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Abstract
In multiple testing problems where the components come from a mixture model of noise and

true effect, we seek to first test for the existence of the non-zero components, and then identify

the true alternatives under a fixed significance level α. Two parameters, namely the fraction of

the non-null components ε and the size of the effects µ, characterise the two-point mixture

model under the global alternative. When the number of hypotheses m goes to infinity, we

are interested in an asymptotic framework where the fraction of the non-null components

is vanishing, and the true effects need to be sizable to be detected. Donoho and Jin give an

explicit form of the asymptotic detectable boundary based on the Gaussian mixture model

under the classic calibration of the parameters of the mixture model. We prove the analogous

results for the Cauchy mixture distribution as an example heavy-tailed case. This requires a

different formulation of the parameters, which reflects the added difficulties.

We also propose a multiple testing procedure based on a filtering approach that can discover

the true alternatives. Benjamini and Hochberg (BH) compare the observed p-values to a linear

threshold curve and reject the null hypotheses from the minimum up to the last up-crossing,

and prove the false discovery rate (FDR) is controlled. However, there is an intrinsic difference

in heavy-tailed settings. Were we to use the BH procedure we would get a highly variable

positive false discovery rate (pFDR). In our study we analyse the distribution of the p-values

and devise a new multiple testing procedure to combine the usual case and the heavy-tailed

case based on the empirical properties of the p-values. The filtering approach is designed to

eliminate most p-values that are more likely to be uniform, while preserving most of the true

alternatives. Based on the filtered p-values, we estimate the mode ϑ and define the rejection

region R(ϑ,δ) = [ϑ−δ/2,ϑ+δ/2] such that the most informative p-values are included. The

length δ is chosen by controlling the data-dependent estimation of FDR at a desired level.

Keywords: False discovery rate (FDR), filtering, heavy-tailed distribution, local FDR, mode

estimation, multiple testing, operating characteristics, positive FDR.

iii





Résumé
Dans un problème de tests multiples, où les variables suivent un modèle de mélange de bruit

et d’effets réels, nous cherchons d’abord à tester l’existence des composantes non nulles,

puis à identifier au niveau α les vraies alternatives parmi les mélanges. Deux paramètres, en

l’occurrence la fraction des composantes non nulles ε et la taille des effets µ, caractérisent

le modèle de mélange lorsque l’hypothèse alternative globale est vraie. Lorsque le nombre

d’hypothèses m passe à l’infini, nous nous intéressons à une structure asymptotique, dans

laquelle, la fraction des composantes non nulles diminue et la taille des effets réels est suffi-

samment grande pour être détectée. Donoho et Jin donnent une forme explicite de la frontière

de détection asymptotique, basée sur le modèle de mélange Gaussien respectant les hypo-

thèses classiques du modèle de mélange. Nous prouvons par analogie ce résultat pour la

distribution de mélange de Cauchy, la distribution de Cauchy étant un exemple de cas de lois

de probabilité à queue lourde. Cela nécessite une formulation différente des paramètres, qui

reflète les difficultés supplémentaires.

Nous proposons également une procédure de tests multiples basée sur une approche par

filtration permettant de découvrir les vraies alternatives. Benjamini et Hochberg (BH) com-

parent les p-valeurs observées à une courbe de seuil linéaire et rejettent les hypothèses nulles

du minimum jusqu’au dernier croisement ascendant. Ils prouvent également que le taux de

fausses découvertes (FDR) est contrôlé. Cependant, il existe une différence intrinsèque dans

les paramètres à queue lourde. Si nous utilisions la procédure BH, nous obtiendrions un taux

de fausses découvertes positives (pFDR) très variable. Dans notre recherche, nous analysons

la distribution des p-valeurs et concevons une nouvelle procédure de tests multiples qui se

base sur les propriétés empiriques des p-valeurs. Cette procédure permet de combiner le cas

Gaussien et le cas à queue lourde. L’approche par filtration est conçue pour éliminer la plupart

des p-valeurs qui sont plus susceptibles d’être uniformes, tout en préservant la plupart des

vraies alternatives. Sur la base des p-valeurs filtrées, nous estimons le mode ϑ et définissons la

région de rejet R(ϑ,δ) = [ϑ−δ/2,ϑ+δ/2] telle que les p-valeurs les plus informatives soient

incluses. La longueur δ est choisie en contrôlant le FDR, estimé à partir des données, à un

niveau souhaité.
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1 Introduction

This work is aimed at developing an adaptive method for multiple testing problems where the

test statistics follow a heavy-tailed distribution. The multiple testing problem gains more and

more interest as large-scale simultaneous inference becomes an essential technique in many

applications. In this chapter we first give a brief introduction to the multiple testing problem,

and then explain why this topic is worth investigating from different perspectives.

1.1 Background

The general statistical decision problem investigates a set of observations which are the

realised values x of random variables X whose distribution Pθ is at least partly unknown.

The parameter θ is supposed to label the distribution of X , and is often assumed to vary

in a parameter space Θ. The purpose of statistical inference is to obtain information from

the observable results and understand the underlying distribution Pθ mathematically. A

decision rule δ(x) is desired to provide guidance about the distribution and the parameter

space, which simply maps the possible values x to the labels of decisions that should be

chosen. To eliminate redundancy, we omit this notation δ in the following chapters and focus

on the corresponding partition in the sample space of X , namely the rejection region and

the acceptance region. Due to the randomness of the variable and the lack of knowledge of

the background, uncertainty of the statistical decision is unavoidable. Every decision made

between a number of possible candidates is associated with a consequence that should be

evaluated quantitatively. In order to compare the conclusions mathematically, different rules

and criteria have been developed. The main issues in hypothesis testing and its difficulties

when generalised to multiple testing are briefly introduced in this chapter.

1.1.1 Hypothesis testing

In the 20th century, Egon Pearson and Jerzy Neyman made extensive contributions to the

formalisation and development of statistical methods in hypothesis testing. As an essential

1



Chapter 1. Introduction

topic in statistical inference, the purpose of hypothesis testing is to make the statistical decision

of whether the prior hypothesis has been correctly formulated. This decision procedure is

based on the current observations x of certain random variables X , of which the distribution Pθ
is assumed to be varying in a class P= {Pθ, θ ∈Θ}. The null hypothesis H0 is often formulated

to claim some property of Pθ that is supposed to be verified, and an alternative hypothesis

H1 is involved when we decide between a favoured statement and another. This divides the

parameter spaceΘ intoΘ0 andΘ1 under the null and the alternative respectively. A choice of

rejecting or not rejecting H0 is made given the data.

Since the decisions depend on the value x of X , the sample space is divided into two regions,

the rejection region R(·) and the acceptance region Rc
(·) , associated with a specified decision

rule. We can define a critical function φ(x) of x to represent the probability of rejecting the

null at the value x, and 1−φ(x) stands for the probability of not rejecting. In a randomised

test, the probability 0 ≤φ(x) ≤ 1 for all x, while in a nonrandomised test the critical function is

reduced to an indicator of the critical region with φ(x) = 1 or 0.

There are two types of errors when the decision is made. A type I error occurs when the null

hypothesis is rejected but it is indeed true, while a type II error occurs when the null hypothesis

is not rejected but is indeed false.

True state
H0 true H0 false

Decision
Reject H0 Type I error

Not reject H0 Type II error

The two types of errors are both worth investigating and they are obviously not equivalent.

Unfortunately, it is not possible to minimise the probabilities of both simultaneously. Usually

a bound α ∈ (0,1) is assigned to control the probability of type I error, and this threshold

is called the significance level of the test. This value can be customised to the tolerance of

false rejections. The rejection of null hypothesis H0 is often referred to as a discovery. In this

case the procedure is to minimise the probability of type II error subject to a pre-determined

control of the probability of type I error

Pθ{X ∈ Rφ} = Eθφ(X ) =
∫
φ(x)dPθ(x) ≤α for all θ ∈Θ0 .

This is because we want the null hypothesis to be rejected carefully, and once we claim a

rejection, the probability of the conclusion being wrong is bounded by α.

On the other hand, the type II error is closely related to the ability to detect false nulls. Minimis-

ing the type II error is equivalent to maximising the statistical power against the alternative

H1, which is for each θ ∈Θ1,

Pθ{X ∈ Rc
φ} = Eθφ(X ) =

∫
φ(x)dPθ(x),

2



1.1. Background
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Figure 1.1 – Testing the shifted mean

i.e., the probability of rejection when the null hypothesis is false.

The main issues in hypothesis testing can be illustrated with the following example. When

a new treatment is tested in a clinical trial, one must be very cautious to claim that it has a

better effect than the existing methods. The decision is made between the null hypothesis

¿no improvementÀ and the alternative hypothesis ¿positive effectÀ. Suppose the mea-

surements follow a Gaussian N (µ,1) distribution, where µ is the increment in the effect of the

new treatment. Mathematically the problem is to test

H0 : µ= 0 against H1 : µ> 0.

Not rejecting the null hypothesis means no significant improvement is detected, while re-

jecting the null hypothesis leads to a positive discovery which may have a great impact in

follow-up studies. A false rejection here means the researchers declare a significant improve-

ment but it is indeed wrong. The belief in this new treatment may cause an abuse while it is

not improving the result in reality, or even worse, is harmful to some patients. This situation is

assumed to be limited by controlling the probability of type I error. Subject to the threshold of

the probability of a false discovery, maximising the power results in the optimality of detecting

the significant improvement of the new treatment. When the power is high, it implies that one

will not miss a promising treatment when it is indeed a better solution.

The rejection region can also be based on the p-value of the test, which is defined as the

probability that the current observation or more extreme observations occur when H0 is true.

In other words, it reflects the probability of H0 being true by measuring how much the data

contradict the null hypothesis. Suppose H0 is true and the observations are the realisations of

3



Chapter 1. Introduction

the random variable under H0. If the p-value is below a pre-specified threshold, for example

p < 0.05, it implies that the current observations or even more extreme ones are rare, while

the fact that they do exist indicates the erroneousness of H0.

1.1.2 Early development of simultaneous inference

Multiple testing is a subfield of simultaneous inference, which includes multiple comparison

and estimation as well as testing. In the early-stage research of simultaneous testing, multi-

plicity correction is not involved and the principal ideas are not formulated mathematically.

Fisher (1935) proposed the first method to do simultaneous tests, but it was not named in

terms of a multiple testing methodology. The initial proposal for making multiple inferences

was formulated by Tukey (1953). The theories and methodologies in this stage are developed

mainly to provide multiple conclusions simultaneously, and it is necessary to associate with

each conclusion a statistical measure of confidence. We refer to the book by Miller (1966) as a

good summary of the early development of simultaneous inference.

Fisher’s least significant difference test

Fisher (1935) proposed a test that locates the significant effects in the analysis of variance,

which is considered as a predecessor of the multiple stage tests. The null hypothesis

H0 : µ1 = ·· · =µm , (1.1)

can arise in any application of the normal linear model, where µi is the mean of the i -th

population. Suppose
{

Xi j , j = 1, . . . ,ni
}

is the sample from the i -th population, with i =
1, . . . ,m and

∑m
i=1 ni = N . Denote the sample mean and the pooled variance

X̄ ·· = 1

N

∑
i , j

Xi j , X̄i · = 1

ni

ni∑
j=1

Xi j , i = 1, . . . ,m, and S2 = 1

N −m

∑
i , j

(Xi j − X̄i ·)2 .

In order to test the overall null hypothesis (1.1) in the analysis of variance, one will apply an F

test which compares the test statistic∑
i (X̄i ·− X̄ ··)2/(m −1)∑

i , j (Xi j − X̄i ·)2/(N −m)
(1.2)

to the α quantile of the Fm−1,N−m distribution. If the F value does reject the overall null

hypothesis, one will apply a follow-up test to locate the significantly different pairs. For each

pairwise mean comparison between µi and µi ′ considered in (1.1), a t-test at level α is utilised

and the component hypothesis µi =µi ′ is rejected if the t-value

X̄i ·− X̄i ′·
S
/√

ni ni ′
ni+ni ′

, i 6= i ′ (1.3)

4



1.1. Background

exceeds the α/2 quantile of the tN−m distribution. This is a two-stage test that locates the

significant means with the overall significance guaranteed by the F test.

Tukey’s studentized range test

Tukey (1953) provided a studentized range test to make comparisons of the means of the

measurements in one-way classification with the overall erroneousness being controlled.

Suppose
{

Xi j , i = 1, . . . ,m, j = 1, . . . ,n
}

are m independent balanced samples, each of which is

a sample of n independent normal random variables with common mean and variance. Let

µi be the mean of the i -th sample. The problem of testing the hypothesis (1.1) is equivalent to

testing

H0 : µi =µi ′ for all i 6= i ′ . (1.4)

In order to test the difference between a single pair µi and µi ′ , the test statistic is based on∣∣(X̄i ·− X̄i ′·)− (µi −µi ′)
∣∣ . Thus, for any paired difference µi −µi ′ , i 6= i ′ to be bounded by a

threshold, it is natural to consider that the following inequality

maxi ,i ′
{∣∣(X̄i ·− X̄i ′·)− (µi −µi ′)

∣∣}
S/

p
n

≤ c (1.5)

holds under the null hypothesis. Notice that the numerator is the range of m independent

N (0,σ2) random variables, and the sample variance S in the denominator is the square root of

the pooled variance based on the whole sample. The test statistic is compared to the upper α

quantile of the studentized range distribution with the parameters m, m(n −1). This is called

a Tukey’s studentized range test, and sometimes also called a wholly significant difference

(WSD) test, or Tukey’s honestly significant difference (HSD) test.

Other related literature

The work of Dunnett (1955, 1964) and Duncan (1955) and other statisticians in the fifties

and sixties also contributed to the field of simultaneous testing and multiple comparison.

Scheffé developed a procedure based on the F -test in the analysis of variance to derive

further conclusions for any possible contrasts
∑m

i=1 ciµi . Dunnett’s method was aimed at

comparing multiple treatment means with a control mean under the setting of equal sample

sizes and equal variances. Duncan’s work was more associated with the multiple stage tests

first proposed by Newman (1939). Duncan used an αp -level studentized range test in a follow-

up study after the overall null hypothesis (1.1) is rejected, where p = 2,3, . . . ,m is the number

of the means in a subset of interest. To compare the p means, the level of the studentized

range test is chosen to be αp = 1− (1−α)p−1 .

Remark. Note that the concepts of multiple testing and multiple comparison are sometimes

used interchangeably, while for statisticians, there are noticeable distinctions between the

principals of multiple testing and multiple comparison. In multiple comparisons, the main

goal is to compare the means of different groups, while in multiple testing, one is more interested

5



Chapter 1. Introduction

in inference based on pre-specified null and alternative hypotheses.

Some applications

In studies of clinical trials, genomics and neural networks, it is crucial to test whether each

explanatory variable has an impact on the responses. The selected variables are often used in

a follow-up study. For example, when comparing several treatments against a control case in a

clinical study, each treatment generates a test of ¿no differenceÀ against ¿improvementÀ,

namely

H0,i : µi = 0 against H1,i : µi > 0,

where µi denotes the mean response to the i -th treatment. The overall null hypothesis

H0 : µ1 =µ2 = ·· · =µm = 0,

which is the intersection of all the nulls, states that no significant improvement is detected

among all the treatments. When the overall null hypothesis is accepted, the study is complete

and no more information is required. If the overall null hypothesis is rejected, one would like

to identify which treatments have a significant improvement.

On the other hand, one can also compare multiple treatments instead of testing their improve-

ment over a control case. For example, with the null hypotheses being

Hi , j : µi =µ j , 1 ≤ i < j ≤ m ,

a maximum of
(m

2

)
tests can be performed to compare each pair of treatments.

Another typical application of multiple testing and comparison is in genetics or genomics,

where thousands of genes, or even more, are tested simultaneously. Nowadays the biotechnol-

ogy such as the Next Generation Sequencing (NGS) allows us to tackle high-throughput data.

Large-scale testing is often carried out at one time, and it may turn out that only a few genes

among thousands of candidates are of interest.

We take the study of differential gene expression as an introductory example, where one would

like to test whether or not there is a difference in gene expression between the control subjects

and the patients with a hereditary cancer. Suppose we receive the independent Gaussian

measurements {Xi , j , Yi , j , i = 1, . . . ,m, j = 1, . . . ,n} for the levels of gene expressions of the two

groups. We focus on testing the family of hypotheses

H0,i : µX
i =µY

i , i = 1, . . . ,m ,

where rejecting a null hypothesis H0,i indicates that for this gene i , the expression is signif-

icantly different between the control group and cancer group. We know that for a single

gene i , the classical method provides a two-sample Student t-test between two samples of

measurements {Xi , j , Yi , j }n
j=1 at significance level α. When considering multiple genes, for
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1.1. Background

example m = 5,000, a choice of α= 0.05 allows on average 250 false rejections if all the null

hypotheses are true. This conclusion can be very misleading in the sense of causality and lead

to a waste of time and resources.

Similar multiple testing studies also occur in neural networks, where a large number of tests

are generated according to the architecture of the network. One can investigate the function

or the structure of the different regions in the brain by analysing the measurements. For

example, in network data analysis based on neuro-imaging, we seek to formalise the statistical

properties based on the network data, and derive the principal features from the graphical

model. These statistics will be used to compare different networks and detect the factors that

most influence the networks.

Mathematically one can conclude the principal properties in a graph G = (V ,E), where V

and E are the set of vertices and edges respectively. Using graphical methods one can test

for either the local properties reflected by the statistics related to the nodes and edges, such

as connected components, triangles, and other higher-order structures. On the other hand,

one can also test for the global structure such as the depth or the shortest-path length of

the graph. The testing procedures are usually aimed at determining the critical features of a

network, or comparing one network to another. In real applications, for example, multiple

testing procedures are applied to investigate the connectivity between different regions of the

brain or to compare the levels of gene expression measured for different subjects. Topological

and geometric data analysis will also be involved in this field.

1.1.3 Multiplicity adjustment

We see from the previous sections that in multiple testing, the set of conclusions are often

regarded as a whole instead of being evaluated based on each single hypothesis. Multiplicity

adjustment is needed if the inferences are made simultaneously and the errors are considered

jointly. The control of the erroneousness per test does not guarantee the equivalent control

of wrong detections over the family of hypotheses. A standard choice of significance level

α= 0.05 or 0.01 may allow a number of false discoveries that is beyond the tolerance when

considering the whole family of tests.

Consider the case when we are to test simultaneously a finite number of hypotheses {H0,i }m
i=1,

7



Chapter 1. Introduction

of which m0 are actually true. An intuitive idea is to test each hypothesis separately using a

pre-determined significance level α. Suppose some of the null hypotheses are rejected, the

mean value of the false rejections is

E(#{False rejections}) = ∑
i : H0,i is true

PH0,i (H0,i is rejected at level α)

= #{i : H0,i is true} ·α
= m0α .

Since the number of true null hypotheses is unknown, the number of falsely rejected nulls can

be quite large regardless of the combination of true and false hypotheses. On the other hand,

the probability of making at least one false rejection increases dramatically with m:

P(at least one false rejection) = 1−P(no false rejection)

= 1−
m⋂

i=1

{
H0,i is not falsely rejected at level α

}= 1− (1−α)m
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Figure 1.2 – The probability of making at least one false rejection

Figure 1.2 shows how the probability of making at least one false rejection among m tests

grows with m, and we can see that, for example, this probability is already above 0.9 when

we test 50 hypotheses simultaneously. A conclusion with a controlled type I error less than

0.05 per test is very misleading in terms of the erroneousness in testing the whole family. This

phenomenon indicates that the level α needs to be adjusted.

In order to control the global probability of committing false rejections, the Bonferroni correc-

tion tests each null hypothesis at a reduced significance level α/m, and has been proved to

control the family-wise error rate (FWER), that is, the probability of having at least one false

rejection at the level α. However, the Bonferroni correction is known to be too conservative.

For example, with 50 tests and the overall significance level α= 0.05, the Bonferroni correction

only rejects the null hypothesis if the p-value is less than 0.001. In reality m can go beyond

thousands, and such a strict rule of rejection may lead to a high rate of false negatives, that is,

a low power for detecting the true alternative hypotheses. But this method is still widely used
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1.1. Background

in the confirmatory analyses, for example in clinical trials, when a single false positive can

cause fatal consequences, so the researcher does not want any misleading discoveries. Holm

(1979) developed the Bonferroni correction with slight modification. The Holm’s procedure

compares the p-values to an increasing threshold sequence

α

m
,

α

m −1
, · · · ,

α

1

and is proved to control the FWER as well.

In some exploratory analyses where the discoveries reported from the tests will be examined

in more detailed follow-up studies, the aim of controlling the type I error is not limited to

avoiding any single false discovery, but rather controlling the proportion of false discoveries.

Benjamini and Hochberg (1995) invented a step-wise procedure that controls a different

criterion. The false discovery rate (FDR) is defined as

FDR = E
(

#{False rejections}

#{Total rejections}

)
,

which is the expected proportion of false rejections among all rejections. The BH procedure

tests the null hypotheses H0,(1), H0,(2), . . . , H0,(m) following the increasing order of the observed

p-values

p(1) ≤ p(2) ≤ ·· · ≤ p(m).

The ordered p-values are compared to the sequence of thresholds

α

m
,

2α

m
, . . . ,α ,

which is linear in i = 1,2, . . . ,m. It rejects the null hypothesis for the p-value p(i ) ≤ i αm and stops

at the last crossing point. It is known that the Benjamini–Hochberg procedure controls the

false discovery rate if all the test statistics are independent. This method is widely used since it

provides control of error rate for a large-scale multiple testing study with promising power.

Benjamini and Yekutieli (2001) improved the step-wise procedures under positive dependence.

Much literature based on BH procedure and the control of FDR and its alternatives has

appeared in the last decades.

Multiplicity correction is considered as the main issue in the field of multiple testing. Useful

techniques to control error rates will be systematically explained in Chapter 2.

1.1.4 Weak and strong control of error rates

One of the main issues in multiple testing is to quantitatively control the erroneousness.

Different criteria are defined and adopted depending on the setting. In this section we propose

an intuitive illustration, of which a mathematical formalisation can be found in Chapter 2.

The control of the type I error rate only when all the null hypotheses in the family are true
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is referred to as weak control, for example the experiment-wise error rate control. It is in

practice not interesting because it does not provide equivalent control of the rate of making

an incorrect decision. For many statistical testing methods, the maximum probability of a

false rejection occurs when only some of the null hypotheses are true, instead of all of the null

hypotheses being true.

Most literature concentrates on the multiple testing procedures with strong control, that is, the

control of type I error rate regardless the configuration of true and false null hypotheses. Apart

from the two major choices, the FWER and the FDR mentioned above, there are alternative

formulations of error rate considered in multiple testing. The per-comparison error rate (PCER)

is also referred to as error rate per hypothesis, of which the average

PCER = #{False rejections}

#{Total hypotheses}

can be used as the expected value of the number of false discoveries over the total number

of hypotheses. This criterion ignores the multiplicity correction in the sense that the PCER

is controlled at α if each individual hypothesis is tested at level α. The error rate per family

(PFE) is defined as the expected number of false discoveries in the family. The marginal false

discovery rate (mFDR) is defined as

mFDR = E(#{False rejections})

E(#{Total rejections})
,

which is the ratio of the expected number of false rejections over the expected number of total

rejections. With some assumptions this can be proved to be equivalent to FDR control. The

false discovery proportion (FDP) is defined as the ratio of the number of false rejections to total

rejections. Although it is ideal that the FDP is controlled at each realisation, this is impossible

due to randomness.

1.2 Specific principles and topics in multiple testing

Problems of multiple testing and multiple comparison are widely discussed in many related

disciplines, such as clinical design, genetics and genomics, where the decisions are made

over multiple measurements. In recent decades, sub-fields in multiple testing driven by real

data applications have become more and more influential in simultaneous inference. In this

section we introduce some principles of high attention and some specific topics which have

been developing rapidly.

1.2.1 Hierarchical problems: closed testing and partition testing

One of the most important branches of multiple testing problems is hierarchical testing, which

originally arises in pharmaceutical studies where there are multiple doses and endpoints to be
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examined. A multiple-dose study is aimed at finding the exact dose such that the drug is both

effective and safe. This problem is logically hierarchical when the responses to multiple doses,

for example, the means of responses µ1, . . . ,µm corresponding to m increasingly ordered doses,

are tested simultaneously.

Multiple-endpoint studies attempt to make significant conclusions on multiple endpoints of a

clinical study. A primary endpoint is an endpoint in a clinical study such that the significant

discovery on that particular endpoint alone is sufficient to make a conclusion for the whole

study. A secondary endpoint is a clinical endpoint such that a significant finding on that

endpoint alone is insufficient to make a conclusion for the whole study. The experiment is

considered as a hierarchical problem, as the secondary endpoints are to be examined when

there are no significant primary endpoints. The multiplicity correction has to be customised

according to the experimental design.

In hierarchical testing problems as described above, the selection of dose and the decision

path are of the highest importance. Because it is often desired to control the exact occurrence

of false discoveries, the FWER is favoured instead of the FDR. The most powerful methods that

control the FWER are the closed testing and the partition testing procedures.

Closed testing

Closed testing devises stepwise multiple testing procedures with fixed experiment-wise error.

Fisher (1935), Tukey (1953) and Hartley (1955) had similar ideas before Marcus et al. (1976)

first formulated the closed testing principle. He pointed out the essential feature of the closed

testing procedures is that the sets of the hypotheses are closed under arbitrary intersection,

that is, any subset intersection hypothesis involving members of the family of tests is also a

member of the family.

Consider the problem of testing a group of null hypotheses {Hi , i ∈ I }. The primary hypotheses

that do not imply the truth of any other hypothesis are called minimal hypotheses. All the

possible intersections among the lower hypotheses are called composite hypotheses. Define

the family of intersection hypotheses{
HJ =∩i∈J Hi , J ⊂ I

}
.

For example, given the minimal hypothesis Hi j : µi =µ j , the intersection hypothesis Hi j k =
Hi j ∩Hi k : µi =µ j =µk is a composite hypothesis that is above Hi j , Hi k and H j k . Each test is

performed at the local significance level α, which equals the required level of the overall test.

A framework of closed testing is as follows.

Step 1. Test each minimal hypothesis at level α.

Step 2. Test each intersection hypothesis at level α.
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Step 3. Conclusion.

Any hypothesis may be rejected when both the following conditions hold:

i) the test itself is significant;

ii) any intersection hypothesis that includes the test is rejected.

The closed testing procedure controls the family-wise error rate in a strong sense and is

attractive because of its high power. However, some directional errors may occur in two-sided

testing problems, which is difficult to solve in hierarchical testing. On the other hand, the

design of the test procedure can be complex, because the number of intersection hypotheses,

2m −1, increases rapidly as the problem grows.

Partition testing

For the family {Hi , i ∈ I } and the corresponding parameter space Θ = ∪i∈IΘi , the partition

principle controls the FWER by partitioning the entire null space Θ into disjoint subspaces{
Θ∗

J , J ⊂ I
}

, such that {
Θ∗

J =∩ j∈JΘ j ∩
(∪i∉JΘi

)c , J ⊂ I
}

forms a partition of ∪i∈IΘi , given the fact that for any J , K ⊂ I ,

Θ∗
J ∩Θ∗

K = (∩i∈JΘi
)∩ (∩i∈KΘi )∩ (∪i∈JΘi

)c ∩ (∪i∈JΘi
)c ∩ (∪i∉J∪KΘi

)c =∅ .

Because the all hypotheses based on
{
Θ∗

J , J ⊂ I
}

are disjoint, at most one of the nulls is

true, which will naturally guarantee the probability of a false rejection without a multiplicity

correction. The overall FWER is controlled at level α as long as each subspace is tested at

level α. The partitioning principle was developed by Stefansson et al. (1988), and later on

investigated by Finner and Strassburger (2002).

The advantage of testing the partitioned hypotheses is that it reduces the number of hypothe-

ses to be tested compared to the intersection hypotheses generated in the general closed

testing procedures. The partitioning also helps to decide a path of testing as well as increases

the power, given the background knowledge that the null hypotheses of interest are hierarchi-

cally ordered. We recommend Shaffer (1995) for further detail.

1.2.2 Online testing

The problem of online multiple testing arises in some applications where it is permissible

to have infinite number of hypotheses. Compared to classical off-line problems, online

procedures make decisions immediately at the each stage instead of after receiving all the test

statistics. This could happen in many applications where the studies and the corresponding

tests are carried out sequentially. On the other hand, the scale of the tests could reach tens of

thousands, which is large enough to be considered as infinite. Multiplicity corrections based
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1.2. Specific principles and topics in multiple testing

on the total number of hypotheses are not applicable since this quantity is unknown before

the termination of the whole procedure.

Suppose one is testing a sequence of hypotheses

H= {H1, H2, . . .}

of which the total number can be infinite. Up to the m-th test, define the set of the received

hypotheses H( j ) = {
H1, H2, . . . , H j

}
, and let R( j ) = {

R1,R2, . . . ,R j
}

denote the decisions for

each test, of which the components are the indicators R j = 1{reject H j } . An α-spending proce-

dure begins with an initial α-wealth W (0), which is an allowance for type I error for the whole

family H , and performs each test H j at α j . At each step, the total α-wealth is reduced by α j if

H j is rejected. No further test is conducted once the remaining α-wealth reaches 0.

Tukey (1991) had this idea of α-spending on sequential tests. Foster and Stine (2008) modified

this online testing method and proposed anα-investing rule. Given the results
{
R1,R2, . . . ,R j−1

}
,

the level for testing H j is decided by an investing rule IW (0) such that

α j = IW (0)
({

R1,R2, . . . ,R j−1
})

.

The test for H j is based on the p-value p j . When H j is accepted, it costs α j
/(

1−α j
)

, which

is called a pay-off. When H j is rejected, the procedure earns a pay-out ω ∈ (0,1) that is carried

on to the next tests. The change in the α-wealth is then concluded by

W ( j )−W ( j −1) =
{
ω, p j ≤α j ,

−α j
/(

1−α j
)

, p j >α j .

One example for the α-investing rules is defined by

IW (0)
({

R1,R2, . . . ,R j−1
})= W ( j −1)

1+ j −k∗ j > k∗ ,

where k∗ denotes the index of the hypothesis last rejected before H j . This rule spends half

of the current α-wealth on the test right after a rejection, and the remaining wealth will soon

decay to zero if significant alternatives occur consecutively.

In general, online methods are believed to be more sensitive to the order of the hypotheses

compared to off-line testing procedures, and the spending rate can be designed according

to prior knowledge. The methods are particularly powerful when the false null hypotheses

come to the process in the first places and appear in clusters. The results of testing the past

hypotheses will definitely influence the α-spending and the chance of rejecting the upcoming

ones. In this case, post-selection inference is also combined with online testing in order to

reduce the false rejections due to the outliers.
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1.3 Outline

The rest of the thesis proceeds as follows. In Chapter 2 we set up the multiple testing problem

for mixture models. Most of the literature works on Gaussian mixture models on the level of

the original observations, the p-values or the z-values. The test statistics that measure the

difference between the mixture and the pure null distribution are established and analysed. As

a second step of locating the alternatives, an individual rejection is made when the observed

p-value is less than a threshold.

In Chapter 3 we unveil the problem caused by the heavy-tailedness in multiple testing, and

discuss this phenomenon from several perspectives. Since the Gaussian assumption is not

always satisfied, it may occur that the test statistic has a heavy-tailed distribution, which will

lead to incorrect assumptions about the distribution of the p-values under the alternatives.

We explain this added difficulty in Section 3.2 and 3.3, and define an asymptotic framework

for testing the global null hypothesis, where the fraction of true alternatives vanishes with m

increasing, and the size of the non-null effects must be moderately large to be detected. In

Section 3.4 we provide the asymptotic detection boundary for Cauchy mixture models based

on the convergency of Kullback–Leibler divergence, which is the expected log-likelihood ratio

statistic.

In Chapter 4 we propose a filtering method that works on the ordered p-values and their

local concentration. When we are to identify the true alternatives among the mixture of null

and non-null components, the whole literature of rejecting the smallest p-values will not be

adapted to heavy-tailed testings. We give an illustration by investigating the positive FDR.

In order to locate the true alternatives, we propose a filtering approach that eliminates the

p-values that are more likely to be uniform. In a follow-up step we estimate the mode of the

p-values left and construct a rejection region centralised at the mode, with the length to be

decided by data-dependent FDR control.

Chapter 5 includes a discussion on robust testing and a summary of the whole text. In general,

an ideal multiple testing procedure is desired to be robust to the tail index, multimodality,

and to dependence. In order to characterise the p-value clusters that may occur in a finite-

dimensional mixture model, we propose another method based on the p-value gap statistics

and their local discrepancy, which is more data-dependent and adaptive. We also briefly

discuss the critical conditions that influence the testing procedures for heavy-tailed and

light-tailed distributions, and introduce the existing results on testing for multimodality.
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The problem of detecting significant components appears in many applications, where among

a large number of observations only a small proportion are informative. The significant

components may come from, for example, the true signals in a communication system, a

disease-causing mutation in the genome, the increments in the responses to a new drug

treatment and so on. This chapter gives the problem set-up based on mixture models and

discusses the methodologies for detecting and locating the non-null components.

2.1 Preliminaries

Given an independent sample X1, X2, . . . , Xm from a mixture model, identifying the significant

components individually is a multiple testing problem in which we test a family of hypotheses

H0,i : Xi ∼ F0 against H1,i : Xi ∼ F1, i = 1, . . . ,m,

simultaneously at a given significance level, where F0 and F1 are the distributions of the

observations under the null and alternative hypothesis respectively. We are interested in this

multiple testing problem because it is difficult to control the increased type I error of testing a

family of hypotheses.

In most cases the proportion of alternatives is unknown, and it is even a problem to tell

whether it is possible to detect them. Thus it is reasonable to begin with the detection of the

existence of non-null components.

2.1.1 The overall null hypothesis

First we focus on when to reject the global intersection null hypothesis, that is to say, we test

the existence of a fraction of the sample from the alternative distribution F1 against the joint

null hypothesis H (m)
0 that all the observations are i.i.d. from the null distribution F0, which is
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equivalent to testing

H (m)
0 : Xi

i.i.d.∼ F0 against H (m)
1 : Xi

i.i.d.∼ (1−ε)F0 +εF1,

where ε is the proportion of the significant components.

The random effects model is convenient, although not necessary, to interpret the mixture

model in multiple testing, with normality of the test statistics assumed. Consider the random

effects model Xi = µi + zi , i = 1, . . . ,m, where zi
i.i.d.∼ N (0,1) for 1 ≤ i ≤ m are white noise.

The effects µi are supposed to have different distributions under the null and the alterna-

tive hypotheses, of which the convolution with a standard normal distribution will give the

distributions of Xi under H0,i and H1,i respectively.

As a motivating example, we consider the mixture model where the null effects occur with the

probability P(µi = 0) = 1−ε, and for the non-null effects µi 6= 0, we assume µi ∼ H , which is a

distribution concentrated at µ. This leads to testing the global null distribution against the

two-point Gaussian mixture

H (m)
0 : Xi

i.i.d.∼ N (0,1) against H (m)
1 : Xi

i.i.d.∼ (1−ε)N (0,1)+εN (µ,1) , (2.1)

which is the core model that most literature in multiple testing works with.

2.1.2 From test statistics to p-values and z-values

Here we make a remark that our work will be mainly based on the level of the p-values.

For a significance level αi ∈ (0,1) , define the nested rejection region Rαi for the value of the

test statistic Xi such that

PH0,i (xi ∈Rαi ) =αi .

Since the p-value is defined as the smallest value of this significance level, that is,

p(x) = inf
αi∈(0,1)

{xi ∈Rαi } ,

a threshold u ∈ (0,1) for the p-value is equivalent to the rejection region Ru for xi , namely

PH0,i (p(xi ) ≤ u) =PH0,i (xi ∈Ru) = u .

It is straightforward to see the link between the test statistics and the p-values.

Now we introduce the definition of the z-values as follows. Suppose for the test statistics

X1, . . . , Xm , the p-values P1, . . . ,Pm are computed from Pi =PH0,i (Xi > xi ) .

Definition 2.1.1 (z-values). Define the z-values

zi =Φ−1(pi ) , i = 1, . . . ,m (2.2)
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where p1, . . . , pm are the p-values, andΦ is the cumulative distribution function of the standard

normal.

Under the null hypothesis H (m)
0 : Xi

i.i.d.∼ N (0,1), the z-values will have a standard normal

distribution

H0,i : zi ∼ N (0,1) , i = 1, . . . ,m .

Efron and Storey made important contributions on multiple testing procedures based on the

z-values, of which the relavent part will be reviewed in Section 2. Usually it is agreed that the

z-values offer the chance to pursue an improvement in power which benefits from the normal

theory.

Both the p-values and the z-values are convenient to work with, and it is up to the statisticians

to choose a suitable one to investigate.

2.2 Testing the overall null hypothesis

The problem of testing the frequency ε= 0 against ε> 0 in the mixture model described above

was first studied by Ingster (1998). He discussed the theory and methods using the likelihood

ratio test when µ and ε are known.

In more recent literature, the statisticians investigated various statistics that measure the

departure of the sample distribution from the theoretical model, namely the uniform distri-

bution if the test is based on the p-values. The existence of the alternative components is

summarised by an informative test statistic based on the whole sample.

On the other hand, it is also welcomed if the proportion ε can be directly inferred, or at least

an approximate lower bound is derived from the observations. The test (2.1) is therefore based

on the estimate ε̂ .

2.2.1 Comparing the p-values to the uniform

Tukey (1976) proposed the second-level significance test, based on the Higher Criticism (HC)

test statistic

HCα,m =
p

m[( Fraction Significant at α)−α]p
α(1−α)

. (2.3)

The "fraction significant at α" is the proportion of the detected non-null components. This

quantity is simply

Fraction Significant at α= 1

m

m∑
i=1

1
{

pi ≤α
}

, (2.4)

given a decision rule based on the p-values and the significance level α . This value is compa-

rable to α itself when all the nulls are true and the rejections are derived randomly. Therefore,
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the conclusions as the result of a first-order significant test could be equally bad as ran-

dom rejections if a distinction between the standardised values of (2.4) and α is not evident.

Tukey’s argument considers the hypotheses jointly and admits the rejection of the overall null

hypothesis (2.1) only when HCα,m exceeds a critical bound.
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Figure 2.1 – Empirical c.d.f. of the p-values from the Gaussian mixture model

The higher criticism test is a standardised Kolmogorov-Smirnov test, of which the test statistic

(2.3) is a measurement on how much the distribution of the observed p-values lies away

from the uniform. Under the joint null hypotheses where all the observations are from the

same null distribution, the p-values defined as P (Xi ) = P(N (0,1) > Xi ) are independent and

identically distributed uniform random variables. When the overall null hypothesis is not true,

the departure of the observed p-values from the uniform distribution becomes a quantity that

measures the discrepancy between H (m)
0 and H (m)

1 .

In a more detailed computation where we desire to compare the p-values to the uniformly dis-

tributed random variables U1,U2, . . . ,Um
i.i.d.∼ U (0,1), one can define the empirical cumulative

distribution function

Fm(t ) = 1

m

m∑
i=1

1 {Ui ≤ t } ,

and let Fm(t) also stand for 1
m

∑m
i=1 1 {Pi ≤ t } under H (m)

0 . Figure 2.1 shows the empirical

cumulative distribution function of a sample from the Gaussian mixture model with the

frequency of non-zero effects ε= 0.1 and the positive effect µ= 2. A noticeable distinction

between the sample distribution and the uniform distribution is observed in this plot.
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Since the normalized uniform empirical process

Wm(t ) =
p

m [Fm(t )− t ]p
t (1− t )

is asymptotically N (0,1) distributed (see Shorack and Wellner (1986)), it guarantees the asymp-

totic properties of the test statistics based on the higher criticism. Tukey proposed a table of

critical values to reject the overall null hypothesis (2.1).

Donoho and Jin (2004) proposed a modified version of the HC statistic

HC∗
m = max

1≤i≤α0m

p
m

[ i
m −p(i )

]√
p(i )

(
1−p(i )

) , (2.5)

whose distribution is given by

HC∗
m

d= max
1≤t≤α0

p
m

[∑m
i=1 1{p(i )≤t}

m − t
]

p
t (1− t )

= max
1≤t≤α0

Wm(t )

under the null H (m)
0 , and α0 ∈ (0,1) is a fixed level. Since the distribution of max1≤t≤α0 Wm(t )

has an iterated logarithm law, this method rejects H (m)
0 when HC∗

m exceeds the critical value

h (n,αn) =√
2loglog(n)(1+o(1)). Donoho and Jin proved that this test also has full power in

the asymptotic case, as achieved by the likelihood ratio test.

Remark. The power optimality is only achieved under certain restrictions. With the null

and alternative distributions properly parametrised, the detection boundary is defined in the

parameter space to separate the regions where it is possible or not to test the presence of non-null

signals. We will propose our related work on the asymptotically detectable boundary in Chapter

3.

2.2.2 Alternative methods for estimating ε and the null distribution

The mixture distribution of the p-values has been extensively analysed by Efron et al. (2001),

Efron and Tibshirani (2002), Storey (2002), Genovese and Wasserman (2004), Meinshausen

and Rice (2006), Jin and Cai (2007) and Cai et al. (2011), from the perspective of statistical

inference. Their contributions are essential to the development of multiple testing based on

the mixture model. Here we review the key ideas of their methods and explain why these

methods cannot be directly applied to test heavy-tailed statistics.

Meinshausen and Rice’s estimated proportion

Meinshausen and Rice (2006) established a lower 100(1 −α)% confidence bound on the

proportion of false null hypotheses based on the empirical distribution of the p-values. One

can reject the intersection of null hypotheses when this bound is greater than zero. They
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proposed an estimate for ε ,

ε̂= sup
t∈(0,1)

Fm(t )− t −βm,αδ(t )

1− t
(2.6)

where Fm(t) , as defined before, is the empirical distribution function of the p-values. The

bounding function δ(t ) and the bounding sequence βm,α are defined as follows.

A bounding function δ(t ) is any real-valued function on [0,1] that is strictly positive on (0,1).

For example, one can take a linear function δ(t ) = t , a constant δ(t ) = 1 or a standard deviation-

proportional function δ(t) =p
t (1− t ) . Let Um(t) be the empirical cumulative distribution

function of m independent realisations of a random variable with uniform distribution on

[0,1]. Define Vm,δ as the supremum of the weighted empirical distribution

Vm,δ = sup
t∈(0,1)

Um(t )− t

δ(t )
.

A series βm,α is called a bounding sequence for a bounding function δ(t ) if, for a constant level

α the following two conditions are satisfied:

i) mβm,α is monotonically increasing with m;

ii) P(Vm,δ >βm,α) <α for all m.

Here we explain how the bounding function and the bounding sequence help to estimate

the proportion of true alternatives. The key idea behind this established estimator is again to

compare the empirical distribution Fm(t ) to Um(t ) .

One will have the cumulative distribution function U (t ) = t for an exact uniform distribution,

while the realised form Um(t ) can frequently exceed t . Now we consider an enlarged bound

t +βm,αδ(t ) , where the βm,α and δ(t ) are chosen such that the probability of Um(t ) exceeding

t +βm,αδ(t) can be upper bounded by α . This property is guaranteed by the condition ii),

since

P(Vm,δ >βm,α) <α=⇒P

(
sup

t∈(0,1)

Um(t )− t

δ(t )
>βm,α

)
<α

=⇒P

(
Um(t )− t

δ(t )
>βm,α

)
<α simultaneously for all t

=⇒P
(
Um(t ) > t +βm,αδ(t )

)<α .

When comparing the behaviour of Fm(t ) to Um(t ) , notice that the function Fm(t ) , that is, the

frequency of the p-values less than or equal to t , exceeds the bound t +βm,αδ(t ), is due to the

non-null p-values. The difference Fm(t )− t −βm,αδ(t ) is therefore considered as an estimate

of ε .
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With the estimator (2.10), it follows that

P(ε̂≤ ε) ≥ 1−α (2.7)

under the overall null hypothesis. Therefore, one is able to conclude that for finite sample size

m , the overall null hypothesis is rejected at level α when ε̂> 0. In addition, the asymptotic

control

limsup
m→∞

P(ε̂≤ ε) ≥ 1−α (2.8)

is achieved with βm,α properly chosen to be an asymptotic bounding sequence.

Cai and Jin’s estimation of a two-point Gaussian mixture

Inspired by the possibility that the non-null proportion could be consistently estimated from

the observations, Jiashun Jin and Tony Cai made a series of contributions to large-scale

multiple testing and comparison based on Gaussian mixtures, including both the sparse case

and the non-sparse case.

Cai et al. (2007) focused on the sparse two-point Gaussian mixture model, where the sparsity

means the parameters µ and ε vary in a region such that the proportion of non-zero com-

ponents is relatively small, and the values of the significant elements are large enough to

be detected. They worked on the mixture model based on the observations rather than the

p-values, and they developed a parametric approach to directly estimate the fraction ε .

Since there are two unknown parameters µ and ε in the mixture model

F (t ) = (1−ε)Φ(t )+εΦ(t −µ) ,

one can determine the values of µ and ε precisely by solving the equations of F (t ) , which are

established on the realisations evaluated at t = τ and t = τ′. Let

D(µ; τ,τ′) = Φ(τ)−F (τ)

Φ(τ′)−F (τ′)
= Φ(τ)−Φ(τ−µ)

Φ(τ′)−Φ(τ′−µ)
, (2.9)

and note that D(µ; τ,τ′) is a monotone function of µ. Therefore, ε is determined by

ε= Φ(τ)−F (τ)

Φ(τ)−Φ(τ−µ)
, (2.10)

with µ solved from D(µ; τ,τ′).

Intuitively, the estimates ofµ and ε can be derived from the equations (2.9) and (2.10) with F (τ)

and F (τ′) replaced by estimates. Since the empirical estimates of F (τ) and F (τ′) are influenced

by the choices of τ and τ′ , Cai et al. (2007) proposed the slightly biased estimates

F+(τ) ≥ F (τ) and F−(τ′) ≤ F (τ′) ,
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Chapter 2. Multiple testing for mixture models

which leads to an estimator

µ̂≥µ ,

and therefore

ε̂= Φ(τ)−F+(τ)

Φ(τ)−Φ(τ− µ̂)
≤ Φ(τ)−F (τ)

Φ(τ)−Φ(τ−µ)
= ε .

The choices of F+(τ) and F−(τ′) will be given below.

In practice, the knowledge of the distribution of

p
m

|Fm(t )−F (t )|p
F (t )(1−F (t ))

guarantees that, with a fixed ξm such that

P

(
W ∗

m = sup
t∈Sm

{p
m

|Fm(t )−F (t )|p
F (t )(1−F (t ))

}
≤ ξm

)
= 1−α ,

of which the two roots F−
ξm

and F+
ξm

can be solved from the equality, and Sm ⊂ (−∞,∞) , a

simultaneous confidence envelop

P
(
F−
ξm

(t ) ≤ F (t ) ≤ F+
ξm

(t )
)
= 1−α

can be used to choose the F+(τ) and F−(τ′) close to the true values. A one-sided confidence

interval for ε was provided with the mean squared error bounded.

Jin and Cai (2007) worked on the estimation of the null distribution and the non-null effects

especially for non-sparse cases. They estimated the null normal distribution N (µ j ,σ2
j ) and

the frequency ε based on the z-scale and the empirical characteristic function of the normal

test statistics.

Remark. The methodologies in testing large-scale multiple hypotheses are almost all initiated

based on the Gaussian mixtures. The normal tail and the Gumbel maxima play the key roles

in developing the distribution of the test statistics and bounding the error rates. As a conse-

quence, these methods are not applicable to multiple testing problems based on heavy-tailed

distributions. We will give the examples in Chapter 3 and 4.

2.3 Control of error rates

After detecting the existence of non-null components, we will naturally focus on a follow-

up study, to identify the alternatives individually. Multiple testing procedures are used to

test families of hypotheses simultaneously with the false rejections under control. Most of

the procedures analyse the p-values of each individual hypothesis and reject those with the

corresponding p-values below a certain threshold.
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2.3. Control of error rates

We will reformulate the error rates using the notation initiated by Benjamini and Hochberg.

Defined on {1,2, . . . ,m} , R is the number of total rejections, V and S are the numbers of the

false and true discoveries respectively, while U and T are the numbers of the true and false

negatives respectively.

True null False null Total
Declared significant V S R
Declared non-significant U T m −R
Total m0 m −m0 m

Notice that m is a known constant, m0 is unknown, and only R is an observable random

variable, while V ,S,U ,T are unobservable random variables.

2.3.1 Cut-off threshold

There are many theories on the multiplicity correction. The Bonferroni correction uses a

reduced level α/m as the significance level of each test, and it is straightforward that the

desired significance level of the whole family is again bounded by α. Consider the problem of

testing m hypotheses

H= {
H0,i , i = 1, . . . ,m

}
simultaneously at a given significance level α, and an unknown number m0 of them are

true nulls. Let p1, . . . , pm be the p-values corresponding to each hypothesis. The Bonferroni

correction rejects the null hypothesis H0,i for the p-value less than the adjusted threshold

α/m, and the probability of making at least one false rejection is bounded by α.

With the notations above, the family-wise error rate (FWER)

FWER =P(V ≥ 1)

is defined as the probability of erroneously rejecting at least one true null hypothesis.

Theorem 2.3.1 (Bonferroni Procedure). If, for i = 1, . . . ,m, hypothesis H0,i is rejected when the

p-value pi ≤ α
m , then the family-wise error rate for the simultaneous testing of H0,1, . . . , H0,m

satisfies FWER ≤α .

Proof. Suppose hypotheses H0,i with i ∈ I are true and the remainder false, with the cardinality

|I | being m0. We obtain the FWER

FWER =P(reject any H0,i with i ∈ I ) =P
(⋃

i∈I

{
pi ≤ α

m

})
≤ ∑

i∈I
P

(
pi ≤ α

m

)
≤ m0

α

m
≤α .
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Chapter 2. Multiple testing for mixture models

The Bonferroni method is an example of a single-step procedure that assigns a common

cut-off threshold and applies to all the hypotheses without further adjustment. With the

conservative control of the probability of type I error per test at a horizontal level α/m, it

results in low statistical power, that is, the ability to correctly detect the false null hypotheses

is not satisfactory. From this perspective, one would consider slightly increasing the threshold

of rejecting a single null hypothesis while maintaining the control of FWER.

Rather than controlling the FWER, one may consider the k-FWER, which is the probability of

making at least k false rejections,

k-FWER =P(V ≥ k) .

A simple procedure that controls the k-FWER for a given k ≤ m rejects any hypothesis for the

p-value pi ≤ kα
m .

2.3.2 Step-wise procedures

Other than the k-FWER control, various improvements can be made to increase the statistical

power by lifting up the threshold for rejecting each single null hypothesis. A huge class of

step-wise procedures has been developed based on comparing the sequence of the p-values

to a proper threshold curve.

Holm’s method

Holm (1979) developed a step-wise method that controls the FWER with improved power.

Based on the Bonferroni correction, he reformulated the testing procedure as a sequentially

rejective multiple testing method, where the total number of the remaining tests is reduced by

one after each rejection. In this sense, one would perform the first test at level α/m, and then

the second at levelα/(m−1) if the first null hypothesis is rejected. The order of the hypotheses

being tested is defined by the order of the p-values, such that the hypothesis with the highest

probability of being rejected comes first. Let

p(1) ≤ p(2) ≤ ·· · ≤ p(i ) ≤ ·· · ≤ p(m)

denote the non-decreasingly ordered p-values. The p-values are compared to the sequence of

the thresholds

p(1) ≤ α

m
, p(2) ≤ α

m −1
, . . . , p(i ) ≤ α

m − i +1
, . . .

instead of the constant significance level α
m , and the procedure stops when the first p( j ) >

α
m− j+1 appears. It was proved that the overall significance level for the family of hypotheses is

upper bounded by α.

Theorem 2.3.2 (Holm procedure). The Holm procedure satisfies FWER ≤α.
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2.3. Control of error rates

Proof. Suppose I is the set of the indices of the true null hypotheses. Let s be the smallest

index satisfying

p(s) = min
i∈I

pi ,

and p(s) denotes the smallest p-value of the true null hypotheses. Following the Holm pro-

cedure, p(s) will be tested only if p(1), p(2), . . . , p(s−1) are tested and rejected, otherwise the

procedure will stop at the first acceptance and commit no false rejection. Since all the hy-

potheses H0,(1), H0,(2), . . . , H0,(s−1) are supposed to be correctly rejected before H0,(s) is tested,

the first false rejection will occur when p(s) ≤α/(m − s +1) . If not, the procedure stops at the

acceptance of H0,(s) and no further hypothesis is tested. Therefore, the probability of at least

one false rejection is

FWER =P(
H0,(1), H0,(2), . . . , H0,(s) are rejected

)
=P

(
s⋂

i=1

{
p(i ) ≤ α

m − i +1

})
≤P

(
p(s) ≤ α

m − s +1

)
=P

(
min
i∈I

pi ≤ α

m − s +1

)

=P
(⋃

i∈I

{
pi ≤ α

m − s +1

})
≤ ∑

i∈I
P

(
pi ≤ α

m − s +1

)
≤ |I |α

m − s +1
≤α ,

bounded by α , where the last inequality results from s ≤ m −|I |+1.

We recommend the book by Lehmann and Romano (2005) as a good summary with generali-

sations.

Step-up and step-down procedures

The Holm procedure is a step-down procedure. A step-down procedure starts from testing

the null hypothesis that has the highest probability of being rejected, and stops at the first

acceptance with all the previous hypotheses rejected. The order of the null hypotheses is

usually obtained by ordering the p-values, since the p-value summarises each individual test

and reveals its significance. In this sense, the step-down methods test the null hypotheses at

the levels

α1 ,α2 , . . . ,αm

following the order of

p(1) ≤ p(2) ≤ ·· · ≤ p(m) ,

and stops at the first crossing point.

On the other hand, a step-up procedure stops at the last crossing point of the p-values with the

threshold curve. Suppose the null hypotheses are ordered as H0,(1), H0,(2), . . . , H0,(m) according

to the order of the p-values. One would keep on comparing p(i ) to αi for i = 1,2, . . . ,m and

observe the 1 ≤ k ≤ m such that no more rejection occurs after obtaining p(k) ≤ αk . One

can equivalently start from the opposite direction, that is, testing if p(m) ≤ αm . If H0,(m) is
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Chapter 2. Multiple testing for mixture models

rejected, the procedure will stop on rejecting all the null hypotheses. If not, one will keep on

testing H0,(m−1), H0,(m−2), . . . until a first rejection H0,(k) occurs, and reject the null hypotheses

H0,(1), H0,(2), . . . , H0,(k) .

Benjamini–Hochberg procedure and the false discovery rate

Benjamini and Hochberg (1995) introduced the breakthrough idea of controlling the false

discovery rate (FDR)

FDR = E
(

V

R ∨1

)
, (2.11)

which is the expected proportion of erroneous rejections V among all rejections R = V +S.

This proportion Q =V /(V +S) is defined as false discovery proportion (FDP), and is set to be

zero when V +S = 0.

The choice of controlling the FWER or the FDR may differ from case to case. In general,

FDR creates more rejections but also makes more false discoveries. We prove the following

proposition that shows the relation between the FDR and the FWER numerically.

Proposition 2.3.3. Given a fixed significance level α , control of FWER implies control of FDR,

in the sense that

FDR ≤ FWER. (2.12)

Proof. We first note that
V

R ∨1
≤ 1{V ≥ 1} ,

because for V ≥ 1, we obtain that V /R ≤ 1 = 1{V ≥ 1} , since V ≤ R . Otherwise, V
R∨1 = 0 = 1{V ≥

1} when V = 0. Notice that V = R leads to the equality V /R = 1{V ≥ 1} regardless of the number

of rejections. Then it follows that

FDR = E (FDP) = E
(

V

R ∨1

)
≤ E(1{V ≥ 1}) =P(V ≥ 1) = FWER.

Therefore, control of the FWER at level α implies control of the FDR, and the equality holds

when all hypotheses are true.

Based on the ordered p-values, the Benjamini–Hochberg (BH) procedure rejects the null

hypotheses H0,(1), H0,(2), . . . , H0,(k) with

k = max
1≤i≤m

{
i : p(i ) ≤ i

m
α

}
, (2.13)

and if no such i exists, it rejects no hypothesis. The BH procedure is a step-up procedure.

Theorem 2.3.4 (BH procedure). For independent test statistics and for any configuration of

false null hypotheses, the BH procedure controls the FDR at level α .
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Figure 2.2 – Discoveries based on the Bonferroni correction and the BH procedure (Left-side:
rejections based on 100 p-values; right-side: a zoom-in of the left-side plot)

Figure 2.2 shows the rejected p-values provided by the Bonferroni correction and the BH

procedure. Using the Gaussian mixture model with ε= 0.15 and µ= 3, we simulate a sample of

size m = 100, of which 15 follow an N (3,1) distribution (plotted in red circles), and the others

are white noise (plotted in black crosses). In order to visualise the rejections based on the

p-values, we order them and compare them to the threshold curves. We take the significance

level α = 0.05. The Bonferroni correction is a cut-off threshold α/m = 0.0005, which is the

horizontal blue line in both figures. The BH procedure compares the ordered p-values to

a linear threshold plotted in purple, of which the slope equals α/m = 0.0005. The vertical

dashed lines show the last rejected p-values for each procedure.

The p-values from the alternatives tend to be smaller than those from the null, due to the

positive shift in the normal distribution. The right-hand panel focuses on the smallest p-

values near the threshold. The Bonferroni correction gives 5 rejections, corresponding to the

p-values below 0.0005, and all of them are true positives. The BH procedure gives the first

acceptance when the p-value exceeds the threshold, and rejects all the hypotheses with p-

values below this value. In this experiment the BH procedure gives 12 rejections and commits

a false rejection at p(9) . The false discovery proportion in this case will be 1/12 ≈ 0.083. The

BH procedure controls the expected value of the false discovery proportion instead of its exact

value in each realisation. Compared to the Bonferroni correction, the BH procedure gives

more false rejections but increases the power.
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Chapter 2. Multiple testing for mixture models

General control of the FDR

As a general formulation, step-up procedures can be summarised as follows. With the p-values

ordered non-decreasingly, a step-up procedure rejects the null hypotheses with the set of

indices {
i : p(i ) ≤ β(k)

m
α

}
, (2.14)

and the critical index k is chosen to be

k = max
1≤i≤m

{
i : p(i ) ≤ β(i )

m
α

}
(2.15)

where β : {1, . . . ,m} →R+ is a nondecreasing function that can be customised according to the

setting.

Benjamini and Hochberg gave the original proof that the BH procedure controls the FDR

under certain assumptions. Based on the distribution of p-values, many improvements have

been done by Benjamini and Yekutieli (2001), Benjamini et al. (2006), Sarkar (2002), Genovese

and Wasserman (2002), Storey (2002), Blanchard et al. (2008) and Roquain et al. (2011).

Efron’s Bayesian approach

Efron et al. (2001) and Efron (2004) developed multiple testing procedures for the two-groups

model, and contributed to real data applications in genomics and DNA microarrays. They

worked on the z-values instead of the p-values when testing the significant elements from

the mixtures. The proportions of the two groups, namely π0 for the nulls and π1 for the

alternatives, are regarded as prior probabilities. The corresponding density functions are f0(z)

under the null and f1(z) under the alternative.

Following the definition

zi =Φ−1(Pi ) , i = 1, . . . ,m ,

the theoretical null hypothesis is based on

zi |H0,i is true ∼ N (0,1) .

The null density of the z-values is therefore

f0(z) =ϕ(z) = e−z2/2/p2π .

In reality, the empirical null distribution has a peak near zero, which is referred to as the

central peak, where the distribution of the large majority of z-values of the true nulls is not

influenced by the positive shift in the alternatives. The empirical null hypothesis

zi |H0,i is true ∼ N (µ,σ2)
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2.4. Motivation and innovation

is derived from the central peak, this density function provides an estimate f0(z) .

Efron also estimated the density of the mixture f (z) =π0 f0(z)+π1 f1(z) by Poisson regression

fitting, using the fact that the number of z-values falling into each evenly spaced interval is

proportional to its density, which can be reasonably estimated using a Poisson variable. The

estimated densities f (z) and f0(z) are used to construct a new criterion f0(z)/ f (z) , which is

the ratio of the null density over the mixture density evaluated at the z-values. We will look

into this method in Chapter 4. Further details and examples can be found in Efron (2010).

2.4 Motivation and innovation

The methodologies mentioned above are of the highest importance in multiple testing prob-

lems for mixture models. Among the frequently mentioned assumptions, the normality of

the test statistics and the concavity of the distribution of the p-values from the alternatives

guarantee the key principles behind the existing methods.

In the problem of detecting the alternatives among the mixtures, we find that the step-wise

threshold methods are not able to solve multiple testing problems when the distribution of

test statistics has heavy tails. Heavy-tailed data arises in many applications, and the heavy-

tailedness leads to intrinsic problems in analysing the distribution of the test statistics and

the p-values. To illustrate this, we discuss the behaviour of the p-values under the Cauchy

distribution, which is a representative of this case. We propose an adaptive multiple testing

procedure that works in the heavy-tailed situations, and can be generalised and robustified as

well.
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3 Testing globally for the existence of
alternative

Our main contribution begins with answering the following question: What are the basic

assumptions that should be guaranteed before step-wise threshold procedures are applied to

multiple testing problems?

In this chapter we discuss one of the most important assumptions, normality, which is not

inherently true in different applications. For example in financial models, the assets often

have a large fluctuation and a narrow peak, and are not believed to have a normal distribution.

Although the normality is not explicitly required in the methodologies mentioned in Chapter 2,

the light-tailedness does contribute to the desired properties. We study the behavior of Cauchy

test statistics as a motivating example, and propose a new method to detect the alternatives

from the mixtures where the test statistics are heavy-tailed instead of Gaussian.

We are in particular interested in the asymptotic case where the hypothesis is asymptotically

detectable with the parameters (ε,µ) under proper restrictions. We give the formulation and

the results of the asymptotic detection based on the Cauchy mixture model.

3.1 Problem set-up

For i = 1, . . . ,m , we test the hypothesis H0,i for the distribution of Xi , which is denoted by

Pθi and is assumed to be varying in a class of distributions P= {Pθ : θ ∈Θ} modelled by the

parameter θ . Suppose the null hypothesis H0,i is true if and only if

Pθi ∈P0,i =
{
Pθ : θ ∈Θ0,i

}
,

that is, the distribution of Xi belongs to a pre-specified class of distributions. Assume

m0 =
m∑

i=1
1
{

H0,i is true
}
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Chapter 3. Testing globally for the existence of alternative

is the unknown number of the true null hypotheses, and m1 = m −m0 the number of true

alternatives. Intuitively when m1 is too small compared to m , which is referred to as the sparse

case, it will be very difficult to detect the true alternatives. Therefore, in asymptotic studies m0

needs to increase together with m in order to be detectable. We will give the formulation in

Section 3.3.

Throughout this work we discuss the multiple testing problem based on the random effects

model

Xi =µi +σZi , i = 1, . . . ,m (3.1)

where Zi are independent random noises following a unimodal distribution with median zero,

and σ> 0 is a scaling parameter. Note that σ need not be the square root of the variance since

we do not require the existence of the moments. Let µi represent the size of the effect, of

which the majority are assumed to be nulls. Suppose there exists a small fraction ε ∈ (0,1) of

non-null effects with µi 6= 0, such that the probability of receiving a true null observation is

P(µi = 0) = 1−ε .

For simplification we first assume that the non-zero effects concentrate at a positive value

µ> 0. This leads to the following statistical test for the null distribution against a two-point

mixture model

H (m)
0 : Xi

i.i.d.∼ F0(x)

against

H (m)
1 : Xi

i.i.d.∼ F (x) = (1−ε)F0(x)+εF0(x −µ) .

(3.2)

If the overall null hypothesis H (m)
0 is accepted, none of the effects are declared significant and

no further analysis is carried out. When the overall null hypothesis is rejected, the presence of

an effect makes it desired to test

H0,i : Xi ∼ F0(x) against H1,i : Xi ∼ F1(x) = F0(x −µ), i = 1, . . . ,m, (3.3)

that is, to locate the true alternatives subject to a tolerated control of error rate.

Remark. In the multiple testing problems, we often use m to represent the number of the

hypotheses, while another index n that stands for the sample size of each test, such as the

number of repeated measurements, is sometimes omitted. In fact there are two types of the

interpretation of the random variable Xi as follows:

i) Xi is taken as a single observation of which the distribution is Pθi ;

ii) Xi is a test statistic derived from a sample of size ni .

In the first case, there exist situations when only one observation is collected per study. In the

second case one would assume that in the i -th study, Xi 1, . . . , Xi ni is an independent sample of
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3.2. Heavy-tailed test statistics in hypothesis testing

size ni , which is usually true when repeated measurements are accessible. Therefore, the sample

size ni ’s are often omitted in the multiple testing procedures since they have already contributed

to the computation of the test statistic Xi and the p-value Pi .

Following this set-up we emphasise the heavy-tailedness, since both cases mentioned above

do not inherently guarantee a Gaussian-type test statistic. In the second case when we test

for H0,i given only a few repeated measurements, for example, Xi 1 and Xi 2 with unknown

variance, then the test statistic Xi is apparently non-Gaussian. These are the most important

situations where our work provides a new solution with critical thinking.

3.2 Heavy-tailed test statistics in hypothesis testing

The multiple testing procedures that reject the null hypotheses with the smallest p-values are

based on the fact that, for the Gaussian distribution, the smallest p-values are most likely to

be associated with the largest observations, and ideally indicate the alternatives. Since the

generic p-values are defined as the probability of exceeding the current observation, they are

clearly linked with the tail distribution of the true effects. In this section we first illustrate this

phenomenon by analysing the extreme distribution of maxima, and then propose a reasonable

parametrization under the asymptotic consideration.

3.2.1 Tail distribution and extreme distribution of maxima

Most literature works with the normality assumption of the test statistics, so we take the Gaus-

sian distribution as an introductory example and a representative of light-tail distributions as

well. The standard normal distribution belongs to the Gumbel maximum attraction domain,

of which the extreme distribution of maxima is given as

lim
m→∞Φ (bm +x/bm)m = exp(−exp(−x)), for all x ∈R ,

where Φ is the cumulative distribution function of the standard normal, and {bn , n ∈N} is

a normalising sequence. The extreme distribution of the normal random variables is also

light-tailed, although heavier than Gaussian.

In addition, the exponential, lognormal, Gamma and Weibull distributions also lie in the

maximum domain of attraction of the Gumbel distribution. However, for a heavy-tailed

distribution such as Cauchy or Pareto, the distribution of maxima is also heavy-tailed.

Cauchy test statistics

We focus on the Cauchy distribution as an extreme case of heavy-tailed distributions. First we

offer an explanation of our original interest in testing Cauchy components.
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Figure 3.1 – Test the positive shift. (Left-side: Gaussian; right-side: Cauchy)

Consider a single test H0 : µ = 0 against H1 : µ > 0, Figure 3.1 compares the null and the

shifted densities, with the test statistics following the Gaussian distribution (on the left) and

the Cauchy distribution (on the right) respectively. The blue curves in both plots are the null

densities with median zero, while the dashed red curves are the alternative densities with a

positive shift. The shaded areas are the rejection regions defined as (xc , +∞), where xc is the

critical value. We establish the one-side test for the normal mean by rejecting a large value of

the normal variable that exceeds the critical value. However, for a large value of the Cauchy

test statistic, the probability of it coming from the null is comparable to the probability of it

being a true alternative.

Now we compare the tails of the test statistics. To distinguish two light-tailed distributions, the

largest observations are supposed to be from the alternative distributions, because the ratio

between the alternative tail and the null tail tends to zero exponentially when the alternative

distribution has a positive shift. However, in mixtures of heavy-tailed distributions, the non-

null components are not easily distinguished from the extremes of the null components. The

difficulty is caused by the speed of the tail distribution decaying to zero.

Given an independent sample X1, X2, . . . , Xm , we want to test whether each observation comes

from either a standard Cauchy(0,1) or a shifted Cauchy(µ,1). The standard Cauchy distribution

with the density function defined as

f (x) = 1

π(1+x2)

has an extremely heavy tail. We compute the extreme distribution of Cauchy maxima as

follows.

Since

F−1(t ) = tan[πt −π/2] ,
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3.2. Heavy-tailed test statistics in hypothesis testing

the limiting result

lim
δ→0

F−1(1−δ)−F−1(1−2δ)

F−1(1−2δ)−F−1(1−4δ)
= lim
δ→0

tan(π/2−δπ)− tan(π/2−2δπ)

tan(π/2−2δπ)− tan(π/2−4δπ)
= 21 = 2−κ (3.4)

indicates that the shape parameter of the extreme distribution is κ=−1 < 0. We will explain

how it determines the extreme value distribution below.

To derive an explicit form of the Cauchy maxima, let Mm:m = max(X1, X2, . . . , Xm) be the largest

observation among a standard Cauchy sample, we look for the distribution of

P(Mm:m ≤ x) = (F (x))m .

In order to have a non-degenerate limit distribution of the maximum, define the distribution

of a linear transformation

P

(
Mm:m −am

bm
≤ x −am

bm

)
= H

(
x −am

bm

)
,

where am and bm are constant sequences depending only on m . The distributional properties

are given by the following lemma.

Lemma 3.2.1 (Generalised extreme value distribution( GEVDM )). The only non-degenerate

family of distributions satisfying

lim
m→∞Hm(am +bm x) = lim

m→∞[F (am +bm x)]m = H(x) for any x

is

Hκ(x; λ,δ) = exp

{
−

[
1−κ

(
x −λ
δ

)]1/κ
}

, 1−κ
(

x −λ
δ

)
≥ 0, κ 6= 0, (3.5)

and

H0(x; λ,δ) = exp

[
−exp

(
x −λ
δ

)]
, κ= 0. (3.6)

Recall that the calculation (3.4) with κ = −1 leads to the Fréchet family. We compute the

corresponding regularisation parameters

am = 0, bm = F−1
(
1− 1

m

)
.= m

π
,

So, the distribution of Cauchy maxima is given by

fMm:m (x) = me−
m
πx

πx2 , (3.7)

whose mode is proportional to m.

The distribution of Cauchy maximum is still very long-tailed, which is completely different

from the light-tailed distributions in the Gumbel maximum domain of attraction. For the
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Chapter 3. Testing globally for the existence of alternative

detection of heavy-tailed mixtures, the largest components are not simply drawn from a

positively shifted distribution, but a mixture of both the null and the alternative. The indis-

criminate use of the one-side rejection region and the p-values naturally implies the emphasis

on the largest test statistics, and the error rate of false positives can be very large when the test

statistics are in reality heavy-tailed.
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Figure 3.2 – Densities of the extreme distribution of maxima of tν distributions

Figure 3.2 compares the densities of the extreme values with the random variables having

tν-distributions, with ν = 1,2,3,5,∞ and sample size m = 30. Note that ν = 1 is the Cauchy

density and ν=∞ corresponds to the normal density. With the tail of f0 and f1 getting longer,

the extreme value distribution has a longer tail and larger variance. As a consequence, the

heavy-tailed test statistics do not show an immediate distinction from the extreme values from

the nulls.

Figure 3.3 shows the densities of Cauchy maxima (left-side) and of t2 maxima (right-side) com-

pared to the other extreme densities mentioned above. When the heavy-tailedness appears

with different tail distributions, any increment in the tail index makes a huge difference to the

distributional property of the test statistics.
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Figure 3.3 – Zoom-in of the densities of the extreme values

3.2.2 Formulation of the parameter space

Now we discuss the parametrisation such that the asymptotic hypothesis (3.2) can be investi-

gated in the parameter space of (ε,µ) .

We are particularly interested in testing (3.2) with m →∞. The problem gets subtle when

the number of the alternatives is not enough to be detected, or the size of the non-zero

components cannot be distinguished from the block maxima of the nulls due to screening. As

we consider the asymptotic case, the parameters (ε,µ) need to vary with m as follows.

i) For the parametrisation of εm we prefer the case such that the number of the true nulls

and alternatives, namely m0 and m1, both tend to infinity as m grows.

ii) For the parametrisation of µm we conclude that the quality of testing (3.2) depends on

how large the test statistics from the alternatives are compared to the maxima from the

nulls. The increasing of µm with m needs to be comparable to the maximum, otherwise

it is either too trivial or impossible to be detected.

We propose the formulation for (εm ,µm) in the parameter space as follows.

Definition 3.2.2 (Asymptotic framework). Define the test of hypothesis (3.2) a desired asymp-

totic detection problem with εm and µm parametrised as

εm = m−γ, µm = Ma(mr ) , (3.8)

where the constant parameters 0 < γ < 1, r > 0, and Ma(m) denotes the order of the block

maxima with respect to the size m, such that

lim
m→∞

Mm:m

Ma(m)
−→ 1 in probability. (3.9)
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Note that for the Gaussian mixture with shifted mean, the desired parametrisation is µm =√
2log(mr ) =√

2r logm , and for the Cauchy we seek to test µm = mr .

3.3 Likelihood ratio test for mixture models

In this section we discuss the likelihood ratio test for the global null H (m)
0 against the mixture

model H (m)
1 as defined in (3.2). We introduce the ratio of the shifted density over the null

density

g (x) = gm(x; µ,ε) = f1(x)

f0(x)
= f0(x −µ)

f0(x)
. (3.10)

Therefore, the logarithm of the likelihood ratio statistic for an independent sample X1, X2, . . . , Xm

is given by

log(LRm) =
m∑

i=1
log(LRm(Xi )) =

m∑
i=1

log
(
1−εm +εm gm(Xi )

)
, (3.11)

where LRm(Xi ) is the likelihood ratio based on one observation Xi .

3.3.1 Heavy-tailedness

We explain the decisive role played by the tail of the distribution of the test statistics.

The behaviour of the function g (x) is essential to the effectiveness of likelihood ratio test. The

likelihood ratio of the shifted Cauchy to the standard Cauchy is not monotone, and

g (x) = 1+x2

1+ (x −µ)2

is a slowly varying function of x. Thus the largest values of the Cauchy test statistics are not

necessarily attributed to the alternative distributions.

Figure 3.4 shows the function g (x) for the Gaussian mixture and the Cauchy mixture distri-

bution respectively, with ε= 0.15 and µ= 3. The likelihood ratio with respect to the Gaussian

mixture model is exponentially increasing with the test statistic, with g (x) = eµx− 1
2µ

2
. Therefore,

the likelihood ratio test gives the generic one-sided rejection region such that any observed

value of the test statistic that exceeds the critical value will imply a rejection of the null hypoth-

esis. However, for the Cauchy mixture distribution, g (x) is bounded and not monotone, and

as a consequence, the most informative region is located around a central peak.

In general, we give the following conclusion for heavy-tailedness in the detection of a mixture

model.

Condition 3.3.1 (Likelihood ratio). Define the multiple testing problem (3.2) as a heavy-tailed
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Figure 3.4 – The function g (x) for Gaussian mixture (left side) and Cauchy mixture (right side)

testing problem if and only if the distribution of the test statistic satisfies

g (σx)/g (x) −→ Constant, x →∞, (3.12)

for any σ> 0, where g (x) = f1(x)/ f0(x) = f0(x −µ)/ f0(x).

3.3.2 Asymptotics

The likelihood ratio test for the problem (3.2) is the most powerful test subject to a fixed

significant level. We refer to this optimality as detailed below.

Definition 3.3.2 (Optimal test). Let α0 denote the tolerance of the significance level, and let

β=PH (m)
1

(
accept H (m)

0

)
be the probability of type II error. An optimal testing procedure minimises β subject to α≤α0 .

The probabilities of the two types of errors are linked to the behaviour of the likelihood ratio

statistic, and are inherently influenced by the tail distribution of the test statistic. We give the

following results that conclude the asymptotic property of the expected log-likelihood ratio

statistic.

Theorem 3.3.3. Following the parametrisation (3.8)

εm = m−γ and µm = Ma(mr )

of the asymptotic framework (3.2.2), there exists an asymptotically detectable region in the γ− r

space such that with the parameters (γ,r ) in this region, the following two conclusions hold:
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i) the log-likelihood ratio test statistic

log(LRm) −→∞ in probability; (3.13)

ii) the sum of the probabilities of type I and type II errors tends to zero,

as m →∞.

In reality, one can derive the detection boundary utilising the maximum likelihood estima-

tors of the parameters, namely ε and µ in terms of the mixture model. However, for most

distributions the likelihood estimators can be very complicated, and can only be calculated

numerically without the explicit form. Therefore, we propose to use the expected value of

logLRm to test for the mixture distribution, of which the effectiveness can be guaranteed by

the following lemma.

Lemma 3.3.4. Suppose the random variable X has the density function f0 under the global null

H (m)
0 , and the mixture distribution f (x) = (1−ε) f0(x)+ε f0(x −µ) under the alternative H (m)

1 .

Therefore, the test for H (m)
0 against H (m)

1 is fully characterised by the ratio g (x) = f1(x)/ f0(x), in

the sense that the log-likelihood ratio of the test (3.2) satisfies

E f0 (logLRm) =O
(
mε2 (

E f0

[
(g (X ))2 −1

]))
. (3.14)

Proof. The proof of this lemma is based on a second order Taylor expansion.

E f0 (logLRm) =
m∑

i=1

∫
log

(
(1−ε) f0(x)+ε f0(x −µ)

f0(x)

)
f0(x)dx

= m
∫

log
(
1+ε(g (x)−1)

)
f0(x)dx

≈ m
∫ (

−ε
2

2
g 2(x)+ (ε2 +ε)g (x)−

(
ε2

2
+ε

))
f0(x)dx

=−mε2

2

∫ (
g 2(x)−1

)
f0(x)dx

=O
(
mε2 (

E f0

[
(g (X ))2 −1

]))
,

which is true for any f0 and f1.

In real data applications, there are various approaches to get a consistent estimator of the

expected logarithm of the likelihood ratio. One is able to design asymptotically detectable

tests based on the detection boundary proposed in Section 3.4.
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3.4. Asymptotic detection boundary

3.4 Asymptotic detection boundary

In this section we provide the optimal detectable region of the test for the global null hypothesis

against the two-point mixture with εm and µm formulated as (3.8).

Proposition 3.4.1 (Asymptotically detectable). Consider the test

H (m)
0 : Xi

i.i.d.∼ F0 against H (m)
1 : Xi

i.i.d.∼ (1−ε)F0 +εF1 , (3.15)

with the parametrisation

εm = m−γ and µm = Ma(mr ) .

The detectable boundary is a curve in the (γ,r ) space that partitions it into the detectable region

and the non-detectable region under asymptotic consideration, such that

i) in the interior of the detectable region, the sum of the probabilities of the type I and type II

error goes to zero as m tends to infinity;

ii) in the non-detectable region, the sum of the probabilities of the two types error goes to one

as m tends to infinity.

The results on the asymptotic detection imply that when the number of hypotheses goes to

infinity, we can only achieve an optimal test in the interior of the detectable region, which is a

parametric restriction that limits the variation of the frequency εm and the size µm .

As for the detection problem based on the heavy-tailed test statistics, we are motivated to

develop a new approach out of the following considerations:

• The effectiveness of the existing methodologies often relies on the assumptions that are

not fulfilled with the test statistics following heavy-tailed distributions. Most approaches

are adapted to the normal test statistics. Although there are weaker conditions other

than the normality, such as the monotonicity of f0(x −µ)/ f0(x) in x required in the

estimation procedures mentioned before, these assumptions are still not true for f of

power law.

• Taking the Cauchy distribution as a representative of the heavy-tailed distributions, the

methods with moment estimation will fail, and the maximum likelihood estimators do

not have explicit forms.

We propose a method based on the Kullback-Leibler divergence introduced in Kullback and

Leibler (1951), which can be used to measure the distributional distinctions between the null

and the alternative. More applications and interpretations can be found in information theory,

and we recommend the works by Cover and Thomas (1991) and Kullback (1997) for further

details.
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3.4.1 On the Kullback–Leibler (KL) divergence

We let f0 and f denote the densities of the test statistic Xi under the null hypothesis H (m)
0 and

the alternative hypothesis H (m)
1 in (3.15) respectively, where

f (x) = (1−ε) f0(x)+ε f1(x) .

Definition 3.4.2. Suppose the densities f0 and f are absolutely continuous with respect to one

another, and have the same support on R.

i) Define the Kullback-Leibler (KL) divergence from f0 to f ,

I ( f0‖ f ) =
∫

log

(
f0(x)

f (x)

)
f0(x)dx ,

which is the expected information for discrimination between f0 and f per observation

from f0.

ii) Define the KL distance between f0 and f ,

KLD( f0; f ) = I ( f0‖ f )+ I ( f ‖ f0)

=
∫

log

(
f0(x)

f (x)

)
f0(x)dx +

∫
log

(
f (x)

f0(x)

)
f (x)dx ,

which is the symmetrised sum of KL divergences from f0 to f and from f to f0.

The KL divergence, which is also called discrimination information and a member of a large

class of relative entropies, is designed to measure the distributional distinction in information

theory. I ( f0‖ f ) is the information loss when f is used to estimate the true distribution f0,

and I ( f ‖ f0) is the opposite. When we consider the KL divergence as a test statistic, either

a large I ( f0‖ f ) or I ( f ‖ f0) implies a significant difference between H (m)
0 and H (m)

1 . This KL

distance I ( f0‖ f )+ I ( f ‖ f0) measures the difference between f0 and f from both directions. We

investigate each of them and the sum as well.

The KL divergence is not symmetrical, that is, I ( f0‖ f ) 6= I ( f ‖ f0), and does not satisfy the trian-

gle inequality, but there are the following properties such that the utility of the KL divergence

as a measure of similarity between density functions is supported.

Proposition 3.4.3 (Non-negativity). For any density functions f and g that satisfy the condi-

tions in definition (3.4.2), the KL divergence I ( f ‖g ) ≥ 0 with equality if and only if f ≡ g .

Proposition 3.4.4 (Additivity). For independent observations X1, X2, . . . , Xm ,

IX1,...,Xm ( f ‖g ) =
m∑

i=1
IXi ( f ‖g ) ,

where IX ( f ‖g ) is the realisation of I ( f ‖g ).
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Proposition 3.4.5 (Convexity). The KL divergence I ( f ‖g ) is convex in the pair ( f , g ), that is, for

two pairs of probability density functions ( f1, g1) and ( f2, g2),

λI ( f1‖g1)+ (1−λ)I ( f2‖g2) ≥ I
(
(λ f1 + (1−λ) f2)‖(λg1 + (1−λ)g2)

)
for any λ ∈ [0,1].

Proposition 3.4.6 (Transformation invariance). The KL divergence I ( f ‖g ) remains invariant

under non-singular transformation.

Propositions (3.4.3)-(3.4.6) are easy to prove and we recommend the paper by Kullback and

Leibler (1951) for further detail.

The non-negativity (3.4.3) of KL divergence between any probability distributions follows

directly from Jensen’s inequality. Together with (3.4.4), it implies that when µ> 0 and ε> 0 are

fixed, the KL divergence evaluated at the i.i.d. sample X1, X2, . . . , Xm satisfies

∃ δ> 0, IX1,...,Xm ( f0‖ f ) = mIX1 ( f0‖ f ) > mδ , (3.16)

which will tend to infinity as m grows. This property coincides with the classic testing ap-

proaches that separates H (m)
0 and H (m)

1 for fixed and known parametric distributions. However,

it becomes a subtle problem when we model µ and ε as functions of m. We are interested in

the asymptotic behaviour of KL divergence and will provide a new method of testing such

hypotheses.

3.4.2 Asymptotic detection based on the KL divergence

Now we consider the test for the global null hypothesis H (m)
0 against the mixture distribu-

tion under H (m)
1 , as defined in (3.15), utilising the asymptotic property of the KL divergence

between the null and alternative distributions.

The best error exponent is given by Stein’s lemma.

Lemma 3.4.7 (Stein’s lemma). Given a sample of size m, let αm , βm be the probabilities of type

I and type II error associated with the test (3.15) of m test statistics. Define the optimal β∗
m such

that

β∗
m = min

all tests s.t.αm≤α0

βm .

It follows that

β∗
m ∼ e−mI ( f0‖ f ), m →∞. (3.17)

We give a sketch of the proof.

43



Chapter 3. Testing globally for the existence of alternative

Proof. For i.i.d. test statistics X1, . . . , Xm under the null H (m)
0 , we obtain

lim
m→∞

1

m
log

∏m
i=1 f0(Xi )∏m
i=1 f (Xi )

p−→ I ( f0‖ f ) (3.18)

by the weak law of large numbers. Therefore, for any significance level 0 < αm ≤ α0, there

exists 0 < η<αm such that

lim
m→∞ PH (m)

0

(
em(I ( f0‖ f )−η) <

∏m
i=1 f0(Xi )∏m
i=1 f (Xi )

< em(I ( f0‖ f )+η)
)
= 1. (3.19)

Construct a sequence of acceptance regions

Am =
{

X ∈X : em(I ( f0‖ f )−η) <
∏m

i=1 f0(Xi )∏m
i=1 f (Xi )

< em(I ( f0‖ f )+η)
}

. (3.20)

Therefore,

lim
m→∞ PH (m)

0
(Am) = 1. (3.21)

On the other hand, by definition (3.20) of Am ,

e−m(I ( f0‖ f )+η)PH (m)
0

(Am) ≤ PH (m)
1

(Am) ≤ e−m(I ( f0‖ f )−η)PH (m)
0

(Am) , (3.22)

of which the limit leads to

lim
m→∞

(
β∗

m

)1/m −→ e−I ( f0‖ f ), m →∞. (3.23)

Note that the last equation follows from the fact that Am is the optimal acceptance region with

the minimal probability of type II error. Here the optimality can be proved by stating that no

other acceptance/rejection region can achieve a smaller αm and a smaller βm simultaneously.

Then the proof is complete.

Similar proofs can be found in Chapter 12 of Cover and Thomas (1991), and Chapter 5, Section

3 of Kullback (1997) .

This lemma gives a direct relation between the KL divergence and the probabilities of type I

and type II error, which guarantees that KL divergence could be used to perform hypothesis

tests of large sample size. So we give the following criterion.

Definition 3.4.8 (Asymptotically detectable (KL method)). Given an independent sample of

size m, the test problem (3.15) is asymptotically detectable if mKLD tends to ∞ as m →∞; if

mKLD tends to 0, there is not enough information to detect the existence of non-null effects.
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3.4.3 Detect the mixture models

In the last part of this chapter, we give the results of the asymptotic detection of the mixture

model by offering a detection boundary in the parameter space of (γ,r ) that partitions the

whole space into a detectable region and a non-detectable region. We first explore the KLD

method for the Gaussian mixture, and compare our conclusion to the classic result given by

Ingster, Donoho and Jin, and then derive the result for the Cauchy mixture, which is taken as a

representative of the heavy-tailed mixture model.

The Gaussian mixture model

Suppose we test for the standard normal distribution against the mixture model, that is,

H (m)
0 : Xi

i.i.d.∼ N (0,1) against H (m)
1 : Xi

i.i.d.∼ (1−ε)N (0,1)+εN (µ,1) . (3.24)

Following the behaviour of mKLD we conclude that, for fixed ε and µ, the test (3.24) is au-

tomatically detectable for sufficiently large m. So we focus on testing εm = 0 against εm > 0

when the fraction εm and shift µm are calibrated as

εm = m−γ, µm = Ma(mr ) =
√

2r logm, (3.25)

and we give the statistical interpretation of the parameters.

As explained in the previous sections, the maximum of standard normal observations from

a sample of size m is the same order with
√

2logm, which gives the range where a shift µm

could be intuitively visible. On the other hand, at least one non-null component is expected in

a sample of size m, so we set 0 < γ< 1, 0 < r < 1 to be the region of interest. It is then necessary

to discuss different settings of r and γ to find a detection boundary based on the asymptotic

behaviour of mKLD.

The following theorem is our result obtained by analysing the KL divergence mI ( f0‖ f ).

Theorem 3.4.9. In the Gaussian mixture detection problem (3.24) with εm = m−γ and µm =
Ma(mr ) =√

2r logm,

mI ( f0‖ f ) →∞, m →∞,

if and only if r > ρ(γ), where

ρ(γ) =


0, 0 < γ< 1

2 ,

γ− 1
2 , 1

2 < γ< 3
4 ,

(1−√
1−γ)2. 3

4 < γ< 1,

(3.26)

is the asymptotic detection boundary.

45



Chapter 3. Testing globally for the existence of alternative

Proof. Under the calibration εm = m−γ, µm =√
2r logm, the KL divergence from f0 to f of a

single observation is given by

I ( f0‖ f ) =
∫

log

(
f0(x)

f (x)

)
f0(x) dx

=−
∫

log
(
1+εm

(
eµm x−µ2

m /2 −1
))

f0(x) dx

=−
(∫ p

2q logm

−∞
+

∫ ∞
p

2q logm

)
log

(
1+εm

(
eµm x−µ2

m /2 −1
))

f0(x) dx

∼−
∫ p

2q logm

−∞
εm

(
eµm x−µ2

m /2 −1
)

f0(x) dx −
∫ ∞
p

2q logm
εm

(
eµm x−µ2

m /2 −1
)

f0(x) dx

+ ε2
m

2

∫ ∞
p

2q logm

(
e2µm x−µ2

m −2eµm x−µ2
m /2 +1

)
f0(x) dx

= ε2
m

2

(
eµ

2
m Φ̄

(√
2q logm −2

√
2r logm

)
−2Φ̄

(√
2q logm −

√
2r logm

)
+ Φ̄

(√
2q logm

))

with 0 < q < r < 1, of which the approximation is valid if and only if

∣∣∣εm(eµm x−µ2
m /2 −1)

∣∣∣< 1. (3.27)

Note that ∫ ∞

a
e−t 2/2dt ∼ 1

a
e−a2/2 ,

we can substitute εm = m−γ, µm =√
2r logm in and obtain

mI ( f0‖ f ) ∼ m1−2γ+2r−(
p

q−2
p

r )2 −m1−2γ−(
p

q−pr )2 +m1−2γ−q . (3.28)

Then we discuss the following three cases.

i) When 0 < γ< 1
2 , it is obvious that mI ( f0‖ f ) →∞.

ii) When 1
2 < γ< 3

4 and 0 < r < 1
4 , condition (3.27) holds and

p
q = 2

p
r < 1 gives the leading

order of m in (3.28),

mI ( f0‖ f ) →∞⇐⇒ 1−2γ+2r − (
p

q −2
p

r )2 > 0 when
p

q = 2
p

r

⇐⇒ r > γ− 1

2
.

(3.29)

iii) When 1
2 < γ< 3

4 and 1
4 < r < 1, condition (3.27) holds and q = 1 < 2

p
r gives the leading
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3.4. Asymptotic detection boundary

order of m in (3.28),

mI ( f0‖ f ) →∞⇐⇒ 1−2γ+2r − (
p

q −2
p

r )2 > 0 when q = 1

⇐⇒ r > (1−√
1−γ)2.

(3.30)

Conclusion of the three cases gives the theorem.
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Figure 3.5 – The asymptotic detectable region (the grey part) of testing Gaussian mixtures

As shown in Figure 3.5, the detection boundary is a curve in the γ− r plane that separates the

whole parameter space into two parts, the detectable region (shaded) and the non-detectable

region. Our KLD method achieves the optimal detectable boundary, which is the same as the

one given by the likelihood ratio test.

The Cauchy mixture model

As the KLD method is validated in detecting the non-null components in Gaussian mixture

model, we use it to tackle the heavy-tailed detection problem. In most of these detection

problems, the tail index of the distribution has a considerable influence on the critical point

of rejection. We start with the two-point Cauchy mixture model and test

H (m)
0 : Xi

i.i.d.∼ f0(x) = 1

π
(
1+x2

) ,

H (m)
1 : Xi

i.i.d.∼ f (x) = 1−εm

π
(
1+x2

) + εm

π
(
1+ (x −µm)2

) ,
(3.31)
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Chapter 3. Testing globally for the existence of alternative

since the case with fixed µ and ε is trivial in asymptotics.

As we proved in Section 3.2 that the Cauchy block maximum Ma(m) ∼ m, which leads to the

asymptotic parametrisation

εm = m−γ, µm = Ma(mr ) = mr . (3.32)

We propose the asymptotic detectable boundary for the parameters (γ,r ) in the following

theorem.

Theorem 3.4.10. The detection problem (3.31) with εm and µm given as (3.32) is asymptotically

detectable if the parameters (γ,r ) are in the region of{
(γ,r ) :

{
0 < γ< 1

2
, 0 < r < 1

}⋃{
1

2
≤ γ< 1, γ− 1

2
< r < 1

}}
. (3.33)

Proof. The integral of the log function embedded with the polynomials is a tough problem.

Thus, we seek to approximate the ratio according to its asymptotic behaviour. Recall that the

KL distance between f0 and f is

KLD( f0; f ) = I ( f0‖ f )+ I ( f ‖ f0) =
∫

log

(
f0(x)

f (x)

)
f0(x)dx +

∫
log

(
f (x)

f0(x)

)
f (x)dx ,

where the log-likelihood ratio LLR∗(x) = log( f / f0) is

LLR(x) = log

(
(1−ε) f0(x)+ε f1(x)

f0(x)

)
= log

(
1+ε

(
f1(x)

f0(x)
−1

))
.

For the Cauchy mixture model, the ratio f1(x)/ f0(x) is bounded, slowly varying in x, and tends

to one when x →±∞. An intuitive approximation of the LLR(x) is the expansion using

log(1+a) ' a

when |a| is small. Otherwise when |a| is large and 1
|a| is relatively small, we have

log(1+a) = log

[
a

(
1+ 1

a

)]
= log a + log

(
1+ 1

a

)
' log a + 1

a
.

Then we propose a piecewise approximation

LLR∗(x) =


2εµ

(
x − µ

2

)
1+ (x −µ)2 , x ≤ µ

2 ,

min

{
2εµ

(
x − µ

2

)
1+ (x −µ)2 , log

(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)
+ 1+ (x −µ)2

2εµ
(
x − µ

2

)}
, x > µ

2 .

(3.34)
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3.4. Asymptotic detection boundary

Note that the approximation is applied when ε2µ2 +εµ2 −1 ≥ 0 and there exist the two roots

x1,2 =µ(1+ε)±
√
ε2µ2 +εµ2 −1 at equality.

Therefore,

LLR∗(x) =


2εµ

(
x − µ

2

)
1+ (x −µ)2 , x ≤ x1 or x ≥ x2 ,

log

(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)
+ 1+ (x −µ)2

2εµ
(
x − µ

2

) , x1 < x < x2 .

(3.35)

We desire to give the explicit form of the KL distance and provide a detectable boundary by

analysing the asymptotic behaviour with the parameters γ and r varying.

KLD( f0; f ) = I ( f0‖ f )+ I ( f ‖ f0)

=
∫

log

(
f0(x)

f (x)

)
f0(x)dx +

∫
log

(
f (x)

f0(x)

)
f (x)dx

=
∫

− log

(
f (x)

f0(x)

)
f0(x)dx +

∫
log

(
f (x)

f0(x)

)
f (x)dx

=
∫

− log

(
1+ 2εµ

(
x − µ

2

)
1+ (x −µ)2

)
1

π
(
1+x2

)dx

+
∫

log

(
1+ 2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
(1−ε)

1

π
(
1+x2

) +ε 1

π
(
1+ (x −µ)2

)]
dx

=
∫

log

(
1+ 2εµ(x − µ

2 )

1+ (x −µ)2

)[
ε

π(1+ (x −µ)2)
− ε

π(1+x2)

]
dx

=
∫

log

(
1+ 2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx .

We discuss the two cases of the approximation.

i) 0 < r < γ
2 .

KLD( f0; f ) =I ( f0‖ f )+ I ( f ‖ f0)

'
∫ +∞

−∞

(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx

= ε2

2π

(
µ

(
µx −µ2 −2

)
1+ (x −µ)2 + (

µ2 −2
)

arctan(x −µ)+2arctan(x)

)∣∣∣∣∣
+∞

−∞
.

It is easy to see that

lim
x→±∞

ε2

2π

(
µ

(
µx −µ2 −2

)
1+ (x −µ)2 + (

µ2 −2
)

arctan(x −µ)+2arctan(x)

)
=±ε

2µ2

4
,
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Chapter 3. Testing globally for the existence of alternative

which leads to

mKLD( f0; f ) =O
(
m1−2γ+2r )

.

ii) r ≥ γ
2 .

KLD( f0; f ) = I ( f0‖ f )+ I ( f ‖ f0)

=
(∫ x1

−∞
+

∫ ∞

x2

+
∫ x2

x1

)
log

(
1+ 2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx

= I A + IB + IC .

For x ≤ x1 or x ≥ x2,

I A + IB '
(∫ x1

−∞
+

∫ ∞

x2

)(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx

= ε2

2π

(
µ

(
µx −µ2 −2

)
1+ (x −µ)2 + (

µ2 −2
)

arctan(x −µ)+2arctan(x)

)(∣∣∣∣∣
x1

−∞
+

∣∣∣∣∣
∞

x2

)

For x1 < x < x2,

IC '
∫ x2

x1

[
log

(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)
+ 1+ (x −µ)2

2εµ
(
x − µ

2

)][
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx

=
∫ x2

x1

log

(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx︸ ︷︷ ︸

IC1

+
∫ x2

x1

1+ (x −µ)2

2εµ
(
x − µ

2

) [
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx︸ ︷︷ ︸

IC2

,

where the second integral

IC2 =
∫ x2

x1

1+ (x −µ)2

2εµ
(
x − µ

2

) [
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx =

∫ x2

x1

1

π(1+x2)
dx = 1

π
[arctan(x2)−arctan(x1)].

Thus,

mIC2 =
1

π
m

(
1

µ(1+ε)−
√
ε2µ2 +εµ2 −1

− 1

µ(1+ε)+
√
ε2µ2 +εµ2 −1

)
=O(m1−r− γ

2 ) .

The first part IC1 can be approximated by the integral of a Cauchy density with a central
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peak at µ,

IC1 =
∫ x2

x1

log

(
2εµ

(
x − µ

2

)
1+ (x −µ)2

)[
2εµ(x − µ

2 )

π(1+x2)(1+ (x −µ)2)

]
dx

'
∫ x2

x1

(
log(εµ2)

εµ2

π(1+µ2)

)
1

1+ (x −µ)2 dx

=
(
log(εµ2)

εµ2

π(1+µ2)

)
arctan(x −µ)

∣∣∣∣∣
x2

x1

=
(
log(εµ2)

εµ2

π(1+µ2)

)
(arctan(x2 −µ)−arctan(x1 −µ)) .

mIC1 = m

(
log(εµ2)

εµ2

π(1+µ2)

)(
arctan

(
µε+

√
ε2µ2 +εµ2 −1

)
−arctan

(
µε−

√
ε2µ2 +εµ2 −1

))
=O

(
m1−γ logm

(
1+ (m

γ

2 −r )
))

.

A summary of the results above leads to the conclusion in the theorem.
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Figure 3.6 – The asymptotic detectable region (the grey part) of testing Cauchy mixtures

Figure 3.6 shows the asymptotically detectable region for the Cauchy mixture model, with εm

and µm formulated as functions of m and the parameters (γ,r ). For example, with the total

number of hypotheses m=10000, a multiple testing problem for sparse Cauchy components

has γ > 1
2 , which leads to the fraction ε < 0.01, that is, the number of the true non-zero

components mεm = 100. In order that the alternatives are asymptotically detectable, the
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Chapter 3. Testing globally for the existence of alternative

non-zero Cauchy effects must be at least µm > 10. On the other hand, for the Cauchy effects of

size µm = 10 to be detectable, there must exist at least 100 true alternatives among the sample

of 10000 observations.

Remark (Sparsity). The region of γ> 1
2 is also referred to as the sparse case, with the proportion

of the alternatives εm < 1p
m

. The asymptotic detection theorems indicate that with the frequency

of the alternatives being relatively small, the size of the non-zero effects must be moderately

large to be detected. Apparently, the increasing of µm of the Cauchy elements needs to be faster

than the normal means.
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4 Detecting individual alternatives

In this chapter we propose an adaptive multiple testing procedure with the test statistics

following heavy-tailed distributions.

4.1 Distribution of p-values and control of error rates

Throughout this work we focus on the p-values instead of the test statistics or the z-values.

Multiple hypothesis testing can equivalently be based upon the test statistics and the generic

p-values, and the p-value plays an important role in terms of statistical inference and inter-

pretation. There is a rich literature discussing the advantages and disadvantages of p-values,

and we will emphasise that it is the correct definition and adaptation that influence the ef-

fectiveness of p-value based methods. In this section we first give the definition of p-values,

and then discuss how p-values behave in multiple testing problems with heavy-tailed test

statistics.

4.1.1 p-values

Depending on the random variable Xi and the null hypothesis H0,i , the p-value denoted by

Pi = Pi (Xi ) is also a random variable that reflects how strongly the value of Xi contradicts H0,i .

Recall that the p-value is computed as the probability of having the current observation or

an even more extreme value under the null hypothesis. Therefore, it is equivalently regarded

as the smallest significance level that would be taken to reject the null hypothesis for the

observation of Xi . A small p-value indicates that the rejection is a correct decision with high

probability.

Formally, let α ∈ (0,1) be a potential significance level, and let Rα be the corresponding

rejection region in the sample space of X . We call the region Rα nested in the sense that

Rα′ ⊆Rα for any 0 <α′ <α< 1.
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Chapter 4. Detecting individual alternatives

The p-value is formally defined as the smallest level α such that the null hypothesis is rejected

by a nested rejection region Rα, that is,

P(X ) = inf
α

{X ∈Rα} .

By definition, there are the following distributional properties of the p-values.

Distribution of the p-values under the null

Proposition 4.1.1 (p-value). Suppose random variable X has distribution Pθ for some θ ∈Θ ,

and the null hypothesis H specifies θ ∈ΘH . Assume the rejection regions Rα are nested.

i) If

sup
θ∈ΘH

PX∼Pθ
(X ∈Rα) ≤α, 0 <α< 1,

then it follows that the distribution of the p-value P under θ ∈ΘH satisfies

PX∼Pθ
(P ≤ u) ≤ u, 0 ≤ u ≤ 1. (4.1)

ii) If the rejection region Rα is constructed such that, for θ ∈ΘH ,

PX∼Pθ
(X ∈Rα) =α, 0 <α< 1,

then the p-values are uniformly distributed, that is,

PX∼Pθ
(P ≤ u) = u, 0 ≤ u ≤ 1. (4.2)

The second case of Proposition 4.1.1 is known as the uniformity of the p-values under the null,

while the first case is referred to as the super-uniformity. There are a series of methodologies

aiming at weighting and adjusting the p-values instead of using the raw ones, and we rec-

ommend Benjamini et al. (2006), Genovese et al. (2006) and Roquain et al. (2009) for further

interest.

Throughout the present thesis, we consider the definition

Pi =P
(
X > Xi |H0,i is true

)= 1−F0(Xi ) (4.3)

that is universally adopted.

The distribution of p-values under the null hypotheses given by Proposition 4.1.1 is not

influenced by the number of hypotheses or the distribution family P= {Pθ : θ ∈Θ}. When the

alternative hypotheses are true, the distribution of p-values will depend on the tail distribution

and the number of hypotheses as well.

54



4.1. Distribution of p-values and control of error rates

4.1.2 Multiple testing based on p-values

Now we investigate the behaviour of the p-values under the alternative, and explore how it

influences the statistical testing.

Consider the multiple testing problem for the mixture model

H0,i : Xi ∼ F0 against H1,i : Xi ∼ F1 , i = 1, . . . ,m, (4.4)

let H m = (H1, . . . , Hm) be the indicator variables where Hi = 0 if and only if the i -th null hy-

pothesis is true. Given the independence of the tests, we assume that Hi
i.i.d.∼ Bernoulli(ε). Let

P m = (P1, . . . ,Pm) denote the p-values, of which the realised values are denoted by (p1, . . . , pm) .

The generic p-value is given by pi = PH0,i (X > Xi ) = 1− F0(Xi ). We assume that P m are

marginally drawn from the probability distribution

Pi ∼ (1−ε)U +εFp ,

where U is the probability distribution of a Uniform(0,1), and

Pi |Hi = 1 ∼ Fp ,

where Hi = 1 corresponds to a true alternative.

Distribution of the p-values under the alternative

Recall that we assume the test statistics follow the mixture model

Xi ∼ (1−ε)F0 +εF1 ,

so the marginal distribution of the p-values under the alternatives
{

H1,i , i = 1, . . . ,m
}

is

Fp (t ) = PH1,i (Pi ≤ t ) = PH1,i (1−F0(Xi ) ≤ t ) = PH1,i (Xi ≥ F−1
0 (1− t )) = 1−F1(F−1

0 (1− t )) ,

and the density function is

fp (t ) = f1(F−1
0 (1− t ))

f0(F−1
0 (1− t ))

.

Therefore, the distribution of a p-value under the mixture model is formulated as

F̃p (t ) = 1− [(1−ε)F0 +εF1]︸ ︷︷ ︸
mixture model

(F−1
0 (1− t )) = (1−ε)t +ε(1−F1(F−1

0 (1− t ))),

f̃pi (t ) = (1−ε)+ε f1(F−1
0 (1− t ))(F−1

0 (1− t ))′ = (1−ε)+ε f1(F−1
0 (1− t ))

f0(F−1
0 (1− t ))

,

for 0 < t < 1.
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Chapter 4. Detecting individual alternatives

Given F1(x) = F0(x −µ), the joint distribution of the p-values under the global alternative

H (m)
1 is influenced by both ε , µ and m. We will restrict the multiple testing problems to the

asymptotically detectable region given in Chapter 3.

4.1.3 A heavy-tailed framework in multiple testing

Let p(1) ≤ p(2) ≤ ·· · ≤ p(m) be the ordered p-values, and let α be a pre-specified significance

level bounding the probability of type I error. Multiple testing procedures based on rejecting

the smallest p-values were originally developed and verified based on Gaussian test statis-

tics, of which the effectiveness is guaranteed by the fact that the true alternatives are easily

distinguished from the block maxima of the nulls. That is why the classic theory and method-

ologies we described in the previous chapters work well under the normality assumption. For

heavy-tailed test statistics, however, we will point out that even though the control of the false

discovery rate is still maintained, classical step-wise procedures will fail to find rejections

among the smallest p-values.

In Chapter 3 we discussed the heavy-tailedness with respect to the likelihood ratio and pro-

vided the Condition 3.3.1

f1(x)/ f0(x) −→ Constant, x →∞,

to characterise the heavy-tailed distributions. In addition, we now assume the distribution of

the p-values of a heavy-tailed test statistic satisfies the following conditions.

Condition 4.1.2 (C1). Assume that the distribution of the test statistic under the alternative

hypothesis, namely F1, satisfies

i) F1 is symmetric and unimodal.

ii) (Asymptotic scale invariance.) For anyσ> 0, F̄1(σx)
/

F̄1(x) →Cσ as x →∞ , where F̄1(x) =
P(X > x), Cσ > 0 is a constant related to σ.

iii) (Long− tailedness.) For any t > 0, F̄1(x + t )
/

F̄1(x) → 1 as x →∞.

Condition 4.1.3 (C2). Assume that the cumulative distribution and the density of the p-values

under the alternative, namely Fp and fp , satisfy

i) Fp is not concave,

ii) limt→0+
dFp (t )

dt = 1,

iii) limt→0+
dfp (t )

dt = 1,

iv) fp is unimodal,
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4.1. Distribution of p-values and control of error rates

v) fp (t ) is uniformly continuous in t .

We will later on explain how these conditions change the detection of alternatives with test

statistics having heavy-tailed distributions. As an illustration, we consistently take Cauchy

distribution as an example that follows Conditions 4.1.2 and 4.1.3.

p-values of Cauchy test statistics

In the Cauchy distribution where

F0(x) = arctan(x)

π
+ 1

2
and F−1

0 (t ) = tan
(
πt − π

2

)
,

we obtain the distribution of a single p-value Pi (Xi ) under the alternative Cauchy distribution

with a shift µ as follows,

Fp (t ) = 1

2
− 1

π
arctan

(
tan

(π
2
−πt

)
−µ

)
,

fp (t ) = 1+ (F−1
0 (1− t ))2

1+ (F−1
0 (1− t )−µ)2

= 1+ tan2(π2 −πt )

1+ (
tan(π2 −πt )−µ)2 .

Therefore, we derive the distribution of the p-values under the mixture model

f̃p (t ) = (1−ε)+ε
1+ 1

tan2(πt )

1+
(

1
tan(πt ) −µ

)2 .
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Figure 4.1 – The densities of the p-values for Gaussian mixtures (left-side) and Cauchy mixtures
(right-side)

Figure 4.1 compares (1− ε)+ ε fp , that is, the density of the p-value under the alternative

H (m)
1 , with the test statistics following the Gaussian distribution (on the left) and the Cauchy
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Chapter 4. Detecting individual alternatives

distribution (on the right) respectively. The frequency of the true alternatives is ε= 0.1, and

the positive shift is µ= 3 (solid red lines) and µ= 1 (dashed blue lines). The horizontal lines

correspond to f (t ) = 1, which is the density of the uniform distribution under the global null

H (m)
0 .

With normal test statistics, the marginal distribution of the p-values under the alternative goes

to infinity fast when the p-value goes to zero. This explains why the non-null components

are relatively easily detected from the Gaussian mixtures. When we consider the Cauchy test

statistics, the distribution fp is bounded, such that with a small frequency ε, the density ε fp

is not easily distinguished from f (t) = 1. In addition, compared to the uniform distribution

on (0,1), it is obvious that the most informative region of the p-values (indicating the true

alternatives) is not centralised at zero, but rather located around a critical value which is

always larger than zero.

In fact, for the Cauchy mixture model, we obtain the explicit form of the local concentration of

the alternative p-values

pc = 1

π

arctan

−
√

1+ µ2

4
− µ

2

+ 1

2
, (4.5)

where the density of the p-values is maximised. Note that pc > 0, which indicates that the

p-values from the alternatives are not the smallest ones.

Therefore, we are interested in formulating a multiple testing procedure based on the mode of

the p-values under the alternative, and we aim at locating the alternatives by detecting the

mode.

4.1.4 Quality of the test: operating characteristics

Before addressing the proposed testing procedure, we provide another way to evaluate a test,

which inspired our distributional formulation of the test statistics and the p-values.

In practice, the quality of a classifier or a testing procedure can be quantified utilising the ROC,

which stands for the Receiver Operating Characteristic, or equivalently, the Relative Operating

Characteristic. This concept is brought from electrical engineering to statistical testing and

comparison. Two of the most widely discussed operating characteristics are the true positive

rate (TPR) and the false positive rate (FPR), and the curve of the TPR as a function of the FPR

is referred to as the ROC curve.

When evaluating a test, we seek to maximise the power subject to control of the false positive

rate. The ROC curve provides a graphical perspective on the evaluation of testing procedures.

We propose the following formulation based on the distribution of the p-values under mixture

models.
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4.1. Distribution of p-values and control of error rates

Definition 4.1.4. Suppose the p-values follow the marginal distribution

F̃p (t ) = (1−ε)t +εFp (t ) ,

which is a random mixture with ε=P(Hi = 1). Define the probabilities of having a true positive

and a false positive as

G1(t ,∆) =
∫
Rt ,∆

fp (u)du (4.6)

G0(t ,∆) =
∫
Rt ,∆

1du (4.7)

respectively, where Rt ,∆ is a rejection region for the p-values, centered at a threshold t ∈ [0,1]

and of length ∆ ∈ [0,1].

Typically, if the rejection region of the p-values is [0,∆] where ∆ is a fixed threshold, we obtain

the following formulations under the mixture model,

G1(∆) =G1(0,∆) = Fp (∆) , (4.8)

G0(∆) =G0(0,∆) =∆ . (4.9)

In this case, the probability of having a correctly declared positive, denoted by G1(∆), and

the probability of having a falsely declared positive, denoted by G0(∆), are the cumulative

distribution functions of the p-values under the null H0,i and alternative H1,i respectively.

The ratio is therefore
P(TP)

P(FP)
= G1(∆)

G0(∆)
= Fp (∆)

∆
. (4.10)

For any distribution Fp differentiable on [0,1], it follows that

lim
∆→0

G1(∆)

G0(∆)
= lim
∆→0

fp (∆) . (4.11)

As we explained in Section 4.1.2, lim∆→0 fp (∆) is indeed influenced by the tail distribution of

the test statistics.

Example 4.1.5. The left-side plot in Figure 4.2 compares the ROC curves based on the Gaussian

(the dashed blue curve) and Cauchy (the solid red curve) test statistics respectively. The right-side

plot shows the corresponding functions G1(∆)/G0(∆), namely G1(∆)/∆ given the rejection region

Rt ,∆ = [0,∆]. The Gaussian and the Cauchy distributions stand for two regimes in the detection

of mixture models. For Gaussian test statistics, G1(∆)/∆ is monotonically decreasing and the

ROC curve is concave, such that with a rejection region Rt ,∆ = [0,∆], the ratio of the increment

in power over the increment in type I error is maximised at t = 0. However, the Cauchy test

statistics which satisfy the conditions 4.1.2 and 4.1.3 cannot be detected using the rejection

region Rt ,∆ = [0,∆], given the fact that the false positives increase as fast as the true positives at

t = 0. The maximum slope is obtained at a positive value which is greater than zero.
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Figure 4.2 – The ROC curve (left-side) and the ratio TPR/FPR (right-side) for Gaussian mixture
model (dashed blue curves) and Cauchy mixture model (solid red curves)

Now we set up the criterion of our testing procedure and define the rejection region based on

the variation of the true and false discoveries.

Definition 4.1.6 (Significance center). In the multiple testing problem (4.4), we define the

rejection region of the p-values as

R=Rt ,∆ ⊆ [0,1] . (4.12)

Define G ′
1(t ) and G ′

0(t ) as

G ′
1(t ) = ∂G1(t ,∆)

∂∆

∣∣∣
∆=0

, (4.13)

G ′
0(t ) = ∂G0(t ,∆)

∂∆

∣∣∣
∆=0

, (4.14)

which can be interpreted as the true positive rate and false positive rate evaluated near threshold

t respectively. The optimal threshold t∗ is defined as the significance center that maximises the

ratio

t∗ = argmax
t

G ′
1(t )

G ′
0(t )

. (4.15)

We use (4.15) as a criterion because it maps out the slope of the ROC curve with the significant

center t varying from zero to one, and helps to determine the desired control of error rates. We

seek to obtain a significance region such that the number of true positives increases rapidly

with only few false positives included. Maximising (4.15) as a function of t ∈ [0,1] will give a

feasible solution to the rejection region.

Recall that step-wise procedures reject the p-values of Gaussian test statistics at pi ≤αi , which

is equivalent to defining the rejection region Rt ,∆ = [0,∆]. We give the following condition that

must be guaranteed to have t∗ = 0.
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4.1. Distribution of p-values and control of error rates

Condition 4.1.7 (C3). G1(t )/t is decreasing in t on [0,1], where G0(t ) and G1(t ) are defined by

(4.8) and (4.9).

Generally, in multiple testing problems for mixture models, a feasible testing procedure de-

pends on the tail distributions of the test statistic, namely the light-tailed distribution and the

heavy-tailed distribution respectively. We conclude the following two regimes formally, where

the step-wise multiple testing procedures should be established according to the distributional

property of the test statistics.

Lemma 4.1.8. Consider the rejection region Rt ,∆ of the p-values associated with the multiple

testing problem (4.4), we give the following two cases:

i) Suppose the distribution of the p-values satisfies Condition 4.1.7. Then the rejection region

Rt ,∆ = [0,∆] is optimal, in the sense that t∗ = 0.

ii) Suppose the distribution of the test statistics and the p-values, namely F1 and Fp , satisfy

Conditions 4.1.2 and 4.1.3, with Condition 4.1.7 violated. Then any decision rule based on

Rt ,∆ = [0,∆] is infeasible, in the sense that t∗ > 0.

Proof. i) For the first case that Condition 4.1.7 is satisfied,(
G1(t )

t

)′
≤ 0 =⇒ G ′

1(t ) ≤ G1(t )

t
.

As G1(∆)/∆ is decreasing, we obtain

argmax
t

G1(t )

t
= 0,

and

lim
t→0

G1(t )

t
= lim

t→0
fp (t ) = lim

t→0
G ′

1(t ) ,

and it is easy to conclude that the significance center

t∗ = argmax
t

G ′
1(t ) = 0. (4.16)

ii) If Conditions 4.1.2 and 4.1.3 are satisfied, then Condition 4.1.7 is violated. It is easy to show

that the significance center t∗ = 0 contradicts the condition that G1(∆)/∆ is decreasing.

In addition,

lim
t→0

G1(t )

t
−→ 1 (4.17)

implies that the quality of the test based on Rt ,∆ = [0,∆] for very small ∆ is equally bad as

rejecting the hypotheses randomly.
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Example 4.1.9. As an example, in Cauchy mixture model we verify that the ratio G1(t )/G0(t ) is

not monotone, so Condition 4.1.7 is violated. We obtain the significant center p-value at

argmax
t

dP(Pi ≤ t |Hi = 1)

dP(Pi ≤ t |Hi = 0)
= arctan

−
√

1+ µ2

4
− µ

2

/
π+ 1

2
> 0,

which is greater than zero, while at t = 0 we obtain G ′
1(0)/G ′

0(0) = 1. This implies that the region

containing the majority of true alternatives is always away from zero, and the false positives are

increasing as fast as the true positives at a threshold of p-values near zero.

Remark. The framework of Lemma 4.1.8 coincides with our previous argument that the re-

jection region based on the p-values should be defined as an interval centered at the mode of

fp (t ).

Up to now we have explained from different perspectives why the classic step-wise threshold

methods based on Rt = [0, t ] are not useful for the heavy-tailed multiple testing problems,

given the non-adjusted p-values. From now on we start to present our results of the proposed

testing procedure. If a classic multiple testing procedure, such as BH, is applied to this heavy-

tailed situation, the power is extremely low even though the control of FDR≤α is maintained.

We will first discuss the criteria considered.

4.2 Control of FDR and positive FDR

Given a family of m independent hypotheses
{

H0,i , i = 1, . . . ,m
}
, we discuss the limitation of

the control of error rate with FDR used alone. We consider the procedures that reject H0,i for

pi ≤αi based on the generic p-values pi =PH0,i (X > xi ). Let R denote the cardinality of total

rejections, and let V denote the number of false rejections, that is,

R =
m∑

i=1
Ri =

m∑
i=1

1{Pi ≤αi }, V =
m∑

i=1
Vi =

m∑
i=1

1{Pi ≤αi ∩Hi = 0};

the false discovery rate is thus

FDR = E
[

V

R ∨1

]
.

Recall that the BH procedure introduced by Benjamini and Hochberg (1995) controls the FDR

by rejecting the nulls H0,(1), H0,(2), . . . , H0,(k) with the critical k

k = max
1≤i≤m

{
i : p(i ) ≤ i

m
α

}
,

and if no such i exists, one rejects no hypothesis and the sample FDP equals zero.

We make a remark on the effectiveness of the BH procedure by considering the following

question:
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4.2. Control of FDR and positive FDR

• Does the quality of the BH procedure rely on the distribution of the test statistics?

In terms of FDR control, it is known that under independence, the BH procedure is a distribution-

free approach that controls the FDR regardless of the distribution of the test statistics. However,

the quality of the BH procedure does rely on the correct distributional assumptions of the test

statistics and the p-values.

Recall that we introduced the operating characteristics to evaluate the quality of the test,

and we provide Lemma 4.1.8 such that the effectiveness of the BH procedure is guaranteed

when testing Gaussian or other light-tailed components. When the normality of the test

statistics is not evident, and in the meantime the BH procedure declares no significance, it is

not necessarily true that the alternative components do not exist. We may reasonably suspect

that the condition of applying a rejection region Rt = [0, t ] to the p-values, such as Condition

4.1.7, is violated. Thus, we are motivated to discuss the distribution of the test statistics that

fails/guarantees the effectiveness of the classic step-down procedures. One example that

causes this failure would be the heavy-tailed framework we defined.

Positive FDR.

Given the limitation of the FDR, we study another control of error rate, called the positive false

discovery rate (pFDR), which was first defined by Storey (2002), Storey (2003) as:

pFDR = E
[

V

R

∣∣∣R > 0

]
= FDR

P(R > 0)
. (4.18)

This criterion provides another consideration beyond the FDR control, namely, we should also

specify how often we are able to detect the alternatives, before we identify the true positives

among the findings. When the methods are not likely to report discoveries, the control of

the FDR is not convincing since the positive FDR can be quite high, which means the false

discoveries among the rejected hypotheses can be dominant. In other words, pFDR can be

quite large although FDR is bounded.

Figure 4.3 shows the simulation result of the rejections declared by the BH procedure given a

sample from a Cauchy mixture distribution. We generate m = 200 p-values with the fraction

ε= 0.15 having a positive shift µ= 5. The p-values from the alternatives are not the ones near

zero, and cannot be detected by the BH or the other step-wise procedures we introduced

before. The dashed line is the classic threshold with α= 0.05. In the current sample, only one

smallest p-value p(1) is rejected, though it is in reality from the null. As a consequence, the

false discovery proportion with respect to this sample is FDPBH = 1. In addition, raising the

tolerance of false discoveries will not help to detect the true alternatives. We also show the

threshold lines with α = 0.3 (dotted line) and α = 0.4 (dot-dashed line). In order to have a

critical k chosen by the step-down procedure, we need a relatively large slope of the threshold

curve, which leads to a value of α which is not preferred. The FDR is thus controlled at a high

level with a large number of nulls unavoidably rejected.
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Figure 4.3 – Test of the Cauchy alternatives by the BH procedure (The right panel is a zoom-in
of the left panel with the first quarter of the ordered p-values plotted)

We take the Cauchy distribution as an example of the heavy-tailed framework, and the BH

procedure as an example of the step-down procedures based on the p-values. We provide the

following theorem that captures quantitatively the ability to detect alternatives.

Theorem 4.2.1 (BH procedure for Cauchy mixtures). In the multiple testing problem based on

Cauchy test statistics, with the significance level αm = O((loglog(m))−1) slowly decaying, the

probability of declaring at least one rejection by the BH procedure is

P(R > 0) = 1−e−αm +o

(
2e−αmαm

1−αm

)
(4.19)

which is approximately αm , regardless of the parametrisation of εm and µm .

Proof. Based on the mixture model Xi
i.i.d.∼ (1−ε)F0 +εF1, the BH procedure rejects the hy-

potheses up to the last crossing point of the ordered p-values p(1), . . . , p(m) with the threshold

sequence {αi /m, i = 1, . . . ,m}. The probability of finding no rejection is thus

P(R = 0) =
m∏

k=1
P

(
p(k) >

kα

m

)

=
m∏

k=1

(
1−

m∑
j=k

(
m

j

)[
F̃p

(
kα

m

)] j [
1− F̃p

(
kα

m

)]m− j
)

,

(4.20)

where the mixture distribution

F̃p (t ) = (1−ε)t +ε
[

1

2
− 1

π
arctan

(
tan

(π
2
− t

)
−µ

)]
= t +O(t 2)
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for t close to zero. Therefore, for a fixed α, the probability that at least one hypothesis is

rejected can be approximated by

P(R > 0) ≈ 1−
(
1− α

m

)m
−→ 1−e−α.

Through a more precise calculation we show that, for any k ≤ m,

k∏
j=1

P

(
p( j ) > α j

m

)
=

k∏
j=1

(
1−

j−1∑
i=0

(
m

i

)(
α j

m

)i (
1− α j

m

)m−i
)

=
k∏

j=1

(
e−α j

j−1∑
i=0

αi j i

i !

)

= e−α
k∏

j=2

(
e−α j

(
eα j − α j j j

j !
+O

(
(α j ) j+1

( j +1)!

)))

= e−α
k∏

j=2

(
1−e−α j α

j j j

j !
+O

(
e−α j (α j ) j+1

( j +1)!

))

= e−α
((

1− 2e−2αα2

1−α
)
+o(α2e−2α)

)

(4.21)

Thus, the probability of having at least one rejection in BH procedure is approximated as

P(R > 0) = 1−e−α
(
1− 2e−2αα2

1−α
)
+o(α2e−3α). (4.22)

For reasonably small α, the probability of rejecting at least one hypothesis is

P(R > 0) = 1−e−α+o

(
2e−αα
1−α

)
, (4.23)

and the value of (4.23) is almost α regardless of the fraction ε and the size µ of the non-null

effects.

Remark. The pFDR is controlled at the level

pFDR = FDR

P(R > 0)
≤ α

1−e−α+o
(2e−αα

1−α
) ≈ 1

with small α. As a consequence, the BH procedure either finds no rejections, or has a large false

discovery proportion among the rejected null hypotheses. In other words, the FDR control is

maintained due to a small probability P(R > 0).
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Figure 4.4 – The actual bound of pFDR with respect to P(R > 0)

The left-side plot in Figure 4.4 shows the approximate value of P(R > 0) utilising the BH

procedure in Cauchy mixture model. The blue curve is a lower bound 1−e−α, and the red

curve is the approximation given by the equation (4.23). It can be seen that for small α, the

probability P(R > 0) is approximately α. The right-side plot shows the actual control of pFDR,

which is given by FDR/P(R > 0). Together with the simulation in Figure 4.3 we can conclude

that the BH procedure finds discoveries with a low probability, and commits a great proportion

of false discoveries among the declared significant ones.

Remark. The phenomenon illustrated in Theorem 4.2.1 cannot be improved by changing the

slope or the threshold curve in the step-up or step-down procedures where the rejections start

from the smallest p-values. The approximation in the proof is guaranteed by Condition 4.1.3,

and Cauchy is a heavy-tailed example. In the following section we propose a decision rule

defined by the rejection region Rϑ centered at ϑ > 0, that commits fewer false rejections and

detects more true alternatives.

4.3 Filtering approaches for multiple testing

We have explained from different perspectives the difficulties that heavy-tailed test statistics

bring into the definition of the rejection region in multiple testing problems. Now we introduce

our testing procedure, which is aimed at formulating the local concentration and the gaps of

the ordered p-values.

In general, we aim at solving the following two problems in multiple testing:

i) Where are the alternatives most likely to occur?

ii) How many hypotheses should be rejected?
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4.3. Filtering approaches for multiple testing

In order to answer the two questions, we propose a filtering method to select a subset of the

p-values that are presumably alternatives. In a follow-up step, we determine the p-value that

maximises the increasing of true discoveries over the increasing of false discoveries as defined

by Definition 4.1.6. This is equivalent to maximising the density of the observed p-values over

[0,1].

4.3.1 Outline of the method

We first give an outline of our method. Suppose f̃p (t ) = (1−ε)+ε fp (t ) is the marginal density

of the p-values drawn from the mixtures, and there exists a unique mode ϑ such that

f̃p (ϑ) = max
t

f̃p (t ) .

According to our criterion described by the Definition 4.1.6, we seek to find the “most signifi-

cant” p-values from the sample, that is, to estimate the mode and provide a good interpretation

as well.

One can consider the kernel density estimate of f̃p :

̂̃fpm,h (t ) = ̂̃fpm,h (t ; p1, . . . , pm) = 1

mh

m∑
i=1

K

(
t −pi

h

)
,

where the bandwidth h is a function of m and p1, . . . , pm , and K is a well-chosen kernel. Efron

et al. (2001), Efron (2004), Genovese and Wasserman (2004) and Jin and Cai (2007) have

contributed to the estimation of the sample distribution of the z-values and the p-values

drawn from Gaussian mixture models. However, their methods are not ideal to solve heavy-

tailed multiple testing problems, due to the large variation of the true alternative test statistics.

In order to have an accurate estimator of the mode ϑ of fp from the mixtures, we propose a

method that reduces the randomness caused by the majority of the null p-values. Suppose

ξm ∈ (0,1) is a tuning parameter such that we filter the observed p-values at the level ξm before

we estimate the sample distribution. In other words, we delete 100(1−ξm)% of the original

p-values according to a filtering rule such that the true nulls are more likely to be deleted. In

terms of the filtered p-values, we can (i) derive the asymptotic proportion of true and false

discoveries, and (ii) use the filtered p-values to obtain a precise estimate of ϑ, and build up a

finite-sample rejection region. We will provide results for both cases.

4.3.2 Filtering the p-values

Our filtering approach is designed to partition the sample p-values into a preferably alternative

subset and a presumably uniform subset.

As a toy example, we consider a random elimination procedure that deletes the p-values

randomly from the mixture P m . In this case, for any pre-specified filtering parameter ξ ∈ (0,1) ,
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the remaining p-values are still a mixture of U and Fp with fractions 1−ε and ε respectively.

The proportion of the alternatives among the mixture is neither reduced nor enlarged. We

use this filter as a worst case that provides no improvement in locating the alternatives or

estimating the mode.

In general, let pm = {
p1, . . . , pm

}
denote the realised p-values given the test statistics for the

hypotheses Hi , i = 1, . . . ,m . Define a filtering operator T such that

T
(
pm)=T

({
p1, . . . , pm

})= {
p(i ) : i ∈ I T

s

}
= ST , (4.24)

where ST denotes the set of the remaining p-values, of which the ranks among the whole

sample is denoted by I T
s , with |I T

s | = mT
1 . Let UT denote the set of the excluded p-values

UT =
{

p(i ) , i ∈ I T
u

}
, (4.25)

where I T
u is the set of ranks with |I T

u | = mT
0 , such that

I T
s ∩ I T

u =∅, I T
s ∪ I T

u = {1, . . . ,m} .

We use U for the presumably uniform p-values that we desire to delete, and use S for the

remaining ones that are more likely to be true alternatives. Our notation is consistent with the

true positives “S” and true negatives “U ” used by Benjamini and Hochberg in classic multiple

testing. In addition, denote the order statistics of ST by

ST = pm \ UT =
{

p∗
1 , . . . , p∗

mT
1

}
(4.26)

for simplicity of notation, such that p∗
1 ≤ p∗

2 ≤ ·· · ≤ p∗
mT

1

.

Now we investigate the distributions of UT and ST and compare them to the uniform distri-

bution U and the alternative Fp .

Suppose there are some falsely selected p-values in the filter T of which the two types are the

remaining null p-values and the deleted alternatives. Let FET be the set of the falsely excluded

p-values, which is defined as

FET =
{

Pi ∈ P m : Pi ∈ (UT ∩P I1 )
}

,

while FIT denotes the set of the falsely included p-values in the remaining set

FIT =
{

Pi ∈ P m : Pi ∈ (ST ∩P I0 )
}

,

with P I0 and P I1 being the sets of true nulls and alternatives respectively. Both types of false

selections appear in the filtration and contaminate the distribution of UT and ST , which

leads to the fact that the distribution of ST is still a mixture of the nulls and alternatives. The
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goal of a filtering method is to enlarge the proportion of the alternatives, such that the estimate

based on ST is consistent with Fp . In addition, the asymptotic properties of the filter can be

derived as m tends to infinity.

Remark. For any P∗
i ∈ ST , we define the distribution

P∗
i ∼ (1−w)U∗+wF∗

p ,

of which w is an oracle proportion. Sξ =
{

P∗
(i ) , i ∈ I T

s

}
is not an independent sample, which

makes it a subtle problem to discuss the finite-sample control of the filtering properties. We

consider the asymptotic behaviour of the filter.

0.05 0.1 0.15 0.20

True alternative True null

Figure 4.5 – Ordered p-values of Cauchy mixture

Figure 4.5 is a plot of the null (in green) and alternative (in red) p-values drawn from a

Cauchy mixture distribution, with the number of hypotheses m = 200, the frequency of the

alternatives ε= 0.15 and the positive shift µ = 3. The plot is a zoomed-in version in the region

[0,0.2] such that the most informative ones can be seen. The p-values from the nulls are

roughly uniform, while those from the alternatives have a local concentration far from zero. A

filtering approach is to delete the p-values that are presumably uniforms, and preserve most

of the true alternatives.

4.3.3 Randomised filtering

We first propose a filter that deletes the p-values randomly from fixed grids, and we prove that

it enlarges the proportion of the true alternatives among the remaining p-values.

Define a filter T R that works as follows.

Given a pre-specified filtering parameter ξ ∈ (0,1), we seek to delete mT
ξ

= d(1− ξ)me p-

values with this procedure. Define the bins D j =
[

( j −1)/mT
ξ

, j /mT
ξ

)
for j = 1, . . . ,mT

ξ
−1

and DmT
ξ
=

[
(mT

ξ
−1)/mT

ξ
, 1

]
with the length d = 1/mT

ξ
and the mid-points

{
c1, . . . ,cmT

ξ

}
.

For j = 1, . . . ,mT
ξ

, the filter T R looks for the observed p-values located in D j .
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Chapter 4. Detecting individual alternatives

• If there exists at least one p-value in D j , T R deletes one of them randomly.

• If no such p-value exists, T R deletes nothing in D j and moves to D j+1.

Compared to the random elimination over all the p-values, T R conducts random exclu-

sion in each evenly spaced interval, which guarantees that the alternative p-values with a

local concentration around the mode are not much influenced. Note that this requires the

parametrisation of εm and µm in the asymptotic detectable region. In addition, a subspace

where the filter classifies the nulls and the alternatives is defined.

Theorem 4.3.1 (Asymptotic filtering). Consider the Cauchy mixture model

(1−εm)F0(x)+εmF0(x −µm) ,

where εm = m−γ and µm = mr . The expected ratio of the false exclusions committed by T R over

the total number of the true alternatives converges to zero, that is,

E
∣∣FET

∣∣
m1

−→ 0, m →∞, (4.27)

if the parameters (γ,r ) satisfy

r > 1− γ

2
. (4.28)

Proof. The expected value of the false exclusions is

E
∣∣FET

∣∣= E ∑
i : Hi=1

1
{

Pi ∈UT
}

. (4.29)

Considering the intervals
{

D j , j = 1, . . . ,mT
ξ

}
on [0,1], we obtain

E
∣∣FET

∣∣= E ∑
i : Hi=1

1
{

Pi ∈UT
}

= ∑
i : Hi=1

mT
ξ∑

j=1
P

(
Pi ∈ (UT ∩D j )

)

≈ m1

mT
ξ∑

j=1

ε fp (c j )

(1−ε)+ε fp (c j )

≈ m1mT
ξ

∫ 1

0

ε fp (t )

(1−ε)+ε fp (t )
dt

= εm1mT
ξ

∫ 1

0

1

(1−ε) 1
fp (t ) +ε

dt .
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Since the function 1/ fp is bounded on [0,1] and has a single peak at

t = 1

π

arctan

−
√

1+ µ2

4
− µ

2

+1 ≥ 1

2
,

we have the integral over [0,1] upper bounded by twice the integral over the right half. Thus,

E
∣∣∣FET

∣∣∣≤ 2εmT
ξ m1

∫ 1

1
2

1

(1−ε)
1+(tan(π/2−πt )−µ)2

1+tan2(π/2−πt ) +ε
dt

=
2εmT

ξ
m1

π

∫ π
2

0

1

(1−ε)
1+(tan x+µ)2

1+tan2 x +ε
dx

≤
2εmT

ξ
m1

π

∫ π
2

0

1

(1−ε)(1+µ2)cos2 x +ε dx

=
2εmT

ξ
m1

π

∫ π
2

0

sec2 x

(1−ε)(1+µ2)+ε(1+ tan2 x)
dx

=
2εmT

ξ
m1

π

∫ ∞

0

1

(1−ε)(1+µ2)+ε+εy2 dy

=
2εmT

ξ
m1

π

1

(1−ε)(1+µ2)+ε
∫ ∞

0

1

1+
( p

εyp
(1−ε)(1+µ2)+ε

)2 dy

= εmT
ξ m1

1
p
ε
√

(1−ε)(1+µ2)+ε
.

Recall that we consider the parametrisation

εm = m−γ, µm = mr

with (γ,r ) in the asymptotically detectable region. Therefore, the expected proportion

E
∣∣FET

∣∣
m1

≤
p
εmT

ξ√
(1−ε)(1+µ2)+ε

= 1−ξ
mr+γ/2−1(1+o(1))

−→ 0 (4.30)

as m →∞, if

r > 1− γ

2
. (4.31)

This result provides a subspace in the asymptotically detectable region in Chapter 3. Using this

randomised filtering procedure, the true alternatives can be well kept in the sequence ST as

described in (4.27), while the total number of deleted p-values is designed to be 100(1−ξm)%m.
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Chapter 4. Detecting individual alternatives

We can equivalently prove that the expected proportion of false inclusions tends to zero, such

that the true alternative p-values dominate the filtered sequence ST . The mode estimator

based on ST is thus consistent for the true mode of fp .
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Figure 4.6 – The randomised filtering approach for the p-values corresponding to Cauchy
mixtures (with m = 200, ε= 0.15, µ= 3 and filtering parameter ξ= 0.1)

Figure 4.6 shows the allocation of the p-values before and after the randomised filtering T R .

We take a sample of the mixture of null and alternative p-values with m = 200, frequency

ε= 0.15 and positive shift µ= 3. The plot on the top is the oracle allocation of the mixture,

of which the green bars are the nulls and the red bars stand for the true alternatives. The

theoretical mode given by equation (4.5) is computed and plotted as the vertical red line. With

ξ= 0.1, the grids in gray provide the intervals
{

D j , j = 1, . . . ,mT
ξ

}
, of width d = 1/mT

ξ
= 1/180.

The plot in the middle shows the deleted p-values, namely UT , selected by the randomised

filter T R . All the exclusions are based on the mixture with no knowledge on the distribution

of the nulls and the alternatives. Both distributions may contribute to the selection, since

the difference is invisible through the observations. The plot at the bottom gives ST , the

remaining p-values left out by the filter, of which the estimated mode is shown by the vertical

line in black.

Although the estimated mode from ST is visibly better than the estimate based on the whole

sample P m , it may still differ from the theoretical mode (in red) due to randomness in finite-

sample studies. This is because the width of the intervals 1/mξ can be very small when the

parameter ξ gets close to zero. Given the randomness of the observations, the T R filter deletes

less than we desired. The number of eliminations

mT
0 =

∣∣∣UT
∣∣∣= mT

ξ∑
j=1

1

{ ∑
i∈I T

u

1
{
P(i ) ∈ D j

}≥ 1

}
(4.32)

is upper bounded by an ideal case in which each interval D j has at least one p-value located.
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4.3. Filtering approaches for multiple testing

Therefore, ∣∣∣UT
∣∣∣≤ mT

ξ .

It follows that the value of (4.29) for finite m is upper bounded by the ideal case
∣∣UT

∣∣= mT
ξ

;

that is, for any j = 1, . . . ,mT
ξ

, ∃i ∈ I T
u such that P(i ) ∈ D j . Additional calculation shows that

P
(∣∣∣UT

∣∣∣= mT
ξ

)
−→ 0, m →∞.

Thus, the filter T R might delete much less than desired.

A better solution we propose is fixed-length filtering that excludes an exact number of p-values

by examining neighbouring intervals when one interval turns out to be empty.

4.3.4 fixed-length filtering

In order to have the number of exclusions fixed at a desired value, we propose a rule to tackle

the empty intervals occurring when the null p-values are not quite evenly spaced. We define

a selection rule using the minimal distance from the p-values to the center of each interval,

which takes the advantage of the uniform distribution of the p-values under the null.

With a filtering parameter ξ ∈ (0,1) , the number of the excluded p-values is determined to be

|UT | = mT
0 = d(1−ξ)me , and the number of the p-values left is thus |ST | = mT

1 = dξme. We

define a filter T F
ξ

that works as follows.

• For j = 1, denote the excluded p-value by pξ
1 , of which the distance to the center of the

first grid D1 is minimised, that is,

pξ
1 = argmin

pi

∣∣∣pi − 1/2

mT
0

∣∣∣ .

• For j = 2, . . . ,mT
0 , let

UT
j−1 =

j−1⋃
i=1

{
pξ

i

}
denote the set of deleted p-values in the first j −1 steps. Then the j -th element added

to UT
j is defined by

pξ
j = argmin

pi∉UT
j−1

∣∣∣pi −
j − 1

2

mT
0

∣∣∣ . (4.33)

Let UT
mT

0

=UT denote the set of excluded p-values resulting from the filter T F
ξ

, i.e.,

UT =
{

p(i ) : i ∈ I T
u

}
=

{
pξ

1, pξ
2, . . . , pξ

c

}
,
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which consists of the closest p-values to the uniform quantiles.
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Figure 4.7 – The fixed-length filtering approach for the p-values corresponding to Cauchy
mixtures (with m = 200, ε= 0.15, µ= 3 and filtering parameter ξ= 0.1)

Figure 4.7 shows how the fixed-length filtering method T F
ξ

deletes the p-values that are highly

likely to be uniformly distributed. With m = 200, ε= 0.15 and µ= 3, the first plot is the mixture

of the p-values from the nulls and the alternatives, in green and red respectively. The vertical

line in red shows the true mode of the alternative p-values, which is unknown and to be

estimated from the observations. Given the filtering parameter ξ = 0.10, the intervals are

evenly spaced with the width d = 1/mT
0 = 1/180, shown by the vertical lines in gray. The

second plot shows the deleted p-values selected by the fixed-length filter T F
ξ

. Based on the

same simulated realisation, the fixed-length filter apparently deletes more p-values than the

randomised filter. The last plot shows the remaining p-values ST , of which the estimated

mode is shown by the vertical line in black. The estimated mode from ST is consistent of the

theoretical mode plotted in red. Later on we will show the consistency of the mode estimate.

Remark. We propose the fixed-length filter T F
ξ

because we desire to guarantee how many

p-values are to be excluded according to a spacing rule which is not far from the uniform. Note

that ξ is not necessary, although preferred, to be a good estimator of the true proportion ε . We

propose two ways to choose ξ in practice.

i) Since the filter T F
ξ

has the false exclusion FET bounded, which leads to the tendency

of maintaining the majority of the true alternatives, it is reasonable to use a relatively

small ξ to delete as many p-values as we expect to be from the nulls. We suggest to choose

a moderately small ξ less than or equal to an estimator of the true proportion of the

alternatives, that is, ξ≤ ε̂ , while taking into account that the left-out p-values are sufficient

for estimating the mode.

ii) The parameter ξ can be chosen by a recurrence procedure that picks the value of ξ that

stabilises the estimate of the mode. With an initial ξ= 0.5 for example, the mode of ST
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4.3. Filtering approaches for multiple testing

is estimated repeatedly with ξ decreasing. Take the optimal ξ such that the sequence of

estimate ϑ̂ converges.

Now we compare the deleted p-values UT to the uniform distribution.

We first investigate a subset of UT . Recall that

c j = j −1/2

mT
0

, j = 1, . . . ,mT
0 ,

is the mid point of D j , and define

Q j = argmin
Pi∈P m

∣∣Pi − c j
∣∣ (4.34)

to be the nearest p-value to the j -th mid point, for j = 1, . . . ,mT
0 , where duplicates are allowed.

Let

UT
Q =

{
Q1,Q2, . . . ,QmT

0

}
denote the sequence of Q j ’s defined by (4.34). We first compare UT

Q to UT and investigate the

difference between the two sequences.

Theorem 4.3.2. Suppose P m = {P1, . . . ,Pm} are i.i.d. p-values following the marginal distribu-

tion

Pi ∼ (1−ε)U +εFp , i = 1, . . . ,m,

with Fp satisfying Condition 4.1.3. Then the se of excluded p-values UT given by the filter T F
ξ

has a subsequence UT
Q defined by (4.34), which is asymptotically uniformly distributed, in the

sense that

lim
m→∞ sup

t∈(0,1)

∣∣FQ,mT
0

(t )− t
∣∣= 0, (4.35)

where

FQ,mT
0

(t ) = 1

mT
0

mT
0∑

i=1
1(Qi ≤ t )

is the empirical distribution of the excluded p-values.

In order to prove this theorem, we utilise the exchangeability of the set of permuted p-

values

{
Pξ
π(1),Pξ

π(2), . . . ,Pξ

π(mT
0 )

}
, where

(
π(1),π(2), . . . ,π(mT

0 )
)

is a random permutation of

(1,2, . . . ,mT
0 ). For simplicity of notation, we refer to

{
Pξ
π(1),Pξ

π(2), . . . ,Pξ

π(mT
0 )

}
as π ◦UT =

π◦
{

Pξ
1 ,Pξ

2 , . . . ,Pξ

mT
0

}
. The filtering approach gives the same output, namely UT and π◦UT ,

for a fixed sequence P m . In this case, the exchangeability of UT and ST is respected.

Before giving the proof of the theorem, we present the following properties of the excluded

p-values UT and UT
Q .
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Lemma 4.3.3. Given a fixed sequence P m from the mixture model, the filtering procedures

defined by (4.33) and (4.34) delete the sequences UT and UT
Q respectively. It follows that

UT
Q ⊆UT , (4.36)

with equality if and only if all the Q j ’s are distinct.

Proof. For any Q j ∈UT
Q , it follows that Q j ∈ P m =UT

j−1 ∪
(
P m\UT

j−1

)
,

1
{

Q j ∈UT
}
= 1

{
Q j ∈UT |Q j ∈UT

j−1

}
1
{

Q j ∈UT
j−1

}
+ 1

{
Q j ∈UT |Q j ∉UT

j−1

}
1
{

Q j ∉UT
j−1

}
= 1

{
Q j ∈UT

j−1

}
+ 1

{
Q j ∈UT |Q j ∉UT

j−1

}
1
{

Q j ∉UT
j−1

}
.

Since ∣∣Q j − c j
∣∣≤ min

Pi∈P m \UT
j−1

∣∣Pi − c j
∣∣ ,

we obtain

Q j ∈UT
j−1 ∪

{
Pξ

j

}
=UT

j , j = 1, . . . ,m.

Therefore UT
Q ⊆UT .

Lemma 4.3.4 (Monotonicity). The rule defined by (4.34) selects a non-decreasing sub-sequence

of UT such that

Q1 ≤Q2 ≤ ·· · ≤QmT
0

. (4.37)

Proof. Let d = 1/mT
0 be the spacing of the grid. If there exists j such that Q j+1 <Q j , then by

definition ∣∣Q j − c j
∣∣< ∣∣Q j+1 − c j

∣∣ , (4.38)∣∣Q j+1 − c j+1
∣∣< ∣∣Q j − c j+1

∣∣ , (4.39)

the first equation of which leads to∣∣Q j − c j
∣∣< ∣∣Q j+1 − c j+1 + c j+1 − c j

∣∣≤ ∣∣Q j+1 − c j+1
∣∣+d < ∣∣Q j − c j+1

∣∣+d .

If Q j ≥ c j+1 , then Q j > c j , so

Q j − c j <Q j − c j+1 +d

gives a contradiction by stating that d < d . Therefore, Q j < c j+1 . On the other hand, the

second equation leads to∣∣Q j+1 − c j+1
∣∣< ∣∣Q j − c j + c j − c j+1

∣∣≤ ∣∣Q j − c j
∣∣+d < ∣∣Q j+1 − c j

∣∣+d ,
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which is true only when Q j+1 > c j . Combining the two conclusions we obtain that the only

case that satisfies the two arguments is

c j <Q j+1 <Q j < c j+1 .

However, this conflicts with the definition of Q j and Q j+1 guaranteed by (4.34). Therefore,

Q j+1 ≥Q j for j = 1, . . . ,mT
0 −1.

Now we investigate the sequence Uξ

∖{
Q1,Q2, . . . ,Qmξ

}
, which consists of the different ele-

ments between the two excluded sequences UT and UT
Q . The questions we are interested in

are:

i) How many elements are eliminated by UT in addition to UT
Q ?

ii) Are they part of the nulls or the alternatives?

For the sequence UT
Q selected by (4.34), suppose there exist some duplicated elements, of

which the first index of the first tie is denoted by i1. We assume there exist integers i1, i2, . . . , iτ
and k1,k2, . . . ,kτ such that the sequence UT

Q is regarded as a combination of the monotone

pieces and identical parts:

Q1 < ·· · <Qi1 = ·· · =Qi1+k1 <Qi1+k1+1 < ·· ·
<Qi2 = ·· · =Qi2+k2 <Qi1+k2+1 < ·· ·
<Qiτ = ·· · =Qiτ+kτ <Qi1+kτ+1 < ·· · <QmT

0
.

Note that UT
Q =UT if and only if k1 = k2 = ·· · = kτ = 0.

Define

Kξ = #
{
UT \UT

Q

}
=

mT
0∑

j=1
1
{

Pξ
j ∉UT

Q

}
, (4.40)

i.e., the number of non-identical elements between the excluded p-values UT defined by the

filter (4.33) and the sequence UT
Q defined by (4.34). The following lemma characterises the

size of Kξ.

Lemma 4.3.5. Consider the filter T F
ξ

and the sequences UT and UT
Q , it follows that

i)

Kξ =
τ∑

i=1
ki = #

{
j = 2, . . . ,mT

0 : Q j−1 =Q j

}
. (4.41)

ii) Asymptotically, UT increases a fixed proportion of the deleted p-values compared to UT
Q ,

in the sense that

Kξ =O(m) . (4.42)
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Proof. Recall that we defined the mid-points c j = j−1/2
mT

0
of the intervals D j =

[
( j −1)/mT

0 , j /mT
0

)
for j = 1, . . . ,mT

0 −1 and DmT
0
= [

(mT
0 −1)/mT

0 , 1
]

. The length of the intervals is d = 1/mT
0 .

For any j ∈ {2, . . . ,mT
0 } such that Q j =Q j−1 , the fact that∣∣Q j − c j−1

∣∣+ ∣∣Q j − c j
∣∣≥ c j − c j−1 = d

leads to ∣∣Q j − c j−1
∣∣∨ ∣∣Q j − c j

∣∣≥ d

2
.

By definition of Q j−1 and Q j , the event Q j =Q j−1 implies(
min

Pi∈P m

∣∣Pi − c j−1
∣∣)∨(

min
Pi∈P m

∣∣Pi − c j
∣∣)≥ d

2
,

which indicates that at least one of the two neighbouring intervals D j−1 and D j has no p-

values located. Therefore,

P(Q j =Q j−1) ≤P(
D j−1 ∩P m =∅

)+P(
D j ∩P m =∅

)−P(
(D j ∪D j−1)∩P m =∅

)
=

(
1−

∫
D j−1

(1−ε)+ε fp (t )dt

)m

+
(
1−

∫
D j

(1−ε)+ε fp (t )dt

)m

−
(
1−

∫
D j∪D j−1

(1−ε)+ε fp (t )dt

)m

≤2

(
1− 1−ε

mT
0

)m

−
(

1− 2(1−ε)

mT
0

)m

−→2exp

(
−1−ε

1−ξ
)
−exp

(
−2(1−ε)

1−ξ
)

, m −→∞.

On the other hand, define

D∗
j =

[
c j −min

i
|Pi − c j |, c j +min

i
|Pi − c j |,

]
i.e., the shortest interval that contains the nearest p-value to c j . The event Q j =Q j−1 is thus a

result from |D∗
j−1 ∪D∗

j | = 2

(
min

Pi∈P m

∣∣Pi − c j−1
∣∣+ min

Pi∈P m

∣∣Pi − c j
∣∣)≥ 2d . The probability

P(Q j =Q j−1) ≥P
(
(D∗

j−1 ∪D∗
j )∩P m = 1, min

Pi∈P m

∣∣Pi − c j−1
∣∣+ min

Pi∈P m

∣∣Pi − c j
∣∣= 2d

)

= m

(
1−

∫
D∗

j−1∪D∗
j

(1−ε)+ε fp (t )dt

)m−1 ∫
D∗

j−1∪D∗
j

(1−ε)+ε fp (t )dt

−→ 2(1−ε)

1−ξ exp

(
−2(1−ε)

1−ξ
)

, m −→∞.
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Therefore,
EKξ

m
−→ Constant,

as m tends to infinity.

Let FET
ξ

and FIT
ξ

denote the false eliminations and false inclusions due to the fixed-length

filtering T F . The following theorem shows that the proportion of alternative p-values deleted

by fixed-length filtering tends to zero.

Theorem 4.3.6. Consider the two-point Cauchy mixture model where εm = m−γ and µm = mr .

The expected ratio of the false exclusions committed by T F over the total number of the true

alternatives m1 converges to zero, that is,

E
∣∣FET

ξ

∣∣
m1

−→ 0, m →∞, (4.43)

if the parameters (γ,r ) satisfy

r > 1− γ

2
. (4.44)

Proof. We provide an analogous proof of the randomised filtering approach. The sequence

UT =
{

Pξ
j , j = 1, . . . ,mT

0

}
forms a partition on (0,1], which is denoted by

D∗
j =

(
Pξ

( j−1), Pξ
( j )

]
, j = 1, . . . ,mT

0 +1,

with Pξ
(0) = 0 and Pξ

(mT
0 +1)

= 1. Let
{

c∗j , j = 1, . . . ,mT
0 +1

}
be the mid-points of

{
D∗

j , j = 1, . . . ,mT
0 +1

}
.

It follows that
E
∣∣FET

ξ

∣∣
m1

= 1

m1
E

∑
i : Hi=1

1
{

Pi ∈UT
}

= 1

m1

∑
i : Hi=1

mT
0 +1∑
j=1

P
(
Pi ∈ (UT ∩D∗

j )
)

≈
mT

0 +1∑
j=1

ε fp (c∗j )

(1−ε)+ε fp (c∗j )

≈ (mT
0 +1)

∫ 1

0

ε fp (t )

(1−ε)+ε fp (t )
dt

= ε(mT
0 +1)

∫ 1

0

1

(1−ε) 1
fp (t ) +ε

dt

= 1−ξ
mr+γ/2−1(1+o(1))

−→ 0, m −→∞,

if r > 1− γ
2 , which is the same asymptotic boundary as (4.27).
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Actually, one can equivalently prove

E
∑

i : Hi=0 1
{
Pi ∈UT

}
m0

−→ 1, m −→∞, (4.45)

in the same region of the (γ,r ) space. The asymptotic property of the filtering approaches is

given by the ability to delete the null p-values, as well as to preserve the true alternatives.

Proof of Theorem 4.3.2.

Proof. Consider the selected sequenceUT
Q , we first prove the convergence of Q1 to the uniform

quantile. In order to prove∣∣∣Q1 − c1

∣∣∣= ∣∣∣argmin
Pi∈P m

∣∣Pi − c1
∣∣− c1

∣∣∣→ 0 almost surely, (4.46)

we define Pξ
0 = argmin

Pi∈P m
|Pi −0| , and to avoid ambiguity, we refer to P(1) among {P1, . . . ,Pm} as

P1:m , and prove that

Pξ
0 → 0 almost surely m −→∞. (4.47)

Because the Pi ’s are marginally drawn from the mixture model Pi ∼ F̃p = (1−ε)U +εFp , i =
1, . . . ,m , of which the density is denoted by f̃p , the density of the minimum P1:m is

fp1:m (t ) = m f̃p (t )[1− F̃p (t )]m−1, 0 < t < 1.

We obtain the second moment

E(|Pξ
0 |2) =mE

(
P 2

11{P1≤P2, ...,P1≤Pm }
)

=m
∫ 1

0
t 2 [

(1−ε)1+ε fp (t )
][

1− [(1−ε)t +εFp (t )]
]m−1 dt

≤m
[
(1−ε)+εCp

]∫ 1

0
t 2 [

(1−ε)(1− t )+ε(1−Fp (t ))
]m−1 dt

≤m
[
(1−ε)+εCp

]∫ 1

0
t 2(1− t )m−1dt

=m
[
(1−ε)+εCp

] 2(m −1)!

(m +2)!

=2
[
(1−ε)+εCp

]
(m +2)(m +1)

.

For any η> 0, the probability of P1:m exceeding η is bounded by Chebyshev’s inequality, which

gives

P(|Pξ
0 | > η) ≤ E(|Pξ

0 |2)

η2 ≤ 2
[
(1−ε)+εCp

]
η2(m +2)(m +1)

,
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of which the sum over m is finite,

∞∑
m=1

P(|Pξ
0 | > η) ≤

∞∑
m=1

2
[
(1−ε)+εCp

]
η2(m +2)(m +1)

<+∞ .

From the Borel–Cantelli lemma we obtain that

P

(
limsup

m→∞
|Pξ

0 | > η
)
= 0

for any positive value η> 0, which leads to

Pξ
0 → 0 almost surely.

Using the same strategy we can prove that, for any j = 1, . . . ,mξ ,∣∣∣∣∣argmin
Pi∈P m

∣∣Pi − c j
∣∣− c j

∣∣∣∣∣= ∣∣Q j − c j
∣∣→ 0 almost surely, m −→∞. (4.48)

Therefore,

lim
m→∞ sup

t∈(0,1)

∣∣∣∣∣∣ 1

mT
0

mT
0∑

i=1
1(Qi ≤ t )− t

∣∣∣∣∣∣= 0.

Remark. The filtering method is non-parametric in a sense that it can be applied to any mixture

model before knowing the distribution of the test statistics.
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Figure 4.8 – fixed-length filtering applied to Gaussian mixtures

Figure 4.8 shows fixed-length filtering applied to a Gaussian mixture model with total number of

hypotheses m = 200, the proportion of true alternatives ε= 0.15, size of the positive effect µ= 2,

and filtering parameter ξ= 0.1. The estimated mode of the alternative p-values is almost zero,

which is consistent with the true mode based on normal test statistics obtained by fp (0) =∞.
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Chapter 4. Detecting individual alternatives

A comparison of the proposed filtering approaches can be found in the simulation results.

4.4 Convergence of the filtered mode

To test the heavy-tailed components from a two-point mixture model, we assume that there

exists a unique central peak of the alternative p-values, defined as

ϑ= argmax
t

f̃p (t ) = argmax
t

(
(1−ε)+ε fp (t )

)= argmax
t

fp (t ) . (4.49)

For simplicity of notation, here we denote |ST | = s = mT
1 . As we saw before, the filtered

p-values ST = P m\UT = {
P∗

1 , . . . ,P∗
s

}
have distribution function F∗

p and density function f ∗
p .

We assume that the true density f ∗
p (t ) satisfies Condition (4.1.3), and ϑξ is the unique mode

defined by

f ∗
p (ϑξ) = max

0≤t≤1
f ∗

p (t ) . (4.50)

With a bandwidth h = hs and a properly chosen kernel function K , the filtered kernel density

estimate based on ST then becomes

fp (h)(t ) = fp (h)(t ; p∗
1 , . . . , p∗

s ) = 1

hs

s∑
j=1

K

(
t −p∗

j

h

)
, (4.51)

of which the sample mode is proved to converge to the true mode ϑξ .

Definition 4.4.1. The random variable ϑξs such that

fp (h)(ϑ
ξ
s ) = max

0≤t≤1
fp (h)(t ) (4.52)

is called the sample mode.

In kernel density estimation, it is important to choose a proper bandwidth such that the bias

and the variance of the estimator are balanced. We assume h = hs satisfies

lim
s→∞ hs = 0, lim

s→∞ sh2
s =∞. (4.53)

Theorem 4.4.2. Suppose ϑξs is the sample mode of the filtered p-values ST defined by (4.52),

and h is a bandwidth satisfying (4.53). Then ϑξs →ϑ in probability, that is, for any ε> 0

P(|ϑξs −ϑ| > ε) → 0, s →∞ . (4.54)

where ϑ is the mode of the distribution Fp satisfying Condition (4.1.3).

We use the following propositions to prove the theorem.
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4.4. Convergence of the filtered mode

Proposition 4.4.3 (Unimodal distribution). For any unimodal distribution with the mode ϑ ,

suppose the probability density function f (t ) is uniformly continuous. Then it follows that, for

any ε> 0, there exists an ε′ > 0 such that, for 0 < t < 1,

|ϑ− t | ≥ ε=⇒ ∣∣ f (ϑ)− f (t )
∣∣≥ ε′ .

Proposition 4.4.4. Let ϑξ be the unique mode based on the theoretical distribution of the

filtered p-values ST , and ϑ the mode with respect to the distribution of p-values under the

alternatives. Then ϑξ→ϑ in probability, as s →∞.

Proof. Proposition 4.4.3 is easy to obtain. The proof of Proposition 4.4.4 follows from Hoeffd-

ing’s inequality applied to
1

m1

∑
i : Hi=1

1
{

Pi ∈ ST
}

,

where 1
{
Pi ∈ ST

}
are bounded random variables.

Proof of Theorem 4.4.2

Proof. Consider the density function f ∗
p (t ) and the true mode ϑξ based on the distribution of

ST . Since ϑξs is the sample mode derived from the kernel density estimator with filtration, we

prove that

ϑ
ξ
s →ϑξ, s →∞ . (4.55)

As we assumed that f ∗
p (t ) is uniformly continuous and has a unique mode ϑξ , it follows that

the Proposition 4.4.3 holds. Therefore, it is enough to prove the convergence of f ∗
p (ϑξs ) in

probability, that is,

f ∗
p (ϑξs )

p−→ f ∗
p (ϑξ), s →∞ . (4.56)

In order to derive the convergence of the estimated density function, we investigate the

characteristic function of the sample. Let
{
ϕs

}∞
s=1 be the sequence of sample characteristic

functions,

ϕs(u) = Ee i uP∗
j =

∫ ∞

−∞
e i ux dFp,s(x) .

Correspondingly, we construct the Fourier transform of the kernel function K . Suppose we

choose a proper kernel K (u) such that the Fourier transform

k(t ) =
∫ ∞

−∞
e i tuK (u)du

is absolutely integrable. Then we derive the kernel density estimator in the form of the sample
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characteristic function. It follows that the kernel density estimator can be written as

fp (h)(t ) = 1

hs

s∑
j=1

K

(
t −P∗

j

h

)

= 1

h

∫
K

(
t −x

h

)
dFp,s(x) = 1

h

∫
Kh (t −x) dFp,s(x),

where Kh(t) = K (t/h) . Let F ◦ g denote the Fourier transform of a function g . The Fourier

transform of fp (h)(t ) is then

F ◦ fp (h)(t ) = 1

h
F ◦Kh(t ) ·F ◦Fp,s(t )

= 1

h

∫
Kh(ut )e i ut du ·

∫
e i ut dFp,s(u)

= 1

h

∫
K

(
ut

h

)
e i ut du ·

∫
e i ut dFp,s(u)

=
∫

K (ut )e i hut du ·
∫

e i ut dFp,s(u)

= k(ht )ϕs(t ) ,

and it follows that the estimator fp (h)(t ) can be written as

fp (h)(t ) =F−1 ◦F ◦ fp (h)(t ) = 1

2π

∫
e−i utF ◦ fp (h)(u)du

= 1

2π

∫
e−i ut k(hu)ϕs(u)du .

(4.57)

In order to prove the convergence of fp h(t ) , we consider

∣∣∣ fp (h)(t )− f ∗
p (t )

∣∣∣2 =
∣∣∣ fp (h)(t )−E[ fp (h)(t )]+E[ fp (h)(t )]− f ∗

p (t )
∣∣∣2

,

and we utilise the fact that the kernel density estimate is asymptotically unbiased such that

sup
t

∣∣∣E[ fp (h)(t )]− f ∗
p (t )

∣∣∣−→ 0, s →∞ ,

so it is enough to prove

sup
t

∣∣∣ fp (h)(t )−E[ fp (h)(t )]
∣∣∣−→ 0. (4.58)

Following the form of (4.57), we have∣∣∣ fp (h)(t )−E[ fp (h)(t )]
∣∣∣≤ 1

2π

∫ ∣∣∣e i ut k(hu)(ϕs(u)−E[ϕs(u)])
∣∣∣ du

≤ 1

2π

∫
|k(hu)| ∣∣ϕs(u)−E[ϕs(u)]

∣∣ du .
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Consider the L2(P) norm of (4.58), it suffices to prove that

E
1
2

[
sup

t

∣∣∣ fp (h)(t )−E[ fp (h)(t )]
∣∣∣2

]
−→ 0.

Notice that

E
1
2

[
sup

t

∣∣∣ fp (h)(t )−E[ fp (h)(t )]
∣∣∣2

]
≤ E 1

2

[∣∣∣∣ 1

2π

∫
|k(hu)| ∣∣ϕs(u)−E[ϕs(u)]

∣∣ du

∣∣∣∣2]
≤ 1

2π

∫
|k(hu)|E 1

2

[∣∣ϕs(u)−E[ϕs(u)]
∣∣2

]
du ,

which is a straightforward result from the Minkowski’s integral inequality, and E
1
2

[∣∣ϕs(u)−E[ϕs(u)]
∣∣2

]
is the square root of the variance of ϕs(u) , which is bounded by definition

Var(ϕs(u)) = Var

(
1

s

s∑
j=1

e i uP∗
j

)
≤ 1

s
E
∣∣∣e i uP∗

j

∣∣∣2 ≤ 1

s
.

Therefore,

E
1
2

[
sup

t

∣∣∣ fp (h)(t )−E[ fp (h)(t )]
∣∣∣2

]
≤ 1p

sh

∫
|k(u)|du −→ 0

if the bandwidth is chosen to satisfy

sh2 → 0. (4.59)

Thus, (4.58) is proved and it follows that

fp (s,h)(t )
p−→ f ∗

p (t ), s →∞ , (4.60)

and equivalently, as m →∞. By Lemma 4.4.3, we conclude that the estimator of the mode

with filtration converges to the theoretical mode ϑξ of the filtered p-values, and therefore,

converges to the mode ϑ.

Remark. In order to target the small p-values near the border of the interval [0,1], we propose

a transform % from (0,1) to (0,+∞)

%(p∗
j ) =− log(p∗

j ) , j = 1, . . . , s .

The kernel density estimator based on

− log(p∗
1 ),− log(p∗

2 ), . . . ,− log(p∗
s )

is more reliable in practice, particularly when the mode of the alternative p-values is near zero,

such as those of the normal test statistics.

Up to now we have solved the first part of the question, namely, to determine the location of

the most informative p-values.
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Chapter 4. Detecting individual alternatives

Given the property that the p-values of the Cauchy alternatives have a symmetric central peak

around the mode, we propose an interval-type rejection region with the half-length δ ∈ [0, ϑ̂] .

The inference for FDR and pFDR can be used to choose the optimal length of the rejection

region.

4.5 Finite-sample control of FDR

In order to detect the p-values of the heavy-tailed alternatives for the full sample, we define

the rejection region Rϑ,δ = [ϑ−δ/2, ϑ+δ/2] that is described by two parameters, i.e. the center

ϑ and the length δ. The total number of rejections is thus

R = R(ϑ,δ) = #{i : pi ∈Rϑ,δ} =
m∑

i=1
1{|pi −ϑ| ≤ δ/2} .

4.5.1 Inference for FDR and pFDR

We now estimate the FDR and the pFDR. Given the definition introduced by Storey (2002),

Storey (2003) and Storey et al. (2004), the pFDR can be formulated as below.

Proposition 4.5.1. Suppose the p-values follow the random mixture model

Pi |Hi ∼ (1−Hi ) ·U +Hi ·Fp ,

where the indicator Hi ∼ Bernoulli(ε) is also a random variable. Then the pFDR based on the

rejection region Rϑ,δ of the p-values can be written as

pFDR(Rϑ,δ) =P(Hi = 0|Pi ∈Rϑ,δ). (4.61)

The pFDR has a Bayesian interpretation, as the probability (4.61) is a posterior probability as

Hi ∼ Bernoulli(ε) is regarded as the prior.

In order to compute pFDR, we find that

pFDR(Rϑ,δ) = P(Pi ∈Rϑ,δ∩Hi = 0)

P(Pi ∈Rϑ,δ)
= (1−ε)P(Pi ∈Rϑ,δ|Hi = 0)

P(Pi ∈Rϑ,δ)
= (1−ε)δ

P(Pi ∈Rϑ,δ)
(4.62)

= m (1−ε)δ

mP(Pi ∈Rϑ,δ)
= E(V (ϑ,δ))

E(R(ϑ,δ))
= mFDR, (4.63)

where mFDR stands for the marginal false discovery rate. Thus, we can estimate the pFDR by

estimating the numerator and denominator of (4.63) respectively.

Remark. The control of pFDR and mFDR is not equivalent, since the control of pFDR requires

the inference for P(R > 0) and the conditional behaviour of V |R. In addition, there is no strong

control of pFDR and mFDR, because both values depend on the configuration of the nulls and
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4.5. Finite-sample control of FDR

alternatives.

The denominator of (4.62) can be written as

P(Pi ∈Rϑ,δ) =P(Pi ∈Rϑ,δ |R > 0)P(R > 0) ,

where P(Pi ∈Rϑ,δ |R > 0) can be estimated using the observed value of R, that is,

P̂(Pi ∈Rϑ,δ |R > 0) = R ∨1

m
.

According to Section 4.2, the probability P(R > 0) depends on the distribution of the test

statistics and the procedures as well. The optimal rejection region Rϑ,δ captures the allocation

of the alternative p-values correctly, such that the p-values in Rc
ϑ,δ are presumably uniforms.

This leads to an estimate of P(R > 0) = 1−P(R = 0) ≤ 1− (1−δ)m .

The pFDR is therefore estimated as

�pFDR(ϑ,δ) = (1− ε̂)mδ

{R(ϑ,δ)∨1}(1− (1−δ)m)
, (4.64)

and the FDR, without conditioning on R > 0, is estimated by

�FDR(ϑ,δ) = (1− ε̂)mδ

{R(ϑ,δ)∨1}
. (4.65)

We now propose the estimate of ε .

i) The simplest idea is to avoid estimating ε by using 1−ε≤ 1. Therefore, the numerator of

(4.69), which is the number of accepted components, is estimated by mδ. Although this

estimator �FDR(ϑ,δ) = mδ

{R(ϑ,δ)∨1}

is widely used, and does provide a bound of the FDR control, we seek to have a precise

and interpretable estimate of ε, or an estimate of V as (4.63) is considered.

ii) Based on our filtering procedure, we can select an optimal filtering parameter ξ as an

estimator of ε. As we described before, the oracle filtering parameter is ξ= ε such that

we eliminate as many of the null p-values as possible. Suppose the filtering procedure

starts with an initial ξ0 = 1/2. In the iterations with {ξn , n = 1,2, . . . , } we estimate the

mode from the filtered p-values. As the procedure is not stopped, we repeat the filtering

estimation with a reduced parameter ξn+1. Thus, the ξn that stabilises the estimate ϑ̂n

can be taken as ε̂, as long as a measurement
∣∣ϑ̂ξn − ϑ̂ξn−1

∣∣≤Cn is fulfilled. Note that Cn is

chosen to measure the convergence of ϑ̂n , and ξ here is regarded as a data-dependent
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tuning parameter. Thus, the estimated FDR is

�FDR(ϑ,δ) = (1−ξ)mδ

{R(ϑ,δ)∨1}
.

iii) Storey (2002) introduced the estimator based on a fixed rejection region pre-specified by

a tuning parameter λ ∈ (0,1), which is given by

1− ε̂= W (λ)

(1−λ)m
,

where W (λ) = #{pi > λ} is the number of accepted nulls with the length of acceptance

region 1−λ. The parameter λ is selected by minimising the mean square error of the FDR

estimator. This estimator was later discussed in Storey (2003), Storey et al. (2004), Gen-

ovese and Wasserman (2004), Benjamini et al. (2006) and other related works. Benjamini

used this estimator and replaced m by m̂0 = m(1− ε̂) in the denominator of the linear

step-up threshold, that is, to reject the nulls for the p-values p(i ) ≤ iα/m̂0. Others used

this estimator in the inference and control of FDR.

There are also the methods given by Benjamini and Hochberg (2000), Meinshausen and

Rice (2006), Cai et al. (2007), Jin and Cai (2007) that contribute to the estimation of ε, but

the estimators are too complicated or not applicable to our study.

We use an estimator of ε defined by

1− ε̂= Wϑ(ξ)

(1−ξ)m
, (4.66)

which is an analogous estimator of Storey’s method, and Wϑ(ξ) = #
{|pi −ϑ| > ξ/2

}
. Note that

E(ε̂) = 1− E(
∑m

i=1 1{|pi −ϑ| > ξ/2})

(1−ξ)m
≤ 1− E(

∑
Hi=0 1{|pi −ϑ| > ξ/2})

(1−ξ)m
= 1− (1−ξ)m0

(1−ξ)m
= ε . (4.67)

Since the simplest structure we assume is the two-point mixture model, we can expect that

the p-values outside the estimated region Rϑ,ξ are dominated by the true nulls with frequency

(1− ε)(1− ξ). In other words, Wϑ(ξ) is roughly (1− ξ)(1− ε)m, since the p-values from the

nulls are assumed to be uniformly distributed over the region Rc
ϑ,δ , of which the length 1−δ

is replaced by 1− ξ . Thus, Wϑ(ξ)/(1− ξ) is analogous to m −R, and is therefore utilised to

estimate m −m1.

Remark. Although we desire to find an accurate estimate of the fraction of the effects, a lower

bound of ε suffices, and the parameter ξ needs not be an estimator of ε. The estimator (4.66) is

slightly biased, and can be used as a lower bound of ε. In reality it is acceptable to claim that

the proportion of true alternatives is no less than the declared frequency ε̂ in expectation.
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The pFDR is therefore estimated as

�pFDR(ϑ,δ) = Wϑ(ξ)δ

(1−ξ){R(ϑ,δ)∨1}(1− (1−δ)m)
, (4.68)

and the FDR is estimated by

�FDR(ϑ,δ) = Wϑ(ξ)δ

(1−ξ){R(ϑ,δ)∨1}
. (4.69)

Based on the estimator of FDR and pFDR, we are able to give the following data-dependent

algorithm to detect and locate the alternatives.

Data-dependent rejection region.

Step 1. Compute the p-values for each test pm = {
p1, . . . , pm

}
,

and order them non-decreasingly, i.e. p(1) ≤ p(2) ≤ ·· · ≤ p(m).

Step 2. Apply the filtering approach T with a parameter ξ ∈ (0,1),
and get the filtered sequence ST .

Step 3. Estimate the density of ST and the mode ϑ̂.

Step 4. Given i = 1, . . . ,m and a significance level α, reject H0,(i ) if |pi − ϑ̂| ≤ |p(τ) − ϑ̂|,
where τ= max

{
τ : �FDR(ϑ̂,2(p(τ) − ϑ̂)) ≤α}

.

The control of FDR is based on the estimator (4.69). An appropriate δ̂ turns out to be the

largest length of the rejection region Rϑ,δ subject to the control of �FDR.

4.5.2 Data-dependent control of FDR for finite sample

We propose a control of FDR for finite-sample case in the following theorem. Note that our

method is data-dependent since the estimate FDR is a plug-in estimator.

Theorem 4.5.2. Based on the rejection region Rϑ,δ and the estimator of FDR given by (4.69),

E(�FDR(ϑ,δ)) ≥ FDR(ϑ,δ) (4.70)

for any valid (ϑ,δ).

Proof. We take the difference

E(�FDR(ϑ,δ))−FDR(ϑ,δ) =E
[
δWϑ(ξ)/(1−ξ)

{R(ϑ,δ)∨1}

]
−E

[
V (ϑ,δ)

{R(ϑ,δ)∨1}

]
= E

[
δWϑ(ξ)/(1−ξ)−V (ϑ,δ)

{R(ϑ,δ)∨1}

]

≥E
[
δWϑ(ξ)/(1−ξ)−V (ϑ,δ)

R(ϑ,δ)
1 {R(ϑ,δ) > 0}

]
.
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Recalling that

R(ϑ,δ) = S(ϑ,δ)+V (ϑ,δ),

we condition on S(ϑ,δ) and tackle the V (ϑ,δ) in both the numerator and the denominator. We

obtain that the last equation above equals

E

[
δWϑ(ξ)/(1−ξ)−V (ϑ,δ)

S(ϑ,δ)+V (ϑ,δ)
1 {R(ϑ,δ) > 0}

]

=E
[
E

[
δWϑ(ξ)/(1−ξ)−V (ϑ,δ)

S(ϑ,δ)+V (ϑ,δ)
1 {R(ϑ,δ) > 0}

∣∣∣S(ϑ,δ)

]]

≥E
[
E
[
(δWϑ(ξ)/(1−ξ)−V (ϑ,δ))1 {R(ϑ,δ) > 0}

∣∣S(ϑ,δ)
]

E
[
(S(ϑ,δ)+V (ϑ,δ))1 {R(ϑ,δ) > 0}

∣∣S(ϑ,δ)
] ]

,

(4.71)

with the last inequality obtained by Jensen’s inequality on V (ϑ,δ), given the fact that

W −V

S +V
= W +S

V +S
−1

is a convex function of V with W +S > 0. Since

E [δWϑ(ξ)/(1−ξ)−V (ϑ,δ)] ≥ δm(1−ε)(1−ξ)/(1−ξ)−m(1−ε)δ= 0, (4.72)

we conclude that

E(�FDR(ϑ,δ)) ≥ FDR(ϑ,δ) .

Similarly, we obtain that

E(�pFDR(ϑ,δ)) ≥ pFDR(ϑ,δ) , (4.73)

with our estimator having 1− (1−δ)m ≥P(R > 0) in the denominator of (4.68).

Following this theorem we can get control of the true FDR by limiting the estimated �FDR(ϑ,δ)

below a desired level. Our rejection region R(ϑ,δ) is nested, and the monotonicity of power is

guaranteed.

Proposition 4.5.3 (Monotonicity of power). For fixed center ϑ , the decision rule defined by the

rejection region R(ϑ,δ) has monotone power in a sense that

βR(ϑ,δ) ≥βR(ϑ,δ′) for any 0 < δ≤ δ′ ≤ 2ϑ .

Remark. Storey (2003) also considered the asymptotic control of the FDR and pFDR with εm = ε
fixed. We are not interested in this parametrisation since the number of significant components

can be moderately large if it is proportional to m.
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4.6 Discussion

In this section we compare our procedures to the most related methods by Efron et al. (2001),

Efron and Tibshirani (2002), Storey (2002), Storey (2003), and Cai and Sun (2017).

4.6.1 Positive FDR, local FDR and the empirical Bayesian interpretation

We discuss Storey’s positive FDR and Efron’s local FDR together because they both have a

Bayesian interpretation, and are inherently linked to one another.

pFDR

As we mentioned near before, Storey’s pFDR is also referred to as the posterior FDR, since they

apply the Bayes formula to FDR with respect to the prior probability of Hi . The control of the

pFDR

pFDR(R) =P(Hi = 0|Pi ∈R) = (1−ε)P(Pi ∈R|Hi = 0)

(1−ε)P(Pi ∈R|Hi = 0)+εP(Pi ∈R|Hi = 1)
(4.74)

is also the same as our control of operating characteristics TPR/FPR, as P(Pi ∈R|Hi = 0) is the

type I error and P(Pi ∈R|Hi = 1) is the power.

However, Storey and other authors of the related work only discussed the case when P(Pi ∈
R|Hi = 1)/P(Pi ∈R|Hi = 0) is decreasing, which is the same condition as we defined by (4.1.7)

for detecting the light-tailed alternatives, without mentioning the solution of the rejection

rules to the heavy-tailed cases. In addition, they discussed the asymptotic cases based on the

assumption that
m∑

i=1
(1−Hi )/m −→π0, m →∞,

while we consider the asymptotic framework with

m∑
i=1

(1−Hi )/m = 1−εm = 1−m−γ −→ 1, m →∞.

Although the numbers of the true nulls and alternatives both tend to infinity, the ratio will be

difficult to detect, which also encouraged us to discuss the asymptotically detectable region.

Local FDR

Efron defined the local false discovery rate for the z-values instead of the test statistics or the

p-values. His local FDR method was established on the theory of empirical Bayes inference.

With the fixed prior probabilities π0 and π1, the z-values follow the distribution f0(z) under

the nulls and f1(z) under the alternatives. f (z) =π0 f0(z)+π1 f1(z) is thus the distribution of
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the z-values, of which f0(z) =ϕ(z) = 1p
2π

e−z2/2. Efron defined the local Bayes false discovery

rate as

Lfdr(z) =P(null | test statistic z) = π0 f0(z)

π0 f0(z)+π1 f1(z)
, (4.75)

where the densities in the numerator and the denominator are to be estimated respectively.

In our work, we consider the distribution of the p-values, and we maximise the ratio G ′
1(t )/G ′

0(t )

to get the significance center such that a large number of true positives are discovered subject

to a small increment of the false positives. We can equivalently define the local FDR for the

p-values as

Lfdrp (t ) = 1−ε
1−ε+ε fp (t )

.

Efron’s density estimation benefits from the normal distribution of the z-values, and we utilise

the uniform distribution of the majority p-values from the nulls.

It is necessary to conclude that maximising G ′
1(t )/G ′

0(t ) is equivalent to minimising the local

FDR, taking the Lfdr(t) as a point-wise threshold sequence defined for the p-values, and in

addition, equivalent to minimising the pFDR as well. We are particularly interested in looking

for the most informative region of the p-values without a pre-determined rejection rule. Our

method is adaptive and data-dependent, and is easily interpretable as well.

4.6.2 Screening for high-throughput data

A similar idea to our filtering method appeared in Cai and Sun (2017) for a different purpose.

In high-dimensional multiple testing, one of the main issues is to reduce the dimension

according to the capacity of the experiments. They discussed a screening approach applied to

high-throughput applications, which was considered a multi-stage procedure.

In their screening approach, the selection rule is defined by

δi = 1{T̂ (Zi ) ≤ ti } ,

where T̂ (Zi ) is an estimator of the local FDR defined by Efron, and ti is a critical value. They

keep the values with δi = 1 and provided the conditions for a valid screening procedure.

However, they used classic kernel density estimation to get the densities and in addition, they

estimate Lfdr(z), whose effectiveness relies on the distribution of the test statistics. We are

more interested in properly estimating the marginal distribution with a filtering method that

reduces the influence caused by the majority of the nulls.

4.7 Numerical study

In this section we provide simulation results for the proposed algorithms.
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4.7.1 BH procedure for testing Cauchy mixtures

We perform N = 10,000 replications of the simulation and each replication tests a batch of

m = 1000 hypotheses. In the r -th replication we apply the Bonferroni correction and the BH

procedure, and record the total number of rejections Rr
m , the number of false discoveries V r

m

and the number of true discoveries Sr
m out of the m simultaneously tested hypotheses. In each

replication we compute the FDR and use the average as an estimate. The parameters ε and µi

are chosen in the region where the presence of true signals is clearly detectable.

ε µ
P(R > 0) FDR pFDR

Bonferroni BH Bonferroni BH Bonferroni BH

ε= 0.10
µ= 5 0.0487 0.0501 0.0447 0.0462 0.9179 0.9218

µ= 10 0.0476 0.0485 0.0424 0.0434 0.8918 0.8938

ε= 0.15
µ= 5 0.0525 0.0539 0.0446 0.0460 0.8495 0.8534

µ= 10 0.0484 0.0498 0.0425 0.0437 0.8781 0.8765

ε= 0.20
µ= 5 0.0466 0.0479 0.0378 0.0389 0.8112 0.8114

µ= 10 0.0493 0.0514 0.0396 0.0411 0.8022 0.8003

Table 4.1 – Bonferroni correction and BH procedure in multiple testing for Cauchy mixtures

As Table 4.1 shows, even though control of the false discovery rate is maintained below a

desired level α= 0.05, the chance of finding true discoveries is very limited by rejecting the

hypotheses with the smallest observed p-values. The probability P(R > 0) is estimated by the

observed mean 1
N

∑N
r=1 1

{
Rr

m > 0
}

, and the pFDR is estimated based on the replications where

there are the rejections. Notice that only hundreds of replications report a few discoveries over

the total N = 10,000, which means in each replication among the m = 1000 tests, almost no

null hypothesis is rejected. The majority of the tests give zero discoveries, which leads to the

overall control of the FDR. The power is surprisingly low in this heavy-tailed problem. When

twenty percent of the observations are true effects, the chance of declaring at least one positive

is still around 0.05 on average, which could be misleading as an experimental conclusion.

4.7.2 Performance of the proposed methods

Simulation 2

In this section we show the results of the filtering algorithm for small sample Cauchy mixtures.

Figures 4.9-4.11 show the results of the proposed filtering procedures for m = 50 hypotheses,

with ε= 0.2 and µ= 7. In each panel, the plot on the top is the oracle allocation of the null and

alternative p-values, of which the red bars stand for the true alternatives, and the blue bars

93



Chapter 4. Detecting individual alternatives

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 4.9 – The UT and P m\UT sequences of the randomised filter
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Figure 4.10 – The UT and P m\UT sequences of the fixed-length filter
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Figure 4.11 – The UQ and P m\UQ sequences of the fixed-length filter
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stand for the true nulls. We apply the filtering approaches to a same sample, and with a same

filtering parameter ξ= 0.2.

i) Figure 4.9 shows the results of the randomised filter T R . With the bins of length d =
1/mξ = 1/40 = 0.025, T R deletes one p-value randomly from each interval, and the

deleted ones are shown in the middle plot with the blue bars. For the empty bins, the filter

T R deletes nothing, so we proposed the fixed-length filtering to improve the elimination.

ii) Figure 4.10 shows the results of the fixed-length filter T F with ξ= 0.2. Following the defi-

nition of T F given by (4.33), the filter looks for the nearest p-value that is not eliminated

in the past deletions. Therefore, although there are a number of empty bins, the filter T F

deletes enough p-values as required without removing the peak of the alternatives.

iii) Figure 4.11 shows the UQ and P m\UQ sequences of the fixed-length filter T F with ξ= 0.2.

The blue bars represent the sequence UQ defined by (4.34), which is a subsequence of UT

deleted by T F . Eliminating UQ from P m deletes more null p-values than the randomised

filter plotted in Figure 4.11, but fewer than the fixed-length filter, due to the duplicated

elements among the Q j .

The deleted sequences are close to uniform, and the majority of the alternative p-values are

preserved. Compared to the other figures, T F deletes more p-values, of which most are nulls.

Simulation 3.

With m = 1000 hypotheses, we apply the proposed filtration algorithm to Cauchy mixtures

with ε= 0.05,0.10,0.15,0.20,0.25, and µ= 6,8,10,12,14,16,18,20. For each configuration we

run N = 200 replications and get the sample value of the parameters and the true and false

discoveries.

ε= 0.15 µ= 6 µ= 8 µ= 10 µ= 12 µ= 14 µ= 16 µ= 18 µ= 20

ϑ 0.05121 0.03899 0.03142 0.02628 0.02258 0.01979 0.01761 0.01586

ϑ̂ 0.05193 0.03935 0.03152 0.02636 0.02264 0.01984 0.01763 0.01587

δ̂ 0.01573 0.01521 0.01412 0.0139 0.01317 0.01256 0.01241 0.01288

�FDR 0.08577 0.09389 0.08816 0.08660 0.08699 0.08493 0.08364 0.08377

FDR 0.08547 0.09238 0.08920 0.08258 0.08364 0.07820 0.07717 0.07451

TP/m1 0.4924 0.4967 0.5994 0.7506 0.8175 0.8702 0.9006 0.9219

Table 4.2 – Simulation results of detecting the Cauchy alternatives

We present an example of the simulation results of detecting the Cauchy alternatives in
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Figure 4.12 – The filtering estimate of the mode of the alternative p-values

Table 4.2. In each replication, we test m = 1000 hypotheses, of which the frequency of true

alternatives is fixed at ε= 0.15. Let the size of the positive effect be µ= 6,8,10,12,14,16,18,20.

The estimates of the alternative mode ϑ̂ are shown by Figure 4.12, which is the result from the

kernel density estimator based on the filtered p-values. We can see that the most informative

p-value is decreasing with the positive shift µ increasing, which is true according to the tail

area under the Cauchy density function. A pre-specified level α = 0.1 is utilised to control

the data-dependent estimator �FDR(ϑ,δ) ≤α given by (4.69). We choose the rejection region

Rϑ̂,δ̂ with the maximal length δ̂ subject to the control of �FDR(ϑ,δ) ≤α. The average FDR is

shown in the table by �FDR. The true value of FDR computed from the sample is different from

the estimator �FDR(ϑ,δ), which is influenced by the tuning parameter ξ as we propose in the

filtering procedure. With the peak of the p-value getting narrow, the rejection region contains

more true alternatives.
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5 Further discussion and generalisation

In general, we are interested in the following three types of problems and methodologies in

multiple testing:

• Global tests. Given a family of hypotheses, it is ideal to utilise one informative test

statistic that measures the departure of the realisations from the theoretical distribution

under the global null hypothesis. For example, the Higher Criticism test is a Kolmogorov-

Smirnov test based on the level of p-values.

• Individual tests (one-step/step-wise). Other than the global tests that consider the null

hypotheses jointly, there are many situations where individual tests are used to locate

the significant components by assigning a significant level to each hypothesis. We

introduced the Bonferroni correction, which is a cut-off threshold, and the step-up

and step-down procedures in Chapter 2, as well as the hierarchical testing and sequen-

tial testing. Closed testing and partition testing identify the true discoveries with the

structure of hypotheses properly designed. Online testing adjusts the α-wealth and the

individual significance level according to the past rejections.

• Inference-based tests. Another huge class of multiple testing methods take the inference

for the parameters as a first step. Since the parameters that capture the models are

usually unknown, one of the main issues is to make inference for the parameters based

on the observations before applying a testing procedure. We are also interested in the

distributional properties of the variables that would help to develop a data-dependent

approach. This field is highly linked to post-selection inference.

In the previous chapters we explained how the extreme values from the nulls confound the

true effects from the alternatives due to the heavy-tailedness of the distribution, and proposed

solutions in Chapter 3 and 4. In this chapter we will discuss several topics of generalisations

that are still in progress, and give a summary of our main contributions at the end.
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5.1 Generalisations

5.1.1 Heavy-tailed, long-tailed, and fat-tailed distributions

We explained in previous chapters how the distribution of the p-values is influenced by the

tail distribution of the test statistics, and we proposed testing procedures based on the Cauchy

distribution. Condition 3.3.1 on the likelihood ratio was discussed in Chapter 3 in terms of

the existence of the most powerful test under asymptotic considerations. Conditions 4.1.2

and 4.1.3 captured the core features of the distribution of the heavy-tailed test statistics and

the corresponding p-values. Those two conditions were required in our multiple testing

study, and were referred to as a heavy-tailed framework when the usual methods require an

opposite Condition 4.1.7. Furthermore, we are interested in different characterisations of the

heavy-tailedness and seek to find a universal solution.

We first discuss the following concepts that are all considered as having a tail heavier than the

exponential tail.

Definition 5.1.1. Suppose F (x) is the cumulative distribution function of the random variable

X , and F̄ (x) =P(X > x) is the tail distribution.

i) (Heavy-tailed.) A distribution F is referred to as heavy-tailed, if∫ ∞

−∞
e t x dF (x) =∞, t > 0, (5.1)

or equivalently,

lim
x→∞e t x F̄ (x) =∞, t > 0. (5.2)

ii) (Long-tailed.) A distribution F is referred to as long-tailed, if

lim
x→∞P(X > x + t | X > x) = 1, (5.3)

or equivalently

F̄ (x + t ) ∼ F̄ (x), x →∞. (5.4)

iii) (Fat-tailed.) A distribution F is referred to as fat-tailed, if

F̄ (x) ∼ x−α, x →∞, α> 0 (5.5)

iv) (Regularly varying.) A distribution F is called regularly varying if

F̄ (x) = x−ρL(x), (5.6)

where L is a slowly varying function.

All the definitions mentioned above overlap with our heavy-tailed framework. Therefore, in
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the text we did not specify the difference between heavy-tailed, long-tailed and fat-tailed

distributions, but rather focused on the exact conditions that influence the quality of the test

with normality violated. As long as Condition 4.1.3 is satisfied,

lim
t→0

fp (t ) = lim
t→0

f1(F−1
0 (1− t ))

f0(F−1
0 (1− t ))

= 1, (5.7)

the p-values are considered in the heavy-tailed framework.

Example 5.1.2 (Student’s t distribution). In a two-point mixture model, suppose the random

noise follows the distribution tν with ν being the degrees of freedom. The density function is

ftν(x) = Γ
(
ν+1

2

)
p
νπΓ

(
ν
2

) (
1+ x2

ν

)− ν+1
2

. (5.8)

The likelihood ratio is therefore ((1−ε) f0(x)+ε f1(x))/ f0(x) = (1−ε)+εg (x), where

g (x) = ftν(x −µ)

ftν(x)
=

(
ν+ (x −µ)2

ν+x2

)−(ν+1)/2

is not monotone.
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Figure 5.1 – The likelihood ratio for tν with ν= 1,2,3,5

Figure 5.1 shows the function g (x) for ν = 1,2,3,5 and mean shift µ = 5. As the degrees of

freedom increase, the peak of the likelihood ratio increases rapidly, which makes the alternatives
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easier to detect. For any ν> 0, Condition 4.1.3 follows from

lim
t→0

fp (t ) = lim
x→∞

ftν(x −µ)

ftν(x)
= 1,

which makes the generic p-values near zero uninformative. When testing multiple hypotheses

based on mixtures of t distributions, we would suggest using the rejection region method to

identify the alternatives.

Asymptotic detection based on Kullback-Leibler divergence, as proposed in Chapter 3, quan-

tifies the detectable fraction ε and size µ of the non-null effects in the mixture model, of

which the distribution family can be either light-tailed or heavy-tailed. The filtering approach

we proposed in Chapter 4 is also a non-parametric method that identifies the location of

the non-zero effects utilising the ordered sequence of p-values. Once the sample mode is

estimated from the filtered p-values, the rejection region comes with no assumptions on the

underlying distribution family.

5.1.2 Test statistics based on the gaps

In multiple testing problems based on two-point mixture models, as we explained in Chapter

4, the p-values from the alternatives have a local concentration near the mode. This phe-

nomenon also explains why the testing procedures based on Gaussian noise declare rejections

near zero. We may think of this problem from another perspective.

From a non-parametric point of view, a method that describes the local concentrations, or

equivalently, the clusters, of the alternative p-values is desired. When we perform tests based

on the p-values, the null distribution is taken to be uniform, while the p-values from the

alternatives have the tendency to concentrate in very narrow regions, in which most of the

p-values are from the true alternatives and only few of them are from the nulls. This property

is true for both light-tailed and heavy-tailed alternative distributions.

In general, let pc stand for the center, and δ> 0 stand for the width of any interval-type rejec-

tion region based on the non-decreasingly ordered p-values. To have a better understanding

of pc and δ as the threshold parameters, we analyse the order statistics of the p-values. We

point out that the alternative p-values have smaller gaps than the uniformly distributed ones.

Define the gap statistics

Gi = p(i+1) −p(i ) (5.9)

for i = 1, . . . ,m − 1, which follow a Beta distribution Gi ∼ Beta(1,m) under the overall null

hypothesis. We can intuitively compare the gaps to the expected value E(Gi ) = 1/(1+m),

though the raw p-values are noisy and the gaps have a large variation. We propose a modified

version, called the cumulative p-values, and define the weighted gaps as below.

Figure 5.2 shows the gaps of the p-values based on Cauchy mixture model in the gray line. The
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Figure 5.2 – The smoothed gaps of the p-values from the Cauchy mixture model

variation of the gaps is considerable, except for the interval containing most of the alternatives.

The red line is the smoothed gaps with a linear smoother. The alternative p-values form a

region that is visibly seen from the smoothed variation, with the theoretical location of the true

alternatives (purple line) included. Although the gaps drawn from the raw p-values reveal the

distributional property of the p-values under the alternatives, we need to find an appropriate

way to stabilise the estimation.

Define a smoothed version of observed p-values

p†
j =

1

j

j∑
i=1

p(i ), (5.10)

and for j = 2, . . . ,m, we define the weighted gap statistic

G†
j = p†

j −p†
j−1

= ( j −1)(p( j ) −p( j−1))+ ( j −2)(p( j−1) −p( j−2))+·· ·+ (p(2) −p(1))

j ( j −1)

= ( j −1)G j−1 + ( j −2)G j−2 +·· ·+G1

j ( j −1)
,

(5.11)

which is in reality a weighted sum of the original gap statistics G j ’s. We give a larger weight to

Gi as it is closer to G†
j , which means that we pay more attention to the local properties of the
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gap statistics.

When the observations are i.i.d. from the null distribution, the p-values are uniformly dis-

tributed, and it follows that Gi = p(i ) −p(i−1) ∼ Beta(1,m), with expectation E(p( j ) −p( j−1)) =
1/(1+m). The weighted gaps have a Beta distribution with E(G†

j ) = E(p†
j −p†

j−1) = 1/(2+2m).

Therefore, it is reasonable to compare the weighted gaps to 1/(2+2m) and find the region

where the cluster of alternative p-values occurs, if any.

One can intuitively take the p-value that minimises the weighted gap, denoted by p̂c , to be the

center of the cluster from the alternatives. The statistic G†
j is a weighted sum of the gaps and

gives a plausible estimation of the significance center. On the other hand, analysing the local

change of the gaps is also a good way to discover the p-value cluster. Formally, define the local

discrepancies

L j =
∣∣∣∣∣ 1

k

j−1∑
i= j−k

G†
j −

1

2(m +1)

∣∣∣∣∣ , U j =
∣∣∣∣∣ 1

k

j+k−1∑
i= j

G†
j −

1

2(m +1)

∣∣∣∣∣ , (5.12)

where L stands for “lower” and U stands for “upper”. We want the L j and U j to recognise

the segment when there is a distributional change in the gaps. In summary, we propose the

following approach to locate the cluster of alternative p-values.

Local discrepancy of p-value gaps.

Step i) Compute the smoothed p-values p†
j and the weighted gaps G†

j for j = 2, . . . ,m.

Step ii) Find p̂c that minimises G†
j , j = 2, . . . ,m.

Step iii) For a well-chosen bandwidth k, obtain the local discrepancy L j ’s and U j ’s.

Step iv) Obtain the maximiser p̂†
L of L j ’s and p̂†

U of U j ’s, take the midpoint

p̂c ′ = (p̂†
L + p̂†

U )/2.

Note that

p†
j =

∑ j
i=1 p(i )

j
≤ j p( j )

j
= p( j )

is biased and increases more slowly than p( j ). The region where the majority of the alternative

p-values appear is maintained, and the center could be right-bounded by the minimiser of G†
j .

To overcome its overshooting of pc , we could compare the above results with the two-sided

smoothed version of observed p-values

p̃ j =
{

1
2 j−1

∑2 j−1
i=1 p(i ), 2 j −1 < m ,

1
2m−2 j+1

∑m
i=2 j−m p(i ), 2 j −1 ≥ m .

The left panel of the Figure 5.3 shows the scatter plot of the weighted gaps G†
j ’s of the p-values,

based on a sample from a Cauchy mixture distribution with m = 200, ε= 0.1 and µ= 8. Notice
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Figure 5.3 – The weighted gaps and the lower and upper local discrepancies

that the weighted gaps are near the expectation 1/(2+2m) = 0.00249 of the Beta distribution,

except for the region where the gaps are far below average. The right panel shows the local

discrepancy L j ’s and U j ’s, in solid blue and dashed purple lines respectively. The midpoint of

the two maximisers p̂†
L and p̂†

U estimates the center pc well.

5.1.3 Multi-mode estimation and rejection sets

In this section we discuss another generalisation, the additive model with multi-modes.

Consider the mixture model

f (x) =
k∑

j=1
π j f0(x −µ j ), (5.13)

of which the proportions πi ’s and the shifts µi ’s are unknown and not identical. Following the

idea of the two-point mixture model, we propose the rejection sets

R=
{

k⋃
i=1

R(i )

}
(5.14)

where R(i ) =Rϑi ,δi is the i -th rejection interval.

This problem of detecting clustered alternative components is also mentioned in changepoint
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detection, as is analysed by Siegmund et al. (2011), Zhang et al. (2010), Cao and Biao Wu (2015)

et al.

Under the consideration of robustness, we are also interested in testing for unimodality against

multimodality. Hartigan and Hartigan (1985) developed the dip test of unimodality, where the

dip test statistic is consistent for testing any unimodal against any multimodal distribution.

In addition, it is also known that kernel density estimation can capture the multi modes by

adjusting the bandwidth h. We recommend Hartigan (1977), Hartigan (1981) and Silverman

(1981) for further discussion.

5.2 Conclusions

In general, we are working on multiple testing problems for mixture models, where we con-

sider the test statistics following heavy-tailed distributions. We give a summary of our main

contributions in the last part of the thesis.

We present results for testing the two-point mixture models based on the level of p-values,

where the nulls and alternatives represent noise and true effects respectively. We seek to

(i) detect the existence of the non-zero effects, and (ii) identify the alternatives from the

mixtures. Our contribution makes a difference when the usual assumptions are violated, such

as normality, which is a condition that most of the existing methods require. We emphasise the

importance of analysing the tail distribution of the test statistics when the generic p-values

are used in the testing procedure.

The existence of non-zero effects is investigated by testing the intersection null hypothesis

H (m)
0 , which stands for the pure noise, against the alternative H (m)

1 , which indicates a mixture

of the noise and non-zero effects. We described the difference between testing a light-tailed

and a heavy-tailed random variable, of which we are particularly interested in the latter. We

proposed the asymptotic detectable region utilising the Kullback–Leibler divergence based on

Cauchy mixtures, and as a verification, we compared our methods and results to the classic

methodologies developed mainly for Gaussian mixture models. We proved our KL method is

equivalent to the likelihood ratio test, in terms of the convergency of the probabilities of type I

and type II errors.

In order to locate the true alternatives, we proposed a filtering approach that filters out the

p-values that are more likely to be uniformly distributed. With an appropriately defined filter

T , the sample of p-values are partitioned into two subsets, the remaining ones ST and the

eliminated ones UT . Basically, we achieved the following two goals with the filtering method:

i) Asymptotically, the excluded p-values are from the nulls, and the remaining ones are from

the alternatives.

ii) For finite samples, we defined the rejection region based on the sample mode estimated

from the filtered p-values. The length of the rejection region is maximised subject to a
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5.2. Conclusions

finite-sample control of FDR.

The proposed filtering approach increases the proportion of the alternatives among the

mixture by eliminating the most likely uniformly distributed p-values without disturbing the

majority of the alternatives. We proved that the expected value of the false eliminations tends

to zero as m goes to zero. In addition, we proved that if the mode of the alternative distribution

is unique, then the sample mode estimated using the filtered kernel density estimation is

consistent. The mode estimator is thus utilised as the mid-point of the central peak of the

p-values from the alternatives, which in our definition, serves as the significance center of

the rejection region R. Unlike for the Gaussian test procedures, we define the rejection region

Rϑ,δ centralised at the mode ϑ and of length δ. The center ϑ is estimated by the filtering kernel

density estimation, and the length δ is chosen by data-dependent control of the FDR. We

proved that the expected value of the estimator of FDR provides a good upper bound of the

true value of the estimated FDR, such that this data-dependent control functions well. In this

procedure we do not propose an estimate of δ. An optimal δ̂ is chosen to achieve the maximal

power with the estimated ϑ̂ bounded by α.

Furthermore, we proposed another non-parametric approach to estimate the local concen-

tration of the p-values under the alternative. We use weighted gap statistics to characterise

the sample of the p-values, based on the assumption that the p-values appear in clusters

under the alternative. In terms of the multiple testing procedure for mixture models, most

methodologies are developed based on the two-point mixture, of which the results are desired

to be extended to the general case. We are also exploring the generalisation of our methods to

the multimodal mixture models, where the filtering approach and the test for local discrepancy

of the gaps will still function well. Ultimately, we are interested in non-parametric methods

that are universally applicable to the problems of detecting the alternatives with a location

parameter.
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