v r h
ϕ (φ,α))

±Lw
φs


×B (ρ,φ,α)dφdαdρ, (B.5a)

T r h
L = 1

2

mw−1∑
n=0

pw−1∑
h=0

Ñ

V r h
n,h

(−1)h J r h

√
1
ρ2 + φ2

s

L2
w

v r h(ρ,φ,α)×



∓ρ sin(v r h

ϕ (φ,α))

±ρ cos(v r h
ϕ (φ,α))

±Lw
φs


×B (ρ,φ,α)dφdαdρ,

(B.5b)

being B (ρ,φ,α) = B (v r h(ρ,φ,α)), and the current density magnitude J r h as generally defined

in (4.16). Note the change in polarity in the current for every pole of the winding included in

factor (−1)h . Again, the choice of sign in ev will depend on the value of φ as per (4.20a) and

(4.20b).
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Appendix B. Slotless Windings Parametrisations

B.3 Hexagonal Windings

The integration limits ρ ∈ [
ρhx

i ,ρhx
o

]
, φ ∈ [

φhx
i ,φhx

o

]
and α ∈ [

αhx
i ,αhx

o

]
, the unitary directing

vector ehx
v , the infinitesimal winding volume dV hx , the area Ahx

⊥ and phase wire length Lhx
ph

for a hexagonal winding as defined in (4.21) results in

V hx
n,h =

[
ρhx

i , ρhx
o

]
×

[
φhx

i , φhx
o

]
×

[
αhx

i , αhx
o

]

= [Rwi , Rwo]×
[
0, 2φs

]×
[

2πn

mw
+ hπ

pw
− π/2

mw pw
,

2πn

mw
+ hπ

pw
+ π/2

mw pw

]
,

(B.6a)

ehx
v,D = 1√

ρ2 + (Lw−Ls )2

φ2
s



∓ρ sin(vhx

ϕ (φ,α))

±ρ cos(vhx
ϕ (φ,α))

±Lw−Ls
φs


 , ehx

v,S =




0

0

±1


 , (B.6b)

dV hx
D = Lw −Ls

φs
dφρdαdρ, dV hx

S = dφρdαdρ, (B.6c)

Ahx
⊥D = π(Lw −Ls)

2φs pw mw

(√
R2

wo +
(

Lw −Ls

φs

)2

−
√

R2
wi +

(
Lw −Ls

φs

)2
)

, Ahx
⊥S =

π
(
R2

wo −R2
wi

)

2mw pw
,

(B.6d)

Lhx
ph = 4pw N Ls

+ 2pw Nφs

Rwo −Rwi

[
Rwo

√
R2

wo +
(

Lw −Ls

φs

)2

+
(

Lw −Ls

φs

)2

log

(
Rwo +

√
R2

wo +
(

Lw −Ls

φs

)2
)

− Rwi

√
R2

wi +
(

Lw −Ls

φs

)2

−
(

Lw −Ls

φs

)2

log

(
Rwi +

√
R2

wi +
(

Lw −Ls

φs

)2
)]

.

(B.6e)

To facilitate the calculations for this winding type, it is assumed that the whole winding volume

is occupied by wire, resulting in a different current density for the axial and diagonal segments

of the hexagon due to a different phase belt area. The normal vector of these surfaces ehx
v is

separated in two domains: diagonal, D, and straight (axial), S , segments defined in (4.22a).

In a similar way to the previous windings, the total Lorentz force F hx
L and torque T hx generated

by an hexagonal winding can be calculated by

F hx
L = 1

2

mw−1∑
n=0

pw−1∑
h=0

Ñ

V hx
n,h

(−1)h J r hehx
v (ρ,φ,α)×B (ρ,φ,α)dV hx , (B.7a)

T hx
L = 1

2

mw−1∑
n=0

pw−1∑
h=0

Ñ

V hx
n,h

(−1)h J hx v hx (ρ,φ,α)×ehx
v (ρ,φ,α)×B (ρ,φ,α)dV hx . (B.7b)

In this case J hx , ehx
v and dV hx change not only in sign but also in magnitude, as defined in

(B.6d), (B.6b) and (B.6c), respectively, depending on the value of φ as per (4.22a) and (4.22b).
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B.4. Axial Windings

B.4 Axial Windings

The integration limits ρ ∈ [
ρax

i ,ρax
o

]
, φ ∈ [

φax
i ,φax

o

]
and α ∈ [

αax
i ,αax

o

]
, the unitary directing

vector eax
v , the infinitesimal winding volume dV ax , the area Aax

⊥ and phase wire length Lax
ph

for a skewed winding as defined in (4.23) results in

V ax = [
ρax

i , ρax
o

]× [
φax

i , φax
o

]× [
αax

i , αax
o

]= [Rwi , Rwo]× [0, 2π]×
[
−Lw

2
,

Lw

2

]
, (B.8a)

eax
v =



−sin(φ)

cos(φ)

0


 , (B.8b)

dV ax = dφρdαdρ, (B.8c)

Aax
⊥ = Lw (Rwo −Rwi ), (B.8d)

Lax
ph =

2πN (R2
wo −R2

wi )

Rwo −Rwi
. (B.8e)

The total Lorentz force and torque generated by an axial winding is calculated as follows

F ax
L = 2

Ñ

V ax

J axρ



−sin(φ)

cos(φ)

0


×B (ρ,φ,α)dφdαdρ, (B.9)

where the factor 2 is considered to include the force and torque generated by both ring coils

that compose the axial winding.
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C Geometric Transformations for Pas-
sive Stiffness Calculation

In order to calculate the attraction or repulsive force and torque between a pair of permanent

magnets as a function of a given relative displacement, it is necessary to define the geometric

transformations that converts the magnetic flux density distribution generated by one per-

manent magnet expressed under the other’s reference frame. This transformation allows the

evaluation of the volume integral integral defined in expressions (4.31a) and (4.31b).

For all the considered geometric transformations, four different reference frames are de-

fined: two inertial (fixed) frames centred at stator and bearing centre, S{C ′, X ′,Y ′, Z ′} and

S{O′, x ′, y ′, z ′}, respectively, and two non-inertial reference frames linked to the rotor centre

of gravity and bearing, S{C , X ,Y , Z } and S{O, x, y, z}, respectively. In the following expres-

sions only the lower pair of PM rings will be shown, but equivalent transformations can be

performed for the bearing’s upper pair of rings.

C.1 Axial Displacement

The position in Cartesian coordinates of any point P , defined by the cylindrical coordinates

(r,ϕ, z), of the integration volume V (rotor’s permanent magnet), subject to an axial displace-

ment ∆z, as shown in figure C.1, with respect to the stator-linked bearing reference frame

S{O′, x ′, y ′, z ′}, can be simply expressed by

P (∆z) =




r ′
p cosϕ′

p

r ′
p sinϕ′

p

z ′
p


=




rp cosϕp

rp sinϕp

zp +∆z


 =⇒





r ′ = r,

ϕ′ =ϕ,

z ′ = z +∆z.

(C.1)

When considering this axial displacement, the purely axial magnetisation vector M r ot =
[0,0,−Mz ]> of the rotor permanent magnet ring remains unchanged and thus the projection of

the external field over the magnetisation direction BM and its gradient in Cartesian coordinates
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Appendix C. Geometric Transformations for Passive Stiffness Calculation
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Figure C.1 – Schematic cross-section of axial displacement with reference frame definition.

can be simply computed by

BM (r,ϕ, z) = M r ot ·B st =




0

0

−Mz


 ·




Br (r ′, z ′)cosϕ′

Br (r ′, z ′)sinϕ′

Bz (r ′, z ′)


=−Mz Bz (r ′, z ′), (C.2a)

∇BM (r,ϕ, z) =




∂BM
∂r ′ (r ′,ϕ′, z ′)cosϕ′− 1

r ′
∂BM
∂ϕ′ (r ′,ϕ′, z ′)sinϕ′

∂BM
∂r ′ (r ′,ϕ′, z ′)sinϕ′+ 1

r ′
∂BM
∂ϕ′ (r ′,ϕ′, z ′)cosϕ′

∂BM
∂z ′ (r ′,ϕ′, z ′)


=−Mz



∂Bz
∂r ′ (r ′, z ′)cosϕ′
∂Bz
∂r ′ (r ′, z ′)sinϕ′

∂Bz
∂z ′ (r ′, z ′)


 ,

(C.2b)

with r ′, z ′ as defined in expression (C.1), the partial derivatives as in (4.30a), (4.30b), (4.30c),

and (4.30d), being then the force at an infinitesimal permanent magnet volume dV

dF (∆z) =∇ (M r ot ·B st )dV =




dFx ′

dFy ′

dFz ′


=−Mz



∂Bz
∂r ′ (r ′, z ′)cosϕ′
∂Bz
∂r ′ (r ′, z ′)sinϕ′

∂Bz
∂z ′ (r ′, z ′)


dV. (C.3)

The total force F applied to the rotor magnets subject to a given axial displacement ∆z is

calculated by substituting expression (C.3) into (4.31a). Note that due to the symmetry of the

problem, only axial force will be present after the integration, and no torque is generated in

this case.

C.2 Radial Displacement

In the case of experiencing a radial displacement ∆x, as shown in figure C.2a, the position

in Cartesian coordinates of any point P , of the rotor’s PM ring, with respect to the stator PM

reference frame S{O′, x ′, y ′, z ′}, can be expressed by performing the transformation graphically
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C.2. Radial Displacement
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(a) Schematic cross-section for radial displacement.
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Figure C.2 – Geometric transformation for radial displacement.

shown in figure C.2b as

P (∆x) =




r ′
p cosϕ′

p

r ′
p sinϕ′

p

z ′
p


=




rp cosϕp +∆x

rp sinϕp

zp


 =⇒





r ′ =
√

r 2 +∆x2 +2r∆x cosϕ,

ϕ′ = atan
(

r sinϕ
r cosϕ+∆x

)
,

z ′ = z.

(C.4)

When considering this radial displacement ∆x, the magnetisation vector M r ot = [0,0,−Mz ]>

of the rotor permanent magnet ring remains unchanged and thus the projection of the external

field and its gradient can be simply computed by

BM (r,ϕ, z) = M r ot ·B st =




0

0

−Mz


 ·




Br (r ′, z ′)cosϕ′

Br (r ′, z ′)sinϕ′

Bz (r ′, z ′)


=−Mz Bz (r ′, z ′), (C.5a)

∇BM (r,ϕ, z) =




∂BM
∂r ′ (r ′,ϕ′, z ′)cosϕ′− 1

r ′
∂BM
∂ϕ′ (r ′,ϕ′, z ′)sinϕ′

∂BM
∂r ′ (r ′,ϕ′, z ′)sinϕ′+ 1

r ′
∂BM
∂ϕ′ (r ′,ϕ′, z ′)cosϕ′

∂BM
∂z ′ (r ′,ϕ′, z ′)


=−Mz



∂Bz
∂r ′ (r ′, z ′)cosϕ′
∂Bz
∂r ′ (r ′, z ′)sinϕ′

∂Bz
∂z ′ (r ′, z ′)




(C.5b)

with r ′,ϕ′, z ′ as defined in expression (C.4), the partial derivatives as in (4.30a), (4.30b), (4.30c),

and (4.30d), and the force at an infinitesimal permanent magnet volume dV

dF (∆x) =∇ (M r ot ·B st )dV =




dFx ′

dFy ′

dFz ′


=−Mz



∂Bz
∂r ′ (r ′, z ′)cosϕ′
∂Bz
∂r ′ (r ′, z ′)sinϕ′

∂Bz
∂z ′ (r ′, z ′)


dV. (C.6)

As before, the total force F applied to the rotor magnets subject to a given axial displacement

∆z is calculated by substituting expression (C.6) into (4.31a). Due to the radial displacement

towards x direction, only force in x direction and no torque will be present.
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Appendix C. Geometric Transformations for Passive Stiffness Calculation
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Figure C.3 – Geometric transformation for radial tilting.

C.3 Radial Tilting

In the case of experiencing a tilt ∆φy , as shown in figure C.3a for a rotation about Y ′-axis,

another geometric transformation is also required. This tilting is not defined at the bearing

centre (point O), but at the rotor centre of gravity (point C ). Thus, by considering a rotation

about axis Y passing by the rotor centre C , the position in Cartesian coordinates of any point

P of the rotor’s permanent magnet, with respect to the stator-linked bearing reference frame

S{O′, x ′, y ′, z ′}, can be expressed performing the transformation shown in figure C.3b as follows

P (∆φy ) =




r ′
p cosϕ′

p

r ′
p sinϕ′

p

z ′
p


=




cosφy 0 sinφy

0 1 1

−sinφy 0 cosφy







rp cosϕp

rp sinϕp

zp −L


+




0

0

L


=

=




rp cosϕp cos∆φy + (zp −L)sin∆φy

rp sinϕp

L− rp cosϕp sin∆φy + (zp −L)cos∆φy


 ,

(C.7)

resulting in the following transformation (r,ϕ, z) 7→ (r ′,ϕ′, z ′)

P (∆φy ) =⇒





r ′ =
√

(r cosϕcos∆φy + (z −L)sin∆φy )2 + (r sinϕ)2,

ϕ′ = atan
(

r sinϕ
r cosϕcos∆φy+(z−L)sin∆φy

)
,

z ′ = L− r sinϕsin∆φy + (z −L)cos∆φy .

(C.8)

In this case, the magnetisation vector M r ot = [0,0,−Mz ]> of the rotor permanent magnet ring

is rotated by ∆φy about Y , and thus the projection of the external field and its gradient can be
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C.3. Radial Tilting

computed as follows

BM (r,ϕ, z) = M r ot ·B st =




cos∆φy 0 sin∆φy

0 1 1

−sin∆φy 0 cos∆φy







0

0

−Mz


 ·




Br (r ′, z ′)cosϕ′

Br (r ′, z ′)sinϕ′

Bz (r ′, z ′)


=

=−Mz (sin∆φy Br (r ′, z ′)cosϕ′+cos∆φy Bz (r ′, z ′)),

(C.9a)

∇BM (r,ϕ, z) =




∂BM
∂r ′ (r ′,ϕ′, z ′)cosϕ′− 1

r ′
∂BM
∂ϕ′ (r ′,ϕ′, z ′)sinϕ′

∂BM
∂r ′ (r ′,ϕ′, z ′)sinϕ′+ 1

r ′
∂BM
∂ϕ′ (r ′,ϕ′, z ′)cosϕ′

∂BM
∂z ′ (r ′,ϕ′, z ′)


=

=−Mz




cosϕ′
(
sin∆φy

∂Br (r ′,z ′)
∂r ′ cosϕ′+cos∆φy

∂Bz (r ′,z ′)
∂r ′

)
+ Br (r ′,z ′)sin2ϕ′

r ′ sin∆φy

sinϕ′
(
sin∆φy

∂Br (r ′,z ′)
∂r ′ cosϕ′+cos∆φy

∂Bz (r ′,z ′)
∂r ′

)
− Br (r ′,z ′)sin2ϕ′

2r ′ sin∆φy

sin∆φy
∂Br (r ′,z ′)

∂z ′ cosϕ′+cos∆φy
∂Bz (r ′,z ′)

∂z ′


 ,

(C.9b)

with r ′,ϕ′, z ′ as defined in expression (C.8), the partial derivatives as in (4.30a), (4.30b), (4.30c),

and (4.30d), resulting in the force and torque at an infinitesimal permanent magnet volume

dV

dF (∆φy ) =




dFx ′

dFy ′

dFz ′


=∇ (M r ot ·B st )dV =

=−Mz




cosϕ′
(
sin∆φy

∂Br (r ′,z ′)
∂r ′ cosϕ′+cos∆φy

∂Bz (r ′,z ′)
∂r ′

)
+ Br (r ′,z ′)sin2ϕ′

r ′ sin∆φy

sinϕ′
(
sin∆φy

∂Br (r ′,z ′)
∂r ′ cosϕ′+cos∆φy

∂Bz (r ′,z ′)
∂r ′

)
− Br (r ′,z ′)sin2ϕ′

2r ′ sin∆φy

sin∆φy
∂Br (r ′,z ′)

∂z ′ cosϕ′+cos∆φy
∂Bz (r ′,z ′)

∂z ′


dV ,

(C.10a)

dT (∆φy ) =




dTx ′

dTy ′

dTz ′


= r ′×dF (∆φy ) =




r ′ cosϕ′

r ′ sinϕ′

z ′−L


×




dFx ′

dFy ′

dFz ′


=




r ′ sinϕ′dFz ′ − (z ′−L)dFy ′

−r ′ cosϕ′dFz ′ + (z ′−L)dFx ′

r ′ cosϕ′dFy ′ − r ′ sinϕ′dFx ′


 .

(C.10b)

The total force and torque is obtained by substituting expressions (C.10a) and (C.10b) into

(4.31a) and (4.31b), respectively. In this case, due to the problem’s symmetry, only dTy ′ will be

non zero.
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