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Résumé

Cette thèse s’intéresse à deux types de problèmes d’inférence statistique en
traitement du signal et en science des données. Le premier problème est l’estimation
d’un tenseur informatif et structuré à partir de l’observation d’une version bruitée
de celui-ci. La structure se manifeste par la possibilité de décomposer le tenseur
informatif en une somme d’un petit nombre (relativement à sa dimension) de
tenseurs de rang 1. Une telle structure trouve des applications en science des
données où les données, organisées dans des tableaux (multidimensionnels), peuvent
souvent s’expliquer par l’interaction de quelques variables explicatives qui sont
caractéristiques du problème étudié. Le second problème est l’estimation d’un
signal à l’entrée d’un réseau de neurones à propagation avant et dont la sortie est
observée. Etudier un tel problème est important pour de nombreuses applications
(phase retrieval, signaux discrétisés) où la relation entre les mesures collectées et
les quantités que l’on souhaite connaître n’est pas linéaire.

Nous analysons ces deux modèles statistiques dans des limites de grandes
dimensions qui correspondent à des situations pour lesquelles la quantité des
observations et la taille du signal deviennent infiniment large. L’intérêt de tels
régimes asymptotiques s’explique par les puissances de calculs et les capacités
de stockage en constante augmentation, rendant possible le traitement et la
manipulation de larges ensembles de données. Nous prenons une approche de
théorie de l’information dans le but d’établir des limites statistiques fondamentales
pour l’estimation dans des régimes de grandes dimensions. En particulier, les
contributions principales de cette thèse sont les preuves de formules exactes pour
les valeurs asymptotiques des information mutuelles normalisées associées aux
problèmes d’inférence que nous étudions. Ce sont des formules variationnelles de
petites dimensions qui peuvent néanmoins rendre compte du comportement de
larges systèmes dont chaque composante interagit avec toutes les autres. Grâce à
la relation entre l’information mutuelle et l’inférence bayésienne, nous utilisons
les solutions de ces problèmes variationnels pour prédire de manière rigoureuse la
limite de l’erreur quadratique moyenne minimale (MMSE), c’est-à-dire l’erreur
du meilleur estimateur (l’estimateur bayésien). Ainsi nous pouvons comparer
les performances d’algorithmes d’inférence à la limite statistique donnée par le
MMSE.

Ces formules variationnelles pour l’information mutuelle sont dénommées
ansätze symétriques des répliques et doivent leur nom à la méthode des répliques,
une heuristique issue de la physique statistique grâce à laquelle elles peuvent être
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ii Résumé

prédites. Des preuves de la validité de ces prédictions ont commencé à apparaître
au cours de la dernière décennie. En général, la stratégie de ces preuves est de
montrer que l’ansatz symétrique des répliques est à la fois une borne supérieure et
inférieure pour la limite de l’information mutuelle normalisée. Le présent travail
exploite la méthode d’interpolation adaptative qui propose une manière unifiée de
prouver les deux bornes. Nous étendons l’interpolation adaptative à des situations
où le paramètre d’ordre du problème n’est pas scalaire mais matriciel, et à des
régimes de grandes dimensions qui diffèrent de ceux pour lesquels la formule
“réplique-symétrique” est habituellement conjecturée. Nos preuves démontrent
aussi la modularité de la méthode d’interpolation adaptative. En effet, en utilisant
des modèles statistiques précédemment étudiés dans la littérature comme briques
pour construire des modèles plus complexes (e.g., le signal à estimer à un certain
modèle de structure), nous déterminons des formules “réplique-symétrique” pour les
informations mutuelles normalisées qui sont associées à des problèmes d’estimation
pertinents pour des applications modernes.

Mots-clés : inférence bayésienne, statistique de grande dimension, estimation
de tenseur, modèles linéaires généralisés, information mutuelle, formules “réplique-
symétrique”



Abstract

This thesis focuses on two kinds of statistical inference problems in signal
processing and data science. The first problem is the estimation of a structured
informative tensor from the observation of a noisy tensor in which it is buried.
The structure comes from the possibility to decompose the informative tensor as
the sum of a small number of rank-one tensors (small compared to its size). Such
structure has applications in data science where data, organized into arrays, can
often be explained by the interaction between a few features characteristic of the
problem. The second problem is the estimation of a signal input to a feedforward
neural network whose output is observed. It is relevant for many applications
(phase retrieval, quantized signals) where the relation between the measurements
and the quantities of interest is not linear.

We look at these two statistical models in different high-dimensional limits
corresponding to situations where the amount of observations and size of the
signal become infinitely large. These asymptotic regimes are motivated by the
ever-increasing computational power and storage capacity that make possible the
processing and handling of large data sets. We take an information-theoretic
approach in order to establish fundamental statistical limits of estimation in
high-dimensional regimes. In particular, the main contributions of this thesis
are the proofs of exact formulas for the asymptotic normalized mutual infor-
mation associated with these inference problems. These are low-dimensional
variational formulas that can nonetheless capture the behavior of a large system
where each component interacts with all the others. Owing to the relationship
between mutual information and Bayesian inference, we use the solutions to these
variational problems to rigorously predict the asymptotic minimum mean-square
error (MMSE), the error achieved by the (Bayes) optimal estimator. We can thus
compare algorithmic performances to the statistical limit given by the MMSE.

Variational formulas for the mutual information are referred to as replica
symmetric (RS) ansätze due to the predictions of the heuristic replica method from
statistical physics. In the past decade proofs of the validity of these predictions
started to emerge. The general strategy is to show that the RS ansatz is both
an upper and lower bound on the asymptotic normalized mutual information.
The present work leverages on the adaptive interpolation method that proposes a
unified way to prove the two bounds. We extend the adaptive interpolation to
situations where the order parameter of the problem is not a scalar but a matrix,
and to high-dimensional regimes that differ from the one for which the RS formula

iii



iv Abstract

is usually conjectured. Our proofs also demonstrate the modularity of the method.
Indeed, using statistical models previously studied in the literature as building
blocks of more complex ones (e.g., estimated signal with a model of structure),
we derive RS formulas for the normalized mutual information associated with
estimation problems that are relevant to modern applications.

Keywords: Bayesian inference, high-dimensional statistics, tensor estimation,
generalized linear models, mutual information, replica symmetric formulas
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Introduction 1
When Claude Shannon laid the mathematical foundations of communication
and established information theory in 1948, he demonstrated the existence and
achievability of a fundamental limit to communication, namely, the channel
capacity, the maximum rate at which information can be reliably transmitted over
a communication channel. This upper limit on the information rate is given by
an optimization problem where we look for the input distribution maximizing the
mutual information between the input and output of the channel. While Shannon’s
proof does not say how to build a code that approaches the channel capacity, it
highlighted the gap between the information rates of the error-correcting codes
available at that time and optimal codes achieving capacity. It set a goal and
gave impetus to the design of practical capacity-approaching codes.

Since then, information theory concepts and tools have been applied well
beyond traditional communication channels for which they were initially developed.
In this thesis, we take an information-theoretic approach to establish fundamental
limits for estimation and learning problems found in signal processing, machine
learning or data science. We analyze statistical models for tensor decomposition
and feedforward neural networks where the goal is to estimate, with as little error
as possible, a quantity of interest from noisy observations. In that regard, we
study the mutual information and leverage on its connection with Bayes optimal
inference to determine the minimum error that is statistically achievable.

As computational power and storage capacity steadily increased over the
past decades, there is a growing interest in tackling problems involving large
amounts of data. The main contribution of the present work is the proof of
exact formulas for the mutual information associated with such high-dimensional
problems. These formulas are low-dimensional optimization problems that can
be solved numerically. Crucially, the solutions to the latter are linked to the
error of the Bayes optimal estimator, the minimum error statistically achievable.
Although the models that we examine are simplifications and idealizations of the
situations encountered in practice, they offer a precise framework in which we can
compare the error achieved by diverse reconstruction techniques to the minimum
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2 Introduction

error. In order to prove these asymptotic formulas for the mutual information, we
draw on the expertise of statistical physics regarding the analysis of large systems.

In the next two sections we introduce and motivate the two kinds of high-
dimensional statistical models that are the focus of this thesis. In Sections 1.3 and
1.4 we explain how to use the mutual information to study the fundamental limits
of estimation in these models. In Section 1.5 we take a detour to statistical physics,
a field that aims to describe how macroscopic properties of large physical systems
(magnetization, density, index of refraction, etc.) arise from the interactions of
its microscopic constituents (particles). An important quantity in statistical
physics is the free energy whose form is similar to a mutual information. In
the thermodynamic limit where the physical system becomes infinitely large, a
formula for the free energy can be predicted with the heuristic replica method. In
Section 1.6 we show how the replica ansatz for the mutual information yields a
precise characterization of the statistical limits of estimation problems. However,
the replica method is not mathematically justified. The important results of this
thesis are the proofs of the correctness of the replica predictions for the different
problems that we study. In Section 1.7 we give some background on the techniques
developed to prove these formulas. In particular, we present the Guerra–Toninelli
interpolation method on which the present work builds upon. We conclude this
chapter with a section outlining the organization of the thesis and contribution of
each chapter.

1.1 Tensor estimation

Data is commonly stored and organized into arrays, either matrices or tensors.
The latter are multidimensional arrays; a natural generalization of matrices to
dimensions greater than two. Matrix factorizations like singular value decomposi-
tion (SVD) and principal component analysis (PCA) are widely used to discover
structure in a 2D dataset [1]. Likewise, tensor decompositions are techniques to
factorize tensors in order to extract information, e.g., what are the latent factors
whose interactions give rise to the observed dataset. In essence, they aim to
generalize different desirable properties of matrix SVD and PCA to higher-order
tensors. Research on tensor decompositions started in the late 1920s [2], and
until the 1990s their theoretical and algorithmic developments were essentially
investigated by the psychometric [3], [4] and chemometric [5] communities. In the
last twenty years the use of tensor decomposition techniques expanded outside
these communities and found its way to computer science, in particular in machine
learning and data science [6], [7]. Applications include parameter estimation in
latent variable models [8], [9], community detection [10], collaborative filtering
[11] and graph matching for computer vision [12]. The review articles [6], [13], [14]
are good introductions to tensors and the two most prominent decompositions —
the canonical polyadic (CP) and Tucker decompositions.

CP decomposition We now introduce some notations and definitions on
tensors, and then present the CP decomposition. We say that T is a real
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order-p tensor if its elements are real numbers indexed by p indices, that is,
T := {Ti1i2...ip}∀`:1≤i`≤n` ∈ Rn1×n2×···×np where each dimension n` is a positive
integer. The outer product v(1)⊗v(2)⊗· · ·⊗v(p) of p vectors v(`) := {v(`)

i }n`i=1 ∈ Rn` ,
` = 1 . . . p, is the real order-p tensor whose elements are

(v(1) ⊗ v(2) ⊗ · · · ⊗ v(p))i1i2...ip := v
(1)
i1
v

(2)
i2
· · · v(p)

ip
.

If all of the vectors v(1), . . . ,v(p) are nonzero then v(1) ⊗ v(2) ⊗ · · · ⊗ v(p) is called
a rank-one tensor. The rank of a tensor T is the minimum number of rank-one
tensors whose sum yields exactly T; it is denoted rank(T )1. For a fixed positive
integer K, the CP decomposition of a tensor T is the best approximation of T as
the sum of K rank-one tensors. More precisely, this is the solution to

min
T̂∈TK

∥∥T− T̂
∥∥ (1.1)

where

TK :=

{ K∑

k=1

X
(1)
·,k ⊗X

(2)
·,k ⊗ · · · ⊗X

(p)
·,k : X(`) ∈ Rn`×K , ` = 1 . . . p

}
. (1.2)

In the above, X·,k denotes the kth column of a matrix X and ‖ · ‖ is the usual
Euclidean norm (also called Frobenius norm), i.e., ‖T‖2 :=

∑
i1,i2,...,ip

(Ti1i2...ip)
2.

For matrices, the solution to (1.1) is given by the Eckart–Young–Mirsky theorem
[15]. For higher-order tensors, (1.1) is an ill-posed problem because the set TK
on which we minimize is not closed [16]. A natural way to fix the ill-posedness
of (1.1) is to look for weak solutions, that is, to minimize the objective function
‖T− T̂‖ on the closure of TK instead. For example, [16] gives a characterization
of the closure when K = 2, p = 3 that can be used to define an objective function
amenable to minimization.

Statistical models for CP decomposition Solving (1.1) for a general tensor
T is computationally hard [17]. Instead, we adopt the point of view of tensor
estimation which is the task of extracting meaningful information from a noisy data
tensor. A prototypical example is community detection from observed interactions
between individuals [18].

Example 1.1 (Symmetric two-group stochastic block model). Consider n individ-
uals divided into two communities C−1 and C+1. For the individual i ∈ {1, . . . , n}
we define Xi = −1 if they belong to the community C−1 and Xi = 1 if they belong
to C+1. Each individual has a fifty-fifty chance to be part of either C−1 or C+1, i.e.,
P(Xi = 1) = P(Xi = −1) = 0.5 , and this independently of the others. Define the
column vector X = [X1, X2, . . . , Xn]T. Individuals interact with each other. Let
Yij = 1 if i and j know each other, and Yij = −1 otherwise. We assume that the
Yij’s are distributed according to the model

P(Yij = 1|XiXj = 1) = pn , P(Yij = 1|XiXj = −1) = qn , (1.3)
1Note that, for a matrix (order-2 tensor) M, this definition of rank is equivalent to the usual

definition where the rank is the dimension of the vector space spanned by the columns of M.
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where 0 ≤ qn < pn ≤ 1. Under this model, two individuals are more likely to
know each other if they belong to the same community. The matrix Y = {Yij}
can be seen as a noisy version of the rank-1 matrix XXT; each entry of XXT is
observed through the channel (1.3). Suppose that we do not know the composition
of each community; however, we know if two indivuals are familiar with each
other. In a nutshell, we know Y but not X. One of the central question in
community detection is whether we can recover XXT from Y. Note that we can
easily determine X up to a plus or minus sign from XXT.

In this thesis, we study different statistical models for tensor decomposition as
proposed in [19]. The observed data is a noisy version of a finite-rank tensor of
interest:

Model 1.1 (Low-rank asymmetric tensor estimation). Let X(`) ∈ Rbα`nc×K ,
` = 1, . . . , p, be independent random matrices where the factors α1, . . . , αp are
positive real numbers and the dimensions n,K are positive integers. Define the
order-p tensor

T :=
K∑

k=1

X
(1)
·,k ⊗X

(2)
·,k ⊗ · · · ⊗X

(p)
·,k .

We observe T under an additive white Gaussian noise (AWGN), i.e., we observe

Y := n
(1−p)/2 T +

√
∆ Z ,

where the elements of Z ∈ Rbα1nc×···×bαpnc are independent standard Gaussians
and ∆ > 0 is the noise variance.

Model 1.2 (Low-rank symmetric tensor estimation). Let X ∈ Rn×K be a random
matrix where the dimensions n,K are positive integers. Define the order-p tensor

T :=
K∑

k=1

X·,k ⊗X·,k ⊗ · · · ⊗X·,k .

The tensor T is symmetric, meaning that Tiπ(1)iπ(2)...iπ(p)
= Ti1i2...ip for any permu-

tation π : {1, . . . , p} → {1, . . . , p} and p-tuple (i1, i2, . . . , ip). We observe T under
a symmetric AWGN, i.e., we observe

Y := n
(1−p)/2 T +

√
∆ Z ,

where Z ∈ Rn×n×···×n is a symmetric tensor whose elements Zi1i2...ip are inde-
pendent standard Gaussians for 1 ≤ i1 ≤ · · · ≤ ip ≤ n and ∆ > 0 is the noise
variance.

In both models the definition of the underlying tensor T is reminiscent of a CP
decomposition and entails that the rank of T is at most K. We study these models
in a high-dimensional regime where K is negligible compared to the dimensions
of the tensor; hence the adjective “low-rank” in their names. Specifically, we fix
K (and each factor α` in the case of Model 1.1) and take n infinitely large.
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In the descriptions that we give, the distributions of the matrices X(1), . . . ,X(p)

or X are voluntarily kept general. In Chapter 3 we analyze Model 1.1 in the
case p = 2, K = 1 and X(1),X(2) are uniformly distributed on spheres of radii
proportional to

√
n. In Chapter 4 we consider Model 1.2 for X having independent

and identically distributed (i.i.d.) rows. In this case, unless the support of the
distribution of the rows spans a proper subspace of RK , X has asymptotically
almost surely full rank2 and, by Kruskal’s theorem [20], the rank of T is exactly K.

We are usually interested in problems where each entry of the tensor T is
observed at the output of a noisy channel described by a conditional probability
distribution Pout(y|x), that is, each element of the data Y satisfies

Yi1i2...ip ∼ Pout( · |n(1−p)/2 Ti1i2...ip) ,

independently of the others. In Models 1.1 and 1.2, Pout(y|x) = e
−(y−x)2

2∆ /
√

2π∆; far
from a channel like (1.3) in Example 1.1. However, the AWGN is not as restrictive
as it might seem at first sight. Indeed, in the high-dimensional regime that we
consider, many channels turn out to be equivalent to an AWGN channel with
appropriate noise variance ∆. This equivalence, called channel universality, is
proved in [21] for a class of channels satisfying some regularity assumptions. For
the channel of Example 1.1, the equivalence is proved in [18] (for an appropriate
scaling of pn and qn as n diverges) and allows the authors to study the symmetric
two-group SBM through the analysis of Model 1.2 (for K = 1, p = 2).

One achievement of this thesis is the determination of fundamental statistical
limits on how well we can recover the tensor T of interest from the noisy data Y.
More precisely, we establish exact formulas for the performance of the optimal
estimator of T, based on the observation Y, in the high-dimensional regime. Of
course, the optimal estimator depends on how we measure performances. In this
work, we assess the performance of an estimator T̂(Y) in terms of its mean-square
error (MSE) n−p E‖T − T̂(Y)‖2, in which case the Bayes estimator E[T|Y] is
optimal and its error is referred to as the minimum mean-square error (MMSE).
As the MMSE is a lower bar on the error of any estimator, it constitutes a limit
to approach as closely as possible by an algorithm (subject or not to constraints
on its computational complexity); the MMSE acts as a reference to which we can
compare existing algorithms. Before diving further into Bayesian inference and
the MMSE in Section 1.3, we first present the other estimation problem studied
in this thesis.

1.2 Generalized linear models

Linear models of the form
Y := WX + Z , (1.4)

2It means that limn→+∞ P(X is not full column rank) = 0. For the distribution of the rows
that we usually consider, the latter also holds for a finite n ≥ K. For example, if the rows are
i.i.d. Gaussian vectors then P(X is not full column rank) = 0 as long as n ≥ K.
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where X is a signal of interest, W a known measurement matrix and Z an AWGN
with noise variance σ2, are ubiquitous in statistical inference and least-squares
methods. Despite their usefulness, there are many applications for which the
observations are rather nonlinear transformations of linear measurements. Classical
examples include phase retrieval problems in optics and X-ray crystallography
[22], [23] where only the amplitude of the linear measurements are observed, and
dequantization [24], [25] when the measurements are discretized due to digital
recording and further quantized for compression purposes. In linear models
(1.4), the observations Y1, Y2, . . . , Ym are conditional on X independent normal
random variables of same variance σ2 and means (WX)1, (WX)2, . . . , (WX)m.
Generalized linear models [26] have an increased expressivity by extending the
linear ones in two ways: (i) the conditional distribution of the observations
belongs to an exponential family, and (ii) the conditional means are g−1((WX)i)
for i = 1 . . .m where g is refered as the link function in statistics. In this thesis,
we consider a more general form of generalized linear models (GLMs), perhaps
more familiar to readers with a machine learning background.

Model 1.3 (1-layer GLM). Let X be a n-dimensional random vector of interest,
kA a natural number, PA a probability distribution on RkA , and ϕ : R×RkA → R
a function (known as an activation function in machine learning). In the one-layer
GLM, we are given a m× n matrix W and m observations of the form

Yi := ϕ

(
(WX)i√

n
,Ai

)
+
√

∆Zi ; (1.5)

where A := {Ai}mi=1
i.i.d.∼ PA, Z := {Zi}mi=1

i.i.d.∼ N (0, 1) is an AWGN and ∆ ≥ 0 is
a noise variance parameter.

Remark. We can recover the original GLM of statistics by choosing ∆ := 0,
kA := 1, PA := U([0, 1]) the uniform distribution on [0, 1], and

ϕ(x, a) := F (g−1(x), a)

where the function F is such that the distribution of F (µ,A), A ∼ U([0, 1]), is
the desired exponential family distribution with mean µ ∈ R.

Going back to the examples given earlier, the phase retrieval problem cor-
responds to ϕ(x,A) = |x + A| with A ∼ N (0, 1), and 1-bit compressed sensing
(quantization with a 1-bit quantizer) to ϕ(x,A) = sign(x+ A) with A ∼ N (0, 1)
and sign the sign function.

We recognize in ϕ(WX/√n,A) := {ϕ((WX)i/√n,Ai)}ni=1 the layer of a feedfor-
ward neural network where X is the input, each row of W/√n the weights of one
of the m nodes in the layer, and ϕ((WX)i/√n,Ai) the output of the ith node. The
observations Y := {Yi}mi=1 in Model 1.3 then correspond to noisy versions of these
outputs. In Figure 1.1 we draw a graphical representation of Model 1.3 that suits
well the inference point of view that we have just described. From this point of
view, X is the input of a multi-output one-layer neural network and we want
to estimate X from the noisy outputs. Although we mostly focus on the latter
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X1

X2

...

Xn

ϕ(·,A1)

...

ϕ(·,Ai)

...

ϕ(·,Am)

+

+

+

W√
n
·

√
∆Z1

√
∆Zi

√
∆Zm

Y1 := ϕ
(

(WX)1√
n
,A1

)
+
√

∆Z1

Yi := ϕ
(

(WX)i√
n
,Ai

)
+
√

∆Zi

Ym := ϕ
(

(WX)m√
n

,Am

)
+
√

∆Zm

...

...

Figure 1.1: Graphical representation of Model 1.3 with an inference point of view. The
matrix W/

√
n are the weights of a one-layer feedforward neural network with n input nodes

and m output nodes, and Y is a noisy output produced by feeding X to the neural network.

interpretation, the “learning” point of view is worth mentioning. We now see X/√n
as the weights of a one-layer neural network with n inputs nodes and a unique
output node. When a row of W is fed to the neural network, the preactivation∑n
j=1 WijXj/√n passes through the stochastic activation function3 ϕ(·,Ai), Ai ∼ PA,

thus producing an output that we observe after it has been corrupted by the noise√
∆Zi. We draw in Figure 1.2 a graphical representation of Model 1.3 that is

more suited to this learning point of view. In this interpration, the task is to
use the m input-output pairs ({W1j}nj=1, Y1), ({W2j}nj=1, Y2), . . . , ({Wmj}nj=1, Ym)
in order to learn the weights X. Here, more than the mean-square error of the
estimate of X, the important metric is the generalization error. We want to learn
the weights to accurately predict the label Ynew of an input {Wnew,i}ni=1 that has
never been seen before.

In recent years, deep neural networks built by stacking numerous layers on
top of each other have been used as probabilistic generative models of complex
data. We refer to these feedforward neural networks as multilayer GLMs and we
give a more formal definition below [27], [28].

Model 1.4 (L-layer GLM). Let X be a n-dimensional random vector of interest
and L a natural number. For ` ∈ {1, . . . , L}, let k` be a natural number, P (`)

A

a probability distribution on Rk` , and ϕ` : R× Rk` → R an activation function.
For ` ∈ {1, . . . , L}, let n` be a positive integer and W(`) a n` × n`−1 matrix, with
n0 := n. Starting from X(0) := X, define recursively ∀` ∈ {1, . . . , L} :

X(`) := ϕ`

(
W(`)X(`−1)

√
n`−1

,A(`)

)
,

3The model does not prevent us to work with deterministic activation function as we can
choose a deterministic distribution PA, or an activation function ϕ : R × RkA → R that is
constant with respect to its second argument.
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Wi1

...

Wi2

...

Win

ϕ(·,Ai) +

·X1√
n

·X2√
n

·Xn√
n

√
∆Zi ∼ N (0,∆)

Yi := ϕ
(

(WX)i√
n
,Ai

)
+
√

∆Zi

Figure 1.2: Graphical representation of Model 1.3 with a learning point of view. The vector
X/
√
n are the weights of a one-layer feedforward neural network with n input nodes and 1 out-

put node. The neural network is fed m different inputs {W1j}nj=1, {W2j}nj=1, . . . , {Wmj}nj=1

and produces m outputs Y1, Y2, . . . , Ym.

where A(`) := {A(`)
i }n`i=1

i.i.d.∼ P
(`)
A and ϕ` is applied componentwise. In the L-layer

GLM, we are given W(1), . . . ,W(L) and nL observations of the form

Yi := X
(L)
i +

√
∆Zi ;

where Z := {Zi}nLi=1
i.i.d.∼ N (0, 1) is an AWGN and ∆ ≥ 0 is a noise variance

parameter.

Note that Model 1.3 is a special case of Model 1.4 for L = 1. In machine
learning, we have access to a set of M training pairs {(Xj,Yj)}Mj=1 and we
optimize the weight matrices W(1),W(2), . . . ,W(L) in order to minimize the error
of predicting {Yj}Mj=1 using the outputs obtained by feeding each input Xj to the
neural network. The end goal is that the predictive power of the neural networks
generalizes to previously unseen inputs; an important consideration to take into
account when optimizing the weights. In Model 1.4, we know the weights and we
observe the noisy output Y := {Yi}nLi=1. Our goal is to estimate the input X that
produced the observations. We thus study multilayer GLMs from an inference
point of view.

We analyze the inference problem in two distinct high-dimensional regimes.
In Chapter 6, we look at Model 1.4 in the high-dimensional regime where all
of the dimensions n0, n1, . . . , nL diverge to infinity while the ratios n`/n`−1 for
` ∈ {1, . . . , L} are kept fixed. This regime was first rigorously studied in [29] for
the 1-layer GLM and we show how to extend the analysis to the 2-layer GLM. In
Chapter 7, we consider Model 1.3 in the high-dimensional regime where the input
dimension n diverges to infinity but the number m of observations as well as the
sparsity ‖X‖0 of X (the amount of nonzero components in X) are sublinear in n,
that is, both m/n and ‖X‖0/n vanish as n diverges. This regime is motivated by the
observation, popularized by compressed sensing [30], [31], that the sparsity of a
signal X can be exploited to recover X with fewer observations than what would
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be usually required. In the high-dimensional regime of sublinear sparsity and
number of measurements, the MMSE differs both qualitatively and quantitatively
from the one in the classical high-dimensional regime of Chapter 6. This was first
evidenced in [32] and shown rigorously in [33] for the linear model with binary
signal X.

1.3 Optimal Bayesian estimation in high
dimensions

We have now introduced the two classes of problems for which we study estimation.
In this section, we present Bayes optimal inference in a discussion tailored to the
different models of Sections 1.1 and 1.3.

Bayesian inference Let X be a set of real variables whose values we do not
know. Instead, we have some observations Y that bear a relation to X4. For
example, Y can be a noisy measurement of X or a function of X, see Models 1.1 to
1.4. On the basis of these observations, we want to deduce (statistical) properties
of X. This process, called statistical inference, requires making assumptions
on the generation of the data Y and on the distribution of X when devoid of
any observation. In Bayesian inference, these assumptions take the forms of
“beliefs”; a prior belief BX on the distribution of X and a likelihood belief BY|X
on the distribution of Y given a specific realization of X. Bayesian inference then
computes a posterior belief following Bayes’ rule5,

BX|Y(x|y) :=
BX(x)BY|X(y|x)∫
BX(x′)BY|X(y|x′)dx′ . (1.6)

We can use the posterior belief to estimate X, e.g., with the maximum a posteriori
(MAP) estimator arg maxxBX|Y(x|Y) or the Bayes estimator Ex∼BX|Y(·|Y)[x]. Of
course, wrong assumptions lead to faulty conclusions.

Bayes optimal inference refers to the ideal situation where the beliefs exactly
match the true distributions, that is, we know both the prior distribution PX and
the likelihood distribution PY|X. In this case, Bayes’ rule is an identity for the
posterior distribution of X given a particular realization of the observations Y,

PX|Y(x|y) =
PX(x)PY|X(y|x)∫
PX(x′)PY|X(y|x′)dx′ . (1.7)

It is fair to say that such a situation is never achieved in practice. However, in all
of Models 1.1 to 1.4 we fully describe the process generating Y and, although these
models do not make any assumption on X, we analyze them for a well-specified

4Here our words are intentionally vague. By bearing a relation, we mean that X and Y are
not statistically independent. If it is the case then we can simply discard Y, e.g., if X are real
variables then any estimator of X based on Y is no better than EX.

5Note the use of := stressing that the right-hand side defines the left-hand side. Bayes’ rule
is an identity only if the beliefs match the true distributions.
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prior (e.g., Model 1.2 with X having rows i.i.d. with respect to a given distribution
on RK). Thus, we have all the information we need to study these problems in the
Bayes optimal setting. While unrealistic in practice, the advantage of analyzing
such fully-specified models is that we have access to a baseline (optimal Bayesian
inference) to which we can compare other inference techniques.

Bayes optimal estimation In order to make this last point clearer, let us
discuss the estimation of X. Let X̂(Y) be an estimator of X and let n be the
size of X. We evaluate the performance of this estimator using its average loss
E[`(X, X̂(Y))] where `(·, ·) ≥ 0 is designed to measure the similarity of its two
arguments and is known as a loss function. The smaller the average loss, the
better the estimator. What is the best estimator of course depends on the selected
loss. In this thesis, we exclusively work with the quadratic loss `(x, x̂) := ‖x−x̂‖2/n,
where ‖ · ‖ is the Euclidean norm. This loss is well-suited to both continuous and
discrete real variables6, and yields the mean-square error E‖X−X̂(Y)‖2/n. For our
choice of loss function, the Bayes optimal estimator

E[X|Y] :=

∫
xPX|Y(x|Y)dx =

∫
xPY|X(Y|x)PX(x)dx∫
PY|X(Y|x)PX(x)dx

(1.8)

is the best estimator; the one achieving the minimum mean-square error (MMSE),

MMSE(X|Y) := min
X̂(·)

E‖X− X̂(Y)‖2

n
=

E‖X− E[X|Y]‖2

n
. (1.9)

Indeed, a classic computation shows that

E‖X−X̂(Y)‖2 = E‖X− E[X|Y] + E[X|Y]− X̂(Y)‖2

= E‖X− E[X|Y]‖2 + E‖E[X|Y]− X̂(Y)‖2 ≥ E‖X− E[X|Y]‖2 ,

where the second equality follows from first expanding the squared norm and
then realizing that E[〈X−E[X|Y],E[X|Y]− X̂(Y)〉], where 〈·, ·〉 is the Euclidean
inner product, is zero because

E[〈X,E[X|Y]− X̂(Y)〉] = E
[ ∫
〈x,E[X|Y]− X̂(Y)〉PX|Y(x|Y)dx

]

= E[〈E[X|Y],E[X|Y]− X̂(Y)〉] .

We see that the Bayes optimal estimator not only offers a baseline but also a
lower bound on the mean-square error of any estimator and, in particular, any
estimator output by an algorithm; the mean-square error of E[X|Y] constitutes
a limit to approach as closely as possible. In practice, we cannot compute the
MMSE as we do not have access to the true prior and likelihood distributions to
begin with. On the contrary, fully-specified models like the ones analyzed in this
thesis make it possible to determine this universal lower bound and how far from
it are the performances of existing algorithms.

6For the sake of giving another loss function, let us mention the 0 -1 loss 1
n

∑n
i=1 δxi,x̂i (δ is

the Kronecker delta) that is more meaningful for categorical variables and discrete real variables.
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MMSE in high-dimensional regimes In order to evaluate the MMSE, we
have to compute first the normalization factor of the posterior distribution in
(1.7) and then the posterior mean in (1.8). Both steps involve computing a
n-dimensional integral. While we might consider evaluating such integrals on
low-dimensional problems where n is just a handful, the computation of these
integrals suffers from the curse of dimensionality. For example, we can try to
approximate these integrals by selecting evenly spaced points at which we evaluate
the integrand, but the number of points needed for a good approximation grows
exponentially with n. The difficulty of computing the Bayes estimator appears
clearly in the next example that corresponds to Model 1.2 when p = 2, K = 1
and the components of X are independent and uniformly distributed on {−1, 1}.
We use it as a running example in the remaining parts of the introduction due to
its simplicity as well as being a prototypical problem for which proof techniques
have first been developed [18], [21], [34]–[37].

Example 1.2 (Running example). Let X ∈ Rn be a random vector whose
components are independent and uniformly distributed on {−1, 1}. We observe
the n× n real symmetric matrix

Y :=
XXT

√
n

+
√

∆ Z , (1.10)

where Z is a n×n symmetric matrix whose elements Zij are independent standard
Gaussians for 1 ≤ i ≤ j ≤ K and ∆ > 0 is the noise variance.

The prior distribution of X is PX(x) = 1/2n for every x ∈ {−1, 1}n. The
distribution of Y conditional on X is supported on the space of n× n symmetric
matrices, and the corresponding conditional density function is

PY|X(y|x) =
∏

1≤i≤j≤n

1√
2π∆

e−
1

2∆
(yij−xixj/√n)2

, (1.11)

where y is a real symmetric matrix and x ∈ {−1, 1}n. The Bayes optimal estimator
reads (after simplifying the factors common to the numerator and denominator)

E[X|Y] =

∑
x∈{−1,1}n

x
∏

1≤i≤j≤n
e
xixjYij

∆
√
n

∑
x∈{−1,1}n

∏
1≤i≤j≤n

e
xixjYij

∆
√
n

. (1.12)

We see that evaluating the Bayes estimator requires us to compute two sums over
a set of size 2n growing exponentially with n.

Let us remark that the sums in (1.12) are hard to compute because the
components of X – despite being a priori independent – are coupled by the
observations. The same remark applies to any model of Section 1.1 and 1.2. The
coupling stems from the tensor product defining T in Models 1.1 and 1.2, and
from the linear transformation7 preceding an activation function in Models 1.3

7As long as the corresponding weight matrix is not diagonal, see the next sentence.
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and 1.4. On the contrary, if we consider Model 1.3 with a diagonal weight matrix
W then there is no coupling and we have n decoupled estimation problems
Yi := ϕ(WiiXi,Ai) +

√
∆Zi; the complexity of computing all of the Bayes optimal

estimators E[Xi|Yi] = E[Xi|Y] scales linearly with n, instead of exponentially.
Also note that computing the Bayes estimator is related to sampling from the
posterior distribution (after all, it is the mean of the posterior). In fact, Markov
chain Monte Carlo (MCMC) methods for sampling from a distribution [38] were
originally developed and used for computing multi-dimensional integrals similar to
(1.8) [39], [40]. MCMC sampling is more efficient than the evenly-spaced sampling
previously mentioned but is still subject to the curse of dimensionality.

Seen under this prism, evaluating the MMSE for n large seems a hopeless
task. Yet, over the last decade, rigorous proofs have emerged of computable exact
formulas for the MMSE of different estimation problems in the high-dimensional
limit n → +∞. These formulas were first conjectured using heuristics from
statistical mechanics dating back to the 1970s and 80s [41], [42], see Section 1.5.
Demonstrating the exactness of these predictions is a challenge that has driven
– and continues to drive – a long line of research in statistical mechanics and
information theory [34], [36], [43]–[47] to which this thesis belongs. Indeed, the
main contribution of the present work is in proving such computable formulas
for the MMSE in models of tensor decomposition and GLMs. Remarkably
enough, one method of choice to prove the exactness of these formulas in the
high-dimensional limit is to interpolate from the original problem – whose coupling
in the observations is responsible for the curse of dimensionality – to a simpler
problem where the variables to estimate are decoupled in the observations. This
blessing of dimensionality [48] is due to the concentration of measure phenomenon,
the mathematical background to statistical mechanics [49].

In the next section we introduce the mutual information, the central quantity
in information theory, and show how we obtain the MMSE as a byproduct from
computing the former. Because the mutual information is closely related to the
free energy in statistical mechanics, we can borrow tools developed over decades
of research on large disordered systems in order to analyze (and even compute)
the mutual information in high-dimensional regimes, see Section 1.6.

1.4 Mutual information and estimation

The mutual information of two random variables was introduced by Claude
Shannon in the paper [50] that gave birth to the field of information theory. It is
understood as a measure of the “amount of shared information” between the two
random variables or, equivalently, of how much information we gain about one
random variable from observing the other. The mutual information was initially
used to study the fundamental limits of communicating through a channel, with
the two random variables being the corresponding input and output. In this thesis,
making use of the notations of the previous sections, the signal X to estimate
is the input, the observations Y is the output, and Models 1.1 to 1.4 are the
different channels under consideration.
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Let X and Y be two random variables with joint distribution PX,Y and
marginal distributions PX, PY. The mutual information between X and Y is

I(X ; Y) := E
[

ln

(
PX,Y(X ,Y)

PX(X)PY(Y)

)]
. (1.13)

The mutual information has intuitively pleasing properties: it is symmetric (shared
information), nonnegative and zero if, and only if, X and Y are independent.

From the mutual information to the MMSE We can mathematically define
a communication channel by a conditional distribution PY|X of the ouput Y given
the input X. Then, the channel capacity of a communication channel PY|X is
the maximum of the mutual information between the input and the output when
optimizing over the input distribution. The key result from Shannon’s landmark
paper [50] is that the channel capacity is a tight upper bound on the rate at which
we can reliably transmit information through the channel. This result gives an
appealing physical interpretation to the mutual information in communication
problems.

By looking purely at the definition of the mutual information, it is not clear
how to interpret it from an estimation point of view. The answer is given by
a formula called the I-MMSE relationship [51]. It connects the derivative of
the mutual information to the MMSE, where the derivative is with respect to
a parameter of the model akin to a signal-to-noise ratio (SNR). Let X be a set
of n real random variables arranged in a vector and satisfying E‖X‖2 < +∞.
We observe Ỹ(τ) :=

√
τ X + Z̃, where Z̃ is a vector with independent standard

Gaussian components and τ ≥ 0 is a known SNR. By [51, Theorem 2], we have
the identity

∂

∂τ

(
I(X ; Ỹ(τ))

n

)
=

MMSE(X|Ỹ(τ))

2
, (1.14)

where MMSE(X|Y(τ)) – the MMSE for estimating X from Ỹ(τ) – is defined in
(1.9). In the models of Sections 1.1 and 1.2, the inverse ∆−1 of the noise variance
is the SNR. For example, applied to Models 1.2 and 1.3 the I-MMSE relationship
yields

∂

∂∆−1

(
I(X ; Y)

n

)
=

MMSE(T|Y)

2p!
(1.15)

and
∂

∂∆−1

(
I(X ; Y)

n

)
=

MMSE(ϕ(WX/n)|Y)

2
, (1.16)

respectively. In these models, if the high-dimensional behavior of MMSE(X|Y) is
what we are really interested in then we have to consider an inference problem
where, in addition to the original observations Y, we have the side information
Ỹ(τ) :=

√
τ X + Z̃. At τ = 0, the latter observations are pure noise and the

derivative of the normalized mutual information with respect to τ is directly
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related to the MMSE of the original problem,

∂

∂τ

(
I(X ; Y, Ỹ(τ))

n

)∣∣∣∣
τ=0

=
MMSE(X|Y, Ỹ(0))

2
=

MMSE(X|Y)

2
. (1.17)

All in all, thanks to the I-MMSE relationship, we can study the fundamental
limits of an estimation problem by looking at the mutual information between
the observations and the quantity to estimate. In particular, we can analyze
the asymptotic behavior of the mutual information when n diverges in order
to determine the MMSE in the high-dimensional regime. It amounts to first
computing the limit of the normalized mutual information, and then the derivative
of the limit, to finally obtain the asymptotic MMSE thanks to (1.17). Note that,
strictly speaking, (1.17) says that we should first compute the derivative of the
normalized mutual information, and then the limit of the derivative as n diverges.
However, concavity and differentiability of the mutual information with respect
to τ imply that if the normalized mutual information converges pointwise to the
function i(τ) then its derivative converges to the derivative i′(τ) at every point
where the derivative exists [52, Appendix A] (see also [53, Griffiths’ lemma]).

Mutual information in high-dimensional regimes Hence, we now shift our
interest to the computation of the normalized mutual information. Playing with
the definition of the mutual information, we find that

I(X ; Y)

n
= − 1

n
E
[

ln

∫
PY|X(Y|x)PX(x)dx

]
+

1

n
E
[

lnPY|X(Y|X)
]
, (1.18)

where we use that PY(y) =
∫
PY|X(y|x)PX(x)dx and PY|X(y|x) = PX,Y(x,y)/PX(x).

We can usually reduce the second expectation on the right-hand side of (1.18) to
a simple form, in particular for the models we work with because the observations
Y are – possibly stochastic – functions of X under an AWGN channel. More often
than not, the simplification is similar to the one demonstrated below.

Example 1.2 (continuing from p. 11). Plugging X and Y := XXT√
n

+
√

∆ Z in the
conditional density function (1.11), we obtain

PY|X(Y|X) =
∏

1≤i≤j≤n

e−
(Yij−XiXj/

√
n)2

2∆√
2π∆

=
1

(2π∆)
n(n+1)

4

∏

1≤i≤j≤n
e−

Z2
ij
2 .

It directly follows that

1

n
E
[

lnPY|X(Y|X)
]

= −n+ 1

4
ln(2π∆) −

∑

1≤i≤j≤n

EZ2
ij

2n
= −n+ 1

4
ln(2π∆e) .
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Although this quantity diverges in the high-dimensional limit, it cancels out with
its opposite coming from the first expectation on the right-hand side of (1.18);

− 1

n
E
[

ln

∫
PY|X(Y|x)PX(x)dx

]
= − 1

n
E

[
ln

∑

x∈{−1,1}n

1

2n

∏

i≤j

e−
(Yij−xixj/

√
n)2

2∆√
2π∆

]

= ln(2) +
n+ 1

4
ln(2π∆) +

∑

i≤j

EY 2
ij + n−1

2∆n
− 1

n
E

[
ln

∑

x∈{−1,1}n

∏

i≤j
e
Yijxixj

∆
√
n

]

= ln(2) +
n+ 1

4
ln(2πe∆) +

n+ 1

2∆n
− 1

n
E

[
ln

∑

x∈{−1,1}n
e
∑
i≤j

Yijxixj
∆
√
n

]
,

where we use that EZ2
ij = n−1 + ∆ in the last equality. The normalized mutual

information simplifies to

I(X ; Y)

n
= ln(2) +

1 + n−1

2∆
− 1

n
E

[
ln

∑

x∈{−1,1}n
e

∑
1≤i≤j≤n

Yijxixj
∆
√
n

]
. (1.19)

Therefore, computing the normalized mutual information reduces to computing
the normalized expected logarithm of

∫
PY|X(Y|x)PX(x)dx. The latter integral

is the normalization factor of the posterior (1.7) whose difficulty to calculate was
already discussed in Section 1.3. It begs the question of whether the asymptotic of

− 1

n
E
[

ln

∫
PY|X(Y|x)PX(x)dx

]
(1.20)

is easier to analyze than for the MMSE. It turns out that (1.20) has the same
form than a fundamental quantity called the average free energy in statistical
mechanics, where we postulate a distribution on the possible states of a physical
system and are also confronted to the task of normalizing it. Hence, it is worth
looking at the rigorous and heuristic tools developed by statistical physicists to
analyze such normalization factors.

1.5 A detour to statistical physics

Statistical physics was created at the end of the 19
th century for the purpose of

providing a framework capable to explain the macroscopic properties of a physical
material (properties “observable” at our scale, e.g., pressure, magnetization) from
the properties and interactions of its constituents (e.g., atoms, molecules, etc.).
It describes a system as an ensemble of possible states; each state corresponding
to a particular microscopic configuration and being associated with a probability
that the system will actually be in that state.

Spin models We focus our discussion on spin systems because the methods
developed in statistical mechanics to analyze them are particurlarly relevant for
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the estimation problems studied in this thesis. A spin system is described by n
degrees of freedom called spins and denoted by xi for i = 1 . . . n. A (Ising) spin
xi is either 1 or −1; it represents the magnetic dipole moment associated to one
particle in the system. The state of the system is the vector x = [x1, x2, . . . , xn]T

collecting all the spins. The energy (or cost) of a specific configuration x is given
by H(x) where the function H is known as the Hamiltonian. We consider spin
systems that are closed, i.e., n is fixed, and in equilibrium at the temperature
T . Then, the probability to find the system in a state x follows the Boltzmann
distribution8

Pβ(x) :=
e−βH(x)

Z(β)
, (1.21)

where β := 1/T is an inverse temperature and Z(β) is the normalization factor of
the distribution. The latter is also known as the partition function. Note that the
sum in Z(β) :=

∑
x e
−βH(x) runs over the 2n possible states, an exponential growth

alike to the one encountered in Bayes optimal estimation. The distribution (1.21)
assigns higher probabilities to states of lower energies, the assignment being more
or less extreme depending on the temperature. At high temperature (β → 0), all
the states become equiprobable no matter their energies while, at low temperature
(β → +∞), the system is found in the states of lowest energy.

Free energy In statistical mechanics, a lot of interest is concentrated on the
free energy,

fn(β) := − 1

nβ
lnZ(β) . (1.22)

The opposite of the free energy (1.22) is sometimes dubbed free entropy in the
information theory literature. This quantity is fundamental not only for its
relation to the partition function, but also because macroscopic properties of the
system can be determined from its knowledge. The latter is better seen on an
example.

Example 1.3 (Ising model). In the canonical Ising model, the n spins are located
on a d-dimensional square grid. The notation i ∼ j means that the spins xi and
xj are neighbors. The Hamiltonian reads

H(x) := −
∑

i∼j
Jxixj −

n∑

i=1

hxi , (1.23)

where the first sum runs over all pairs of neighboring spins on the grid, the
variable J controls the strength of the interaction between two neighbors, and
h is an external field. For J > 0, states whose neighboring spins are aligned
(i.e., xixj = 1) have lower energies. It is the opposite for J < 0. The external

8This canonical Boltzmann distribution is usually derived from the micro-canonical distribu-
tion which postulates that all microscopic configurations of an isolated system occur with equal
probability. Here the spin system is in equilibrium with a thermal bath of constant temperature
T , hence the isolated system is the union of the spin system and the thermal bath.
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field favors configurations whose macroscopic magnetizations M(x) :=
∑n

i=1 xi
have the same sign than h. We see that the free energy (1.22) of the Ising model
satisfies

∂βfn(β)

∂β
=
∑

x

H(x)

n
Pβ(x) and − ∂fn(β)

∂h
=
∑

x

M(x)

n
Pβ(x) . (1.24)

Hence, we can obtain the average energy and magnetization per spin of the system
from its free energy.

In Section 1.4 we have already pointed out that the mutual information is akin
to a free energy. We now realize that the I-MMSE relationship (1.17) is much like
the link between free energy and macroscopic properties of a system (see (1.24)).

Variational formula for the free energy Statistical physics is naturally
interested in systems for which the number of interacting particles is large. We
are thus faced with the challenge of analyzing the free energy when n diverges; a
challenge similar to the one encountered in high-dimensional Bayesian estimation.
Ising models are notoriously difficult to analyze (in fact, there is no analytical
expression of the free energy for d ≥ 3). Instead, we turn to a mean-field
approximation of the Ising model9, whose free energy in the high-dimensional limit
is given by a closed-form expression and already exhibits an interesting behavior.

Example 1.4 (Curie-Weiss model). In the Curie-Weiss model, the Hamiltonian is

H(x) := −
∑

i<j

J

n
xixj −

n∑

i=1

hxi , (1.25)

where J/n controls the strength of the interaction between two spins and the
variable h is an external field. Therefore, all the spins interact with each other
and with the same strength. For this reason, the Hamiltonian can be conveniently
rewritten as a function of the global magnetization per spin m(x) := 1

n

∑n
i=1 xi,

H(x) := −n
(
J

2
m(x)2 + hm(x)

)
+
J

2
. (1.26)

Thus, the sum over 2n states in the partition function can be crucially replaced
by a sum over the n+ 1 possible values of the global magnetization per spin,

Z(β) =
∑

m∈
{

1−2 k
n

:0≤k≤n
}

(
n

k

)
enβ
(
Jm2

2
+hm

)
+βJ

2 , (1.27)

9The Curie-Weiss model follows from the Ising model by approximating the local mag-
netization density 1

2d

∑
j:j∼i xj at the site of each xi by the global magnetization density

1
n

∑n
j=1 xj .
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where the binomial coefficient
(
n
k

)
counts the number of states with a global

magnetization 1− 2k
n
. By Stirling’s approximation10, we have the bounds (valid

for all n ≥ 2 and 0 ≤ k ≤ n)

1√
n
enhb

(
k
n

)
≤
(
n

k

)
≤ enhb

(
k
n

)
, (1.28)

where we introduced the binary entropy function hb : p 7→ −p ln(p)−(1−p) ln(1−p)
for p ∈ [0, 1]. We define the function

φ(m; β, J,H) :=
Jm2

2
+ hm+ β−1 hb

(
1−m

2

)
. (1.29)

Making use of (1.28), we find that

1√
n
e
βJ
2

+nβ max
0≤k≤n

φ
(

1− 2k
n

;β,J,h
)
≤ Z(β) ≤ (n+ 1)e

βJ
2

+nβ max
0≤k≤n

φ
(

1− 2k
n

;β,J,h
)
.

Hence, we see that the free energy fn(β) := −(nβ)−1 lnZ(β) satisfies

lim
n→+∞

fn(β) = − max
m∈[−1,1]

φ(m; β, J,H) = min
m∈[−1,1]

−φ(m; β, J,H) . (1.30)

Despite the coupling of the spins in the Hamiltonian (1.25), we have just shown
that the free energy of the Curie Weiss model is given by a simple variational
formula in the high-dimensional limit. Computing the limit of the free energy
amounts to minimizing a scalar function −φ(· ; β, J,H) known as a potential
function. The straightforward identification of the limit and its proof were made
possible by the interaction that is deterministic and identical for all pairs of spins
in the system. It would be desirable to have a step-by-step recipe that we can
follow in order to prove, or at least predict, variational formulas similar to (1.30)
for the free energy of more complex systems. For example, the normalized mutual
information (1.19) is equal – up to a simple additive term – to the average free
energy at inverse temperature β = 1 of a spin system whose Hamiltonian reads

H(x) := −
∑

i<j

Yij
∆
√
n
xixj . (1.31)

Thus, the interaction Yij/∆
√
n between two spins is random and depends on the

specific pair of spins. We need to first compute the free energy for a realization
of the random interactions and then average over all possible realizations. Spin
models with random interactions have also been studied in statistical mechanics
and are called spin glasses11. The replica method [41], at which we look next, is a

10For the upper bound, note that 1 = (1−x+x)n =
∑n
i=1

(
n
i

)
xi(1−x)n−i ≥

(
n
k

)
xk(1−x)n−k

for x ∈ [0, 1] and let x := k/n to get 1 ≥
(
n
k

)
exp

(
− nhb(k/n)

)
. Thanks to Emre Telatar for

pointing out this simpler argument.
11Spin glasses owe their name to their low-temperature behavior. The spins of a ferromagnet

(think of Example 1.4 with J, h > 0) all align in the same direction at low temperature (β → +∞),
yielding an average magnetization per spin that is nonzero. Instead, in a spin glass, the spins
freeze at low temperature in states that result in the absence of an average magnetization.
Like a window glass lacks the spatial order of a crystal, a spin glass lacks the spin order of a
ferromagnet.
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heuristic tool developed by statistical physicists to predict the average free energy
of such disordered systems in the high-dimensional limit.

Replica method Consider a system of n spins with an Hamiltonian H(x; J)
that depends explicitly on random variables J controlling the interactions between
spins. We denote by fn(β) the average free energy, that is, the free energy of the
system averaged over all possible realizations of J;

fn(β) := − 1

nβ
E[lnZ(β,J)] , (1.32)

where Z(β,J) :=
∑

x e
−βH(x;J). The replica method starts with the following

observation,

lim
a→0+

ln(E[Z(β,J)a])

a
= lim

a→0+

∂ ln(E[Z(β,J)a])

∂a

= lim
a→0+

E[Z(β,J)a ln(Z(β,J))]

E[Z(β,J)a]
= E[lnZ(β,J)] .

Hence, the average free energy (1.32) satisfies

lim
n→+∞

fn(β) = lim
n→+∞

lim
a→0+

− 1

anβ
ln(E[Z(β,J)a]) . (1.33)

Then, the replica method takes a jump away from mathematical rigor by inverting
the two limits in (1.33),

lim
n→+∞

fn(β)
!?
= lim

a→0+
lim

n→+∞
− 1

anβ
ln(E[Z(β,J)a]) .

Next, we assume that a is a positive integer. The power Z(β,J)a is the partition
function of a independent replicated systems,

Z(β,J)a =
∑

x(1),x(2),...,x(a)

e−β
∑a
r=1H(x(r);J) , (1.34)

where x(r) is the state of the rth replica of the system. The previous manipulations
of the replica method help us to pass the logarithm outside of the expectation.
Instead, we have to compute the high-dimensional limit of the annealed free energy
− lnE[Z(β,J)a]/anβ of the replicated system. Similarly to what is done in Example 1.4,
we have to determine which states (x(1),x(2), . . . ,x(a)) of the replicated system
contribute the most to the partition function (1.34). Doing so is difficult and,
at this point, some assumptions have to be made to simplify the analysis. A
common assumption is the replica symmetric (RS) assumption12. Under these

12It assumes that the states of the replicated system that are significant in the partition
function (1.34) possess some symmetry under permutation of the replica indices, e.g., that
the overlap

∑
i x

(r)
i x

(r′)
i /n between two replicas does not depend on the pair r 6= r′, or that the

magnetization
∑
i x

(r)
i /n does not depend on r.
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assumptions, we obtain a formula for limn→+∞ − lnE[Z(β,J)a]/anβ when a is a positive
integer. Finally, and without any form of mathematical justification, the replica
method extends the formula obtained for positive integers to the positive real
numbers and then computes the limit when a vanishes. In all generality, we end
up with a variational formula of the form

lim
n→+∞

fn(β)
!?
= extr

m∈M
fRS(m) ,

where extr is a combination of supremums and infimums, and m are parameters
constrained to the set M over which the function fRS(m) is extremized. The
function fRS is called the replica symmetric potential.

No one denies the divinatory nature of the replica method13. It is nevertheless
a powerful tool to guess a formula that can later be proved or disproved by other
means. In this regard, the Sherrington-Kirkpatrick (SK) model is an excellent
example.

Example 1.5 (SK model). The Hamiltonian of the SK model in the absence of
external field is given by

H(x; J) := −
∑

1≤i<j≤n

Jij√
n
xixj , (1.35)

where J := {Jij}1≤i<j≤n are independent centered Gaussian random variables
with variance J2. This spin glass model was introduced by D. Sherrington and
S.Kirkpatrick in 1975 [55]. In this latter reference, they applied the replica method
under the RS assumption and proposed the replica symmetric ansatz

lim
n→+∞

βfn(β)
!?
= − min

q∈[0,1]

(βJ)2

4
(1− q)2 + ln 2 + E[ln(cosh(βJ

√
qZ))] , (1.36)

where Z is a standard Gaussian variable. They observed that (1.36) yields an
“unphysical behavior” [55] at low temperature 14 (β → +∞). It turns out that the
replica symmetric ansatz is a correct prediction of the average free energy only
when β ≤ 1

J
, in which case the minimum in (1.36) is always achieved at q = 0.

Five years later, G. Parisi proposed another ansatz [56], [57] based on the replica
method but under a replica symmetry breaking (RSB) assumption less stringent
than the RS one. The formula is given in [58, Chapter 3] and was proved to be
correct by M. Talagrand [59].

In the next section, we look at replica symmetric ansätze for the mutual
information. Before concluding our detour, let us stress that the contribution of
statistical physics to Bayesian estimation is not limited to the mathematically
dubious replica trick. In order to prove the exactness of the RS ansätze for the

13“The mathematics were optimistic to say the least” [54], S.F. Edwards about the replica
method that he introduced in [41].

14The entropy S := −E
[∑

x Pβ(x; J) lnPβ(x; J)
]
where Pβ(x; J) ∝ e−βH(x;J) is by definition

nonnegative but the replica symmetric ansatz implies a negative entropy at low temperature.
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mutual information, we will have to analyze the concentration of complicated
random quantities. Therefore, the expertise of statistical mechanics on the
concentration of measure phenomenon will come in handy. Finally, a key ingredient
in our proofs of the RS formulas is a refined version of the interpolation method
[60], [61] created by F.Guerra and F.Toninelli to study the SK model (in fact, it
plays a crucial part in the proof of the RSB formula).

1.6 Replica symmetric formula for the mutual
information

Since the relationship between statistical physics of spins and coding theory
was first pointed out [62], the replica formula has gained popularity within the
information theory community. It has been applied to coding problems [63]–
[65] and more recently to estimation ones. Given that the normalized mutual
information (1.18) is similar to a free energy (up to a simple additive term), the
replica trick is a method of choice to predict the high-dimensional behavior of the
mutual information and the MMSE. In order to illustrate the latter, let us come
back to Example 1.2.

Example 1.2 (continuing from p. 14). The replica symmetric ansatz predicts

lim
n→+∞

I(X ; Y)

n
= min

q∈[0,1]
fRS(q,∆) (1.37)

where fRS(q,∆) is the RS potential function (in what follows Z is a standard
Gaussian random variable),

fRS(q,∆) :=
(1 + q)2

4∆
− E

[
ln

(
cosh

(
q

∆
+

√
q

∆
Z

))]
. (1.38)

The RS ansatz (1.37) was proved to be exact in [66]. Remember that, in this
example, the components of X are independent and uniformly distributed on
{−1, 1}. The RS prediction for a more general random vector X with i.i.d.
components was derived later in [67, Equation (30) with M = Q] and proved
correct in [34], [36], [37]. We review the tools developed to prove replica formulas
in the next section. For now, we show how to finally compute the asymptotic
MMSE after we have ascertained the RS ansatz. The global minimum in (1.37) is
achieved by a solution to the stationary point equation

∂fRS

∂q

∣∣∣∣
q,∆

= 0⇔ q = 1− E
[(

1− tanh

(
q

∆
+

√
q

∆
Z

))2 ]
. (1.39)

Of course, for a general differentiable function on a closed interval, the global min-
imum is not necessarily a stationary point if it is one of the endpoint. This is not a
problem here because the endpoint q = 0 is always a solution to (1.39) and the op-
posite endpoint q = 1 cannot be the global minimum (the right-derivative at q = 1
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Figure 1.3: Left: Asymptotic normalized mutual information and MMSE(XXT|Y) as
a function of the inverse noise variance ∆−1 for the estimation problem of Example 1.2.
The dotted vertical line marks the phase transition at ∆c = 1; once passed this threshold
the MMSE starts decreasing from its maximum value. Right: Offset RS potential function
q ∈ [0, 1] 7→ fRS(q,∆)− fRS(0,∆) for different values of the noise variance before and after
the phase transition. The global minimum of a potential is indicated with a circle.

is positive). If fRS(·, ∆̃) has a unique global minimum q∗(∆̃) for all ∆̃ in a segment
surrounding ∆ then we can show15 that the derivative of ∆̃−1 7→ minq∈[0,1] fRS(q, ∆̃)

at ∆̃−1 = ∆−1 exists and is equal to (1−q∗(∆)2)/4. Then, the I-MMSE relationship
(1.15) directly implies

lim
n→+∞

MMSE(XXT|Y) = lim
n→+∞

4
∂

∂∆−1

(
I(X ; Y)

n

)

= 4
∂

∂∆−1

(
lim

n→+∞
I(X ; Y)

n

)
= 1− q∗(∆)2 , (1.40)

where MMSE(XXT|Y) := E‖XXT−E[XXT|Y]‖2/n2. The inversion of the derivative
and the limit in the second equality is mathematically justified as long as the
pointwise limit (1.37) is differentiable at ∆−1 (see the concluding remark of From
the mutual information to the MMSE in Section 1.4).

We can thus determine the asymptotic MMSE by solving the minimization
problem of the RS formula. Practically, we numerically solve (1.39) with a
fixed point iterative scheme started from different initializations. We keep the
fixed point q∗ minimizing the RS potential to then compute the asymptotic
MMSE thanks to (1.40). The resulting asymptotic normalized mutual information
and MMSE are drawn in Figure 1.3. Interestingly, the estimation problem
exhibits a phase transition at ∆c = 1 in the high-dimensional limit. When
the noise variance is above this threshold ∆c, the asymptotic MMSE is equal
to limn→+∞ E‖XXT−E[XXT]‖2/n2 = 1; the observations Y are too noisy to help
recovering X and the best we can do is a random guess of X based on the prior
PX. When the noise variance passes below ∆c, the MMSE starts decreasing
continuously towards zero; it becomes statistically possible16 to do better than a
random guess thanks to the observations.

15This is an application of the envelope theorem [68, Corollary 4].
16To distinguish from algorithmically possible.
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Therefore, we can derive without much effort the exact performance of the
Bayes optimal estimator from the replica symmetric ansatz assuming it is correct.
Since the proofs of (1.37) in [34], [46], RS formulas for more general models of
matrix and tensor estimation have been proved [45], [46], [69]–[72]. The validity
of the RS predictions is not limited to tensor estimation; exact formulas have also
been proved for linear estimation [44], [73], [74] and generalized linear estimation
[29], [75]. These examples suggest that the replica symmetric assumption is
generally valid in the setting of Bayes optimal inference, see for example the
discussion in [76, 2.7. No RSB in Bayes-optimal inference]. Before presenting the
main ideas behind the proofs of RS formulas, and to conclude this section, let
us discuss how the performances of algorithms compare with the statistical limit
that is the MMSE.

Algorithmic limits The MMSE is by definition a lower bound on the error
of any estimator. It is the best performance that we can achieve in an ideal
situation devoid of any time and space constraints where the data generating
process is known exactly. A RS formula for the mutual information thus offers
a great insight into the intrinsic difficulty of the estimation problem that we
study, e.g., it reveals the existence of phase transitions that separate regimes in
which it is possible or not to extract information on the estimated signal from the
observations. Algorithms designed for estimation have to compose with both time
and space constraints (e.g., their time complexity should scale polynomially with
the size of the problem) as well as an imperfectly known data generating process.
Determining how far algorithms stand from the MMSE in term of performance
is crucial to improve upon them. In this regard, there is a class of iterative
algorithms called approximate message passing (AMP) whose performances can
be analyzed thanks to the RS formulas.

AMP was originally proposed for compressed sensing [77]. It is an approx-
imation of loopy belief propagation (BP) [78] for estimation problems whose
graphical representations are densily connected17. The time complexity of AMP
scales polynomially with the size of the problem – the dimension n in all of
Models 1.1 to 1.4 –, instead of exponentially for loopy BP. AMP algorithms try
to iteratively approach the MAP estimator arg maxxBX|Y(x|Y) or the Bayes
estimator Ex∼BX|Y(·|Y)[x], where BX|Y is the posterior belief defined in (1.6) and
based on postulated prior and likelihood distributions. In the high-dimensional
limit, the performance of AMP is precisely tracked by a set of equations called
state evolution (SE) [79].

Let us focus on the situation where the postulated distributions match their
true counterparts and our AMP algorithm tries to approach the Bayes optimal
estimator E[X|Y]. In this case, SE corresponds to the fixed point iterative
scheme derived from the stationary point equation of the RS potential function.
Remember that in Example 1.2 we used the same fixed point iteration to look for

17Think about Example 1.2 where a spin Xi interacts with all the others through the
observations (Yij)j 6=i, or Model 1.3 where all the signal entries interact at once through each of
the observations Yi.
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the global minimum of the RS potential function and computed the asymptotic
MMSE thanks to this global minimum. Similarly, the mean-square error of the
AMP estimate depends on the fixed point reached by SE. If the fixed point is
the global minimum then our estimate achieves the MMSE, if not then there is
a discrepancy between what we algorithmically achieve with AMP and what is
statistically achievable. We again illustrate the latter on Example 1.2.

Example 1.2 (continuing from p. 21). The AMP algorithm of this estimation
problem was obtained in [80]. We initialize the algorithm with x̂0 := E[X] and
we denote x̂k ∈ Rn the estimate of X after k iterations of AMP. Remember
that the entries of X are independent uniformly distributed on {−1, 1} and
PY|X(Y|x) = PY|X(Y| − x). Hence, the best we can do in this problem is
to recover X up to a plus or minus sign. We thus study the evolution of the
mean-square error of x̂kx̂

T
k ,

‖XXT − x̂kx̂
T
k ‖2

n2
= 1 +

‖x̂k‖4

n2
− 2
|x̂T
kX|2
n2

. (1.41)

As stated above, we suppose that our AMP algorithm tries to approach the Bayes
estimator where the true prior and likelihood distributions are known. In this
situation, both ‖x̂k‖2/n and |x̂T

kX|/n converge in the high-dimensional limit to the
same scalar qk ∈ [0, 1] that follows the state evolution

qk+1 = SE(qk) :=
∂fRS

∂q

∣∣∣∣
qk,∆

, (1.42)

where fRS is the RS potential function (1.38). Therefore, the mean-square error
(1.41) of the kth iterate satisfies limk→+∞ limn→+∞

‖XXT−x̂kx̂T
k‖2

n2 = 1− q2 where q
is the fixed point reached by the state evolution (1.42).

When the prior is symmetric, like in the present example, q0 = 0 and SE
predicts that AMP is stuck in this uninformative fixed point; the mean-square
error is as bad as it can get. However, in practice, we draw a nonzero random
vector such as x̂0 ∼ N (0, σ2

0I) and n is finite. In that case, |x̂T
0X|/n = O(σ0/√n) and

‖x̂0‖2/n = O(σ2
0/√n) are not exactly zero but close to it as long as σ0 is negligible

compared to
√
n (we run into convergence issues otherwise). Then, despite n being

finite, empirical findings demonstrate that we can still rely on SE initialized with
a very small q0 in order to predict the performance of AMP. Recent theoretical
results also go in that direction [81], [82]. We saw in Figure 1.3 that q = 0 is
the unique global minimum of the RS potential when ∆−1 < 1 and that the
asymptotic MMSE starts decreasing when ∆−1 > 1 as another solution to (1.39)
with a lower potential appears. It turns out that

∣∣∂2fRS/∂q2|q=0,∆

∣∣ is equal to ∆−1,
that is, q = 0 is a stable fixed point for ∆−1 < 1 and is unstable otherwise.
Hence, in this particular example, state evolution initialized arbitrarily close to
zero always converges to the global minimum of the potential; the mean-square
error of the AMP estimate matches the MMSE curve of Figure 1.3.

The performance of AMP does not always match the MMSE. In Figure 1.4 we
draw the asymptotic MMSE and MSE of AMP for the same estimation problem
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Figure 1.4: Model 1.2 for p = 2, K = 1 and X ∈ {−1, 0, 1}n such thatX1, X2 . . . , Xn
i.i.d.∼

(1 − ρ)δ0 + ρ
2(δ1 + δ−1) where ρ = 0.05. Left: Asymptotic MMSE (solid blue line)

and MSE of AMP in the high-dimensional limit (dashed orange line, obtained with SE
initialized at q/ρ = 10−6) as functions of ρ2∆−1. Right: Offset RS potential function
q ∈ [0, ρ] 7→ fRS(q,∆) − fRS(0,∆) for ∆−1 below the information theoretic threshold
(top curve), above it but below the algorithmic threshold (middle curve), and above the
algorithmic threshold (bottom curve). Circles indicate global minima and triangles fixed
points reached by SE. Note that circle and triangle differ in location on the middle curve;
hence the computational-to-statistical gap in this region of ∆−1.

than Example 1.2 except that the entries of X ∈ {−1, 0, 1}n are i.i.d. with respect
to (1− ρ)δ0 + ρ

2
(δ1 + δ−1) where ρ = 0.05. We notice a computational-to-statistical

gap; there is an information theoretic threshold for ∆−1 above which the MMSE is
nontrivial18, and an higher algorithmic thereshold above which the MSE of AMP
becomes nontrivial too. Between the two thresholds, AMP does not output an
estimate better than a random guess even if it is statistically possible.

To conclude, let us mention that there exist AMP algorithms for Models 1.1
and 1.2 in tensor estimation [67], [80], [83], [84] as well as for Models 1.3 and 1.4
in generalized linear estimation [28], [85]. The RS formulas that we prove for the
asymptotic normalized mutual information of these different models shed light on
the performance of these algorithms.

1.7 Proving the replica predictions

Thanks to the replica method, we can predict formulas for the normalized mutual
information and MMSE associated with high-dimensional estimation problems.
We are left with proving that these formulas are indeed correct. There is little
hope to obtain a proof by making every step of the replica method mathematically
rigorous. The most famous replica formula is the one conjectured by Parisi for
the SK model of Example 1.5. The two important tools that led to a proof of the
Parisi formula [58], [59] are the Guerra-Toninelli interpolation method [60], [61]
and the Aizenman-Sims-Starr scheme [86].

These tools are not specific to the SK model and they have now been ap-
plied to prove RS formulas for a variety of estimation problems. Proofs go by
first demonstrating that the RS formula is an upper bound on the asymptotic
normalized mutual information, and then that it is a lower bound as well. The

18The MMSE is different from the MSE of a random guess based on the prior of X.
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interpolation method is the way to go in order to establish the upper bound.
Proving the converse bound is in general more difficult. With the exception
of the proof of (1.37) in [66] that is based on a complex interpolation scheme
specific to the case X ∈ {−1, 1}n, it has originally been dealt with thanks to the
Aizenman-Sims-Starr scheme [36], [45]–[47] or spatial coupling [34], [44]. The
latter was primarily developed to construct capacity-achieving error-correcting
codes and later turned into a proof technique [43]. Recently, the interpolation
method has been improved upon [37], [87] so that it can handle the lower bound,
too. This adaptive interpolation method also allows the analysis of broader models,
such as the generalized linear ones [29], that are out of reach of the canonical
interpolation method. Altogether, these improvements offer a unified strategy to
prove RS formulas.

Interpolation method We want to determine what is the normalized mutual
information between a signal X of interest and some observations Y in the high-
dimensional limit. The difficulty of computing the mutual information stems
from the coupling of the signal entries in the observations. The interpolation
method circumvents this problem by analyzing not the original mutual information,
but one whose observations Y(t) depend continuously on a parameter t. This
parameter varies from zero to one in such a way that at t = 0 we recover the
original observations and mutual information, while at t = 1 the signal entries
are not coupled in the observations. Hence, the mutual information at t = 1 has
a simple form that is easy to compute even in the high-dimensional limit. The
choice of the observations at t = 1 is not random but is guided by the RS formula
itself. Indeed, part of the RS potential function is equal to the normalized mutual
information between X and observations in which the entries of X are not coupled.
We thus design the interpolation to mimick these observations when t equals one.

In order to compare the original mutual information to the simple one, we
have to understand how the mutual information evolves when t increases from
zero to one. To do so, we compute its derivative with respect to t and write it as
a sum of two terms. One term matches the part of the RS potential function that
is not explained by the mutual information at t = 1, the other is a remainder that
hopefully has nice properties that we can exploit. The way that the observations
Y(t) depend on t is through functions of t akin to signal-to-noise ratios and
called the interpolation path. In the canonical interpolation method, these are
linear functions of t. Under this choice, the remainder is nonnegative for all
t and we obtain an upper bound on the original mutual information. Instead,
in the adaptive interpolation method, the interpolation path is the solution to
an ordinary differential equation (ODE) in t. The specific form of the ODE is
determined a posteriori. Based on the derivative of the mutual information for a
general interpolation path, we identify what should be the ODE in order to have
a “well-behaved” remainder. Typically, the ODE is such that the remainder has
a constant sign or vanishes completely in the high-dimensional limit. All in all,
the adaptive interpolation method gives us greater leeway in the choice of the
interpolation path. Let us show what the interpolation method looks like on our
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running example.

Example 1.2 (continuing from p. 24). The RS potential function (1.38) can be
rewritten as

fRS(q,∆) :=
(1− q)2

4∆
+ I
(
X;
√
q X +

√
∆ Z̃

)
,

where X is uniformly distributed on {−1, 1} and independent of the standard
Gaussian random variable Z̃. Note that I(X;

√
q X +

√
∆ Z̃) is equal to the

normalized mutual information between X and Ỹ :=
√
qX +

√
∆ Z̃ where the

standard Gaussian random vector Z̃ is independent of X. For this reason, we can
prove the upper bound limn→+∞ I(X ;Y)/n ≤ minq∈[0,1] fRS(q,∆) by considering the
observations {

Y(t) :=
√

1− tXXT +
√

∆ Z

Ỹ(t) :=
√
qtX +

√
∆ Z̃

,

where the interpolation path t ∈ [0, 1] 7→ (1 − t, qt) is linear. We see that
the normalized mutual information I(X;(Y(t),Ỹ(t)))/n equals I(X ;Y)/n at t = 0 and
I(X;

√
q X +

√
∆ Z̃) at t = 1. Hence,

I(X ; Y)

n
= I(X;

√
q X +

√
∆ Z̃)−

∫ 1

0

dI(X ; (Y(t), Ỹ(t)))

ndt
dt .

The upper bound follows from an analysis of the derivative of the normalized
mutual information. Finally, one way to prove the converse lower bound is via an
adaptive interpolation [37].

1.8 Organization and main contributions

This thesis focuses on proving replica symmetric formulas for the normalized
mutual information associated with high-dimensional statistical models. One
of the main by-product of these formulas is the minimum mean-square error of
the estimation task for each of these models. In this thesis, all the proofs of RS
formulas are based on the adaptive interpolation method. They demonstrate its
versatility by extending its applicability to more general settings. The thesis is
broadly divided into two parts; one is dedicated to statistical models for tensor
estimation, the other to generalized linear models. Ahead of these two parts, we
present in Chapter 2 technical tools that are essential to our proofs. We refer to
and heavily use them in all the remaining chapters.

In Chapter 3 we look at what is maybe the simplest instance of Model 1.1,
the estimation of a rank-one matrix UVT/√n whose entries are observed under an
additive white Gaussian noise channel. There exist multiple proofs of the RS
formula when each of U and V has independent and identically distributed entries
[46], [69]. Here we consider a situation where the entries of these vectors are
correlated as both U and V are constrained on spheres of radii O(

√
n) and we

carry out the proof of a RS formula. The formula turns out to be identical to the
one we obtain when the entries of U and V are independent standard Gaussian
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random variables. The result is perhaps unsurprising given that a high-dimensional
standard Gaussian random vector is thinly concentrated around the sphere of
radius

√
n, though it should be noted that models of spherical and Gaussian spin

glasses (where the system is described by a spherical or standard Gaussian random
vector instead of ±1 spins) are not equivalent [88]. The important take out of
this chapter is that the adaptive interpolation can handle non-i.i.d. prior on the
estimated signals. It also serves as an introduction to the adaptive interpolation
method; it lays down on a simple example the main steps of any proof based on it.

In Chapter 4 we go beyond rank-one tensor estimation and study Model 1.2
when the rank K of the tensor buried in noise remains fixed as n diverges. We
prove that the RS formula conjectured in [45] is exact for even-order tensors. Prior
to this work, the formula had been proved in the matrix case (order-2 tensors)
using Guerra’s interpolation technique and the Aizenman-Sims-Starr scheme [36].
Our proof leverages solely on the adaptive interpolation method and is not a trivial
extension of the rank-one case. Ultimately, the proof shows that the method can
handle estimation problems whose overlap order parameter is not a scalar but a
K ×K matrix.

In Chapter 5 we study the impact of a structured spike X ∈ Rn on symmetric
rank-one tensor estimation. The structure does not come from restricting X to
a sphere like in Chapter 3. Instead, X is generated by a latent vector input to
a generalized linear model (think of Model 1.3 with ∆ = 0). We obtain a RS
formula that allows us to analyze how the structure of data can be exploited in
tensor estimation. For example, if the size of the latent vector is small compared
to the size of X then the high-dimensional spike lies on a lower-dimensional
manifold, a kind of structure often exhibited by natural data19, and the tensor can
be estimated in higher noise regimes than when the spike has i.i.d. components.
The proof demonstrates the modularity of the adaptive interpolation. Indeed,
it combines an interpolation scheme similar to the one used in the i.i.d. case
[37] with the RS formula associated with Model 1.3 that was proved by adaptive
interpolation in [87]. This chapter constitutes a natural bridge between this part
on tensor estimation and the next one on generalized linear models.

In Chapter 6 we prove the RS formula associated with a two-layer generalized
linear model (see Model 1.4) and conjectured in [27]. Once again, the proof
shows the modularity of the adaptive interpolation since it interpolates from the
two-layer GLM to two independent channels, a one-layer GLM and a random
vector with i.i.d. entries observed under AWGN. We can thus rely on [29] to
compute the asymptotic normalized mutual information at t = 1. In fact, the
result suggests a proof by induction of the RS formula associated with a L-layer
GLM, where we interpolate from the L-layer GLM to two independent channels,
one of them being a GLM with L− 1 layers.

In Chapter 7 we study Model 1.3 in a high-dimensional regime that is not the
one usually looked at in statistical physics or high-dimensional statistics. Barbier

19The black-and-white scan of a digit is a large matrix where each entry is the intensity of a
pixel. Given that everyone writes digits more or less the same, the scanned digit effectively lives
in a small subspace of all the possible images.
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et al. analyzed this model in the classical thermodynamic regime where the size n of
the signal X diverges while its entries are independent and identically distributed
with respect to a fixed prior distribution [29]. In particular, each entry of the signal
can be nonzero with a fixed probability ρ, yielding a sparse signal X that has ρ ·n
nonzero entries in expectation. In that case, the normalized mutual information
and MMSE associated with the model are nontrivial, with the appearance of phase
transitions, when the number m of measurements scales linearly with n, that is,
the sampling rate m/n converges to a positive value α. In this high-dimensional
regime of linear sparsity and sampling rate, [29] proved a RS formula for the
normalized mutual information . Instead, in Chapter 7, we consider a signal whose
entries are still i.i.d. but they are nonzero with a probability ρn that vanishes in
the high-dimensional limit. The sparsity ρn · n of the signal is thus sublinear in n.
We show that the normalized mutual information and MMSE associated with the
model are nontrivial if the number m of measurements also scales sublinearly with
n. More precisely, we establish that m/n should scale like ρn| ln ρn| and prove a RS
formula in this high-dimensional regime of sublinear sparsity and samping rate.
Our proof extends the adaptive interpolation outside of the regime for which it
was initially developed. We then use the RS formula to show that the MMSE, as
a function of the sampling rate, differs both qualitatively and quantitatively from
the one in the classical high-dimensional regime of [29]. We demonstrate that the
MMSE exhibits sharp phase transitions separating regions where it is constant.
Our results thus generalize the all-or-nothing phenomenon that was evidenced in
[32] and proved in [33] for the linear model with sparse binary signal X.

This thesis is concluded by Chapter 8 where we summarize its findings and
present possible research directions.

Reading guide Chapter 2 lists different tools used in the proofs of all the
following chapters. The reader can skim through or skip this chapter, and come
back to it when needed.

All the Chapters 3 to 7 can be read independently. Chapter 3 is a good
introduction to the adaptive interpolation as we study a model that is relatively
simpler compared to the ones in subsequent chapters. The main contribution of
Chapter 4 is the extension of the adaptive interpolation to estimation problems
where the overlap order parameter is not a scalar but a matrix. Even so the
chapters are independent, it is probably a good advice to the reader not to make
Chapter 4 the first one they read because of its technicality.

Both Chapters 5 and 6 demonstrate the modularity of the adaptive interpola-
tion, but the proof of the RS formula in Chapter 5 is simpler. Besides, Chapter 5
has a discussion of the phenomenology of phase transitions accompanied by figures,
making it more appealing than Chapter 6 if we have to pick between the two.

Finally, in Chapter 7, we study a high-dimensional regime of a different nature
compared to the previous chapters. The adaptive interpolation is only the first
step and the chapter presents a novel technique, specific to this regime, in order to
simplify the RS formula into a discrete minimization problem. The phenomenology
of phase transitions changes, which we discuss and illustrate with figures.
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Toolbox for proofs of replica
symmetric formulas 2
In this chapter we briefly review some of the basic tools that are used repeatedly
and repeatedly in all our proofs of RS formulas. The reader can quickly browse
through the main statements and come back to this chapter when needed.

2.1 Nishimori identity

The Nishimori identity is a simple application of Bayes’ rule. We abundantly use
it in our computations; it is a great tool to simplify expressions and realize that
two – apparently different – quantities are equal.

Lemma 2.1 (Nishimori identity). Let X ∈ Rn and Y ∈ Rm be jointly distributed
random vectors. Let k be a positive integer and x(1), . . . ,x(k) k independent samples
drawn from PX|Y( · |Y), where PX|Y is the conditional probability distribution of
X given Y. We denote by angular brackets 〈−〉 the expectation with respect to
these samples and by E the expectation with respect to (X,Y). Then, for every
continuous function g such that E〈|g(Y,x(1), . . . ,x(k))|〉 < +∞, we have

E 〈g(Y,x(1), . . . ,x(k))〉 = E 〈g(Y,x(1), . . . ,x(k−1),X)〉 .

Proof. Let PX,Y be the probability distribution of (X,Y) and PX, PY the corre-
sponding marginal distribution. A formal computation using Bayes’ rule gives

E 〈g(Y,x(1), . . . ,x(k))〉 =

∫
g(y,x(1), . . . ,x(k))dPY(y)

k∏

i=1

dPX|Y(x(k)|y)

=

∫
g(y,x(1), . . . ,x(k−1),x)dPX,Y(x,y)

k−1∏

i=1

dPX|Y(x(k)|y)

=

∫
〈g(y,x(1), . . . ,x(k−1),x)〉dPX,Y(x,y)

= E〈g(Y,x(1), . . . ,x(k−1),X)〉 .

31
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In words, it is equivalent to draw (X,Y) from its joint distribution, or to first
draw Y from its marginal distribution and then sample X from its probability
distribution given Y. Hence, (Y,x(1), . . . ,x(k)) and (Y,x(1), . . . ,x(k−1),X) are
equal in law.

Note that the Nishimori identity holds only for Bayes optimal inference. It is
not valid when the samples are drawn from a posterior belief (1.6) that does not
agree with the true posterior (1.7). In most cases we use two simple instances of
the Nishimori identity, namely

E〈‖x(1)‖2〉 = E‖X‖2 and E‖〈x(1)〉‖2 = E〈x(1) · x(2)〉 = E〈x(1) ·X〉 ,
where · denotes the inner product inducing the norm ‖ · ‖.

2.2 Gaussian integration by parts

Lemma 2.2 (Gaussian integration by parts). Let Z be a standard Gaussian
random variable and f : R 7→ R an absolutely continuous function such that
E|f ′(Z)| < +∞. Then,

E[Zf(Z)] = E[f ′(Z)]

Proof. The proof given here follows the one given in [92]. If f has compact support
in (a, b) then the result follows from an integration by parts,

E[Zf(Z)] =

∫ b

a

zf(z)
e−

z2

2 dz√
2π

=

[
− f(z)

e−
z2

2√
2π

]b

a

+

∫ b

a

f ′(z)
e−

z2

2 dz√
2π

= E[f ′(Z)] .

Otherwise, suppose that all of E|f(Z)|, E|Zf(Z)|, E|f ′(Z)| are finite. We consider
the sequence of absolutely continuous functions fn : z 7→ f(z)g(z/n) where g
is continuously differentiable, takes value 1 on [−1, 1], and is 0 outside [−2, 2].
Hence, fn is compactly supported on [−2, 2] and E[Zfn(Z)] = E[f ′n(Z)]. Let C
and C ′ be positive real numbers that upper bound |g| and |g′|, respectively. The
sequence (fn)n≥1 converges pointwise to f and |zfn(z)| ≤ C|zf(z)| for all z so, by
the dominated convergence theorem, limn→+∞ E[Zfn(Z)] = E[Zf(Z)]. Similarly,
(f ′n)n≥1 converges pointwise to f ′ and |f ′n(z)| ≤ C ′|f ′(z)| + C|f(z)| for all z so
limn→+∞ E[f ′n(Z)] = E[f ′(Z)]. It follows that E[Zf(Z)] = E[f ′(Z)].

Finally, if E|f ′(Z)| < +∞ then E|Zf(Z)| < +∞ because
+∞∫

0

|zf(z)|e
− z2

2√
2π
dz =

+∞∫

0

z

∣∣∣∣f(0) +

∫ z

0

f ′(x)dx

∣∣∣∣
e−

z2

2√
2π
dz

≤ |f(0)|√
2π

+

+∞∫

0

z
e−

z2

2√
2π
dz

∫ z

0

|f ′(x)|dx

≤ |f(0)|√
2π

+

+∞∫

0

|f ′(x)|dx
+∞∫

x

z
e−

z2

2√
2π
dz ≤ |f(0)|√

2π
+

+∞∫

0

|f ′(x)|e
−x2

2√
2π
dx ,

and E|f(Z)| ≤ supx∈[−1,1] |f(x)|+ E|Zf(Z)| < +∞.
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In general, we have to deal with expectations of the form E[Zf(Z,U)] where U
are all the other sources of randomness in our problem. In this case, if Z ∼ N (0, 1)
is independent of U, the Gaussian integration by parts reads

E[Zf(Z,U)] = E
[
∂f(Z,U)

∂Z

]
.

2.3 Mutual information of simple Gaussian
channels

The RS potential functions to optimize in the RS formulas involve mutual infor-
mations associated with low-dimensional – most often scalar – Gaussian channels.
We rely on properties of these mutual informations to prove the RS formulas.

Lemma 2.3. Let PX be a probability distribution on R with finite second moment,
i.e., EX2 < +∞ where X ∼ PX . Let Z be a standard Gaussian random variable
independent of X. For all R ∈ R+, we define the mutual information

IPX (R) := I(X;
√
RX + Z) ,

and

ψPX (R) := E
[

ln

∫
dPX(x) exp

(
(RX +

√
RZ)x− Rx2

2

)]
.

Then,

IPX (R) =
REX2

2
− ψPX (R) .

The function ψPX : R ∈ R+ → R is nondecreasing, convex and Lipschitz con-
tinuous with Lipschitz constant (EX2/2). Equivalently, IPX : R ∈ R+ → R+ is
nondecreasing, concave and (EX2/2)-Lipschitz continuous. Besides, if PX is not a
deterministic distribution then ψPX is strictly convex, and IPX is strictly concave.

Lemma 2.4. Let K be a positive integer and PX a probability distribution on
RK with a finite matrix of second moments denoted ΣX := EXXT, X ∼ PX . Let
Z ∈ RK be a standard Gaussian random vector independent of X. Let S+

K be the
cone of K × K symmetric positive semidefinite matrices. For all R ∈ S+

K, we
define the mutual information

IPX (R) := I(X;
√
RX + Z) ,

where
√
R is the positive semidefinite square root of R, and

ψPX (R) := E
[

ln

∫
dPX(x) exp

(
(RX +

√
RZ)Tx− xTRx

2

)]
.

Then,

IPX (R) =
Tr(RΣX)

2
− ψPX (R) .
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The function ψPX : R ∈ R+ → R is convex and Lipschitz continuous with Lipschitz
constant Tr(ΣX)/2, that is, ∀(R,Q) ∈ (S+

K)2:

|ψPX (R)− ψPX (Q)| ≤ Tr(ΣX)

2
‖R−Q‖2 ,

where ‖ · ‖2 is the matrix norm induced by the Euclidean norm on vectors. Equiv-
alently, IPX : R ∈ S+

K → R+ is concave and Tr(ΣX)/2-Lipschitz continuous.

Lemma 2.3 is just a specialization of Lemma 2.4 for K = 1 and we prove the
lemmas for a general K ≥ 1 directly. It is a good exercise to read through the
proof; it shows on a simple example how we use Gaussian integration by parts
and the Nishimori identity to compute and simplify the derivative of a mutual
information in the rest of this thesis.

Proof of Lemma 2.3 and 2.4. Fix R ∈ S+
K and define YR :=

√
RX + Z. The

posterior distribution of X given YR is simply

dP (x |YR) :=
1

ZR(YR)
dPX(x) exp

(
Y T
R

√
Rx− xTRx

2

)
, (2.1)

where ZR(YR) =
∫
dPX(x) exp

(
Y T
R

√
Rx − xTRx

2

)
. The angular brackets 〈−〉R

denote an expectation with respect to x drawn from the posterior (2.1). Note
that ψPX (R) = E lnZR(YR) and

IPX (R) = −E
[

ln

(
ZR(YR)

e−
‖Y ‖2

2

(2π)K/2

)]
+ E

[
ln
e−
‖Z‖2

2

(2π)K/2

]
=

Tr(RΣX)

2
− ψPX (R) .

Thanks to this identity, the properties of IPX follow directly from those of ψPX .
We now fix S0, S1 in the cone of positive definite matrices S++

K and define
R : t ∈ [0, 1] 7→ (1− t)S0 + tS1. We prove that ψ : t ∈ [0, 1] 7→ ψPX (R(t)) is
convex and Lipschitz continuous with Lipschitz constant Tr(ΣX)‖S1−S0‖2/2. It directly
implies the properties of ψPX on S++

K and, by continuity, on S+
K , the closure of

S++
K . The derivative of ψ : t 7→ E lnZR(t)(YR(t)) reads

ψ′(t) = E
[
∂ lnZR(t)(YR(t))

∂t

]
= E

[
1

ZR(t)(YR(t))

∂ZR(t)(YR(t))

∂t

]

= E
[〈
XT(S1 − S0)x− xT(S1 − S0)x

2
+ ZTd

√
R(t)

dt
x
〉
R(t)

]
. (2.2)

To simplify ψ′(t), we perform a Gaussian integration by parts with respect to each
entry of Z,

E
[〈
ZTd

√
R(t)

dt
x
〉
R(t)

]
= E

[
ZT

∫
d
√
R(t)

dt
x
e(R(t)X+

√
R(t)Z)Tx−x

TR(t)x
2

ZR(t)(YR(t))
dPX(x)

]

= E
[〈
xT
√
R(t)

d
√
R(t)

dt
x
〉
R(t)

]
− E

[
〈xT〉R(t)

√
R(t)

d
√
R(t)

dt
〈x〉R(t)

]
. (2.3)
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By symmetry of
√
R(t), we have ∀v ∈ RK :

vT
√
R(t)

d
√
R(t)

dt
v =

1

2
vT
√
R(t)

d
√
R(t)

dt
v +

1

2
vT
(√

R(t)
d
√
R(t)

dt

)T
v

= vT
(√

R(t)

2

d
√
R(t)

dt
+
d
√
R(t)

dt

√
R(t)

2

)
v

= vT
dR(t)

2dt
v = vT

S1 − S0

2
v . (2.4)

Thanks to (2.4), (2.3) further simplifies to

E
[〈
ZTd

√
R(t)

dt
x
〉
R(t)

]
= E

[〈
xT
S1 − S0

2
x
〉
R(t)

]
− E

[
〈xT〉R(t)

S1 − S0

2
〈x〉R(t)

]
.

We plug this last identity back in (2.2), and use the Nishimori identity

E[XT(S1 − S0)〈x〉R(t)] = E[〈xT〉R(t)(S1 − S0)〈x〉R(t)] ,

to finally obtain

ψ′(t) = E
[
〈xT〉R(t)

S1 − S0

2
〈x〉R(t)

]
.

When K = 1 and S0 < S1, we see that ψ′(t) = (S1−S0)/2E[〈x〉2R(t)] ≥ 0 so ψPX is
nondecreasing on [0,+∞). Whatever K, we have for all t ∈ [0, 1]:

|ψ′(t)| ≤ E
∣∣∣〈xT〉R(t)

S1 − S0

2
〈x〉R(t)

∣∣∣ ≤ E
[∥∥〈x〉R(t)

∥∥2]‖S1 − S0‖2

2
, (2.5)

where the first inequality follows from Jensen’s inequality and the second from
the definition of the matrix norm. Applying first Jensen’s inequality, and then
the Nishimori identity, the expectation on the right-hand side of (2.5) satisfies

E
[∥∥〈x〉R(t)

∥∥2] ≤ E
〈
‖x‖2

〉
R(t)

= E‖X‖2 = Tr(ΣX) .

Hence, |ψ′(t)| ≤ Tr(ΣX)‖S1−S0‖2/2 and ψ is Lipschitz continuous with Lipschitz
constant Tr(ΣX)‖S1−S0‖2/2. We now differentiate ψ′(t) = E[XT S1−S0

2
〈x〉R(t)],

ψ′′(t) = E
[
XTS1−S0

2

〈
x

(
XT(S1−S0)x− xT(S1−S0)x

2
+ ZTd

√
R(t)

dt
x

)〉

R(t)

]

− E
[
XTS1−S0

2
〈x〉R(t)

〈
XT(S1−S0)x− xT(S1−S0)x

2
+ ZTd

√
R(t)

dt
x

〉

R(t)

]

=
1

2
E
[〈

(XT(S1 − S0)x)2
〉
R(t)

]
− E

[(
XT(S1 − S0)〈x〉R(t)

)2 ]

+
1

2
E
[(
〈x〉TR(t)(S1 − S0)〈x〉R(t)

)2 ] (2.6)

To get the second equality, we first perform a Gaussian integration by parts with
respect to Z, and then use the Nishimori identity and (2.4) to further simplify the
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expression. We want to show that ψ′′(t) ≥ 0 to prove that ψ is convex. We have

E
[〈

(XT(S1 − S0)x)2
〉
R(t)

]
− E

[〈
XT(S1 − S0))x

〉2

R(t)

]

= E
〈(
XT(S1 − S0)(x− 〈x〉R(t))

)2〉
R(t)

,

E
[(
XT(S1 − S0)〈x〉R(t)

)2 ]− E
[(
〈x〉TR(t)(S1 − S0)〈x〉R(t)

)2 ]

= E
[(
〈x〉TR(t)(S1 − S0)(X − 〈x〉R(t))

)2 ]
.

Both identities can be checked by extending the square on the right-hand side and
using the Nishimori identity E[(XT(S1−S0)〈x〉R(t))

2] = E[(〈x〉TR(t)(S1−S0)〈x〉R(t))
2].

We use these identities to simplify (2.6) further,

ψ′′(t) =
E
〈(
XT(S1 − S0)(x− 〈x〉R(t))

)2〉
R(t)
− E

[(
〈x〉TR(t)(S1 − S0)(X − 〈x〉R(t))

)2 ]

2
.

The numerator in this last expression is nonnegative because

E
[(
〈x〉TR(t)(S1 − S0)(X − 〈x〉R(t))

)2 ]
= E

〈
xT(S1 − S0)(X − 〈x〉R(t))

〉2
R(t)

≤ E
〈(
xT(S1 − S0)(X − 〈x〉R(t))

)2 〉
R(t)

= E
〈(
XT(S1 − S0)(x− 〈x〉R(t))

)2〉
R(t)

, (2.7)

where the inequality follows from Jensen’s inequality and the subsequent equality
from the Nishimori identity. All in all, ψ′′(t) ≥ 0 for all t ∈ [0, 1] and ψ is convex.
When K = 1, we can directly factor (2.6) into

ψ′′(t) =
(S1 − S0)2

2
E
[(
〈x2
〉
R(t)
− 〈x

〉2

R(t)

)2 ]
=

(S1 − S0)2

2
E
[〈

(x− 〈x〉R(t))
2
〉2

R(t)

]
.

If S0 < S1, we see that ψ′′(t) = 0 if, and only if, x = 〈x〉R(t) almost surely (where
x ∼ dP ( · |YR(t))). The latter is equivalent to PX being deterministic. Hence, ψ is
strictly convex if PX is not deterministic.

2.4 Concentration inequalities

We explain in Section 1.7 how we prove a RS formula for the asymptotic normalized
mutual information by interpolating from the original channel at t = 0 to a simpler
channel at t = 1. To understand how the mutual informations associated with
the two extremes relate to each other, we study the derivative of the normalized
mutual information with respect to t ∈ (0, 1).

As discussed in Section 1.4, the normalized mutual information at t is directly
related to the average free entropy E lnZt/n, where Zt is the normalization factor
of the posterior distribution associated with the interpolating estimation problem.
Being a function of the noisy observations Yt, Zt is itself a random variable. In
order to control some terms in the derivative of the normalized mutual information,
we have to show that the free entropy lnZt/n is tightly concentrated around its
mean E lnZt/n in the high-dimensional limit n→ +∞. We prove the latter thanks
to the classical variance bounds stated below.
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Proposition 2.5 (Efron-Stein inequality). Let U1, . . . , UN , U
′
1, . . . , U

′
N be 2N

independent random variables with Ui and U ′i having the same distribution for
all i ∈ {1, . . . , N}. Let U ⊆ RN be the support of U := (U1, U2, . . . , UN) and
g : U → R a function such that g(U) is square integrable. For all i ∈ {1, . . . , N},
U(i) is the random vector obtained from U by replacing Ui by U ′i , that is,

U(i) := (U1, . . . , Ui−1, U
′
i , Ui+1, . . . , UN) .

Then,

Var g(U) ≤ 1

2

N∑

i=1

E
[(
g(U)− g(U(i))

)2 ]
.

Proposition 2.6 (McDiarmid’s inequality). Let U be a subset of R. Let g : UN→R
be a function that satisfies the bounded difference property, i.e., there exist constants
c1, c2, . . . , cN such that ∀i ∈ {1, . . . , N}:

sup
(u1,...,uN )∈UN

u′i ∈U

∣∣g(u1, . . . , ui, . . . , uN)− g(u1, . . . , ui−1, u
′
i, ui+1, . . . , uN)

∣∣ ≤ ci .

Let U := (U1, U2, . . . , UN) where U1, U2 . . . , UN are independent random variables
supported on U . Then,

Var g(U) ≤ 1

4

N∑

i=1

c2
i .

Proposition 2.7 (Gaussian Poincaré inequality). Let U = (U1, U2, . . . , UN) be a
vector of N independent standard Gaussian random variables. Let g : RN → R be
a continuously differentiable function and ∇g : RN → RN its gradient. Then,

Var g(U) ≤ E
∥∥∇g(U)

∥∥2
.

McDiarmid’s inequality and the Gaussian Poincaré inequality are proved
thanks to the more general Efron-Stein inequality. We refer to [93, Chapter 3] for
proofs of all these propositions.

We stated earlier that we use the concentration of the free entropy to control
terms in the derivative of the normalized mutual information. However, the
average free entropy is equal (up to some additive term) to the normalized mutual
information, not to its derivative. Hence, what we ultimately need is a result on
the concentration of the partial derivative of the free entropy with respect to an
SNR. Thanks to the next lemma, we can use upper bounds on the variance of the
free entropy lnZt/n in order to bound the variations of the partial derivative.

Lemma 2.8 (Bound on difference of derivatives of convex functions). Let G and
g be two differentiable convex functions defined on a real interval I ⊆ R. Let r ∈ I
and δ > 0 be such that r ± δ ∈ I. Then, Cδ(r) := g′(r + δ)− g′(r − δ) ≥ 0 and

|G′(r)− g′(r)| ≤ Cδ(r) +
1

δ

∑

u∈{−δ,0,δ}
|G(r + u)− g(r + u)| .
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Proof. Fix r ∈ I and δ > 0 such that r± δ ∈ I. The functions G and g are convex
so G′(r) ≤ G(r+δ)−G(r)

δ
, g′(r − δ) ≤ g′(r) and g(r+δ)−g(r)

δ
≤ g′(r + δ). Hence,

G′(r)− g′(r) ≤ G(r + δ)−G(r)

δ
− g′(r − δ)

≤ G(r + δ)−G(r)

δ
− g(r + δ)− g(r)

δ
+ g′(r + δ)− g′(r − δ)

=
G(r + δ)− g(r + δ)

δ
− G(r)− g(r)

δ
+ Cδ(r)

=
|G(r + δ)− g(r + δ)|

δ
+
|G(r)− g(r)|

δ
+ Cδ(r) . (2.8)

Similarly, using g′(r) ≤ g′(r + δ), G(r)−G(r−δ)
δ

≤ G′(r) and g′(r − δ) ≤ g(r)−g(r−δ)
δ

,
we have

g′(r)−G′(r) ≤ g′(r + δ)− G(r)−G(r − δ)
δ

≤ g′(r + δ)− g′(r − δ) +
g(r)− g(r − δ)

δ
− G(r)−G(r − δ)

δ

= Cδ(r) +
G(r − δ)− g(r − δ)

δ
+
g(r)−G(r)

δ

=
|G(r − δ)− g(r − δ)|

δ
+
|G(r)− g(r)|

δ
+ Cδ(r) . (2.9)

The desired upper bound on |G′(r)−g′(r)| directly follows from (2.8) and (2.9).

Roughly speaking, we apply Lemma 2.8 to g(r) = − lnZt/n+Cr2, G(r) = E[g(r)],
where r is an SNR of the problem and the quadratic perturbation Cr2 with C a
positive random variable makes g convex (then G is convex as well).
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High-dimensional rank-one
nonsymmetric matrix estimation:
the spherical case 3
3.1 Introduction

Tensor decomposition, which originated with Hitchcock in 1927 [2], has found
many applications in signal processing, graph analysis, data mining and machine
learning in the past two decades [6], [13], [94]. While tensor decomposition was
originally developed in a deterministic and algebraic context, it is of interest
for these applications to develop a statistical approach [19]. Some important
questions in this setting are, for example, under which conditions and how can we
recover a low-rank tensor – the signal of interest – from noisy observations of it?
This work focuses on answering – at least in part – these questions in the most
elementary, but yet rich, setting of a nonsymmetric rank-one matrix signal buried
within noise. Namely, we observe under additive white Gaussian noise (AWGN)
a nu × nv rank-one matrix UVT where U and V are random vectors that we
wish to recover as well as possible. This problem, and its symmetric version, have
generated important results in the past ten years [95], [96].

Our approach is in the continuity of a line of research establishing low-
dimensional variational formulas for the normalized mutual information between
a signal of interest and noisy observations in the high-dimensional regime [29],
[36], [46], [97]. Such formulas are valuable because they link the mutual informa-
tion of a high-dimensional channel whose outputs are coupled to those of simple
decoupled scalar channels. We can then determine, by solving a low-dimensional
variational problem, phase transitions as well as performance measures related to
the minimum mean-square error (MMSE). We also gain important insight on the
performance of (message passing) algorithms designed to estimate input signals.
In fact, the fixed points of the state evolution equations tracking the performance
of approximate message passing in the high-dimensional regime can be identified
among the critical points of the variational expression for the mutual information.

For the problem at hand, the variational formula – that was predicted using
the replica trick from statistical physics – has already been proven rigorously when
U and V have independent and identically distributed (i.i.d.) entries[36], [46].

41
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These results were extended beyond the matrix case to rank-one nonsymmetric
tensor decomposition [69], [84]. The replica prediction has also been shown to be
true for low-rank symmetric tensor decomposition [36], [89].

A natural follow-up interrogation is what happens when either U or V doesn’t
have independent entries anymore. Can the average mutual information in the
high-dimensional regime still be given by a simple, low-dimensional, variational
formula? In this work, we study the simple case in which both U and V are
uniformly distributed on spheres (whose radii scale like

√
nu and

√
nv, respectively)

and give a rigorous and positive answer to the question above. To the best of our
knowledge fully rigorous results on this issue are scarce. Recently, [98] analyzed
(under natural assumptions) another situation in which U and V are generated
by a generalized linear model.

In Section 3.2 we present the problem and our main results. In Section 3.3
we give the reader an outline of the proof of the variational formula for the
average mutual information. We conclude in Section 3.4 with a discussion of the
relation between the present problem and the classical spherical spin-glass model
of statistical mechanics.

3.2 Problem setting and main results

Let nu, nv be positive integers and ρu, ρv positive real numbers. Let U ∈ Rnu and
V ∈ Rnv be independent random vectors uniformly distributed on the spheres
of radii √ρunu and √ρvnv, respectively. We denote Pu and Pv their respective
probability distributions. We consider the task of estimating both vectors U and V
from a noisy version of the scaled rank-one matrix UVT. More precisely, we observe
the matrix Y ∈ Rnu×nv whose entries are ∀(i, j) ∈ {1, . . . , nu} × {1, . . . , nv}:

Yij :=

√
λ

n
UiVj + Zij . (3.1)

Here, the elements of the noise Z := {Zij}i,j ∈ Rnu×nv are standard Gaussian
random variables, the positive real number λ plays the role of a signal-to-noise
ratio (SNR), and the positive integer n scales like nu and nv, i.e., there exist
positive real numbers αu and αv such that

lim
n→+∞

nu
n

= αu , lim
n→+∞

nv
n

= αv . (3.2)

The normalization 1/
√
n in (3.1) with the scaling (3.2) makes the estimation

problem nontrivial. Finally, we define the vector of hyperparameters for this
problem, Θ := [λ αu αv ρu ρv].

3.2.1 Variational formula for the normalized mutual
information

A central role is played by the normalized mutual information associated with a
simple linear AWGN channel.
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Lemma 3.1. Let X be a n-dimensional random vector uniformly distributed on
the sphere of radius

√
n. The vector X is observed at the output of the noisy linear

channel
Ỹ :=

√
mX + Z̃ , (3.3)

where Z̃i i.i.d.∼ N (0, 1) for i = 1, . . . , n and m > 0 plays the role of a SNR. The
normalized mutual information between X and Ỹ converges in the high-dimensional
limit and

lim
n→+∞

I(X ; Ỹ)

n
=

ln(1 +m)

2
. (3.4)

Note that the limit is equal to the normalized mutual information between X
and Ỹ where this time the entries of the signal X are i.i.d. with respect to N (0, 1).
It is well-known that such a vector X is approximately uniformly distributed on
the sphere of radius

√
n in high-dimension [99, Section 3.3.3]. We now use (3.4)

to describe the normalized mutual information between (U,V) and Y.

Theorem 3.2. Define the replica symmetric (RS) potential function

iRS(mu,mv; Θ) :=
λαuαv

2
(ρu −mu)(ρv −mv)

+ αu
ln(1 + λαvρumv)

2
+ αv

ln(1 + λαuρvmu)

2
. (3.5)

In the high-dimensional limit n → +∞ where nu/n → αu and nv/n → αv, the
normalized mutual information between (U,V) and Y defined by (3.1) satisfies

lim
n→+∞

I(U,V ; Y)

n
= inf

mu∈[0,ρu]

sup
mv∈[0,ρv ]

iRS(mu,mv; Θ) . (3.6)

We prove Theorem 3.2 in Section 3.3. Note that the last two summands in
(3.5) are the asymptotic normalized mutual informations associated with two
decoupled linear AWGN channels (Z̃, Z are standard Gaussian random vectors),

lim
n→+∞

I(U ;
√
λαvmv U + Z̃)

n
=
αu ln(1 + λαvρumv)

2
,

lim
n→+∞

I(V ;
√
λαumu V + Z)

n
=
αv ln(1 + λαuρvmu)

2
.

We remark that the limit of I(U,V;Y)/n is the same if both U and V have i.i.d.
standard Gaussian components (see [46], [69]). The equivalence of the spherical
and Gaussian cases is not an obvious fact when it comes to make a precise
argument. We discuss this point further in Section 3.4.

3.2.2 Minimum mean-square error

It is well-known that the mean-square error of an estimator of UVT that is only
a function of Y is minimized by the posterior mean E[UVT|Y]. We denote by
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MMSEλ(UVT|Y) the minimum mean-square error,

MMSEλ(UVT|Y) :=
E ‖UVT − E[UVT|Y]‖2

nunv
(3.7)

It depends on λ through the observations Y. We combine Theorem 3.2 with the
I-MMSE relationship [51]

∂

∂λ

(
I(U,V; Y)

n

)
=
nu
n

nv
n

MMSEλ(UVT|Y)

2

to get the asymptotic MMSE. The proof is given in Appendix 3.F.

Theorem 3.3. Define λIT := (ρuρv
√
αuαv)

−1 and for all λ ∈ (0,+∞):

(
m∗u(λ),m∗v(λ)

)
=

{
(0 , 0) if 0 < λ ≤ λIT(

λ2αuαvρ2
vρ

2
u−1

λαuρv(1+λαvρvρu)
, λ2αuαvρ2

vρ
2
u−1

λαvρu(1+λαuρvρu)

)
if λ > λIT

.

The pair (m∗u(λ),m∗v(λ)) is the unique solution to the extremization over (mu,mv)
on the right-hand side of (3.6), and MMSEλ(UVT|Y) satisfies

lim
n→+∞

MMSEλ(UVT|Y) = ρuρv −m∗u(λ)m∗v(λ) . (3.8)

Hence, the asymptotic MMSE is less than ρuρv if, and only if, λ > λIT.

Theorems 3.2 and 3.3 provide important insight on the inference problem.
Nonanalytic points of (3.6) correspond to the location of phase transitions where
the MMSE changes behavior. In the present problem, we find by an explicit
analysis a unique continuous phase transition point λIT. The mutual information
is continuously differentiable for all λ > 0 and its second derivative has a jump at
λIT. Correspondingly, the MMSE is continuous with a jump in its first derivative
at λIT. More precisely, the MMSE is ρuρv for λ ≤ λIT and it continuously departs
from ρuρv once λ becomes greater than λIT. Thus, λIT is the lowest SNR for
which an estimate of the matrix UVT is information-theoretically possible. The
general phenomenological picture has been uncovered in a number of situations
(including richer ones) by direct analysis of the RS formula for the asymptotic
normalized mutual information. We refer to [97] for more details.

In Figure 3.1, we use Theorem 3.3 and draw the asymptotic MMSE as a function
of the signal-to-noise ratio λ for different values of αv and αu = ρu = ρv = 1. We
see that the asymptotic MMSE decreases as λ or αv increases. In Figure 3.2, we
plot the asymptotic MMSE in the plane (x, y) = (λρuρvαu, λρuρvαv). Note that
y = x−1 if, and only, if λ = λIT. Above the curve y = x−1 it becomes statistically
possible to do better than the trivial estimate E[UVT] = 0.

3.3 Proof of Theorem 3.2

We present in this section the main ideas and steps in the proof of Theorem 3.2.
We refer to the appendices, that contain all the technicalities of the proof, when
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Figure 3.1: Asymptotic MMSE, normalized by ρuρv, as a function of λ for different
values of αv and αu = ρu = ρv = 1. Each of the dashed vertical lines is located at the
information-theoretic threshold λIT of the corresponding αv.
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Figure 3.2: Asymptotic MMSE, normalized by ρuρv, plotted in the plane
(x, y) = (λρuρvαu, λρuρvαv). The dashed orange curve is the curve y = x−1 ⇔ λ = λIT.
Below this curve the normalized MMSE is maximum equal to 1, i.e., it is not possible to
give an estimate better than E[UVT] = 0.

necessary. The proof is based on the adaptive interpolation method introduced in
[37], [87]. The main difference with the canonical interpolation method developed
by Guerra and Toninelli in the context of spin glasses [60], [61] is the increased
flexibility in choosing the path followed by the interpolation between its two
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extremes. By choosing two different interpolation paths, we bound the asymptotic
normalized mutual information from above and below by the same variational
formula. We can reduce the proof to the case λ = 1 as we can always rescale ρu
to λρu and λ to 1.

3.3.1 Adaptive path interpolation

We introduce a real parameter t ∈ [0, 1]. The adaptive interpolation interpolates
from the original channel (3.1) at t = 0 to two independent channels similar
to (3.3) at t = 1, one for U and the other for V. In between, we follow an
interpolation path

R(·, ε) = (Ru(·, ε), Rv(·, ε)) ,
where Ru(·, ε) and Rv(·, ε) are continuously differentiable functions from [0, 1] to
[0,+∞) parametrized by a “small perturbation” ε = (εu, εv) ∈ [0,+∞)2 and such
that R(0, ε) = ε. More precisely, for t ∈ [0, 1], we observe





Y(t) :=
√

1−t
n

U VT + Z

Ỹ(t,ε) :=
√
αvRv(t, ε) U + Z̃

Y
(t,ε)

:=
√
αuRu(t, ε) V + Z

, (3.9)

where U ∼ Pu, V ∼ Pv and all the noises Z ∈ Rnu×nv , Z̃ ∈ Rnu , Z ∈ Rnv have i.i.d.
entries with respect to N (0, 1). Applying Bayes’ rule, the posterior distribution
of (U,V) given (Y(t), Ỹ(t,ε),Y

(t,ε)
) is

dP (u,v|Y(t), Ỹ(t,ε),Y
(t,ε)

) :=
dPu(u)dPv(v) e−Ht,ε(u,v;Y(t),Ỹ(t,ε),Y

(t,ε)
)

Zt,ε(Y(t), Ỹ(t,ε),Y
(t,ε)

)
, (3.10)

where we introduced the interpolating Hamiltonian

Ht,ε(u,v; Y(t), Ỹ(t,ε),Y
(t,ε)

) :=
nu∑

i=1

nv∑

j=1

1− t
2n

u2
i v

2
j −

√
1− t
n

uivjY
(t)
ij

+
nu∑

i=1

αvRv(t, ε)

2
u2
i −

√
αvRv(t, ε)uiỸ

(t,ε)
i

+
nv∑

j=1

αuRu(t, ε)

2
v2
j −

√
αuRu(t, ε) vjY

(t,ε)

j , (3.11)

and Zt,ε(Y(t), Ỹ(t,ε),Y
(t,ε)

) properly normalizes the posterior. Note that (3.11)
could be simplified using the spherical constraints,e.g.,

∑
i u

2
i = ρunu, but this

general form is convenient for the analysis. We denote by angular brackets 〈−〉t,ε
the expectation with respect to (w.r.t.) the posterior distribution (3.10), i.e.,

〈g(u,v)〉t,ε =

∫
g(u,v) dP (u,v|Y(t), Ỹ(t,ε),Y

(t,ε)
) .
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The interpolating average free entropy defined as

fn(t, ε) :=
1

n
E lnZt,ε

(
Y(t), Ỹ(t,ε),Y

(t,ε)) (3.12)

is intimately linked to the normalized mutual information. In particular,

fn := fn(0, 0) =
nunvρuρv

2n2
− I(U,V; Y)

n
.

Hence, Theorem 3.2 is equivalent to

lim
n→∞

fn = sup
mu

inf
mv

φRS(mu,mv; Θ) , (3.13)

where the potential φRS is defined, using ϕ : m ∈ [0,+∞) 7→ (m−ln(1+m))/2, by

φRS(mu,mv; Θ) :=αuϕ(αvρumv) + αvϕ(αuρvmu)−
αuαvmumv

2
.

Looking at how fn(t, ε) varies from t = 0 to t = 1 yields the following important
sum-rule that we evaluate for different interpolation paths later.

Proposition 3.4. Define the scalar overlaps Qu := uTU
nu

and Qv := vTV
nv

. Denote
R′u(·, ε), R′v(·, ε) the derivatives of Ru(·, ε), Rv(·, ε), respectively. Assume that
R′u(t, ε) and R′v(t, ε) are uniformly bounded for (t, ε) ∈ [0, 1]× [0,+∞)2. Then,

fn = O(‖ε‖) + On(1) + αuϕ(αvρuRv(1, ε)) + αvϕ(αuρvRu(1, ε))

− αuαv
2

∫ 1

0

dtR′u(t, ε)R
′
v(t, ε) +

αuαv
2

∫ 1

0

dtE
〈
(Qu−R′u(t, ε))(Qv−R′v(t, ε))

〉
t,ε
,

where On(1) is a quantity that vanishes uniformly in ε as n gets large, and O(‖ε‖)
is a quantity whose absolute value is upper bounded by C‖ε‖ for some constant C
independent of both n and ε.

Proof. If we evaluate (3.12) at both extremes of the interpolation, we get

fn(0, ε) = fn(0, 0) +O(‖ε‖) = fn +O(‖ε‖)
and

fn(1, ε) = αuϕ(αvρuRv(1, ε)) + αvϕ(αuρvRu(1, ε)) + On(1) ,

where O(‖ε‖) and On(1) are the quantities defined in the proposition. The first
identity follows from fn(0, ·) being Lipschitz continuous and the second one from
a direct application of Lemma 3.1, see Lemma 3.7 in Appendix 3.B for a detailed
proof. We obtain the proposition by combining these identities at t = 0 and t = 1
with the fundamental theorem of calculus,

fn(0, ε) = fn(1, ε)−
∫ 1

0

f ′n(t, ε)dt

where f ′n(·, ε) is the derivative of fn(·, ε). We compute f ′n(·, ε) using Gaussian
integration by parts (Lemma 2.2) and the Nishimori identity (Lemma 2.1), see
Lemma 3.8 in Appendix 3.B.
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3.3.2 Interpolation paths as solutions to ODEs

To prove Theorem 3.2, we lower bound lim infn fn and upper bound lim supn fn
by the same quantity supmu infmv φRS(mu,mv; Θ). To do so, we plug two different
choices for R(·, ε) in the sum-rule of Proposition 3.4. In both cases, R(·, ε) is the
solution to a first-order ordinary differential equation (ODE). We now describe
these ODEs before diving further into the proofs of the matching bounds.

For t ∈ [0, 1] and R = (Ru, Rv) ∈ [0,+∞)2, consider the problem of estimating
(U,V) from the observations





Y(t) :=
√

1−t
n

U VT + Z

Ỹ(t,Rv) :=
√
αvRv U + Z̃

Y
(t,Ru)

:=
√
αuRu V + Z

, (3.14)

where U ∼ Pu, V ∼ Pv and all the noises Z ∈ Rnu×nv , Z̃ ∈ Rnu , Z ∈ Rnv have
i.i.d. entries with respect to N (0, 1). The posterior distribution of (U,V) given
(Y(t), Ỹ(t,Rv),Y

(t,Ru)
) is, up to the normalization factor,

dP (u,v|Y(t), Ỹ(t,Rv),Y
(t,Ru)

) ∝ dPu(u)dPv(v)e−Ht,R(u,v;Y(t),Ỹ(t,Rv),Y
(t,Ru)

) ,
(3.15)

where Ht,R denotes the associated Hamiltonian,

Ht,R(u,v; Y(t), Ỹ(t,Rv),Y
(t,Ru)

) :=
nu∑

i=1

nv∑

j=1

1− t
2n

u2
i v

2
j −

√
1− t
n

uivjY
(t)
ij

+
nu∑

i=1

αvRv

2
u2
i −

√
αvRv uiỸ

(t,Rv)
i

+
nv∑

j=1

αuRu

2
v2
j −

√
αuRu vjY

(t,Ru)

j .

The angular brackets 〈−〉t,R denote the expectation w.r.t. the posterior (3.15).
Remember the definitions of the overlaps Qu and Qv in Proposition 3.4. We define

Fv(t, R) := E〈Qv〉t,R , Fu(t, R) := 2ρuϕ
′(αvρuE〈Qv〉t,R) .

Let mu ∈ [0, ρu]. We consider the following first-order ODEs with initial value
ε ∈ [0,+∞)2:

g′ =
(
mu, Fv(t, g)

)
, g(0) = ε ; (3.16)

g′ =
(
Fu(t, g), Fv(t, g)

)
, g(0) = ε . (3.17)

The next proposition sums up useful properties on the solutions of these two ODEs,
i.e., our two kinds of interpolation paths. The proof is given in Appendix 3.C.

Proposition 3.5. For all ε ∈ [0,+∞)2, there exists a unique global solution,
denoted R(·, ε) : [0, 1]→ [0,+∞)2, to the initial value problem

g′ =
(
Fu(t, g), Fv(t, g)

)
, g(0) = ε .
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R(·, ε) is continuously differentiable and the image of its derivative R′(·, ε) is
R′([0, 1], ε) ⊆ [0, ρu]× [0, ρv]. Besides, for all t ∈ [0, 1], R(t, ·) is a C1-diffeomor-
phism from [0,+∞)2 into its image whose Jacobian determinant is greater than,
or equal to, one;

∀ ε ∈ [0,+∞)2 : det JR(t,·)(ε) ≥ 1 (3.18)

where JR(t,·) denotes the Jacobian matrix of R(t, ·). Let mu ∈ [0, ρu]. The same
statement holds true if we instead consider the initial value problem

g′ =
(
mu, Fv(t, g)

)
, g(0) = ε .

3.3.3 Lower bound on lim infn fn

Let mu ∈ [0, ρu] and ε := (εu, εv) ∈ (0,+∞)2. We choose as interpolation path
the unique solution R(·, ε) to (3.16). Then, R′u(t, ε) = mu and R′v(t, ε) = E〈Qv〉t,ε.
Plugging this choice in the sum-rule of Proposition 3.4 yields

fn = O(‖ε‖) + On(1) + φRS

(
mu,

∫ 1

0

dtR′v(1, ε); Θ
)

+
αuαv

2

∫ 1

0

dtE
〈
Qu

(
Qv − E〈Qv〉t,ε

)〉
t,ε
, (3.19)

where we used that ϕ is Lipschitz continuous so

ϕ(αvρuRv(1, ε)) = O(εv) + ϕ
(
αvρu

∫ 1

0

dtR′v(1, ε)
)

and

ϕ(αuρvRu(1, ε)) = ϕ(αuρv(εu +mu)) = O(εu) + ϕ(αuρvmu) .

We use that
∫ 1

0
dtR′v(1, ε) ∈ [0, ρv] (see Proposition 3.4) to lower bound (3.19),

fn ≥ O(‖ε‖) + On(1) + inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) +
αuαv

2
R(ε) (3.20)

where

R(ε) :=

∫ 1

0

dtE
〈
Qu

(
Qv − E〈Qv〉t,ε

)〉
t,ε
. (3.21)

If the overlap Qv concentrates on its expectation then the remainder R(ε) in the
lower bound (3.20) vanishes. However, proving such concentration is only possible
after integrating on a well-chosen set of “perturbation” ε. This integration over
ε smoothens the phase transitions that might appear for particular choices of ε
when n goes to infinity. Let η be a positive real number and sn := n−η. From now
on, ε ∈ Sn := [sn, 2sn]2. Integrating w.r.t. ε on both sides of (3.20) yields

fn =

∫

Sn
fn
dε

s2
n

≥ On(1) + inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) +
αuαv

2

∫

Sn
R(ε)

dε

s2
n

, (3.22)
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where we use that On(1) in Proposition 3.4 vanishes uniformly in ε and that
O(‖ε‖) ≤ C‖ε‖ with C a constant independent of n and ε (see Proposition 3.4) so

∣∣∣∣
∫

Sn
O(‖ε‖)dε

s2
n

∣∣∣∣ ≤
∫

Sn
C2sn

dε

s2
n

= C2sn = on(1) .

By Jensen’s inequality and the upper bound |Qu| ≤ ‖U‖‖u‖/nu = ρu, we have

∣∣∣∣
∫

Sn
R(ε)

dε

s2
n

∣∣∣∣ ≤ ρu

∫ 1

0

dt

√∫

Sn

dε

s2
n

E
〈
(Qv − E〈Qv〉t,ε)2

〉
t,ε
. (3.23)

Next, we fix t ∈ [0, 1] and use the change of variables ε→ R := (Ru, Rv) = R(t, ε).
The latter is justified because R(t, ·) is a C1-diffeomorphism from [0,+∞) to its
image (see Proposition 3.5). We get ∀t ∈ [0, 1]:
∫

Sn

dε

s2
n

E
〈
(Qv − E〈Qv〉t,εv)2

〉
t,ε

=

∫

R(t,Sn)

dRudRv

s2
n

E 〈(Qv − E〈Qv〉t,R)2〉t,R
| det JR(t,·)(R−1(t, R))|

≤
∫ 2sn+ρv

sn

dRv

s2
n

∫ 2sn+ρu

sn

dRu E
〈
(Qv − E〈Qv〉t,R)2

〉
t,R

.

(3.24)

The inequality follows from the integrand being nonnegative, the lower bound
(3.18) for the Jacobian determinant, and R(t,Sn) ⊆ [sn, 2sn+ρu]×[sn, 2sn+ρv].We
now apply Proposition 3.6 – an important result on the concentration of the overlap
Qv that follows this proof – with Mu = 2 + ρu, Mv = 2 + ρv, a = sn, b = 2sn + ρu
and δ = snn

2η−1
3 (we further assume η < 1/2). Then, for n large enough, there

exists M > 0 such that ∀t ∈ [0, 1], ∀Rv ∈ [sn, 2sn + ρv]:
∫ 2sn+ρu

sn

dRu E
〈
(Qv − E〈Qv〉t,R)2

〉
t,R
≤ M

n
1−2η

3

.

Combining this inequality with (3.23) and (3.24) yields
∣∣∣∣
∫

Sn
R(ε)

dε

s2
n

∣∣∣∣ ≤M ′n
4η
3
− 1

6

where M ′ := ρu
√

(1 + ρv)M . This upper bound vanishes for n large as long as η
is less than 1/8. Then, passing to the limit inferior on both sides of (3.22) gives
lim infn→+∞ fn ≥ infmv∈[0,ρv ] φRS(mu,mv; Θ). As this is true for all mu ∈ [0, ρu],
we finally obtain

lim inf
n→+∞

fn ≥ sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) .

3.3.4 Concentration of the overlap Qv

We rely on the following concentration result to prove the matching bounds. By
symmetry, it is clear that a similar result holds for Qu.
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Proposition 3.6. Let Mu and Mv be positive real numbers. For n large enough,
there exists a constant M such that ∀(a, b) ∈ (0,Mu)2 : a < min{1, b}, ∀δ ∈ (0, a),
∀Rv ∈ [0,Mv], ∀t ∈ [0, 1]:

∫ b

a

E
〈(
Qv − E 〈Qv〉t,R

)2 〉
t,R
dRu ≤M

(
1

δ2n
− ln(a)

n
+

δ

a− δ

)
.

The proof is technical and is given in Appendix 3.D. It follows the same step
than similar concentration results on the overlaps of inference problems [29], [37],
[69], [87]. The differences with the proof in [69] are due to the entries of both
U and V being not independent anymore. It mainly impacts the proof that
the free entropy lnZt,R/n1 concentrates on its mean, which we need in our proof
of the overlap concentration. We now use Lévy’s lemma [99, Corollary 5.4] to
show that lnZt,R/n concentrates on its expectation with respect to (U,V). This
requires verifying that (Ũ, Ṽ) 7→ lnZt,R/n is Lipschitz continuous with respect to
Ũ := U/√ρunu on the (nu − 1)-sphere and Ṽ := V/√ρvnv on the (nv − 1)-sphere.
The other difference is that the concentration in [69, Lemma 3.1] holds under
the assumption that the prior of the i.i.d. entries of V is compactly supported.
Here, knowing that the norm of V scales like

√
n is in fact enough to guarantee

Proposition 3.6.

3.3.5 Matching upper bound on lim supn fn

Let ε := (εu, εv) ∈ (0,+∞)2. We choose as interpolation path the unique solution
R(·, ε) to (3.17). Then, R′u(t, ε) = 2ρuϕ

′(αvρuE〈Qv〉t,ε) and R′v(t, ε) = E〈Qv〉t,ε.
Note that ϕ : m ∈ [0,+∞) 7→ (m−ln(1+m))/2 is convex and Lipschitz continuous so

ϕ
(
αvρuRv(1, ε)

)
= O(εv)+ϕ

(∫ 1

0

dt αvρuR
′
v(t, ε)

)
≤ O(εv)+

∫ 1

0

dt ϕ(αvρuR
′
v(t, ε)) .

A similar inequality holds for ϕ(αuρvRu(1, ε)). First writing the sum-rule of
Proposition 3.4 for this specific interpolation path, and then making use of the
upper bounds on ϕ(αvρuRv(1, ε)) and ϕ(αuρvRu(1, ε)), yields

fn ≤ O(‖ε‖) + On(1) +

∫ 1

0

dt φRS

(
R′u(t, ε), R

′
v(t, ε); Θ

)

+
αuαv

2

∫ 1

0

dtE
〈
(Qu −R′u(t, ε))(Qv − E〈Qv〉t,ε)

〉
t,ε
. (3.25)

Fix (t, ε) ∈ [0, 1] ∈ (0,+∞)2 and define h : mv ∈ [0, ρv] 7→ φRS(R
′
u(t, ε),mv; Θ).

As R′u(t, ε) = 2ρuϕ
′(αvρuR′v(t, ε)), we have h′(R′v(t, ε)) = 0 and the unique global

minima of the strictly convex function h is reached at R′v(t, ε) ∈ [0, ρv]. Therefore,

φRS(R
′
u(t, ε), R

′
v(t, ε); Θ) = inf

mv∈[0,ρv ]
φRS(R

′
u(t, ε),mv; Θ)

≤ sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) .

1Zt,R(Y(t), Ỹ(t,Rv),Y
(t,Ru)

) is the normalization factor of the right-hand side of (3.15).
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Plugging this upper bound back in (3.25) gives

fn ≤ O(‖ε‖) + On(1) + sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS

(
mu,mv; Θ

)

+
αuαv

2

∫ 1

0

dtE
〈
(Qu −R′u(t, ε))(Qv − E〈Qv〉t,ε)

〉
t,ε
. (3.26)

We get rid of the remainder exactly as in the proof of the lower bound on lim infn fn.
After integrating (3.26) over ε ∈ Sn := [sn, 2sn]2 (sn := n−η with η > 0), we obtain

fn :=

∫

Sn
fn
dε

s2
n

≤ On(1) + sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS

(
mu,mv; Θ

)
+
αuαvR

2
, (3.27)

where R stands for the remainder,

R :=

∫ 1

0

dt

∫

Sn

dε

s2
n

E
〈
(Qu −R′u(t, ε))(Qv − E〈Qv〉t,ε)

〉
t,ε
.

We can upper bound the absolute value of R by Cn
4η
3
− 1

6 for some positive constant
C and n large enough. It is done exactly as in the proof of the lower bound.
We have |Qu − R′u(t, ε)| ≤ 2ρu and the change of variables ε → R = R(t, ε) is
still justified by R(t, ·) being a C1-diffeomorphism from [0,+∞) to its image (see
Proposition 3.5). As long as η is less than 1/8, the remainder vanishes when n
goes to infinity and passing to the limit superior on both sides of the inequality
(3.27) yields the desired upper bound,

lim sup
n→+∞

fn ≤ sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) .

We have shown that

sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) ≤ lim inf
n→+∞

fn

≤ lim sup
n→+∞

fn ≤ sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS(mu,mv; Θ) ,

hence lim
n→+∞

fn = sup
mu∈[0,ρu]

inf
mv∈[0,ρv ]

φRS(mu,mv; Θ).

3.4 Conclusion

We conclude with a few comments on close connections with models of spin glasses.
The symmetric version of the present problem can be seen to be perfectly equivalent
to the spherical version of the Sherrington-Kirkpatrick spin-glass with an extra
ferromagnetic interaction, on its Nishimori line. This model was introduced
and solved long ago by a “spectral method” using Wigner’s semicircle law [100].
Although this analysis is not completely rigorous, it can be made so (hence
providing a proof of the replica formula by avoiding the replica trick entirely). For
the non-symmetric inference problem considered in this paper, it is presumably



3.4. Conclusion 53

also possible to use a spectral method (using Ginibre’s circle law [101]), instead of
an interpolation, to arrive at the expression of the mutual information. However,
it has to be noted that the interpolation method presented here readily extends
to rank-one tensor problems. Indeed, the present analysis can be combined with
[69] to treat the spherical tensors.

We already pointed out that the mutual informations for spherically distributed
and i.i.d. Gaussian signal vectors are the same. This is perhaps not so surprising
since, roughly speaking, a standard Gaussian vector concentrates on a sphere.
However, this argument fails when naively applied to the spherical spin-glass
model of statistical mechanics. It is well-known that the spherical and Gaussian
spin-glass models are not equivalent (this goes back to [102], see [88], [103] for
interesting recent developments). From this perspective, it is not obvious that in
inference the two distributions lead to the same asymptotic normalized mutual
information.





Appendices

3.A Proof of Lemma 3.1

Let X ∼ Px a n-dimensional random vector uniformly distributed on the sphere
of radius

√
n. We are interested in the normalized mutual information between X

and Ỹ =
√
mX + Z̃ in the high-dimensional limit, where m > 0 and the entries

of the noise Z̃ are independent standard Gaussian random variables. We first link
the normalized mutual information to the average free entropy

f̃n :=
1

n
E ln

∫
dPx(x)e−H(x,Ỹ)

where H(x, Ỹ) :=
∑n

i=1
m
2
x2
i −
√
mxiỸi. We have

I(X; Ỹ)

n
:=

h(Ỹ)

n
− h(Ỹ|X)

n

= −E ln
∫
dPx(x)e−H(x,Ỹ)− ‖Ỹ‖

2

2

n
+

E ln e−
‖Z̃‖2

2

n
=
m

2
− f̃n . (3.28)

Therefore, proving Lemma 3.1 is equivalent to proving that

lim
n→+∞

f̃n =
m

2
− ln(1 +m)

2
. (3.29)

We use a classical interpolation scheme to prove (3.29). For t ∈ [0, 1], consider
the estimation of the n-dimensional standard Gaussian random vector X̃ from
the observations

{
Ỹ(t) :=

√
m(1− t)n X̃

‖X̃‖ + Z̃

Y(t) :=
√
mt X̃ + Z

, (3.30)

where the noises Z ∈ Rn, Z̃ ∈ Rn have i.i.d. entries with respect to N (0, 1). The
associated interpolating Hamiltonian is

Ht(x̃; Y(t), Ỹ(t)) :=
n∑

i=1

m(1− t)n
2

x̃2
i

‖x̃‖2
−
√
m(1− t)n x̃i

‖x̃‖ Ỹ
(t)
i

+
n∑

i=1

mt

2
x̃2
i −
√
mt x̃iY

(t)
i . (3.31)

55
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Define the interpolating free entropy f̃n(t) := 1
n
E lnZt(Y(t), Ỹ(t)) where

Zt(Y(t), Ỹ(t)) :=

∫
dx̃√
2π

n e
− ‖x̃‖

2

2 e−Ht(x̃;Y(t),Ỹ(t)) . (3.32)

Note that
√
n X̃

‖X̃‖ has the same distribution than X, i.e., it is uniformly distributed
on the (n− 1)-sphere of radius

√
n. Then, the interpolating free entropy at t = 0

is equal to to the average free entropy f̃n whose limit we want to compute,
f̃n(0) = f̃n. At t = 1, the integral (3.32) is a simple Gaussian integral and we find
that f̃n(1) = m

2
− ln(1+m)

2
. Hence, we have

∣∣∣∣
m

2
− ln(1 +m)

2
− f̃n

∣∣∣∣ =

∣∣∣∣
∫ 1

0

f̃ ′n(t) dt

∣∣∣∣ ≤
∫ 1

0

∣∣f̃ ′n(t)
∣∣ dt . (3.33)

Computing f̃ ′n(t) is done much like in the proof of Lemma 3.8 where we compute
the derivative of the average free entropy (3.12). We obtain

f̃ ′n(t) =
m

2
E
〈

x̃TX̃

‖x̃‖‖X̃‖

(‖x̃‖‖X̃‖
n

− 1

)〉

t

, (3.34)

where the angular brackets 〈−〉t denote the expectation w.r.t. the posterior
distribution of X̃ given (Y(t), Ỹ(t)),

dP (x̃|Y(t), Ỹ(t)) =
1

Zt(Y(t), Ỹ(t))

dx̃√
2π

n e
− ‖x̃‖

2

2 e−Ht(x̃;Y(t),Ỹ(t)) .

We split f̃ ′n(t) in two pieces,

f ′n(t) =
m

2
E
〈

x̃TX̃

‖x̃‖‖X̃‖
‖x̃‖√
n

(‖X̃‖√
n
− 1

)〉

t

+
m

2
E
〈

x̃TX̃

‖x̃‖‖X̃‖

(‖x̃‖√
n
− 1

)〉

t

.

Applying Cauchy-Schwarz inequality separately to these two expectations, we get

∣∣f̃ ′n(t)
∣∣ ≤ m

2

√
E
〈

(x̃TX̃)2

‖x̃‖2‖X̃‖2

‖x̃‖2

n

〉

t

E
[(‖X̃‖√

n
− 1

)2 ]

+
m

2

√
E
〈

(x̃TX̃)2

‖x̃‖2‖X̃‖2

〉

t

E
〈(‖x̃‖√

n
− 1

)2〉

t

≤ m

2

√
E
〈‖x̃‖2

n

〉

t

E
[(‖X̃‖√

n
− 1

)2 ]
+
m

2

√
E
〈(‖x̃‖√

n
− 1

)2〉

t

= m

√
E
[(‖X̃‖√

n
− 1

)2 ]
. (3.35)

The second inequality follows from |x̃TX̃| ≤ ‖x̃‖‖X̃‖ by Cauchy-Schwarz inequality.
The subsequent equality is an application of the Nishimori identity (Lemma 2.1),

E
〈‖x̃‖2

n

〉

t

= E
[‖X̃‖2

n

]
= 1 and E

〈(‖x̃‖√
n
− 1

)2〉

t

= E
[(‖X̃‖√

n
− 1

)2 ]
.
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The upper bound (3.35) on the absolute value of the derivative of the interpolating
free entropy is valid for all t ∈ [0, 1]. Plugging it back in (3.33) gives

∣∣∣∣
m

2
− ln(1 +m)

2
− f̃n

∣∣∣∣ ≤
m√
n

√
E
[(
‖X̃‖ − √n

)2 ]
. (3.36)

There exists a constant C such that P(|‖X̃‖ − √n| ≥ a) ≤ 2e−Ca
2 for all a ≥ 0

(see [99, Theorem 3.1.1]). This directly implies that E
[(
‖X̃‖ −√n

)2] ≤ 2/C, thus
concluding the proof of (3.29).

3.B Sum-rule of Proposition 3.4

Remember that, without loss of generality, we assume that λ = 1.

Lemma 3.7 (Average interpolating free entropy at t = 0 and t = 1). Define the
scalar overlaps Qu := uTU

nu
and Qv := vTU

nv
. Assume that both Ru(t, ε) and Rv(t, ε)

are uniformly bounded in (t, ε) ∈ [0, 1]× [0,+∞)2. The average interpolating free
entropy fn(t, ε) defined by (3.12) satisfies

fn(0, ε) = fn(0, 0) +O(‖ε‖) ; (3.37)
fn(1, ε) = αuϕ(αvρuRv(1, ε)) + αvϕ(αuρvRu(1, ε)) + On(1) ; (3.38)

where On(1) is a quantity that vanishes uniformly in ε as n gets large, and O(‖ε‖)
is a quantity whose absolute value is upper bounded by C‖ε‖ for some constant C
independent of both n and ε.

Proof. By definition, fn(0, ε) := 1
n
E lnZ0,ε(Y

(0), Ỹ(0,ε),Y
(0,ε)

) where

Z0,ε(Y
(0), Ỹ(0,ε),Y

(0,ε)
) :=

∫
dPu(u)dPv(v) e−H0,ε(u,v;Y(0),Ỹ(0,ε),Y

(0,ε)
) ,

H0,ε(u,v; Y(0), Ỹ(0,ε),Y
(0,ε)

) being the Hamiltonian (3.11) evaluated at t = 0.
Remembering that Ru(0, ε) = εu, Rv(0, ε) = εv, and replacing Y(0), Ỹ(0,ε),Y

(0,ε)

by their expressions on the right-hand side of (3.9), we obtain

Z0,ε(Y
(0), Ỹ(0,ε),Y

(0,ε)
) =

∫
dPu(u)dPv(v) e−H0,ε(u,v;U,V,Z,Z̃,Z) , (3.39)

where

H0,ε(u,v; U,V,Z, Z̃,Z) :=
nu∑

i=1

nv∑

j=1

u2
i v

2
j

2n
− 1

n
uiUivjVj −

uivjZij√
n

+
nu∑

i=1

αvεv
2
u2
i − αvεv uiUi −

√
αvεv uiZ̃i

+
nv∑

j=1

αuεu
2

v2
j − αuεu vjVj −

√
αuεu vjZj .
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Using (3.39), the partial derivative of ε := (εu, εv) 7→ fn(0, ε) with respect to εu
reads

∂fn
∂εu

∣∣∣∣
t=0,ε

= − 1

n
E

[∫
dPu(u)dPv(v) ∂H0,ε(u,v;U,V,Z,Z̃,Z)

∂εu
e−H0,ε(u,v;U,V,Z,Z̃,Z)

∫
dPu(u)dPv(v) e−H0,ε(u,v;U,V,Z,Z̃,Z)

]

= − 1

n
E
〈
∂H0,ε(u,v; U,V,Z, Z̃,Z)

∂εu

〉

t=0,ε

= −αu
2n

nv∑

j=1

E 〈v2
j 〉0,ε +

αu
n

nv∑

j=1

E 〈vjVj〉0,ε +
1

2n

√
αu
εu

nv∑

j=1

E 〈vjZj〉0,ε .

(3.40)

We now simplify the expectation E 〈vjZj〉0,ε by integrating by parts with respect
to the standard Gaussian random variable Zj (see Lemma 2.2),

E 〈vjZj〉0,ε = E

[
Zj

∫
dPu(u)dPv(v) vje

−H0,ε(u,v;U,V,Z,Z̃,Z)

Z0,ε(Y(0), Ỹ(0,ε),Y
(0,ε)

)

]

= −E
[∫

dPu(u)dPv(v) vje
−H0,ε(u,v;U,V,Z,Z̃,Z) ∂Z0,ε(Y(0),Ỹ(0,ε),Y

(0,ε)
)

∂Zj(
Z0,ε(Y(0), Ỹ(0,ε),Y

(0,ε)
)
)2

]

− E

[∫
dPu(u)dPv(v) vj

∂H0,ε(u,v;U,V,Z,Z̃,Z)

∂Zj
e−H0,ε(u,v;U,V,Z,Z̃,Z)

Z0,ε(Y(0), Ỹ(0,ε),Y
(0,ε)

)

]

= E
[
〈vj〉0,ε

〈
∂H0,ε(u,v; U,V,Z, Z̃,Z)

∂Zj

〉

0,ε

]

− E
[〈

vj
∂H0,ε(u,v; U,V,Z, Z̃,Z)

∂Zj

〉

0,ε

]

= −√αuεu E[〈vj〉20,ε] +
√
αuεu E[〈v2

j 〉0,ε] . (3.41)

Plugging (3.41) back in (3.40) yields

∂fn
∂εu

∣∣∣∣
t=0,ε

=
αu
n

nv∑

j=1

E 〈vjVj〉0,ε −
αu
2n

nv∑

j=1

E[〈vj〉20,ε] =
αu
2

nv
n
E 〈Qv〉0,ε , (3.42)

where the second equality is due to the Nishimori identity E〈vj〉20,ε = E[〈vj〉0,εVj]
(see Lemma 2.1). We have just shown that ∀ε ∈ [0,+∞)2:

∂fn
∂εu

∣∣∣∣
t=0,ε

=
αu
2

nv
n
E 〈Qv〉0,ε ,

and we can similarly prove that ∂fn
∂εv

∣∣
t=0,ε

= αv
2
nu
n
E 〈Qu〉0,ε. By Cauchy-Schwarz

inequality, |Qu| ≤ ‖u‖‖U‖/nu = ρu and |Qv| ≤ ‖v‖‖V‖/nv = ρv. Therefore,
∣∣∣∣∣
∂fn
∂εu

∣∣∣
0,ε

∣∣∣∣∣ ≤
αu
2

nv
n
ρv and

∣∣∣∣∣
∂fn
∂εv

∣∣∣∣
0,(0,εv)

∣∣∣∣∣ ≤
αv
2

nu
n
ρu .
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By the mean-value theorem, it follows that

|fn(0, ε)− fn(0, 0)| ≤ |fn(0, ε)− fn(0, (0, εv))|+ |fn(0, (0, εv))− fn(0, 0)|
≤ αuρv

2

nv
n
|εu|+

αvρu
2

nu
n
|εv| .

This last upper bound concludes the proof of (3.37) as (nu/n, nv/n)→ (αu, αv).
At t = 1, Y(1) := Z is pure noise while Ỹ(1,ε) :=

√
αvRv(1, ε) U + Z̃ and

Y
(1,ε)

:=
√
αuRu(1, ε) V + Z are two decoupled channels similar to the one

described in Lemma 3.1. Therefore, we have fn(1, ε) = nu
n
f̃nu + nv

n
f̃nv where

f̃nu :=
1

nu
E ln

∫
dPu(u) e−

∑nu
i=1

αvRv(1,ε)
2

u2
i−
√
αvRv(1,ε)uiỸ

(1,ε)
i

and

f̃nv :=
1

nv
E ln

∫
dPv(v) e−

∑nv
i=1

αuRu(1,ε)
2

v2
i−
√
αuRu(1,ε) viY

(1,ε)
i

are the average free entropies associated with the two aforementioned channels.
In the proof of Lemma 3.1, we ultimately show that

∣∣f̃nu − ϕ(αvρuRv(1, ε))
∣∣ ≤ 2αvRv(1, ε)

C
√
nu

and
∣∣f̃nv − ϕ(αuρvRu(1, ε))

∣∣ ≤ 2αuRu(1, ε)

C
√
nv

,

where C is a constant independent of ε. These two upper bounds together with
the assumption on the uniform boundedness of Ru, Rv imply (3.38),

fn(1, ε) =
nu
n
f̃nu +

nv
n
f̃nv = αuϕ(αvρuRv(1, ε)) + αvϕ(αuρvRu(1, ε)) + On(1) .

Lemma 3.8 (Derivative of the average interpolating free entropy). Define the
scalar overlaps Qu := uTU

nu
and Qv := vTU

nv
. Let R′u(·, ε) and R′v(·, ε) be the

derivatives of Ru(·, ε) and Rv(·, ε), respectively. Assume that both R′u(t, ε) and
R′v(t, ε) are uniformly bounded for (t, ε) ∈ [0, 1] × [0,+∞)2. Then, the partial
derivative of the average interpolating free entropy (3.12) with respect to t is
∀(t, ε) ∈ [0, 1]× [0,+∞)2:

f ′n(t, ε) = −αuαv
2

E
〈(
Qu−R′u(t, ε)

)(
Qv−R′v(t, ε)

)〉
t,ε

+
αuαv

2
R′u(t, ε)R

′
v(t, ε)+On(1)

where On(1) vanishes uniformly in (t, ε) as n goes to infinity.

Proof. The conditional probability density function of (Y(t), Ỹ(t,ε),Y
(t,ε)

) given
(U,V) is

P
(Y(t),Ỹ(t,ε),Y

(t,ε)
)|(U,V)

(y, ỹ, ȳ|u,v) :=
e−
‖y‖2+‖ỹ‖2+‖ȳ‖2

2
−Ht,ε(u,v;y,ỹ,ȳ)

√
2π

nunv+nu+nv
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where

Ht,ε(u,v; y, ỹ, ȳ) :=
nu∑

i=1

nv∑

j=1

1− t
2n

u2
i v

2
j −

√
1− t
n

uivjyij

+
nu∑

i=1

αvRv(t, ε)

2
u2
i −

√
αvRv(t, ε)uiỹi

+
nv∑

j=1

αuRu(t, ε)

2
v2
j −

√
αuRu(t, ε) vjyj . (3.43)

Therefore, the average interpolating free entropy (3.12) satisfies

fn(t, ε) =
1

n
E
[
E
[

lnZt,ε
(
Y(t), Ỹ(t,ε),Y

(t,ε))∣∣∣U,V
]]

=
1

n
E
[ ∫

dydỹdȳ
e−
‖y‖2+‖ỹ‖2+‖ȳ‖2

2
−Ht,ε(U,V;y,ỹ,ȳ)

√
2π

nunv+nu+nv
lnZt,ε

(
y, ỹ, ȳ

)]
. (3.44)

where we remind that Zt,ε(y, ỹ, ȳ) :=
∫
dPu(u)dPv(v) e−Ht,ε(u,v;y,ỹ,ȳ). Taking the

derivative of (3.44) with respect to t, we directly obtain that

f ′n(t, ε) =− 1

n
E
[
H′t,ε

(
U,V; Y(t), Ỹ(t,ε),Y

(t,ε))
lnZt,ε

(
Y(t), Ỹ(t,ε),Y

(t,ε))]

− 1

n
E
〈
H′t,ε

(
u,v; Y(t), Ỹ(t,ε),Y

(t,ε))〉
t,ε
, (3.45)

where

H′t,ε(u,v; y, ỹ,y) :=
∂Ht,ε(u,v; y, ỹ,y)

∂t

=
nu∑

i=1

nv∑

j=1

−u
2
i v

2
j

2n
+

uivjy
(t)
ij

2
√
n(1− t)

+
nu∑

i=1

αvR
′
v(t, ε)

2
u2
i −

R′v(t, ε)

2

√
αv

Rv(t, ε)
uiỹ

(t,ε)
i

+
nv∑

j=1

αuR
′
u(t, ε)

2
v2
j −

R′u(t, ε)

2

√
αu

Ru(t, ε)
vjy

(t,ε)
j . (3.46)

If we evaluate (3.46) at (u,v,y, ỹ,y) = (U,V,Y(t), Ỹ(t,ε),Y
(t,ε)

), we get

H′t,ε
(
U,V; Y(t), Ỹ(t,ε),Y

(t,ε))
=

nu∑

i=1

nv∑

j=1

UiVjZij

2
√
n(1− t)

−
nu∑

i=1

R′v(t, ε)

2

√
αv

Rv(t, ε)
UiZ̃i −

nv∑

j=1

R′u(t, ε)

2

√
αu

Ru(t, ε)
VjZj . (3.47)
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Note that E[UiVjZij ] = E[UiZ̃i] = E[VjZj ] = 0 for all i, j. The second expectation
on the right-hand side of (3.45) is then easily shown to be zero thanks to the
Nishimori identity (see Lemma 2.1),

E
〈
H′t,ε(u,v; Y(t), Ỹ(t,ε),Y

(t,ε))〉
t,ε

= E
[
H′t,ε

(
U,V; Y(t), Ỹ(t,ε),Y

(t,ε))]
= 0 .

Therefore, the expression for f ′n(t, ε) simplifies to

f ′n(t, ε) = − 1

n
E
[
H′t,ε

(
U,V; Y(t), Ỹ(t,ε),Y

(t,ε))
lnZt,ε

(
Y(t), Ỹ(t,ε),Y

(t,ε))]

= −
nu∑

i=1

nv∑

j=1

E[UiVjZij lnZt,ε(Y(t), Ỹ(t,ε),Y
(t,ε)

)]

2n
√
n(1− t)

+
nu∑

i=1

R′v(t, ε)

2n

√
αv

Rv(t, ε)
E[UiZ̃i lnZt,ε(Y(t), Ỹ(t,ε),Y

(t,ε)
)]

+
nv∑

j=1

R′u(t, ε)

2n

√
αu

Ru(t, ε)
E[VjZj lnZt,ε(Y(t), Ỹ(t,ε),Y

(t,ε)
)] . (3.48)

We can simplify the three kind of expectations on the right-hand side of (3.48)
with Gaussian integration by parts w.r.t. Zij, Z̃i or Zj. We have

E[UiVjZij lnZt,ε(Y(t), Ỹ(t,ε),Y
(t,ε)

)] = E
[
UiVj

∂ lnZt,ε(Y(t), Ỹ(t,ε),Y
(t,ε)

)

∂Zij

]

= −E
[
UiVj

〈
∂Ht,ε(u,v; Y(t), Ỹ(t,ε),Y

(t,ε)
)

∂Zij

〉

t,ε

]
=

√
1− t
n

E 〈uiUivjVj〉t,ε .

In a similar way,

E[UiZ̃i lnZt,ε(Y(t), Ỹ(t,ε),Y
(t,ε)

)] =
√
αvRv(t, ε)E 〈uiUi〉t,ε

and
E[VjZj lnZt,ε(Y(t), Ỹ(t,ε),Y

(t,ε)
)] =

√
αuRu(t, ε)E 〈vjVj〉t,ε .

Hence, we have

f ′n(t, ε) = −1

2

nu
n

nv
n
E 〈QuQv〉t,ε +

nu
n

αvR
′
v(t, ε)

2
E 〈Qu〉t,ε +

nv
n

αuR
′
u(t, ε)

2
E 〈Qv〉t,ε .

(3.49)
Remember that (nu/n, nv/n) → (αu, αv). Besides, by Cauchy-Schwarz inequality,
|Qu| ≤ ‖u‖‖U‖/nu = ρu and |Qv| ≤ ‖v‖‖V‖/nv = ρv. It follows that

f ′n(t, ε) = −αuαv
2

E〈(Qu−R′u(t, ε))(Qv−R′v(t, ε))〉t,ε+
αuαv

2
R′u(t, ε)R

′
v(t, ε)+On(1)

where On(1) is a quantity that vanishes uniformly for (t, ε) ∈ [0, 1] × [0,+∞)2

when n→ +∞.
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3.C Properties of the interpolation paths

This appendix is dedicated to the proof of Proposition 3.5 in Section 3.3. Before
giving the proof, let us recall a few definitions. For t ∈ [0, 1] and R := (Ru, Rv) ∈
[0,+∞)2, consider the problem of estimating (U,V) from the observations





Y(t) =
√

1−t
n

U VT + Z

Ỹ(t,Rv) =
√
αvRv U + Z̃

Y
(t,Ru)

=
√
αuRu V + Z

,

where U ∼ Pu, V ∼ Pv and the entries of Z ∈ Rnu×nv , Z̃ ∈ Rnu , Z ∈ Rnv

are i.i.d. with respect to N (0, 1). The posterior distribution of (U,V) given
(Y(t), Ỹ(t,Rv),Y

(t,Ru)
) is

dP (u,v|Y(t), Ỹ(t,Rv),Y
(t,Ru)

) :=
dPu(u)dPv(v) e−Ht,R(u,v;Y(t),Ỹ(t,Rv),Y

(t,Ru)
)

Zt,R(Y(t), Ỹ(t,Rv),Y
(t,Ru)

)
,

where Zt,R(Y(t), Ỹ(t,Rv),Y
(t,Ru)

) is the normalization factor and Ht,R denotes the
associated interpolating Hamiltonian,

Ht,R(u,v; Y(t), Ỹ(t,Rv),Y
(t,Ru)

) :=
nu∑

i=1

nv∑

j=1

1− t
2n

u2
i v

2
j −

√
1− t
n

uivjY
(t)
ij

+
nu∑

i=1

αvRv

2
u2
i −

√
αvRv uiỸ

(t,Rv)
i

+
nv∑

j=1

αuRu

2
v2
j −

√
αuRu vjY

(t,Ru)

j .

The angular brackets 〈−〉t,R denote the expectation w.r.t. this posterior. Define

Fv(t, R) := E〈Qv〉t,R and Fu(t, R) := 2ρuϕ
′(αvρuE〈Qv〉t,R) ,

where Qu := uTU/nu and Qv := vTV/nv.

Proposition 3.5. For all ε ∈ [0,+∞)2, there exists a unique global solution,
denoted R(·, ε) : [0, 1]→ [0,+∞)2, to the initial value problem

g′ =
(
Fu(t, g), Fv(t, g)

)
, g(0) = ε .

R(·, ε) is continuously differentiable and the image of its derivative R′(·, ε) is
R′([0, 1], ε) ⊆ [0, ρu]× [0, ρv]. Besides, for all t ∈ [0, 1], R(t, ·) is a C1-diffeomor-
phism from [0,+∞)2 into its image whose Jacobian determinant is greater than,
or equal to, one;

∀ ε ∈ [0,+∞)2 : det JR(t,·)(ε) ≥ 1 (3.18)

where JR(t,·) denotes the Jacobian matrix of R(t, ·). Let mu ∈ [0, ρu]. The same
statement holds true if we instead consider the initial value problem

g′ =
(
mu, Fv(t, g)

)
, g(0) = ε .
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Proof. We limit ourselves to the proof for the ODE g′ =
(
Fu(t, g), Fv(t, g)

)
, the

one for g′ =
(
mu, Fv(t, g)

)
is simpler and follows the same arguments.

By the Nishimori identity and the Cauchy-Schwarz inequality, we have

0 ≤ E‖〈v〉t,R‖2

nv
= E〈Qv〉t,R ≤

E〈‖v‖‖V‖〉t,R
nv

= ρv ,

hence E〈Qv〉t,R ∈ [0, ρv] for all (t, R) ∈ [0, 1] × [0,+∞)2. Thus, the function
F : (t, R) 7→ (Fu(t, R), Fv(t, R)) is defined on all [0, 1]× [0,+∞)2 and takes value
in [0, ρu]× [0, ρv].

To prove the existence and uniqueness of a solution to the initial value problem
g′ = (Fu(t, g), Fv(t, g)), g(0) = ε, we invoke the Picard-Lindelöf theorem [104,
Theorem 1.1]. To do so, we have to check that F is continuous in t and uniformly
Lipschitz continuous in R (meaning that the Lipschitz constant does not depend
on t). We can show the continuity in t thanks to the dominated convergence
theorem (continuity under the integral sign). Again with an application of the
dominated convergence theorem, we can prove that F is continuously differentiable
with respect to R ∈ (0,+∞)2 (differentiability under the integral sign). To check
the uniform Lipschitzianity, we show that the Jacobian matrix JF (t,·)(R) of F (t, ·)
is uniformly bounded for (t, R) ∈ [0, 1]× (0,+∞)2. We have

JF (t,·)(R) =

[
c(t, R) c(t, R)

1 1

][ ∂Fv
∂Ru

∣∣
t,R

0

0 ∂Fv
∂Rv

∣∣
t,R

]
,

where c(t, R) := 2αvρ
2
uϕ
′′(αvρuFv(t, R)) ∈ [0, αvρ

2
u] and

∂Fv
∂Ru

=
αv
nv

nv∑

i=1

nv∑

j=1

E[(〈vivj〉t,R − 〈vi〉t,R〈vj〉t,R)2] ,

∂Fv
∂Rv

=
αv
nv

nu∑

i=1

nv∑

j=1

E[(〈uivj〉t,R − 〈ui〉t,R〈vj〉t,R)2] .

Both ∂Fv/∂Ru, ∂Fv/∂Rv are clearly nonnegative. If (u,v) are jointly distributed w.r.t.
the posterior distribution (3.15) then ‖u‖ =

√
ρunu and ‖v‖ =

√
ρvnv, hence

∂Fv/∂Ru ≤ 4αvρ
2
vnv and ∂Fv/∂Rv ≤ 4αvρuρvnu. Thus, the entries of JF (t,·)(R) are

uniformly bounded in (t, R).
By the Picard-Lindelöf theorem, for all ε = (εu, εv) ∈ [0,+∞)2 there exists a

unique solution R(·, ε) : [0, δ]→ [0,+∞)2 to the initial value problem g′ = F (t, g),
g(0) = ε, where [0, δ] ⊆ [0, 1] is the maximal interval of existence of the solution.
The function F takes its values in [0, ρu]× [0, ρv] so R([0, δ], ε) ⊆ [εu, εu + δρu]×
[εv, εv + δρv] which means that δ = 1 (the solution never leaves the domain of
definition of F ).

Each initial value ε ∈ [0,+∞)2 is tied to a unique solution R(·, ε), hence
ε 7→ R(t, ε) is injective. It is also continuously differentiable [104, Theorem 3.1]
with Jacobian determinant given by Liouville’s formula [104, Corollary 3.1],

det JR(t,·)(ε) = exp

∫ t

0

ds

(
∂Fu
∂Ru

+
∂Fv
∂Rv

)∣∣∣∣
s,R(s,ε)

.
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This Jacobian determinant is greater than, or equal to, one because ∂Fu/∂Ru and
∂Fv/∂Rv are nonnegative. For ∂Fv/∂Rv, this follows from our previous computa-
tions. For ∂Fu/∂Ru, we simply remark that ∂Fu/∂Ru = αvρ2

u

(1+αvρuFv(t,R))2
∂Fv/∂Ru where

∂Fv/∂Ru ≥ 0. Therefore, the Jacobian determinant is bounded away from 0 uni-
formly in ε and, by the inverse function theorem, the injective function ε 7→ R(t, ε)
is a C1-diffeomorphism from [0,+∞)2 onto its image.

3.D Concentration of the overlap

Remember that we denote by angular brackets 〈−〉t,R the expectation with respect
to the posterior distribution (3.15) and we define the scalar overlaps Qu := uTU/nu,
Qv := vTV/nv. The end goal of this appendix is proving the following proposition
on the concentration of the overlap Qv.

Proposition 3.6. Let Mu and Mv be positive real numbers. For n large enough,
there exists a constant M such that ∀(a, b) ∈ (0,Mu)2 : a < min{1, b}, ∀δ ∈ (0, a),
∀Rv ∈ [0,Mv], ∀t ∈ [0, 1]:

∫ b

a

E
〈(
Qv − E 〈Qv〉t,R

)2 〉
t,R
dRu ≤M

(
1

δ2n
− ln(a)

n
+

δ

a− δ

)
.

The proof of Proposition 3.6 is carried out mostly as in [87]. The main
difference is that we don’t need to assume that the marginals of the prior Pv have
a support bounded uniformly with n. It will be enough that the norm of a vector
distributed with respect to Pv scales likes

√
n. The concentration of the overlap

around its expectation follows from the concentration of the quantity

L =
1

n

nv∑

j=1

αu
2
v2
j − αu vjVj −

1

2

√
αu
Ru

vjZj . (3.50)

We first prove a lemma that links the fluctuations of Qv to those of L.
Lemma 3.9. ∀(t, R) ∈ [0, 1]× (0,+∞)2, we have

E 〈L〉t,R = −αu
2

nv
n
E 〈Qv〉t,R , (3.51)

E 〈(Qv − E 〈Qv〉t,R)2〉t,R ≤
4

α2
u

(
n

nv

)2

E 〈(L − E 〈L〉t,R)2〉t,R . (3.52)

Proof. Fix (t, R) ∈ [0, 1]× (0,+∞)2. By the definition (3.50) of L, we have

E 〈L〉t,R =
1

n

nv∑

j=1

αu
2
E〈v2

j 〉t,R − αu E
[
〈vj〉t,RVj

]
− 1

2

√
αu
Ru

E
[
〈vj〉t,RZj

]
, (3.53)

and

E 〈QvL〉t,R =
1

n

nv∑

j=1

αu
2
E〈Qvv

2
j 〉t,R − αu E

[
〈Qvvj〉t,RVj

]
− 1

2

√
αu
Ru

E
[
〈Qvvj〉t,RZj

]
.

(3.54)
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Integrating by parts with respect to the Gaussian random variable Zj, the right-
most expectations in (3.53) and (3.54) satisfy

E
[
〈vj〉t,RZj

]
=
√
αuRuE

[
〈v2
j 〉t,R

]
−
√
αuRuE

[
〈vj〉2t,R

]
, (3.55)

E
[
〈Qvvj〉t,RZj

]
=
√
αuRuE

[
〈Qvv

2
j 〉t,R

]
−
√
αuRuE

[
〈Qvvj〉t,R〈vj〉t,R

]
. (3.56)

Plugging (3.55) back in (3.53) yields

E 〈L〉t,R =
αu
n

nv∑

j=1

1

2
E
[
〈vj〉2t,R

]
− E

[
〈vj〉t,RVj

]
= −αu

2

nv
n
E 〈Qv〉t,R ,

where the second equality follows from the Nishimori identity E〈vj〉2t,R=E〈vj〉t,RVj .
This ends the proof of (3.51). Plugging (3.56) back in (3.54), it comes

E 〈QvL〉t,R =
αu
n

nv∑

j=1

1

2
E
[
〈Qvvj〉t,R〈vj〉t,R

]
− E

[
〈Qvvj〉t,RVj

]

=
αu
n

nv∑

j=1

1

2
E
[
〈Qv〉t,R〈vjVj〉t,R

]
− E

[
〈Qvvj〉t,RVj

]

= αu
nv
n

(
1

2
E
[
〈Qv〉2t,R

]
− E 〈Q2

v〉t,R
)
. (3.57)

The second equality follows once again from the Nishimori identity,

E
[
〈Qvvj〉t,R〈vj〉t,R

]
=

1

nv

nv∑

i=1

E
[
〈viVivj〉t,R〈vj〉t,R

]

=
1

nv

nv∑

i=1

E
[
Vi〈vi〉t,RVj〈vj〉t,R

]
= E

[
〈Qv〉t,R〈vjVj〉t,R

]
.

We combine (3.57) and (3.51) to obtain

E 〈Qv(L − E 〈L〉t,R)〉t,R = E 〈QvL〉t,R − E 〈Qv〉t,RE 〈L〉t,R

=
αu
2

nv
n

(
E
[
〈Qv〉2t,R

]
− 2E 〈Q2

v〉t,R + E[〈Qv〉t,R]2
)

= −αu
2

nv
n

(
E
〈
(Qv − 〈Qv〉t,R)2

〉
t,R

+ E
〈
(Qv − E 〈Qv〉t,R)2

〉
t,R

)
.

The last identity directly implies
αu
2

nv
n
E
〈
(Qv − E 〈Qv〉t,R)2

〉
t,R

≤
∣∣E 〈Qv(L − E 〈L〉t,R)〉t,R

∣∣
=
∣∣E 〈(Qv − E 〈Qv〉t,R)(L − E 〈L〉t,R)〉t,R

∣∣

≤
√

E 〈(Qv − E 〈Qv〉t,R)2〉t,R · E 〈(L − E 〈L〉t,R)2〉t,R .

The upper bound (3.52) on the fluctuation of Qv follows simply from this last
upper bound.
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3.D.1 Concentration of L around its expectation

To prove concentration results on L, it is useful to work with the free entropy

Fn(t, R) :=
1

n
lnZt,R

(
Y(t), Ỹ(t,Rv),Y

(t,Ru))

and its average

fn(t, R) := EFn(t, R) =
1

n
E
[

lnZt,R
(
Y(t), Ỹ(t,Rv),Y

(t,Ru))]
.

where Zt,R(Y(t), Ỹ(t,Rv),Y
(t,Ru)

) is the normalization factor of the posterior dis-
tribution (3.15). In Appendix 3.E, we prove that the free entropy concentrates
around its expectation when n→ +∞.

Proposition 3.10 (Thermal fluctuations of L). For n large enough, we have for
all positive real numbers a < b, t ∈ [0, 1] and Rv ∈ [0,+∞):

∫ b

a

dRu E
〈(
L − 〈L〉t,R

)2 〉
t,R
≤ αuαvρv

n

(
ln(b/a)

2
+ 1

)
. (3.58)

Proof. Fix (n, t) ∈ N∗ × [0, 1]. Note that ∀R ∈ (0,+∞)2:

∂fn
∂Ru

∣∣∣∣
t,R

= − 1

n
E

[〈
∂Ht,R(x; Y(t), Ỹ(t,Rv),Y

(t,Ru)
)

∂Ru

〉

t,R

]
= −E 〈L〉t,R . (3.59)

Further differentiating, we obtain

∂2fn
∂R2

u

∣∣∣∣
t,R

= E
[〈
L ∂Ht,R

∂Ru

〉

t,R

]
− E

[
〈L〉t,R

〈
∂Ht,R

∂Ru

〉

t,R

]
− E

〈
∂L
∂Ru

〉

t,R

= nE
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

4Ru

√
αu
Ru

E
[
〈v〉Tt,RZ

]

n
. (3.60)

It follows directly from (3.60) that

E
〈(
L − 〈L〉t,R

)2 〉
t,R

=
1

n

∂2fn
∂R2

u

∣∣∣∣
t,R

+
1

4Ru

√
αu
Ru

E
[
〈v〉Tt,RZ

]

n2
(3.61)

We start with upper bounding the integral over the second summand on the
right-hand side of (3.61). Integrating by parts w.r.t. Zj

i.i.d.∼ N (0, 1) gives

1

4Ru

√
αu
Ru

E
[
〈v〉t,RZ

]

n2
=

αu
4Ru

E 〈‖v‖2〉t,R − E ‖〈v〉t,R‖2

n2
≤ αuρv

4Ru

nv
n2

, (3.62)

where we use that ‖v‖ =
√
ρvnv. Therefore,

∫ b

a

dRu

4Ru

√
αu
Ru

E
[
〈v〉Tt,RZ

]

n2
≤ nv
n2

αuρv ln(b/a)

4
. (3.63)
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It remains to upper bound
∫ b
a
dRu
n

∂2fn
∂R2

u

∣∣
t,R

= 1
n
∂fn
∂Ru

∣∣
t,Ru=b,Rv

− 1
n
∂fn
∂Ru

∣∣
t,Ru=a,Rv

. Note
that ∀R ∈ [0,+∞)2:

∂fn
∂Ru

∣∣∣∣
t,R

= −E 〈L〉t,R =
αu
2

nv
n
E 〈Qv〉t,R =

αu
2

nv
n

E
[
‖〈v〉t,R‖2

]

nv
, (3.64)

where the first equality follows from (3.59), the second from Lemma 3.9, and the
third from the Nishimori identity E 〈Qv〉t,R = E[〈v〉Tt,RV]/nv = E[‖〈v〉t,R‖2]/nv. Making
use of (3.64) and Jensen’s inequality, it comes ∀R ∈ [0,+∞)2:

0 ≤ ∂fn
∂Ru

∣∣∣∣
t,R

≤ αu
2

nv
n

E 〈‖v‖2〉t,R
nv

=
αuρv

2

nv
n
. (3.65)

Combining both (3.63) and (3.65), we finally get

∫ b

a

dRu E
〈(
L − 〈L〉t,R

)2 〉
t,R
≤ 1

n

nv
n

αuρv
2

(
ln(b/a)

2
+ 1

)
. (3.66)

Proposition 3.11 (Quenched fluctuations of L). Let Mu,Mv > 0. For n large
enough, there exists a constant M such that ∀(a, b) ∈ (0,Mu)

2 : a < min{1, b},
∀δ ∈ (0, a), ∀Rv ∈ [0,Mv], ∀t ∈ [0, 1]:

∫ b

a

dRu E
〈(
〈L〉t,R − E 〈L〉t,R

)2 〉
t,R
≤M

(
1

δ2n
− ln(a)

n
+

δ

a− δ

)
. (3.67)

Proof. Fix (n, t) ∈ N∗ × [0, 1]. For all R ∈ (0,+∞)2, we have:

∂Fn
∂Ru

∣∣∣∣
t,R

= −〈L〉t,R , (3.68)

∂2Fn
∂R2

u

∣∣∣∣
t,R

= n
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

4Ru

√
αu
Ru

〈v〉Tt,R Z

n
, (3.69)

∂fn
∂Ru

∣∣∣∣
t,R

= −E 〈L〉t,R , (3.70)

∂2fn
∂R2

u

∣∣∣∣
t,R

= nE
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

4Ru

√
αu
Ru

E
[
〈v〉Tt,RZ

]

n
. (3.71)

By the Cauchy-Schwarz inequality, the right-most term in (3.69) satisfies
∣∣∣∣∣

1

4Ru

√
αu
Ru

〈v〉Tt,R Z

n

∣∣∣∣∣ ≤
1

4Ru

√
αu
Ru

‖〈v〉t,R‖ ‖Z‖
n

≤ 1

4Ru

√
αu
Ru

〈‖v‖〉t,R ‖Z‖
n

≤ 1

4Ru

√
αuρv
Ru

nv
n

‖Z‖√
n
. (3.72)
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We now define for all Ru ∈ (0,+∞):

F (Ru) := Fn(t, (Ru, Rv))−
√
αuρvRu

nv
n

‖Z‖√
n

; (3.73)

f(Ru) := fn(t, (Ru, Rv))−
√
αuρvRu

nv
n

E ‖Z‖√
n

. (3.74)

F is convex on (0,+∞) as it is twice differentiable with a nonnegative second
derivative by (3.69) and (3.72). The same holds for f . Note that ∀Ru ∈ (0,+∞):

F (Ru)− f(Ru) = Fn(t, (Ru, Rv))− fn(t, (Ru, Rv))−
√
αuρvRu

nv
n

‖Z‖ − E ‖Z‖√
n

,

F ′(Ru)− f ′(Ru) = −
(
〈L〉t,R − E 〈L〉t,R

)
− 1

2

√
αuρv
Ru

nv
n

‖Z‖ − E ‖Z‖√
n

.

It follows from Lemma 2.8 (applied to the convex functions G = F , g = f) and
these last two identities that ∀Ru ∈ (0,+∞), ∀δ ∈ (0, Ru):

∣∣〈L〉t,R − E 〈L〉t,R
∣∣ ≤ 1

2

√
αuρv
Ru

nv
n

∣∣‖Z‖ − E ‖Z‖
∣∣

√
n

+ Cδ(Ru)

+
1

δ

∑

x∈{−δ,0,δ}
|F (Ru + x)− f(Ru + x)|

≤
√
αuρv

nv
n

(
1

2
√
Ru

+ 3
√
Ru

)∣∣‖Z‖ − E ‖Z‖
∣∣

√
n

+ Cδ(Ru)

+
1

δ

∑

x∈{−δ,0,δ}
|Fn(t, (Ru + x,Rv))− fn(t, (Ru + x,Rv))| ,

where Cδ(r) := f ′(r+ δ)− f ′(r− δ) is nonnegative (f is convex). We now use the
inequality (

∑m
i=1 vi)

2 ≤ m
∑m

i=1 v
2
i to obtain ∀Ru ∈ (0,+∞), ∀δ ∈ (0, Ru):

E
[(
〈L〉t,R − E 〈L〉t,R

)2 ] ≤ 5αuρv
nv
n

(
1

4Ru

+ 3 + 9Ru

)
Var‖Z‖

n
+ 5Cδ(Ru)

2

+
5

δ2

∑

x∈{−δ,0,δ}
E
[(
Fn(t, (Ru + x,Rv))− fn(t, (Ru + x,Rv))

)2]
. (3.75)

The next step is to bound the integral of the three summands on the right-hand
side of (3.75). By [99, Theorem 3.1.1], there exists C1 such that Var ‖Z‖ ≤ C1

independently of the dimension nv. Then,
∫ b

a

dRu
nv
n

(
1

4Ru

+ 3 + 9Ru

)
Var‖Z‖

n
≤ nv

n

(
ln(b/a)

4
+ 3b+

9

2
b2

)
C1

n
. (3.76)

Note that Cδ(Ru) = |Cδ(Ru)| ≤ |f ′(Ru + δ)|+ |f ′(Ru − δ)|. For all Ru ∈ (0,+∞):

|f ′(Ru)| ≤
∣∣E 〈L〉t,R

∣∣+ 1

2

√
αuρv
Ru

nv
n

E ‖Z‖√
n
≤ nv

n

√
αuρv

2

(√
αuρv+

1√
Ru

)
, (3.77)
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where the second inequality in (3.77) follows from |E 〈L〉t,R| ≤ αuρvnv/2n (see (3.64)
and (3.65)) and E‖Z‖ ≤ E[‖Z‖2]1/2 =

√
nv. Thus, for the second summand on

the right-hand side of (3.75), we obtain ∀δ ∈ (0, a):

∫ b

a

dRuCδ(Ru)
2 ≤ nv

n

√
αuρv

(√
αuρv +

1√
a− δ

)∫ b

a

dRuCδ(Ru)

=
nv
n

√
αuρv

(√
αuρv +

1√
a− δ

)

·
(
f(b+ δ)− f(b− δ)−

(
f(a+ δ)− f(a− δ)

))

≤ δ

(
nv
n

)2

αuρv

(√
αuρv +

1√
a− δ

)2

. (3.78)

The last inequality is a simple application of the mean value theorem. We finally
turn to the third summand. By Proposition 3.12 in Appendix 3.E, there exists
a positive constant C2 depending only on a, b and Mv such that ∀t ∈ [0, 1],
∀(Ru, Rv) ∈ (0, b+ a)× (0,Mv):

E
[(
Fn(t, R)− fn(t, R)

)2 ] ≤ C2

n
. (3.79)

Using (3.79), we see that the third summand satisfies ∀δ ∈ (0, a):

∫ b

a

dRu
5

δ2

∑

x∈{−δ,0,δ}
E
[(
Fn(t, (Ru + x,Rv))− fn(t, (Ru + x,Rv))

)2 ] ≤ 15C2

δ2n
b .

(3.80)
To end the proof, we integrate (3.75) over Ru ∈ [a, b] and use the three upper
bounds (3.76), (3.78) and (3.80).

3.D.2 Concentration of Qv around its expectation

Proof of Proposition 3.6. Using the upper bound (3.52) in Lemma 3.9 and the
Cauchy-Schwarz inequality yields

∫ b

a

E
〈(
Qv − E 〈Qv〉t,R

)2 〉
t,R
dRu ≤

4

α2
u

(
n

nv

)2 ∫ b

a

E 〈(L − E 〈L〉t,R)2〉t,R dRu .

We then use Propositions 3.10 and 3.11 to upper bound

∫ b

a

E 〈(L − E 〈L〉t,R)2〉t,R dRu =

∫ b

a

E 〈(L − 〈L〉t,R)2〉t,R dRu

+

∫ b

a

E[(〈L〉t,R − E 〈L〉t,R)2 ] dRu ,

hence concluding the proof.
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3.E Concentration of the free entropy

Consider the inference problem (3.14). Once the observations Y(t), Ỹ(t,Rv) and
Y

(t,Ru) have been replaced by their definitions, the associated Hamiltonian reads

Ht,R(u,v; U,V,Z, Z̃,Z) :=
nu∑

i=1

nv∑

j=1

(1− t)
2n

u2
i v

2
j −

1− t
n

uivjUiVj −
√

1− t
n

uivjZij

+
nu∑

i=1

αvRv

2
u2
i − αvRv uiUi −

√
αvRv uiZ̃i

+
nv∑

j=1

αuRu

2
v2
j − αuRuvjVj −

√
αuRu vjZj .

In this section, we show that the free entropy

1

n
lnZt,R

(
Y(t), Ỹ(t,Rv),Y

(t,Ru))
=

1

n
ln

(∫
dPu(u)dPv(v) e−Ht,R(u,v;U,V,Z,Z̃,Z)

)

concentrates around its expectation. In what follows, we write 1
n

lnZt,R, omitting
the arguments, to shorten notations.

Proposition 3.12 (Concentration of the free entropy). Let M be a positive
number. There exists a positive constant C such that for any R ∈ [0,+∞)2 whose
Euclidean norm is bounded by M we have

E

[(
lnZt,R
n
− E

[
lnZt,R
n

])2 ]
≤ C

n
. (3.81)

Proof. To lighten notations, we drop the subscripts to the angular brackets 〈−〉t,R
that denote an expectation w.r.t. the posterior (3.15). First, we show that the free
entropy concentrates on its conditional expectation given V, Z, Z̃, Z. To do so, we
see g(U/√ρunu) := lnZt,R/n as a function of U/√ρunu and we work conditionally to V,
Z, Z̃, Z. We normalize by √ρunu so that U/√ρunu is uniformly distributed on the
(nu − 1)-sphere of radius 1 and we can apply Lévy’s lemma on the concentration
of uniform measure on the sphere. For the reader’s convenience, we reproduce
the statement of this lemma given in [105, Corollary 5.4] (see this reference for a
proof).

Lemma 3.13 (Lévy’s lemma). Let Sn−1 be the (n− 1)-sphere of radius 1. Let
f : Sn−1 → R be Lipschitz continuous with Lipschitz constant L, and let X be a
uniform random vector in Sn−1. Then,

P(|f(X)− Ef(X)| ≥ Lt) ≤ exp(π − nt2/4) .
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By Jensen’s inequality, we have

1

n

〈
Ht,R(u,v; Ũ,V,Z, Z̃,Z)−Ht,R(u,v; U,V,Z, Z̃,Z)

〉
Ũ

≤ g

(
U√
ρunu

)
− g
(

Ũ√
ρunu

)

≤ 1

n

〈
Ht,R(u,v; Ũ,V,Z, Z̃,Z)−Ht,R(u,v; U,V,Z, Z̃,Z)

〉
U
. (3.82)

The subscript Ũ (resp. U) of the angular brackets on the left-hand side (resp. right-
hand side) of (3.82) means that (u,v) is distributed according to the posterior
∝ dPu(u)dPv(v) e−Ht,R(u,v;Ũ,V,Z,Z̃,Z) (resp. ∝ dPu(u)dPv(v) e−Ht,R(u,v;U,V,Z,Z̃,Z)).
Note that

∣∣Ht,R(u,v; Ũ,V,Z, Z̃,Z)−Ht,R(u,v; U,V,Z, Z̃,Z)
∣∣

=

∣∣∣∣
1− t
n

nu∑

i=1

nv∑

j=1

vjVjui(Ui − Ũi) + αvRv

nu∑

i=1

ui(Ui − Ũi)
∣∣∣∣

=

∣∣∣∣
1− t
n

vTV + αvRv

∣∣∣∣ ·
∣∣uT(U− Ũ)

∣∣

≤
(
nv
n
ρv + αvRv

)
ρunu

∥∥∥∥
U√
ρunu

− Ũ√
ρunu

∥∥∥∥ .

Combining this last inequality with (3.82) yields
∣∣∣∣g
(

U√
ρunu

)
− g
(

Ũ√
ρunu

)∣∣∣∣ ≤ ρu
nu
n

(
ρv
nv
n

+ αvRv

)∥∥∥∥
U√
ρunu

− Ũ√
ρunu

∥∥∥∥ ,

i.e., g is Lipschitz continuous with Lipschitz constant L = ρu
nu
n

(
ρv

nv
n

+ αvRv

)
.

Lemma 3.13 then directly implies

E

[(
lnZt,R
n
− E

[
lnZt,R
n

∣∣∣∣V,Z, Z̃,Z
])2 ]

≤ 4L2eπ

nu
=
C1

n
, (3.83)

where C1 := 4eπρ2
u
nu
n

(
ρv

nv
n

+ αvRv

)2.
In a similar way, we can show that the conditional expectation of the free

entropy given V, Z, Z̃, Z concentrates on its conditional expectation given Z, Z̃,
Z, that is,

E

[(
E
[

lnZt,R
n

∣∣∣∣V,Z, Z̃,Z
]
− E

[
lnZt,R
n

∣∣∣∣Z, Z̃,Z
])2 ]

≤ C2

n
, (3.84)

where C2 = 4eπρ2
v
nv
n

(
ρu

nu
n

+ αuRu

)2.
Finally, we show that the conditional expectation of the free entropy given Z, Z̃,

Z concentrates on its expectation. To do so, we see g(Z, Z̃,Z) := E[lnZt,R/n|Z, Z̃,Z]
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as a function of the Gaussian noises Z, Z̃, Z. By the Gaussian-Poincaré inequality
(Proposition 2.7), we have

E

[(
E
[

lnZt,R
n

∣∣∣∣Z, Z̃,Z
]
− E

[
lnZt,R
n

])2 ]
≤ E

∥∥∇g(Z, Z̃,Z)
∥∥2
, (3.85)

where the squared norm of the gradient of g is simply

‖∇g‖2 =
∑

i,j

|∂g/∂Zi,j|2 +
∑

i

|∂g/∂Z̃i|2 +
∑

j

|∂g/∂Zj|2 .

Each of these partial derivatives takes the form ∂g
∂x

= − 1
n
E
[〈∂Ht,R

∂x

〉∣∣Z, Z̃,Z
]
and

∣∣∣∣
∂Ht,R

∂Zij

∣∣∣∣ =

∣∣∣∣
√

1− t
n

uivj

∣∣∣∣ ,
∣∣∣∣
∂Ht,R

∂Z̃i

∣∣∣∣ =
∣∣√αvRv ui

∣∣ ,
∣∣∣∣
∂Ht,R

∂Zj

∣∣∣∣ =
∣∣√αuRu vj

∣∣ .

On one hand, by Jensen’s inequality, we have
nu∑

i=1

nv∑

j=1

E
∣∣∣∣
∂g

∂Zij

∣∣∣∣
2

≤ 1

n3

nu∑

i=1

nv∑

j=1

E[〈u2
i v

2
j 〉] =

nu
n

nv
n

ρuρv
n

. (3.86)

On the other hand, still by Jensen’s inequality, we have
nu∑

i=1

E
∣∣∣∣
∂g

∂Z̃i

∣∣∣∣
2

≤ αvRv

n2

nu∑

i=1

E[〈u2
i 〉] =

nu
n

αvρuRv

n
, (3.87)

and
nv∑

j=1

E
∣∣∣∣
∂g

∂Zj

∣∣∣∣
2

≤ αuRu

n2

nv∑

j=1

E[〈v2
j 〉] =

nv
n

αuρvRu

n
. (3.88)

Plugging (3.86), (3.87), and (3.88) back in (3.85) yields

E

[(
E
[

lnZt,R
n

∣∣∣∣Z, Z̃,Z
]
− E

[
lnZt,R
n

])2 ]
≤ C3

n
, (3.89)

where C3 := nu
n
nv
n
ρuρv + nu

n
αvρuRv + nv

n
αuρvRu. Note that C1 +C2 +C3 −−−−→

n→+∞
C,

C := αuαv(4e
παvρ

2
u(ρv +Rv)

2 + 4eπαuρ
2
v(ρu +Ru)

2 + ρuρv + ρuRv + ρvRu) .

This limit is combined with the inequalities (3.83), (3.84), and (3.89) to obtain
(3.81).

3.F Formula for the asymptotic MMSE

In the whole appendix the values of the positive hyperparameters αu, αv, ρu and
ρv are fixed. Then, we define ∀(mu,mv, λ) ∈ [0, ρu]× [0, ρv]× (0,+∞):

i(mu,mv, λ) := iRS(mu,mv; Θ) =
λαuαv

2
(ρu −mu)(ρv −mv)

+ αu
ln(1 + λαvρumv)

2
+ αv

ln(1 + λαuρvmu)

2
.
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Lemma 3.14. Let D := [0, ρu]× (0,+∞). For every pair (mu, λ) ∈ D there exists
a unique m∗v(mu, λ) ∈ [0, ρv] such that

i(mu,m
∗
v(mu, λ), λ) = sup

mv∈[0,ρv ]

i(mu,mv, λ) ,

and it is given by the formula

m∗v(mu, λ) =

{
mu

λαvρu(ρu−mu)
if 0 ≤ mu ≤ mu(λ)

ρv if mu(λ) < mu ≤ ρu
,

where ∀λ ∈ {0,+∞} :

mu(λ) := ρu

(
1− 1

1 + λαvρuρv

)
.

The function m∗v : D 7→ [0, ρv] is continuous and continuously differentiable on
D \ {(mu(λ), λ) : λ > 0}. Finally,

∀λ ∈ (0,+∞),∀mu ∈ [0,mu(λ)] :
∂i

∂mv

∣∣∣∣
mu,m∗v(mu,λ),λ

= 0 . (3.90)

Proof. Fix (mu, λ) ∈ D. Let f : mv ∈ [0, ρv] 7→ i(mu,mv, λ). f is continuously
twice differentiable on [0, ρv] with derivatives

f ′(mv) =
λαuαv

2

(
ρu

1 + λαvρumv

− ρu +mu

)
, f ′′(mv) = − λ2αuα

2
vρ

2
u

2(1 + λαvρumv)2
.

Note that
f ′(mv) = 0⇔ mv =

mu

λαvρu(ρu −mu)
.

It is easy to check that the solution to f ′(mv) = 0 lies in [0, ρv] if, and only if,
mu ∈ [0,mu(λ)] wheremu(λ) is defined in the lemma. Besides, f is strictly concave
as f ′′ < 0. Therefore, f has a unique global maximizer that is given by the unique
solution to f ′(mv) = 0 if mu ∈ [0,mu(λ)] and is equal to ρv if mu ∈ [mu(λ), ρu].
The formula and properties of m∗v : D 7→ [0, ρv] directly follow.

Lemma 3.15. Define h(λ) := infmu∈[0,ρu] supmv∈[0,ρv ] i(mu,mv, λ). The function
h is continuously differentiable on (0,+∞) and for all λ ∈ (0,+∞):

h(λ) = i
(
m∗u(λ),m∗v(λ), λ

)
, (3.91)

h′(λ) =
αuαv

2

(
ρuρv −m∗u(λ)m∗v(λ)

)
; (3.92)

where (m∗u(λ),m∗v(λ)) is the unique solution to the extremization that defines h
and is given by the formulas

m∗u(λ) =

{
0 if 0 < λ ≤ 1/ρuρv

√
αuαv

λ2αuαvρ2
vρ

2
u−1

λαuρv(1+λαvρvρu)
if λ > 1/ρuρv

√
αuαv

; (3.93)

m∗v(λ) =

{
0 if 0 < λ ≤ 1/ρuρv

√
αuαv

λ2αuαvρ2
vρ

2
u−1

λαvρu(1+λαuρvρu)
if λ > 1/ρuρv

√
αuαv

. (3.94)
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Proof. By Lemma 3.14, h(λ) = infmu∈[0,ρu] g(mu, λ) where ∀λ ∈ (0,+∞) :

g(mu, λ) := i(mu,m
∗
v(mu, λ), λ) .

By continuity of i(·, ·, λ) and m∗v(·, λ), g(·, λ) is continuous on [0, ρu]. Besides,
g(·, λ) is increasing on [mu(λ), ρu] as ∀mu ∈ [mu(λ), ρu] :

g(mu, λ) := i(mu, ρv, λ) = αu
ln(1 + λαvρuρv)

2
+ αv

ln(1 + λαuρvmu)

2
.

Thus, we can restrict the infimum to the interval [0,mu(λ)] in the definition of h,

h(λ) = inf
mu∈[0,mu(λ)]

g(mu, λ) .

For all mu ∈ [0,mu(λ)]:

g(mu, λ) := i

(
mu,

mu

λαvρu(ρu −mu)
, λ

)

=
αu
2ρu

(
λαvρvρ

2
u −mu(1 + λαvρvρu)

)
+
αu
2

ln

(
ρu

ρu −mu

)

+
αv
2

ln(1 + λαuρvmu) ,

∂g

∂mu

∣∣∣∣
mu,λ

= − αu
2ρu

(1 + λαvρvρu) +
αu
2

1

ρu −mu

+
αv
2

λαuρv
1 + λαuρvmu

= a(mu, λ)mu

(
1− λ2αuαvρ

2
vρ

2
u

λαuρv(1 + λαvρvρu)
+mu

)
,

where
a(mu, λ) :=

λα2
uρv(1 + λαvρvρu)

2ρu(ρu −mu)(1 + λαuρvmu)
.

Note that ∀λ ∈ (0,+∞),∀mu ∈ [0,mu(λ)] : a(mu, λ) > 0. If λ ≤ 1/ρuρv
√
αuαv then

0 is the unique global minimizer of g(·, λ) on [0,mu(λ)]. Instead, if λ > 1/ρuρv
√
αuαv

then ∂g
∂mu

∣∣
mu,λ

has a nonzero root given by

λ2αuαvρ
2
vρ

2
u − 1

λαuρv(1 + λαvρvρu)
= mu(λ)− 1

λαuρv(1 + λαvρvρu)
∈ (0,mu(λ)) .

We can easily check that this root is the unique global minimizer of g(·, λ) on
[0,mu(λ)]. Hence, we have just shown that

m∗u(λ) :=

{
0 if 0 < λ ≤ 1/ρuρv

√
αuαv

λ2αuαvρ2
vρ

2
u−1

λαuρv(1+λαvρvρu)
if λ > 1/ρuρv

√
αuαv

is the unique global minimizer of g(·, λ) on [0,mu(λ)] (and, in fact, [0, ρu]) and
that ∀λ ∈ (0,+∞) : ∂g

∂mu

∣∣
m∗u(λ),λ

= 0. Define

m∗v(λ) := m∗v(m
∗
u(λ), λ) =

{
0 if 0 < λ ≤ 1/ρuρv

√
αuαv

λ2αuαvρ2
vρ

2
u−1

λαvρu(1+λαuρvρu)
if λ > 1/ρuρv

√
αuαv

. (3.95)
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It follows from Lemma 3.14 that ∀λ ∈ (0,+∞):

h(λ) = g(m∗u(λ), λ) = i(m∗u(λ),m∗v(λ), λ) . (3.96)

By Lemma 3.14, m∗v(·, λ) is continuously differentiable on [0,mu(λ)] so for all
mu ∈ [0,mu(λ)) :

∂g

∂mu

∣∣∣∣
mu,λ

=
∂i

∂mu

∣∣∣∣
mu,m∗v(mu,λ),λ

+
∂i

∂mv

∣∣∣∣
mu,m∗v(mu,λ),λ

· ∂m
∗
v

∂mu

∣∣∣∣
mu,λ

=
∂i

∂mu

∣∣∣∣
mu,m∗v(mu,λ),λ

,

where we use (3.90) to obtain the last equality. Evaluating the latter partial
derivative at (mu, λ) = (m∗u(λ), λ) yields

∂i

∂mu

∣∣∣∣
m∗u(λ),m∗v(λ),λ

=
∂g

∂mu

∣∣∣∣
m∗u(λ),λ

= 0 ,

as we have previously shown in this proof that ∂g
∂mu

∣∣
m∗u(λ),λ

= 0. All in all, we have
shown that ∀λ ∈ (0,+∞) :

∂i

∂mu

∣∣∣∣
m∗u(λ),m∗v(λ),λ

=
∂i

∂mv

∣∣∣∣
m∗u(λ),m∗v(λ),λ

= 0 . (3.97)

Combining (3.96) and the fact that m∗u,m∗v are continuously differentiable on
(0,+∞)\{1/ρuρv

√
αuαv}, we obtain that h is continuously differentiable on (0,+∞)\

{1/ρuρv
√
αuαv} and for all λ ∈ (0,+∞) \ {1/ρuρv

√
αuαv}:

h′(λ) =
∂i

∂λ

∣∣∣∣
m∗u(λ),m∗v(λ),λ

+
dm∗u
dλ

∣∣∣∣
λ

· ∂i

∂mu

∣∣∣∣
m∗u(λ),m∗v(λ),λ

+
dm∗v
dλ

∣∣∣∣
λ

· ∂i

∂mv

∣∣∣∣
m∗u(λ),m∗v(λ),λ

=
∂i

∂λ

∣∣∣∣
m∗u(λ),m∗v(λ),λ

=
αuαv

2

(
ρu −m∗u(λ)

)(
ρv −m∗v(λ)

)

+
αuαvρum

∗
v(λ)

2(1 + λαvρum∗v(λ))
+

αuαvρvm
∗
u(λ)

2(1 + λαuρvm∗u(λ))

=
αuαv

2

(
ρu −m∗u(λ)

)(
ρv −m∗v(λ)

)

+
m∗v(λ)

λ

(
∂i

∂mv

∣∣∣∣
m∗u(λ),m∗v(λ),λ

+
λαuαv

2

(
ρu −m∗u(λ)

))

+
m∗u(λ)

λ

(
∂i

∂mu

∣∣∣∣
m∗u(λ),m∗v(λ),λ

+
λαuαv

2

(
ρv −m∗v(λ)

))

=
αuαv

2

(
ρuρv −m∗u(λ)m∗v(λ)

)
.

The second and last inequalities follow from (3.97). Note that the function
λ 7→ αuαv

2

(
ρuρv −m∗u(λ)m∗v(λ)

)
is continuous at λ = 1/ρuρv

√
αuαv. Therefore, h is

continuously differentiable on (0,+∞).
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We now have everything we need to prove the formula for the MMSE in the
high-dimensional limit.

Theorem 3.3. Define λIT := (ρuρv
√
αuαv)

−1 and for all λ ∈ (0,+∞):

(
m∗u(λ),m∗v(λ)

)
=

{
(0 , 0) if 0 < λ ≤ λIT(

λ2αuαvρ2
vρ

2
u−1

λαuρv(1+λαvρvρu)
, λ2αuαvρ2

vρ
2
u−1

λαvρu(1+λαuρvρu)

)
if λ > λIT

.

The pair (m∗u(λ),m∗v(λ)) is the unique solution to the extremization over (mu,mv)
on the right-hand side of (3.6), and MMSEλ(UVT|Y) satisfies

lim
n→+∞

MMSEλ(UVT|Y) = ρuρv −m∗u(λ)m∗v(λ) . (3.8)

Hence, the asymptotic MMSE is less than ρuρv if, and only if, λ > λIT.

Proof. Let n ∈ N∗. Define hn : λ ∈ (0,+∞) 7→ I(U,V;Y)
n

(the mutual information
depends on λ through Y). We have the I-MMSE relationship [51]

h′n(λ) =
∂

∂λ

(
I(U,V; Y)

n

)
=
nu
n

nv
n

MMSEλ(UVT|Y)

2
. (3.98)

The function λ 7→ MMSEλ(UVT|Y) is nonincreasing so hn is concave on (0,+∞).
By Theorem 3.2, the sequence of continuously differentiable concave functions
(hn)n∈N∗ converges pointwise to h : λ 7→ infmu∈[0,ρu] supmv∈[0,ρv ] i(mu,mv, λ). By
Lemma 3.15, this limit h is continuously differentiable. Therefore, by Griffiths’
lemma [52, Appendix A], for all λ ∈ (0,+∞) :

lim
n→+∞

h′n(λ) = h′(λ) =
αuαv

2

(
ρuρv −m∗u(λ)m∗v(λ)

)
.

We combine the latter with (3.98) to get

lim
n→+∞

MMSEλ(UVT|Y) = ρuρv −m∗u(λ)m∗v(λ) .

The rest of the theorem simply follows from Lemma 3.15.



Mutual information for low-rank
even-order symmetric tensor
estimation 4
4.1 Introduction

There exist well-known unsupervised algorithms to discover structure in a 2D
dataset, e.g., singular value decomposition (SVD), principal component analysis
(PCA) and other spectral methods [1]. Tensors naturally handle multidimensional
data and their use becomes more and more beneficial with the emergence of big
data, a strong incentive to go beyond the flat matrix world. Tensor decompositions
come with some advantages with respect to matrices, and have numerous appli-
cations in signal processing and machine learning, e.g., data compression, data
visualization, learning probabilistic latent variables models, etc. [14], [94]. The
canonical polyadic (CP) decomposition, also known as tensor rank decomposition
or CP tensor factorization, is the most familiar one and represents a tensor as a
minimum-length linear combination of rank-one tensors. This minimum-length
defines the tensor rank. If instead the number K of rank-one tensors forming the
linear combination is not minimal, we talk of a K-term decomposition.

One approach to explore computational and statistical limits of tensor fac-
torization is to consider a statistical model, as done in [19]. In this chapter we
consider Model 1.2 that generalizes the one proposed in [19] where the estimated
tensor has rank one. The model reads as follows: draw K column vectors in Rn,
evaluate for each of them their pth tensor power, sum these K symmetric order-p
tensors (this sum is exactly a K-term polyadic decomposition), and finally add
noise to each entry of this symmetric order-p tensor. Tensor factorization can
then be studied as an inference problem where the task is to estimate the initial
K vectors that produce the informative tensor from the noisy observations of
this tensor. We want to determine information theoretic limits for this task. To
do so, we focus on proving variational formulas for the asymptotic normalized
mutual information between the noisy observed tensor and the original K vectors.
Such formulas were first rigorously derived for p = 2 and K = 1, i.e., rank-one
matrix factorization; see [66] for the case with a binary input vector, [18] for
the restricted case in which no discontinuous phase transition occurs, [21] for a
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single-sided bound, and finally [34] for the fully general case. The proof in [34]
combines interpolation techniques with spatial coupling and an analysis of the
approximate message passing (AMP) algorithm. Later, and still for p = 2, [36]
went beyond rank-one by using a rigorous version of the cavity method. In [45]
the authors applied the heuristic replica method to conjecture a formula for any p
and finite K, and proved its exactness when p ≥ 2 and K = 1. They also detail
the AMP algorithm for tensor factorization and show how the single-letter varia-
tional expression for the mutual information allows one to give guarantees on the
performance of AMP. Afterwards, [37], [87] introduced the adaptive interpolation
proof technique which they applied to the case p ≥ 2, K = 1. Other proofs based
on interpolations recently appeared; see [35] where p = 2, K = 1, and [106] where
p ≥ 2, K = 1.

In this chapter, we prove the conjectured replica formula for any finite rank K
and any even order p using the adaptive interpolation method. We also underline
what is missing to extend the proof to odd orders. While our proof outline is
similar to [37], there are two important new ingredients. First, to establish a
tight lower bound on the asymptotic normalized mutual information, we have to
prove the regularity of a change of variable given by the solutions to an ordinary
differential equation. This is nontrivial when the rank becomes greater than one.
Second, the same bound requires one to prove the concentration of the overlap (a
quantity that fully characterizes the system in the high-dimensional limit). When
the rank K is greater than one, this overlap is a matrix. Proving its concentration
requires new ideas and technical arguments to bypass difficulties that are absent
in the scalar case K = 1.

The chapter is organized as follows. In Section 4.2 we set up the precise
statistical model and state our main theorem which is a single-letter variational
expression for the asymptotic normalized mutual information. The adaptive
interpolation method is formulated in Section 4.3. In Section 4.4 we use this
adaptive interpolation to prove that the variational expression is both an upper
and lower bound on the asymptotic normalized mutual information. Sections 4.5
and 4.6 contain the new and essential results which allow to go from rank-one
to finite-rank tensors. Finally, the difficulties encountered for odd-order tensors
are discussed in the last section, that is, Section 4.7. The reader will find in
Appendix 4.A a technical calculation which is new and crucial to our proof, while
the content of Appendix 4.B is more classical.

4.2 Low-rank symmetric tensor estimation

Statistical model for tensor estimation We now describe the statistical
model that we study in this chapter. Let n, K be positive integers and PX a
probability distribution on RK . Let X1, . . . , Xn be random column vectors in RK ,
independent and identically distributed (i.i.d.) with respect to PX . We define X
the n×K matrix whose jth row is equal to XT

j ,

X :=
[
X1 X2 . . . Xn

]T
. (4.1)
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We denote by X·,k ∈ Rn the kth column of X. We are interested in the symmetric
order-p tensor

∑K
k=1 X

⊗p
·,k whose rank is at most K. This tensor is not directly

observed. Instead, for each p-tuple i = (i1, . . . , ip) with 1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ n,
we are given the noisy observation

Yi :=

√
λ(p− 1)!

np−1

K∑

k=1

Xi1kXi2k . . . Xipk + Zi , (4.2)

where λ > 0 is known and akin to a signal-to-noise ratio (SNR), and the
noises {Zi}1≤i1≤···≤ip≤n are independent standard Gaussian random variables.
We use the indexed noises {Zi}1≤i1≤···≤ip≤n to define the symmetric order-p tensor
Z := {Zi}1≤i1,...,ip≤n, meaning that for any permutation π : {1, . . . , p} → {1, . . . , p}
and any p-tuple (i1, i2, . . . , ip) we have

Ziπ(1)iπ(2)...iπ(p)
= Zi1i2...ip .

We see that being given the components (4.2) is equivalent to observing the
symmetric order-p tensor

Y :=

√
λ(p− 1)!

np−1

K∑

k=1

X⊗p·,k + Z . (4.3)

Mutual information in the high-dimensional regime Our main result is
the proof of a formula for the normalized mutual information between X and
Y in the high-dimension limit where n → +∞ while the rank K is kept fixed.
This formula is given as the optimization of a potential over the cone of K ×K
symmetric positive semidefinite matrices S+

K . Let Z̃ ∼ N (0, IK) and X ∼ PX be
two independent random vectors. We define

ψPX : S ∈ S+
K 7→ E ln

∫
dPX(x) exp

(
XTSx+ Z̃T

√
Sx− xTSx

2

)
(4.4)

that is a convex Lipschitz-continuous function (see Lemma 2.4). For two matrices
A and B having the same dimension, the Hadamard product A ◦B is the matrix
of same dimension with elements given by (A ◦B)ij = AijBij. Note that, by the
Schur Product Theorem [107], the Hadamard product of two matrices in S+

K is
also in S+

K . We now use ψPX to define the potential function

φp,λ : S ∈ S+
K 7→ ψPX

(
λS◦(p−1)

)
− λ(p− 1)

2p

K∑

`,`′=1

(
S◦p
)
``′
, (4.5)

where S◦k is the kth Hadamard power of S. We prove the replica symmetric
formula conjectured in [45].

Theorem 4.1 (RS formula for the normalized mutual information). Assume that
the positive integer p is even and the first 2p moments of the distribution PX are
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finite. Let ΣX := E[XXT] ∈ S+
K be the matrix of second moments of a random

vector X ∼ PX . Then,

lim
n→+∞

I(X; Y)

n
=

λ

2p

K∑

`,`′=1

(
Σ◦pX
)
``′
− sup

S∈S+
K

φp,λ(S) . (4.6)

Remark (From now on λ = 1). We can reduce the proof of (4.6) to the case
λ = 1 by properly rescaling PX . From now on, we set λ = 1 and define φp := φp,1.

Before proving Theorem 4.1 we introduce important quantities, adopting the
statistical mechanics terminology. We denote by I the subset of p-tuples

I :=
{
i = (i1, i2, . . . , ip) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ n

}
.

Given the observations Y, we define for all x ∈ Rn×K :

Hn(x; Y) :=
∑

i∈I

(p− 1)!

2np−1

( K∑

`=1

p∏

a=1

xia`

)2

−
∑

i∈I

√
(p− 1)!

np−1
Yi

K∑

`=1

p∏

a=1

xia` . (4.7)

We refer to Hn( · ; Y) as the Hamiltonian. Using Bayes’ rule, the posterior
probability density function is

dP (x |Y) :=
1

Zn(Y)
e−Hn(x;Y)

n∏

j=1

dPX(xj) ,

where Zn(Y) :=
∫
e−Hn(x;Y)

∏
j dPX(xj) is the normalization factor. Finally, the

average free entropy is

fn :=
E lnZn(Y)

n
, (4.8)

and is linked to the mutual information by the identity

I(X; Y)

n
=

1

2p

K∑

`,`′=1

(
Σ◦pX
)
``′
− fn +O(n−1) . (4.9)

The quantity O(n−1) in (4.9) is such that nO(n−1) is bounded uniformly in n.
Thanks to (4.9), Theorem 4.1 follows directly from the next two bounds on the
asymptotic average free entropy.

Theorem 4.2 (Lower bound on asymptotic average free entropy). Assume that
the positive integer p is even and the first 2p moments of the distribution PX are
finite. Then,

lim inf
n→+∞

fn ≥ sup
S∈S+

K

φp(S) . (4.10)

Theorem 4.3 (Upper bound on asymptotic average free entropy). Assume that
the positive integer p is even and the distribution PX has bounded support. Then,

lim sup
n→+∞

fn ≤ sup
S∈S+

K

φp(S) . (4.11)
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Remark. The assumption on PX in Theorem 4.3 is stricter than the one in
Theorem 4.1. Therefore, combining Theorem 4.2 and Theorem 4.3 only proves the
limit (4.6) for a distribution PX that has bounded support. The generalization
to a distribution PX having finite 2pth moments is done by approaching PX with
distributions having bounded support, much as it is done in [36, Section 6.2.2].

4.3 Adaptive path interpolation

We prove Theorems 4.2 and 4.3 thanks to the adaptive interpolation method. Let
us introduce a parameter t ∈ [0, 1]. We interpolate from the original channel (4.2)
at t = 0 to decoupled channels at t = 1. In between, we follow an interpolation path
R(·, ε) : [0, 1]→ S+

K that is a continuously differentiable function parametrized by
a “small perturbation” ε ∈ S+

K such that R(0, ε) = ε. More precisely, for t ∈ [0, 1],
we observe




Y

(t)
i :=

√
(1−t)(p−1)!

np−1

K∑
k=1

p∏
a=1

Xiak + Zi , i ∈ I

Ỹ
(t,ε)
j :=

√
R(t, ε)Xj + Z̃j , j ∈ {1, 2, . . . , n}

, (4.12)

where X, Z are defined like in Section 4.2, and Z̃1, . . . , Z̃n are K-dimensional
column vectors that are i.i.d. with respect to N (0, IK) and independent of (X,Z).
Let Z̃ := [Z̃1 Z̃2 . . . Z̃n]T be the n×K matrix whose jth row is Z̃T

j . Observing
the components (4.12) is the same than being given the symmetric order-p tensor
Y(t) together with the matrix Ỹ(t,ε), where

{
Y(t) :=

√
(1−t)(p−1)!

np−1

∑K
k=1X

⊗p
·,k + Z

Ỹ(t,ε) :=
√
R(t, ε) XT + Z̃T

.

The Hamiltonian associated with the interpolating problem at a fixed t reads

Ht,ε(x; Y(t), Ỹ(t,ε))

:=
∑

i∈I

(1− t)(p− 1)!

2np−1

(
K∑

k=1

p∏

a=1

xiak

)2

−
√

(1− t)(p− 1)!

np−1
Y

(t)
i

K∑

k=1

p∏

a=1

xiak

+
n∑

j=1

xTj R(t, ε)xj

2
−
(
Ỹ

(t,ε)
j

)T√
R(t, ε)xj . (4.13)

The interpolating average free entropy is defined similarly to the original average
free entropy (4.8), that is,

fn(t, ε) :=
1

n
E lnZt,ε(Y(t), Ỹ(t,ε)) (4.14)

with Zt,ε(Y(t), Ỹ(t,ε)) :=
∫
e−Ht,ε(x;Y(t),Ỹ(t,ε))

∏n
j=1 dPX(xj). By evaluating (4.14)

at both extremes we find that{
fn(0, ε) = fn +O(‖ε‖)
fn(1, ε) = ψPX (R(1, ε))

, (4.15)
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where ‖·‖ denotes the Euclidean norm andO(‖ε‖) is such that |O(‖ε‖)| ≤ Tr(ΣX)
2
‖ε‖.

In order to deal with future computations, it is useful to denote by angular brack-
ets 〈−〉t,ε the expectation with respect to the posterior distribution of X given
(Y(t), Ỹ(t,ε)), i.e.,

〈g(x)〉t,ε =

∫
g(x)

e−Ht,ε(x;Y(t),Ỹ(t,ε))

Zt,ε(Y(t), Ỹ(t,ε))

n∏

j=1

dPX(xj) . (4.16)

Let f ′n(·, ε) be the derivative of fn(·, ε). Combining (4.15) with the fundamental
theorem of calculus fn(0, ε) = fn(1, ε)−

∫ 1

0
f ′n(t, ε)dt yields the following sum-rule

of the adaptive path interpolation.

Proposition 4.4 (Sum-rule). Assume that the first 2p moments of PX are finite.
Let R′(·, ε) be the derivative of the interpolation path R(·, ε) and Q := xTX/n the
K ×K overlap matrix whose entries are Q``′ := 1

n

∑n
j=1 xj`Xj`′. Then,

fn = O(‖ε‖) +O(n−1) + ψPX (R(1, ε))

+
1

2p

∫ 1

0

dt
K∑

`,`′=1

E〈(Q``′)
p〉t,ε − p(R′(t, ε))``′E〈Q``′〉t,ε , (4.17)

where O(n−1)/n−1 and O(‖ε‖)/‖ε‖ are bounded uniformly in ε and n, respectively.

Proof. See Proposition 4.6 in Section 4.5 for the computation of f ′n(t, ε).

4.4 Matching bounds

In this section we prove first Theorem 4.2 and then Theorem 4.3 by plugging two
different choices for R(·, ε) in the sum-rule (4.17).

4.4.1 Lower bound on the asymptotic average free entropy

Proof of Theorem 4.2. We obtain a lower bound on fn by choosing the interpola-
tion path

R(t, 0) = tS◦(p−1) ,

where S is a K ×K symmetric positive semidefinite matrix. Note that ε = 0 and
R′(t, ε) = S◦(p−1). Under this choice, the sum-rule (4.17) reads

fn = O(n−1) + φp(S) +
1

2p

∫ 1

0

dt
K∑

`,`′=1

E
〈
hp(S``′ , Q``′)

〉
t,0

, (4.18)

where hp(r, q) := qp − pqrp−1 + (p− 1)rp. If p is even then hp is nonnegative on
R2 and (4.18) directly implies fn ≥ φp(S) +O(n−1). Taking the inferior limit on
both sides of this inequality, and bearing in mind that the inequality is valid for
all S ∈ S+

K , ends the proof of Theorem 4.2.
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We have at our disposal a wealth of interpolation paths when considering
any continuously differentiable R(·, ε). However, to establish the lower bound
(4.10), we have used a simple linear interpolation as R′(t, ε) = S◦(p−1). Such an
interpolation dates back to Guerra [60] and was already used by [36], [45] to
derive the lower bound (4.10) for both cases K = 1, any order p, and p = 2, any
finite rank K. Next we turn to the proof of the upper bound (4.11) and see how
the flexibility in the choice of R(·, ε) constitutes an improvement on the classical
interpolation.

4.4.2 Matching upper bound

The sum-rule (4.17) suggests to pick an interpolation path satisfying

∀(`, `′) ∈ {1, . . . , K}2 : (R′(t, ε))``′ = E[〈Q``′〉t,ε]p−1 . (4.19)

The integral in (4.17) can then be split in two terms: one is similar to the second
summand in (4.5), the other vanishes in the high-dimensional limit if the overlap
concentrates. It is not obvious that there is an interpolation path satisfying (4.19)
given that the angular brackets 〈−〉t,ε themselves depend on R(·, ε). Let us rewrite
(4.19) explicitly as an ODE.

Let R be a matrix in S+
K and t ∈ [0, 1]. Consider the observations




Y

(t)
i :=

√
(1−t)(p−1)!

np−1

K∑
k=1

p∏
a=1

Xiak + Zi , i ∈ I

Ỹ
(t,R)
j :=

√
RXj + Z̃j , j ∈ {1, . . . , n}

, (4.20)

where X, Z and Z̃ are defined exactly like in the previous sections. These obser-
vations are reminiscent of the interpolating problem (4.12) and the Hamiltonian
associated with (4.20) is equal to (4.13) with R replacing R(t, ε). The angular
brackets 〈−〉t,R denote the expectation with respect to the posterior distribution
of X. We define the function

Gn :
[0, 1]× S+

K → S+
K

(t, R) 7→ E[〈Q〉t,R]◦(p−1) . (4.21)

Note that E〈Q〉t,R is a symmetric positive semidefinite matrix. Indeed, by the
Nishimori identity, E〈Q〉t,R := n−1E[〈x〉Tt,RX] = n−1E[〈x〉Tt,R〈x〉t,R]. By the Schur
product theorem [107], the Hadamard power E[〈Q〉t,R]◦(p−1) also belongs to S+

K ,
justifying that Gn takes its values in S+

K . We see that the interpolation path
R(·, ε) satisfies (4.19) if, and only if, it is a solution to the K(K+1)/2-dimensional
first-order ODE

R′ = Gn(t, R)⇔ R′ = E[〈Q〉t,R]◦(p−1) .

The next proposition states that this ODE indeed admits a solution along. We
also prove nontrivial properties that are needed to show the upper bound (4.11).

Proposition 4.5. For all ε ∈ S+
K, there exists a unique global solution, denoted

R(·, ε) : [0, 1]→ S+
K, to the initial value problem

R′ = Gn(t, R) , R(0) = ε . (4.22)
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where Gn is defined in (4.21). The function R(·, ε) is continuously differentiable.
Let S++

K be the open cone of K × K symmetric positive definite matrices. If
p is even then, for all t ∈ [0, 1], R(t, ·) is a C1-diffeomorphism from S++

K into
R(t, S++

K ) whose Jacobian determinant is greater than one, i.e.,

∀ ε ∈ S++
K : det JR(t,·)(ε) ≥ 1 , (4.23)

Here JR(t,·) denotes the Jacobian matrix of R(t, ·).

Proof. Gn is continuously differentiable on [0, 1] × S+
K . Hence, by the Picard-

Lindelöf theorem, for every ε ∈ S+
K , there exists a unique global solution R(·, ε) to

the initial value problem (4.22).
Each initial value ε ∈ S+

K is tied to a unique solution R(·, ε), hence ε 7→ R(t, ε)
is injective. It is also continuously differentiable [104, Theorem 3.1] with Jacobian
determinant given by Liouville’s formula [104, Corollary 3.1],

det JR(t,·)(ε) = exp

∫ t

0

ds
∑

1≤`≤`′≤K

∂(Gn)``′

∂R``′

∣∣∣∣
s,R(s,ε)

. (4.24)

Thanks to the identity (4.24), we can show that the Jacobian determinant is
greater than, or equal to, one by proving that the divergence

∑
1≤`≤`′≤K

∂(Gn)``′
∂R``′

∣∣
t,R

is nonnegative for all (t, R) ∈ [0, 1]× S+
K . In the remaining part of the proof, we

omit the subscripts of the angular brackets 〈−〉t,R. By Lemma 4.13 in Appendix
4.A, we have

∑

`≤`′

∂(Gn)``′

∂R``′

∣∣∣∣
t,R

= n(p− 1)
∑

`,`′

E[〈Q``′〉 ]p−2 ∆``′ , (4.25)

where

∆``′ := E
〈(

Q``′ +Q`′`

2
−
〈
Q``′ +Q`′`

2

〉)2〉

−E
[(〈

Q``′ +Q`′`

2

〉
− (〈x〉T〈x〉)``′

n

)2 ]
. (4.26)

The second expectation on the right-hand side (r.h.s.) of (4.26) satisfies

E
[(〈

Q``′ +Q`′`

2

〉
− (〈x〉T〈x〉)``′

n

)2 ]

= E
〈

(xTX + XTx)``′

2n
− (〈x〉Tx + xT〈x〉)``′

2n

〉2

≤ E
〈(

(xTX + XTx)``′

2n
− (〈x〉Tx + xT〈x〉)``′

2n

)2〉

= E
〈(

(XTx + xTX)``′

2n
− (〈x〉TX + XT〈x〉)``′

2n

)2〉

= E
〈(

Q`′` +Q``′

2
−
〈
Q``′ +Q`′`

2

〉)2〉
,
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where the inequality is a simple application of Jensen’s inequality while the
subsequent equality is due to the Nishimori identity. Note that the final upper
bound is nothing but the first expectation on the r.h.s. of (4.26), hence ∆``′ ≥ 0
for all (`, `′) ∈ {1, . . . , K}2. Besides, E[〈Q``′〉t,R]p−2 is nonnegative if p is even.
The divergence (4.25) is thus nonnegative.

We can now prove Theorem 4.3 by choosing interpolation paths that are
solutions to the ODE R′ = Gn(t, R).

Proof of Theorem 4.3. Let ε be a symmetric positive definite matrix, i.e., ε ∈ S++
K .

We interpolate with the unique solution R(·, ε) : [0, 1] 7→ S++
K to the initial value

problem (4.22). Hence, the interpolation path R(·, ε) satisfies (4.19) and the
sum-rule (4.17) reads

fn = O(‖ε‖) +O(n−1) + ψPX (R(1, ε))− p− 1

2p

K∑

`,`′=1

∫ 1

0

dtE[〈Q``′〉t,ε]p

+

∫ 1

0

dt

2p

K∑

`,`′=1

E
〈
(Q``′)

p − E[〈Q``′〉t,ε]p
〉
t,ε
. (4.27)

Using first the Lipschitz continuity of ψPX and then its convexity (see Lemma 2.4),
it comes

ψPX (R(1, ε)) = ψPX

(
ε+

∫ 1

0

dtE[〈Q〉t,ε]◦(p−1)
)

= O(‖ε‖) + ψPX

(∫ 1

0

dtE[〈Q〉t,ε]◦(p−1)
)

≤ O(‖ε‖) +

∫ 1

0

dt ψPX

(
E[〈Q〉t,ε]◦(p−1)

)
, (4.28)

where |O(‖ε‖)| ≤ Tr ΣX
2
‖ε‖. Combining (4.27) and (4.28) yields

fn ≤ O(n−1) +O(‖ε‖) +

∫ 1

0

dt φp
(
E 〈Q〉t,ε

)
+

∫ 1

0

dt v(t, ε)

≤ O(n−1) +O(‖ε‖) + sup
S∈S+

K

φp(S) +

∫ 1

0

dt v(t, ε) (4.29)

where

v(t, ε) :=
1

2p

K∑

`,`′=1

E
〈
(Q``′)

p − E[〈Q``′〉t,ε]p
〉
t,ε
. (4.30)

In order to prove (4.11), we have to show that the integral
∫ 1

0
dt v(t, ε) in the

upper bound (4.29) vanishes when n diverges. This is the case if the overlap
matrix Q concentrates around its expectation E〈Q〉t,ε. Indeed, using that

(Q``′)
p − E[〈Q``′〉t,ε]p = (Q``′ − E〈Q``′〉t,ε)

p−1∑

k=0

Qp−1−k
``′ (E〈Q``′〉t,ε)k
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and that the (4p − 4)th moments of PX are finite, we show that there exists a
constant CX depending only on PX such that

∣∣∣∣
∫ 1

0

dt v(t, ε)

∣∣∣∣ ≤
CX
2

∫ 1

0

dt
(
E
〈∥∥Q− E[〈Q〉t,ε]

∥∥2 〉
t,ε

)1/2

. (4.31)

However, proving that the r.h.s. of (4.31) vanishes is only possible after integrating
on a well-chosen set of “small perturbations” ε (that are the initial conditions
for the ODE (4.22)). In essence, the integration over ε smoothens the phase
transitions that might appear for particular choices of ε when n goes to infinity.
We now describe the set of perturbations on which to integrate.

Let (sn)n∈N∗ be a decreasing sequence of real numbers in (0, 1) and define the
sequence of subsets

En :=

{
ε ∈ RK×K

∣∣∣∣
∀ ` 6= `′ : ε``′ = ε`′` ∈ [sn, 2sn]
∀ ` : ε`` ∈ [2Ksn, (2K + 1)sn]

}
. (4.32)

Those are subsets of symmetric strictly diagonally dominant matrices with positive
diagonal entries, hence they are included in S++

K (see [108, Corollary 7.2.3]). As
En is a K(K+1)/2-dimensionnal hypercube whose side has length sn, its volume is
VEn = s

K(K+1)/2
n .

Remember that for every ε ∈ En the interpolation path is the unique solution
R(·, ε) : [0, 1] 7→ S++

K to the initial value problem (4.22). For a fixed t ∈ [0, 1], using
first Cauchy-Schwarz inequality and then a change of variable ε → R = R(t, ε)
(justified by Proposition 4.5 that states that ε 7→ R(t, ε) is a C1-diffeomorphism),
we obtain
∫

En

dε

VEn

(
E
〈∥∥Q− E[〈Q〉t,ε]

∥∥2 〉
t,ε

)1/2

≤
(∫

En

dε

VEn
E
〈∥∥Q− E[〈Q〉t,ε]

∥∥2 〉
t,ε

)1/2

=

(∫

Rn,t

dR

VEn| det JR(t,·)(ε)|
E
〈∥∥Q− E[〈Q〉t,R]

∥∥2 〉
t,R

)1/2

≤
(∫

Rn,t

dR

VEn
E
〈∥∥Q− E〈Q〉t,R]

∥∥2 〉
t,R

)1/2

, (4.33)

where Rn,t := R(t, En) and the angular brackets 〈−〉t,R denote the expectation
with respect to the posterior distribution associated with the inference problem
(4.20). The last inequality is due to the lower bound (4.23) for the Jacobian
determinant of R(t, ·). It is easier to work with the convex hulls of Rn,t that we
denote by C(Rn,t). These convex hulls are uniformly bounded compact sets of
S++
K . Indeed, every Rn,t is compact and included in the convex set

B(ΣX , K, p) :=
{
S ∈ S++

K : ‖S‖ ≤ 4K
3/2 + Tr(ΣX)p−1

}
(4.34)

that does not depend on n and t (see point (i) of Lemma 4.8 in Section 4.6). The
upper bound (4.33) together with the inclusion Rn,t ⊆ C(Rn,t) directly yields
∫

En

dε

VEn

(
E
〈∥∥Q− E[〈Q〉t,ε]

∥∥2 〉
t,ε

)1/2

≤
(∫

C(Rn,t)

dR

VEn
E
〈∥∥Q− E〈Q〉t,R

∥∥2 〉
t,R

)1/2

.

(4.35)
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By Theorem 4.7 in Section 4.6, there exists a positive constant C which depends
only on PX , K and p such that

∫

C(Rn,t)
dRE

〈∥∥Q− E[〈Q〉t,R]
∥∥2 〉

t,R
≤ C

s
3/2
n n

1/6
. (4.36)

Combining (4.31), (4.35) and (4.36) gives

∣∣∣∣
∫

En

dε

VEn

∫ 1

0

dt v(t, ε)

∣∣∣∣ ≤
CX
2

√
C

(
s

9+3K(K+1)
n n

)1/6
. (4.37)

This last upper bound vanishes if we choose a sequence (sn)n∈N∗ such that
sn → 0 and s

9+3K(K+1)
n n → +∞ when n diverges. Let us pick sn = n−α with

0 < α < (9 + 3K(K + 1))−1. We integrate both sides of (4.29) over ε ∈ En, and
use that both the upper bound (4.37) and

∣∣ ∫
En

dε
VEn

O(‖ε‖)
∣∣ = O

(
max
ε∈En
‖ε‖
)

= O(sn)

vanish, to finally obtain

fn =

∫

En

dε

VEn
fn ≤ sup

S∈S+
K

φp(S) + On(1) .

Passing to the limit superior in this inequality ends the proof of Theorem 4.3.

4.5 Derivative of the average interpolating free
entropy

In order to prove the sum-rule in Proposition 4.4, we need to compute the
derivative with respect to t of the average interpolating free entropy (4.14).

Proposition 4.6 (Derivative of the average interpolating free entropy). Assume
that the first 2p moments of PX are finite. Let R′(·, ε) be the derivative of the
interpolation path R(·, ε) and Q := xTX/n ∈ RK×K the overlap matrix whose
entries are Q``′ := 1

n

∑n
j=1 xj`Xj`′. The derivative of the average free entropy

fn(·, ε) defined in (4.14) is ∀t ∈ [0, 1] :

f ′n(t, ε) = − 1

2p

K∑

`,`′=1

E
[〈

(Q``′)
p
〉
t,ε

]
+

Tr
(
R′(t, ε)E〈Q〉t,ε

)

2
+O(n−1) , (4.38)

where n ·O(n−1) is bounded uniformly in n, t and ε.

Proof. The conditional probability density function of (Y(t), Ỹ(t,ε)) given X is

PY(t),Ỹ(t,ε)|X(y, ỹ |x) =
1

√
2π

nK+|I| exp

(
−Ht,ε(x; y, ỹ)−‖ỹ‖

2

2
−
∑

i∈I

y2
i

2

)
, (4.39)
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where H′t,ε(x; y, ỹ) is obtained from (4.13) by replacing (Y(t), Ỹ(t,ε)) by (y, ỹ).
Therefore, the average interpolating free entropy reads

fn(t, ε) =
1

n
EX

[∫
dydỹ

e
−Ht,ε(X;y,ỹ)− ‖ỹ‖

2

2
− 1

2

∑
i∈I

y2
i

√
2π

nK+|I| lnZt,ε
(
y, ỹ

)
]
. (4.40)

Differentiating (4.40) under the integral sign yields

f ′n(t, ε) = − 1

n
E
[
H′t,ε

(
X; Y(t), Ỹ(t,ε)

)
lnZt,ε(Y(t), Ỹ(t,ε))

]

− 1

n
E
〈
H′t,ε

(
x; Y(t), Ỹ(t,ε)

)〉
t,ε

(4.41)

where

H′t,ε(x; y, ỹ) :=
∑

i∈I
−(p− 1)!

2np−1

(
K∑

`=1

p∏

a=1

xia`

)2

+
1

2

√
(p− 1)!

(1− t)np−1
yi

K∑

`=1

p∏

a=1

xia`

+
n∑

j=1

1

2
xTj
dR(t, ε)

dt
xj −

(
ỹj
)Td

√
R(t, ε)

dt
xj . (4.42)

The definition (4.42) comes from differentiating H′t,ε(x; y, ỹ) with respect to t.
Before diving further, note that

dR(t, ε)

dt
=
√
R(t, ε)

d
√
R(t, ε)

dt
+
d
√
R(t, ε)

dt

√
R(t, ε) ; (4.43)

∀v ∈ RK : vT
√
R(t, ε)

d
√
R(t, ε)

dt
v = vT

d
√
R(t, ε)

dt

√
R(t, ε)v . (4.44)

The identities (4.43) and (4.44) can be combined to further obtain

∀v ∈ RK : vT
√
R(t, ε)

d
√
R(t, ε)

dt
v =

1

2
vT
dR(t, ε)

dt
v . (4.45)

Evaluating (4.42) at (x,y, ỹ) = (X,Y(t), Ỹ(t,ε)) and making use of (4.45) gives

H′t,ε(X; Y(t), Ỹ(t,ε))

=
∑

i∈I

1

2

√
(p− 1)!

(1− t)np−1
Zi

K∑

`=1

p∏

a=1

Xia`

+
n∑

j=1

XT
j

(
1

2

dR(t, ε)

dt
−
√
R(t, ε)

d
√
R(t, ε)

dt

)
Xj − Z̃T

j

d
√
R(t, ε)

dt
Xj

=
∑

i∈I

1

2

√
(p− 1)!

(1− t)np−1
Zi

K∑

`=1

p∏

a=1

Xia` −
n∑

j=1

Z̃T
j

d
√
R(t, ε)

dt
Xj . (4.46)

By the Nishimori identity, we have

E
〈
H′t,ε

(
x; Y(t), Ỹ(t,ε)

)〉
t,ε

= EH′t,ε
(
X; Y(t), Ỹ(t,ε)

)
= 0 , (4.47)



4.5. Derivative of the average interpolating free entropy 89

where we use (4.46) and EZi = EZ̃j = 0 to get the last equality. Therefore, the
expression (4.41) for f ′n(t, ε) simplifies to

f ′n(t, ε) = − 1

n
E
[
H′t,ε

(
X; Y(t), Ỹ(t,ε)

)
lnZt,ε(Y(t), Ỹ(t,ε))

]

= − 1

2n

√
(p− 1)!

(1− t)np−1

∑

i∈I

K∑

`=1

E

[
Zi

p∏

a=1

Xia` lnZt,ε(Y(t), Ỹ(t,ε))

]

+
1

n

n∑

j=1

E
[
Z̃T
j

d
√
R(t, ε)

dt
Xj lnZt,ε(Y(t), Ỹ(t,ε))

]
. (4.48)

We simplify the two kind of expectations appearing on the r.h.s. of (4.48) in the
following paragraphs a) and b).

a) A Gaussian integration by parts with respect to Zi gives

E

[
Zi

p∏

a=1

Xia` lnZt,ε(Y(t), Ỹ(t,ε))

]
= E

[
p∏

a=1

Xia`
∂ lnZt,ε(Ỹ(t,ε))

∂Zi

]

=

√
(1− t)(p− 1)!

np−1

K∑

`′=1

E
〈 p∏

a=1

xia`′Xia`

〉

t,ε

.

Summing the latter identity over ` ∈ {1, . . . , K} and i ∈ I yields

− 1

2n

√
(p− 1)!

(1− t)np−1

∑

i∈I

K∑

`=1

E
[
Zi

p∏

a=1

Xia` lnZt,ε(Y(t), Ỹ(t,ε))

]

= −(p− 1)!

2np

∑

i∈I

K∑

`,`′=1

E
〈 p∏

a=1

xia`′Xia`

〉

t,ε

.

Let us simplify the right-hand side of this last equality. Note that the sum over the
p-tuples i such that i1 < · · · < ip is equal to the sum over any tuple whose elements
are distinct divided by p! (the cardinality of the symmetric group of degree p).
This is because the summand is symmetric with respect to any permutation of
the indices (i1, . . . , ip). However, the sum is over i ∈ I so we also need to account
for the terms that correspond to p-tuples having common elements (meaning that
ia = ia′ for some a 6= a′). There are O(np−1) such terms and each summand
is bounded uniformly in (n, t, ε) because the first 2p moments of PX are finite.
Hence, the sum of these terms divided by np is only O(n−1) and we have

− 1

2n

√
(p− 1)!

(1− t)np−1

∑

i∈I

K∑

`=1

E
[
Zi

p∏

a=1

Xia` lnZt,ε(Y(t), Ỹ(t,ε))

]

= O(n−1)− (p− 1)!

2npp!

n∑

i∈{1,...,n}p

K∑

`,`′=1

E
〈 p∏

a=1

xia`′Xia`

〉

t,ε
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= O(n−1)− 1

2p

K∑

`,`′=1

E
〈
(Q``′)

p
〉
t,ε
. (4.49)

b) A Gaussian integration by parts with respect to the entries of the standard
Gaussian random vector Z̃j gives

E
[
Z̃T
j

d
√
R(t, ε)

dt
Xj lnZt,ε(Y(t), Ỹ(t,ε))

]

=
K∑

`=1

E
[(

d
√
R(t, ε)

dt
Xj

)

`

∂ lnZt,ε(Yt, Ỹt,ε)

∂Z̃j`

]

=
K∑

`=1

E
[(

d
√
R(t, ε)

dt
Xj

)

`

〈(√
R(t, ε)xj

)
`

〉
t,ε

]

= E
[
XT
j

d
√
R(t, ε)

dt

√
R(t, ε)

〈
xj
〉
t,ε

]
. (4.50)

The last expectation on the r.h.s. of (4.50) can be further simplified thanks to
the Nishimory identity (first and last equalities below) and the identity (4.45)
(second equality below). We get

E
[
XT
j

d
√
R(t, ε)

dt

√
R(t, ε)

〈
xj
〉
t,ε

]
= E

[〈
xj
〉T
t,ε

d
√
R(t, ε)

dt

√
R(t, ε)

〈
xj
〉
t,ε

]

=
1

2
E
[〈
xj
〉T
t,ε

dR(t, ε)

dt

〈
xj
〉
t,ε

]
=

1

2
E
[
XT
j

dR(t, ε)

dt

〈
xj
〉
t,ε

]
.

Summing the latter over j ∈ {1, . . . , n} yields

1

n

n∑

j=1

E
[
Z̃T
j

d
√
R(t, ε)

dt
Xj lnZt,ε(Yt, Ỹt,ε)

]
=

1

2n

n∑

j=1

E
[
XT
j

dR(t, ε)

dt

〈
xj
〉
t,ε

]

=
1

2
E
〈

Tr

(
dR(t, ε)

dt

xTX

n

)〉

t,ε

=
1

2
Tr
(
R′(t, ε)E 〈Q〉t,ε

)
. (4.51)

Using the final expressions (4.49) and (4.51) back in (4.48) ends the proof.

4.6 Concentration of the overlap matrix

In the proof of Theorem 4.3 we need that, up to an integral over a small volume of
perturbations ε ∈ S++

K , the overlap matrix Q concentrates around its expectation
E〈Q〉t,ε. We choose to integrate over the hypercube En ⊆ S++

K defined by (4.32)
and that depends on a sequence (sn)n∈N∗ of decreasing numbers in (0, 1).
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Remember that we denote by the angular brackets 〈−〉t,R the expectation with
respect to the posterior distribution

dP (x |Y(t), Ỹ(t,R)) :=
1

Zt,R(Y(t), Ỹ(t,R))
e−Ht,R(x;Y(t),Ỹ(t,R))

n∏

j=1

dPX(xj) , (4.52)

where (Y(t), Ỹ(t,R)) are defined in (4.20) and

Ht,R(x; y, ỹ) :=
∑

i∈I

(1− t)(p− 1)!

2np−1

(
K∑

k=1

p∏

a=1

xiak

)2
−
√

(1− t)(p− 1)!

np−1
yi

K∑

k=1

p∏

a=1

xiak

+
n∑

j=1

xTj Rxj

2
− ỹTj

√
Rxj .

Then, for all ε ∈ En, we choose the interpolation path R(·, ε) : [0, 1] 7→ S++
K to be

the unique solution to the initial value problem R′ = (E〈Q〉t,R)◦(p−1), R(0) = ε. For
a fixed t ∈ [0, 1], we denote by C(Rn,t) the convex hull of the imageRn,t := R(t, En)
and we crucially rely on the following concentration result for the overlap matrix.

Theorem 4.7 (Concentration of the overlap matrix around its expectation).
Assume that PX has bounded support. There exists a positive constant C depending
only on PX , K and p such that

∫

C(Rn,t)
dRE

〈∥∥Q− E[〈Q〉t,R]
∥∥2 〉

t,R
≤ C

s
3/2
n n

1/6
. (4.53)

The proof of Theorem 4.7 is inspired by [109, Theorem 3]. In the latter
reference, the concentration result is given for an integral over a hypercube. In
our case, the integral on the left-hand side of (4.53) is over the convex hull of En’s
image by the function R(t, ·). It is likely not a hypercube, even less one whose
form is similar to (4.32). Therefore, we first show that the convex hulls C(Rn,t)
have properties that allow us to carry out a proof similar to [109].

4.6.1 Properties of Rn,t’s convex hull

For (`, `′) ∈ {1, . . . , K}2, we denote by E(`,`′) the K ×K symmetric matrix whose
entries are

E
(`,`′)
ij =

{
1 if (i, j) ∈ {(`, `′), (`′, `)} ,
0 otherwise .

(4.54)

Lemma 4.8 (Properties of Rn,t’s convex hull). For every R ∈ C(Rn,t) :

(i) ‖R‖ ≤ 4K3/2 + Tr(ΣX)p−1;

(ii) there exists ε ∈ En such that R < ε;
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(iii) for every pair (`, `′) ∈ {1, . . . , K}2 and real number δ ∈ (−sn, sn), R+δE(`,`′)

is a symmetric positive definite matrix;

(iv) the 1st-order Fréchet derivative ∂
√
R

∂R``′
and the 2nd-order Fréchet derivative

∂2
√
R

∂R2
``′

satisfy

∥∥∥∥
∂
√
R

∂R``′

∥∥∥∥ ≤
1√
2sn

, (4.55)
∥∥∥∥
∂2
√
R

∂R2
``′

∥∥∥∥ ≤
√
K

(2sn)3/2
. (4.56)

Note that (i) does not depend on n and t while (ii-iv) do not depend on t.

Proof. We start by proving (i). If R ∈ Rn,t then there exists ε ∈ En such that
R = R(t, ε), i.e.,

R = ε+

∫ t

0

E[〈Q〉s,ε]◦(p−1) ds . (4.57)

The Frobenius norm is subadditive (‖A+B‖ ≤ ‖A‖+ ‖B‖) and submultiplicative
with respect to the Hadamard product (‖A ◦B‖ ≤ ‖A‖ · ‖B‖) so

‖R‖ ≤ ‖ε‖+

∫ t

0

‖E[〈Q〉s,ε]◦(p−1)‖ ds ≤ 4K
3/2 +

∫ t

0

‖E〈Q〉s,ε‖p−1 ds .

Besides,

‖E〈Q〉s,ε‖ ≤ E〈‖Q‖〉s,ε ≤
E〈‖x‖‖X‖〉s,ε

n

≤
√

E‖X‖2

n

E〈‖x‖2〉s,ε
n

=
E‖X‖2

n
= Tr(ΣX) , (4.58)

where the first and third inequalities follow from Cauchy-Schwarz inequality, the
second inequality from the submultiplicativity of the Frobenius norm with respect
to the ordinary matrix product, and the first equality from the Nishimori identity.
Hence, ‖R‖ ≤ 4K3/2 + Tr(ΣX)p−1 for all R ∈ Rn,t. The bound directly extends to
C(Rn,t) by definition of a convex hull.

We now prove (ii). If R ∈ Rn,t, (4.57) directly implies that R− ε < 0 because,
by the Nishimori identity and the Schur product theorem, E[〈Q〉s,ε]◦(p−1) ∈ S+

K for
all s ∈ [0, 1]. If instead R ∈ C(Rn,t), there existm ∈ N∗, (α1, α2, . . . , αm) ∈ [0, 1]m

and (R1, . . . , Rm) ∈ (Rn,t)
Mm such that

∑m
j=1 αj = 1 and R =

∑m
j=1 αjRj. It

follows direcly that R <
∑m

j=1 αjεj where ∀j ∈ {1, . . . ,m} : En 3 εj 4 Rj. As En
is convex, it concludes the proof of (ii).

We now show (ii) ⇒ (iii). Let R ∈ C(Rn,t) and pick ε ∈ En such that R < ε.
For all (`, `′) ∈ {1, . . . , K}2 and δ ∈ (−sn, sn), ε+ δE(`,`′) is a symmetric strictly
diagonally dominant matrix with positive diagonal entries. Therefore, ε+ δE(`,`′)

belongs to S++
K and R + δE(`,`′) < ε+ δE(`,`′) � 0.
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Finally, we prove (iv). Let R ∈ C(Rn,t) and denote λmin(R) its minimum
eigenvalue. Applying [110, Theorem 1.1] (the first upper bound in (6) to be more
precise), we obtain

∥∥∥∥
∂
√
R

∂R``′

∥∥∥∥ ≤
‖E(`,`′)‖

2
√
λmin(R)

;

∥∥∥∥
∂2
√
R

∂R2
``′

∥∥∥∥ ≤
√
K ‖E(`,`′)‖

4λmin(R)3/2
. (4.59)

Thanks to (ii) we can pick ε ∈ En such that R < ε. By [111, Corollary 2], the
minimum eigenvalue of ε is greater than

√
αβ where

α = min
1≤k≤K

{
|εkk| −

∑

j 6=k
|εkj|

}
≥ sn and β = min

1≤k≤K

{
|εkk| −

∑

j 6=k
|εjk|

}
≥ sn .

Hence, λmin(R) ≥ √αβ ≥ sn which together with (4.59) yields (iv).

4.6.2 Concentration of L around its expectation

The concentration of the overlap matrix around its expectation follows from the
concentration of the K ×K symmetric matrix L ≡ L(R) whose entries are

L``′ :=
1

n

n∑

j=1

1

2
xTj

∂R

∂R``′
xj −XT

j

∂R

∂R``′
xj − xTj

∂
√
R

∂R``′
Z̃j (4.60)

for every (`, `′) ∈ {1, . . . , K}2. This is well-defined as long as R ∈ S++
K . To

prove concentration results for L, it is useful to work with the free entropy
lnZt,R(Y(t),Ỹ(t,R))/n where Zt,R(Y(t), Ỹ(t,R)) is the normalization factor of the pos-
terior distribution (4.52). In Appendix 4.B we prove that this free entropy
concentrates around its expectation when n→ +∞. We define

Fn(t, R) :=
1

n
lnZt,R

(
Y(t), Ỹ(t,R)

)
;

fn(t, R) :=
1

n
E
[

lnZt,R
(
Y(t), Ỹ(t,R)

)]
= EFn(t, R) .

Proposition 4.9 (Thermal fluctuations of L). Assume that PX has finite fourth
moments. There exists a positive constant C, depending only on ΣX , K and p,
such that for all (n, t) ∈ N∗ × [0, 1]:

∫

C(Rn,t)
dRE

〈∥∥L− 〈L〉t,R
∥∥2 〉

t,R
≤ C

nsn
. (4.61)

Proof. Fix (n, t) ∈ N∗ × [0, 1]. Note that ∀R ∈ S++
K , ∀(`, `′) ∈ {1, . . . , K}2:

∂fn
∂R``′

∣∣∣∣
t,R

= − 1

n
E

[〈
∂Ht,R(x; Y(t), Ỹ(t,R))

∂R``′

〉

t,R

]
= −E

〈
L``′
〉
t,R

. (4.62)
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Further differentiating, we obtain

∂2fn
∂R2

``′

∣∣∣∣
t,R

= E
[〈
L``′

∂Ht,R

∂R``′

〉

t,R

]
− E

[〈
L``′
〉
t,R

〈
∂Ht,R

∂R``′

〉

t,R

]
− E

〈
∂L``′
∂R``′

〉

t,R

= nE
〈(
L``′ −

〈
L``′
〉
t,R

)2 〉
t,R
− E

〈
∂L``′
∂R``′

〉

t,R

. (4.63)

Combining (4.63) and the identity (4.72) for E 〈∂L``′/∂R``′〉t,R (see Lemma 4.10
below the proof), it comes

E
〈(
L``′ −

〈
L``′
〉
t,R

)2 〉
t,R

=
1

n

∂2fn
∂R2

``′

∣∣∣∣
t,R

+
1

n
Tr

(
∂
√
R

∂R``′

(
ΣX − E 〈Q〉t,R

)∂
√
R

∂R``′

)
.

(4.64)
We start by upper bounding the integral over C(Rn,t) of the second summand
on the right-hand side of (4.64). Thanks to the Nishimory identity, we see that
ΣX < E 〈Q〉t,R. Indeed,

ΣX − E 〈Q
〉
t,R

:=
E[XTX]− E[〈x〉Tt,RX]

n
=

E[〈xTx〉t,R]− E[〈x〉Tt,R〈x〉t,R]

n

=
E
〈
(x− 〈x〉t,R)T(x− 〈x〉t,R)

〉
t,R

n
< 0 .

Therefore, (∂
√
R/∂R``′)(ΣX −E 〈Q〉t,R)(∂

√
R/∂R``′) is symmetric positive semidefinite

and the trace on the right-hand side of (4.64) satisfies

0 ≤ Tr

(
∂
√
R

∂R``′

(
ΣX − E〈Q〉t,R

)∂
√
R

∂R``′

)
≤ Tr

(
∂
√
R

∂R``′
ΣX

∂
√
R

∂R``′

)
≤
∥∥∥∥
∂
√
R

∂R``′

∥∥∥∥
2

‖ΣX‖

≤ ‖ΣX‖
2sn

,

where the last inequality is due to (4.55) in Lemma 4.8. Keep in mind that C(Rn,t)
is included in the ball B(ΣX , K, p) defined in (4.34). Therefore, there exists a
positive constant C1 depending only on ΣX , K and p such that

∫

C(Rn,t)

dR

n
Tr

(
∂
√
R

∂R``′

(
ΣX − E 〈Q〉t,R

)∂
√
R

∂R``′

)
≤ C1

nsn
. (4.65)

We now turn to upper bounding
∫
C(Rn,t)

dR
n

∂2fn
∂R2

``′

∣∣
t,R

. Define the closed convex set

C(`,`′) :=
{
{Rkk′}(k,k′)6=(`,`′),(`′,`)

∣∣R ∈ C(Rn,t)
}
. (4.66)

For every pair (R̃, r) ∈ C(`,`′) × R, we denote by R̃ ∪ {r} the K ×K symmetric
matrix whose entries are given by

(
R̃ ∪ {r}

)
kk′

=

{
R̃kk′ if (k, k′) 6= (`, `′), (`′, `) ;

r otherwise.
(4.67)

Because C(Rn,t) is a closed convex, there exist two functions a, b : C(`,`′) → R
such that ∀R̃ ∈ C(`,`′) :
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(i) a(R̃) ≤ b(R̃);

(ii) ∀r ∈ [a(R̃), b(R̃)] : R̃ ∪ {r} ∈ C(Rn,t);

(iii) ∀r ∈ R \ [a(R̃), b(R̃)] : R̃ ∪ {r} /∈ C(Rn,t).

Therefore,

∫

C(Rn,t)

dR

n

∂2fn
∂R2

``′

∣∣∣
t,R

=

∫

C(`,`′)

dR̃

n

∫ b(R̃)

a(R̃)

dr
∂2fn
∂R2

``′

∣∣∣∣
t,R̃∪{r}

=

∫

C(`,`′)

dR̃

n

(
∂fn
∂R``′

∣∣∣∣
t,R̃∪{b(R̃)}

− ∂fn
∂R``′

∣∣∣∣
t,R̃∪{a(R̃)}

)
. (4.68)

Note that ∀R ∈ S++
K :

∣∣∣∣∣
∂fn
∂R``′

∣∣∣∣
t,R

∣∣∣∣∣ =
∣∣E 〈L``′〉t,R

∣∣ ≤
∣∣E 〈Q``′〉t,R

∣∣ ≤ Tr ΣX , (4.69)

where the first inequality follow from the identity (4.71) (see Lemma 4.10 below
the proof) and the second from (4.58). Combining (4.68) and (4.69) yields

∣∣∣∣∣

∫

C(Rn,t)

dR

n

∂2fn
∂R2

``′

∣∣∣∣
t,R

∣∣∣∣∣ ≤
C2

n
, (4.70)

where C2 is a positive constant that depends only on ΣX , K and p. Integrating
(4.64) over C(Rn,t), making use of the upper bounds (4.65) and (4.70), and finally
summing over (`, `′) ∈ {1, . . . , K}2, ends the proof.

We relied on the following lemma in the proof of Proposition 4.9.

Lemma 4.10. Assume that PX has finite second moments. Let δ``′ be 0 if ` 6= `′

and 1 otherwise. Then, ∀(t, R) ∈ [0, 1]× S++
K , ∀(`, `′) ∈ {1, . . . , K}2 :

E 〈L``′〉t,R = −(1− δ``′/2)E 〈Q``′〉t,R ; (4.71)

E
〈
∂L``′
∂R``′

〉

t,R

= Tr

(
∂
√
R

∂R``′

(
ΣX − E 〈Q〉t,R

)∂
√
R

∂R``′

)
. (4.72)

Proof. Fix (t, R) ∈ [0, 1]×S++
K . By definition of L, we have ∀(`, `′) ∈ {1, . . . , K}2:

E 〈L``′〉t,R :=
1

n

n∑

j=1

1

2
E
[〈

xTj
∂R

∂R``′
xj

〉

t,R

]
− E

[
XT
j

∂R

∂R``′

〈
xj
〉
t,R

]

− E
[〈
xj
〉T
t,R

∂
√
R

∂R``′
Z̃j

]
. (4.73)
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We simplify the last expectation on the right-hand side of (4.73) by integrating
by parts with respect to the entries of the standard Gaussian random vector Z̃j,

E
[〈
xj
〉T
t,R

∂
√
R

∂R``′
Z̃j

]
= E

〈
xTj
∂
√
R

∂R``′

√
Rxj

〉

t,R

− E
[〈
xj
〉T
t,R

∂
√
R

∂R``′

√
R
〈
xj
〉
t,R

]

=
1

2
E
〈
xTj

∂R

∂R``′
xj

〉

t,R

− 1

2
E
[〈
xj
〉T
t,R

∂R

∂R``′

〈
xj
〉
t,R

]

=
1

2
E
〈
xTj

∂R

∂R``′
xj

〉

t,R

− 1

2
E
[
XT
j

∂R

∂R``′

〈
xj
〉
t,R

]
. (4.74)

The second equality follows from (4.116) and the third from the Nishimori identity.
Plugging (4.74) back in (4.73), and noticing that ∂R/∂R``′ = E(`,`′), yields

E 〈L``′〉t,R = − 1

2n

n∑

j=1

E
[
XT
j

∂R

∂R``′

〈
xj
〉
t,R

]
= −1

2
Tr

(
∂R

∂R``′
E 〈Q〉t,R

)

= −(1− δ``′/2)E 〈Q``′〉t,R ,
that is, (4.71). We now turn to the proof of (4.72). We have

E
〈
∂L``′
∂R``′

〉

t,R

= − 1

n

n∑

j=1

E
[〈
xj
〉T
t,R

∂2
√
R

∂R2
``′
Z̃j

]

=
1

n

n∑

j=1

E
[〈
xj
〉T
t,R

∂2
√
R

∂R2
``′

√
R
〈
xj
〉
t,R

]
− E

〈
xTj
∂2
√
R

∂R2
``′

√
Rxj

〉

t,R

,

(4.75)

where the second equality follows once again from a Gaussian integration by parts
with respect to Z̃j. Note that for all v ∈ RK :

vT
∂2
√
R

∂R2
``′

√
Rv =

1

2
vT
(√

R
∂2
√
R

∂R2
``′

+
∂2
√
R

∂R2
``′

√
R

)
v = −vT

(
∂
√
R

∂R``′

)2

v (4.76)

because of the identity

0 =
∂2R

∂R2
``′

=
∂

∂R``′

(√
R
∂
√
R

∂R``′
+
∂
√
R

∂R``′

√
R

)
= 2

(
∂
√
R

∂R``′

)2

+
√
R
∂2
√
R

∂R2
``′

+
∂2
√
R

∂R2
``′

√
R.

We use (4.76) in (4.75) to simplify E 〈∂L``′/∂R``′〉t,R further,

E
〈
∂L``′
∂R``′

〉

t,R

=
1

n

n∑

j=1

E
〈
xTj

(
∂
√
R

∂R``′

)2

xj

〉

t,R

− E
[〈
xj
〉T
t,R

(
∂
√
R

∂R``′

)2〈
xj
〉
t,R

]

=
1

n

n∑

j=1

E
[
XT
j

(
∂
√
R

∂R``′

)2

Xj

]
− E

[
XT
j

(
∂
√
R

∂R``′

)2〈
xj
〉
t,R

]

= Tr

((
∂
√
R

∂R``′

)2

ΣX

)
− Tr

((
∂
√
R

∂R``′

)2

E 〈Q〉t,R
)

= Tr

(
∂
√
R

∂R``′

(
ΣX − E 〈Q〉t,R

)∂
√
R

∂R``′

)
. (4.77)

The second equality follows from the Nishimori identity.
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Proposition 4.11 (Quenched fluctuations of L). Assume that PX has bounded
support. There exists a positive constant C, depending only on PX , K and p, such
that for all (n, t) ∈ N∗ × [0, 1]:

∫

C(Rn,t)
dRE

〈∥∥〈L〉t,R − E 〈L〉t,R
∥∥2 〉

t,R
≤ C

s3
nn

1/3
. (4.78)

Proof. Fix (n, t) ∈ N∗ × [0, 1]. For all R ∈ S++
K and (`, `′) ∈ {1, . . . , K}2, we have

∂Fn
∂R``′

∣∣∣∣
t,R

= −
〈
L``′
〉
t,R

; (4.79)

∂2Fn
∂R2

``′

∣∣∣∣
t,R

= n
〈(
L``′ −

〈
L``′
〉
t,R

)2 〉
t,R

+
1

n

n∑

j=1

〈
xj
〉T
t,R

∂2
√
R

∂R2
``′
Z̃j ; (4.80)

∂fn
∂R``′

∣∣∣∣
t,R

= −E
〈
L``′
〉
t,R

; (4.81)

∂2fn
∂R2

``′

∣∣∣∣
t,R

= nE
〈(
L``′ − 〈L``′〉t,R

)2 〉
t,R

+
1

n

n∑

j=1

E
[〈
xj
〉T
t,R

∂2
√
R

∂R2
``′
Z̃j

]
. (4.82)

By assumption there exists a nonnegative real number BX such that ‖X‖ ≤ BX

almost surely if X ∼ PX . Using the upper bound (4.56) in Lemma 4.8, the second
term on the right-hand side of (4.80) can be upper bounded,
∣∣∣∣∣
1

n

n∑

j=1

〈
xj
〉T
t,R

∂2
√
R

∂R2
``′
Z̃j

∣∣∣∣∣ ≤
1

n

n∑

j=1

∥∥〈xj
〉
t,R

∥∥∥∥Z̃j
∥∥
∥∥∥∥
∂2
√
R

∂R2
``′

∥∥∥∥ ≤
BX

√
K

(2sn)3/2n

n∑

j=1

∥∥Z̃j
∥∥ .

(4.83)
From now on, we also fix (`, `′) ∈ {1, . . . , K}2 as well as R̃ ∈ C(`,`′), where C(`,`′)

is the closed convex set defined in (4.66). Remember that, for every real number
r, R̃ ∪ {r} is the matrix defined by (4.67), and that there exist two functions
a, b : C(`,`′) → R such that ∀R̃ ∈ C(`,`′):

(i) a(R̃) ≤ b(R̃);

(ii) ∀r ∈ [a(R̃), b(R̃)] : R̃ ∪ {r} ∈ C(Rn,t);

(iii) ∀r ∈ R \ [a(R̃), b(R̃)] : R̃ ∪ {r} /∈ C(Rn,t).

Besides, by property (iii) in Lemma 4.8, for every r ∈ (a(R̃)− sn, b(R̃) + sn) the
matrix R̃ ∪ {r} is in S++

K . Thus, we can define for all r ∈ (a(R̃)− sn, b(R̃) + sn):

F (r) := Fn(t, R̃ ∪ {r}) +
r2

2

BX

√
K

(2sn)3/2n

n∑

j=1

∥∥Z̃j
∥∥ ;

f(r) := fn(t, R̃ ∪ {r}) +
r2

2

BX

√
K

(2sn)3/2n

n∑

j=1

E
∥∥Z̃j

∥∥ .
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F is convex on (a(R̃)−sn, b(R̃)+sn) as it is twice differentiable with a nonnegative
second derivative by (4.80) and (4.83). Obviously, f : r 7→ EF (r) is convex too.
Note that for all r ∈ (a(R̃)− sn, b(R̃) + sn) :

F (r)− f(r) = Fn(t, R̃ ∪ {r})− fn(t, R̃ ∪ {r}) +
r2

2

BX

√
K

(2sn)3/2n

n∑

j=1

∥∥Z̃j
∥∥−E

∥∥Z̃j
∥∥ ;

F ′(r)− f ′(r) = −
(
〈L``′〉t,R̃∪{r} − E 〈L``′〉t,R̃∪{r}

)
+ r

BX

√
K

(2sn)3/2n

n∑

j=1

∥∥Z̃j
∥∥−E

∥∥Z̃j
∥∥ .

It follows from Lemma 2.8 (applied to the convex functions G = F , g = f) and
these last two identities that ∀(r, δ) ∈ [a(R̃), b(R̃)]× (0, sn) :

∣∣〈L``′〉t,R̃∪{r} − E 〈L``′〉t,R̃∪{r}
∣∣

≤ |r| BX

√
K

(2sn)3/2n

∣∣∣∣∣
n∑

j=1

∥∥Z̃j
∥∥− E

∥∥Z̃j
∥∥
∣∣∣∣∣+ Cδ(r) +

1

δ

∑

u∈{−δ,0,δ}
|F (r + u)− f(r + u)|

≤
(
|r|+ 3

2
r2
) BX

√
K

(2sn)3/2n

∣∣∣∣∣
n∑

j=1

∥∥Z̃j
∥∥− E

∥∥Z̃j
∥∥
∣∣∣∣∣+ Cδ(r)

+
1

δ

∑

u∈{−δ,0,δ}
|Fn(t, R̃ ∪ {r + u})− fn(t, R̃ ∪ {r + u})| ,

where Cδ(r) := f ′(r + δ)− f ′(r − δ) is nonnegative by convexity of f . Using the
inequality (

∑5
i=1 vi)

2 ≤ 5
∑5

i=1 v
2
i , we obtain that ∀(r, δ) ∈ [a(R̃), b(R̃)]× (0, sn):

E
[(
〈L``′〉t,R̃∪{r} − E〈L``′〉t,R̃∪{r}

)2 ]

≤ 5
(
|r|+ 3

2
r2
)2B2

XK

2s3
nn

2
Var

(
n∑

j=1

∥∥Z̃j
∥∥
)

+ 5Cδ(r)
2

+
5

δ2

∑

u∈{−δ,0,δ}
E
[(
Fn(t, R̃ ∪ {r + u})− fn(t, R̃ ∪ {r + u})

)2]
. (4.84)

The next step is to bound the integral of the three summands on the right-hand
side of (4.84). Remember that ∀r ∈ [a(R̃), b(R̃)] : R̃∪{r} ∈ C(Rn,t). By property
(i) in Lemma 4.8, we have ∀r ∈ [a(R̃), b(R̃)] :

|r| ≤ ‖R̃ ∪ {r}‖ ≤ 4K
3/2 + Tr(ΣX)p−1 . (4.85)

Besides, the standard Gaussian random vectors Z̃j , j ∈ {1, . . . , n}, are independent
so Var

(∑n
j=1 ‖Z̃j‖

)
= nK. We conclude that there exists a positive constant C1

depending only on PX , K and p such that ∀δ ∈ (0, sn):

∫ b(R̃)

a(R̃)

dr 5
(
|r|+ 3

2
r2
)2B2

XK

2s3
nn

2
Var

(
n∑

j=1

∥∥Z̃j
∥∥
)
≤ C1

s3
nn

. (4.86)
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Note that Cδ(r)= |Cδ(r)| ≤ |f ′(r+δ)|+|f ′(r−δ)|. For all q ∈ (a(R̃)−sn, b(R̃)+sn) :

|f ′(q)| ≤
∣∣∣E 〈L``′〉t,R̃∪{q}

∣∣∣+ |q| BX

√
K

(2sn)3/2n

n∑

j=1

E‖Z̃j‖

≤ Tr(ΣX) +
(
sn + 4K

3/2 + Tr(ΣX)p−1
) BXK

(2sn)3/2
≤ C̃2

s
3/2
n

, (4.87)

where the second inequality follows from |E 〈L``′〉t,R̃∪{q}| ≤ Tr ΣX (see (4.69)),
(4.85) and E‖Z̃j‖ ≤ E[‖Z̃j‖2]1/2 =

√
K, and C̃2 is a positive constant that depends

only on PX , K and p. Thus, for the second summand, we obtain ∀δ ∈ (0, sn) :

∫ b(R̃)

a(R̃)

dr Cδ(r)
2 ≤ 2C̃2

s
3/2
n

∫ b(R̃)

a(R̃)

dr Cδ(r)

= 2C̃2

f(b(R̃) + δ)−f(b(R̃)− δ)−
(
f(a(R̃) + δ)−f(a(R̃)− δ)

)

s
3/2
n

≤ 8δC̃2
2

s3
n

. (4.88)

The last inequality is a simple application of the mean value theorem. We turn to
the third and last summand. ∀R̃ ∈ C(`,`′), ∀(r, δ) ∈ [a(R̃), b(R̃)]× (−sn, sn):

‖R̃ ∪ {r + δ}‖ = ‖R̃ ∪ {r}+ δE(`,`′)‖
≤ ‖R̃ ∪ {r}‖+ |δ| ‖E(`,`′)‖ ≤ 4K

3/2 + Tr(ΣX)p−1 + 2 .

This upper bound is uniform in n and t. Hence, by Theorem 4.14 of Appendix
4.B, there exists a positive constant C3 depending only on PX , K and p such that
∀R̃ ∈ C(`,`′), ∀(r, δ) ∈ [a(R̃), b(R̃)]× (−sn, sn):

E
[(
Fn(t, R̃ ∪ {r + δ})− fn(t, R̃ ∪ {r + δ})

)2] ≤ C3

n
. (4.89)

Using first (4.89) and then (4.85), we see that ∀δ ∈ (0, sn):

∫ b(R̃)

a(R̃)

dr
5

δ2

∑

u∈{−δ,0,δ}
E
[(
Fn(t, R̃ ∪ {r + u})− fn(t, R̃ ∪ {r + u})

)2]

≤ 15C3

δ2n
(b(R̃)− a(R̃)) ≤ 30C3

δ2n

(
4K

3/2 + Tr(ΣX)p−1 + 2
)
. (4.90)

We now choose δ = s
3/2
n · n− 1

3 . As sn ∈ (0, 1), this choice satisfies δ ∈ (0, sn).
Combining (4.84) with the three upper bounds (4.86), (4.88) and (4.90) shows
the existence of a positive constant C depending only on PX , K and p such that

∫ b(R̃)

a(R̃)

drE
[(
〈L``′〉t,R̃∪{r} − E 〈L``′〉t,R̃∪{r}

)2 ]
≤ C

s3
nn

1/3
. (4.91)
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One important fact following from our analysis is that C can be chosen in-
dependently of both (`, `′) ∈ {1, . . . , K}2 and R̃ ∈ C(`,`′). Therefore, for all
(`, `′) ∈ {1, . . . , K}2, we have

∫

C(Rn,t)
dRE

[(
〈L``′〉t,R̃∪{r} − E 〈L``′〉t,R̃∪{r}

)2 ]

=

∫

C(`,`′)
dR̃

∫ b(R̃)

a(R̃)

drE
[(
〈L``′〉t,R̃∪{r} − E 〈L``′〉t,R̃∪{r}

)2 ]
≤ CVC(`,`′)

s3
nn

1/3
, (4.92)

where VC(`,`′) denotes the volume of C(`,`′). Each of the K(K+1)/2 sets C(`,`′) is
uniformly bounded in n and t so the theorem follows from summing (4.92) over
(`, `′).

4.6.3 Concentration of Q around its expectation

We now use the concentration results for L, that is, Propositions 4.9 and 4.11,
to prove Theorem 4.7. Let us first state an intermediary result on the thermal
fluctuations of Q.

Proposition 4.12 (Concentration of the overlap matrix around its expectation).
Assume that PX has finite fourth moments. There exists a positive constant C
depending only on PX , K and p such that

∫

C(Rn,t)
dR E

〈∥∥Q− 〈Q〉t,R
∥∥2 〉

t,R
≤ C√

snn
; (4.93)

∫

C(Rn,t)
dR E

〈∥∥∥∥Q−
〈x〉Tt,R〈x〉t,R

n

∥∥∥∥
2〉

t,R

≤ C√
snn

. (4.94)

Proof. Fix (`, `′) ∈ {1, . . . , K}2. Note that ∀(t, R) ∈ [0, 1]× S++
K :

E 〈(Q``′ − 〈Q``′〉t,R)2〉t,R =
1

n2

n∑

i,j=1

E
[
Xi`′Xj`′(〈xi`xj`〉t,R − 〈xi`〉t,R〈xj`〉t,R)

]

≤
√
MX

(
1

n2

n∑

i,j=1

E
[
(〈xi`xj`〉t,R − 〈xi`〉t,R〈xj`〉t,R)2

])1/2

, (4.95)

where MX := 1
n2

∑n
i,j=1 E[X2

i`′X
2
j`′ ] is finite under our assumptions. Differentiating

with respect to R`` on both sides of E 〈L``〉t,R = −1
2
E 〈Q``〉t,R (see Lemma 4.10),

we obtain (see [109] for the detailed computation)

1

n2

n∑

i,j=1

E
[
(〈xi`xj`〉t,R − 〈xi`〉t,R〈xj`〉t,R)2

]

= 2E
〈(
L``′ − 〈L``′〉t,R

)2 〉
t,R
− 2

n
E
〈
∂L``
∂R``

〉

t,R

. (4.96)
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By Proposition 4.9 and the inequality (4.65) combined with (4.72), there exists a
positive constant C depending only on PX , K and p such that

∫

C(Rn,t)

dR

n2

n∑

i,j=1

E
[
(〈xi`xj`〉t,R − 〈xi`〉t,R〈xj`〉t,R)2

]
≤ C

nsn
. (4.97)

Combining (4.95), (4.97) and the Cauchy-Schwarz inequality yields

∫

C(Rn,t)
dR E 〈(Q``′ − 〈Q``′〉t,R)2〉t,R ≤

√
MXVC(Rn,t)C

nsn
, (4.98)

where VC(Rn,t) is the volume of C(Rn,t) and is bounded uniformly in n and t by
(i) of Lemma 4.8. This ends the proof of (4.93). The inequality (4.94) is proved
in a similar way (see [109]).

Proof of Theorem 4.7. To lighten notations we drop the subscripts of the angular
brackets 〈−〉t,R. The concentration of Q can be linked to the concentration of L
by rewriting TrE 〈Q(L−E〈L〉)〉 properly. Thanks to the identity (4.71), we have

Tr(E[〈Q〉]E[〈L〉]) = −1

2

K∑

`,`′=1

E〈Q``′〉Tr

(
∂R

∂R``′
E〈Q〉

)
. (4.99)

Plugging the definition (4.60) of L in TrE 〈QL〉, and integrating by parts with
respect to the standard Gaussian random vectors Z̃j, j ∈ {1, . . . , n}, we find that

TrE 〈QL〉 =
1

n

K∑

`,`′=1

n∑

j=1

E
[
〈Q``′x

T
j 〉
∂
√
R

∂R``′

√
R〈xj〉

]
− E

[〈
Q``′X

T
j

∂R

∂R``′
xj

〉]
.

(4.100)
Note that ∀(`, `′) ∈ {1, . . . , K}2,∀j ∈ {1, . . . , n} :

E
[
〈Q``′x

T
j 〉
∂
√
R

∂R``′

√
R〈xj〉

]

= E
[
〈Q``′〉〈xj〉T

∂
√
R

∂R``′

√
R〈xj〉

]
+ E

[〈
Q``′(xj − 〈xj〉)T

〉∂
√
R

∂R``′

√
R〈xj〉

]

= E
[〈Q``′〉

2
〈xj〉T

∂R

∂R``′
〈xj〉

]
+ E

[
〈Q`′`〉(Xj − 〈xj〉)T

∂
√
R

∂R``′

√
R〈xj〉

]
. (4.101)

The second equality follows from (4.116) for the first expectation and the Nishimori
identity for the second expectation. Plugging (4.101) back in (4.100), we get

TrE〈QL〉 = −
K∑

`,`′=1

E
〈
Q``′Tr

(
∂R

∂R``′
Q

)〉
+

1

2

K∑

`,`′=1

E
[
〈Q``′〉Tr

(
∂R

∂R``′

〈x〉T〈x〉
n

)]

+
K∑

`,`′=1

E
[
〈Q`′`〉Tr

(
∂
√
R

∂R``′

√
R

(
〈Q〉 − 〈x〉

T〈x〉
n

))]
. (4.102)
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Subtracting (4.99) to (4.102), we obtain

TrE〈Q(L− E〈L〉)〉

= B − A+
K∑

`,`′=1

E
[
〈Q`′`〉Tr

(
∂
√
R

∂R``′

√
R

(
〈Q〉 − 〈x〉

T〈x〉
n

))]
, (4.103)

where

A :=
K∑

`,`′=1

E
〈
Q``′Tr

(
∂R

∂R``′
(Q− E〈Q〉)

)〉

and

B :=
1

2

K∑

`,`′=1

E
[
〈Q``′〉Tr

(
∂R

∂R``′

(〈x〉T〈x〉
n

− E〈Q〉
))]

.

Note that ∂R/∂R``′ = E(`,`′) where E(`,`′) is defined in (4.54), hence

A = E
〈
Tr
(
Q(Q− E〈Q〉)T

)〉
+ E

〈
Tr
(
Q(Q− E〈Q〉)

)〉

−
K∑

`=1

E
〈
Q``(Q`` − E〈Q``〉)

〉

= E
〈∥∥Q− E〈Q〉

∥∥2〉
+ E

〈
Tr
(
Q(Q− E〈Q〉)

)〉
−

K∑

`=1

E
〈
(Q`` − E〈Q``〉)2

〉
,

B = E
〈

Tr

(
Q

(〈x〉T〈x〉
n

− E〈Q〉
))〉

− 1

2

K∑

`=1

E
[
〈Q``〉

(〈x〉T〈x〉
n

− E〈Q〉
)

``

]
.

Therefore,

B − A = −E
〈∥∥Q− E〈Q〉

∥∥2〉− E
〈

Tr

(
Q

(
Q− 〈x〉

T〈x〉
n

))〉

+
K∑

`=1

E
〈
(Q`` − E〈Q``〉)2

〉
− 1

2

K∑

`=1

E
[
〈Q``〉

(〈x〉T〈x〉
n

− E〈Q〉
)

``

]

= −E
〈∥∥Q− E〈Q〉

∥∥2〉− E
〈

Tr

(
Q

(
Q− 〈x〉

T〈x〉
n

))〉

+
1

2

K∑

`=1

E
〈
(Q`` − E〈Q``〉)2

〉
+

1

2

K∑

`=1

E
[〈

Q``

(
Q− 〈x〉

T〈x〉
n

)

``

〉]

= −E
〈∥∥Q− E〈Q〉

∥∥2〉− E
〈

Tr

(
Q− 〈x〉

T〈x〉
n

)2〉

+
1

2

K∑

`=1

E
〈
(Q`` − E〈Q``〉)2

〉
+

1

2

K∑

`=1

E
〈(

Q`` −
〈x〉T〈x〉

n

∣∣∣∣
``

)2〉
.
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Plugging this last identity back in (4.103) gives

E
〈∥∥Q− E〈Q〉

∥∥2〉− 1

2

K∑

`=1

E
〈
(Q`` − E〈Q``〉)2

〉

= −TrE 〈Q(L− E〈L〉)〉 − E
〈

Tr

(
Q− 〈x〉

T〈x〉
n

)2〉

+
1

2

K∑

`=1

E
〈(

Q`` −
〈x〉T〈x〉

n

∣∣∣∣
``

)2〉

+
K∑

`,`′=1

E
[
〈Q`′`〉Tr

(
∂
√
R

∂R``′

√
R

(
〈Q〉 − 〈x〉

T〈x〉
n

))]
. (4.104)

On one hand,

1

2
E 〈‖Q− E〈Q〉‖2〉 ≤ E 〈‖Q− E〈Q〉‖2〉 − 1

2

K∑

`=1

E〈(Q`` − E〈Q``〉)2〉 . (4.105)

On the other hand, by the Cauchy-Schwarz inequality we have

−TrE 〈Q(L− E〈L〉)〉 ≤
√

E 〈‖Q‖2〉E 〈‖L− E〈L〉‖2〉 ; (4.106)

−E
〈

Tr

(
Q− 〈x〉

T〈x〉
n

)2〉
≤ E

〈∥∥∥∥Q−
〈x〉T〈x〉

n

∥∥∥∥
2〉

. (4.107)

Let M :=
√

4K2 +K1/2Tr(ΣX)p−1. Note that
∥∥√R

∥∥ =
√

TrR =
√

Tr(R · IK) ≤
√
‖R‖‖IK‖ =

√
K‖R‖ ≤M , (4.108)

where the last inequality is due to point (i) of Lemma 4.8. This upper bound
together with (4.55) (see Lemma 4.8) yields

∥∥ ∂√R
∂R``′

√
R
∥∥ ≤

∥∥ ∂√R
∂R``′

∥∥‖
√
R‖ ≤ M/

√
2sn.

Then, by Cauchy-Schwarz inequality and Jensen’s inequality,

K∑

`,`′=1

E
[
〈Q`′`〉Tr

(
∂
√
R

∂R``′

√
R

(
〈Q〉 − 〈x〉

T〈x〉
n

))]

≤
K∑

`,`′=1

E
[∣∣〈Q`′`〉

∣∣
∥∥∥∥
∂
√
R

∂R``′

√
R

∥∥∥∥
∥∥∥∥〈Q〉 −

〈x〉T〈x〉
n

∥∥∥∥
]

≤ M√
2sn

K∑

`,`′=1

E
[〈
|Q`′`|

〉∥∥∥∥〈Q〉 −
〈x〉T〈x〉

n

∥∥∥∥
]

≤ MK√
2sn

(
E〈‖Q‖2〉 E

∥∥∥∥〈Q〉 −
〈x〉T〈x〉

n

∥∥∥∥
2)1/2

≤ BK√
2sn

√
E 〈‖Q‖2〉 E

〈∥∥Q− 〈Q〉
∥∥2〉

. (4.109)
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The last inequality is due to Jensen’s inequality and the Nishimori identity,

E
∥∥∥∥〈Q〉−

〈x〉T〈x〉
n

∥∥∥∥
2

≤ E
〈∥∥∥∥Q−

xT〈x〉
n

∥∥∥∥
2〉

= E
〈∥∥QT−〈Q〉T

∥∥2〉
= E

〈∥∥Q−〈Q〉
∥∥2〉

.

Combining the identity (4.104) together with the inequalities (4.105), (4.106),
(4.107), and (4.109), gives

E 〈‖Q− E〈Q〉‖2〉
2

≤ C

(
√

E 〈‖L− E〈L〉‖2〉+ E
〈∥∥∥∥Q−

〈x〉T〈x〉
n

∥∥∥∥
2〉

+

√
E
〈∥∥Q− 〈Q〉

∥∥2〉

sn

)
, (4.110)

where C is a positive constant depending only on PX , K and p. To end the proof
of Theorem 4.7, we simply need to integrate both sides of (4.110) over C(Rn,t)
and apply Propositions 4.9, 4.11, 4.12.

4.7 Conclusion and discussion for odd-order
tensors

In this work, we have proved the conjectured replica formula for even-order
symmetric tensors. It would be desirable to extend both Theorem 4.2 and
Theorem 4.3 to the odd-order case. For the case K = 1 we refer to [45]. For
K > 1, this is still an open problem and we now briefly discuss where our proofs
fall short in this case.

Ideally, to extend Theorem 4.2 to an odd order p, we would show that
the integral on the r.h.s. of (4.18), that is,

∫ 1

0
dt
∑

`,`′ E 〈hp(S``′ , Q``′)〉t,0 where
hp(r, q) := qp − pqrp−1 + (p− 1)rp, is nonnegative. However, when p is odd, hp is
not nonnegative on its whole domain of definition. To say something about the
integral, we have to take a Gibbs average 〈−〉t,0 of Q``′ before applying hp. To do
so, we split the integral in two as follows:

∫ 1

0

dt
K∑

`,`′=1

E
〈
hp(S``′ , Q``′)

〉
t,0

=

∫ 1

0

dtE
〈

Tr QT

(
Q◦(p−1) −

(〈x〉Tt,0〈x〉t,0
n

)◦(p−1))〉

t,0

+

∫ 1

0

dt

K∑

`,`′=1

Ehp
(
S``′ ,
〈x〉Tt,0〈x〉t,0

n

∣∣∣∣
``′

)
. (4.111)

When K = 1, both 〈x〉Tt,0〈x〉t,0 and S := S11 are nonnegative real numbers. The
nonnegativity of hp(r, q) for r, q ≥ 0 thus ensures that the second integral on
the r.h.s. of (4.111) is nonnegative. Besides, we can cancel the first integral by
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introducing a small perturbation ε on which we integrate (as was done in the
proof of Theorem 4.3). This is how the lower bound is proved in [45]. When
K > 1, we only know that 〈x〉Tt,0〈x〉t,0 and S are symmetric positive semidefinite
matrices; a priori nothing can be said on the sign of their individual entries. The
problem remains if instead we write

∫ 1

0

dt

K∑

`,`′=1

E
〈
hp(S``′ , Q``′)

〉
t,0

=

∫ 1

0

dtE
〈
Tr
(
QT
(
Q◦(p−1) − E[〈Q〉t,0]◦(p−1)

))〉
t,0

+

∫ 1

0

dt
K∑

`,`′=1

hp
(
S``′ ,E 〈Q``′〉t,0

)
. (4.112)

While E 〈Q〉t,0 and S are positive semidefinite, nothing can be said on the sign
of their individual entries. Most probably, we need to consider the full sum
over (`, `′) in order to determine the sign of the second integral on the r.h.s. of
(4.112). Indeed, using A < B < 0⇒ ∀k ∈ N : A◦k < B◦k < 0, we can show that∑K

`,`′=1 hp(S``′ ,E 〈Q``′〉t,0) is nonnegative if S < E 〈Q〉t,0 or E 〈Q〉t,0 < S. As far
as we can tell, it is not clear why such partial ordering between S and E 〈Q〉t,0
(which itself depends on S) holds.

Regarding Theorem 4.3, the whole proof directly applies to p odd if we can
show that the divergence (4.25) is nonnegative. However, this is more difficult
than for p even. Indeed, while the ∆``′ ’s are still nonnegative, it is not necessarily
the case of E[〈Q``′〉t,R]p−2 when p− 2 is odd.





Appendices

4.A Divergence of the function Gn

Remember that we denote by the angular brackets 〈−〉t,R the expectation with
respect to the posterior distribution

dP (x |Y(t), Ỹ(t,R)) :=
1

Zt,R(Y(t), Ỹ(t,R))
e−Ht,R(x;Y(t),Ỹ(t,R))

n∏

j=1

dPX(xj) ,

where (Y(t), Ỹ(t,R)) are defined in (4.20) and

Ht,R(x; y, ỹ) :=
∑

i∈I

(1− t)(p− 1)!

2np−1

(
K∑

k=1

p∏

a=1

xiak

)2
−
√

(1− t)(p− 1)!

np−1
yi

K∑

k=1

p∏

a=1

xiak

+
n∑

j=1

xTj Rxj

2
− ỹTj

√
Rxj .

In this appendix we prove a formula for the divergence of the function

Gn :
[0, 1]× S+

K → S+
K

(t, R) 7→ E[〈Q〉t,R]◦(p−1) .

Lemma 4.13 (Divergence of Gn). Let δ``′ = 0 if ` 6= `′, 1 otherwise. For all pair
(`, `′) ∈ {1, . . . , K}2, we have

∂(Gn)``′

∂R``′

∣∣∣∣
t,R

=
n(p− 1)

1 + δ``′
E[〈Q``′〉t,R ]p−2

(
E
[〈

Q◦
(
Q+QT−〈Q+QT〉t,R

)〉
t,R

]∣∣
``′

− E
[
〈QT〉t,R ◦

(
〈Q + QT〉t,R − 2

〈x〉Tt,R〈x〉t,R
n

)]∣∣∣∣
``′

)
. (4.113)

Besides, the divergence of Gn is
∑

1≤`≤`′≤K

∂(Gn)``′

∂R``′

∣∣
t,R

= n(p− 1)Tr(E[〈Q〉t,R ]◦(p−2)∆) ,

where

∆ := E

[〈(
Q + QT

2
−
〈

Q + QT

2

〉

t,R

)◦2〉

t,R

−
(〈

Q + QT

2

〉

t,R

− 〈x〉
T
t,R〈x〉t,R
n

)◦2 ]
.
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Proof. To lighten notations, we omit the subscripts of the angular brackets 〈−〉t,R.
Let (`, `′) ∈ {1, . . . , K}2. The partial derivative of R 7→

(
Gn(t, R)

)
``′

with respect
to R``′ reads

∂(Gn)``′

∂R``′

∣∣∣∣
t,R

=
∂E[〈Q``′〉]p−1

∂R``′

∣∣∣∣
t,R

= (p− 1)E[〈Q``′〉]p−2 E
[
〈Q``′〉

〈
∂Ht,R

∂R``′

〉
−
〈
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∂Ht,R

∂R``′

〉]
, (4.114)

where

∂Ht,R

∂R``′
=
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j=1

1

2
xTj

∂R

∂R``′
xj −XT

j

∂R

∂R``′
xj − Z̃T

j

∂
√
R

∂R``′
xj . (4.115)

After we plug the r.h.s. of (4.115) in (4.114), two expectations involving the
standard Gaussian randon vectors Z̃j, j ∈ {1, . . . , n}, appear. A Gaussian
integration by parts gives
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∂
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.
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In both chains of equalities, the last one follows from an identity similar to (4.45),

∀v ∈ RK : vT
√
R
∂
√
R

∂R``′
v =

1

2
vT
(√

R
∂
√
R

∂R``′
+
∂
√
R

∂R``′

√
R

)
v =

1

2
vT

∂R

∂R``′
v . (4.116)

Using (4.116) and the two identities yielded by the integration by parts, we get

E
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〈
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〉
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∂R``′
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〉
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∂R
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〈
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T
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〉 ∂R
∂R``′

〈xj〉
]
. (4.117)

By the Nishimori identity, we have

E
[
〈Q``′〉〈xj〉T
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〈
Q``′x

T
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〉
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]
.

Hence, (4.117) further simplifies,
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(
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))]
, (4.118)

where in the last equality we use the cyclic property of the trace. Now consider
the case ` 6= `′. All the entries of ∂R/∂R``′ are zeros save for the entries (`, `′) and
(`′, `) which are both one. Then, equation (4.118) reads

E
[
〈Q``′〉

〈
∂Ht,R

∂R``′

〉
−
〈
Q``′

∂Ht,R

∂R``′

〉]
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(
Q+QT−

〈
Q+QT

〉)
``′

〉]
−nE

[
〈Q`′`〉

(
〈Q+QT〉−2

〈x〉T〈x〉
n

)

``′

]
.

Combining this last identity with (4.114) gives (4.113) for ` 6= `′. The case ` = `′

is obtained in a similar way except that now the entries of ∂R/∂R`` are zeros save
for the entry (`, `) which is one.



110 Mutual information for low-rank symmetric tensor estimation

We now prove the identity for the divergence of Gn. The divergence is

D :=
∑

`≤`′
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∂R``′
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+
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.

Replacing the summands by their formula (4.113) in the second equality yields
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. (4.119)

Remember that E[〈Q〉t,R ], and therefore E[〈Q〉t,R ]◦(p−2), are symmetric. Using
that the trace is invariant by transposition and cyclic permutation, the two traces
in (4.119) satisfy
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Clearly,
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〈
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Similarly, we have
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For this last equality, we can complete the square because
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where the second equality is due to the Nishimori identity. Plugging the two
identities for the traces back in (4.119), and using the subsequent identities where
we complete the square, we finally obtain

D =
n(p− 1)

4
Tr

(
E[〈Q〉t,R ]◦(p−2)

· E
[〈(

Q + QT −
〈
Q + QT

〉)◦2〉
−
(〈

Q + QT
〉
− 2
〈x〉T〈x〉

n

)◦2 ])
.

4.B Concentration of the free entropy

Once again, we consider the observations (Y(t), Ỹ(t,R)) defined in (4.20). The
posterior distribution of X given (Y(t), Ỹ(t,R)) is

dP (x |Y(t), Ỹ(t,R)) :=
1

Zt,R(Y(t), Ỹ(t,R))
e−Ht,R(x;Y(t),Ỹ(t,R))

n∏

j=1

dPX(xj) ,

where

Ht,R(x; y, ỹ) :=
∑

i∈I
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K∑
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a=1

xiak

+
n∑

j=1

xTj Rxj

2
− ỹTj

√
Rxj .

In this appendix we show that the free entropy

lnZt,R
(
Y(t), Ỹ(t,R)

)

n
=

1

n
ln

(∫ n∏

i=1

dPX(xi) e
−Ht,R(x;Y(t),Ỹ(t,R))

)
(4.120)

concentrates around its expectation. To shorten notations, we omit the arguments
and write lnZt,R/n.

Theorem 4.14 (Concentration of the free entropy). Assume that PX has finite
(4p− 4)th moments. There exists a positive constant C depending only on PX , K,
p and ‖R‖ such that

E

[(
lnZt,R
n
− E

[
lnZt,R
n

])2 ]
≤ C

n
. (4.121)

Proof. We omit the subscripts of the angular brackets 〈−〉t,R. First, we show that
the free entropy concentrates on its conditional expectation given the Gaussian
noises Z, Z̃. We see lnZt,R/n as a function of X1, . . . , Xn only and we work
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conditionally to Z, Z̃. Let X ′1, . . . , X ′n be i.i.d. samples from PX , independent of
X. For all j ∈ {1, . . . , n}, we define

Z(j)
t,R :=

∫ n∏

i=1

dPX(xi) e
−Ht,R(x;Y(j,t),Ỹ(j,t,R)) ,

where (Y(j,t), Ỹ(j,t,R)) has the same definition (4.20) than (Y(t), Ỹ(t,R)) except
that Xj is replaced X ′j. We can consider an inference problem similar to (4.20)
for which the observations are Y(j,t), Ỹ(j,t,R). Then, we denote by the angular
brackets 〈−〉(j) the expectation with respect to the posterior distribution of X

given (Y(j,t), Ỹ(j,t,R)), that is,

〈g(x)〉(j) =

∫
g(x)

e−Ht,R(x;Y(j,t),Ỹ(j,t,R))

Z(j)
t,R

n∏

i=1

dPX(xi) .

By the Efron-Stein inequality (see Proposition 2.5),

E

[(
lnZt,R
n
− E

[
lnZt,R
n

∣∣∣∣Z, Z̃
])2 ]

≤ 1

2

n∑

j=1

E
[(

lnZt,R
n
−

lnZ(j)
t,R

n

)2 ]
. (4.122)

Let j ∈ {1, . . . , n} be fixed. By Jensen’s inequality, we have
〈
Ht,R(x; Y(j,t), Ỹ(j,t,R))−Ht,R(x; Y(t), Ỹ(t,R))

〉
(j)

≤ lnZt,R − lnZ(j)
t,R ≤

〈
Ht,R(x; Y(j,t), Ỹ(j,t,R))−Ht,R(x; Y(t), Ỹ(t,R))

〉
. (4.123)

Define Ij := {i ∈ I : ∃b ∈ {1, . . . , p} s.t. ib = j} and ∀i ∈ Ij :

c(i) :=
∣∣{a ∈ {1, . . . , p} : ia = j

}∣∣ .

The quantity inside the angular brackets 〈−〉 and 〈−〉(j) in (4.123) reads
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Using (
∑m

i=1 vi)
2 ≤ m

∑m
i=1 v

2
i and Jensen’s inequality, we thus have
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. (4.124)
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We bound each summand on the right-hand side of (4.124) separately. For all
i ∈ Ij and (`, `′) ∈ {1, . . . , K}2:
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.

The first inequality follows from the Cauchy-Schwarz inequality, the second one
from Jensen’s inequality, and the first equality from the Nishimori identity. The
final upper bound that we obtain is finite given that PX has finite (4p − 4)th

moments. Hence, there exists a positive constant C depending only on PX , K
and p such that the first term on the right-hand side of (4.124) is bounded by

C|Ij|2
n2p−2

≤ C ,

where we use that |Ij| ≤ np−1. Regarding the second term on the right-hand side
of (4.124), we easily get

E
[((

X ′j −Xj

)T
R〈xj〉

)2]
≤ E

[
‖X ′j −Xj‖2‖R‖2‖〈xj〉‖2

]

≤ ‖R‖2
√

E
[
‖X ′j −Xj‖4

]
E
[
‖Xj‖4

]
.

We conclude that there exists a positive constant C depending only on PX , K, p
and ‖R‖ such that ∀j ∈ {1, . . . , n} :

E
[〈
Ht,R(x; Y(j,t), Ỹ(j,t,R))−Ht,R(x; Y(t), Ỹ(t,R))

〉2 ] ≤ C . (4.125)

A similar bound holds when the angular brackets 〈−〉 are replaced by 〈−〉(j),

E
[〈
Ht,R(x; Y(j,t), Ỹ(j,t,R))−Ht,R(x; Y(t), Ỹ(t,R))

〉2

(j)

]
≤ C . (4.126)

Combining (4.123), (4.125) and (4.126) yields

E
[(

lnZt,R − lnZ(j)
t,R

)2] ≤ C .
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We use this last upper bound in the Efron-Stein inequality (4.122) to finally obtain

E

[(
lnZt,R
n
− E

[
lnZt,R
n

∣∣∣∣Z, Z̃
])2 ]

≤ C

2n
, (4.127)

where the positive constant C only depends on PX , K, p and ‖R‖.
The second and final step is to show that the conditional expectation of the free

entropy given Z, Z̃ concentrates on its expectation. Let g(Z, Z̃) := E[lnZt,R/n|Z, Z̃].
By the Gaussian-Poincaré inequality (see Proposition 2.7),

E
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E
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. (4.128)

The squared norm of the gradient of g reads
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Each of these partial derivatives takes the form ∂g
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On one hand, by Jensen’s inequality, we have
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, (4.129)

where the final equality follows from the Nishimori identity. On the other hand,
still by Jensen’s inequality, we have
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(4.130)

where the first equality follows from the Nishimori identity and the last inequality
from the submultiplicativity of the Frobenius norm and ‖

√
R ‖ ≤

√
K‖R‖ (see
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(4.108)). Remember that |I| ≤ np and that PX has bounded (4p− 4)th moments.
Hence, both (4.129) and (4.130) are O(n−1). Using (4.129) and (4.130) in the
Gaussian-Poincaré inequality (4.128) yields

E

[(
E
[

lnZt,R
n

∣∣∣∣Z, Z̃
]
− E

[
lnZt,R
n

])2 ]
≤ C

n
, (4.131)

where C depends only on PX , K, p and ‖R‖. Combining (4.127) and (4.131) ends
the proof of (4.121).





Tensor estimation with structured
priors 5
5.1 Introduction

Natural signals have an underlying structure, an insight that has triggered a
paradigm shift in the last fifteen years, and spurred fundamental progress in
estimation and inference. Compressive sensing [30], [31] takes sparsity as the
model of structure when a signal X ∈ Rn has a sparse representation in an
appropriate basis, that is, X = ΨZ with Ψ an n× n change of basis matrix and
Z ∈ Rn a sparse vector with p � n non-zero components. For example, X can
represent a natural image and Ψ a wavelet basis [112]. Despite its success, this
model of structure is often too constrained because the appropriate basis may
be unknown and, more generally, the linearity of the transformation may be a
severe limitation. Deep networks have been proposed as an alternative [113] and,
with the advent of generative adversarial networks (GAN) [114] and variational
auto-encoders (VAE) [115], such flexible and non-linear “generative models” of
structure have been the object of intense interest. Roughly speaking, a generative
model can be viewed as a mapping G : S ∈ Rp 7→ X = G(S) ∈ Rn with p � n
and satisfying certain general regularity assumptions. In other words, the signal
X lies on a low p-dimensional “manifold” parametrized by S. Such models have
been studied in the framework of classical denoising problems from observations
Y = AX + Z where A is a sensing matrix and Z some Gaussian noise [116]. In
particular, [116] studies fundamental limits (under minimal Lipshitz conditions
on G) and empirically investigates the problem with learned mappings coming
from GAN and VAE. A related line of research uses untrained deep networks
(so-called deep decoders or deep image priors) whose parameters are adjusted
by an optimization problem over the latent space [117]–[119]. Another kind of
untrained generative model takes G equal to a one-layer or multi-layer neural
network with fixed weights (i.e., frozen and not learned) drawn from a random
matrix ensemble [27], [120]–[123]. Such mappings G are often referred to as
generalized linear models (GLMs) and this is the terminology that we adopt
here. The simplification of fixed random weights has the virtue of being much

117
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more amenable to mathematical (or at least analytical) analysis. Especially, the
mutual information as well as the message passing algorithmic behaviour for
classical denoising have been discussed in depth in a Bayesian setting at various
levels of rigor [27], [75]. Below we use a one-layer version of GLMs. These
originated as generalizations of linear regression models [124] and have many
modern applications in communications (e.g., CDMA, sparse regression codes
on general channels), signal processing (e.g., one-bit compressive sensing, phase
retrieval) as well as machine learning and statistics (e.g., classication tasks). We
refer to [29] for a review of this literature and references.

In this chapter we investigate GLMs of structure in the context of estimation
of noisy tensors. Tensors representing data have found many modern applications
in signal processing, graph analysis, data mining and machine learning [6], [13],
[94], with a large part of the literature focusing on tensor decompositions, either
in deterministic settings, or in random settings with independent structureless
components. Here, we focus on a simple statistical model of noisy symmetric
rank-one tensors. A structured signal X = (X1, · · · , Xn) ∈ Rn is generated by a
one-layer GLM Xi = ϕ((WS)i/

√
p). The latent vector S ∈ Rp has independent

and identically distributed (i.i.d.) entries and W is a known random matrix
with independent standard Gaussian entries. We only observe a noisy version
of the rank-one tensor X⊗r (r ≥ 2) through an additive white Gaussian noise
channel, i.e., we observe Y :=

√
λ

n(r−1)/2 X⊗r + Z, where the noise Z is a symmetric
tensor with independent standard Gaussian entries and λ > 0 is the signal-to-
noise ratio. We study the high dimensional limit n, p → ∞ such that n/p →
α = Θ(1) and show that, quite remarkably, the asymptotic normalized mutual
information limn→+∞ I(X; Y|W)/n is given by a finite-dimensional variational
problem (see Theorem 5.1 in Section 5.2.2). We also rigorously deduce the
corresponding asymptotic minimum mean-square error (MMSE), which is given
by a simple function of the solution to the variational problem (see Theorem 5.2
in Section 5.2.2). For concreteness, and to keep the analysis as simple as possible,
we focus on the case r = 3 and one-layer GLM. However, extensions to any order
r > 3, multi-layer GLM and asymmetric tensors are possible with the techniques
used here. An extensive recent study of the matrix case r = 2 can be found in
[98].

The analysis and results presented here go beyond many recent works dealing
with i.i.d. components for X, for matrices r = 2 [34], [36], [46], and tensors
r ≥ 3 [45], [69]. There is a rich phenomenology of phase transitions already
for the i.i.d. case which stems from the (simpler) variational formula for the
mutual information. In Section 5.3 we discuss the (numerical) solutions to the
new variational problem obtained for structured signals for various examples of
priors and activation functions, and we illustrate properties of phase transitions.
Furthermore, we discuss the similarities and differences between the genuine tensor
and matrix cases.

Let us say a few words about the techniques used in this chapter. For
structured signals, rigorous proofs of the low-dimensional variational expression
for the asymptotic normalized mutual information are virtually non-existent. To



5.2. Asymptotic mutual information and MMSE for tensor estimation
with a generative prior 119

the best of our knowledge, besides the treatements in Chapter 3 where X is
uniformly distributed on the sphere (which turns out to be equivalent to an i.i.d.
Gaussian prior) and in Chapter 6 where the input to a one-layer GLM is generated
by another GLM, there is one recent exception: [98] treats the rank-one matrix
case with input coming from a GLM. The latter work uses two different flavors
of the interpolation method [35], [125] which do not extend to odd-order tensors
nor asymmetric ones. Moreover, certain (reasonable) assumptions are required.
In this chapter we rely entirely on the adaptive interpolation method [37], [87].
Our treatment is completely self-contained, leverages on only one method, and
can also deal with asymmetric matrices and tensors. We would like to emphasize
that the modularity of the adaptive interpolation method plays an important
role in this work. It will become clear in Section 5.4 how the normalized mutual
information associated with GLMs, itself computed by an interpolation in the
high-dimensional limit, appears as a building block of the interpolation for the
tensor model. This modular aspect was first emphasized in [69] and is also used in
the subsequent Chapter 6. We have here one more example where this modularity
finds an application.

In Section 5.2 we formulate the statistical model and present the main theorems
on the asymptotic normalized mutual information and MMSE. In Section 5.3 we
use our theoretical results to illustrate phase transitions on different examples.
In Sections 5.4 and 5.5 we go through the proofs and, in Section 5.6, we give an
analysis of the limit α→ 0. The appendices contain technical derivations.

5.2 Asymptotic mutual information and MMSE
for tensor estimation with a generative prior

We formulate a statistical model for rank-one tensor estimation when the spike is
itself generated from another latent vector. We observe a noisy symmetric tensor
Y ∈ (Rn)⊗3 whose entries are

Yijk :=

√
λ

n
XiXjXk + Zijk , 1 ≤ i ≤ j ≤ k ≤ n , (5.1)

where the positive real number λ plays the role of an SNR, Zijk i.i.d.∼ N (0, 1) for
1 ≤ i ≤ j ≤ k ≤ n is an additive white Gaussian noise, and X1, . . . , Xn are the
entries of the spike X ∈ Rn. Let PS be a probability distribution on the real
numbers. The spike X is generated by a latent vector S ∈ Rp, whose entries are
i.i.d. with respect to (w.r.t.) PS, via the GLM

Xi := ϕ

(
(WS)i√

p

)
, i = 1, . . . , n . (5.2)

The n× p random matrix W has entries i.i.d. with respect to N (0, 1). It is often
customary to summarize (5.2) by X = ϕ

(
WS/

√
p
)
where it is understood that

the function ϕ : R→ R is applied componentwise. A similar statistical model for
tensor PCA where the entries of the spike X are i.i.d was introduced in [19].
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5.2.1 Scalar Gaussian channels

Before presenting our main results, let us introduce two kinds of scalar Gaussian
channels and the mutual informations that they are associated with. These mutual
informations are building blocks of the replica symmetric formula that gives the
normalized conditional mutual information between X and Y given W in the
high-dimensional limit.

The first channel is a scalar linear Gaussian channel. Let S ∼ PS and
Z ∼ N (0, 1) be two independent random variables. Let r be a nonnegative real
number akin to a signal-to-noise ratio. Consider the problem of estimating S from
the noisy channel observation

√
r S+Z. We denote IPS(r) the mutual information

between the input and output of this channel, that is,

IPS(r) := I(S;
√
r S + Z) .

We list important properties of the function IPS : r ∈ [0,+∞) 7→ I(S;
√
r S + Z)

in Lemma 2.3 of Chapter 2.
The second channel is still a scalar Gaussian channel but it is in general

nonlinear as it involves the function ϕ used to generate our spike X. Let U , V and
Z be independent standard Gaussian random variables, that is, U, V, Z i.i.d.∼ N (0, 1).
Let r, ρ be nonnegative real numbers and q ∈ [0, ρ]. Consider the problem of
estimating U from the noisy observation

√
rϕ(
√
ρ− q U +

√
q V ) + Z while V

is perfectly known. We denote Iϕ(r, q; ρ) the conditional mutual information
between U and the output of this channel given V , that is,

Iϕ(r, q; ρ) := I
(
U ;
√
rϕ(
√
ρ− q U +

√
q V ) + Z

∣∣V
)
.

Lemma 5.9 in Appendix 5.A lists important properties of the function

Iϕ( · ; ρ) : (r, q) ∈ [0,+∞)× [0, ρ] 7→ I
(
U ;
√
rϕ(
√
ρ− q U +

√
q V ) + Z

∣∣V
)
.

5.2.2 Main results

The next two theorems provide a complete information-theoretic characterization of
the problem. Theorem 5.1 expresses the normalized mutual information I(X;Y|W)/n
as an explicit low-dimensional variational problem, in the high-dimensional regime
where n → +∞ and n/p = α is kept fixed. This variational problem involves
an optimization over three parameters and can be solved numerically given the
activation function ϕ and prior distribution PS.

Theorem 5.1 (Normalized mutual information in the high-dimensional regime).
Suppose that the following hypotheses hold:
(H1) There exists MS > 0 such that the probability distribution PS is supported

on [−MS,MS].
(H2) The function ϕ is bounded and twice differentiable with its first and second

derivatives being bounded and continuous. They are denoted ϕ′, ϕ′′.
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Define the second moments ρs := E[S2] where S ∼ PS, and ρx := E[ϕ(T )2] where
T ∼ N (0, ρs). Define the potential function

ψλ,α(qx, qs, rs) :=
IPS(rs)

α
+ Iϕ

(
λq2

x

2
, qs; ρs

)
− rs(ρs − qs)

2α

+
λ

12
(ρx − qx)2(ρx + 2qx) , (5.3)

where (qx, qs, rs) ∈ [0, ρx] × [0, ρs] × [0,+∞). If n, p go to infinity such that
n/p→ α > 0 then

lim
n→+∞

I(X; Y|W)

n
= inf

qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs) , (5.4)

where W ∈ Rn×p has independent standard Gaussian entries, X is defined in (5.2)
and Y in (5.1).

One important quantity to assess the performance of an algorithm designed to
recover X⊗3 from the knowledge of Y and W is the minimum mean-square error
(MMSE). The latter serves as a lower bar on the error of any estimator, and as
a limit to approach as closely as possible for any algorithm striving to estimate
X⊗3. It is well-known that the mean square error of an estimator of X⊗3 that is
a function of Y,W only is minimized by the posterior mean E[X⊗3|Y,W]. We
denote the tensor-MMSE by MMSEn(X⊗3|Y,W), i.e.,

MMSEn(X⊗3|Y,W) :=
E
∥∥X⊗3 − E[X⊗3|Y,W]

∥∥2

n3
. (5.5)

It depends on λ through the observations Y. Combining Theorem 5.1 with the
I-MMSE relationship (see [51])

∂

∂λ

(
I(X,Y|W)

n

)
=

1

12
MMSEn(X⊗3|Y,W) +O(n−1) (5.6)

yields Theorem 5.2. It gives a formula for the tensor-MMSE in the high-dimensional
regime that can be calculated from the solution to the variational problem (5.4).

Theorem 5.2 (Tensor-MMSE). Suppose that (H1) and (H2) hold. Define for all
λ ∈ (0,+∞):

Q∗x(λ)

:=

{
q∗x ∈ [0, ρx] : inf

qs∈[0,ρs]
sup
rs≥0

ψλ,α(q∗x, qs, rs) = inf
qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs)

}
.

For every λ > 0, Q∗x(λ) is nonempty and the set

D :=
{
λ ∈ (0,+∞) : Q∗x(λ) is a singleton

}

is equal to (0,+∞) minus a countable set. Besides, for every λ ∈ D, we have

lim
n→+∞
n/p→α

MMSEn(X⊗3|Y,W) = ρ3
x −

(
q∗x(λ)

)3
, (5.7)

where q∗x(λ) is the unique element in Q∗x(λ), i.e., Q∗x(λ) = {q∗x(λ)}.
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We prove Theorem 5.1 in Section 5.4. The proof is based on the adaptive inter-
polation method [37], [87] whose main difference with the canonical interpolation
method [60], [61] is the increased flexibility given to the path followed by the in-
terpolation between its two extremes. The method has been developed separately
for symmetric rank-one tensor problems where the spike has i.i.d. components
[37], [87], and for one-layer GLMs whose input signal has again i.i.d. components
[29]. The problem studied in this contribution combines the two aforementioned
models and our proof shows that the two interpolations combine well in a modular
way. This modular feature of the adaptive interpolation method has also been
used for non-symmetric order-three tensors [69] and two-layer GLMs [75].

The proof of Theorem 5.2 is given in Section 5.5. We rely on the I-MMSE
relationship (5.6) and compute the derivative with respect to λ of the variational
formula (5.4) for the asymptotic mutual information. The computation requires
a careful application of an envelope theorem [68, Corollary 4] that eventually
shows that, except for a countable set of λ’s, it is enough to evaluate the partial
derivative with respect to λ of the potential (5.3) at the solution of the variational
problem.

5.2.3 Extensions

Extensions of Theorems 5.1 and 5.2 in various directions are possible with the
methods of the present paper, but at the expense of more technical work. First,
the analysis for rank-one tensors of any rank r ≥ 3 is identical. The potential is
given by

ψλ,α(qx, qs, rs) :=
IPS(rs)

α
+ Iϕ

(
λqr−1

x

(r − 1)!
, qs; ρs

)
− rs(ρs − qs)

2α

+
λ

2(r!)

(
ρrx + rqrx − rqr−1

x ρx
)
,

while the asymptotic tensor-MMSE is ρrx − (q∗x(λ))r.
Second, the results can be extended to more general activation function and

prior via a limiting process on both sides of (5.4) similar to what is done in [29,
Appendices C.1 and C.2 of SI]. Assumptions (H1) and (H2) are relaxed to:
(h1) The probability distribution PS has a finite third moment and at least two

points in its support.
(h2) The function ϕ is continuous almost everywhere and there exists ε > 0 such

that the sequence
(
E |ϕ((WS)1/√p)|2+ε

)
p≥1

is bounded.
Therefore, the results apply to ϕ being the identity function, the sign function, or
the ReLU x 7→ max(0, x). Another direction that should be amenable to analysis
with our methods is the case of asymmetric tensors, e.g., X⊗3 is replaced by
U ⊗V ⊗W where each of the three different vectors is given by a GLM. The
structureless case where all three vectors U, V, W have i.i.d. entries is treated in
[69], and the variational problem already displays a rich phenomenology in the
highly asymmetric case [84].
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5.3 Examples of phase transitions and their
properties

This section illustrates features of the phase transitions found when numerically
solving the variational problem (5.4) for r = 3. We also discuss similarities and
differences with the matrix case r = 2. To find solutions to the variational problem
(5.4), we write down the stationary point equations of the potential function (5.3).
It yields a fixed point equation for (qx, qs, rs) that we solve with a fixed-point
iteration starting from several different initializations. When multiple fixed points
exist, we keep the one corresponding to the smallest potential value as it should
be clear from the form of the optimization problem (5.4).

We first focus on the case of odd activation functions ϕ(−z) = −ϕ(z) and
centered priors ES∼PS [S] = 0. This implies EXi = 0 and, if ϕ is not identically
zero, this is a necessary and sufficient condition for the existence of a fixed point
(qx, qs, rs) such that qx = 0 (in which case we also have qs = rs = 0). The same
condition arises in the matrix case [98] but, contrary to what happens there, we
find that all eigenvalues of the Jacobian matrix at the all-zero fixed point are zero
indicating that it is asymptotically stable for order-3 tensors. Numerically, we
observe that there exists a critical value of λ, denoted λc(α), below which the
uninformative fixed point (qx, qs, rs) = 0 yields the smallest potential. It means
that the asymptotic tensor-MMSE is equal to its maximum ρ3

x for λ < λc(α);
one cannot estimate the signal better than random guessing. When λ > λc(α),
a fixed point with a lower potential value appears. The asymptotic MMSE has
a jump discontinuity at λ = λc(α) and decreases for λ > λc(α). These features
are already observed for the structureless i.i.d. case. In the structured case, we
observe that λc(α) has a monotone decrease with increasing α. This is illustrated
in Figure 1 for a linear activation function and in Figure 2 for a sign activation
function1

In Section 5.6 we present a non-rigorous calculation which shows that, in
the limit α→ 0 (p� n), the asymptotic tensor-MMSE – and in particular the
threshold λc(α) – is the same than for the tensor denoising problem

Ỹijk :=

√
λ

n
X̃iX̃jX̃k + Z̃ijk , 1 ≤ i ≤ j ≤ k ≤ n ,

with X̃i := ϕ(
√
ρs − E[S]2 Ui + |ES|Vi) where U1, . . . , Un

i.i.d.∼ N (0, 1) are latent
variables and V1, . . . , Vn

i.i.d.∼ N (0, 1) are known. The latter take into account the
bias that is present when ES 6= 0. We stress that when ES 6= 0 the asymptotic
mutual information of this problem (given by (5.41) in Section 5.6) is not quite
the same as the one known in the literature for rank-one tensor problems with
i.i.d. Xi’s. However, it is not difficult to adapt the proof to account for the side
information V and obtain (5.41). When the prior is centered (ES = 0), the
limiting problem is just the usual rank-one tensor denoising problem with spike

1Our theorems are proven here for bounded and smooth activation functions but, as explained,
the proofs can be extended to unbounded and piecewise differentiable ones. Numerical solutions
involve non-trivial integrals that are much easier to handle for piecewise linear functions.
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Figure 1: Asymptotic tensor-MMSE for r = 3 as a function of (λ, α) for a linear
activation ϕ(x) = x. Left: Gaussian prior PS ∼ N (0, 1). Right: Rademacher prior
PS(1) = PS(−1) = 1

2 . We observe a unique discontinuity line λc(α) below which the MMSE
equals its maximum ρ3

x = 1. Above the line, the MMSE is strictly less than 1 and decreases
to zero. For α close to 0, the threshold λc(α) ≈ 8.73 is the same threshold than in the i.i.d.
case with a Gaussian prior X1, . . . , Xn

i.i.d.∼ N (0, 1).

signal X̃i
i.i.d.∼ ϕ(N (0, ρs)). Numerically, we indeed observe in Figure 1 that for

both kinds of priors and for α close to 0 the threshold λc(α) ≈ 8.73 is the same
than for a signal X1, . . . , Xn

i.i.d.∼ N (0, 1). Similarly, in Figure 2, the curve for
α = 10−12 agrees with the one labelled “α→ 0+” corresponding to the asymptotic
tensor-MMSE of the limiting tensor problem and that is computed using the
formulas known in the literature.

In the opposite limit α → +∞ (p � n), corresponding to a very strongly
structured prior, the asymptotic MMSE displays on Figure 1 a vanishing phase
transition threshold, λc(α) → 0. This is expected since the dimension of the
latent vector is much smaller than that of the feature vector; the problem be-
comes information-theoretically easier. It is also consistent with a (non-rigorous)
inspection of the potential (5.3), whereby the variational problem simplifies and
has a solution with maximal overlap q∗x = ρx.

We next discuss an example of non-centered latent prior PS. In Figure 3
we draw the asymptotic tensor-MMSE for a linear activation function and a
Rademacher prior PS(1) = p, PS(−1) = 1 − p with p ∈ {0.6, 0.7}. We observe
that for a small asymmetry the asymptotic MMSE has a jump discontinuity just
as in the centered case, while it becomes continuous once the asymmetry is large
enough. Here ES = 2p− 1 and the asymptotic MMSE of the predicted limiting
problem (5.41) is again in agreement with the one for α = 10−12 close to 0.

To conclude this section we wish to briefly discuss the matrix case r = 2,
and point out similarities and differences with genuine tensors r ≥ 3. In the
matrix case, [98] observe for a set of centred priors and odd activations that the
asymptotic matrix-MMSE is equal to its maximum ρ2

x for λ < λc(α) and decreases
for λ > λc(α) while remaining continuous at λc(α). Again, λc(α) decreases with
increasing α. We give an example on the left panel of Figure 4. The continuity of
the phase transition is an important qualitative difference with what we observe
here for order-3 tensors. Such continuity for Bayesian inference problems is
known to go hand in hand with the optimality of approximate message passing
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Figure 2: Asymptotic tensor-MMSE for r = 3, PS = N (0, 1) and ϕ(z) = sign(z)
as a function of λ. The location λc(α) of the discontinuity decreases with increasing
α. For α = 10−12 the threshold λc(α) ≈ 7.07 is the same than for the i.i.d. case with
Rademacher prior X1, . . . , Xn

i.i.d.∼ PX(±1) = 1
2 (whose asymptotic MMSE is given by the

curve “α→ 0+”).
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Figure 3: Asymptotic tensor-MMSE for ϕ(z) = z and an asymmetric Rademacher prior
PS(1) = 1− PS(−1) = p.

(AMP) and, as shown in [98], matrix factorization with generative prior is no
exception. Because the continuity of the phase transition is observed for all the
priors and activations used in [98], it supports the claim that such model of
structure makes estimation algorithmically easier. For order-3 tensor estimation,
there is an infinite computational-to-statistical gap when the spike X has i.i.d.
entries, i.e., the MMSE becomes nontrivial (lower than its maximum possible
value) for λ above a critical value λc = Θ(1) while the MSE of AMP becomes
nontrivial above the algorithmic threshold λAMP = Θ(n) [19]. In this regard, there
are polynomial-time algorithms with an algorithmic threshold in Θ(

√
n), hence

beating AMP. These algorithms are based on sum-of-squares relaxation [126],
power iteration with spectral initialization applied to tensor matricizations [19],
[127], or better approximation of the free energy than the Bethe free energy [128]
(note that AMP tries to minimize a high-dimensional approximation of the Bethe
free energy). Recently, [127], [129], [130] showed that λ = Ω(

√
n) is an essential

requirement for polynomial-time algorithms. Their arguments are based on an
average-case reduction to a hypergraphic planted clique (HPC) problem and hold
under the hardness hypothesis of HPC detection. Given the observations in [98],
we might hope that the generative prior of the spike X makes the estimation
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Figure 4: Asymptotic matrix-MMSE when estimating X⊗2 from Y =
√
λ/nX⊗2 + Z.

We use a Bernoulli-Rademacher prior PS(0) = 1− ρ, PS(±1) = ρ/2 with ρ = 0.05. Left:
generative prior X = WS/

√
p with S i.i.d.∼ PS . Right: X i.i.d.∼ PS .

of the corresponding tensor of order r ≥ 3 algorithmically easier. However, the
persisting discontinuity of the transition at λc(α) and asymptotic stability of the
uninformative fixed point suggest that it is not the case. The observations of [98]
should also be nuanced as it is not difficult to come up with a situation where
the phase transition is discontinuous. E.g., consider the spiked matrix model
with generative prior X = ϕ(WS/√p) for the odd activation function ϕ(x) = 0 if
|x| ≤ ε and ϕ(x) = sign(x) otherwise, and the centered latent prior PS = N (0, 1).
Similarly to what is done in Section 5.6, we can show that when α vanishes the
asymptotic matrix-MMSE approaches the one for the spiked matrix model

Ỹij :=

√
λ

n
X̃iX̃j + Z̃ij , 1 ≤ i ≤ j ≤ n ,

where X̃1, . . . , X̃n
i.i.d.∼ ϕ(N (0, 1)) are i.i.d. Bernoulli-Rademacher random vari-

ables. We can make P(X̃i = 0) = 1 − 2P(N (0, 1) < −ε) = 1 − ρ as large as
needed by increasing ε (then P(X̃i = 1) = P(X̃i = −1) = ρ/2). It is known
that the asymptotic matrix-MMSE has a jump discontinuity for such prior when
the probability of being 0 is large enough, e.g., see the right panel in Figure 4.
Therefore, when ε is large enough, the asymptotic matrix-MMSE of the original
spiked matrix model with generative prior also has a jump discontinuity, at least
for small α. An interesting question for future research is whether or not the
discontinuity disappears when α is made large enough. If so, it would further
support the claim that such generative prior makes estimation algorithmically
easier when the ratio α of signal-to-latent space dimensions is large enough. If
not, the existence of a jump discontinuity would then merely depend on the choice
of activation function and not on the ratio of signal-to-latent space dimensions.

5.4 Proof of the variational formula for the
mutual information

In this section we present the main steps of the proof of Theorem 5.1. Intermediate
results are found in the appendices.
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5.4.1 Adaptive path interpolation

We introduce a parameter t ∈ [0, 1]. The adaptive interpolation interpolates
from the original model (5.1) at t = 0 to a GLM whose asymptotic mutual
information is known [29] at t = 1. In between, we follow an interpolation path
R(·, ε) : [0, 1] → (0,+∞) which is a continuously differentiable function of t
parametrized by a “small perturbation” ε ∈ (0,+∞) and is such that R(0, ε) = ε.
More precisely, for t ∈ [0, 1], the observations are





Y(t) :=

√
λ(1−t)
n

X⊗3 + Z

Ỹ(t,ε) :=
√

λR(t,ε)
2

X + Z̃
, (5.8)

where X := ϕ(WS/√p), Z̃ ∈ Rn is a standard Gaussian random vector, and
Z ∈ (Rn)⊗3 is a symmetric random tensor with entries Zi

i.i.d.∼ N (0, 1) for triplets
i in the subset

I :=
{

(i1, i2, i3) ∈ {1, . . . , n} : i1 ≤ i2 ≤ i3

}
.

Before diving into the proof, we introduce some important quantities and
notations. We denote in(t, ε) the normalized mutual information between X and
(Y(t), Ỹ(t,ε)) given W, that is,

in(t, ε) :=
1

n
I(X; Y(t), Ỹ(t,ε)|W) =

1

n
I(S; Y(t), Ỹ(t,ε)|W) . (5.9)

The last equality holds because X is a deterministic function of S when W is
known. We denote dPS(s) :=

∏p
i=1 dPS(si) the prior distribution of S. The Bayes

posterior distribution of S given (Y(t), Ỹ(t,ε),W) reads

dP (s; Y(t), Ỹ(t,ε),W) :=
dPS(s) e−Ht,ε(s ;Y(t),Ỹ(t,ε),W)

Zt,ε(Y(t), Ỹ(t,ε),W)
, (5.10)

where

Zt,ε(Y(t), Ỹ(t,ε),W) :=

∫
dPS(s) e−Ht,ε(s ;Y(t),Ỹ(t,ε),W) (5.11)

is a normalization factor, and

Ht,ε(s; Y(t), Ỹ(t,ε),W) :=
∑

i∈I

(
λ(1− t)

2n2
x2
i1
x2
i2
x2
i3
−
√
λ(1− t)
n

Y
(t)
i xi1xi2xi3

)

+
n∑

j=1

(
λR(t, ε)

4
x2
j −

√
λR(t, ε)

2
Ỹ

(t,ε)
j xj

)
, (5.12)

with x1, . . . , xn the entries of x := ϕ(Ws/√p). This dependence on s must be
kept in mind each time we use the notation x. It is common to adopt the
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statistical mechanics interpretation and call (5.12) a Hamiltonian, (5.11) the
partition function, and (5.10) the Gibbs distribution.

To deal with future computations, it is useful to introduce the angular brackets
〈−〉t,ε that denote an expectation with respect to the posterior distribution (5.10),
that is,

〈g(s)〉t,ε :=

∫
g(s) dP (s; Y(t), Ỹ(t,ε),W) (5.13)

for a generic function g : Rp → R. Finally, we define the so-called average free
entropy

fn(t, ε) :=
1

n
E lnZt,ε(Y(t), Ỹ(t,ε),W) . (5.14)

This is equal to the mutual information in(t, ε) up to some additive term (see
formula (5.43) in Lemma 5.10 in Appendix 5.B). It is often easier to work directly
with fn(t, ε) instead of in(t, ε).

We now focus on the mutual information (5.9) at both extremes of the inter-
polation path. Letting t = 0 in (5.8), we see that the observation Y(0) is exactly
(5.1) while Ỹ(0,ε) =

√
λε
2

X + Z̃. The latter channel induces a perturbation of the
normalized mutual information associated with the former channel of the order of
ε (see Lemma 5.10 in Appendix 5.B for the proof), that is,

in(0, ε) :=
I(X; Y(0), Ỹ(0,ε)|W)

n
=
I(X; Y|W)

n
+O(ε) , (5.15)

where |O(ε)| ≤ Cε. At t = 1, the observation Y(1) is pure noise while the
normalized mutual information between S and Ỹ(1,ε) =

√
λR(1,ε)/2ϕ(WS/√p) + Z̃ is

given by a variational formula in the high-dimensional regime n/p→ α [29]. Let
S ∼ PS and U, V, Z, Z̃ ∼ N (0, 1) be independent scalar random variables. Define
the potential function ψ̃α : [0,+∞)2 × [0, ρs]:

ψ̃α(r, rs, qs) := IPS(rs) + αIϕ
(
r, qs; ρs)−

rs(ρs − qs)
2

. (5.16)

By [29, Corollary 1], we have

in(1, ε) =
I(X; Ỹ(1,ε)|W)

n
= On(1) +

1

α
inf

qs∈[0,ρs]
sup
rs≥0

ψ̃α

(
λR(1, ε)

2
, rs, qs

)
. (5.17)

Combining (5.15), (5.17), and the fundamental theorem of calculus in(0, ε) =

in(1, ε) −
∫ 1

0
i′n(t, ε)dt, where i′n(·, ε) is the derivative of in(·, ε), we obtain the

sum-rule of the adaptive interpolation.

Proposition 5.3 (Sum-rule). Suppose that (H1) and (H2) hold, and that R′(t, ε)
is uniformly bounded in (t, ε) ∈ [0, 1]× [0,+∞) where R′(·, ε) denotes the derivative
of R(·, ε) with respect to its first argument. Define the scalar overlap

Q :=
1

n

n∑

i=1

ϕ
([

Ws/√p
]
i

)
ϕ
([

WS/√p
]
i

)
=

1

n

n∑

i=1

xiXi .
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Then,

I(X; Y|W)

n
= O(ε) + On(1) +

1

α
inf

qs∈[0,ρs]
sup
rs≥0

ψ̃α

(
λR(1, ε)

2
, rs, qs

)

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − ρ3

x

)
dt− λ

4

∫ 1

0

R′(t, ε)
(
ρx − E 〈Q〉t,ε

)
dt , (5.18)

where On(1) and O(ε) are independent of ε and n, respectively.

Proof. See Lemma 5.11 in Appendix 5.B for the computation of the derivative
i′n(t, ε).

The sum rule of Proposition 5.3 is valid for the general class of differentiable
interpolating paths. By choosing two appropriate interpolation paths we can
prove matching upper and lower bounds on the asymptotic normalized mutual
information. This is discussed in the next two paragraphs.

5.4.2 Upper bound on the asymptotic normalized mutual
information

Proposition 5.4. Suppose that (H1) and (H2) hold. Then,

lim sup
n→+∞

I(X; Y|W)

n
≤ inf

qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α
(
qx, qs, rs

)
.

Proof. Fix ε > 0 and pick the linear interpolation path R(t, ε) = ε + tq2 where
q ∈ [0, ρx]. Then, the sum-rule (5.18) in Proposition 5.3 reads

I(X; Y|W)

n
= O(ε) + On(1) +

1

α
inf

qs∈[0,ρs]
sup
rs≥0

ψ̃α

(
λε

2
+
λq2

2
, rs, qs

)

+
λ

12
ρ3
x −

λ

4
q2ρx −

λ

12

∫ 1

0

(
E
[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
]
− 3q2 E〈Q〉t,ε

)
dt

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − E

[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
])
dt . (5.19)

In this last identity, we “artificially” added and subtracted the expectation
E
[∥∥ 〈x〉t,ε√

n

∥∥4〈Q〉t,ε
]
for reasons that will appear immediately. By the Nishimori

identity, we have

E
[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
]

= E
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
6

, E〈Q〉t,ε = E
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2

, (5.20)

and, by convexity of x 7→ x3 on [0,+∞), we have ∀a, b ≥ 0 : a3 − 3b2a ≥ −2b3.
Hence, the integrand of the last integral on the right-hand side of (5.19) satisfies

E
[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
]
− 3q2 E〈Q〉t,ε = E

[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
6

− 3q2

∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2]
≥ −2q3 . (5.21)
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Besides, by Lemma 5.9 in Appendix 5.A, r 7→ infqs∈[0,ρs] suprs≥0 ψ̃α(r, rs, qs) is
nondecreasing and (α‖ϕ‖2∞/2)-Lipschitz continuous on [0,+∞). Therefore,

inf
qs∈[0,ρs]

sup
rs≥0

ψ̃α

(
λε

2
+
λq2

2
, rs, qs

)
≤ λα‖ϕ‖2

∞
4

ε+ inf
qs∈[0,ρs]

sup
rs≥0

ψ̃α

(
λq2

2
, rs, qs

)
.

(5.22)
Making use of (5.21) and (5.22) to upper bound (5.19) yields

I(X; Y|W)

n
≤ O(ε) + On(1)

+ inf
qs∈[0,ρs]

sup
rs≥0

1

α
ψ̃α

(
λq2

2
, rs, qs

)
+

λ

12
ρ3
x −

λ

4
q2ρx +

λ

6
q3

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − E

[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
])
dt

= O(ε) + On(1) + inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α
(
q, qs, rs

)

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − E

[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
])
dt , (5.23)

where the last equality follows from the trivial identity

ψλ,α
(
q, qs, rs

)
=

1

α
ψ̃α

(
λq2

2
, rs, qs

)
+

λ

12
ρ3
x −

λ

4
q2ρx +

λ

6
q3 . (5.24)

It now remains to get rid of the integral on the right-hand side of (5.23). The
integrand satisfies
∣∣∣∣E 〈Q3〉t,ε − E

[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
]∣∣∣∣ =

∣∣∣∣E
〈
Q

(
Q+

∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)(

Q−
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)〉

t,ε

∣∣∣∣

≤ 2‖ϕ‖4
∞E
〈∣∣∣∣Q−

∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2∣∣∣∣
〉

t,ε

≤ 2‖ϕ‖4
∞

√
E
〈(

Q−
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)2〉

t,ε

. (5.25)

We see that if the overlap Q := xTX/n would concentrate on 〈x〉Tt,ε〈x〉t,ε/n then the
remaining integral in (5.23) would be negligible. However, such a concentration
property only holds when we average on a well-chosen set of perturbations ε. In
essence, the average over ε smoothens the phase transitions that might appear for
particular choices of ε when n goes to infinity. We now take ε ∈ [sn, 2sn] where
sn := n−η, η > 0, and average both sides of (5.23) over ε. We get

I(X; Y|W)

n
=

∫ 2sn

sn

I(X; Y|W)

n

dε

sn

≤ O(sn) + On(1) + inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α
(
q, qs, rs

)

− λ

12

∫ 1

0

dt

∫ 2sn

sn

(
E 〈Q3〉t,ε − E

[∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
4

〈Q〉t,ε
])

dε

sn
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≤ O(sn) + On(1) + inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(q, qs, rs)

+
λ‖ϕ‖4

∞
6

∫ 1

0

dt

∫ 2sn

sn

√
E
〈(

Q−
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)2〉

t,ε

dε

sn
. (5.26)

Let us focus on the integral over ε in the last term on the right-hand side of
(5.26). Let (Y(t), Ỹ(t,R)) be observations defined exactly as (Y(t), Ỹ(t,ε)) in (5.8)
except that the nonnegative real number R replaces R(t, ε). We denote by 〈−〉t,R
the expectation with respect to a sample s drawn from the posterior distribution
of S given (Y(t), Ỹ(t,R),W) (see (5.29) in Subsection 5.4.3). Since R(t, ·) is a
C1-diffeomorphism from [sn, 2sn] to its image R(t, [sn, 2sn]) = [sn + tq2, 2sn + tq2],
we make the change of variables ε→ R = R(t, ε) and obtain for all t ∈ [0, 1]:

∫ 2sn

sn

√
E
〈(

Q−
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)2〉

t,ε

dε

sn
≤
√∫ 2sn

sn

E
〈(

Q−
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)2〉

t,ε

dε

sn

=

√∫ 2sn+tq2

sn+tq2

E
〈(

Q−
∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2)2〉

t,R

dR

sn
,

(5.27)

where the first inequality is due to Cauchy-Schwarz inequality. By Proposition 5.14
in Appendix 5.C and the inequality (5.27), we get (remember that sn := n−η)

λ‖ϕ‖4
∞

6

∫ 2sn

sn

√
E
〈(

Q−
∥∥∥∥
〈x〉t,ε√
n

∥∥∥∥
2)2〉

t,ε

dε

sn
≤
√
λ‖ϕ‖4

∞
3

√
‖ϕ‖3

∞
sn

√
λsn
2n

=
λ

3
4‖ϕ‖11/2

∞
3 · 21/4

n
η−1

4 .

Therefore, if we pick η = 1/5, the remaining integral on the right-hand side of
(5.26) vanishes as O(n−1/5) = O(sn) and (5.26) simply reads

I(X; Y|W)

n
≤ O(sn) + On(1) + inf

qs∈[0,ρs]
sup
rs≥0

ψλ,α(q, qs, rs) .

Finally, passing to the limit superior on both sides of the latter inequality yields

lim sup
n→+∞

I(X; Y|W)

n
≤ inf

qs∈[0,ρs]
sup
rs≥0

ψλ,α(q, qs, rs) .

This inequality is true for all q ∈ [0, ρx] and Proposition 5.4 follows directly.

5.4.3 Matching lower bound on the asymptotic normalized
mutual information

We now prove a matching lower bound by considering a different choice for R(·, ε)
in the sum-rule (5.18). The interpolation path R(·, ε) is the solution to a first-order
ordinary differential equations (ODE). We first describe this ODE and then derive
the lower bound.
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An ordinary differential equation

Let S be a random vector with entries S1, . . . , Sp
i.i.d.∼ PS. For t ∈ [0, 1] and

R ∈ [0,+∞), consider the problem of estimating S from the observations




Y(t) :=

√
λ(1−t)
n

X⊗3 + Z

Ỹ(t,R) :=
√

λR
2

X + Z̃
; (5.28)

where X := ϕ(WS/√p), Z̃ ∈ Rn is a standard Gaussian random vector, and
Z ∈ (Rn)⊗3 is a symmetric noise tensor with entries Zi

i.i.d.∼ N (0, 1) for triplets
i ∈ I. The Bayes posterior distribution of S given (Y(t), Ỹ(t,R),W) is

dP (s; Y(t), Ỹ(t,R),W) :=
dPS(s) e−Ht,R(s;Y(t),Ỹ(t,R),W)

Zt,R(Y(t), Ỹ(t,R),W)
; (5.29)

where Zt,R(Y(t), Ỹ(t,R),W) :=
∫
dPS(s) e−Ht,R(s;Y(t),Ỹ(t,R),W) and

Ht,R(s; Y(t), Ỹ(t,R),W) :=
∑

i∈I

λ(1− t)
2n2

x2
i1
x2
i2
x2
i3
−
√
λ(1− t)
n

Y
(t)
i xi1xi2xi3

+
n∑

j=1

λR

4
x2
j −

√
λR

2
Ỹ

(t,R)
j xj . (5.30)

Again, (5.30) has the interpretation of a Hamiltonian and (5.29) of a Gibbs
distribution. The angular brackets 〈−〉t,R denote the expectation with respect to
the posterior (5.29). Finally, we define the following function used to formulate
the first-order ODE satisfied by the interpolation path,

G(t, R) := (E〈Q〉t,R)2 . (5.31)

Lemma 5.5. Assume ϕ : R→ R is continuous and bounded. For all ε ∈ [0,+∞),
there exists a unique global solution, denoted R(·, ε) : [0, 1] → [0,+∞), to the
initial value problem

R′ = G(t, R) , R(0) = ε . (5.32)

R(·, ε) is continuously differentiable with bounded derivative R′(·, ε) and, for any
δ > 0, R′([0, 1], ε) ⊆ [0, (ρx + δ)2] for n large enough independent of ε. Besides,
for all t ∈ [0, 1], R(t, ·) is a C1-diffeomorphism from [0,+∞) into its image whose
derivative w.r.t. ε is greater than or equal to one, i.e.,

∀ ε ∈ [0,+∞) :
∂R

∂ε

∣∣∣
t,ε
≥ 1 .

Remark. Lemma 5.5 guarantees a unique global solution Rn(t, ε) for each finite n.
Slightly abusively, we do not explicitly indicate the dependence on n and simply
write R(t, ε) for the solution.
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Proof. The function G : (t, R) ∈ [0, 1] × [0,+∞) 7→ G(t, R) is continuous in t
and uniformly Lipschitz continuous in R (meaning that the Lipschitz constant
is independent of t). The latter is readily checked by showing that the partial
derivative ∂G/∂R is uniformly bounded in (t, R); we have

∂G

∂R

∣∣∣∣
t,R

=
λE〈Q〉t,R

n

n∑

i,j=1

E[(〈xixj〉t,R − 〈xi〉t,R〈xj〉t,R)2] (5.33)

so ∂G/∂R|t,R ∈
[
0, 4λ‖ϕ‖6

∞n
]
. Therefore, by the Picard-Lindelöf theorem [104,

Theorem 1.1], for all ε ≥ 0 there exists a unique solution R(·, ε) : [0, γ]→ [0,+∞)
to the initial value problem (5.32). Here γ ∈ [0, 1] is such that [0, γ] is the
maximal interval of existence of the solution. By the Cauchy-Schwarz inequality
and Nishimori identity, we have

E〈Q〉t,R ≤
E〈‖x‖‖X‖〉t,R

n
≤ 1

n

√
E〈‖x‖2〉t,R E‖X‖2

=
E‖X‖2

n
= E

[
ϕ

(
W1,· S√

p

)2 ]
−−−−→
n→+∞

ρx ,

where in the last equality we denote by W1,· the first row of W. See [75, Lemma
3 of Supplementary material] for a proof of the latter limit. Besides, by the
Nishimori identity, E〈Q〉t,R = n−1E‖〈x〉t,R‖2 is nonnegative. Hence, for any δ > 0,
G has its image in [0, (ρx + δ)2] and R([0, γ], ε) ⊆ [ε, ε+ γ(ρx + δ)2] as long as n
is large enough. It implies that γ = 1 (the solution never leaves the domain of
definition of G).

Each initial condition ε ∈ [0,+∞) is tied to a unique solution R(·, ε). This
implies that the function ε 7→ R(t, ε) is injective. Its derivative is given by
Liouville’s formula [104]

∂R

∂ε

∣∣∣∣
t,ε

= exp

{∫ t

0

ds
∂G

∂R

∣∣∣∣
s,R(s,ε)

}

and is greater than, or equal to one, by nonnegativity of ∂G
∂R

(see formula (5.33)
above). The fact that this partial derivative is bounded away from 0 uniformly in
ε implies, by the inverse function theorem, that the injective function ε 7→ R(t, ε)
is a C1-diffeomorphism from [0,+∞) onto its image.

Derivation of the lower bound

Proposition 5.6. Suppose that (H1) and (H2) hold. Then,

lim inf
n→+∞

I(X; Y|W)

n
≥ inf

qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs) .

Proof. For all ε ∈ [0,+∞), the interpolation path is the unique solution R(·, ε)
to the initial value problem (5.32). Fix ν > 0. Let n be large enough so
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that ∀ε ∈ [0,+∞) : R′(·, ε) ⊆ [0, (ρx + ν)2]. The interpolation path satisfies
R′(t, ε) = (E〈Q〉t,ε)2 so the sum-rule of Proposition 5.3 reads

I(X; Y|W)

n
= O(ε) + On(1) +

1

α
inf

qs∈[0,ρs]
sup
rs≥0

ψ̃α

(
λε

2
+

∫ 1

0

λR′(t, ε)

2
dt, rs, qs

)

+

∫ 1

0

(
λ

12
ρ3
x +

λ

6
(E 〈Q〉t,ε)3 − λ

4
(E 〈Q〉t,ε)2ρx

)
dt

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − (E 〈Q〉t,ε)3

)
dt . (5.34)

By Lemma 5.9 in Appendix 5.A, the function r 7→ infqs∈[0,ρs] suprs≥0 ψ̃α(r, rs, qs)
is nondecreasing and concave. Therefore,

inf
qs∈[0,ρs]

sup
rs≥0

ψ̃α

(
λε

2
+

∫ 1

0

λR′(t, ε)

2
dt, rs, qs

)

≥
∫ 1

0

inf
qs∈[0,ρs]

sup
rs≥0

ψ̃α

(
λR′(t, ε)

2
, rs, qs

)
dt . (5.35)

Combining the identity (5.34) with (5.35) yields

I(X; Y|W)

n
≥ O(ε) + On(1) +

∫ 1

0

{
inf

qs∈[0,ρs]
sup
rs≥0

1

α
ψ̃α

(
λ(E〈Q〉t,ε)2

2
, rs, qs

)

+
λρ3

x

12
+
λ(E 〈Q〉t,ε)3

6
− λ(E 〈Q〉t,ε)2ρx

4

}
dt

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − (E 〈Q〉t,ε)3

)
dt

≥ O(ε) + On(1) + inf
qx∈[0,ρx+ν]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs)

− λ

12

∫ 1

0

(
E 〈Q3〉t,ε − (E 〈Q〉t,ε)3

)
dt . (5.36)

The second inequality follows from identity (5.24) and E〈Q〉t,ε ∈ [0, ρx + ν].
The result of the proposition will follow if we can get rid of the integral term

on the right-hand side of (5.36) This is achieved by proceeding exactly as in
the proof of the upper bound in Section 5.4.2, that is, we integrate (5.36) over
ε ∈ [sn, 2sn] where sn = n−η, η > 0. Then,

I(X; Y|W)

n
=

∫ 2sn

sn

I(X; Y|W)

n

dε

sn

≥ O(sn) + On(1) + inf
qx∈[0,ρx+ν]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs)

− λ

12

∫ 1

0

dt

∫ 2sn

sn

dε

sn

(
E 〈Q3〉t,ε − (E 〈Q〉t,ε)3

)

≥ O(sn) + On(1) + inf
qx∈[0,ρx+ν]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs)

− λ‖ϕ‖4
∞

6

∫ 1

0

dt

∫ 2sn

sn

dε

sn

√
E〈(Q−E 〈Q〉t,ε)2〉t,ε . (5.37)
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The last inequality is simply due to

E〈Q3〉t,ε − (E〈Q〉t,ε)3 = E〈Q(Q+ E〈Q〉t,ε)(Q− E〈Q〉t,ε)〉t,ε
≤ 2‖ϕ‖4

∞

√
E〈(Q− E〈Q〉t,ε)2〉t,ε .

We can bound the remaining integral on the right-hand side of (5.37) in a way
similar to (5.27),

∫ 2sn

sn

√
E〈(Q− E〈Q〉t,ε)2〉t,ε

dε

sn
≤
√∫ 2sn

sn

E〈(Q− E〈Q〉t,ε)2〉t,ε
dε

sn
,

≤
√∫ 2(sn+ρ2

x)

sn

E〈(Q− E〈Q〉t,R)2〉t,R
dR

sn
.

To obtain the second inequality, we make the change of variables ε→ R = R(t, ε)
(by Lemma 5.5, R(t, ·) is a C1-diffeomorphism from [0,+∞) onto its image) and
subsequently use ∂R(t,ε)/∂ε ≥ 1, R(t, [sn, 2sn]) ⊆ [sn, 2(sn + ρ2

x)] for n large enough
(again by Lemma 5.5). For n large enough, we apply Proposition 5.12 in Appendix
5.C with M = 2(1 + ρ2

x), a = sn, b = 2(sn + ρ2
x) and δ = snn

2η−1
3 in order to

further bound the right-hand side of the last inequality and obtain
∣∣∣∣
λ‖ϕ‖4

∞
6

∫ 2sn

sn

√
E 〈(Q− E 〈Q〉t,ε)2〉t,ε

dε

sn

∣∣∣∣ ≤ Cn
5η−1

6 ,

where C is a positive constant that does not depend on t and n. Thus, the
remaining term on the right-hand side of (5.37) vanishes when n goes to infinity
as long as η < 1/5. Passing to the limit inferior on both sides of the inequality
(5.37) yields

lim inf
n→+∞

I(X; Y|W)

n
≥ inf

qx∈[0,ρx+ν]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs) .

This is true for all ν > 0 and Proposition 5.6 follows directly.

5.5 Derivation of the asymptotic Tensor-MMSE

The derivation of the asymptotic Tensor-MMSE rests on the following preliminary
proposition.

Proposition 5.7. Suppose that (H1) and (H2) hold. Define for all λ ∈ (0,+∞):

h(λ) := inf
qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs) ;

Q∗x(λ) :=

{
q∗x ∈ [0, ρx] : inf

qs∈[0,ρs]
sup
rs≥0

ψλ,α(q∗x, qs, rs) = h(λ)

}
.
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For every λ > 0, Q∗x(λ) is nonempty. The function h is differentiable at λ if, and
only if, the set Q∗x(λ) is a singleton. In this case, letting Q∗x(λ) = {q∗x(λ)}, the
derivative of h at λ satisfies

h′(λ) =
1

12

(
ρ3
x −

(
q∗x(λ)

)3
)
. (5.38)

We give the proof of this result in Appendix 5.E. We now prove Theorem 5.2.

Proof of Theorem 5.2. Let n ∈ N∗. The angular brackets 〈−〉n,λ denote the
expectation with respect to the posterior distribution of S given (Y,W). Define
hn : λ ∈ (0,+∞) 7→ I(X,Y|W)

n
(the mutual information depends on λ through the

observation Y). We have for all λ ∈ (0,+∞):

hn(λ) =
λ

2n3

∑

i∈I
E[X2

i1
X2
i2
X2
i3

]

− 1

n
E ln

∫
dPS(s)e

∑
i∈I xi1xi2xi3

(
− λ

2n2 xi1xi2xi3+ λ
n2 Xi1Xi2Xi3+

√
λ
n
Zi

)
,

h′n(λ) =
1

2n3

∑

i∈I
E[(X2

i1
X2
i2
Xi3 − 〈xi1xi2xi3〉n,λ)2]

=
MMSEn(X⊗3|Y,W)

12
+O(n−1) ,

h′′n(λ) = − 1

2n5

∑

(i,i′)∈I2

E[(〈xi1xi2xi3xi′1xi′2xi′3〉n,λ − 〈xi1xi2xi3〉n,λ〈xi′1xi′2xi′3〉n,λ)
2] .

The differentiations under the integral sign that yield the first and second deriva-
tives of hn are justified by the domination properties implied by (H1), (H2). The
second derivative h′′n is nonpositive so hn is concave on (0,+∞). By Theorem 5.1,
the sequence of continuously differentiable concave functions (hn)n∈N∗ converges
pointwise on (0,+∞) to

h : λ 7→ inf
qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

ψλ,α(qx, qs, rs) .

Hence, h is concave and thus differentiable on (0,+∞) minus a countable set. By
Griffiths’ lemma [52, Appendix A], for every λ where h is differentiable, we have

lim
n→+∞

h′n(λ) = h′(λ) =
ρ3
x − (q∗x(λ))3

12
, (5.39)

where the last equality is due to Proposition 5.7 and q∗x(λ) is the unique element
of Q∗x(λ). Combining the I-MMSE relationship h′n(λ) = MMSEn(X⊗3|Y,W)

12
+O(n−1)

with (5.39) yields the theorem.

5.6 Limit of vanishing α

In this section, we give a non-rigorous derivation of the limit of the asymptotic
normalized mutual information when α goes to 0.



5.6. Limit of vanishing α 137

Let λ > 0 be fixed. We define the function

Ψ∗ : α 7→ inf
qx∈[0,ρx]

inf
qs∈[0,ρs]

sup
rs≥0

Ψ(qx, qs, rs, α) ,

where Ψ(qx, qs, rs, α) := αψλ,α(qx, qs, rs) and ψλ,α is defined in (5.3). The function
Ψ∗ is concave on [0,+∞), thus continuous on [0,+∞) and differentiable almost
everywhere on (0,+∞). Note that

∂Ψ

∂α

∣∣∣∣
(qx,qs,rs,α)

= Iϕ

(
λq2

x

2
, qs; ρs

)
+

λ

12
(ρx − qx)2(ρx + 2qx) .

Assuming that we can apply an envelope theorem [68, Corollary 4] as in Ap-
pendix 5.E, it comes

Ψ′∗(α) = Iϕ

(
λq∗x(α)2

2
, q∗s(α); ρs

)
+

λ

12
(ρx − q∗x(α))2(ρx + 2q∗x(α)) ,

whenever (q∗x(α), q∗s(α), r∗s(α)) is the unique triplet satisfying

Ψ∗(α) = Ψ(q∗x(α), q∗s(α), r∗s(α), α) .

At α = 0, Ψ(qx, qs, rs, α) = IPS(rs)− rs(ρs−qs)
2

so Ψ∗(0) = Ψ(qx, q
∗
s(0), r∗s(0), α) = 0,

where q∗s(0) = m2
S with mS := ES∼PS [S] and r∗s(0) = 0. By Theorem 5.1,

lim
n→+∞
n/p→α

I(X; Y|W)

n
=

Ψ∗(α)

α
.

Using L’Hôpital’s rule, it follows that

lim
α→0+

lim
n→+∞
n/p→α

I(X; Y|W)

n
= lim

α→0+
Ψ′∗(α) , (5.40)

provided that the limit on the right-hand side exists. Let us assume that
limα→0+(q∗s(α), r∗s(α)) = (q∗s(0), r∗s(0)) = (m2

S, 0). On one hand, we have

lim
α→0+

ψλ,α
(
q∗x(α), q∗s(α), r∗s(α)

)
= lim

α→0+
ψλ,α(q∗x(α),m2

S, 0)

= lim
α→0+

Iϕ

(
λq∗x(α)2

2
,m2

S; ρs

)
+

λ

12
(ρx − q∗x(α))2(ρx + 2q∗x(α)) = lim

α→0+
Ψ′∗(α) .

On the other hand,

lim
α→0+

ψλ,α
(
q∗x(α), q∗s(α), r∗s(α)

)
= lim

α→0+
inf

qx∈[0,ρx]
ψλ,α(qx, q

∗
s(α), r∗s(α))

= inf
qx∈[0,ρx]

ψλ,α(qx,m
2
S, 0) = inf

qx∈[0,ρx]
Iϕ

(
λq2

x

2
,m2

S; ρs

)
+

λ

12
(ρx − qx)2(ρx + 2qx) .

Combining both chains of equalities together with (5.40) gives

lim
α→0+

lim
n→+∞
n/p→α

I(X; Y|W)

n
= inf

qx∈[0,ρx]
Iϕ

(
λq2

x

2
,m2

S; ρs

)
+

λ

12
(ρx − qx)2(ρx + 2qx) .

(5.41)
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Thus, we conjecture that the asymptotic normalized multual information converges
when α→ 0+ to the asymptotic normalized mutual information associated with
the channel

Ỹijk :=

√
λ

n
X̃iX̃jX̃k + Z̃ijk , 1 ≤ i ≤ j ≤ k ≤ n ,

where X̃i := ϕ(
√
ρs −m2

S Ui + |mS|Vi) with U1, . . . , Un, V1, . . . , Vn
i.i.d.∼ N (0, 1)

and V is known. Proofs in the literature can be easily adapted to show that
limn→+∞

I(X̃;Ỹ|V)
n

is equal to the right-hand side of (5.41).



Appendices

5.A Auxiliary lemmas

Lemma 5.8. Let PS be a probability distribution on R with finite second moment.
Let S ∼ PS and Z ∼ N (0, 1) be independent random variables. Define the
functions

IPS :
[0,+∞) −→ [0,+∞)
rs 7−→ I(S;

√
rs S + Z)

,

and

I∗PS :
R −→ [0,+∞]
x 7−→ suprs≥0 IPS(rs) + xrs

.

Then, IPS is twice-differentiable, nondecreasing, concave and ES2

2
-Lipschitz contin-

uous. Besides, I∗PS is nondecreasing, convex, finite on (−∞, 0), equal to +∞ on
(0,+∞) and

I∗PS(0) = lim
rs→+∞

IPS(rs) ∈ [0,+∞] .

Proof. The properties of IPS correspond to Lemma 2.3 that we state and prove in
Chapter 2.

If VarS = 0 then IPS is zero on its whole domain of definition so I∗PS(x) = 0 if
x ≤ 0, = +∞ otherwise. The properties of I∗PS stated in the lemma directly follow.
Suppose that VarS > 0. The function I∗PS is the Legendre transform of the convex
function −IPS , hence it is well-defined and convex. Besides, I∗PS is defined as the
supremum of nondecreasing affine functions of x so it is nondecreasing. The trivial
lower bound I∗PS(x) ≥ suprs≥0 xrs shows that I∗PS is nonnegative and is equal to
+∞ on (0,+∞). For all rs ≥ 0, IPS(rs) = h(

√
rs S + Z) − h(Z) ≤ ln(1+rsVarS)/2

where h(·) denotes the differential entropy. Hence, for all x ∈ (−∞, 0):

0 ≤ I∗PS(x) ≤ sup
rs≥0

ln(1 + rsVarS)

2
+ xrs =

1

2
ln

(
VarS

2e|x|

)
+
|x|

VarS
< +∞ .

Finally, I∗PS(0) := suprs≥0 IPS(rs) = limrs→+∞ IPS(rs).

Lemma 5.9. Assume that ϕ : R → R is a bounded continuous function. Let
U , V and Z be independent standard Gaussian random variables. For every
(r, ρ) ∈ [0,+∞)2 and q ∈ [0, ρ], define

Iϕ(r, q; ρ) := I
(
U ;
√
rϕ(
√
ρ− q U +

√
q V ) + Z

∣∣V
)
.

139
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Let ρ ∈ [0,+∞) be fixed. Then, Iϕ( · , · ; ρ) is continuous on [0,+∞) × [0, ρ].
Besides, for all q ∈ [0, ρ], Iϕ( · , q ; ρ) is twice-differentiable, nondecreasing, concave
and ‖ϕ‖

2
∞

2
-Lipschitz continuous on [0,+∞).

Let PS be a probability distribution on R and IPS the function defined in
Lemma 5.8. For fixed α, ρ ≥ 0, define

ψ̃α :
[0,+∞)2 × [0, ρ] −→ [0,+∞)

(r, rs, q) 7−→ IPS(rs) + αIϕ(r, q; ρ)− rs(ρ−q)
2

.

Then, the functions r 7→ suprs≥0 ψ̃α(r, rs, q) and r 7→ infq∈[0,ρ] suprs≥0 ψ̃α(r, rs, q)

are both nondecreasing, concave and α‖ϕ‖2∞
2

-Lipschitz on [0,+∞).

Proof. Let U, V, Z i.i.d.∼ N (0, 1). Fix ρ ≥ 0. For (r, q) ∈ [0,+∞) × [0, ρ], define
Y (r,q) :=

√
rϕ(
√
ρ− q U +

√
q V ) + Z. Then,

Iϕ(r, q; ρ) = I(U ;Y (r,q)|V ) = −E ln

∫
du√
2π

e−
u2

2
−H(r,q;U,V,Z) , (5.42)

where
H(r, q;U, V, Z) :=

r

2
(ϕ(
√
ρ− q U +

√
q V )− ϕ(

√
ρ− q u+

√
q V ))2

+
√
r(ϕ(
√
ρ− q U +

√
q V )− ϕ(

√
ρ− q u+

√
q V ))Z

We denote by 〈−〉r,q the expectation with respect to the posterior distribution of
U given (Y (r,q), V ). The assumptions on ϕ imply domination assumptions that
justify the continuity of Iϕ( · , · ; ρ) and the twice differentiability of r 7→ Iϕ(r, q; ρ).
Differentiating w.r.t. r the right-hand side of (5.42) yields

∂Iϕ
∂r

(r, q; ρ) =
1

2
E
〈
(ϕ(
√
ρ− q U +

√
qV )− ϕ(

√
ρ− q u+

√
qV ))2

〉
r,q

− 1

2
√
r
E
[〈
ϕ(
√
ρ− q u+

√
qV )

〉
r,q
Z
]

=
1

2
E
[
ϕ2(
√
ρ− q U +

√
qV )−

〈
ϕ(
√
ρ− q u+

√
qV ))

〉2

r,q

]
,

where the last equality is obtained thanks to a Gaussian integration by parts w.r.t.
Z and the Nishimori identity

E
[
ϕ(
√
ρ− q U +

√
q V )

〈
ϕ(
√
ρ− q u+

√
qV )

〉
r,q

]
= E

〈
ϕ(
√
ρ− q u+

√
q V )

〉2

r,q
.

By Jensen’s inequality and the Nishimori identity, we have

E
〈
ϕ(
√
ρ− q u+

√
q V )

〉2

r,q
≤ E

〈
ϕ2(
√
ρ− q u+

√
q V )

〉
r,q

= Eϕ2(
√
ρ− q U+

√
q V ) ,

hence

∂Iϕ
∂r

(r, q; ρ) =
1

2
E
[
ϕ2(
√
ρ− q U +

√
qV )−

〈
ϕ(
√
ρ− q u+

√
qV ))

〉2

r,q

]
≥ 0 .
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It follows from the nonnegativity of the first-order partial derivative that Iϕ(·, q; ρ)
is nondecreasing. Further differentiating, and using integration by parts w.r.t. Z
and the Nishimori identity where necessary, we obtain

∂2Iϕ
∂r2

(r, q; ρ) = −1

2
E
〈(
ϕ(
√
ρ− q u+

√
q V )− 〈ϕ(

√
ρ− q u+

√
q V )〉r,q

)2 〉2

r,q
.

Thus, the first-order partial derivative is nonpositive and Iϕ(·, q; ρ) is concave.
The Lipschitzness follows simply from

0 ≤ ∂Iϕ
∂r

(r, q; ρ) ≤ 1

2
E
[
ϕ2(
√
ρ− q U +

√
qV )

]
≤ ‖ϕ‖

2
∞

2
.

The properties of r 7→ suprs≥0 ψ̃α(r, rs, q) follow directly from the ones of Iϕ(·, q; ρ)
as

sup
rs≥0

ψ̃α(r, rs, q) = αIϕ(r, q; ρ) + sup
rs≥0

IPS(rs)−
rs(ρ− q)

2
.

Finally, r 7→ infq∈[0,ρ] suprs≥0 ψ̃α(r, rs, q) is the infimum of nondecreasing, concave,
α‖ϕ‖2∞/2-Lipschitz functions, hence its properties.

5.B Establishing the sum-rule

Lemma 5.10 (Link between average free entropy and normalized mutual infor-
mation). Suppose that (H1) and (H2) hold, and that R′(t, ε) is uniformly bounded
in (t, ε) ∈ [0, 1]× [0,+∞) where R′(·, ε) denotes the derivative of R(·, ε). The
normalized mutual information (5.9) and its partial derivative with respect to t,
which we denote i′n(t, ε), satisfy

in(t, ε) = −fn(t, ε) +
λR(t, ε)

4
ρx +

λ(1− t)
12

ρ3
x + (1− t) On(1) , (5.43)

i′n(t, ε) = −f ′n(t, ε) +
λR′(t, ε)

4
ρx −

λ

12
ρ3
x + On(1) . (5.44)

The quantity On(1) does not depend on (t, ε) and vanishes when n goes to infinity.
Besides, at t = 0, for all ε ∈ [0,+∞):

∣∣∣∣in(0, ε)− I(X; Y|W)

n

∣∣∣∣ ≤
λ‖ϕ‖2

∞
2

ε . (5.45)
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Proof. By definition of the normalized mutual information (5.9), we have

in(t, ε) =
1

n
H
(
Y(t), Ỹ(t,ε)

∣∣W
)
− 1

n
H
(
Y(t), Ỹ(t,ε)

∣∣S,W
)

= − 1

n
E ln

(
Zt,ε(Y(t), Ỹ(t,ε),W)e−

∑
i∈I Y

2
i +‖Ỹ‖2

2

)
+

1

n
E
[

ln e−
∑

i∈I Z
2
i +‖Z̃‖2

2

]

= −fn(t, ε) +
λR(t, ε)

4n

n∑

j=1

E[X2
j ] +

λ(1− t)
2n3

∑

i∈I
E[X2

i1
X2
i2
X2
i3

]

= −fn(t, ε) +
λR(t, ε)

4
E[X2

1 ]

+
λ(1− t)

2n3

((
n

3

)
E[X2

1X
2
2X

2
3 ] + n(n− 1)E[X2

1X
4
2 ] + nE[X6

1 ]

)

= −fn(t, ε) +
λR(t, ε)

4
E[X2

1 ] +
λ(1− t)

12
E[X2

1X
2
2X

2
3 ] + λ(1− t)O(n−1) .

(5.46)

The quantity O(n−1) appearing in the last equality does not depend on (t, ε, λ)
and is such that

∣∣O(n−1)
∣∣ ≤ C/n with C := ‖ϕ‖6

∞/2. It directly follows that

i′n(t, ε) = −f ′n(t, ε) +
λR′(t, ε)

4
E[X2

1 ]− λ

12
E[X2

1X
2
2X

2
3 ]− λO

(
n−1
)

; (5.47)

where the quantity O(n−1) on the right-hand side of (5.47) is the same as the one
appearing on the right-hand side of (5.46). Note that E[X2

1X
2
2X

2
3 ] = E[E[X2

1 |S]3]
converges to ρ3

x as n goes to infinity (the proof of this limit is similar to [75,
Lemma 3 of Supplementary material]). This limit together with (5.46) and (5.47)
yields (5.43) and (5.44).

At t = 0, we can use (5.46) to obtain (remember that R(0, ε) = ε)

|in(0, ε)− in(0, 0)| ≤ |fn(0, ε)− fn(0, 0)|+ λε

4
E[X2

1 ] . (5.48)

It is clear that in(0, 0) = I(X;Y|W)/n where Y,X are defined in (5.1), (5.2). At
t = 0, the average free entropy (5.14) reads

fn(0, ε) :=
1

n
E ln

∫
dPS(s) e−H0,ε(s ;Z,Z̃,X,W) , (5.49)

where (remember that x1, . . . , xn are the entries of x := ϕ(Ws/√p))

H0,ε(s ; Z, Z̃,X,W) :=
∑

i∈I

λ

2n2
x2
i1
x2
i2
x2
i3
− λ

n2
Xi1Xi2Xi3xi1xi2xi3−

√
λ

n
Zixi1xi2xi3

+
n∑

j=1

λε

4
x2
j −

λε

2
Xjxj −

√
λε

2
Z̃jxj . (5.50)

Differentiating (5.49) under the integral sign yields

∂fn
∂ε

∣∣∣∣
0,ε

= −E
〈
∂H0,ε

∂ε

〉

0,ε

= −E 〈L〉0,ε ,
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where

L :=
1

n

n∑

j=1

λ

4
x2
j −

λ

2
Xjxj −

1

2

√
λ

2ε
Z̃jxj .

By a Gaussian integration by parts we show in Lemma 5.13 of Appendix 5.C that

E 〈L〉0,ε = −λ
4
E 〈Q〉0,ε ,

where Q := xTX/n is the overlap. Therefore,
∣∣∂fn/∂ε|0,ε

∣∣ ≤ λ‖ϕ‖2∞/4. By the mean
value theorem, it follows that |fn(0, ε)− fn(0, 0)| ≤ λ‖ϕ‖2∞ε/4. Making use of this
upper bound in (5.48) yields (5.45).

Lemma 5.11 (Derivative of the normalized mutual information). Suppose that
(H1) and (H2) hold, and that R′(t, ε) is uniformly bounded in (t, ε) ∈ [0, 1]×[0,+∞)
where R′(·, ε) denotes the derivative of R(·, ε). Define the overlap

Q :=
1

n

n∑

i=1

ϕ

([
Ws√
p

]

i

)
ϕ

([
WS√
p

]

i

)
=

1

n

n∑

i=1

xiXi .

We denote by i′n(·, ε) the derivative of the normalized mutual information in(·, ε)
defined in (5.9), and ∀(t, ε) ∈ [0, 1]× (0,+∞):

i′n(t, ε) =
λ

12

(
E 〈Q3〉t,ε − ρ3

x

)
+
λR′(t, ε)

4

(
ρx − E 〈Q〉t,ε

)
+ On(1) , (5.51)

where On(1) vanishes uniformly in (t, ε) as n goes to infinity.

Proof. The average interpolating free entropy satisfies

fn(t, ε) =
1

n
ES,W

[ ∫
dydỹ

e−
1
2

(
∑

i∈I y
2
i+‖ỹ‖2)

√
2π

n+|I| e−Ht,ε(s ;Y(t),Ỹ(t,ε),W) lnZt,ε
(
y, ỹ,W

)]
.

Differentiating the right-hand side of this identity under the integral sign yields

f ′n(t, ε) = − 1

n
E
[
H′t,ε

(
S; Y(t), Ỹ(t,ε),W

)
lnZt,ε

(
Y(t), Ỹ(t,ε),W

)]

− 1

n
E
[〈
H′t,ε

(
s; Y(t), Ỹ(t,ε),W

)〉
t,ε

]
, (5.52)

where

H′t,ε(s; y, ỹ,W) :=
∑

i∈I
− λ

2n2
x2
i1
x2
i2
x2
i3

+
1

2n

√
λ

1− t yixi1xi2xi3

+
n∑

j=1

λR′(t, ε)

4
x2
i −

R′(t, ε)

2

√
λ

2R(t, ε)
ỹjxj . (5.53)
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Equation (5.53) comes from differentiating with respect to t the interpolating
Hamiltonian (5.12). Evaluating (5.53) at (s,y, ỹ) = (S,Y(t), Ỹ(t,ε)) gives

H′t,ε
(
S; Y(t), Ỹ(t,ε),W

)

=
∑

i∈I

1

2n

√
λ

1− t ZiXi1Xi2Xi3 −
n∑

j=1

R′(t, ε)

2

√
λ

2R(t, ε)
Z̃jXj . (5.54)

The second expectation on the right-hand side of (5.52) is easily shown to be zero
thanks to the Nishimori identity,

E
〈
H′t,ε

(
s; Y(t), Ỹ(t,ε),W

)〉
t,ε

= EH′t,ε
(
S; Y(t), Ỹ(t,ε),W

)
= 0 .

Therefore, the identity (5.52) simplifies to

f ′n(t, ε) = − 1

2n2

√
λ

1− t
∑

i∈I
E[ZiXi1Xi2Xi3 lnZt,ε

(
Y(t), Ỹ(t,ε),W

)
]

+
R′(t, ε)

2n

√
λ

2R(t, ε)

n∑

j=1

E[Z̃jXj lnZt,ε
(
Y(t), Ỹ(t,ε),W

)
] . (5.55)

The two expectations appearing on the right-hand side of (5.55) are now simplified
by a Gaussian integration by parts w.r.t. Zi and Z̃j (see Lemma 2.2),

E[ZiXi1Xi2Xi3 lnZt,ε
(
Y(t), Ỹ(t,ε),W

)
] =

√
λ(1− t)
n

E 〈xi1Xi1xi2Xi2xi3Xi3〉t,ε ;

E[Z̃jXj lnZt,ε
(
Y(t), Ỹ(t,ε),W

)
] =

√
λR(t, ε)

2
E 〈xjXj〉t,ε .

Hence, we have

f ′n(t, ε) = − λ

2n3

∑

i∈I
E 〈xi1Xi1xi2Xi2xi3Xi3〉t,ε +

λR′(t, ε)

4n

n∑

j=1

E 〈xjXj〉t,ε

= − λ

12
E 〈Q3〉t,ε +

λR′(t, ε)

4
E 〈Q〉t,ε +

λ

2
O(n−1) ,

where

|O(n−1)| = 1

n3

∣∣∣
∑

i∈I
E〈xi1Xi1xi2Xi2xi3Xi3〉t,ε −

1

6

n∑

i1,i2,i3=1

E〈xi1Xi1xi2Xi2xi3Xi3〉t,ε
∣∣∣

≤ ‖ϕ‖
6
∞

n
.
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5.C Concentration of the overlap

One important result in order to prove Propositions 5.4 and 5.6 is the concentration
of the overlap Q := xTX/n around its expectation E〈Q〉t,R as long as we integrate
over R in a bounded subset of (0,+∞). Remember that the angular brackets
〈−〉t,R denote the expectation with respect to the posterior distribution (5.29).

Proposition 5.12 (Concentration of the overlap around its expectation). Suppose
that (H1) and (H2) hold. Let M be a positive real number. For n large enough,
there exists a constant C that depends only on ‖ϕ‖∞, ‖ϕ′‖∞, ‖ϕ′′‖∞, MS, λ, M ,
and such that ∀b ∈ (0,M), ∀a ∈ (0,min{1, b}), ∀δ ∈ (0, a), ∀t ∈ [0, 1]:

∫ b

a

E
〈(
Q− E 〈Q〉t,R

)2 〉
t,R
dR ≤ C

(
1

δ2n
− ln(a)

n
+

δ

a− δ

)
.

The concentration of the scalar overlap around its expectation follows from
the concentration of the quantity

L :=
1

n

n∑

j=1

λ

4
x2
j −

λ

2
xjXj −

1

2

√
λ

2R
xjZ̃j . (5.56)

Lemma 5.13 (Link between the fluctuations of L and Q). Assume that the
function ϕ : R→ R is continuous and bounded. For all (t, R) ∈ [0, 1]× (0,+∞):

E〈L〉t,R = −λ
4
E〈Q〉t,R ; (5.57)

λ

4
E〈(Q− 〈Q〉t,R)2〉t,R ≤

‖ϕ‖2
∞√

2

√
E
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

n
E
〈
∂L
∂R

〉

t,R

; (5.58)

λ2

16
E〈(Q− E〈Q〉t,R)2〉t,R ≤ E〈(L − E 〈L〉t,R)2〉t,R . (5.59)

Proof. Fix (t, R) ∈ [0, 1]× (0,+∞). By the definition (5.56) of L, we have

E〈L〉t,R =
1

n

n∑

j=1

λ

4
E〈x2

j〉t,R −
λ

2
E
[
〈xj〉t,RXj

]
− 1

2

√
λ

2R
E
[
〈xj〉t,RZ̃j

]
; (5.60)

E〈QL〉t,R =
1

n

n∑

j=1

λ

4
E〈Qx2

j〉t,R −
λ

2
E
[
〈Qxj〉t,RXj

]
− 1

2

√
λ

2R
E
[
〈Qxj〉t,RZ̃j

]
.

(5.61)

After integrating by parts with respect to the standard Gaussian random variable
Z̃j, the last expectation on the right-hand side of each of (5.60) and (5.61) reads

E
[
〈xj〉t,RZ̃j

]
=

√
λR

2
E
[
〈x2

j〉t,R
]
−
√
λR

2
E
[
〈xj〉2t,R

]
; (5.62)

E
[
〈Qxj〉t,RZ̃j

]
=

√
λR

2
E
[
〈Qx2

j〉t,R
]
−
√
λR

2
E
[
〈Qxj〉t,R〈xj〉t,R

]
. (5.63)
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Plugging (5.62) in (5.60) yields

E〈L〉t,R =
λ

2n

n∑

j=1

1

2
E
[
〈xj〉2t,R

]
− E

[
〈xj〉t,RXj

]

= − λ

4n

n∑

j=1

E
[
〈xj〉t,RXj

]

n
= −λ

4
E 〈Q〉t,R ,

where the second equality is due to the Nishimori identity E[〈xj〉2t,R] = E[〈xj〉t,RXj].
This ends the proof of (5.57). Plugging (5.63) in (5.61), it comes

E 〈QL〉t,R =
λ

2n

nv∑

j=1

1

2
E
[
〈Qxj〉t,R〈xj〉t,R

]
− E

[
〈Qxj〉t,RXj

]

=
λ

2n

nv∑

j=1

1

2
E
[
〈Q〉t,R〈xjXj〉t,R

]
− E

[
〈Qxj〉t,RXj

]

=
λ

2

(
1

2
E
[
〈Q〉2t,R

]
− E

[
〈Q2〉t,R

])
, (5.64)

where the second equality again follows again from the Nishimori identity. We
now combine (5.64) and (5.57) to obtain

E
〈
(Q− E〈Q〉t,R)(L − E〈L〉t,R)

〉
t,R

= E 〈QL〉t,R − E 〈Q〉t,RE 〈L〉t,R

=
λ

4

(
E
[
〈Q〉2t,R

]
− 2E

[
〈Q2〉t,R

]
+ (E 〈Q〉t,R)2

)

= −λ
4

(
E
〈
(Q− 〈Q〉t,R)2

〉
t,R

+ E〈(Q− E 〈Q〉t,R)2〉t,R
)
.

From this last identity, it follows that
λ

4
E
〈
(Q− E 〈Q〉t,R)2

〉
t,R
≤ −E 〈(Q− E 〈Q〉t,R)(L − E 〈L〉t,R)〉t,R

≤
√

E 〈(Q− E 〈Q〉t,R)2〉t,R E 〈(L − E 〈L〉t,R)2〉t,R ,
where the second inequality is due to Cauchy-Schwarz inequality. This upperbound
directly implies (5.59).

The proof of the inequality (5.58) is more involved. We have the two useful
identities (just replace Q by its definition)

E 〈(Q− 〈Q〉t,R)2〉t,R =
1

n2

n∑

i,j=1

E
[
XiXj(〈xixj〉t,R − 〈xi〉t,R〈xj〉t,R)

]
(5.65)

E
[(
〈Q〉t,R −

∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2)2 ]

=
1

n2

n∑

i,j=1

E
[
XiXj〈xi〉t,R〈xj〉t,R

]

− 2E
[
Xi〈xi〉t,R〈xj〉2t,R

]
+ E

[
〈xi〉2t,R〈xj〉2t,R

]

=
1

n2

n∑

i,j=1

E
[
XiXj〈xi〉t,R〈xj〉t,R

]
− E

[
〈xi〉2t,R〈xj〉2t,R

]
.

(5.66)
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Differentiating with respect to R on both sides of (5.57), and then dividing by
−n, yields

E
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

n
E
〈
∂L
∂R

〉

t,R

= −λ
4

(
E
〈
QL〉t,R − E〈Q〉t,R〈L〉t,R

)
. (5.67)

Let us simplify the right-hand side of (5.67). By definition, we have

E 〈Q〉t,R〈L〉t,R =
1

n

n∑

j=1

λ

4
E
[
〈Q〉t,R〈x2

j〉t,R
]
− λ

2
E
[
〈Q〉t,R〈xj〉t,RXj

]

− 1

2

√
λ

2R
E
[
〈Q〉t,R〈xj〉t,RZ̃j

]
. (5.68)

After a Gaussian integration by parts with respect to Z̃j , the third expectation in
the summand of (5.68) reads

E
[
〈Q〉t,R〈xj〉t,RZ̃j

]
=

√
λR

2
E
[
〈Qxj〉t,R〈xj〉t,R

]
+

√
λR

2
E
[
〈Q〉t,R〈x2

j〉t,R
]

− 2

√
λR

2
E
[
〈Q〉t,R〈xj〉2t,R

]

=

√
λR

2
E
[
〈Q〉t,R〈xjXj〉t,R

]
+

√
λR

2
E
[
〈Q〉t,R〈x2

j〉t,R
]

− 2

√
λR

2
E
[
〈Q〉t,R〈xj〉2t,R

]
.

Plugging this result back in (5.68) gives

E〈Q〉t,R〈L〉t,R =
λ

2n

n∑

j=1

E
[
〈Q〉t,R〈xj〉2t,R

]
− 3

2
E
[
〈Q〉t,R〈xjXj〉t,R

]

=
λ

2
E
[
〈Q〉t,R

∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2]
− 3λ

4
E
[
〈Q〉2t,R

]
. (5.69)

Finally, combining (5.64) and (5.69) yields the following expression for the right-
hand side of (5.67),

− λ

4

(
E
〈
QL〉t,R − E 〈Q〉t,R〈L〉t,R

)

=
λ2

8

(
E
[
〈Q2〉t,R

]
− E

[
〈Q〉2t,R

]
+ E

[
〈Q〉t,R

∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2 ]
− E

[
〈Q〉2t,R

])

=
λ2

8

(
E
[
〈(Q− 〈Q〉t,R)2〉t,R

]
− E

[(
〈Q〉t,R −

∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2)2 ])

=
λ2

8n2

n∑

i,j=1

E
[
XiXj〈xixj〉t,R

]
− 2E

[
XiXj〈xi〉t,R〈xj〉t,R

]
+ E

[
〈xi〉2t,R〈xj〉2t,R

]

=
λ2

8n2

n∑

i,j=1

E
[(
〈xixj〉t,R − 〈xi〉t,R〈xj〉t,R

)2]
. (5.70)
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The second-to-last equality follows from (5.65) and (5.66) while the factorization
of the last equality appears after applying the Nishimori identity

E[XiXj〈xixj〉t,R] = E〈xixj〉2t,R , E[XiXj〈xi〉t,R〈xj〉t,R] = E[〈xixj〉t,R〈xi〉t,R〈xj〉t,R].

We now come back to the identity (5.65) and apply Jensen’s inequality to its
right-hand side. We get

λ

4
E〈(Q− 〈Q〉t,R)2〉t,R ≤

λ‖ϕ‖2
∞

4n2

n∑

i,j=1

E
[∣∣〈xixj〉t,R − 〈xi〉t,R〈xj〉t,R

∣∣]

≤ ‖ϕ‖
2
∞√

2

√√√√ λ2

8n2

n∑

i,j=1

E
[(
〈xixj〉t,R − 〈xi〉t,R〈xj〉t,R

)2]

=
‖ϕ‖2

∞√
2

√
−λ

4

(
E
〈
QL〉t,R − E 〈Q〉t,R〈L〉t,R

)
,

where the equality follows from (5.70). We finally obtain (5.58) by combining the
latter upper bound with (5.67).

5.C.1 Concentration of L around its expectation

To prove concentration results on L, it is useful to work with the free entropy
lnZt,R(Y(t),Ỹ(t,R),W)/n where Zt,R(Y(t), Ỹ(t,R),W) is the normalization factor of the
posterior distribution (5.29). In Appendix 5.D, we prove that this free entropy
concentrates around its expectation when n→ +∞. We define

Fn(t, R) :=
1

n
lnZt,R

(
Y(t), Ỹ(t,R),W

)
;

fn(t, R) :=
1

n
E
[

lnZt,R
(
Y(t), Ỹ(t,R),W

)]
= EFn(t, R) .

Proposition 5.14 (Thermal fluctuations of L and Q). Assume that ϕ : R→ R
is continuous and bounded. For all positive real numbers a < b and t ∈ [0, 1]:

∫ b

a

E
〈(
L − 〈L〉t,R

)2 〉
t,R
dR ≤ λ‖ϕ‖2

∞
4n

(
ln(b/a)

2
+ 1

)
;

λ

4

∫ b

a

E
〈(

Q−
∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2)2〉

t,R

dR ≤ ‖ϕ‖3
∞

√
λ(b− a)

2n
.

Proof. Fix (n, t) ∈ N∗ × [0, 1]. Note that ∀R ∈ (0,+∞):

∂fn
∂R

∣∣∣∣
t,R

= − 1

n
E

[〈
∂Ht,R(x; Y(t), Ỹ(t,R),W)

∂R

〉

t,R

]
= −E 〈L〉t,R . (5.71)
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Further differentiating, we obtain

∂2fn
∂R2

∣∣∣∣
t,R

= E
[〈
L ∂Ht,R

∂R

〉

t,R

]
− E

[
〈L〉t,R

〈
∂Ht,R

∂R

〉

t,R

]
− E

〈
∂L
∂R

〉

t,R

= nE
〈(
L − 〈L〉t,R

)2 〉
t,R
− E

〈
∂L
∂R

〉

t,R

. (5.72)

It follows directly from (5.72) and the definition (5.56) of L that

E
〈(
L − 〈L〉t,R

)2 〉
t,R

=
1

n

∂2fn
∂R2

∣∣∣∣
t,R

+
1

4R

√
λ

2R

E
[
〈x〉Tt,RZ̃

]

n2
(5.73)

We start by upper bounding the integral over the second summand on the right-
hand side of (5.73). Thanks to a Gaussian integration by parts with respect to
Z̃j, j ∈ {1, . . . , n}, it comes:

1

4R

√
λ

2R

E
[
〈x〉Tt,RZ̃

]

n2
=

λ

8R

E
[
〈‖x‖2〉t,R − ‖〈x〉t,R‖2

]

n2
≤ λ‖ϕ‖2

∞
8Rn

. (5.74)

Therefore, ∫ b

a

dR

4R

√
λ

2R

E
[
〈x〉Tt,RZ̃

]

n2
≤ λ‖ϕ‖2

∞
8n

ln(b/a) . (5.75)

It remains to upper bound
∫ b
a
dR
n
∂2fn
∂R2

∣∣
t,R

= 1
n
∂fn
∂R

∣∣
t,R=b

− 1
n
∂fn
∂R

∣∣
t,R=a

. Note that
∀R ∈ (0,+∞):

0 ≤ ∂fn
∂R

∣∣∣∣
t,R

= −E 〈L〉t,R =
λ

4
E 〈Q〉t,R =

λ

4n
E ‖〈x〉t,R‖2 ≤ λ

4
‖ϕ‖2

∞ , (5.76)

where the first equality follows from (5.71), the second from (5.57) in Lemma 5.13,
and the third from the Nishimori identity. Integrating both sides of (5.73) over
R ∈ (a, b) and using (5.75), (5.76) yields the first inequality in the proposition,

∫ b

a

E
〈(
L − 〈L〉t,R

)2 〉
t,R
dR ≤ λ‖ϕ‖2

∞
4n

(
ln(b/a)

2
+ 1

)
.

To prove the second inequality, we first integrate both sides of the inequality
(5.58) with respect to R and then use Cauchy-Schwarz inequality. We obtain

λ

4

∫ b
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E 〈(Q− 〈Q〉t,R)2〉t,R dR
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∞

√
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n

∂2fn
∂R2
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∞

√
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8n
. (5.77)
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Finally, note that

E
〈(

Q−
∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2)2〉

t,R

= E
〈(
Q− 〈Q〉t,R

)2〉
t,R

+ E
[(
〈Q〉t,R −

∥∥∥∥
〈x〉t,R√

n

∥∥∥∥
2)2]

= E
〈(
Q− 〈Q〉t,R

)2〉
t,R

+ E
[〈

Q− 〈x〉
T
t,Rx

n

〉2

t,R

]

≤ E
〈(
Q− 〈Q〉t,R

)2〉
t,R

+ E
[〈(

Q− 〈x〉
T
t,Rx

n

)2〉

t,R

]

= E
〈(
Q− 〈Q〉t,R

)2〉
t,R

+ E
[〈(

Q− 〈x〉
T
t,RX

n

)2〉

t,R

]

= 2E
〈(
Q− 〈Q〉t,R

)2〉
t,R

, (5.78)

where the inequality follows from Jensen’s inequality and the subsequent equal-
ity from the Nishimori identity. Combining (5.77) and (5.78) gives the second
inequality in the proposition.

Proposition 5.15 (Quenched fluctuations of L). Suppose that (H1) and (H2)
hold. Let M be a positive real number. For n large enough, there exists a
constant C that depends only on ‖ϕ‖∞, ‖ϕ′‖∞, ‖ϕ′′‖∞, MS, λ, M , and such that
∀b ∈ (0,M),∀a ∈ (0,min{1, b}), ∀δ ∈ (0, a), ∀t ∈ [0, 1]:

∫ b

a

E
[(
〈L〉t,R − E 〈L〉t,R

)2 ]
dR ≤ C

(
1

δ2n
− ln(a)

n
+

δ

a− δ

)
. (5.79)

Proof. Fix (n, t) ∈ N∗ × [0, 1]. For all R ∈ (0,+∞), we have
∂Fn
∂R

∣∣∣∣
t,R

= −〈L〉t,R ; (5.80)

∂2Fn
∂R2

∣∣∣∣
t,R

= n
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

4R

√
λ

2R

〈x〉Tt,RZ̃

n
; (5.81)

∂fn
∂R

∣∣∣∣
t,R

= −E 〈L〉t,R ; (5.82)

∂2fn
∂R2

∣∣∣∣
t,R

= nE
〈(
L − 〈L〉t,R

)2 〉
t,R
− 1

4R

√
λ

2R

E
[
〈x〉Tt,RZ̃

]

n
. (5.83)

The second term on the right-hand side of (5.81) can be upper bounded with
Cauchy-Schwarz inequality,∣∣∣∣∣

1

4R

√
λ

2R

〈x〉Tt,RZ̃

n

∣∣∣∣∣ ≤
1

4R

√
λ

2R

‖〈x〉t,R‖ ‖Z̃‖
n

≤ ‖ϕ‖∞
4R

√
λ

2R

‖Z̃‖√
n
. (5.84)

We now define for all R ∈ (0,+∞):

F (R) := Fn(t, R)− ‖ϕ‖∞
√
λR

2

‖Z̃‖√
n

; (5.85)

f(R) := fn(t, R)− ‖ϕ‖∞
√
λR

2

E ‖Z̃‖√
n

. (5.86)
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F is convex on (0,+∞) as it is twice differentiable with a nonnegative second
derivative by (5.81) and (5.84). The same holds for f . Note that for all R ∈
(0,+∞):

F (R)− f(R) = Fn(t, R)− fn(t, R)− ‖ϕ‖∞
√
λR

2

‖Z̃‖ − E ‖Z̃‖√
n

;

F ′(R)− f ′(R) = −
(
〈L〉t,R − E 〈L〉t,R

)
− ‖ϕ‖∞

2

√
λ

2R

‖Z̃‖ − E ‖Z̃‖√
n

.

It follows from Lemma 2.8 (applied to the convex functions G = F , g = f) and
these last two identities that ∀R ∈ (0,+∞), ∀δ ∈ (0, R):

∣∣〈L〉t,R − E 〈L〉t,R
∣∣ ≤ ‖ϕ‖∞

2

√
λ

2R

∣∣‖Z̃‖ − E ‖Z̃‖
∣∣

√
n

+ Cδ(R)

+
1

δ

∑

x∈{−δ,0,δ}
|F (R + x)− f(R + x)|

≤ ‖ϕ‖∞
√
λ

2

(
1

2
√
R

+ 3
√
R

)∣∣‖Z̃‖ − E ‖Z̃‖
∣∣

√
n

+ Cδ(R)

+
1

δ

∑

x∈{−δ,0,δ}
|Fn(t, R + x)− fn(t, (R + x)| ,

where Cδ(r) := f ′(r + δ) − f ′(r − δ) is nonnegative by convexity of f . We now
use the inequality (

∑5
i=1 vi)

2 ≤ 5
∑5

i=1 v
2
i to obtain ∀R ∈ (0,+∞), ∀δ ∈ (0, R):

E
[(
〈L〉t,R − E〈L〉t,R

)2 ] ≤ 5‖ϕ‖2
∞
λ

2

(
1

4R
+ 3 + 9R

)
Var‖Z̃‖

n
+ 5Cδ(R)2

+
5

δ2

∑

x∈{−δ,0,δ}
E
[(
Fn(t, R + x)− fn(t, R + x)

)2]
. (5.87)

The next step is to bound the integral of the three summands on the right-hand
side of (5.87). By [99, Theorem 3.1.1], there exists C1 such that Var ‖Z̃‖ ≤ C1

independently of the dimension n. Then,

∫ b

a

dR

(
1

4R
+ 3 + 9R

)
Var‖Z̃‖

n
≤
(

ln(b/a)

4
+ 3b+

9

2
b2

)
C1

n
. (5.88)

Note that Cδ(R) = |Cδ(R)| ≤ |f ′(R + δ)|+ |f ′(R− δ)| and for all R ∈ (0,+∞):

|f ′(R)| ≤
∣∣E 〈L〉t,R

∣∣+
‖ϕ‖∞

2

√
λ

2R

E‖Z̃‖√
n
≤ 1

2

√
λ‖ϕ‖2

∞
2

(√
λ

2
‖ϕ‖∞ +

1√
R

)
,

where the second inequality is due to the upper bounds |E 〈L〉t,R| ≤ λ‖ϕ‖2∞/4 (see
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(5.76)) and E‖Z̃‖ ≤ √n. Thus, for the second summand, we obtain ∀δ ∈ (0, a):
∫ b

a

dRCδ(R)2 ≤
√
λ‖ϕ‖2

∞
2

(√
λ

2
‖ϕ‖∞ +

1√
a− δ

)∫ b

a

dRCδ(R)

=

√
λ‖ϕ‖2

∞
2

(√
λ

2
‖ϕ‖∞ +

1√
a− δ

)

·
[
f(b+ δ)− f(b− δ)−

(
f(a+ δ)− f(a− δ)

)]

≤ λ‖ϕ‖2
∞

(√
λ

2
‖ϕ‖∞ +

1√
a− δ

)2

δ . (5.89)

The last inequality is a simple application of the mean value theorem. We turn to
the third and last summand. By Proposition 5.16 in Appendix 5.D, there exists
a positive constant C2 depending only on a, b, ‖ϕ‖∞, ‖ϕ′‖∞, ‖ϕ′′‖∞, MS and λ
such that ∀(t, R) ∈ [0, 1]× (0, b+ a):

E
[(
Fn(t, R)− fn(t, R)

)2 ] ≤ C2

n
. (5.90)

Using (5.90), we see that the integral of the third summand satisfies ∀δ ∈ (0, a):
∫ b

a

dR
5

δ2

∑

x∈{−δ,0,δ}
E
[(
Fn(t, R + x)− fn(t, R + x)

)2 ] ≤ 15C2

δ2n
b . (5.91)

To end the proof, we integrate over R ∈ (a, b) on both sides of (5.87) and use the
three upper bounds (5.88), (5.89), (5.91).

5.C.2 Concentration of Q around its expectation

Proof of Proposition 5.12. Using the upper bound (5.59), it directly comes

λ2

16

∫ b

a

E
〈(
Q− E 〈Q〉t,R

)2 〉
t,R
dR ≤

∫ b

a

E 〈(L − E 〈L〉t,R)2〉t,R dR .

We then use Propositions 5.14 and 5.15 to upper bound

∫ b

a

E 〈(L − E 〈L〉t,R)2〉t,R dR

=

∫ b

a

E 〈(L − 〈L〉t,R)2〉t,R dR +

∫ b

a

E[(〈L〉t,R − E 〈L〉t,R)2 ] dR ,

ending the proof.

5.D Concentration of the free entropy

Consider the inference problem (5.28). Once both observations Y(t) and Ỹ(t,R)

have been replaced by their definitions, the Hamiltonian associated with the
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posterior distribution of S given (Y(t), Ỹ(t,R),W) reads

Ht,R(s; S,Z, Z̃,W) :=
n∑

j=1

λR

4
x2
j −

λR

2
Xjxj −

√
λR

2
Z̃jxj

+
∑

i∈I

λ(1− t)
2n2

x2
i1
x2
i2
x2
i3
− λ(1− t)

n2
Xi1Xi2Xi3xi1xi2xi3 −

√
λ(1− t)
n

Zixi1xi2xi3 .

In this section, we show that the free entropy

1

n
lnZt,R

(
Y(t), Ỹ(t,R),W

)
=

1

n
ln

∫
dPs(s) e−Ht,R(s;S,Z,Z̃,W) (5.92)

concentrates around its expectation. To shorten notations we write lnZt,R
n

, omitting
the arguments.

Proposition 5.16 (Concentration of the free entropy). Suppose that (H1), (H2)
hold. There exists a polynomial C(‖ϕ‖∞, ‖ϕ′‖∞, ‖ϕ′′‖∞,MS, λ, R) with positive
coefficients such that ∀t ∈ [0, 1]:

E

[(
lnZt,R
n
− E

[
lnZt,R
n

])2 ]
≤ C(‖ϕ‖∞, ‖ϕ′‖∞, ‖ϕ′′‖∞,MS, λ, R)

n
. (5.93)

Proof. First, we show that the free entropy concentrates on its conditional ex-
pectation given (W,S). We see lnZt,R/n as a function of the Gaussian random
variables Z, Z̃ and we work conditionally to (W,S). Let g(Z, Z̃) := lnZt,R/n. By
the Gaussian-Poincaré inequality (see Proposition 2.7,

E

[(
lnZt,R
n
− E

[
lnZt,R
n

∣∣∣∣S,W
])2 ]

≤ E
[∥∥∇g(Z, Z̃)

∥∥2 ]
.

The squared norm of the gradient of g reads ‖∇g‖2 =
∑

i∈I |∂g/∂Zi|2 +
∑

j |∂g/∂Z̃j|2.
Each of these partial derivatives takes the form ∂g/∂x = −n−1

〈
∂Ht,R/∂x

〉
. More

precisely,

∂g

∂Zi

=

√
λ(1− t)
n2

〈xi1xi2xi3〉t,R ;
∂g

∂Z̃j
=

1

n

√
λR

2
〈xj〉t,R .

We see that |∂g/∂Zi| ≤
√
λ

n2 ‖ϕ‖3
∞ and | ∂g

∂Z̃j
| ≤ 1

n

√
λR
2
‖ϕ‖∞. Therefore,

∥∥∇g(Z, Z̃)
∥∥2 ≤ λ

2n
‖ϕ‖6

∞ +
λR

2n
‖ϕ‖2

∞ .

Making use of the Gaussian-Poincaré inequality, we obtain

E

[(
lnZt,R
n
− E

[
lnZt,R
n

∣∣∣∣S,W
])2 ]

≤ λ‖ϕ‖2
∞

2n
(‖ϕ‖4

∞ +R) . (5.94)
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Next we show that E[lnZt,R/n|S,W] concentrates on its conditional expectation
given S. We see lnZt,R/n as a function of the standard Gaussian random variables W
and we work conditionally to S. Let g(W) := E[lnZt,R/n|W,S]. We again rely on
the Gaussian-Poincaré inequality. To lighten the equations, we drop the subscripts
of the angular brackets 〈−〉t,R, introduce the notation Ẽ[ · ] := E[ · |S,W], and
define

X′ := ϕ′
(

WS√
p

)
; x′ := ϕ′

(
WS√
p

)
.

The squared norm of the gradient of g reads ‖∇g‖2 =
∑

i,j |∂g/∂Wij|2 where
∀(i, j) ∈ {1, . . . , n} × {1, . . . , p}:

∂g

∂Wij

= O(n−
5/2)

+
1

2n

n∑

k=1
k 6=i

n∑

`=1
6̀=k,i

(
− λ(1− t)

n2
√
p

Ẽ〈xix′isjx2
kx

2
`〉+

λ(1− t)
n2
√
p

SjX
′
iXkX`Ẽ〈xixkx`〉

+
λ(1− t)
n2
√
p

XiXkX` Ẽ〈sjx′ixkx`〉+

√
λ(1− t)
n
√
p

ẼZik`〈sjx′ixkx`〉
)

+
1

n

√
λR

2p

(
−
√
λR

2
Ẽ〈sjx′ixi〉+

√
λR

2
SjX

′
i Ẽ〈xi〉

+

√
λR

2
Xi Ẽ〈sjx′i〉+ ẼZ̃i〈sjx′i〉

)
.

The quantity O(n−5/2) corresponds to the terms associated with triplets i ∈
I whose elements are non unique. In order to further simplify these partial
derivatives, we do a Gaussian integration by parts with respect to Z and Z̃. It
yields

ẼZik`〈sjx′ixkx`〉 =

√
λ(1− t)
n

Ẽ〈sjx′ixix2
kx

2
`〉 −

√
λ(1− t)
n

Ẽ〈sjx′ixkx`〉〈xixkx`〉 ;

ẼZ̃i〈sjx′i〉 =

√
λR

2
Ẽ〈sjx′ixi〉 −

√
λR

2
Ẽ〈sjx′i〉〈xi〉 .

Therefore, ∀(i, j) ∈ {1, . . . , n} × {1, . . . , p}:

∂g

∂Wij

= O(n−
5/2) +

λR

2n
√
p

(
SjX

′
i Ẽ〈xi〉+Xi Ẽ〈sjx′i〉 − Ẽ〈sjx′i〉〈xi〉

)

+
λ(1− t)
2n3
√
p

n∑

k=1
k 6=i

n∑

`=1
6̀=k,i

(
SjX

′
iXkX`Ẽ〈xixkx`〉+XiXkX` Ẽ〈sjx′ixkx`〉

− Ẽ〈sjx′ixkx`〉〈xixkx`〉
)
.
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Making use of the boundedness assumptions for ϕ and its derivative, we obtain
the following uniform bound on the partial derivatives,

∣∣∣∣
∂g

∂Wij

∣∣∣∣ ≤ O(n−
5/2) +

3λMS

2n
√
p
‖ϕ‖∞‖ϕ′‖∞

(
‖ϕ‖4

∞ +R
)
.

Therefore, ‖∇g(W)‖2 ≤ 9λ2M2
S

4n
‖ϕ‖2

∞‖ϕ′‖2
∞
(
‖ϕ‖4

∞ + R
)2

+ O(n−3) and, by the
Gaussian-Poincaré inequality (the negligible term O(n−3) is omitted),

E

[(
E
[

lnZt,R
n

∣∣∣∣S,W
]
− E

[
lnZt,R
n

∣∣∣∣S
])2 ]

≤ 9λ2M2
S

4n
‖ϕ‖2

∞‖ϕ′‖2
∞
(
‖ϕ‖4

∞ +R
)2
.

(5.95)
Finally, it remains to demonstrate that E[lnZt,R/n|S] concentrates on its expectation.
Let us show that the function

g : S ∈ [−MS,MS]p 7→ E[lnZt,R/n|S = S]

satisfies the bounded difference property. To do so, we show that the partial
derivatives of g are uniformly bounded. Then, we apply McDiarmid’s inequality
(see Proposition 2.6). For a particular realization S = S, we define X := ϕ

(
WS√
p

)
,

X′ := ϕ′
(
WS√
p

)
and X′′ := ϕ′′

(
WS√
p

)
in typewriter font. We denote ES[ · ] := E[ · |S = S]

the expectation given a particular realization S = S. For ` ∈ {1, . . . , p}, the partial
derivative of g with respect to its `th coordinate reads

∂g

∂S`
=

λR

2n
√
p

n∑

i=1

ES

[
Wi`X

′
i〈xi〉

]

+
λ(1− t)
n3
√
p

∑

i∈I
ES

[
(Wi1`X

′
i1
Xi2Xi3 +Wi2`Xi1X

′
i2
Xi3 +Wi3`Xi1Xi2X

′
i3

)〈xi1xi2xi3〉
]

=
λR

2n
√
p

n∑

i=1

ES

[
Wi`X

′
i〈xi〉

]

+O(n−
3/2) +

λ(1− t)
2n3
√
p

n∑

i=1

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

ES

[
Wi`X

′
iXjXk〈xixjxk〉

]
. (5.96)

Once again the triplets i ∈ I whose elements are non unique are accounted for with
the term O(n−3/2) that is negligible compared to the others. A Gaussian integration
by parts with respect to W gives for all (i, j, k, `) ∈ {1, . . . , n}3 × {1, . . . , p} such
that j 6= i and k 6= i, j:

ES

[
Wi`X

′
iXjXk〈xixjxk〉

]
=

1√
p
ES

[
S`X
′′
i XjXk〈xixjxk〉

]
+

1√
p
ES

[
X′iXjXk〈s`x′ixjxk〉

]

− ES

[
X′iXjXk

〈
xixjxk

∂Ht,R

∂Wi`

〉]

+ ES

[
X′iXjXk〈xixjxk〉

〈
∂Ht,R

∂Wi`

〉]
; (5.97)



156 Tensor estimation with structured priors

ES

[
Wi`X

′
i〈xi〉

]
=

1√
p
ES

[
S`X
′′
i 〈xi〉

]
+

1√
p
ES

[
X′i〈s`x′i〉

]

− ES

[
X′i

〈
xi
∂Ht,R

∂Wi`

〉]
+ ES

[
X′i〈xi〉

〈
∂Ht,R

∂Wi`

〉]
, (5.98)

where here Ht,R = Ht,R(s; S = S,Z, Z̃,W). In order to prove the concentration
result that we aim for, we need to check that the expectations(5.97) and (5.98) are
both O(n−1/2). The main difficulty resides in managing the terms where partial
derivatives ∂Ht,R/∂Wi` appear. We have already dealt with these partial derivatives
when proving the concentration with respect to W and found

∂Ht,R

∂Wi`

= O(n−
3/2) +

1

2

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

(
− λ(1− t)

n2
√
p
xix
′
is`x

2
jx

2
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n2
√
p
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′
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+
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n2
√
p

XiXjXks`x
′
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√
λ(1− t)
n
√
p

Zijks`x
′
ixjxk

)

+

√
λR

2p
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−
√
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2
s`x
′
ixi +

√
λR

2
S`X
′
ixi +

√
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2
Xi s`x

′
i + Z̃is`x

′
i

)
.

For (i, `) ∈ {1, . . . , n} × {1, . . . , p} define

Ai` :=
λ(1− t)
2n2
√
p

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

(
− xix′is`x2

jx
2
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′
iXjXkxixjxk + XiXjXks`x

′
ixjxk

)

+
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2
√
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(
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′
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′
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)
. (5.99)

Note that

∂Ht,R

∂Wi`

= O(n−
3/2) +Ai` +

√
λ(1− t)
2n
√
p

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j
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√
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2p
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(5.100)

|Ai`| ≤
3λ

2
√
p
MS‖ϕ‖∞‖ϕ′‖∞

(
‖ϕ‖4

∞ +R
)
. (5.101)

Plugging the identity (5.100) back in (5.97) and (5.98) and making use of the
upper bound (5.101) yields
∣∣ES

[
Wi`X
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iXjXk〈xixjxk〉

∣∣ ≤ O(n−
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)]∣∣

+

√
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∣∣ES

[
X′iXjXkZ̃i

(
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)]∣∣ ,



5.E. Proof of Proposition 5.7 157

∣∣ES

[
Wi`X
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i〈xi〉

]∣∣ ≤ O(n−
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C1√
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√
λR
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(
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1
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)]∣∣ ,

where C1 := MS

(
‖ϕ‖∞‖ϕ′′‖∞ + ‖ϕ′‖2

∞ + 3λ ‖ϕ‖6
∞‖ϕ′‖2

∞ + 3λ ‖ϕ‖2
∞‖ϕ′‖2

∞R
)
. By

integrating by parts with respect to Z or Z̃, we can show that both upper bounds
are O(p−1/2). This is because Zij′k′ and Z̃i appear in the Hamiltonian Ht,R via

the terms
√
λ(1−t)
n

xixj′xk′Zij′k′ and
√

λR
2
xiZ̃i, respectively. In the end, for all

(i, j, k, `) ∈ {1, . . . , n}3 × {1, . . . , p} such that j 6= i and k 6= i, j:

∣∣ES

[
Wi`X

′
iXjXk〈xixjxk〉

]∣∣ ≤ ‖ϕ‖
4
∞(C1 + C ′1)√

p
;

∣∣ES

[
Wi`X

′
i〈xi〉

]∣∣ ≤ C1 + C ′1√
p

;

where C ′1 := MS

(
3λ‖ϕ‖6

∞‖ϕ′‖2
∞ + 3λ‖ϕ‖2

∞‖ϕ′‖2
∞R
)
. Returning to the identity

(5.96) for the partial derivative, we see that these upper bounds imply that
∣∣∣∣
∂g

∂S`

∣∣∣∣ ≤
λ(C1 + C ′1)

2p
(‖ϕ‖4

∞ +R)

uniformly in S ∈ [−MS,MS]
p and ` ∈ {1 . . . , p}. Hence, by the mean value

theorem, g has bounded differences, that is, ∀` ∈ {1, . . . , p} :

sup
−MS≤S1,...,Sp,S′`≤MS

∣∣g(S)− g(S1, . . . , S`−1, S
′
`, S`+1, . . . , Sp)

∣∣ ≤ C2

p
,

where C2 := λMS(C1 + C ′1)(‖ϕ‖4
∞ +R). By McDiarmid’s inequality (see Proposi-

tion 2.6),

E

[(
E
[

lnZt,R
n

∣∣∣∣S
]
− E

[
lnZt,R
n

])2 ]
≤ C2

2

4p
. (5.102)

Combining the inequalities (5.94), (5.95) and (5.102) yields the final result.

5.E Proof of Proposition 5.7

The proof is based on the envelope theorem [68, Corollary 4] to obtain the
derivative of h. We proceed as follows:

1. We show that h is equal to the minimization on a compact subset of a
function having sufficient regularity properties to apply [68, Corollary 4].

2. The latter gives a formula for the derivative of h at any point where it is
differentiable.
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3. We use an optimality condition on q∗x ∈ Q∗x(λ) leading to simplified formula
(5.38) for h′(λ).

Proof of Proposition 5.7. We proceed according to the plan outlined above.

1) We define f(qx, qs, λ) := suprs≥0 ψλ,α(qx, qs, rs). By the definition (5.3) of
ψλ,α, we have for all (qx, qs, λ) ∈ [0, ρx]× [0, ρs]× (0,+∞):

f(qx, qs, λ) =
1

α
I∗PS

(
qs − ρs

2

)
+Iϕ

(
λq2

x

2
, qs; ρs

)
+
λ

12
(ρx−qx)2(ρx+2qx) , (5.103)

where the functions I∗PS and Iϕ(· , · ; ρs) are defined in Lemma 5.8 and Lemma 5.9,
respectively. By Lemma 5.9, Iϕ(· , · ; ρs) is continuous on [0,+∞) × [0, ρs]. By
Lemma 5.8, I∗PS is convex and finite on (−∞, 0), hence continuous on (−∞, 0).
Besides, I∗PS is nondecreasing on (−∞, 0) and we distinguish between two cases:

(i) limx→0− I
∗
PS

(x) exists and is finite;

(ii) limx→0− I
∗
PS

(x) diverges to +∞.

If (i) then, by monotonicity of I∗PS , limx→0− I
∗
PS

(x) ≤ I∗PS(0). We can redefine
I∗PS at x = 0 by I∗PS(0) := limx→0

x<0
I∗PS(x), thus making I∗PS continuous on (−∞, 0]

while leaving h unchanged. Hence, f is continuous on [0, ρx]× [0, ρs]× (0,+∞)
and h(λ) = min(qx,qs)∈[0,ρx]×[0,ρs] f(qx, qs, λ). If (ii), first note that

f(0, 0, λ) =
1

α
I∗PS

(
− ρs

2

)
+

λ

12
ρ3
x

and

f(qx, qs, λ) ≥ 1

α
I∗PS

(
qs − ρs

2

)
qs<0−−−→
qs→ρs

+∞ .

Then, for every positive λ̄, there exists ρs(λ̄) ∈ (0, ρs) such that

• ∀(qx, qs, λ) ∈ [0, ρx]× [ρs(λ̄), ρs]× (0, λ̄]: f(qx, qs, λ) > f(0, 0, λ);

• f is continuous on [0, ρx]× [0, ρs(λ̄)]× (0,+∞).

Thus, ∀λ ∈ [0, λ̄]: h(λ) = min(qx,qs)∈[0,ρx]×[0,ρs(λ̄)] f(qx, qs, λ).

2) Fix λ̄ > 0. The conclusion of step 1) is that there exists ρs(λ̄) ∈ (0, ρs] such
that ∀λ ∈ (0, λ̄] :

h(λ) = min
(qx,qs)∈[0,ρx]×[0,ρs(λ̄)]

f(qx, qs, λ) ,

where f is defined in (5.103) with I∗PS(0) := limx→0− I
∗
PS

(x) ∈ [0,+∞] and is
continuous on [0, ρx] × [0, ρs(λ̄)] × (0,+∞). By Lemma 5.9, f admits a partial
derivative with respect to λ and for all (qx, qs, λ) ∈ [0, ρx]× [0, ρs(λ̄)]× (0,+∞):

∂f

∂λ

∣∣∣∣
qx,qs,λ

=
q2
x

2

∂Iϕ
∂r

(
λq2

x

2
, qs; ρs

)
+

1

12
(ρx − qx)2(ρx + 2qx) . (5.104)
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This partial derivative is continuous on [0, ρx]×[0, ρs(λ̄)]×(0,+∞) (∂Iϕ/∂r is given in
the proof of Lemma 5.9 and its continuity is justified by domination assumptions).
For all λ ∈ (0, λ̄), define the following nonempty subset of [0, ρx]× [0, ρs(λ̄)]:

Q∗x,s(λ) :=
{

(q∗x, q
∗
s) ∈ [0, ρx]× [0, ρs] : f(q∗x, q

∗
s , λ) = h(λ)

}
.

By [68, Corollary 4], h is differentiable at λ ∈ (0, λ̄) if, and only if, the set

F(λ) :=

{
∂f

∂λ

∣∣∣∣
q∗x,q

∗
s ,λ

: (q∗x, q
∗
s) ∈ Q∗x,s(λ)

}

is a singleton, in which case h′(λ) = ∂f
∂λ

∣∣
q∗x,q

∗
s ,λ

for any (q∗x, q
∗
s) ∈ Q∗x,s(λ). Note that

F(λ) could be a singleton without Q∗x,s(λ) being one. However, in the next and
final step, we derive a simple expression for ∂f

∂λ

∣∣
q∗x,q

∗
s ,λ

when (q∗x, q
∗
s) ∈ Q∗x,s(λ) that

shows that F(λ) is a singleton if, and only if, Q∗x,s(λ) is one too.

3) Let λ ∈ (0, λ̄) and (q∗x, q
∗
s) ∈ Q∗x,s(λ). The function qx 7→ f(qx, q

∗
s , λ) is

differentiable on [0, ρx] and f(q∗x, q
∗
s , λ) = minq∗x∈[0,ρx] f(qx, q

∗
s , λ). If q∗x ∈ (0, ρx)

then it satisfies the optimality condition ∂f
∂qx

∣∣∣
q∗x,q

∗
s ,λ

= 0, i.e.,

q∗x
∂Iϕ
∂r

(
λ(q∗x)

2

2
, q∗s ; ρs

)
=
q∗x
2

(ρx − q∗x) . (5.105)

The identity (5.105) is trivially satisfied if q∗x = 0. If q∗x = ρx then the necessary
optimality condition reads ∂f

∂qx
(ρx, q

∗
s , λ) = λρx

∂Iϕ
∂r

(λρ2
x

2
, q∗s ; ρs

)
≤ 0. Besides, we

show in the proof of Lemma 5.9 that ∂Iϕ
∂r
≥ 0. Hence, if q∗x = ρx, the condition

(5.105) still has to be satisfied. Making use of the identity (5.105) in (5.104), we
have ∀(q∗x, q∗s) ∈ Q∗x,s(λ):

∂f

∂λ

∣∣∣∣
q∗x,q

∗
s ,λ

=
(q∗x)

2

2

∂Iϕ
∂r

(
λ(q∗x)

2

2
, q∗s ; ρs

)
+

1

12
(ρx − q∗x)2(ρx + 2q∗x)

=
(q∗x)

2

4
(ρx − q∗x) +

1

12
(ρx − q∗x)2(ρx + 2q∗x)

=
ρ3
x − (q∗x)

3

12
.

It follows that F(λ) is a singleton if, and only if, Q∗x(λ) is a singleton. We conclude
that h is differentiable if, and only if, Q∗x(λ) is a singleton in which case, letting
Q∗x(λ) = {q∗x(λ)}, we have h′(λ) = ρ3

x−(q∗x(λ))3

12
.





Part II

Generalized linear models
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Entropy and mutual information in
feedforward neural networks 6
6.1 Introduction

In this second part, we turn to generalized linear models (GLMs) as described by
Model 1.4 that we now repeat.

Model 1.4 (L-layer GLM). Let X be a n-dimensional random vector of interest
and L a natural number. For ` ∈ {1, . . . , L}, let k` be a natural number, P (`)

A

a probability distribution on Rk` , and ϕ` : R× Rk` → R an activation function.
For ` ∈ {1, . . . , L}, let n` be a positive integer and W(`) a n` × n`−1 matrix, with
n0 := n. Starting from X(0) := X, define recursively ∀` ∈ {1, . . . , L} :

X(`) := ϕ`

(
W(`)X(`−1)

√
n`−1

,A(`)

)
,

where A(`) := {A(`)
i }n`i=1

i.i.d.∼ P
(`)
A and ϕ` is applied componentwise. In the L-layer

GLM, we are given W(1), . . . ,W(L) and nL observations of the form

Yi := X
(L)
i +

√
∆Zi ;

where Z := {Zi}nLi=1
i.i.d.∼ N (0, 1) is an AWGN and ∆ ≥ 0 is a noise variance

parameter.

Phrased another way, Y is the output of a L-layer feedforward neural network
with input X, and W(`)/√n`−1 are the weights leading to the `th hidden unit X(`).
Our main goal is to establish statistical limits for the estimation of X from
the observations Y and the matrices W(1),W(2), . . . ,W(`). In this chapter, we
consider a 2-layer GLM in the high-dimensional limit where the width of every
layer scales linearly in the size n of the input X, that is, n, n1, n2 → +∞ while
n1/n → α1 > 0, n2/n1 → α2 > 0. We prove a RS formula for the conditional
differential entropy h(Y|W(1),W(2)) normalized by n0, from which a formula for
the normalized conditional mutual information n−1

0 I(X(1); Y|W(1),W(2)) is easily
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obtained. Like in the previous chapter, the proof demonstrates the modularity of
the adaptive interpolation method.

Mutual information is in general difficult to compute [131]. Recently, owing
to the development of deep learning, the computation of the mutual information
between different layers of a neural network has recently attracted interest. The
information bottleneck theory [132] applied to deep learning suggests that a
successful training should maximize the mutual information between the labels
and the learned hidden representations while minimizing the mutual information
between the features and these same hidden representations [133], [134], hence
mitigating overfitting. From a practical standpoint, this intuition has already led
to new learning algorithms and regularizers [135], [136]. It was experimentally
verified by [134] that this mechanism is at play when training with stochastic
gradient descent (SGD) very small neural networks for which the authors can
estimate the mutual information by binning. However, using the continuous
entropy estimator of [137], [138] found that the nature of the nonlinear activation
functions greatly affects the overall behavior of the mutual information during
learning. In order to further investigate the evolution of the mutual information
in large neural networks trained with SGD, [75] later proposed to use replica-
symmetric (RS) ansätze. When the matrices of weights W(1),W(2), . . . ,W(L) are
independent and rotationally invariant, there are RS ansätze for the asymptotic
normalized mutual information between two layers that have been conjectured [27],
[139]. These RS formulas are used in [75] to approximate the mutual information
of large neural networks trained with SGD in such a way1 that the weight matrices
remain rotationally invariant and close to being independent during training.
Their findings agree with [138]. Note however that the validity of these RS
predictions is not proved yet. In this chapter, we show that the RS formula is
exact when the feedforward neural network has two layers and in the restricted
case of rotationally invariant weights matrices with i.i.d. Gaussian entries.

6.2 Two-layer generalized linear model

6.2.1 Problem setting

Let n0, n1, n2 be positive integers and define the triplet n = (n0, n1, n2). Let
k1, k2 be nonnegative integers, ϕ1 : R × Rk1 → R, ϕ2 : R × Rk2 → R two
measurable functions, and P

(1)
A , P (2)

A two probability distributions on Rk1 and
Rk2 , respectively. For i ∈ {1, 2}, it is understood that ϕi acts component-wise on
(x,A) ∈ Rm × Rm×ki , that is, ϕi(x,A) is the m-dimensional vector with entries
[ϕi(x,A)]µ := ϕi(xµ,Aµ), where Aµ denotes the µth row of A.

1Each weight matrix W(`) is initialized with i.i.d. Gaussian entries and its singular-value
decomposition W(`) = U`Σ`V

T
` is computed. Then, U` is an orthogonal matrix drawn from

the Haar measure on O(n) (the set of n× n orthogonal matrices), V` is an orthogonal matrix
drawn from the Haar measure on O(m), and Σ` ∈ Rm×n is a diagonal matrix with nonnegative
entries. The matrices U`,V` are kept fixed during training and only the singular values Σ` are
updated by SGD.
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Let PX be a probability distribution over R and X ∈ Rn0 a random vector
with components (Xi)

n0
i=1

i.i.d.∼ PX . For every j ∈ {1, . . . , n1},

X
(1)
j := ϕ

(
1√
n0

n0∑

i=1

W
(1)
ji Xi,A

(1)
j

)
, (6.1)

where (A
(1)
j )n1

j=1
i.i.d.∼ P

(1)
A and (W

(1)
ji )j=1...n1,i=1...n0

i.i.d.∼ N (0, 1). Equivalently,

X(1) := ϕ

(
W(1)X√

n0

,A(1)

)
, (6.2)

where W(1) ∈ Rn1×n0 is the matrix with entriesW (1)
ji and A(1) ∈ Rn1×k1 the matrix

whose jth row is A
(1)
j . We are given n2 noisy observations

Yµ := ϕ2

(
1√
n1

n1∑

j=1

W
(2)
µj X

(1)
j ,A(2)

µ

)
+
√

∆Zµ , 1 ≤ µ ≤ n2 , (6.3)

where (A
(2)
µ )n2

µ=1
i.i.d.∼ P

(2)
A , (W

(2)
µj )µ=1...n2,j=1...n1 , (Zµ)n2

µ=1
i.i.d.∼ N (0, 1), and ∆ is a

positive real number. Equivalently,

Y := ϕ2

(
W(2)X(1)

√
n1

,A(2)

)
+
√

∆ Z , (6.4)

where W(2) ∈ Rn2×n1 is the matrix with entries W (2)
µj , A(2) ∈ Rn2×k2 the matrix

whose µth row is A
(2)
µ , and Z ∈ Rn2 the vector with entries Zµ. Note that

Yµ ∼ Pout

(
·
∣∣∣∣

1√
n1

n1∑

j=1

W
(2)
µj X

(1)
j

)
, (6.5)

where Pout is the conditional probability density function defined by

Pout(y
∣∣x) :=

∫
dP

(2)
A (a)

1√
2π∆

e−
1

2∆
(y−ϕ2(x,a))2

. (6.6)

Our analysis uses both representations (6.3) and (6.5).
The observations Yµ are the noisy outputs of a two-layer feedforward neural

network where W(1) are the weights between the input and hidden layers, W(2) the
weights between the hidden and output layers, ϕ1(·,A(1)

j ) the stochastic activation
functions of the hidden layer, and ϕ2(·,A(2)

µ ) the stochastic activation functions of
the output layer. The inference problem is to estimate X from the noisy outputs
Y and knowledge of the weight matrices W(1), W(2).

6.2.2 Free entropy associated to the two-layer GLM

We denote dPX(x) :=
∏n0

i=1 dPX(xi) and P
(1)
A (a) :=

∏n1

i=1 dP
(1)
A (aj) for x ∈ Rn0

and a ∈ Rn1×k1 . Using Bayes’ rule, the joint posterior distribution of (X,A(1))
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given (Y,W(1),W(2)) is

dP (x, a|Y,W(1),W(2))

:=
dPX(x)dP

(1)
A (a)

Z(Y,W(1),W(2))

n2∏

µ=1

Pout

(
Yµ

∣∣∣∣
[

W(2)

√
n1

ϕ1

(
W(1)x√

n0

, a

)]

µ

)
, (6.7)

where the normalization factor is

Zn(Y,W(1),W(2))

:=

∫
dPX(x)dP

(1)
A (a)

n2∏

µ=1

Pout

(
Yµ

∣∣∣∣
[

W(2)

√
n1

ϕ1

(
W(1)x√

n0

, a

)]

µ

)
. (6.8)

The main quantity of interest in this chapter is the averaged free entropy associated
to the posterior (6.7), that is,

fn :=
1

n0

E lnZn(Y,W(1),W(2)) . (6.9)

Let us stress that y 7→ Z(y,W(1),W(2)) is nothing else than the conditional density
function of Y given W(1),W(2). Hence, −n0fn is the conditional differential
entropy of Y given W(1),W(2), i.e., fn = −h(Y|W(1),W(2))/n0.

Our main result is a replica symmetric formula for the average free entropy fn
in the high-dimensional regime where n0, n1, n2 → +∞ such that

n2

n1

→ α2 and
n1

n0

→ α1 ,

where α2, α1 are positive real numbers. In this high-dimensional regime, the
sampling rate is n2/n0 → α := α1α2.

6.2.3 Mutual informations of scalar Gaussian channels

The building blocks of the RS formula for the limit of the average free entropy are
linked to the mutual information associated with simple scalar Gaussian channels.
We now present these channels.

Define Y (r) :=
√
r X+Z where X ∼ PX , Z ∼ N (0, 1) are independent random

variables and r ≥ 0 plays the role of a signal-to-noise ratio. We assume that PX
has a finite second moment ρ0 := EX2, and we denote the mutual information
between X and Y (r) by IPX (r) := I(X;Y (r)). The average free entropy associated
to this channel is

ψPX (r) := E ln

∫
dPX(x)e

√
r Y (r)x− rx2

2 . (6.10)

The function ψPX : r ∈ R+ → R is nondecreasing, convex, Lipschitz continuous
with Lipschitz constant ρ0/2, and IPX (r) := rρ0

2
− ψPX (r) (see Lemma 2.3).
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Let k be a nonnegative integer, PA a probability distribution on Rk and
ϕ : R× Rk 7→ R a measurable function. Let U, V, Z ∼ N (0, 1) and A ∼ PA be
independent random variables. We define

Y (r,q;ρ) :=
√
rϕ(
√
ρ− q U +

√
q V,A) + Z ,

where r ≥ 0 plays the role of a signal-to-noise ratio, ρ ≥ 0, and q ∈ [0, ρ]. We
denote the conditional mutual information between U and Y (r,q;ρ) given V by
Iϕ,PA(r, q; ρ) = I(U ;Y (r,q;ρ)|V ). The average free entropy associated to this channel
is

ψϕ,PA(r, q; ρ) := E
[

ln

(∫
du

e−
u2

2√
2π

∫
dPA(a)√

2π
e−

1
2

(Y (r,q;ρ)−√rϕ(
√
ρ−q u+

√
q V,a))2

)]
.

(6.11)
We can easily check that

Iϕ,PA(r, q; ρ) = Ψϕ,PA(r, ρ; ρ)−Ψϕ,PA(r, q; ρ) . (6.12)

6.2.4 Replica symmetric formulas

The main result of this chapter is a variational formula for the asymptotic average
free entropy (6.8) associated to the model defined in Subsection 6.2.1.

Theorem 6.1 (RS formula for the average free entropy of a two-layer GLM).
Consider the statistical model defined in Subsection 6.2.1. Suppose that the
following hypotheses hold2

(H1) The probability distribution PX has a bounded support, that is, if X ∼ PX
then there exists S such that |X| ≤ S almost surely.

(H2) For i ∈ {1, 2}, the function ϕi : R×Rki → R is bounded, twice differentiable
with respect to its first coordinate, and these partial derivatives, denoted ϕ′i
and ϕ′′i , are bounded continuous on R× Rki.

(H3) The entries of W(1), W(2) are i.i.d. with respect to N (0, 1).

Define the (finite) second moments

ρ0 := EX2 , ρ1 := E[ϕ2
1(
√
ρ0N,A

(1))] ,

where X ∼ PX , N ∼ N (0, 1), A(1) ∼ P
(1)
A are independent random variables. Let

α1, α2 be fixed positive numbers. Define the RS potential

fRS(q0, r0, q1, r1; ρ0, ρ1) :=
α1

2
ln(2πe∆−α2) + ψPX (r0)

+ α1Ψ
ϕ1,P

(1)
A

(r1, q0; ρ0) + α1α2Ψ
ϕ2,P

(2)
A

(∆−1, q1; ρ1)

− r0q0

2
+ α1

r1(ρ1 − q1)

2
. (6.13)

2The third hypothesis is part of the definition of the model but we repeat it here to insist
on the distribution that the weights have to follow.
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Denote by n→ +∞ the high-dimensional limit where n0, n1, n2 → +∞ such that
n2/n1 → α2, n1/n0 → α1. Then, the average free entropy fn = −h(Y|W(1),W(2))

n0

defined by (6.9) satisfies

lim
n→+∞

fn = sup
q1∈[0,ρ1]

inf
r1≥0

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) . (6.14)

Corollary 6.2 (Asymptotic normalized mutual information of a two-layer GLM).
Under the assumptions of Theorem 6.1, the normalized conditional mutual infor-
mation between X(1) and Y given (W(1),W(2)) satisfies

lim
n→+∞

I(X(1); Y|W(1),W(2))

n0

= inf
q1∈[0,ρ1]

sup
r1≥0

inf
q0∈[0,ρ0]

sup
r0≥0

iRS(q0, r0, q1, r1; ρ0, ρ1) .

where

iRS(q0, r0, q1, r1; ρ0, ρ1) := −α1 ln(2πe)

2
− α1Ψ

ϕ1,P
(1)
A

(r1, ρ0; ρ0) + IPX (r0)

+ α1Iϕ1,P
(1)
A

(r1, q0; ρ0) + α1α2Iϕ2,P
(2)
A

(∆−1, q1; ρ1)

− r0(ρ0 − q0)

2
− α1

r1(ρ1 − q1)

2
.

Proof. Note that

I(X(1); Y|W(1),W(2))

n0

=
1

n0

E
[

ln

n2∏

µ=1

Pout

(
Yµ

∣∣∣∣
[

W(2)X(1)

n1

]

µ

)]
− fn

where

1

n0

E
[

ln

n2∏

µ=1

Pout

(
Yµ

∣∣∣∣
[

W(2)X(1)

n1

]

µ

)]
=

1

n0

n2∑

µ=1

E
[

lnPout

(
Yµ

∣∣∣∣
[

W(2)X(1)

n1

]

µ

)]

=
n2

n0

E
[

lnPout

(
Y1

∣∣∣∣
[

W(2)X(1)

n1

]

1

)]
.

Conditionally on X(1),
[
W(2)X(1)/n1

]
1
∼ N (0, ‖X(1)‖2/n1) so

E
[
lnPout

(
Y1

∣∣∣∣
[

W(2)X(1)

n1

]

1

)]
= E

[
E
[

lnPout

(
Y1

∣∣∣∣
[

W(2)X(1)

n1

]

1

)∣∣∣∣X(1)

]]

= − ln(∆)

2
+ E

[
Ψ
ϕ2,P

(2)
A

(
∆−1,

‖X(1)‖2

n1

;
‖X(1)‖2

n1

)]

= On0(1)− ln(∆)

2
+ Ψ

ϕ2,P
(2)
A

(
∆−1, ρ1; ρ1

)
,

where the last equality follows from the dominated convergence theorem and the
strong law of large numbers. Hence,

lim
n→+∞

I(X(1); Y|W(1),W(2))

n0

= −α1α2
ln(∆)

2
+α1α2Ψ

ϕ2,P
(2)
A

(
∆−1, ρ1; ρ1

)
− lim

n→+∞
fn .
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Remark. If the probability distribution P (1)
A is deterministic then

I(X(1); Y|W(1),W(2))

n0

=
I(X; Y|W(1),W(2))

n0

,

and the potential iRS simply reads

iRS(q0, r0, q1, r1; ρ0, ρ1) := IPX (r0) + α1Iϕ1,P
(1)
A

(r1, q0; ρ0) + α1α2Iϕ2,P
(2)
A

(∆−1, q1; ρ1)

− r0(ρ0 − q0)

2
− α1

r1(ρ1 − q1)

2
.

6.3 Proof of the replica symmetric formula

This section is dedicated to the proof of Theorem 6.1. We consider the statistical
model defined in Subsection 6.2.1 and use the definitions and notations introduced
in Section 6.2.

6.3.1 Setting of the adaptive interpolation

For all n0 ∈ N∗, define

ρ1(n0) := E
[‖X(1)‖2

n1

]
=

1

n1

n1∑

j=1

E
[
(X

(1)
j )2

]
= E

[
ϕ2

1

(
1

n0

n0∑

i=1

W
(1)
1i Xi,A

(1)
1

)]
.

(6.15)
Under the hypotheses (H1) and (H2), we have (see Lemma 6.11 in Appendix 6.A)

lim
n0→+∞

ρ1(n0) = ρ1 . (6.16)

We also define the bounded sequence of nonnegative real numbers

r∗(n0) := 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
r=∆−1,q=ρ1(n0),ρ=ρ1(n0)

.

This sequence converges to

r∗ := 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
r=∆−1,q=ρ1,ρ=ρ1

,

when n0 → +∞. For the analysis it is useful to define

rmax := sup
n0≥1

r∗(n0) . (6.17)

Of course, rmax ≥ r∗. Let (sn0)n0≥1 be a decreasing sequence of real numbers in
(0, 1/2] with limit limn0→+∞ sn0 = 0, and Bn0 = [sn0 , 2sn0 ]2. For a fixed n0 ≥ 1, we
define for all ε := (ε1, ε2) ∈ Bn0 the interpolation functions

R1(·, ε) : t ∈ [0, 1] 7→ ε1 +

∫ t

0

rε(v) dv
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and

R2(·, ε) : t ∈ [0, 1] 7→ ε2 +

∫ t

0

qε(v) dv ,

where qε : [0, 1]→ [0, ρ1(n0)] and rε : [0, 1]→ [0, rmax] are two continuous functions.
We specify more explicitly qε and rε later in the proof. In particular, we will need
the families of functions (qε)ε∈Bn0

and (rε)ε∈Bn0
to satisfy the following notion of

regularity.

Definition (Regular interpolation paths). Let (qε)ε∈Bn0
be a family of functions

from [0, 1] to [0, ρ1(n0)], and (rε)ε∈Bn0
a family of functions from [0, 1] to [0, rmax]

We say that the families of functions (qε)ε∈Bn and (rε)ε∈Bn are regular if, for all
t ∈ [0, 1], the function

ε 7→
(
R1(t, ε), R2(t, ε)

)

is a C1-diffeomorphism from Bn0 onto its image whose Jacobian determinant is
greater than, or equal, to one.

Let U,V be two n2-dimensional random vectors with entries Uµ, Vµ i.i.d.∼ N (0, 1)
For (t, ε) ∈ [0, 1] × Bn0 , we denote by S(t,ε) the n2-dimensional random vector
whose entries are given for all µ ∈ {1, . . . , n2} by

S(t,ε)
µ :=

√
1− t
n1

[
W(2)X(1)

]
µ

+
√

2sn0 + ρ1(n0)t−R2(t, ε)Uµ +
√
R2(t, ε)Vµ .

(6.18)
Consider the following observations coming from two types of channels,

{
Y

(t,ε)
µ ∼ Pout

(
·
∣∣S(t,ε)

µ

)
, 1 ≤ µ ≤ n2 ,

Ỹ
(t,ε)
i =

√
R1(t, ε)X

(1)
i + Z̃i , 1 ≤ i ≤ n1 .

(6.19)

where (Z̃i)
n1
i=1

i.i.d.∼ N (0, 1). The two random vectors Y(t,ε) := (Y
(t,ε)
µ )n2

µ=1 and
Ỹ(t,ε) := (Ỹ

(t,ε)
i )n1

i=1 sum up these observations. The joint posterior distribution of
(X,A(1),U) given (Y(t,ε), Ỹ(t,ε),W(1),W(2), V) is

dP (x, a,u|Y(t,ε), Ỹ(t,ε),W(1),W(2),V)

:=
dPX(x)dP

(1)
A (a)Du

Zn(t, ε)
e−Ht,ε(x,a,u;Y(t,ε),Ỹ(t,ε),W(1),W(2),V) , (6.20)

where Du := du e−
‖u‖2

2 /
√

2π
n2 , Zn(t, ε) is the normalization factor, and Ht,ε is the

interpolating Hamiltonian

Ht,ε(x, a,u; y, ỹ,W(1),W(2),V) := −
n2∑

µ=1

lnPout(yµ|s(t,ε)
µ )

+
1

2

n1∑

i=1

(
ỹi −

√
R1(t, ε)x

(1)
i

)2
, (6.21)



6.3. Proof of the replica symmetric formula 171

with

x
(1)
i := ϕ1

([
W(1)x√

n0

]

i

, ai

)
,

s(t,ε)
µ :=

√
1− t
n1

[
W(2)x(1)

]
µ

+
√

2sn0 + ρ1(n0)t−R2(t, ε)uµ +
√
R2(t, ε)Vµ .

The average free entropy associated with the interpolation at (t, ε) ∈ [0, 1]× Bn0

is

fn(t, ε) :=
E lnZn(t, ε)

n0

=
1

n0

E ln

∫
dPX(x)dP

(1)
A (a)Du e−Ht,ε(x,a,u;Y(t,ε),Ỹ(t,ε),W(1),W(2),V) . (6.22)

6.3.2 Variations of the average free entropy along the
interpolation path

The proof of Theorem 6.1 is based on the analysis of the variations of (6.22) when
t varies from 0 to 1. Given that limn0→+∞ sn0 , the pair ε = (ε1, ε2) is close to zero
in the high-dimensional limit. Hence, ε should be seen as a “perturbation” that
induces only a small change in the average free entropy. In particular, at t = 0,
we have for all ε ∈ Bn0 :

fn(0, ε) = fn −
n1

2n0

+O(sn0) , (6.23)

where |O(sn0 )/sn0| is bounded uniformly in n and ε ∈ [0, 2sn0 ]
3, and fn is the

average free entropy defined by (6.9) whose high-dimensional limit we want to
compute. We refer to Appendix 6.B for a proof of (6.23).

At t = 1, the observations Y(1,ε) do not involve X(1) anymore so the channel
with observations Y(1,ε) and the one with observations Ỹ(1,ε) are decoupled. The
average free entropy at t = 1 is therefore the sum of the average free entropies
associated with these decoupled channels. The high-dimensional limit of these
two average free entropies is already known in the literature and we obtain the
following result.

Lemma 6.3 (Interpolating average free entropy at t = 1). Under the same
assumptions than Theorem 6.1, the interpolating average free entropy at t = 1 is
∀ε ∈ Bn0:

fn(1, ε) = On(1) + f̃RS(R1(1, ε); ρ0) +
α1

2
ln(2π∆−α2)

+ α2α1Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)

where On(1) vanishes uniformly in ε ∈ Bn0, and

f̃RS(r; ρ0) := sup
q0∈[0,ρ0]

inf
r0≥0

ψPX (r0) + α1Ψ
ϕ1,P

(1)
A

(r, q0; ρ0)− r0q0

2
.
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Proof. By the definition (6.22) of the interpolating average free entropy, we have

fn(1, ε) = f̃n0,n1(R1(1, ε)) +
n1

n0

ln 2π

2

− n2

2n0

ln ∆ +
n2

n0

Ψ
ϕ2,P

(2)
A

(
∆−1, R2(1, ε); ρ1(n0) + 2sn0

)
,

where

f̃n0,n1(R1(1, ε)) :=
1

n0

E ln

∫
dPX(x)dP

(1)
A (a)

e
− 1

2

∥∥Y(1,ε)−
√
R1(1,ε)ϕ1

(
W(1)x√

n0
,a
)∥∥2

√
2π

n1

and Y(1,ε) :=
√
R1(1, ε)ϕ1(W(1)X/√n0 ,A(1)) + Z̃. Note that f̃n0,n1(R1(1, ε)) is the

average free entropy associated with a one-layer GLM, and its high-dimensional
limit is given by [29, Theorem 1]. We have ∀ε ∈ Bn0 :

f̃n0,n1(R1(1, ε)) = On0(1) + f̃RS(R1(1, ε); ρ0)

where On0(1) vanishes uniformly in ε ∈ Bn0 , and

f̃RS(r; ρ0) := sup
q0∈[0,ρ0]

inf
r0≥0

ψPX (r0) + α1Ψ
ϕ1,P

(1)
A

(r, q0; ρ0)− r0q0

2
.

The last summand appearing on the right-hand side of (6.3.2) satisfies

n2

n0

Ψ
ϕ2,P

(2)
A

(
∆−1, R2(1, ε); ρ1(n0) + 2sn0

)

=
n2

n0

Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0) + 2sn0

)
+O(sn0)

=
n2

n0

Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)
+O(sn0) . (6.24)

The first equality is because R2(1, ε) := ε2 +
∫ 1

0
qε(t) dt and

q 7→ Ψ
ϕ2,P

(2)
A

(∆−1, q; ρ1(n0) + 2sn0)

is Lipschitz continuous on [0, ρ1(n0) + 2sn0 ]. The second equality is because∫ 1

0
qε(t) dt ≤ ρ1(n0) ≤ ρ1(n0) + 2sn0 ≤ ρ1(n0) + 1 and

ρ 7→ Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ

)

is Lipschitz continuous on
[ ∫ 1

0
qε(t) dt, ρ1(n0) + 1]. The quantity O(sn0) in (6.24)

is such that |O(sn0 )/sn0 | is uniformly bounded in n and ε ∈ Bn0 . By definition,

Ψ
ϕ2,P

(2)
A

(∆−1, q, ρ)

:= E
[

ln

∫
Du dP (2)

A (a)
e−

1
2∆

(ϕ2(
√
ρ−q U+

√
q V,A)−ϕ2(

√
ρ−q u+

√
q V,a)+

√
∆Z)2

√
2π

]
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where Du := du e
−u

2

2 /
√

2π and U, V, Z ∼ N (0, 1), A ∼ P
(2)
A are independent random

variables. It directly follows that

− ln(2π)

2
+ E

[
ln e

− 1
2

(
2
‖ϕ2‖∞√

∆
+|Z|
)2
]
≤ Ψ

ϕ2,P
(2)
A

(∆−1, q, ρ) ≤ − ln(2π)

2
,

hence

− ln(2π)

2
−
(

4
‖ϕ2‖2

∞
∆

+ 1

)
≤ Ψ

ϕ2,P
(2)
A

(∆−1, q, ρ) ≤ − ln(2π)

2
.

The absolute value of Ψ
ϕ2,P

(2)
A

(∆−1, q, ρ) is thus uniformly bounded for ρ ≥ 0,
q ∈ [0, ρ]. Combining this uniform bound with (6.24) yields

n2

n0

Ψ
ϕ2,P

(2)
A

(
∆−1, R2(1, ε); ρ1(n0) + 2sn0

)

= α2α1Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)
+ On0(1) ,

where On0(1) vanishes uniformly ε ∈ Bn0 .

In a nutshell, we interpolate from the original problem at t = 0 to two decoupled
and analytically tractable problems at t = 1. At t = 0, the interpolating problem
essentially reduces to the two-layer GLM defined in Subsection 6.2.1. At t = 1, it
reduces to a one-layer GLM whose asymptotic average free entropy is given in
[29]), plus n2 decoupled scalar Gaussian channels whose average free entropies are
equal and given by the function Ψ

ϕ2,P
(2)
A
.

By the fundamental theorem of calculus, making use of (6.23) and Lemma 6.3,
we have ∀ε ∈ Bn0 :

fn = On(1) + fn(0, ε) +
α1

2

= On(1) + fn(1, ε)−
∫ 1

0

f ′n(t, ε) dt+
α1

2

= On(1) + f̃RS(R1(1, ε); ρ0) +
α1

2
ln(2πe∆−α2)

+ α2α1Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)
−
∫ 1

0

dt f ′n(t, ε) , (6.25)

where On(1) vanishes uniformly in ε ∈ Bn0 and we denote by f ′n(·, ε) the derivative
of fn(·, ε).

The next step is to compute f ′n(·, ε). We denote by (x, a,u) a triplet sampled
from the joint posterior distribution (6.20). The angular brackets 〈−〉n,t,ε denote
the expectation with respect to this posterior,
〈
g(x, a,u)

〉
n,t,ε

:=

∫
g(x, a,u) dP (x, a,u|Y(t,ε), Ỹ(t,ε),W(1),W(2),V) . (6.26)

We call overlap the normalized inner product between x(1) := ϕ1(W(1)x/√n0, a) and
X(1), that is,

Q :=
(x(1))TX(1)

n1

=
1

n1

n1∑

i=1

x
(1)
i X

(1)
i . (6.27)
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We compute the derivative f ′n(·, ε) in Appendix 6.C.

Proposition 6.4 (Derivative of the interpolating average free entropy). Assume
that (H1), (H2), (H3) hold and n0, n1, n2 → +∞ such that n2/n1 → α2, n1/n0 → α1.
Let fn(t, ε) be the interpolating average free entropy defined by (6.22). Then, the
derivative of fn(·, ε), denoted by f ′n(·, ε), satisfies ∀(t, ε) ∈ [0, 1]× Bn0 :

f ′n(t, ε) = −1

2

n1

n0

E

〈(
1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− rε(t)

)
(
Q− qε(t)

)
〉

n,t,ε

+
n1

n0

rε(t)

2

(
qε(t)− ρ1(n0)

)
+ On(1) , (6.28)

where `′y(·) is the derivative of `y : x 7→ lnPout(y|x), On(1) is a quantity that
vanishes uniformly in (t, ε) ∈ [0, 1]× Bn0 when n0 → +∞, and Q := (x(1))TX(1)

n1
.

6.3.3 Sum-rule of the adaptive interpolation

The overlap Q defined by (6.27) naturally appears in the derivative of the average
free entropy. An important property of the overlap is that it concentrates around
its expectation provided that we integrate over the perturbations ε ∈ Bn0 .

Proposition 6.5 (Overlap concentration). Let sn0
:= 1

2
n
−1/16

0 . Assume that (H1),
(H2), (H3) hold and the families (qε)ε∈Bn0

, (rε)ε∈Bn0
are regular. There exists a

constant C only depending on ϕ1, ϕ2, α1, α2, ∆ and S such that

∫

Bn0

dε

s2
n0

∫ 1

0

dtE
〈(
Q− E〈Q〉n,t,ε

)2 〉
n,t,ε
≤ C

n
1/8
0

. (6.29)

Proof. It follows directly from Proposition 6.22 combined with the upper bound
(6.112), see Appendix 6.E.

In order to prove Theorem 6.1, we need to get rid of the first term on the
right-hand side of (6.28). We can achieve the latter by choosing qε in such a way
that qε(t) = E〈Q〉n,t,ε. Indeed, by Proposition 6.5, Q concentrates around its
expectation. However, E〈Q〉n,t,ε is a function of t and R(t, ε), so qε(t) = E〈Q〉n,t,ε
is an ordinary differential equation (ODE) of order 1. We address in details the
problem of picking qε such that qε(t) = E〈Q〉n,t,ε in the next section. For now, we
assume that qε(t) = E〈Q〉n,t,ε and state the sum-rule of the adaptive interpolation.

Proposition 6.6. Let sn0
:= 1

2
n
−1/16

0 . Assume that (H1), (H2), (H3) hold and
n0, n1, n2 → +∞ such that n2/n1 → α2, n1/n0 → α1. Further assume that the
families of functions (qε)ε∈Bn0

, (rε)ε∈Bn0
are regular and ∀(t, ε) ∈ [0, 1] × Bn0 :
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qε(t) = E 〈Q〉n,t,ε. Then,

fn = On(1) +
α1

2
ln(2πe∆−α2)

+

∫

Bn0

dε

s2
n0

{
f̃RS(R1(1, ε); ρ0) + α2α1Ψ

ϕ2,P
(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)

+

∫ 1

0

dt
α1

2
rε(t)

(
ρ1 − qε(t)

)}
,

where On(1) is a quantity that vanishes when n→ +∞.

Proof. Integrating both sides of (6.25) over ε ∈ Bn0 , and making use of the formula
for f ′n(t, ε) in Proposition 6.4, yields

fn =

∫

Bn0

dε

s2
n0

fn

= On(1) +
n1

2n0

Rn +
α1

2
ln(2πe∆−α2)

+

∫

Bn0

dε

s2
n0

{
f̃RS(R1(1, ε); ρ0) + α2α1Ψ

ϕ2,P
(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)

+

∫ 1

0

dt
α1

2
rε(t)

(
ρ1 − qε(t)

)}
,

where

Rn :=

∫

Bn0

dε

s2
n0

∫ 1

0

dtE
〈(

1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− rε(t)

)(
Q− qε(t)

)〉

n,t,ε

.

To conclude the proof we need to check that Rn = On(1). By assumption
qε(t) = E〈Q〉n,t,ε so

R2
n =

∣∣∣∣∣

∫

Bn0

dε

s2
n0

∫ 1

0

dtE

〈(
1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

)(
Q− qε(t)

)〉

n,t,ε

∣∣∣∣∣

2

,

and, by Cauchy-Schwarz inequality,

R2
n ≤

∫

Bn0

dε

s2
n0

∫ 1

0

dtE

〈(
1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

)2〉

n,t,ε

·
∫

Bn0

dε

s2
n0

∫ 1

0

dtE
〈(
Q− E〈Q〉n,t,ε

)2 〉
n,t,ε

. (6.30)
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The integrand of the first integral on the right-hand side of (6.30) satisfies

E
〈(

1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

)2〉

n,t,ε

≤ n2

n2
1

n2∑

µ=1

E
[
`′
Y

(t,ε)
µ

(S(t,ε)
µ )2

〈
`′
Y

(t,ε)
µ

(s(t,ε)
µ )2

〉
n,t,ε

]

=
n2

n2
1

n2∑

µ=1

E
[〈
`′
Y

(t,ε)
µ

(s(t,ε)
µ )2

〉2

n,t,ε

]

≤ n2

n2
1

n2∑

µ=1

E
〈
`′
Y

(t,ε)
µ

(s(t,ε)
µ )4

〉
n,t,ε

=
n2

n2
1

n2∑

µ=1

E
[
`′
Y

(t,ε)
µ

(S(t,ε)
µ )4

]
,

where the two inequalities follow from Jensen’s inequality, and the two equalities
from the Nishimori identity (see Lemma 2.1 in Chapter 2). By the inequality
(6.53) in Appendix 6.B, E[`′

Y
(t,ε)
µ

(S
(t,ε)
µ )4] ≤ 8‖ϕ′2/√∆‖4

∞ (3 + 16‖ϕ2/
√

∆‖4
∞). Putting

everything together, we obtain

|Rn| ≤
2n2

n1

∥∥∥∥
ϕ′2√
∆

∥∥∥∥
2

∞

√
6 + 32

∥∥∥∥
ϕ2√
∆

∥∥∥∥
4

∞

√∫

Bn0

dε

s2
n0

∫ 1

0

dtE
〈(
Q− E〈Q〉n,t,ε

)2 〉
n,t,ε

.

By Proposition 6.5, we conclude that Rn = On(1).

6.3.4 Interpolation functions solutions to ODEs

In the next subsection, we prove matching lower and upper bounds on the
asymptotic average free entropy fn. Each bound is obtained by choosing (qε)ε∈Bn0

and (rε)ε∈Bn0
so that R(·, ε) is the solution to a first-order ODE with initial

value R(0, ε) = ε. In this subsection we define these ODEs and prove important
properties of their solutions; properties that will allow us to apply Proposition 6.6.

Let (sn0)n0≥1 be a decreasing sequence of real numbers in (0, 1/2]. Let U,
V be n2-dimensional random vectors with entries Uµ, Vµ i.i.d.∼ N (0, 1). For fixed
t ∈ [0, 1] and R = (R1, R2) ∈ [0,+∞)× [0, 2sn0 + ρ1(n0)t], we denote by S(R2) the
n2-dimensional random vector whose entries are given for all µ ∈ {1, . . . , n2} by

S(t,R2)
µ :=

√
1− t
n1

[
W(2)X(1)

]
µ

+
√

2sn0 + ρ1(n0)t−R2 Uµ +
√
R2 Vµ ,

and we consider the observations
{
Y

(t,R2)
µ ∼ Pout

(
·
∣∣S(t,R2)

µ

)
, 1 ≤ µ ≤ n2 ,

Ỹ
(t,R1)
i =

√
R1X

(1)
i + Z̃i , 1 ≤ i ≤ n1 .
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where (Z̃i)
n1
i=1

i.i.d.∼ N (0, 1). The two random vectors Y(t,R2) := (Y
(t,R2)
µ )n2

µ=1 and
Ỹ(t,R1) := (Ỹ

(t,R1)
i )n1

i=1 sum up these observations. The joint posterior distribution
of (X,A(1),U) given (Y(t,R2), Ỹ(t,R1),W(1),W(2), V) is

dP (x, a,u|Y(t,R2), Ỹ(t,R1),W(1),W(2),V)

∝
n1∏

i=1

dPX(xi)dP
(1)
A (ai) e

− 1
2

(
Ỹ

(t,R1)
i −√R1x

(1)
i

)2

·
n2∏

µ=1

duµ√
2π
e−

u2
µ
2 Pout(Y

(t,R2)
µ |s(t,R2)

µ ) ,

with x(1)
i := ϕ1

(
[W(1)x/√n0]i, ai

)
and

s(t,R2)
µ :=

√
1− t
n1

[
W(2)x(1)

]
µ

+
√

2sn0 + ρ1(n0)t−R2 uµ +
√
R2 Vµ .

We denote by the angular brackets 〈−〉n,t,R the expectation with respect to this
posterior distribution and define

F
(n)
1 (t, R) := 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
r=∆−1,q=E〈Q〉n,t,R,ρ=ρ1(n0)

,

F
(n)
2 (t, R) := E〈Q〉n,t,R ,

where Q := (x(1))TX(1)

n1
. Let r ∈ [0, rmax]. We consider the first-order ODEs

dy

dt
=
(
r, F

(n)
2 (t, y)

)
, (6.31)

and
dy

dt
=
(
F

(n)
1 (t, y), F

(n)
2 (t, y)

)
. (6.32)

Proposition 6.7. Suppose that (H1), (H2), (H3) hold. For every ε ∈ Bn0, there
exists a unique global solution R(·, ε) : [0, 1]→ [0,+∞)2 to the initial value problem

dy

dt
=
(
F

(n)
1 (t, y) , F

(n)
2 (t, y)

)
, y(0) = ε .

R(·, ε) is continuously differentiable and the image of its derivative R′(·, ε) satisfies

R′([0, 1], ε) ⊆ [0, rmax]× [0, ρ1(n0)] ,

where rmax ≥ 0 is defined by (6.17). Besides, for all t ∈ [0, 1], R(t, ·) is a
C1-diffeomorphism from Bn0 onto its image whose Jacobian determinant is greater
than, or equal to, one, i.e., ∀ε ∈ Bn0 :

det JR(t,·)(ε) ≥ 1

where JR(t,·) denotes the Jacobian matrix of R(t, ·). Finally, the same statement
holds true if, for a fixed r ∈ [0, rmax], we instead consider the initial value problem

dy

dt
=
(
r , F

(n)
2 (t, y)

)
, y(0) = ε .
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Proof. We only give the proof for the ODE dy/dt = (F
(n)
1 (t, y), F

(n)
2 (t, y)) since the

one for the ODE dy/dt = (r, F
(n)
2 (t, y)) is simpler and follows the same arguments.

By Jensen’s inequality and the Nishimori identity (see Lemma 2.1),

E〈Q〉n,t,R :=
E[〈x(1)〉Tn,t,RX(1)]

n1

=
E‖〈x(1)〉n,t,R‖2

n1

≤ E〈‖x(1)‖2〉n,t,R
n1

=
E ‖X(1)‖2

n1

,

hence E〈Q〉n,t,R ∈ [0, ρ1(n0)]. The function q 7→ Ψ
ϕ2,P

(2)
A

(∆−1, q, ρ1(n0)) is contin-
uously twice differentiable, convex and nondecreasing on [0, ρ1(n0)]. Therefore,
q 7→ 2α2(∂Ψ

ϕ2,P
(2)
A
/∂q)|∆−1,q,ρ1(n0) is nonnegative and nondecreasing on [0, ρ1(n0)],

which implies that

0 ≤ 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
∆−1,q,ρ1(n0)

≤ 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
∆−1,q=ρ1(n0),ρ1(n0)

≤ rmax .

We have thus shown that the function F (n) : (t, R) 7→ (F
(n)
1 (t, R), F

(n)
2 (t, R)) is

well-defined on

Dn0
:=
{

(t, R1, R2) ∈ [0, 1]× [0,+∞)2 : R2 ≤ 2sn0 + ρ1(n0)t
}
,

and that F (n)(Dn0) ⊆ [0, rmax]× [0, ρ1(n0)].
To invoke the Picard-Lindelöf theorem [104, Theorem 1.1], we have to check

that F (n) is continuous in t and uniformly Lipschitz continuous in R (mean-
ing that the Lipschitz constant is independent of t). We can show that F (n)

is continuous on Dn0 and that, for all t ∈ [0, 1], F (n)(t, ·) is differentiable on
(0,+∞)× (0, 2sn0 + ρ1(n0)t) thanks to the standard theorems of continuity and
differentiation under the integral sign. The domination hypotheses are indeed
verified because (H1), (H2) hold. To check the uniform Lipschitzness, we show
that the Jacobian matrix of F (n)(t, ·), that we denote by JF (n)(t,·)(R), is uniformly
bounded in (t, R). For all (R1, R2) ∈ (0,+∞)× (0, 2sn0 + ρ1(n0)t) :

JF (t,·)(R) =



c(t, R) c(t, R)

1 1






∂F

(n)
2

∂R1

∣∣∣
t,R

0

0
∂F

(n)
2

∂R2

∣∣∣
t,R


 , (6.33)

where

c(t, R) := 2α2

(∂2Ψ
ϕ2,P

(2)
A

∂q2

)∣∣∣∣
∆−1,q=F

(n)
2 (t,R),ρ1(n0)

;

∂F
(n)
2

∂R1

∣∣∣∣
t,R

=
1

n1

n1∑

i,j=1

E
[(
〈x(1)

i x
(1)
j 〉n,t,R − 〈x(1)

i 〉n,t,R〈x(1)
j 〉n,t,R

)2 ]
; (6.34)

∂F
(n)
2

∂R2

∣∣∣∣
t,R

=
1

n1

n2∑

µ=1

E
∥∥〈`′

Y
(t,R2)
µ

(s(t,R2)
µ )x(1)

〉
n,t,R
−
〈
`′
Y

(t,R2)
µ

(s(t,R2)
µ )

〉
n,t,R
〈x(1)〉n,t,R

∥∥2
.

(6.35)
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Remember that `′y(·) is the derivative of `y : x 7→ lnPout(y|x). Both ∂F
(n)
2 /∂R1 and

∂F
(n)
2 /∂R2 are clearly nonnegative. Using the assumption (H2), we easily obtain

from (6.34) that

0 ≤ ∂F
(n)
2

∂R1

∣∣∣∣
t,R

≤ 4n1‖ϕ1‖4
∞ . (6.36)

In the proof of Lemma 6.13, under the hypothesis (H2), we obtain the upper bound
(6.53) on |`′y(x)|. It yields ∀x ∈ R : |`′

Y
(t,R2)
µ

(x)| ≤ ‖ϕ′2/√∆‖∞
(
|Zµ| + 2‖ϕ2/

√
∆‖∞

)
.

Thus, we easily see from (6.35) that

0 ≤ ∂F
(n)
2

∂R2

∣∣∣∣
t,R

≤ 2n2‖ϕ1‖2
∞

∥∥∥∥
ϕ′2√
∆

∥∥∥∥
2

∞

(
2 + 8

∥∥∥∥
ϕ2√
∆

∥∥∥∥
2

∞

)
. (6.37)

Finally, q 7→
(
∂2Ψ

ϕ2,P
(2)
A
/∂q2
)∣∣

∆−1,q,ρ1(n0)
is nonnegative continuous on [0, ρ1(n0)], so

there exists C ≥ 0 such that ∀q ∈ [0, ρ1(n0)] :

(∂2Ψ
ϕ2,P

(2)
A

∂q2

)∣∣∣∣
∆−1,q,ρ1(n0)

∈ [0, C] ,

and c(t, R) ∈ [0, 2α2C]. Combining the latter with (6.33), (6.36) and (6.37) shows
that JF (n)(t,·)(R) is uniformly bounded in

(t, R) ∈
{

(t, R1, R2) ∈ [0, 1]× (0,+∞)2 : R2 < 2sn0 + ρ1(n0)t
}
.

By the mean-value theorem, F (n) is uniformly Lipschitz continuous in R.
By the Picard-Lindelöf theorem [104, Theorem 1.1], for all ε ∈ Bn0 there

exists a unique solution to the initial value problem dy/dt = F (n)(t, y), y(0) = ε
that we denote R(·, ε) : [0, δ]→ [0,+∞)2. Here δ ∈ [0, 1] is such that [0, δ] is the
maximal interval of existence of the solution. The function F (n) takes its values
in [0, rmax]× [0, ρ1(n0)] and ε ∈ Bn0 so ∀t ∈ [0, δ] :

R(t, ε) ∈ [sn0 , 2sn0 + rmaxt]× [sn0 , 2sn0 + ρ1(n0)t] .

It means that δ = 1 (the solution never leaves the domain of definition of F (n)).
Each initial condition ε ∈ Bn0 is tied to a unique solution R(·, ε). This implies

that the function ε 7→ R(t, ε) is injective. Its Jacobian determinant is given by
Liouville’s formula [104, Chapter V, Corollary 3.1]:

det JR(t,·)(ε) = exp

∫ t

0

ds

(
∂F

(n)
1

∂R1

+
∂F

(n)
2

∂R2

)∣∣∣∣
s,R(s,ε)

= exp

∫ t

0

ds

(
c
(
s, R(s, ε)

)∂F (n)
2

∂R1

∣∣∣∣
s,R(s,ε)

+
∂F

(n)
2

∂R2

∣∣∣∣
s,R(s,ε)

)
.

This Jacobian determinant is greater than, or equal to, one since we have shown
earlier in the proof that c(t, R), ∂F (n)

1 /∂R1 and ∂F
(n)
2 /∂R2 are nonnegative. The fact

that the Jacobian determinant is bounded away from 0 uniformly in ε implies,
by the inverse function theorem, that the injective function ε 7→ R(t, ε) is a
C1-diffeomorphism from Bn0 onto its image.
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6.3.5 Matching lower and upper bounds

We know choose interpolation functions that are solutions to the first-order
ODEs (6.31) and (6.32) in order to prove a lower and upper bounds on the
high-dimensional limit of the average free entropy fn.

Theorem 6.8 (Lower bound on the asympotic average free entropy). Under the
assumptions of Theorem 6.1, the average free entropy (6.9) satisfies

lim inf
n→∞

fn ≥ sup
r1≥0

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) .

Proof. Fix r ∈ [0, rmax]. For all ε ∈ Bn0 , we choose R(·, ε) = (R1(·, ε), R2(·, ε))
to be the unique solution to the first-order ODE (6.31) with initial condition
R(0, ε) = ε (see Proposition 6.7). Then, we use the derivative R′(·, ε) of R(·, ε) to
define ∀(t, ε) ∈ [0, 1]× Bn0 :

qε(t) := R′2(t, ε) = E〈Q〉n,t,ε , rε(t) := R′1(t, ε) = r .

By Proposition 6.7, the families of functions (qε)ε∈Bn0
and (rε)ε∈Bn0

are regular.
We can now apply Proposition 6.6 to get

fn = On(1) +
α1

2
ln(2πe∆−α2)

+

∫

Bn0

dε

s2
n0

{
f̃RS(ε2 + r; ρ0) + α2α1Ψ

ϕ2,P
(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)

+
α1r

2

(
ρ1 −

∫ 1

0

dt qε(t)

)}
, (6.38)

where

f̃RS(r; ρ0) := sup
q0∈[0,ρ0]

inf
r0≥0

ψPX (r0) + α1Ψ
ϕ1,P

(1)
A

(r, q0; ρ0)− r0q0

2
.

By Lemma 6.12 in Appendix 6.A, r 7→ f̃RS(r; ρ0) + α1rρ1/2 is nondecreasing so
∀ε ∈ Bn0 : f̃RS(ε2 + r; ρ0) + α1(ε2+r)ρ1/2 ≥ f̃RS(r; ρ0) + α1rρ1/2. Besides,

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q, r; ρ0, ρ1(n0)) =
α1

2
ln(2πe∆−α2) + f̃RS(r; ρ0)

+ α1α2Ψ
ϕ2,P

(2)
A

(∆−1, q; ρ1(n0)) +
α1r

2
(ρ1(n0)− q) .

So it follows directly from (6.38) that

fn ≥ On(1) +

∫

Bn0

dε

s2
n0

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0,

∫ 1

0

qε(t) dt, r; ρ0, ρ1(n0)

)

≥ On(1) + inf
q1∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0,

∫ 1

0

qε(t) dt, r; ρ0, ρ1(n0)

)
, (6.39)
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where the lower bound is because
∫ 1

0
qε(t) dt ∈ [0, ρ1(n0)]. By continuity,

lim
n0→+∞

inf
q1∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, r; ρ0, ρ1(n0)

)

= inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, r; ρ0, ρ1

)
.

Taking the limit inferior on both sides of (6.39), and using the latter limit, yields

lim inf
n0→+∞

fn ≥ inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, r; ρ0, ρ1

)
.

This inequality is true for all r ∈ [0, rmax], hence

lim inf
n0→∞

fn ≥ sup
r1∈[0,rmax]

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, r1; ρ0, ρ1

)
. (6.40)

To conclude the proof, it remains to extend the supremum over r1 ∈ [0, rmax] on
the r.h.s. of (6.40) to a supremum over r1 ≥ 0. Define the function

ψ : (r1, q1) ∈ [0,+∞)× [0, ρ1] 7→ f(r1) + g(q1) +
α1

2
r1(ρ1 − q1) ,

where f : [0,+∞)→ R and g : [0, ρ1]→ R are defined by

f(r1) :=
α1

2
ln(2πe∆−α2) + f̃RS(r1; ρ0) ,

g(q1) := α1α2Ψ
ϕ2,P

(2)
A

(∆−1, q1; ρ1) ,

Note that
ψ(r1, q1) = sup

q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) . (6.41)

By [29, Proposition 18, Appendix B.2], q1 7→ Ψ
ϕ2,P

(2)
A

(∆−1, q; ρ1) is convex, so its
derivative is nondecreasing. Besides, by the definition (6.17) of rmax, we have
rmax ≥ r∗ := 2α2

(
∂Ψ

ϕ2,P
(2)
A
/∂q
)∣∣

∆−1,ρ1,ρ1
. Thus, if r1 ≥ rmax, for every q1 ∈ [0, ρ1]:

∂ψ

∂q1

∣∣∣∣
r1,q1

= α1α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
∆−1,q1,ρ1

− α1r1

2
≤ α1

2
(r∗ − rmax) ≤ 0 .

The latter implies that, for all r1 ∈ [rmax,+∞), infq1∈[0,ρ1] ψ(r1, q1) = ψ(r1, ρ1) so

inf
q1∈[0,ρ1]

ψ(r1, q1)− inf
q1∈[0,ρ1]

ψ(rmax, q1) = ψ(r1, ρ1)− ψ(rmax, ρ1)

= f̃RS(r1; ρ0)− f̃RS(rmax; ρ0) ≤ 0 .

The nonpositivity follows from Lemma 6.12 in Appendix 6.A where we show
that f̃RS( · ; ρ0) is nondecreasing. Combining the upper bound (6.40), the identity
(6.41), and the fact that infq1≥[0,ρ1] ψ(r1, q1) ≤ infq1≥[0,ρ1] ψ(rmax, q1) for every
r1 ∈ [rmax,+∞), ends the proof.
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Theorem 6.9 (Upper bound on the asympotic averaged free entropy). Under
the assumptions of Theorem 6.1, the average free entropy (6.9) satisfies

lim sup
n→+∞

fn ≤ sup
r1≥0

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, r1; ρ0, ρ1

)
.

Proof. For all ε ∈ Bn0 , we choose R(·, ε) = (R1(·, ε), R2(·, ε)) to be the unique
solution to the first-order ODE (6.32) with initial condition R(0, ε) = ε (see
Proposition 6.7). Then, we use the derivative R′(·, ε) of R(·, ε) to define ∀(t, ε) ∈
[0, 1]× Bn0 :

qε(t) := R′2(t, ε) = E〈Q〉n,t,ε ,

rε(t) := R′1(t, ε) = 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
r=∆−1,q=qε(t),ρ=ρ1(n0)

.

By Proposition 6.7, the families of functions (qε)ε∈Bn0
and (rε)ε∈Bn0

are regular.
We can now apply Proposition 6.6 to get

fn = On(1) +
α1

2
ln(2πe∆−α2)

+

∫

Bn0

dε

s2
n0

{
f̃RS(R1(1, ε); ρ0) + α2α1Ψ

ϕ2,P
(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)

+

∫ 1

0

dt
α1

2
rε(t)

(
ρ1(n0)− qε(t)

)}
, (6.42)

The function q ∈ [0, ρ1(n0)] 7→ Ψ
ϕ2,P

(2)
A

(∆−1, q; ρ1(n0)) is convex so, by Jensen’s
inequality, ∀ε ∈ Bn0 :

Ψ
ϕ2,P

(2)
A

(
∆−1,

∫ 1

0

qε(t) dt; ρ1(n0)

)
≤
∫ 1

0

dtΨ
ϕ2,P

(2)
A

(
∆−1, qε(t); ρ1(n0)

)
. (6.43)

The function r ∈ [0,+∞) 7→ f̃RS(r; ρ0) is convex and Lipschitz continuous on
[0,+∞) so ∀ε ∈ Bn0 :

f̃RS(R1(1, ε); ρ0) = f̃RS

(
ε1 +

∫ 1

0

dt rε(t); ρ0

)

= O(sn0) + f̃RS

(∫ 1

0

dt rε(t); ρ0

)

≤ O(sn0) +

∫ 1

0

dt f̃RS

(
rε(t); ρ0

)
, (6.44)

where the second equality is due to the Lipschitzness of f̃RS( · ; ρ0) and the subse-
quent inequality to Jensen’s inequality. We use (6.43) and (6.44) to upper bound
(6.42). We obtain

fn ≤ On(1) +

∫

Bn0

dε

s2
n0

∫ 1

0

dt

{
α1

2
ln(2πe∆−α2) + f̃RS

(
rε(t); ρ0

)

+ α2α1Ψ
ϕ2,P

(2)
A

(
∆−1, qε(t); ρ1(n0)

)
+
α1

2
rε(t)

(
ρ1(n0)− qε(t)

)}
. (6.45)
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Fix (t, ε) ∈ [0, 1]× Bn0 . Our choice of interpolation functions implies that

rε(t) = 2α2

(∂Ψ
ϕ2,P

(2)
A

∂q

)∣∣∣∣
r=∆−1,q=qε(t),ρ=ρ1(n0)

,

so qε(t) is a stationary point of the convex function

q1 ∈ [0, ρ1(n0)] 7→ α2α1Ψ
ϕ2,P

(2)
A

(
∆−1, q1; ρ1(n0)

)
+
α1

2
rε(t)

(
ρ1(n0)− q1

)
.

Hence, qε(t) is a global minimum of the latter convex function and

α2α1Ψ
ϕ2,P

(2)
A

(
∆−1, qε(t); ρ1(n0)

)
+
α1

2
rε(t)

(
ρ1(n0)− qε(t)

)

= inf
q1∈[0,ρ1(n0)]

α2α1Ψ
ϕ2,P

(2)
A

(
∆−1, q1; ρ1(n0)

)
+
α1

2
rε(t)

(
ρ1(n0)− q1

)
.

Plugging this identity back in (6.45) yields

fn ≤ On(1) +

∫

Bn0

dε

s2
n0

∫ 1

0

dt

{
α1

2
ln(2πe∆−α2) + f̃RS

(
rε(t); ρ0

)

+ inf
q1∈[0,ρ1(n0)]

α2α1Ψ
ϕ2,P

(2)
A

(
∆−1, q1; ρ1(n0)

)
+
α1

2
rε(t)

(
ρ1(n0)− q1

)}

= On(1) +

∫

Bn0

dε

s2
n0

∫ 1

0

dt inf
q1∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, rε(t); ρ0, ρ1(n0)

)

≤ On(1) + sup
r1≥0

inf
q1∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q1, rε(t); ρ0, ρ1(n0)

)
.

Taking the limit superior on both sides of this last inequality yields the desired
result.

The lower bound of Theorem 6.8 matches the upper bound of Theorem 6.9,
hence

lim
n→+∞

fn = sup
r1≥0

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) .

We conclude this section by showing that we can invert the order of the optimiza-
tions on r1 and q1, thus ending the proof of Theorem 6.1.

Lemma 6.10 (Switching the optimization order). Under the assumptions of
Theorem 6.1, we have

sup
r1≥0

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1)

= sup
q1∈[0,ρ1]

inf
r1≥0

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) .

Proof. Define the function

h : (r1, q1) ∈ [0,+∞)× [0, ρ1] 7→ f(r1) + g(q1)− α1

2
r1q1 ,
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where f : [0,+∞)→ R and g : [0, ρ1]→ R are defined by

f(r1) :=
α1

2
ln(2πe∆−α2) + f̃RS(r1; ρ0) +

α1ρ1

2
r1 ,

g(q1) := α1α2Ψ
ϕ2,P

(2)
A

(∆−1, q1; ρ1) .

Note that h(r1, q1) = supq0∈[0,ρ0] infr0≥0 fRS(q0, r0, q1, r1; ρ0, ρ1). The function f is
convex nondecreasing (α1ρ1/2)-Lipschitz continuous on [0,+∞) (see Lemma 6.12 in
Appendix 6.A) while the function g is convex nondecreasing Lipschitz continuous
on [0, ρ1] [29, Proposition 18, Appendix B.2]. Hence, we can apply [29, Corollary
7, Appendix D] and get

sup
r1≥0

inf
q1∈[0,ρ1]

h(r1, q1) = sup
q1∈[0,ρ1]

inf
r1≥0

h(r1, q1) .



Appendices

6.A Miscellaneous useful results

Lemma 6.11 (Convergence of the sequence (ρ1(n0))n0≥1). Let k be a nonnegative
integer, ϕ : R→ R×Rk a measurable bounded function, PA a probability distribu-
tion on Rk, and PX a probability distribution on R with finite second moment. For
n0 ∈ N∗, let X ∈ Rn0 be a random vector with entries X1, X2, . . . , Xn0

i.i.d.∼ PX ,
W ∈ Rn0 a random vector with entries W1, X2, . . . ,Wn0

i.i.d.∼ N (0, 1), and A ∼ PA
such that (X,W,A) are independent. Define ρ1(n0) := E[ϕ(WTX/√n0,A)2] and
the second moments ρ0 := EX2

1 , ρ1 := E[ϕ(
√
ρ0W1,A)2]. Then, the sequence

{ρ1(n0)}n0≥1 converges and

lim
n0→+∞

ρ1(n0) = ρ1 .

Proof. If ρ0 = 0 then X = 0 almost surely (a.s.) and ρ1(n0) = Eϕ2(0,A) = ρ1 for
all n0 ∈ N∗. From now on, we assume that ρ0 > 0. Define

h : v ∈ (0,+∞) 7→
∫
dt dPA(a)ϕ2(t, a)

1√
2πv

exp(−t2/2v) .

Conditionally on X, we have WTX/√n0 ∼ N
(
0, ‖X‖2/n0

)
so

ρ1(n0) = E
[
E
[
ϕ2
(
WTX/√n0,A

)∣∣X
]]

= E
[
h

(‖X‖2

n0

)]
.

By the dominated convergence theorem, h is continuous on (0,+∞). By the
strong law of large numbers, ‖X‖2/n0 converges a.s. to ρ0. Combined with the
continuity of h, it comes

lim
n0→+∞

h

(‖X‖2

n0

)
= h(ρ0) = ρ1 almost surely.

Note that
∣∣h
(
‖X‖2/n0

)∣∣ is upper bounded by ‖ϕ‖2
∞. By the dominated convergence

theorem, we conclude that

ρ1(n0) = E
[
h

(‖X‖2

n0

)]
−−−−−→
n0→+∞

E
[

lim
n0→+∞

h

(‖X‖2

n0

)]
= ρ1 .

185
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Lemma 6.12. Let k be a nonnegative integer, ϕ : R → R × Rk a measurable
bounded function, and PA a probability distribution on Rk. Let U, V, Z ∼ N (0, 1),
A ∼ PA be independent random variables. For (r, ρ) ∈ [0,+∞) and q ∈ [0, ρ],
define Y (r,q;ρ) =

√
r ϕ(
√
ρ− q U +

√
q V,A) + Z and the average free entropy

ψϕ,PA(r, q; ρ) := E
[

ln

(∫
du

e−
u2

2√
2π

∫
dPA(a)√

2π
e−

1
2

(Y (r,q;ρ)−√rϕ(
√
ρ−q u+

√
q V,a))2

)]
.

Then, for all ρ ∈ [0,+∞) and q ∈ [0, ρ], the function Ψϕ,PA(q, · ; ρ) is twice-
differentiable, convex, nonincreasing and (E[ϕ(

√
ρU,A)2]/2)-Lipschitz continuous on

[0,+∞). Let PX be a probability distribution on R with finite second moment
ρ0 := EX∼PX [X2], α1 a positive real number, and

f̃RS(r; ρ0) := sup
q0∈[0,ρ0]

inf
r0≥0

ψPX (r0) + α1Ψϕ,PA(q0, r; ρ0)− r0q0

2

where ψPX is defined by (6.10). Then, the function f̃RS( · ; ρ0) is convex nonin-
creasing (α1E[ϕ(

√
ρ0 U,A)2]/2)-Lipschitz continuous on [0,+∞) while

r 7→ f̃RS(r; ρ0) +
α1r

2
E[ϕ(
√
ρ0 U,A)2]

is convex nondecreasing and (α1E[ϕ(
√
ρ0 U,A)2]/2)-Lipschitz continuous on [0,+∞).

Proof. Fix ρ ∈ [0,+∞) and q ∈ [0, ρ]. Let ψ(r) := Ψϕ,PA(q, r; ρ). Note that

ψ(r) = ψ̃(r)− 1 + rE[ϕ(
√
ρ0 U,A)2]

2
(6.46)

where

ψ̃(r) := E ln

∫
Du dPA(a)√

2π
exp

(
rϕ(
√
ρ− q U +

√
q V,A)ϕ(

√
ρ− q u+

√
q V, a)

−r
2
ϕ2(
√
ρ− q u+

√
q V, a) +

√
rϕ(
√
ρ− q u+

√
q V, a)Z

)
, (6.47)

where Du := du e
−u2

/2/
√

2π. The boundedness of ϕ ensures that all the domination
hypotheses to prove the twice-differentiability of ψ are reunited. We denote by
the angular brackets 〈−〉r the expectation w.r.t. the joint posterior distribution

dP (u, a|Y (r,q;ρ), V ) =
Du dPA(a)

Z(r, q; ρ)
e
√
r Y (r,q;ρ)ϕ(

√
ρ−q u+

√
q V,a)− r

2
ϕ2(
√
ρ−q u+

√
q V,a) ;

where Z(r, q; ρ) is a normalization factor. Differentiating (6.46) under the expec-
tation sign, we have ∀r ≥ 0 :

ψ̃′(r) = E
〈
ϕ(
√
ρ− q U +

√
q V,A)ϕ(

√
ρ− q u+

√
q V, a)

〉
r

− 1

2
E
〈
ϕ2(
√
ρ− q u+

√
q V, a)

〉
r

+
1

2
√
r
E
[
Z〈ϕ(

√
ρ− q u+

√
q V, a)〉r

]

=
1

2
E
〈
ϕ(
√
ρ− q u+

√
q V,A)

〉2

r
, (6.48)
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where the second equality follows from a Gaussian integration by parts w.r.t. Z
and the Nishimori identity (see Lemma 2.1)

E 〈ϕ(
√
ρ− q U +

√
q V,A)ϕ(

√
ρ− q u+

√
q V, a)〉r = E 〈ϕ(

√
ρ− q u+

√
q V, a)〉2r .

Thus, for all r ∈ [0,+∞), ψ̃′(r) ≥ 0 and, by Jensen’s inequality,

ψ′(r) ≤ 1

2
E〈ϕ(

√
ρ− q u+

√
q V, a)2〉r

=
1

2
E[ϕ(
√
ρ− q U +

√
q V,A)2] =

E[ϕ(
√
ρU,A)2]

2
,

where the first equality is due to the Nishimori identity. We see that ∀r ∈ [0,+∞) :

ψ′(r) ∈
[
− E[ϕ(

√
ρU,A)2]

2
, 0

]
,

so ψ is nonincreasing and (E[ϕ(
√
ρU,A)2]/2)-Lipschitz continuous. Further differenti-

ating, integrating by parts w.r.t. Z and applying the Nishimori identity, it comes
∀r ≥ 0 :

ψ′′(r) = ψ̃′′(r) =
1

2
E
[(
〈ϕ2(
√
ρ− q u+

√
q V, a)〉r − 〈ϕ(

√
ρ− q u+

√
q V, a)〉2r

)2]
.

Thus, ψ′′(r) is nonnegative and ψ is convex on [0,+∞).
By definition, f̃RS( · ; ρ0) is the supremum of the functions

r ∈ [0,+∞) 7→ α1Ψϕ,PA(q0, r; ρ0) + inf
r0≥0

ψPX (r0)− r0q0

2

that are convex nonincreasing (α1E[ϕ(
√
ρU,A)2]/2)-Lipschitz continuous, hence its

properties. Similarly, the properties of r 7→ f̃RS(r; ρ0) + (α1E[ϕ(
√
ρ0 U,A)2]/2)r follow

directly from the function being the supremum of the convex nondecreasing
(α1E[ϕ(

√
ρU,A)2]/2)-Lipschitz continuous functions

r ∈ [0,+∞) 7→ α1rE[ϕ(
√
ρ0 U,A)2]

2
+ α1Ψϕ,PA(q0, r; ρ0) + inf

r0≥0
ψPX (r0)− r0q0

2
.

6.B Interpolating average free entropy at t = 0

Let (sn0)n0≥1 be a decreasing sequence of real numbers in (0, 1/2] with limit
limn0→+∞ sn0 = 0. Consider the setting of Subsection 6.2.1. Let U, V be n2-di-
mensional random vectors with entries Uµ, Vµ i.i.d.∼ N (0, 1). For ε = (ε1, ε2, ε3) ∈
[0, 2sn0 ]

3, we denote by S(ε2,ε3) the n2-dimensional random vector whose entries
are given for all µ ∈ {1, . . . , n2} by

S(ε2,ε3)
µ :=

1√
n1

[
W(2)X(1)

]
µ

+
√
ε3 Uµ +

√
ε2 Vµ ,
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and we consider the observations
{
Y

(ε2,ε3)
µ ∼ Pout

(
·
∣∣S(ε2,ε3)

µ

)
, 1 ≤ µ ≤ n2 ,

Ỹ
(ε1)
i =

√
ε1X

(1)
i + Z̃i , 1 ≤ i ≤ n1 .

where (Z̃i)
n1
i=1

i.i.d.∼ N (0, 1). The two random vectors Y(ε2,ε3) := (Y
(ε2,ε3)
µ )n2

µ=1 and
Ỹ(ε1) := (Ỹ

(ε1)
i )n1

i=1 sum up these observations. The joint posterior distribution of
(X,A(1),U) given (Y(ε2,ε3), Ỹ(ε1),W(1),W(2), V) is

dP (x, a,u|Y(ε2,ε3), Ỹ(ε1),W(1),W(2),V) :=
dPX(x)dP

(1)
A (a)Du

Z̃n(ε)
e−H̃n(ε,x,a,u) ,

(6.49)

where Du := du e−
‖u‖2

2 /
√

2π
n2 , Z̃n(ε) is the normalization factor, and H̃n is the

Hamiltonian

H̃n(ε,x, a,u) := −
n2∑

µ=1

lnPout(Y
(ε2,ε3)
µ |s(ε2,ε3)

µ ) +
1

2

n1∑

i=1

(
Ỹ

(ε1)
i −√ε1 x(1)

i

)2

with x
(1)
i := ϕ1

(
[W(1)x/√n0]i,ai

)
and s

(ε2,ε3)
µ := [W(2)x(1)/√n1]µ +

√
ε3 uµ +

√
ε2 Vµ.

The average free entropy associated with the latter posterior is

f̃n(ε) :=
E ln Z̃n(ε)

n0

=
1

n0

E ln

∫
dPX(x)dP

(1)
A (a)Du e−H̃n(ε,x,a,u) .

Note that, for all ε = (ε1, ε2) ∈ [sn0 , 2sn0 ]
2, f̃n(ε1, ε2, 2sn − ε2) = fn(0, ε), where

fn(t, ε) is the average free entropy defined by (6.22) evaluated at t = 0. Besides,
f̃n(0) = fn − n1

2n0
.

Lemma 6.13. Assume that (H1), (H2), (H3) hold and n is such that

lim
n0→+∞

n1

n0

= α1 , lim
n0→+∞

n2

n1

= α2 .

Then, ∀ε ∈ [0, 2sn0 ]3:

f̃n(ε) = fn −
n1

2n0

+O(sn0) ,

where |O(sn0 )/sn0| is bounded uniformly in n and ε ∈ [0, 2sn0 ]3, and fn is the average
free entropy defined by (6.9).

Proof. Let (x, a,u) be a triplet sampled from the posterior distribution (6.49). We
denote by angular brackets 〈−〉n,ε the expectation with respect to this posterior.
Derivation under the expectation sign yields

∂f̃n
∂ε1

∣∣∣∣
ε

= − 1

n0

E
〈
∂H̃n

∂ε1

〉

n,ε

= − 1

n0

n1∑

i=1

E
〈

(X
(1)
i − x(1)

i )2

2
+
Z̃i(X

(1)
i − x(1)

i )

2
√
ε1

〉

n,ε

= − 1

2n0

E[‖X(1)‖2 − ‖〈x(1)〉n,ε‖2] ,
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where the last equality follows from integrating by parts with respect to the
standard Gaussian random variables Z̃i and the Nishimori identity. Therefore,

∣∣∣∣
∂f̃n
∂ε1

∣∣∣∣
ε

∣∣∣∣ =
1

2n0

E[‖X(1)‖2 − ‖〈x(1)〉n,ε‖2] ≤ 1

2n0

E‖X(1)‖2 ≤ n1

2n0

ρ1(n0) .

We see that, for n0, n1 large enough, for all ε ∈ [0, 2sn0 ]3 :

∣∣∣∣
∂f̃n
∂ε1

∣∣∣∣
ε

∣∣∣∣ ≤ α1‖ϕ1‖∞ . (6.50)

To compute ∂f̃n/∂ε2 and ∂f̃n/∂ε3, we proceed like in Appendix 6.C where we
compute the derivative of the interpolating average free entropy. We find

∂f̃n
∂ε2

∣∣∣∣
ε

=
1

2

n2∑

µ=1

E
[
P ′′out(Y

(ε2,ε3)
µ |S(ε2,ε3)

µ )

Pout(Y
(ε2,ε3)
µ |S(ε2,ε3)

µ )

ln Z̃n(ε)

n0

]

+
1

2n0

n2∑

µ=1

E
[〈
`′
Y

(ε2,ε3)
µ

(s(ε2,ε3)
µ )

〉2

n,ε

]
(6.51)

∂f̃n
∂ε3

∣∣∣∣
ε

=
1

2

n2∑

µ=1

E
[
P ′′out(Y

(ε2,ε3)
µ |S(ε2,ε3)

µ )

Pout(Y
(ε2,ε3)
µ |S(ε2,ε3)

µ )

ln Z̃n(ε)

n0

]
, (6.52)

where `′y is the derivative of `y : x 7→ lnPout(y|x) and P ′′out(y|·) the second derivative
of x 7→ Pout(y|x). By Jensen’s inequality and the Nishimori identity, we have for
all µ ∈ {1, . . . , n2}:

E
[〈
`′
Y

(ε2,ε3)
µ

(s(ε2,ε3)
µ )

〉2

n,ε

]
≤ E

[〈
`′
Y

(ε2,ε3)
µ

(s(ε2,ε3)
µ )2

〉
n,ε

]
= E

[
`′
Y

(ε2,ε3)
µ

(S(ε2,ε3)
µ )2

]
.

As `y(x) := ln
∫ dP

(2)
A (a)√
2π∆

e−
1

2∆
(y−ϕ2(x,a))2 and Y (ε2,ε3)

µ = ϕ2(S
(ε2,ε3)
µ ,A

(2)
µ ) +

√
∆Zµ, it

comes

∣∣`′
Y

(ε2,ε3)
µ

(x)
∣∣ =

∣∣ ∫ dP (2)
A (a)ϕ′2(x, a)(Y

(ε2,ε3)
µ − ϕ2(x, a))e−

1
2∆

(Y
(ε2,ε3)
µ −ϕ2(x,a))2∣∣

∆
∫
dP

(2)
A (a)e−

1
2

(Y
(ε2,ε3)
µ −ϕ(x,a))2

≤
∥∥∥∥
ϕ′2√
∆

∥∥∥∥
∞

(
|Zµ|+ 2

∥∥∥∥
ϕ2√
∆

∥∥∥∥
∞

)
. (6.53)

Hence, ∀µ ∈ {1, . . . , n2}:

E
[〈
`′
Y

(ε2,ε3)
µ

(s(ε2,ε3)
µ )

〉2

n,ε

]

≤
∥∥∥∥
ϕ′2√
∆

∥∥∥∥
2

∞
E
[(
|Zµ|+ 2

∥∥∥∥
ϕ2√
∆

∥∥∥∥
∞

)2]
≤
∥∥∥∥
ϕ′2√
∆

∥∥∥∥
2

∞

(
2 + 8

∥∥∥∥
ϕ2√
∆

∥∥∥∥
2

∞

)
. (6.54)

The first summand on the right-hand side of (6.51) is similar to the quantity
An(t, ε) studied in Appendix 6.C. Proceeding exactly like in the latter appendix,
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we obtain
∣∣∣∣∣
1

2

n2∑

µ=1

E
[
P ′′out(Y

(ε2,ε3)
µ |S(ε2,ε3)

µ )

Pout(Y
(ε2,ε3)
µ |S(ε2,ε3)

µ )

ln Z̃n(ε)

n0

]∣∣∣∣∣

≤ 1

2

√
n2

(
4

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
4

∞
+ 2

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞

)
Var

(
ln Z̃n(ε)

n0

)
.

Similarly to the proof of Proposition 6.14 in Appendix 6.D, we can show that
there exists a constant C such that ∀ε ∈ [0, 2sn0 ]3 :

Var

(
ln Z̃n(ε)

n0

)
≤ C

n0

.

Therefore, for n0, n2 large enough, ∀ε ∈ [0, 2sn0 ]3 :
∣∣∣∣∣
1

2

n2∑

µ=1

E
[
P ′′out(Y

(ε2,ε3)
µ |S(ε2,ε3)

µ )

Pout(Y
(ε2,ε3)
µ |S(ε2,ε3)

µ )

ln Z̃n(ε)

n0

]∣∣∣∣∣

≤
√
α1α2C

(
2

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
4

∞
+

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞

)
. (6.55)

It follows from the bounds (6.54), (6.55) and the formulas (6.51), (6.52) that
∀ε ∈ [0, 2sn0 ]3 :
∣∣∣∣∣
∂f̃n
∂ε2

∣∣∣∣
ε

∣∣∣∣∣ ≤
n2

2n0

∥∥∥∥
ϕ′2√
∆

∥∥∥∥
2

∞

(
2 + 8

∥∥∥∥
ϕ2√
∆

∥∥∥∥
2

∞

)
+

√
α1α2C

(
2

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
4

∞
+

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞

)
,

∣∣∣∣∣
∂f̃n
∂ε3

∣∣∣∣
ε

∣∣∣∣∣ ≤
√
α1α2C

(
2

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
4

∞
+

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞

)
.

By the mean value theorem, and the upper bounds on the absolute values of the
partial derivatives of f̃n, for n0, n1, n2 large enough, we have ∀ε ∈ [0, 2sn0 ]3 :

|f̃n(ε)− f̃n(0)| ≤ α1‖ϕ1‖∞|ε1|+ α1α2

∥∥∥∥
ϕ′2√
∆

∥∥∥∥
2

∞

(
2 + 8

∥∥∥∥
ϕ2√
∆

∥∥∥∥
2

∞

)
|ε2|

+

√
α1α2C

(
2

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
4

∞
+

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞

)
(|ε2|+ |ε3|) .

Hence, f̃n(ε) = f̃n(0) + O(sn0) where |O(sn0 )/sn0| is bounded uniformly in n and
ε ∈ [0, 2sn0 ]3. Finally, note that f̃n(0) = fn − n1

2n0
.

6.C Derivative of the averaged interpolating free
entropy

In this appendix we compute the partial derivative of the average free entropy
fn(t, ε) with respect to t.
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Proposition 6.4 (Derivative of the interpolating average free entropy). Assume
that (H1), (H2), (H3) hold and n0, n1, n2 → +∞ such that n2/n1 → α2, n1/n0 → α1.
Let fn(t, ε) be the interpolating average free entropy defined by (6.22). Then, the
derivative of fn(·, ε), denoted by f ′n(·, ε), satisfies ∀(t, ε) ∈ [0, 1]× Bn0 :

f ′n(t, ε) = −1

2

n1

n0

E

〈(
1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− rε(t)

)
(
Q− qε(t)

)
〉

n,t,ε

+
n1

n0

rε(t)

2

(
qε(t)− ρ1(n0)

)
+ On(1) , (6.28)

where `′y(·) is the derivative of `y : x 7→ lnPout(y|x), On(1) is a quantity that
vanishes uniformly in (t, ε) ∈ [0, 1]× Bn0 when n0 → +∞, and Q := (x(1))TX(1)

n1
.

Proof. Remember that ∀(t, ε) ∈ [0, 1]× Bn0 : fn(t, ε) := E lnZn(t,ε)
n0

with

Zn(t, ε) :=

∫
dPX(x)dP

(1)
A (a)Du e−Ht,ε(x,a,u;Y(t,ε),Ỹ(t,ε),W(1),W(2),V)

where Du := du e−
‖u‖2

2 /
√

2π
n2 ,

Ht,ε(x, a,u; y, ỹ,W(1),W(2),V) := −
n2∑

µ=1

lnPout(yµ|s(t,ε)
µ )

+
1

2

n1∑

i=1

(
ỹi −

√
R1(t, ε)x

(1)
i

)2
,

and x(1)
i := ϕ1

(
[W(1)x/√n0]i, ai

)
,

s(t,ε)
µ :=

√
1− t
n1

[
W(2)x(1)

]
µ

+
√

2sn0 + ρ1(n0)t−R2(t, ε)uµ +
√
R2(t, ε)Vµ .

The posterior distribution of (X,A(1),U) given (Y(t,ε), Ỹ(t,ε),W(1),W(2), V) is

dP (x, a,u|Y(t,ε), Ỹ(t,ε),W(1),W(2),V)

∝ dPX(x)dP
(1)
A (a)Du e−Ht,ε(x,a,u;Y(t,ε),Ỹ(t,ε),W(1),W(2),V) .

We denote by (x,a1,u) a triplet sampled from this joint posterior distribution
and by the angular brackets 〈−〉n,t,ε the expectation with respect to this same
distribution.

Computation of the derivative The conditional probability density function
of (Y(t,ε), Ỹ(t,ε)) given (X,A(1),U,W(1),W(2),V) is

f(Y(t,ε) = y, Ỹ(t,ε) = ỹ|X,A(1),U,W(1),W(2),V) :=
e−Ht,ε(X,A

(1),U;y,ỹ,W(1),W(2),V)

√
2π

n1
.



192 Entropy and mutual information in feedforward neural networks

Therefore, the average free entropy reads

fn(t, ε) =
1

n0

E
[ ∫

dydỹ√
2π

n1
e−Ht,ε(X,A

(1),U;y,ỹ,W(1),W(2),V)

· ln
∫
dPX(x)dPA[1](a)Du e−Ht,ε(x,a,u;y,ỹ,W(1),W(2),V)

]
.

where the expectation E is with respect to (X,A(1),U,W(1),W(2),V). Differenti-
ating this last identity with respect to t under the expectation sign yields

f ′n(t, ε) = − 1

n0

E
[
H′t,ε(X,A(1),U; Y(t,ε), Ỹ(t,ε),W(1),W(2),V) lnZn(t, ε)

]

− 1

n0

E
〈
H′t,ε(x, a,u; Y(t,ε), Ỹ(t,ε),W(1),W(2),V)

〉
n,t,ε

, (6.56)

where H′t,ε is defined as (`′y(·) is the derivative of `y : x 7→ lnPout(y|x))

H′t,ε(x, a,u; y, ỹ,W(1),W(2),V) :=−
n2∑

µ=1

∂s
(t,ε)
µ

∂t
`′yµ(s(t,ε)

µ )

− 1

2

rε(t)√
R1(t, ε)

n1∑

i=1

x
(1)
i

(
ỹi −

√
R1(t, ε)x

(1)
i

)
.

Evaluating the latter at (x, a,u,Y, Ỹ) = (X,A(1),U,Y(t,ε), Ỹ(t,ε)), we obtain

H′t,ε(X,A(1),U; Y(t,ε), Ỹ(t,ε),W(1),W(2),V) = −
n2∑

µ=1

∂S
(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ )

− rε(t)

2
√
R1(t, ε)

n1∑

i=1

X
(1)
i Z̃i . (6.57)

First expectation on the r.h.s. of (6.56) Using (6.57), the first term on the
r.h.s. of (6.56) reads

E1 := − 1

n0

E
[
H′t,ε(X,A(1),U; Y(t,ε), Ỹ(t,ε),W(1),W(2),V) lnZn(t, ε)

]

=

n2∑

µ=1

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]
+

rε(t)

2
√
R1(t, ε)

n1∑

i=1

E[X
(1)
i Z̃i lnZn(t, ε)]

(6.58)

From the definition (6.18) of S(t,ε)
µ , ∀µ ∈ {1, . . . , n2}:

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]
= −1

2
E
[

[W(2)X(1)]µ√
n1(1− t)

`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]

+
1

2
E

[(
qε(t)Vµ√
R2(t, ε)

+
(ρ1(n0)− qε(t))Uµ√

2sn0 + ρ1(n0)t−R2(t, ε)

)
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]
.

(6.59)



6.C. Derivative of the averaged interpolating free entropy 193

A Gaussian integration by parts w.r.t W (2)
µi , 1 ≤ i ≤ n1, yields

E
[

[W(2)X(1)]µ√
n1(1− t)

`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]

=

n1∑

i=1

E
[ ∫

dydỹ√
2π

n1
e−Ht,ε(X,A

(1),U;y,ỹ,W(1),W(2),V)
W

(2)
µi X

(1)
i√

n1(1− t)
`′yµ(S(t,ε)

µ ) lnZn(t, ε)

]

=
1√

n1(1− t)

n1∑

i=1

E
[
∂S

(t,ε)
µ

∂W
(2)
µi

X
(1)
i

(
`′′
Y

(t,ε)
µ

(S(t,ε)
µ ) + `′

Y
(t,ε)
µ

(S(t,ε)
µ )2

)
lnZn(t, ε)

]

+
1√

n1(1− t)

n1∑

i=1

E
〈
∂s

(t,ε)
µ

∂W
(2)
µi

X
(1)
i `′

Y
(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

〉

n,t,ε

= E

[∥∥X(1)
∥∥2

n1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )
lnZn(t, ε)

]

+ E
〈
Q`′

Y
(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

, (6.60)

where the last equality follows simply from ∂S
(t,ε)
µ

∂W
(2)
µi

=
√

1−t
n1
X

(1)
i , ∂s

(t,ε)
µ

∂W
(2)
µi

=
√

1−t
n1
x

(1)
i ,

and the identity

`′′y(x) + `′y(x)2 =
P ′′out(y|x)

Pout(y|x)
,

with P ′′out(y| · ) the second derivative of x 7→ Pout(y|x). To simplify the second
expectation on the r.h.s. of (6.59), we do another integration by parts, this time
w.r.t. Vµ, Uµ i.i.d.∼ N (0, 1). It comes

E

[(
qε(t)Vµ√
R2(t, ε)

+
(ρ1(n0)− qε(t))Uµ√

2sn0 + ρ1(n0)t−R2(t, ε)

)
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]

= E

[∫
dydỹ√

2π
n1
e−Ht,ε(X,A

(1),U;y,ỹ,W(1),W(2),V)

·
(

qε(t)Vµ√
R2(t, ε)

+
(ρ1(n0)− qε(t))Uµ√

2sn0 + ρ1(n0)t−R2(t, ε)

)
`′yµ(S(t,ε)

µ ) lnZn(t, ε)

]

= E

[
ρ1(n0)

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )
lnZn(t, ε)

]

+ E
〈
qε(t)`

′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

. (6.61)

Plugging (6.60) and (6.61) back in (6.59) gives

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZn(t, ε)

]

= −1

2
E

[
P ′′out(Yµ|S(t,ε)

µ )

Pout(Yµ|S(t,ε)
µ )

(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)
lnZn(t, ε)

]
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− 1

2
E
〈
(Q− qε(t))`′Y (t,ε)

µ
(S(t,ε)

µ )`′
Y

(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

. (6.62)

We now simplify
∑n1

i=1 E[X
(1)
i Z̃i lnZn(t, ε)]. A Gaussian integration by parts w.r.t.

the standard Gaussian random variable Z̃i yields

n1∑

i=1

E[X
(1)
i Z̃i lnZn(t, ε)] = −

n1∑

i=1

E
[
X

(1)
i

〈√
R1(t, ε) (X

(1)
i − x(1)

i ) + Z̃i
〉
n,t,ε

]

= −
√
R1(t, ε)

(
n1ρ1(n0)− E

〈
(x(1))TX(1)

〉
n,t,ε

)
−

n1∑

i=1

E
[
X

(1)
i Z̃i

]

= −n1

√
R1(t, ε)

(
ρ1(n0)− E 〈Q〉n,t,ε

)
. (6.63)

Finally, we plug (6.62) and (6.63) in (6.58) to obtain

E1 = −1

2
E

[
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)
lnZn(t, ε)

n0

]

− 1

2

n1

n0

E
〈(

1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− rε(t)

)
(Q− qε(t))

〉

n,t,ε

− n1

n0

rε(t)

2

(
ρ1(n0)− qε(t)

)
. (6.64)

Second expectation on the r.h.s. of (6.56) Let us show that the second ex-
pectation on the r.h.s. of (6.56) is zero. By the Nishimori identity (see Lemma 2.1),

E2 = E
〈
H′t,ε(x, a,u; Y(t,ε), Ỹ(t,ε),W(1),W(2),V)

〉
n,t,ε

= E
[
H′t,ε(X,A(1),U; Y(t,ε), Ỹ(t,ε),W(1),W(2),V)

]

= −
n2∑

µ=1

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ )

]
− rε(t)

2
√
R1(t, ε)

n1∑

i=1

E
[
X

(1)
i Z̃i

]

= −1

2
E

[
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)]
, (6.65)

where the third equality is due to (6.57), and the fourth equality to E[X
(1)
i Z̃i] = 0

and a simplification of E
[
(∂S

(t,ε)
µ /∂t)`′

Y
(t,ε)
µ

(S
(t,ε)
µ )

]
based on the same Gaussian

integration by parts than the ones leading to (6.62). A direct computation shows
that

∫
P ′′out(y|s)dy = 0 for all s ∈ R. Hence, ∀µ ∈ {1, . . . , n2}:

E

[
P ′′out(Y

(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

∣∣∣∣∣X
(1),S(t,ε)

]
=

∫
dyP ′′out(y|S(t,ε)

µ ) = 0 . (6.66)
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Therefore, by the tower property of the conditional expectation, we have

E

[
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)]

= E

[
E

[
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

∣∣∣∣∣X
(1),S(t,ε)

](∥∥X(1)
∥∥2

n1

− ρ1(n0)

)]
= 0 . (6.67)

Combining (6.65) and (6.67), we get E2 = 0.

Exact expression for fn(t, ε) We have shown that the second expectation on
the right-hand side of (6.56) is zero. Therefore, ∀(t, ε) ∈ (0, 1)× Bn0 :

fn(t, ε) = E1

= −1

2

n1

n0

E
〈(

1

n1

n2∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− rε(t)

)(
Q− qε(t)

)〉

n,t,ε

+
n1

n0

rε(t)

2

(
qε(t)− ρ1(n0)

)
− An(t, ε)

2
, (6.68)

where

An(t, ε) := E

[
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)
lnZn(t, ε)

n0

]
. (6.69)

Next we show that An(t, ε) goes to 0 uniformly in (t, ε) ∈ [0, 1] × Bn0 when
n→ +∞, thus ending the proof of the proposition.

Proof that An(t, ε) vanishes uniformly It follows directly from (6.67) that

E

[
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)
fn(t, ε)

]
= 0 .

Thus, we have

∣∣An(t, ε)
∣∣=
∣∣∣∣∣E
[ n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(∥∥X(1)
∥∥2

n1

−ρ1(n0)

)(
lnZn(t, ε)

n0

−fn(t, ε)

)]∣∣∣∣∣

≤ E

[(
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)2 ] 1
2

· E
[(

lnZn(t, ε)

n0

− fn(t, ε)

)2 ] 1
2

, (6.70)
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where the inequality is due to Cauchy-Schwarz inequality. By the tower property
of conditional expectation, the first expectation on the r.h.s. of (6.70) reads

E

[(
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)2 ]

= E

[
E

[(
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2 ∣∣∣∣∣X
(1),S(t,ε)

](∥∥X(1)
∥∥2

n1

− ρ1(n0)

)2 ]
. (6.71)

Conditionally on S(t,ε), the random variables P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )
, µ ∈ {1, . . . , n2}, are

i.i.d. and centered. Therefore,

E

[(
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2 ∣∣∣∣∣X
(1),S(t,ε)

]
= E

[(
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2 ∣∣∣∣∣S
(t,ε)

]

= n2 E

[(
P ′′out(Y

(t,ε)
1 |S(t,ε)

1 )

Pout(Y
(t,ε)

1 |S(t,ε)
1 )

)2 ∣∣∣∣∣S
(t,ε)
1

]

= n2

∫
P ′′out(y|S(t,ε)

1 )2

Pout(y|S(t,ε)
1 )

dy . (6.72)

Under the assumption (H2), it is not difficult to show that (we refer to the proof
in Appendix 7.E.1 of Chapter 7)

0 ≤
∫
P ′′out(y|S(t,ε)

1 )2

Pout(y|S(t,ε)
1 )

dy ≤ 4

∥∥∥∥
ϕ′2√
∆

∥∥∥∥
4

∞
+ 2

∥∥∥∥
ϕ′′2√
∆

∥∥∥∥
2

∞
=: C . (6.73)

Combining (6.71), (6.72) and (6.73), we obtain

E

[(
n2∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2(∥∥X(1)
∥∥2

n1

− ρ1(n0)

)2 ]
≤ C

n2

n2
1

Var
∥∥X(1)

∥∥2
. (6.74)

Let us prove that Var ‖X(1)‖2/n1 is bounded in the high-dimensional limit. We have

Var
∥∥X(1)

∥∥2
= E

[
Var
(∥∥X(1)

∥∥2
∣∣∣X
)]

+ Var
(
E
[∥∥X(1)

∥∥2
∣∣∣X
])

. (6.75)

Remember that X(1) = ϕ1(W
(1)X/√n0,A(1)) so, conditionally on X, the random

variables X(1)
i , i ∈ {1, . . . , n1}, are i.i.d. and it comes

Var
(∥∥X(1)

∥∥2 ∣∣X
)

=

n1∑

i=1

Var
((
X

(1)
i

)2 ∣∣X
)

= n1 Var
((
X

(1)
1

)2∣∣X
)
.

It follows that the first term on the r.h.s. of (6.75) satisfies

E
[
Var
(∥∥X(1)

∥∥2 ∣∣X
)]

= E
[
Var
((
X

(1)
1

)2∣∣X
)]
≤ n1Var

((
X

(1)
1

)2
)
≤ n1E

[(
X

(1)
1

)4]
.
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Under the assumption (H2), we thus have E
[
Var
(∥∥X(1)

∥∥2 ∣∣X
)]
≤ n1‖ϕ1‖4

∞. For
the second term on the r.h.s. of (6.75), first note that

E
[∥∥X(1)

∥∥2 ∣∣X
]

= n1 E
[
ϕ2

1

([
W(1)X√

n0

]

1

,A
(1)
1

)∣∣∣∣X
]

= n1 g(X1, . . . , Xn0) , (6.76)

where g(c) := E
[
ϕ2

1

(
[W(1)c/√n0]1,A

(1)
1

)]
for any c = (c1, . . . , cn0) ∈ Rn0 . The partial

derivatives of g are ∀ ∈ {1, . . . , n0}:

∂g

∂cj
= E

[
2ϕ1

([
W(1)c√
n0

]

1

,A
(1)
1

)
ϕ′1

([
W(1)c√
n0

]

1

,A
(1)
1

)
W

(1)
1j√
n0

]

=
2cj
n0

E
[
ϕ′1

([
W(1)c√
n0

]

1

,A
(1)
1

)2

+ ϕ1

([
W(1)c√
n0

]

1

,A
(1)
1

)
ϕ
′′

1

([
W(1)c√
n0

]

1

,A
(1)
1

)]
,

where the second equality is obtained by integrating by parts w.r.t. W (1)
1j . Under

the assumption (H1), the support of the probability distribution PX is bounded
and included in [−S, S]. For every c ∈ [−S, S]n0 :

∣∣∣∣
∂g

∂cj

∣∣∣∣
c

∣∣∣∣ ≤
2S

n0

(
‖ϕ′1‖2

∞ + ‖ϕ1‖∞‖ϕ
′′

1‖∞
)

=:
C ′

n0

,

where, under the assumption (H2), all of ‖ϕ1‖∞, ‖ϕ′1‖∞, ‖ϕ′′1‖∞ are finite. By the
mean value theorem, g satisfies the bounded difference property on [−S, S]n0 , that
is, ∀j ∈ {1, . . . , n0}:

sup
c∈[−S,S]n0 ,
c′j∈[−S,S]

∣∣g(c)− g(c1, . . . , c
′
j, . . . , cn0)

∣∣ ≤ 2S
C ′

n0

.

By McDiarmid’s inequality (see Proposition 2.6), it comes

Var
(
g(X)

)
≤ 1

4

n0∑

j=1

(
2SC ′

n0

)2

=
(SC ′)2

n0

.

Then, using (6.76),

Var(E[‖X(1)‖2|X]) = n2
1Var(g(X)) ≤ n2

1(SC ′)2

n0

.

Combining the latter with (6.75) and E
[
Var
(∥∥X(1)

∥∥2 ∣∣X
)]
≤ n1‖ϕ1‖4

∞ yields

Var ‖X(1)‖2

n1

≤ ‖ϕ1‖4
∞ +

n1(SC ′)2

n0

≤ ‖ϕ1‖4
∞ + 2α1(SC ′)2 =: K , (6.77)

where the last inequality is valid as long as n0, n1 are large enough so that n1/n0 is
close to α1. We now combine (6.70), (6.74) and (6.77) to obtain

∣∣An(t, ε)
∣∣ ≤

√
CKn2

n1

E
[(

lnZn(t, ε)

n0

− fn(t, ε)

)2 ] 1
2

. (6.78)

By Proposition 6.14 in Appendix 6.D, the variance E[(lnZn(t,ε)/n0 − fn(t, ε))2]
vanishes uniformly in (t, ε) ∈ [0, 1]×Bn0 when n→ +∞. This theorem and (6.78)
imply that An(t, ε) vanishes uniformly in (t, ε).
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6.D Concentration of the interpolating free
entropy

In this appendix, we prove that the interpolating free entropy lnZn(t,ε)/n0 concen-
trates around its expectation (6.22) uniformly in (t, ε).

Proposition 6.14. Assume that (H1), (H2), (H3) and n0, n1, n2 → +∞ such
that n2/n1 → α2, n1/n0 → α1. There exists a positive constant C, depending only
on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]× Bn0:

E

[(
lnZn(t, ε)

n0

− E
[

lnZn(t, ε)

n0

])2
]
≤ C

n0

. (6.79)

Proof. Let us first rewrite lnZn(t,ε)/n0. Remember that Pout is defined by (6.6) in
Subsection 6.2.1. We have

Pout(Y
(t,ε)
µ |s(t,ε)

µ ) =

∫
dP

(2)
A (a(2)

µ )
1√

2π∆
e−

1
2∆

(
Y

(t,ε)
µ −ϕ2(s

(t,ε)
µ ,a

(2)
µ

))2

=

∫
dP

(2)
A (a(2)

µ )
1√

2π∆
e−

1
2∆

(Γ
(t,ε)
µ (s

(t,ε)
µ ,a

(2)
µ )+

√
∆Zµ)2

(6.80)

where
Γ(t,ε)
µ (s(t,ε)

µ , a(2)
µ ) := ϕ2

(
S(t,ε)
µ ,A(2)

µ

)
− ϕ2

(
s(t,ε)
µ , a(2)

µ

)
. (6.81)

Define where

ln Ẑn(t, ε)

n0

=
1

n0

ln

∫
dPX(x)dP

(1)
A (a)dP

(2)
A (a(2))Du e−Ĥt,ε(x,a,a

(2),u) , (6.82)

where

Ĥt,ε(x, a, a
(2),u) :=

1

2∆

n2∑

µ=1

(
Γ(t,ε)
µ (s(t,ε)

µ , a(2)
µ )2 + 2

√
∆ZµΓ(t,ε)

µ (s(t,ε)
µ , a(2)

µ )
)

+
1

2

n1∑

i=1

R1(t, ε)
(
X

(1)
i − x(1)

i

)2
+ 2Z̃i

√
R1(t, ε)

(
X

(1)
i − x(1)

i

)
. (6.83)

A comparison with the interpolating Hamiltonian (6.21) defined in Subsection 6.3.1
shows that

lnZn(t, ε)

n0

=
ln Ẑn(t, ε)

n0

− 1

2n0

n2∑

µ=1

Z2
µ −

1

2n0

n1∑

i=1

Z̃2
i −

n2

2n0

ln(2π∆) .

Therefore,

Var

(
lnZn(t, ε)

n0

)
≤ 2Var

(
ln Ẑn(t, ε)

n0

)
+ 2Var

(
1

2n0

n2∑

µ=1

Z2
µ +

1

2n0

n1∑

i=1

Z̃2
i

)

≤ 2Var

(
ln Ẑn(t, ε)

n0

)
+
n2 + n1

n2
0

. (6.84)
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In the remaing part of this appendix we show that the free entropy (6.82) concen-
trates around its expectation. This concentration together with the upper bound
(6.84) yields the proposition.

Note that ln Ẑn(t,ε)/n0 has been written as a function of Z, Z̃, V, U, W(2), A(2),
W(1) and X(1) := ϕ1(W(1)X(1)/√n0,A(1)). We prove that ln Ẑn(t,ε)/n0 concentrates with
respect to each of these random variables. The order in which the concentrations
are proved matters. In the end, the combination of Lemmas 6.15, 6.16, 6.17,
6.18, 6.19 and 6.20 stated below proves the existence of a positive constant C,
depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]× Bn0 :

Var

(
ln Ẑn(t, ε)

n0

)
≤ C

n0

.

Lemma 6.15. Under the assumption of Proposition 6.14, there exists a positive
constant C, depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]×Bn0:

E

[(
ln Ẑn(t, ε)

n0

− E
[

ln Ẑn(t, ε)

n0

∣∣∣∣V,U,W(2),A(2),X(1),W(1)

])2]
≤ C

n0

.

Proof. We see that g(Z, Z̃) = ln Ẑn(t,ε)/n0 as a function of Z, Z̃ only and we work
conditionally to all other random variables, i.e., V, U, W(2), A2, X(1), W(1). The
squared norm of the gradient of g reads

‖∇g‖2 =

n2∑

µ=1

∣∣∣∣
∂g

∂Zµ

∣∣∣∣
2

+

n1∑

i=1

∣∣∣∣
∂g

∂Z̃i

∣∣∣∣
2

.

Each of these partial derivatives is of the form ∂g/∂x = −n−1
0 〈∂Ĥt,ε/∂x〉n,t,ε where

the angular brackets 〈−〉n,t,ε denote an expectation with respect to the posterior
distribution (6.20). We have

∣∣∣∣
∂g

∂Zµ

∣∣∣∣ =
1

n0

√
∆

∣∣〈Γ(t,ε)
µ 〉n,t,ε

∣∣ ≤ 2‖ϕ2‖∞
n0

√
∆

;

∣∣∣∣
∂g

∂Z̃i

∣∣∣∣ =
1

n0

∣∣∣
√
R1(t, ε)(X

(1)
i − 〈x(1)

i 〉n,t,ε)
∣∣∣ ≤ 2

√
rmax‖ϕ1‖∞
n0

.

By the Gaussian-Poincaré inequality (see Proposition 2.7), we thus have

E

[(
ln Ẑn(t, ε)

n0

− E
[

ln Ẑn(t, ε)

n0

∣∣∣∣V,U,W(2),A2,X
(1),W(1)

])2 ]

≤ E‖∇g‖2 ≤ 4

n0

(
n2

n0

‖ϕ2‖2
∞

∆
+
n1

n0

rmax‖ϕ1‖2
∞

)
.
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Lemma 6.16. Under the assumption of Proposition 6.14, there exists a positive
constant C, depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]×Bn0:

E

∣∣∣∣∣E
[

ln Ẑn(t, ε)

n0

∣∣∣∣V,U,W(2),A(2),X(1),W(1)

]
−E
[

ln Ẑn(t, ε)

n0

∣∣∣∣A(2),X(1),W(1)

]∣∣∣∣∣

2

≤ C

n0

.

Proof. We see g(V,U,W(2)) = E[ln Ẑn(t,ε)|V,U,W(2),A(2),X(1),W(1)]/n0 as a function of
V, U, W(2) only and we work conditionally to all other random variables, i.e.,
A(2), X(1), W(1). From now on and until the end of the proof, we denote by Ẽ[ · ]
the conditional expectation E[ · |V,U,W(2),A(2),X(1),W(1)]. We have

∣∣∣∣
∂g

∂Vµ

∣∣∣∣ =
1

n0∆

∣∣∣∣Ẽ
〈(

Γ(t,ε)
µ +

√
∆Zµ)

∂Γ
(t,ε)
µ

∂Vµ

〉

n,t,ε

∣∣∣∣

≤
√

2sn0 + ρ1(n0)

n0∆
Ẽ
[
(2‖ϕ2‖∞ +

√
∆|Zµ|)2‖ϕ′2‖∞

]

≤
√

1 + ρ1(n0)

n0∆

(
2‖ϕ2‖∞ +

√
2∆

π

)
2‖ϕ′2‖∞ (6.85)

The same inequality holds true for |∂g/∂Uµ|. To compute the partial derivative
w.r.t. W (2)

µi , first note that

∂Γ
(t,ε)
µ

∂W
(2)
µi

=

√
1− t
n1

(
X

(1)
i ϕ′2

(
S(t,ε)
µ ,A(2)

µ

)
− x(1)

i ϕ′2
(
s(t,ε)
µ , a(2)

µ

))
. (6.86)

Thus,
∣∣∣∣∣
∂g

∂W
(2)
µi

∣∣∣∣∣ =
1

n0∆

∣∣∣∣Ẽ
〈

(Γ(t,ε)
µ +

√
∆Zµ)

∂Γ
(t,ε)
µ

∂W
(2)
µi

〉

Ĥt,ε

∣∣∣∣

≤ 1

n0
√
n1∆

Ẽ
[
(2‖ϕ2‖∞ +

√
∆|Zµ|) 2‖ϕ1‖∞‖ϕ′2‖∞

]

=
1

n0
√
n1∆

(
2‖ϕ2‖∞ +

√
2∆

π

)
2‖ϕ1‖∞‖ϕ′2‖∞ . (6.87)

Combining (6.85) and (6.87), we get

‖∇g‖2 =

n2∑

µ=1

∣∣∣∣
∂g

∂Vµ

∣∣∣∣
2

+

n2∑

µ=1

∣∣∣∣
∂g

∂Uµ

∣∣∣∣
2

+

n2∑

µ=1

n1∑

i=1

∣∣∣∣∣
∂g

∂W
(2)
µi

∣∣∣∣∣

2

≤ n2

n2
0

(
2 + 2ρ1(n0) + ‖ϕ1‖2

∞

)(2‖ϕ′2‖∞
∆

)2
(

2‖ϕ2‖∞ +

√
2∆

π

)2

.

To end the proof, we apply the Gaussian-Poincaré inequality and use the latter
upper bound on the squared norm of the gradient of g.
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Lemma 6.17. Under the assumption of Proposition 6.14, there exists a positive
constant C, depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]×Bn0:

E

[(
E
[

ln Ẑn(t, ε)

n0

∣∣∣∣A2,X
(1),W(1)

]
− E

[
ln Ẑn(t, ε)

n0

∣∣∣∣X(1),W(1)

])2 ]
≤ C

n0

.

(6.88)

Proof. We see g(A(2)) = E[ln Ẑn(t,ε)|A(2),X(1),W(1)]/n0 as a function of A(2) only and
we work conditionally to X(1),W(1). We denote by EG the expectation w.r.t. the
Gaussian random variables Z, Z̃, V, U, W(2), hence g = EG[ln Ẑn(t,ε)]/n0.

We show that g satisfies the bounded difference property. Fix ν ∈ {1, . . . , n2}.
We want to upper bound the variation g(A(2))− g(A(2,ν)) for two configurations
A(2) and A(2,ν) such that ∀µ 6= ν : A

(2,ν)
µ = A

(2)
µ . Denote Ĥ(ν)

t,ε and Γ
(t,ε,ν)
µ the

quantities Ĥt,ε and Γ
(t,ε)
µ where A(2) has been replaced by A(2,ν). We also distinguish

with indices the angular brackets 〈−〉Ĥt,ε and 〈−〉Ĥ(ν)
t,ε

associated with the two
configurations. By Jensen’s inequality,

1

n0

EG
〈
Ĥ(ν)
t,ε − Ĥt,ε

〉
Ĥ(ν)
t,ε
≤ g(A(2))− g(A(2,ν)) ≤ 1

n0

EG
〈
Ĥ(ν)
t,ε − Ĥt,ε

〉
Ĥt,ε . (6.89)

Making use of the definition (6.83) of Ĥt,ε, we have

Ĥ(ν)
t,ε − Ĥt,ε =

1

2∆

n2∑

µ=1

(Γ(t,ε,ν)
µ − Γ(t,ε)

µ )(Γ(t,ε,ν)
µ + Γ(t,ε)

µ + 2
√

∆Zµ)

=
1

2∆
(Γ(t,ε,ν)

ν − Γ(t,ε)
ν )(Γ(t,ε,ν)

ν + Γ(t,ε)
ν + 2

√
∆Zν) .

Hence,
∣∣Ĥ(ν)

t,ε − Ĥt,ε

∣∣ ≤ ∆−1‖ϕ2‖2
∞ + 2∆−1/2 |Zν |‖ϕ2‖∞. This inequality combined

with (6.89) shows that g satisfies the bounded difference property,

∣∣g
(
A(2)

)
− g
(
A(2,ν)

)∣∣ ≤ ‖ϕ2‖∞
∆n0

(
‖ϕ2‖∞ + 2

√
2

π
∆

)
.

By McDiarmid’s inequality (see Proposition 2.6), we thus have

E

[(
E
[

ln Ẑn(t, ε)

n0

∣∣∣∣A2,X
(1),W(1)

]
− E

[
ln Ẑn(t, ε)

n0

∣∣∣∣X(1),W(1)

])2 ∣∣∣∣∣X
(1),W(1)

]

≤ n2‖ϕ2‖2
∞

n2
0∆2

(
‖ϕ2‖∞

2
+

√
2

π
∆

)2

almost surely. Taking the expectation on both sides ends the proof.

Lemma 6.18. Under the assumption of Proposition 6.14, there exists a positive
constant C, depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]×Bn0:

E

[(
E
[

ln Ẑn(t, ε)

n0

∣∣∣∣X(1),W(1)

]
− E

[
ln Ẑn(t, ε)

n0

∣∣∣∣W(1),X

])2]
≤ C

n0

. (6.90)
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Proof. Note that E[ln Ẑn(t,ε)/n0|X(1),W(1)] = E[ln Ẑn(t,ε)/n0|X(1),W(1),X] because
ln Ẑn(t,ε)/n0 depends on X only through X(1). As X(1) := ϕ1

(
W(1)X/√n0,A(1)

)
and

A
(1)
1 , . . . ,A

(1)
n1 are i.i.d., the random variables X(1)

1 , . . . , X
(1)
n1 are i.i.d. conditionally

on (W(1),X). Define g(c) := E[ln Ẑn(t,ε)/n0|X(1) = c,W(1),X].
Let us show that g satisfies the bounded difference property. Fix i ∈ {1, . . . , n1}.

Consider two vectors c, c(i) ∈ [−‖ϕ1‖∞, ‖ϕ1‖∞]n1 such that ∀j 6= i : c
(i)
j = cj.

Define ψ : θ ∈ [0, 1] 7→ g(θc + (1− θ)c(i)), so that ψ(1) = g(c) and ψ(0) = g(c(i)).
Let us prove that there exists some constant C that does not depend on (t, ε) and
such that ∀θ ∈ [0, 1] :

∣∣ψ′(θ)
∣∣ ≤ C

n0

. (6.91)

Then, the bounded difference property will follow from the mean value theorem,

sup
c∈[−‖ϕ1‖∞,‖ϕ1‖∞]n1 ,

c
(i)
i ∈[−‖ϕ1‖∞,‖ϕ1‖∞],∀j 6=i:c(i)j =cj

∣∣g(c)− g(c(i))
∣∣ ≤ C

n0

.

We denote by Ẽ[ · ] the conditional expectation E[ · |X(1) = θc+(1−θ)c(i),W(1),X].
The derivative of ψ reads

∣∣ψ′(θ)
∣∣ =

∣∣ci − c(i)
i

∣∣
n0

Ẽ
[〈

∂Ĥt,ε

∂X
(1)
i

〉

n,t,ε

]

≤ 2‖ϕ1‖∞
n0∆

n2∑

µ=1

∣∣∣∣Ẽ
[〈

(Γ(t,ε)
µ +

√
∆Zµ)

∂Γ
(t,ε)
µ

∂X
(1)
i

〉

n,t,ε

]∣∣∣∣

+
2‖ϕ1‖∞
n0

∣∣∣Ẽ
[√

R1(t, ε)
〈√

R1(t, ε)(X
(1)
i − x(1)

i ) + Z̃i
〉
n,t,ε

]∣∣∣ . (6.92)

The last expectation on the r.h.s. of (6.92) satisfies
∣∣∣Ẽ
[√

R1(t, ε)
〈√

R1(t, ε)(X
(1)
i − x(1)

i ) + Z̃i
〉
n,t,ε

]∣∣∣

≤ Ẽ
[√

2sn0 + rmax

(√
2sn0 + rmax 2‖ϕ1‖∞ + |Z̃i|

)]

= 2(1 + rmax) ‖ϕ1‖∞ +

√
2(1 + rmax)

π
.

Note that ∂Γ
(t,ε)
µ /∂X(1)

i =
√

(1−t)/n1W
(2)
µi ϕ

′
2(S

(t,ε)
µ ,A

(2)
µ ) is independent of Zµ. There-

fore, the expectations in the sum on the r.h.s. of (6.92) read ∀µ ∈ {1, . . . , n2}:

Ẽ
[〈

(Γ(t,ε)
µ +

√
∆Zµ)

∂Γ
(t,ε)
µ

∂X
(1)
i

〉

n,t,ε

]
=

√
1− t
n1

Ẽ
[〈

Γ(t,ε)
µ W

(2)
µi ϕ

′
2(S(t,ε)

µ ,A(2)
µ )

〉

n,t,ε

]

=
1− t
n1

Ẽ
〈
Γ(t,ε)
µ X

(1)
i ϕ′′2(S(t,ε)

µ ,A(2)
µ )
〉
Ĥt,ε +

1√
n1

Ẽ
〈
∂Γt,ε,µ

∂W
(2)
µi

ϕ′2(S(t,ε)
µ ,A(2)

µ )

〉

n,t,ε

+
1√
n1

Ẽ
[〈

Γ(t,ε)
µ ϕ′2

(
S(t,ε)
µ ,A(2)

µ

)〉

n,t,ε

〈
∂Ĥt,ε

∂W
(2)
µi

〉

n,t,ε

]



6.D. Concentration of the interpolating free entropy 203

− 1√
n1

Ẽ
〈

Γ(t,ε)
µ ϕ′2(S(t,ε)

µ ,A(2)
µ )

∂Ĥt,ε

∂W
(2)
µi

〉

n,t,ε

=
1− t
n1

Ẽ
〈
Γ(t,ε)
µ X

(1)
i ϕ′′2(S(t,ε)

µ ,A(2)
µ )
〉
Ĥt,ε +

1√
n1

Ẽ
〈
∂Γt,ε,µ

∂W
(2)
µi

ϕ′2(S(t,ε)
µ ,A(2)

µ )

〉

n,t,ε

+
1√
n1

Ẽ
〈
ϕ′2
(
s(t,ε)
µ , a(2)

µ

)
ϕ′2(S(t,ε)

µ ,A(2)
µ )

∂Ĥt,ε

∂W
(2)
µi

〉

n,t,ε

− 1√
n1

Ẽ
[〈

ϕ′2
(
s(t,ε)
µ , a(2)

µ

)
ϕ′2
(
S(t,ε)
µ ,A(2)

µ

)〉

n,t,ε

〈
∂Ĥt,ε

∂W
(2)
µi

〉

n,t,ε

]
, (6.93)

where the second equality follows from an integration by parts w.r.t.W (2)
µi , and the

third from the definition of Γ
(t,ε)
µ . It is easily shown that there exists a constant

C ′ that does not depend on (t, ε) and such that the four summands on the r.h.s.
of (6.93) are bounded by C′/n1. All in all, we see that there exists C such that
(6.91) is satisfied uniformly in (t, ε). By McDiarmid’s inequality, we thus have

E

[(
E
[

ln Ẑn,t,ε

n0

∣∣∣∣X(1),W(1),X

]
− E

[
ln Ẑn,t,ε

n0

∣∣∣∣W(1),X

])2 ∣∣∣∣∣W
(1),X

]
≤ n1C

2

4n2
0

almost surely. Taking the expectation on both sides of this inequality ends the
proof.

Lemma 6.19. Under the assumption of Proposition 6.14, there exists a positive
constant C, depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]×Bn0:

E

[(
E
[

ln Ẑn(t, ε)

n0

∣∣∣∣W(1),X

]
− E

[
ln Ẑn(t, ε)

n0

∣∣∣∣X
])2]

≤ C

n0

. (6.94)

Proof. We see g(W(1)) = E[ln Ẑn(t,ε)|W(1),X]/n0 as a function of W(1) only and we
work conditionally to X. Denote Ẽ[ · ] the conditional expectation E[ · |W(1),X].
We introduce the notations

X(1′) = ϕ
′

1(W(1)X/√n0,A
(1)) ; x(1′) = ϕ

′

1(W(1)x/√n0, a) ; (6.95)

X(1′′) = ϕ′′1(W(1)X/√n0,A
(1)) ; x(1′′) = ϕ′′1(W(1)x/√n0, a) ; (6.96)

X(2′) = ϕ′2(S(t,ε),A(2)) ; x(2′) = ϕ′2(s(t,ε),A(2)) ; (6.97)

X(2′′) = ϕ′′2(S(t,ε),A(2)) ; x(2′′) = ϕ′′2(s(t,ε),A(2)) . (6.98)

Fix (i, j) ∈ {1, . . . , n1}×{1, . . . , n0}. The partial derivative of g w.r.t. W (1)
ij reads

∂g

∂W
(1)
ij

= − 1

n0∆

n2∑

µ=1

Ẽ
〈

(Γ(t,ε)
µ +

√
∆Zµ)

∂Γ
(t,ε)
µ

∂W
(1)
ij

〉

n,t,ε

−
√
R1(t, ε)

n
3/2
0

E
〈(√

R1(t, ε)(X
(1)
i − x(1)

i ) + Z̃i
)(
XjX

(1′)
i − xjx(1′)

i

)〉
n,t,ε

. (6.99)
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The absolute value of the second term on the r.h.s. of (6.99) is easily upper
bounded by

√
1 + rmax

n
3/2
0

(
2
√

1 + rmax‖ϕ1‖∞ +

√
2

π

)
2S ‖ϕ′1‖∞ .

We turn to the terms in the sum on the r.h.s. of (6.99). First, note that

∂Γ
(t,ε)
µ

∂W
(1)
ij

=

√
1− t
n0n1

W
(2)
µi

(
XjX

(1′)
i ϕ′2(S(t,ε)

µ ,A(2)
µ )− xjx(1′)

i ϕ′2(s(t,ε)
µ , a(2)

µ )
)
.

Plugging the latter in Ẽ
〈
(Γ

(t,ε)
µ +

√
∆Zµ)∂Γ

(t,ε)
µ /∂W (1)

ij

〉
n,t,ε

, and integrating by parts

w.r.t. W (2)
µi , yields

Ẽ
〈

(Γ(t,ε)
µ +

√
∆Zµ)

∂Γ
(t,ε)
µ

∂W
(1)
ij

〉

n,t,ε

=
1− t

n1
√
n0∆

Ẽ
[〈

(Γ(t,ε)
µ +

√
∆Zµ)

(
XjX

(1′)
i X(2′)

µ − xjx(1′)
i x(2′)

µ

)〉
n,t,ε

·
〈

(Γ(t,ε)
µ +

√
∆Zµ)

(
X1
iX

(2′)
µ − x1

ix
(2′)
µ

)〉
n,t,ε

]

− 1− t
n1
√
n0∆

Ẽ
[〈

(Γ(t,ε)
µ +

√
∆Zµ)2

(
XjX

(1′)
i X(2′)

µ − xjx(1′)
i x(2′)

µ

)

·
(
X1
iX

(2′)
µ − x1

ix
(2′)
µ

)〉
n,t,ε

]

+
1− t
n1
√
n0

Ẽ
〈
(Γ(t,ε)

µ +
√

∆Zµ)
(
XjX

(1′)
i X

(1)
i X(2′′)

µ − xjx(1′)
i x

(1)
i x(2′′)

µ

)〉
n,t,ε

+
1− t
n1
√
n0

Ẽ
〈(
X1
iX

(2′)
µ − x1

ix
(2′)
µ

)(
XjX

(1′)
i X(2′)

µ − xjx(1′)
i x(2′)

µ

)〉
n,t,ε

. (6.100)

The absolute value of each of the four conditional expectations on the r.h.s. of
(6.100) is easily upper bounded by a constant that does not depend on (t, ε).
Putting everything together, there exists a positive constant C such that almost
surely ∀(i, j) ∈ {1, . . . , n1} × {1, . . . , n0} :

∣∣∣∣
∂g

∂W
(1)
ij

∣∣∣∣ ≤
C

n
3/2
0

.

Hence,
∥∥∇g

∥∥2
=

n1∑

i=1

n0∑

j=1

∣∣∣∣
∂g

∂W
(1)
ij

∣∣∣∣
2

≤ 1

n0

n1

n0

C2

almost surely. We end the proof with an application of the Gaussian-Poincaré
inequality (see Proposition 2.7).

Lemma 6.20. Under the assumption of Proposition 6.14, there exists a positive
constant C, depending only on (ϕ1, ϕ2, S,∆, α1, α2), such that ∀(t, ε) ∈ [0, 1]×Bn0:

E

[(
E
[

ln Ẑn(t, ε)

n0

∣∣∣∣X
]
− E

[
ln Ẑn(t, ε)

n0

])2 ]
≤ C

n0

. (6.101)



6.D. Concentration of the interpolating free entropy 205

Proof. We see g(X) = E[ln Ẑn(t,ε)|X]/n0 as a function of X. We denote by Ẽ the
conditional expectation E[ · |X]. To lighten the equations, we use the notations
(6.95) to (6.98) introduced in the proof of Lemma 6.19.

We show that the partial derivatives of g are almost surely bounded by C/n0,
where C is a positive constant that does not depend on (t, ε). Exactly like
in the proof of Lemma 6.18, it implies that g satisfies a bounded difference
property and we end the proof with an application of McDiarmid’s inequality (see
Proposition 2.6). For all j ∈ {1, . . . , n0}:

∂g

∂Xj

= −
√

1− t
n

3/2
0

√
n1∆

n2∑

µ=1

n1∑

i=1

Ẽ
[
W

(1)
ij W

(2)
µi X

(1′)
i X(2′)

µ

〈
Γ(t,ε)
µ +

√
∆Zµ

〉
n,t,ε

]

−
√
R1(t, ε)

n
3/2
0

n1∑

i=1

Ẽ
[
W

(1)
ij X

(1′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i ) + Ẑi
〉
n,t,ε

]

= −
√

1− t
n

3/2
0

√
n1∆

n2∑

µ=1

n1∑

i=1

Ẽ
[
W

(1)
ij W

(2)
µi X

(1′)
i X(2′)

µ

〈
Γ(t,ε)
µ

〉
n,t,ε

]

−
√
R1(t, ε)

n
3/2
0

n1∑

i=1

Ẽ
[
W

(1)
ij X

(1′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i )
〉
n,t,ε

]
. (6.102)

We first look at the summands in the second sum on the r.h.s. of (6.102). A
Gaussian integration by parts w.r.t. W (1)

ij yields

Ẽ
[
W

(1)
ij X

(1′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i )
〉
n,t,ε

]

=
1√
n0

Ẽ
[
XjX

(1′′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i )
〉
n,t,ε

]

+
1√
n0

Ẽ
[
X

(1′)
i

〈√
R1(t, ε)(XjX

(1′)
i − xjx(1′)

i )
〉
n,t,ε

]

− Ẽ
[
X

(1′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i )
∂Ĥt,ε

∂W
(1)
ij

〉

n,t,ε

]

+ Ẽ
[
X

(1′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i )
〉
n,t,ε

〈
∂Ĥt,ε

∂W
(1)
ij

〉

n,t,ε

]
. (6.103)

The absolute values of the first two conditional expectations on the r.h.s. of (6.103)
are O(1/√n0) uniformly in (t, ε). This is also the case of the last two conditional
expectations; to show this we can proceed as in the proof of Lemma 6.19 where
∂Ĥt,ε/∂W (1)

ij was already computed. All in all, there exists a positive constant C
that does not depend on (t, ε) and such that almost surely ∀i ∈ {1, . . . , n1}:

∣∣∣Ẽ
[
W

(1)
ij X

(1′)
i

〈√
R1(t, ε)(X

(1)
i − x(1)

i )
〉
n,t,ε

]∣∣∣ ≤ C√
n0

. (6.104)

We now look at the summands in the first sum on the r.h.s. of (6.102). For every
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pair (µ, i) ∈ {1, . . . , n2} × {1, . . . , n1} :

Ẽ
[
W

(1)
ij W

(2)
µi X

(1′)
i X(2′)

µ

〈
Γ(t,ε)
µ

〉
n,t,ε

]

= Ẽ
[
W

(2)
µi X

(1′)
i X(2′)

µ

〈
Γ(t,ε)
µ

〉
n,t,ε

〈
∂Ĥt,ε

∂W
(1)
ij

〉

n,t,ε

]

− Ẽ
[
W

(2)
µi X

(1′)
i X(2′)

µ

〈
Γ(t,ε)
µ

∂Ĥt,ε

∂W
(1)
ij

〉

n,t,ε

]

+
1√
n0

Ẽ
[
W

(2)
µi XjX

(1′′)
i X(2′)

µ

〈
Γ(t,ε)
µ

〉
n,t,ε

]

+

√
1− t
n1n0

Ẽ
[
(W

(2)
µi )2Xj(X

(1′)
i )2X(2′′)

µ

〈
Γ(t,ε)
µ

〉
n,t,ε

]

+

√
1− t
n1n0

Ẽ
[
(W

(2)
µi )2X

(1′)
i X(2′)

µ

〈
XjX

(1′)
i X(2′)

µ − xjx(1′)
i x(2′)

µ

〉
n,t,ε

]
. (6.105)

We can show that the absolute value of the third conditional expectation on
the r.h.s. of (6.105) is a O(n−1

0 ) after integrating by parts w.r.t. W (2)
µi . The

fourth and fifth expectations have their absolute values upper bounded by
2S√
n0n1
‖ϕ′1‖2

∞‖ϕ2‖∞‖ϕ′′2‖∞ and 2S√
n0n1
‖ϕ′1‖2

∞‖ϕ′2‖2
∞, respectively (remember that

E (W
(2)
µi )2 = 1). Regarding the first two conditional expectations on the r.h.s. of

(6.105), first note that

∂Ĥt,ε

∂W
(1)
ij

=
1

∆

√
1− t
n0n1

n2∑

ν=1

W
(2)
νi (Γ(t,ε)

ν +
√

∆Zν)
(
XjX

(1′)
i X(2′)

ν − xjx(1′)
i x(2′)

ν

)

+

√
R1(t, ε)

n0

(√
R1(t, ε)(X

(1)
i − x(1)

i ) + Z̃i
)(
XjX

(1′)
i − xjx(1′)

i

)
. (6.106)

We plug (6.106) in the expressions of the first two conditional expectations. The
latter can then be split into n2 + 1 terms (one term for each summand on the
r.h.s. of (6.106)) such that:

• the term due to ν = µ is directly upperbounded by CE (W
(2)
µi )2/√n1n0 for some

constant C;

• each term due to a ν 6= µ is upperbounded by C′/n2
0 after integrating by

parts w.r.t. W (2)
µi and W (2)

νi ;

• the term due to the last summand on the r.h.s. of (6.106) is upper bounded
by C′′/n0 after integrating by parts w.r.t. W (2)

µi .

All in all, there exists a positive constant C that does not depend on (t, ε) and
such that almost surely ∀(µ, i) ∈ {1, . . . , n2} × {1, . . . , n1}:

∣∣∣Ẽ
[
W

(1)
ij W

(2)
µi X

(1′)
i X(2′)

µ

〈
Γ(t,ε)
µ

〉
n,t,ε

]∣∣∣ ≤ C

n0

. (6.107)
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Combining (6.102), (6.104) and (6.107) gives the existence of a positive constant
C that does not depend on (t, ε) and such that almost surely ∀j ∈ {1, . . . , n0} :
|∂g/∂Xj| ≤ C/n0. We can thus end the proof by McDimarmid’s inequality.

6.E Concentration of the overlap

In this appendix we prove Proposition 6.5. The outline of the proof is similar to
the one provided for the one-layer GLM in [29]. For a fixed t ∈ [0, 1], we treat
the average free entropy as a function of (R1, R2) 7→ fn(t, ε) of R1 = R1(t, ε) and
R2 = R2(t, ε). Note that this is possible because we work under the assumption
that the families of functions (qε)ε∈Bn0

, (rε)ε∈Bn0
are regular, hence ε 7→ R(t, ε) is

a C1-diffeomorphism from Bn0 onto its image. For a fixed t ∈ [0, 1], we also treat
the free entropy

Fn(t, ε) :=
1

n0

lnZn,t,ε(Y
(t,ε), Ỹ(t,ε),W(1),W(2),V) , (6.108)

whose expectation is equal to fn(t, ε), as a function of (R1, R2).
Remember that X(1) = ϕ1

(
W(1)x/√n0,a

)
where the triplet (x,u,a) is sam-

pled from the joint posterior distribution (6.20). Hence, x(1) is nothing but a
sample obtained from the conditionnal probability distribution of X(1) given
(Y(t,ε), Ỹ(t,ε),W(1),W(2),V). Define

L :=
1

n1

n1∑

i=1

(
x

(1)
i

)2

2
− x(1)

i X
(1)
i −

x
(1)
i Z̃i

2
√
R1

. (6.109)

This quantity is closely linked to the overlap Q. We first prove an important
identity.

Lemma 6.21 (Formula for E〈L〉n,t,ε). Assume that (H1), (H2) and (H3) hold.
Then, ∀(t, ε) ∈ [0, 1]× Bn0:

E 〈L〉n,t,ε = −1

2
E 〈Q〉n,t,ε . (6.110)

Proof. Note that ∀i ∈ {1, . . . , n1}:
E
[
X

(1)
i 〈x(1)

i 〉n,t,ε
]

= E 〈x(1)
i 〉2n,t,ε ,

E
[
〈x(1)

i 〉n,t,εZ̃i
]

= E
[
∂〈x(1)

i 〉n,t,ε
∂Ẑi

]
= E

[√
R1(t, ε)

(
〈(x(1)

i )2〉n,t,ε − 〈x(1)
i 〉2n,t,ε

)]
,

where the first identity follows from the Nishimory identity, and the second one
from a Gaussian integration by parts w.r.t. Z̃i. Making use of these two identities,
we directly obtain

E〈L〉n,t,ε =
1

n1

n1∑

i=1

1

2
E 〈(x(1)

i )2〉n,t,ε − E[X
(1)
i 〈x(1)

i 〉n,t,ε]−
E[〈x(1)

i 〉n,t,εZ̃i]
2
√
R1(t, ε)

= − 1

2n1

n1∑

i=1

E 〈x(1)
i 〉2n,t,ε = − 1

2n1

n1∑

i=1

E
[
〈x(1)

i 〉n,t,εX(1)
i

]
= −1

2
E 〈Q〉n,t,ε .
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The fluctuations of the overlap Q are related to the fluctuations of L through
the identity

E
〈
(L − E 〈L〉n,t,ε)2

〉
n,t,ε

=
1

4
E
〈
(Q− E 〈Q〉n,t,ε)2

〉
n,t,ε

+
1

2
E
[
〈Q2〉n,t,ε − 〈Q〉2n,t,ε

]

+
ρ1(n0)

4n1R1

. (6.111)

The full derivation of the identity (6.111) is found in [87, Section 6]. It involves
lengthy algebra using the Nishimori identity and integration by parts w.r.t. the
Gaussian random variables Z̃i. The derivation in [87, Section 6] applies directly to
our problem by doing the identifications X(1)

i ↔ Si, x
(1)
i ↔ Xi, n1 ↔ n, R1 ↔ ε̃.

The identity (6.111) yields the important inequality

E
〈
(L − E 〈L〉n,t,ε)2

〉
n,t,ε
≥ 1

4
E
〈
(Q− E 〈Q〉n,t,ε)2

〉
n,t,ε

. (6.112)

Thanks to (6.112), Proposition 6.5 directly follows from the following result on
the concentration of L.

Proposition 6.22 (Concentration of L around its expectation). Assume that
(H1), (H2), (H3) hold and (qε)ε∈Bn0

, (rε)ε∈Bn0
are regular. Then, there exists a

constant C such that ∀t ∈ [0, 1]:
∫
dt

∫

Bn0

dε

s2
n0

E
〈
(L − E〈L〉n,t,ε)2

〉
n,t,ε
≤ C(ϕ1, ϕ2, α1, α2, S)

s2
n0
n

1/4
0

. (6.113)

Proof. Proposition 6.22 follows from the identity

E 〈(L − E 〈L〉n,t,ε)2〉n,t,ε = E 〈(L − 〈L〉n,t,ε)2〉n,t,ε + E (〈L〉n,t,ε − E 〈L〉n,t,ε)2

and Lemmas 6.23 and 6.24 stated below.

Lemma 6.23 (Concentration of L on 〈L〉n,t,ε). Assume that (H1), (H2), (H3)
hold and (qε)ε∈Bn0

, (rε)ε∈Bn0
are regular. Then, for n0 large enough, ∀t ∈ [0, 1]:

∫

Bn0

dεE〈(L − 〈L〉n,t,ε)2〉n,t,ε ≤
ρ1(1 + ρ1)

α1n0

.

Proof. The first and second derivatives of the free entropy (6.108) with respect to
R1 read

∂Fn

∂R1

= −n1

n0

〈L〉n,t,ε −
n1

2n0

‖X(1)‖2

n1

− 1

2n0

√
R1

n1∑

i=1

Z̃iX
(1)
i ; (6.114)

1

n0

∂2Fn

∂R2
1

=

(
n1

n0

)2

(〈L2〉n,t,ε − 〈L〉2n,t,ε)−
1

4n2
0R

3/2
1

n1∑

i=1

〈
x

(1)
i

〉
n,t,ε

Z̃i . (6.115)
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Taking an expectation on both sides of these two identities gives

∂fn
∂R1

= −n1

n0

E 〈L〉n,t,ε −
n1

2n0

ρ1(n0) = − n1

2n0

(
ρ1(n0)− E 〈Q〉n,t,ε

)
; (6.116)

1

n0

∂2fn
∂R2

1

=

(
n1

n0

)2

E
[
(〈L2〉n,t,ε − 〈L〉2n,t,ε

)]

− 1

4n2
0R1

n1∑

i=1

E[〈(x(1)
i )2〉n,t,ε − 〈x(1)

i 〉2n,t,ε ] . (6.117)

Rearranging the terms in (6.117), we obtain

E〈(L − 〈L〉n,t,ε)2〉n,t,ε =
n0

n2
1

∂2fn
∂R2

1

+
1

4n2
1R1

n1∑

i=1

E
[〈

(x
(1)
i )2

〉
n,t,ε
−
〈
x

(1)
i

〉2

n,t,ε

]

≤ n0

n2
1

∂2fn
∂R2

1

+
ρ1(n0)

4n1ε1
, (6.118)

where the inequality is because
∑n1

i=1 E 〈(x
(1)
i )2〉n,t,ε = E ‖X(1)‖2 = n1ρ1(n0) and

R1 ≥ ε1. By assumption, (qε)ε∈Bn0
, (rε)ε∈Bn0

are regular. Thus, for a fixed
t ∈ [0, 1], R : (ε1, ε2) 7→ (R1(t, ε), R2(t, ε)) is a C1-diffeomorphism whose Jacobian
determinant satisfies ∀ε ∈ Bn0 : |JR(ε)| ≥ 1. Integrating both sides of the last
inequality over ε ∈ Bn0 , we find that

∫

Bn0

dεE〈(L − 〈L〉n,t,ε)2〉n,t,ε ≤
n0

n2
1

∫

R(Bn0 )

dR1dR2

|JR(R−1(R1, R2))|
∂2fn
∂R2

1

+
ρ1(n0)sn0

4n1

∫ 2sn0

sn0

dε1
ε1

≤ n0

n2
1

∫

R(Bn0 )

dR1dR2
∂2fn
∂R2

1

+
ρ1(n0)sn0

4n1

∫ 2sn0

sn0

dε1
ε1

.

Clearly, R(Bn0) ⊆ [sn0 , 2sn0 + rmax]× [sn0 , 2sn0 + ρ1(n0)]. Hence,
∫

Bn0

dεE 〈(L − 〈L〉n,t,ε)2〉n,t,ε

≤ n0

n2
1

∫ 2sn0+ρ1(n0)

sn0

dR2

(
∂fn
∂R1

∣∣∣∣
R1=2sn0+rmax,R2

− ∂fn
∂R1

∣∣∣∣
R1=sn0 ,R2

)
+
ρ1(n0)sn0

4n1

ln 2

≤ −n0

n2
1

∫ 2sn0+ρ1(n0)

sn0

dR2
∂fn
∂R1

∣∣∣∣
R1=sn0 ,R2

+
ρ1(n0)sn0

4n1

ln 2

≤ n0

n2
1

(sn0 + ρ1(n0))
n1

2n0

ρ1(n0) +
ρ1(n0)sn0

4n1

ln 2

=
ρ1(n0)

2n1

(
sn0 + sn0

ln 2

2
+ ρ1(n0)

)
.



210 Entropy and mutual information in feedforward neural networks

For the second inequality, we use that ∂fn/∂R1 is nonpositive, which is clear from
(6.116). For the third inequality, we use that 0 ≤ −∂fn/∂R1 ≤ n1

2n0
ρ1(n0) (see

(6.116)). Finally, sn0 + sn0
ln 2/2 ≤ 1 and ρ1(n0)→ ρ1, so for n0 large enough

∫

Bn0

dεE 〈(L − 〈L〉n,t,ε)2〉n,t,ε ≤
ρ1(1 + ρ1)

α1n0

.

Lemma 6.24 (Concentration of 〈L〉n,t,ε on E 〈L〉n,t,ε ). Assume that (H1), (H2),
(H3) hold and (qε)ε∈Bn0

, (rε)ε∈Bn0
are regular. Then, there exists a constant C such

that ∀t ∈ [0, 1]:

∫

Bn0

dεE (〈L〉n,t,ε − E 〈L〉n,t,ε)2 ≤ C

n
1/4
0

. (6.119)

Proof. We define the two following functions:

F̃ (R1) := Fn(t, ε)−
√
R1

n0

‖ϕ1‖∞
n1∑

i=1

|Z̃i| ,

f̃(R1) := fn(t, ε)−
√
R1

n0

‖ϕ1‖∞
n1∑

i=1

E|Z̃i| .

The addition of the second term makes F̃ convex as its second derivative is positive
(remember that the second derivative ∂2Fn/∂R2

1 is given by (6.115)). Therefore, f̃
is convex as well. Define A := 1

n1

∑n1

i=1(|Z̃i| − E |Z̃i|). Note that

F̃ (R1)− f̃(R1) = Fn(t, ε)− fn(t, ε)−
√
R1‖ϕ1‖∞

n1

n0

A , (6.120)

and the derivative of this difference (we use (6.114) and (6.116)) reads

F̃ ′(R1)− f̃ ′(R1) = −n1

n0

(〈L〉n,t,ε − E 〈L〉n,t,ε)−
n1

2n0

(
‖X(1)‖2

n1

− ρ1(n0)

)

− 1

2n0

√
R1

n1∑

i=1

Z̃iX
(1)
i −

‖ϕ1‖∞
2
√
R1

n1

n0

A . (6.121)

For δ ∈ (0, R1), define Cδ(R1) := f̃ ′(R1 + δ) − f̃ ′(R1 − δ) ≥ 0. By Lemma 2.8
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(applied to G = F̃ , g = f̃), and making use of (6.120),(6.121), ∀δ ∈ (0, R1) :

|〈L〉n,t,ε − E 〈L〉n,t,ε|
≤ Cδ(R1) + δ−1

∑

u∈{−δ,0,δ}

n0

n1

∣∣Fn(R1 + u)− fn(R1 + u)
∣∣+ ‖ϕ1‖∞ |A|

√
R1 + u

+

∣∣∣∣
‖X(1)‖2

n1

− ρ1(n0)

∣∣∣∣+

∣∣∣∣
1

2n1

√
R1

n1∑

i=1

Z̃iX
(1)
i

∣∣∣∣+
‖ϕ1‖∞
2
√
R1

|A|

≤ Cδ(R1) + δ−1
∑

u∈{−δ,0,δ}

n0

n1

∣∣Fn(R1 + u)− fn(R1 + u)
∣∣+

∣∣∣∣
‖X(1)‖2

n1

− ρ1(n0)

∣∣∣∣

+

∣∣∣∣
1

2n1

√
R1

n1∑

i=1

Z̃iX
(1)
i

∣∣∣∣+ ‖ϕ1‖∞
(

1

2
√
R1

+
3
√
R1

δ

)
|A| . (6.122)

By Proposition 6.14 in Appendix 6.D, there exists a constant C such that ∀(t, ε) ∈
[0, 1]×Bn0 : E[(Fn(t, ε)− fn(t, ε))2] ≤ C/n0. In the proof of Appendix 6.C we also
prove the existence of a constant C ′ such that E[(‖X(1)‖2/n1 − ρ1(n0))

2] ≤ C′/n0.
Besides,

E
[(

1

n1

n1∑

i=1

Z̃iX
(1)
i

)2 ]
=

1

n2
1

n1∑

i,j=1

E[Z̃iZ̃jX
(1)
i X1

j ]

=
1

n2
1

n1∑

i=1

E[Z̃2
i (X

(1)
i )2] =

E[(X1
1 )2]

n1

=
ρ1(n0)

n1

,

and EA2 = Var|Z̃1|/n1 ≤ 1/n1. Taking the square and the expectation on both sides
of (6.122), and then making use of the inequality

(∑p
i=1 vi

)2 ≤ p
∑p

i=1 v
2
i as well

as the different upper bounds that we have just mentioned, yields ∀δ ∈ (0, R1) :

E (〈L〉n,t,ε − E 〈L〉n,t,ε)2

7

≤ Cδ(R1)2 +
3Cn0

δ2n2
1

+
C ′

n0

+
ρ1(n0)

4R1n1

+
‖ϕ1‖2

∞
n1

(
1

2R1

+
18R1

δ2

)

≤ Cδ(R1)2 +
12

δ2n0

(
C

α2
1

+
3

α1

K‖ϕ1‖2
∞

)
+
C ′

n0

+
‖ϕ1‖2

∞
2α1ε1n0

+
‖ϕ1‖2

∞
α1ε1n0

, (6.123)

where the second inequality is due to ρ1(n0) ≤ ‖ϕ1‖2
∞, ε1 ≤ R1 ≤ K with

K := 1 + rmax, and n0

n1
≤ 2

α1
for n0 large enough. Note that

|Cδ(R1)| = Cδ(R1) ≤ −f̃ ′(R1 − δ) ≤
n1

2n0

‖ϕ1‖∞
(
‖ϕ1‖∞ +

1√
R1 − δ

)

≤ α1‖ϕ1‖∞
(
‖ϕ1‖∞ +

1√
sn0 − δ

)
. (6.124)
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The first inequality follows from f̃ ′ being a nonpositive function, and the last one
from R1 ≥ sn0 and n1/n0 ≤ 2α1 for n0 large enough. We use (6.124) to obtain
∫

Bn0

dεCδ(R1(t, ε))2 ≤ α1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)∫

Bn
dεCδ(R1(t, ε))

= α1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)∫

R(Bn0 )

dR1dR2Cδ(R1)

|JR(R−1(R1, R2))|

≤ α1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)∫

R(Bn0 )

dR1dR2Cδ(R1)

= α1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)

·
∫ 2sn0+ρ1(n0)

sn0

dR2

(
f̃(2sn0 + rmax + δ)− f̃(2sn0 + rmax − δ)

+
(
f̃(sn0 − δ)− f̃(sn0 + δ)

))
.

By the mean value theorem, we finally have
∫

Bn0

dεCδ(R1(t, ε))2

≤ α1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)∫ 2sn0+ρ1(n0)

sn0

dR2 4δα1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)

= 4δα2
1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)2

(sn0 + ‖ϕ1‖2
∞) . (6.125)

Integrating (6.123) over ε ∈ Bn0 and making use of (6.125) yields

∫

Bn0

dεE (〈L〉n,t,ε − E 〈L〉n,t,ε)2 ≤ 4δα2
1

(
‖ϕ1‖2

∞ +
‖ϕ1‖∞√
sn0 − δ

)2

(sn0 + ‖ϕ1‖2
∞)

+
84s2

n0

δ2n0

(
C

α2
1

+
3

α1

K‖ϕ1‖2
∞

)

+
C ′s2

n0

n0

+
21‖ϕ1‖2

∞ ln(2)sn0

2α1n0

.

Finally, we obtain the desired result from this last upper bound by using that
sn0 ≤ 1/2 and choosing δ = sn0n

−1/4
0 .



Information theoretic limits of
learning a sparse rule 7
7.1 Introduction

Modern tasks in statistical analysis, signal processing and learning require solving
high-dimensional inference problems with a very large number of parameters. This
arises in areas as diverse as learning with neural networks [140], high-dimensional
regression [141] or compressed sensing [77], [142]. In many situations, there appear
barriers to what is possible to estimate or learn when the data becomes too
scarce or too noisy. Such barriers can be of algorithmic nature, but they can
also be intrinsic to the very nature of the problem. A celebrated example is
the impossibility of reconstructing a noisy signal when the noise is beyond the
so-called Shannon capacity of the communication channel [50]. A large amount of
interdisciplinary work has shown that these intrinsic barriers can be understood
as static phase transitions (in the sense of physics) when the system size tends to
infinity (see [64], [143], [144]).

When the problem can be formulated as an (optimal) Bayesian inference
problem the mathematically rigorous theory of these phase transitions is now
quite well developed. Progress initially came from applications of the Guerra-
Toninelli interpolation method (developed for the Sherrington-Kirkpatrick spin-
glass model [145]) to coding and communication theory [43], [146]–[150], and
more recently to low-rank matrix and tensor estimation [34], [36], [46], [66], [69],
[72], [89], [151], [152], compressive sensing and high-dimensional regression [44],
[73], [74], [153], and generalized linear models [29]. In particular, for all these
problems it has been possible to reduce the asymptotic mutual information to
a low-dimensional variational expression, and deduce from its solution relevant
error measures (e.g., minimum mean-square and generalization errors). All these
works consider the traditional regime of statistical mechanics where the system
size goes to infinity while relevant control parameters (such as signal sparsity,
sampling rate, or signal-to-noise ratio) are kept fixed.

However, there exist other interesting regimes for which many of the above
mentioned problems also display fundamental intrinsic limits akin to phase transi-
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tions. Consider for example the problem of compressive sensing. An interesting
regime is one where both the number of nonzero components and of samples
scale in a sublinear manner as the system size tends to infinity. In this case we
would like to identify the phase transition, if there is any, and its nature. This
question has first been addressed recently in the framework of compressed sensing
for binary Bernoulli signals by [32], [33], [154]. An all-or-nothing phenomenon is
identified, that is, in an appropriate sparse regime, the minimum mean-square
error (MMSE) sharply drops from its maximum possible value (no reconstruction)
for “too small” sampling rates to zero (perfect reconstruction) for “large enough”
sampling rates. The interest of such regime is not limited to estimation problems.
It is also relevant from a learning point of view, e.g., it corresponds to learning
scenarios where we have access to a high number of features but only a sublinear
number of them – unknown to us – are relevant for the learning task at hand.

Examples abound where the “bet on sparsity principle” [155], [156] is of
utmost importance for the interpretability of a high-dimensional model. Let us
mention the MNIST handwritten digit database, where each digit can be seen as a
784 = 28× 28-dimensional binary vector representing the pixels whereas the digits
effectively live in a space of the order of tens of dimensions [157], [158]. Another
example of effective sparsity comes from natural images which are often sparse
in a wavelet basis [112]. Then, a fundamental question is “when is it possible
to achieve a low estimation or generalization error with a sublinear amount of
samples (sublinear with respect to the total number of features)?”

In this contribution we address this question for a mathematically simple, but
precise and tractable, setting. We consider generalized linear models in the regime
of vanishing sparsity and sample rate, or equivalently, of sublinear number of
data samples and nonzero signal components. As explained below these models
can be used for estimation as well as learning, and we uncover in the sublinear
regime intrinsic statistical barriers to these tasks in the form of sharp phase
transitions. These statistical barriers are computed exactly and thus provide
precise benchmarks to which algorithmic performance can be compared.

Let us outline the mathematical setting (further detailed in Section 7.2). In
a probabilistic setting the unknown signal vector X∗ ∈ Rn has entries drawn
independently at random from a distribution P

(n)
X := ρnP0 + (1 − ρn)δ0 with

P0 a fixed distribution. The parameter ρn controls the sparsity of the signal so
that X∗ has kn := nρn nonzero components on average. We observe the data
Y = ϕ

(
WX∗/

√
kn

)
∈ Rmn obtained by first multiplying the signal with a known

mn × n random matrix W whose entries are independent standard Gaussian
random variables, and then applying ϕ component-wise. The number of data
points is controlled by the sampling rate αn, i.e., mn := αnn. We consider the
regime (ρn, αn) → (0, 0) as n goes to infinity with αn = γρn| ln ρn|, for which
sharp phase transitions appear when P0 is discrete with finite support. Note that
both mn and kn scale sublinearly as n→ +∞.

The model can be interpreted as either an estimation problem or a learning
problem:

• In the estimation interpretation, we assume a purely Bayesian (or optimal)
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setting. We know the model, the activation function ϕ, the prior P (n)
X as

well as the measurement matrix W. Our goal is then to determine what is
the lowest reconstruction error that we can achieve, i.e., what is the average
minimum mean-square error k−1

n E ‖X∗ − E[X∗|Y,W]‖2 when n gets large.

• In the learning interpretation, we consider a teacher-student scenario in which
a teacher hands out training samples {(Yµ, (Wµi)

n
i=1)}mnµ=1 to a student. The

teacher produces the output label Yµ by feeding the input (Wµi)
n
i=1 to its own

one-layer neural network with activation function ϕ and weights X∗ = (X∗i )ni=1.
The student – who is given the model and the prior – has to learn the weights
X∗ of the teacher’s one-layer neural network by minimizing the empirical train-
ing error of themn training samples. For example, the binary perceptron corre-
sponds to ϕ = sign and Yµ ∈ {±1}. Of particular interest is the generalization
error. Given a new – previously unseen – random pattern Wnew := (Wnew,i)

n
i=1

whose true label is Ynew (generated by the teacher’s neural network), the
optimal generalization error is E[(Ynew − E[ϕ(WT

newX∗/
√
kn)|Y,W,Wnew])2]; the

error made when estimating Ynew in a purely Bayesian way.

Let us summarize informally our results. We set αn = γρn| ln ρn| where γ is
fixed and ρn vanishes as n diverges. We first rigorously determine the mutual
information m−1

n I(X∗; Y|W) in terms of a low-dimensional variational problem,
see Theorem 7.1 which also provides a precise control of the finite size fluctuations.
Remarkably, when P0 is a discrete distribution with finite support, this variational
problem simplifies to a minimization problem over a finite set of values, see
Theorem 7.2. For such signals, using I-MMSE type formulas [51], we can deduce
from the solution to this minimization problem the asymptotic MMSE and optimal
generalization error, see Theorem 7.3. Our analysis shows that both errors are
nonincreasing piecewise constant functions of γ. In particular, if the entries of
|X∗| are either 0 or some a > 0 then both errors display an all-or-nothing behavior
as n→ +∞, with a sharp transition at a threshold γ = γc explicitly computed.
These findings are illustrated, and their significance discussed, in Section 7.3.

In this chapter the generalized linear model is treated by entirely different
methods than the linear model in [32], [33]. Importantly, the sparsity regime
treated by our method requires the sparsity ρn to go to zero slower than n−1/9,
while it has to go to zero faster than n−1/2 in the results of [33] for the linear case.
From this angle, both results complement each other. Our proof technique for
Theorem 7.1 exploits the adaptive interpolation method. We adapt the analysis of
[29] in a non-trivial way in order to consider the new scaling regime of our problem
where αn = γρn| ln ρn|, and ρn → 0 as n gets large instead of being fixed. We
show that the adaptive interpolation can still be carried through, which requires
a more refined control of the error terms compared to [29]. It is interesting, and
not a priori obvious, that this can be done since this is not the usual extensive
regime of statistical mechanics. For example, the mutual information has to be
normalized by the subextensive quantity mn = O(n). Quite remarkably, with this
suitable normalization, the asymptotic normalized mutual information, MMSE
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and optimal generalization error have a similar form to those famously found in
ordinary thermodynamic regimes in physics [159]–[162].

In Section 7.2 we present the setting and state our theoretical results on the
normalized mutual information and MMSE in the sublinear regime. We use
these results in Section 7.3 to uncover the all-or-nothing phenomenon for general
activation functions. In Section 7.4 we show how to simplify the formula for the
asymptotic normalized mutual information of Theorem 7.1 when X∗ is a sparse
binary signal (i.e., its entries are zero or one with a vanishing probability ρn of
being one). This simplified formula corresponds to Theorem 7.2 and demonstrates
the existence of the all-or-nothing phenomenon for such sparse binary signals.
Besides, the proof in Section 7.4 presents all the main ideas in order to prove
Theorem 7.2 for more general priors P (n)

X while being simpler due to the binary
nature of the signal. The full proofs of our results are given in the appendices.

7.2 Problem setting and main results

7.2.1 Generalized linear estimation of low sparsity signals
at low sampling rates

For all n ∈ N∗, we define the probability distribution

P
(n)
X := (1− ρn)δ0 + ρnP0 , (7.1)

where δ0 is the Dirac distribution (the distribution fully suported on {0}), P0

is a probability distribution over R with finite second moment EX0∼P0 [X
2
0 ], and

(ρn)n∈N∗ is a decreasing sequence of real numbers in (0, 1). Let (X∗i )ni=1
i.i.d.∼ P

(n)
X

be the components of a n-dimensional signal vector X∗. This is also denoted
by X∗ i.i.d.∼ P

(n)
X . The parameter ρn ∈ (0, 1) controls the sparsity of the signal;

the latter being made of kn := ρnn nonzero components in expectation. We are
interested in low sparsity regimes where kn = O(n).

Let kA be a nonnegative integer, PA a probability distribution over RkA , and
ϕ : R × RkA → R a measurable function. Let mn := αnn where (αn)n∈N∗ is a
decreasing sequence of positive sampling rates. We have access to mn data points
Y := (Yµ)mnµ=1 generated as

Yµ := ϕ

(
(WX∗)µ√

kn
,Aµ

)
+
√

∆Zµ , 1 ≤ µ ≤ mn , (7.2)

where (Aµ)mnµ=1
i.i.d.∼ PA, (Zµ)mµ=1

i.i.d.∼ N (0, 1) is an additive white Gaussian noise
(AWGN), ∆ > 0 is the noise variance, and W is a mn × n measurement (or data)
matrix with independent entries having zero mean and unit variance. Note that
the noise (Zµ)mµ=1 can be considered as part of the model, or as a “regularising”
noise needed for the analysis but that can be set arbitrarily small by tuning ∆.
Typically, and as n gets large, (WX∗)µ/

√
kn = Θ(1). The estimation problem is to

recover X∗ from the knowledge of Y, W, ∆, ϕ, P (n)
X and PA. The realization of
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the random stream (Aµ)mnµ=1 itself, if present in the model, is unknown. It will be
helpful to think of the measurements as the outputs of a channel,

Yµ ∼ Pout

(
·
∣∣∣∣
(WX∗)µ√

kn

)
, 1 ≤ µ ≤ mn . (7.3)

The transition kernel Pout admits a transition density with respect to Lebesgue’s
measure given by

Pout(y|x) :=
1√

2π∆

∫
dPA(a) e−

1
2∆

(y−ϕ(x,a))2

. (7.4)

The random stream (Aµ)mnµ=1 represents any source of randomness in the model.
For example, the logistic regression

P(Yµ = 1) = f((WX∗)µ/
√
kn) , P(Yµ = −1) = 1− f((WX∗)µ/

√
kn) ,

where f(x) := (1 + e−λx)−1, is modeled by considering a teacher that draws i.i.d.
uniform numbers Aµ ∼ U(0, 1) and then obtains the labels through

Yµ = 1{Aµ≤f((WX∗)µ/
√
kn)} − 1{Aµ≥f((WX∗)µ/

√
kn)} ,

where 1E denotes the indicator function of an event E . In the absence of such a
randomness in the model, the activation ϕ : R→ R is deterministic, kA = 0 and
the integral

∫
dPA(a) in (7.4) simply disappears. Our numerical experiments in

Section 7.3 are for deterministic activations but all of our theoretical results hold
for the broader setting.

We have presented the problem from an estimation point of view. In this
case, the important quantity to assess the performance of an algorithm estimating
X∗ is the mean-square error. Another point of view is the learning one where
each row Wµ,· of the matrix W is the input to a one-layer neural network whose
weights X∗ have been sampled independently at random by a teacher. The student
is given the input/output pairs (Wµ,· , Yµ)mnµ=1 as well as the model used by the
teacher. The student’s role is then to learn the weights. In this case, more than
the mean-square error, the important quantity is the generalization error.

7.2.2 Asymptotic normalized mutual information

The mutual information I(X∗; Y|W) between the signal X∗ and the data Y
given the matrix W is the main quantity of interest in our work. Before stating
Theorem 7.1 on the value of this mutual information, let us introduce two scalar
denoising models that play a key role.

The first model is an additive Gaussian channel. Let X∗ ∼ P
(n)
X be a scalar

random variable. We observe Y (r) :=
√
r X∗ + Z where r ≥ 0 plays the role of a

signal-to-noise ratio (SNR) and the noise Z ∼ N (0, 1) is independent of X∗. We
denote by I

P
(n)
X

(r) := I(X∗;Y (r)) the mutual information between the signal of

interest X∗ and Y (r). It depends on ρn through the prior P (n)
X and reads

I
P

(n)
X

(r) =
rρnE[X2

0 ]

2
− E ln

∫
dP

(n)
X (x)erX

∗x+
√
rZx− rx2

2 , (7.5)
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where X0 ∼ P0. The function I
P

(n)
X

is nondecreasing, convex and Lipschitz
continuous with Lipschitz constant ρnE[X2

0 ]/2 on [0,+∞), see Lemma 2.3.
The second scalar channel is linked to the transition kernel Pout defined in

(7.4). Let U and V be two independent standard Gaussian random variables.
In this scalar estimation problem, we want to infer U from the knowledge of
V and the observation Ỹ (q,ρ) ∼ Pout( · |

√
ρ− q U +

√
q V ) where ρ > 0 and

q ∈ [0, ρ]. Equivalently, Ỹ (q,ρ) := ϕ(
√
ρ− q U +

√
q V ) +

√
∆Z with Z ∼ N (0, 1)

independent of (U, V ). We denote by IPout(q, ρ) := I(U ; Ỹ (q,ρ)|V ) the conditional
mutual information between U and Ỹ (q,ρ) given V . Note that

IPout(q, ρ) = E lnPout

(
Ỹ (ρ,ρ)|√ρ V

)
−E ln

∫
du

e−
u2

2√
2π
Pout

(
Ỹ (q,ρ)|√ρ− q u+

√
q V
)
.

(7.6)
Like I

P
(n)
X

, the function IPout has nice monotonicity, concavity and Lipschitzness
properties that are listed in Lemma 7.22 and are important for the proof of
Theorem 7.1 stated below.

We use the mutual informations (7.5) and (7.6) to define the replica symmetric
potential

iRS(q, r;αn, ρn) :=
1

αn
I
P

(n)
X

(αn
ρn
r
)

+ IPout(q,EX2
0 )− r(E[X2

0 ]− q)
2

, (7.7)

where X0 ∼ P0. Our first result links the extrema of this potential to the mutual
information of our original problem.

Theorem 7.1 (Normalized mutual information of the GLM at sublinear sparsity
and sampling rate). Suppose that ∆ > 0 and that the following hypotheses hold:

(H1) There exists S > 0 such that the support of P0 is included in [−S, S].
(H2) ϕ is bounded, and its first and second partial derivatives with respect to its

first argument exist, are bounded and continuous. They are denoted ∂xϕ,
∂xxϕ.

(H3) Wµi
i.i.d.∼ N (0, 1) for (µ, i) ∈ {1, . . . ,mn} × {1, . . . , n}.

Let ρn = Θ(n−λ) with λ ∈ [0, 1/9) and αn = γρn| ln ρn| with γ > 0. Then, for all
n ∈ N∗:

∣∣∣∣
I(X∗; Y|W)

mn

− inf
q∈[0,EX2

0 ]
sup
r≥0

iRS(q, r;αn, ρn)

∣∣∣∣ ≤
√
C | lnn|1/6
n

1
12
− 3λ

4

,

where C is a polynomial in
(
S,
∥∥ ϕ√

∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞, λ, γ

)
with positive coef-

ficients.

Hence, the asymptotic mutual information is given to leading order by the
variational formula infq∈[0,EX2

0 ] supr≥0 iRS(q, r;αn, ρn). Note that this variational
formula depends on ρn. Theorem 7.1 does not say anything on its value in the
asymptotic regime, e.g., does it converge or diverge? Our next theorem answers
this question when P0 is a discrete distribution with finite support.
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7.2.3 Specialization to discrete priors: all-or-nothing
phenomenon and its generalization

Theorem 7.2 (Specialization of Theorem 7.1 to discrete priors with finite support).
Suppose that ∆ > 0 and that P (n)

X := (1 − ρn)δ0 + ρnP0 where P0 is a discrete
distribution with finite support

supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v1, v1, v2, . . . , vK} ,

where 0 < v1 < v2 < · · · < vK < vK+1 := +∞. Further assume that the hypothe-
ses (H2) and (H3) in Theorem 7.1 hold. Let ρn = Θ(n−λ) with λ ∈ (0, 1/9) and
αn = γρn| ln ρn| with γ > 0. Then,

lim
n→+∞

I(X∗; Y|W)

mn

= min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ
(7.8)

where X0 ∼ P0.

To prove Theorem 7.2 we compute the limit of infq∈[0,EX2
0 ] supr≥0 iRS(q, r;αn, ρn)

when ρn vanishes. We show how to compute this limit for binary sparse signals,
i.e., P0 = δ1, in Section 7.4. We give the proof for a general discrete distribution
with finite support P0 in Appendix 7.B.

When doing estimation, one important metric to assess the quality of an
estimator X̂(Y,W) is its mean-square error E ‖X∗−X̂(Y,W)‖2/kn. The latter is always
lower bounded by the mean-square error of the Bayesian estimator E[X∗|Y,W];
the so-called minimum mean-square error (MMSE). Remarkably, once we have
Theorem 7.2, we can obtain the asymptotic MMSE with a little more work. First,
we have to introduce a modified inference problem where in addition to the
observations Y we are given Ỹ(τ) =

√
αnτ/ρn X∗ + Z̃. When τ is close enough to

0, the analysis yielding Theorem 7.2 can be adapted to obtain the limit

lim
n→+∞

I(X∗; Y, Ỹ(τ)|W)

mn

= min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ
+
τE[X2

01{|X0|<vk}]

2
.

We can then apply the I-MMSE relationship1 [18], [51] to obtain the asymptotic
MMSE.

Theorem 7.3 (Asymptotic MMSE). Under the assumptions of Theorem 7.2, if
the minimization problem on the right-hand side of (7.8) has a unique solution
k∗ ∈ {1, . . . , K + 1} then

lim
n→+∞

E‖X∗ − E[X∗|Y,W]‖2

kn
= E

[
X2

01{|X0|<vk∗}
]
, (7.9)

where X0 ∼ P0.
1The derivative of I(X∗;Y,Ỹ(τ)|W)/mn with respect to τ at τ = 0 is equal to half the MMSE

of the original problem.
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We prove Theorem 7.3 in Appendix 7.C. We remark that it is possible with
more technical work [29, Appendix C.2] to weaken (H2) in Theorems 7.2 and 7.3
to the assumption

There exists ε > 0 such that the sequence E|ϕ((WX∗)1/
√
kn,A1)|2+ε

is bounded, and for almost all a ∼ PA the function x 7→ ϕ(x,a) is
continuous almost everywhere.

Hence, Theorems 7.2 and 7.3 also apply to the linear activation ϕ(x) = x, the
perceptron ϕ(x) = sign(x) and the ReLU ϕ(x) = max(0, x).

7.3 The all-or-nothing phenomenon

We now highlight interesting consequences of our results regarding the MMSE of
the estimation problem as well as the optimal generalization error of the learning
problem in the teacher-student scenario. Reeves et al. [33] have proved the
existence of an all-or-nothing phenomenon for the linear model when X∗ is a 0 -1
vector and here we extend their results in two ways: i) for the estimation error
of a generalized linear model, and ii) for the generalization error of a perceptron
neural network with general activation function ϕ.

We consider signals whose entries are either Bernoulli random variables, i.e.,
P

(n)
X := (1−ρn)δ0 +ρnP0 with P0 = δ1, or Bernoulli-Rademacher random variables,

i.e., P (n)
X := (1 − ρn)δ0 + ρnP0 with P0 = (δ1+δ−1)/2. In both cases, the second

moment of a random variable X0 ∼ P0 is2 EX2
0 = 1. We place ourselves in the

regime of Theorem 7.3 where αn := γρn| ln ρn| for some fixed γ > 0 and ρn → 0
in the high-dimensional limit n→ +∞.

MMSE In this regime, and for such signals, Theorem 7.3 states that the
minimum mean-square error MMSE(X∗|Y,W) := E‖X∗−E[X∗|Y,W]‖2

kn
satisfies:

lim
n→+∞

MMSE(X∗|Y,W) =

{
0 if IPout(0, 1) > γ−1 ;

1 if IPout(0, 1) < γ−1 .
(7.10)

Therefore, we locate an all-or-nothing phase transition at the threshold

γc :=
1

IPout(0, 1)
. (7.11)

Remember that γ controls the amount mn of training samples. In the high-
dimensional limit, perfect reconstruction is possible if γ > γc (the asymptotic
MMSE is zero) while it is impossible to do better than a random guess if γ < γc
(the asymptotic MMSE is equal to limn→+∞ E‖X∗−EX∗‖2/kn = 1; the asymptotic
MMSE in the absence of observations). As IPout(0, 1) := I(U ;ϕ(U,A) +

√
∆Z)

where U,Z i.i.d.∼ N (0, 1) ⊥ A ∼ PA, the threshold γc is fully determined by
2Note that there is no loss of generality here. We can always rescale ϕ and P0 jointly to

satisfy EX2
0 = 1.
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Figure 1: Threshold γc of the all-or-nothing phase transition for different activation
functions as a function of the noise variance ∆.

Activation ϕ(x) γc(∆ = 0) γc(∆) for ∆ > 0

x 0 2/ ln(1 + ∆−1)

sign(x) 1/ln 2 1/
(

ln 2− E[ln(1 + e−2(1+
√

∆Z)/∆)]
)

max(0, x) 0 4∆/
(
1− 4∆E[h∆(Z) lnh∆(Z)]

)

with h∆(Z) := 1
2

+
√

∆
1+∆

e
Z2

2(1+∆)
∫ Z√

1+∆

−∞
dt√
2π
e−

t2

2

Table 1: Closed-formed formulas of γc for different activation functions. We use a standard
Gaussian random variable Z ∼ N (0, 1) in the formulas.

the activation function and the amount of noise, and it can be easily evaluated
in a number of cases. In Figure 1 we draw γc for ϕ(x) = x, ϕ(x) = sign(x),
ϕ(x) = max(0, x) and noise variance ∆ ∈ [0, 0.5]. We see that for ∆ small enough
the ReLU activation requires less training samples to learn the sparse rule than
the linear one; it is the opposite once ∆ becomes large enough. When ∆ diverges
both the linear and sign activations have the asymptote γc ∼ 2∆ while the ReLU
activation has another steeper asymptote γc ∼ a∆, a ≈ 5.87. The corresponding
formulas for γc are given in Table 1. Note that for the random linear model
ϕ(x) = x, the threshold αc(ρn) := γcρn| ln ρn| = 2ρn| ln ρn|/ln(1+∆−1) is in agreement
with the sample rate n∗ for which [33] prove that weak recovery is impossible
below it while strong recovery is possible above.

Optimal generalization error When learning in a (matched) teacher-student
scenario, the components of X∗ correspond to the unknown weights of the teacher’s
one-layer neural network. The student is given the model and training samples
{(Yµ, (Wµi)

n
i=1)}mnµ=1. Then, the optimal generalization error is the MMSE for

predicting the output

Ynew ∼ Pout

(
·
∣∣∣∣
WT

new X∗√
kn

)

generated by a new input Wnew := (Wnew,i)
i.i.d.∼ N (0, 1). More precisely, the

optimal generalization error is

MMSE(Ynew|Y,W,Wnew) := E
[(
Ynew − E[Ynew|Y,W,Wnew]

)2]
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Based on our proof of Theorem 7.3 and the formula for the optimal generalization
error when ρn = Θ(1) (regime of linear sparsity and sampling rate) [29, Theorem
2] we conjecture that, under the assumptions of Theorem 7.3,

lim
n→+∞

MMSE(Ynew|Y,W,Wnew)

= ∆ + E
[(
ϕ(V,A)− E

[
ϕ(
√

EX2
0 − q∗ U +

√
q∗ V,A)

∣∣V
])2 ]

, (7.12)

where U, V ∼ N (0, 1), A ∼ PA are independent random variables and q∗ is such
that EX2

0−q∗ = E[X2
01{|X|<vk∗}] is the asymptotic MMSE (7.9). For Bernoulli and

Bernoulli-Rademacher signals (the ones considered in this section), it simplifies to

lim
n→+∞

MMSE(Ynew|Y,W,Wnew)

=

{
∆ + E

[(
ϕ(V,A)− E[ϕ(V,A)|V ]

)2 ] if γ > γc ;

∆ + Var(ϕ(V,A)) if γ < γc .
(7.13)

We thus find that the optimal generalization error also displays an all-or-nothing
phase transition at γc. More precisely, if γ < γc then the optimal generalization
error equals ∆+Var(ϕ(V,A)) when n→ +∞. This is the same generalization error
achieved by the dumb label estimator in the Bayesian sense; the one predicting
the new label to be the output value averaged over all possible inputs, weights and
noise. If instead γ > γc then it is equal to ∆ + E[Var(ϕ(V,A)|V )]; the irreducible
error due to both the noise Z and the random stream (Aµ)mnµ=1.

Proving (7.12) entails introducing side observations in the original problem
and differentiating with respect to the signal-to-noise ratio of this side channel to
exploit the I-MMSE relationship, in a similar fashion to what we do in the proof
of Theorem 7.3 (see Appendix 7.C). The side observations have the same form
than the ones used in [29, Section 5 of SI Appendix] to determine the asymptotic
optimal generalization error in the regime of linear sparsity and sampling rate.

Illustration of the all-or-nothing phenomenon In Figure 2 we use (7.10) to
draw in solid black lines the asymptotic MMSE in the regime of sublinear sparsity
and sampling rate, for both priors Bernoulli and Bernoulli-Rademacher and the
activation functions ϕ(x) = x, ϕ(x) = sign(x), ϕ(x) = max(0, x). For comparison
we also draw in dashed colored lines the asymptotic MMSE in regimes of linear
sparsity and sampling rate, that is, ρn = ρ and αn = γρ| ln ρ| are constant with n.
In this case, the asymptotic MMSE is given by [29, Theorem 2]

lim
n→+∞

MMSE(X∗|Y,W) = 1− q∗ , (7.14)

whenever arg minq∈[0,1] supr≥0 iRS(q, r; γρ| ln ρ|, ρ) is a singleton {q∗}. In order to
optimize the potential iRS(q, r; γρ| ln ρ|, ρ), we initialize q ∈ [0, 1] at different values
and iterate the fixed point equation (obtained from the stationary point equation
∇iRS = 0)

r = −2
∂IPout

∂q

∣∣∣∣
q,1

, q = − 2

ρn
I ′
P

(n)
X

(
αn
ρn
r

)
. (7.15)
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Figure 2: Asymptotic MMSE as a function of γ/γc in the regime of sublinear sparsity and
sampling rate (ρn = Θ(n−λ) with λ ∈ (0, 1/9), solid black line), and in the regime of linear
sparsity and sampling rate (ρn fixed, dashed colored lines). Dotted lines correspond to algo-
rithmic performance in the regime of linear sparsity and sampling rate (iterating (7.15) from
q = 10−10). Left panels: Bernoulli prior. Right panels: Bernoulli-Rademacher prior. From
top to bottom: ϕ(x) = x,∆ = 0.1;ϕ(x) = sign(x),∆ = 0;ϕ(x) = max(0, x),∆ = 0.5.

Finally, the fixed point q∗ yielding the lowest potential supr≥0 iRS(q∗, r; γρ| ln ρ|, ρ)
is used to determine the MMSE thanks to (7.14). In all configurations the
asymptotic MMSE jumps from a value close to 1 to approximately 0 as γ increases
past γc. As ρn = ρ gets closer to 0, this jump becomes sharper with the MMSE
approaching 0 or 1 depending on which side of γc we are. Though this jump
becomes sharper, a pure all-or-nothing phase transition only occurs in the regime
of sublinear sparsity and sampling rate (solid black lines).

In Figure 3 we use (7.13) to plot in solid black lines the asymptotic optimal
generalization error for the Bernoulli prior and the same activation functions. The
dashed colored lines again correspond to regimes of linear sparsity and sampling
rate; they are obtained using the formula for the asymptotic optimal generalization
error given by [29, Theorem 2],

lim
n→+∞

MMSE(Ynew|Y,W,Wnew)

= ∆ + E
[(
ϕ(V,A)− E[ϕ(

√
1− q∗ U +

√
q∗ V,A)|V ]

)2 ]
. (7.16)

In all configurations the optimal generalization error jumps from a value close to
∆+Var(ϕ(V )) to approximately ∆ as γ increases past γc (note that the activations
are deterministic so there is no contribution from A in the error). The value
∆ is as good as the optimal generalization error can get, i.e., it is equal to the
noise variance which is the squared error we would get if we were given the true
weights X∗. Again, the jump gets sharper as ρn = ρ approaches 0 but a pure
all-or-nothing phase transition only occurs in the regime of sublinear sparsity and
sampling rate (solid black lines).
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Figure 3: Asymptotic optimal generalization error as a function of γ/γc in the regime of
sublinear sparsity and sampling rate (ρn = Θ(n−λ) with λ ∈ (0, 1/9), solid black line), and
in the regime of linear sparsity and sampling rate (ρn is fixed, dashed colored lines). Dotted
lines correspond to algorithmic performance in the regime of linear sparsity and sampling
rate (iterating (7.15) from q = 10−10). Top left: random linear model ϕ(x) = x, ∆ = 0.1.
Top right: perceptron ϕ(x) = sign(x),∆ = 0. Bottom: ReLU ϕ(x) = max(0, x),∆ = 0.5.

The all-or-nothing behavior of the asymptotic MMSE and optimal generaliza-
tion error is quite striking. Indeed, in the limit of vanishing sparsity and sampling
rate either estimation or learning is as good as it can get or as bad as a random
guess. This purely dichotomic behavior only occurs in the truly sparse limit,
and is shown here to be pretty general in the sense that it occurs for a wide
variety of activation functions. An important aspect of our results is to provide
a definitive statistical benchmark allowing to measure the quality of algorithms
with respect to the minimal amount of sparse data needed to estimate or learn.
This benchmark is provided by non-trivial formulas (7.11) for the threshold γc
given for several examples in Table 1. We note that such precise benchmarks are
quite rarely obtained in traditional machine learning approaches.

Further remarks Algorithmic aspects are beyond the scope of this paper.
However, we make a few remarks about generalized approximate message passing
(GAMP) algorithms. In the regime of linear sparsity and sampling rate, the
state evolution equations precisely tracking the asymptotic performance of the
algorithm are linked to the fixed point equation (7.15) [85]. The fixed point qalg

reached by initializing (7.15) arbitrarily close to q = 0 can be used in (7.14) and
(7.16) – instead of q∗– to obtain both the mean-square and generalization errors
of GAMP algorithms. These errors are represented with dotted colored lines
in Figures 2 and 3. We observe an algorithmic-to-statistical gap, that is, the
dotted lines corresponding to the algorithmic performance do not drop to zero
around γc but at a higher algorithmic threshold. In this work we don’t study
the performance of GAMP algorithms in the regime of sublinear sparsity and
sampling rate. However, reference [154] rigorously shows that in this regime the
all-or-nothing behavior also occurs at an algorithmic level for GAMP algorithms.
It would be highly desirable to extend their results to other activations and derive
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the corresponding thresholds.

7.4 Proof of Theorem 7.2 for a Bernoulli prior

In this section, we assume that P (n)
X := (1− ρn)δ0 + ρnδ1, that is, each entry of

the signal X∗ is either 0 with probability 1 − ρn or 1 with probability ρn. We
prove Theorem 7.2 for this specific case. The proof contains all the main ideas
needed to establish Theorem 7.2 while being technically simpler. The interested
reader can find the proof of Theorem 7.2 for a general discrete prior with finite
support in Appendix 7.B.

Let us introduce a few notations. For fixed ρn, αn > 0, we denote the variational
problem appearing in Theorem 7.1 by

I(ρn, αn) := inf
q∈[0,1]

sup
r≥0

iRS(q, r;αn, ρn) ,

where the potential iRS is defined in (7.7). Let X∗ ∼ P
(n)
X and Z ∼ N (0, 1) be

independent random variables. We define for all r ≥ 0:

ψ
P

(n)
X

(r) := E
[

ln
(

1− ρn + ρne
− r

2
+rX∗+

√
r Z
)]

. (7.17)

Note that I
P

(n)
X

(r) := I(X∗;
√
r X∗ + Z) = rρn

2
− ψ

P
(n)
X

(r) so

I(ρn, αn) = inf
q∈[0,1]

IPout(q, 1) + sup
r≥0

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}
. (7.18)

The latter expression for I(ρn, αn) is easier to work with. We point out that
ψ
P

(n)
X

is twice differentiable, nondecreasing, strictly convex and (ρn/2)-Lipschitz
continuous on [0,+∞) (see Lemma 2.3) while IPout(·, 1) is nonincreasing and
concave on [0, 1] (see [29, Appendix B.2, Proposition 18]).

Our goal is now to compute the limit of I(ρn, αn) when αn := γρn| ln ρn| for a
fixed γ > 0 and ρn → 0. Once we know this limit, we directly obtain Theorem 7.2
thanks to Theorem 7.1. We first show that, for all q in a growing interval, the
point at which the supremum over r is achieved is located in an interval that
shrinks on r∗ := 2/γ.

Lemma 7.4. Let P (n)
X := (1− ρn)δ0 + ρnδ1 and αn := γρn| ln ρn| for a fixed γ > 0.

Define gρn : r ∈ (0,+∞) 7→ 2
ρn
ψ′
P

(n)
X

(
αn
ρn
r
)
and ∀ρn ∈ (0, e−1) :

aρn := gρn

(
2(1− | ln ρn|−

1
4 )

γ

)
, bρn := gρn

(
2(1 + | ln ρn|−

1
4 )

γ

)
. (7.19)

Then, [aρn , bρn ] ⊂ (ρn, 1) and limρn→0 aρn = 0, limρn→0 bρn = 1. Besides, for every
q ∈ (ρn, 1) there exists a unique r∗n(q) ∈ (0,+∞) such that

r∗n(q)q

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r∗n(q)

)
= sup

r≥0

rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)
, (7.20)
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and

∀q ∈ [aρn , bρn ] :
2(1− | ln ρn|−

1
4 )

γ
≤ r∗n(q) ≤ 2(1 + | ln ρn|−

1
4 )

γ
, (7.21)

∀q ∈ [bρn , 1) : r∗n(q) ≥ 2(1 + | ln ρn|−
1
4 )

γ
. (7.22)

Proof. For every q ∈ (0, 1) we define fρn,q : r ∈ [0,+∞) 7→ rq
2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r
)

whose supremum over r we want to compute. The derivative of fρn,q with respect
to r reads

f ′ρn,q(r) =
q

2
− 1

ρn
ψ′
P

(n)
X

(
αn
ρn
r

)
.

The derivative ψ′
P

(n)
X

is continuously increasing and thus one-to-one from (0,+∞)

onto (
ψ′
P

(n)
X

(0), lim
r→+∞

ψ′
P

(n)
X

(r)

)
=

(
ρ2
n

2
,
ρn
2

)
.

Therefore, if q ∈ (0, ρn], f ′ρn,q is negative on the whole interval (0,+∞) and the
supremum of fρn,q is achieved at r = 0. On the contrary, if q ∈ (ρn, 1), there exists
a unique solution r∗n(q) ∈ (0,+∞) to the stationary point equation f ′ρn,q(r) = 0.
As fρn,q is concave (given that ψP0,n is convex), this solution r∗n(q) is the global
maximum of fρn,q. We now transform the critical point equation,

fρn,q(r) = 0⇔ 2

ρn
ψ′
P

(n)
X

(
αn
ρn
r

)
= q ⇔ gρn(r) = q ,

where gρn : r 7→ 2
ρn
ψ′
P

(n)
X

(
αn
ρn
r
)
is increasing and one-to-one from (0,+∞) to (ρn, 1).

For all ρn ∈ (0, e−1), | ln ρn|−
1
4 ∈ (0, 1). By Lemma 7.5 (following the proof)

applied to ε = | ln ρn|−
1
4 , we have

ρn < aρn := gρn

(
2(1− | ln ρn|−

1
4 )

γ

)
≤

exp
(
− | ln ρn|

1
2

16(1−| ln ρn|−1/4)

)

2
+

exp
(
− | ln ρn|

3
4

2

)

1− ρn
;

1 > bρn := gρn

(
2(1 + | ln ρn|−

1
4 )

γ

)
≥

1− 0.5 exp
(
− | ln ρn|

1/2

16

)

1 + exp
(
− | ln ρn|

3/4

2

) .

It directly follows from these two bounds that limρn→0 aρn = 0 and limρn→0 bρn = 1.
We know that, for all q ∈ (ρn, 1), gρn(r∗n(q)) = q. As gρn is increasing, if
q = gρn(r∗n(q)) ∈ [aρn , bρn ] then

2(1− | ln ρn|−
1
4 )

γ
≤ r∗n(q) ≤ 2(1 + | ln ρn|−

1
4 )

γ

while if q = gρn(r∗n(q)) ∈ [bρn , 1) then r∗n(q) ≥ 2(1+| ln ρn|−
1
4 )

γ
.
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Lemma 7.5. Let P (n)
X := (1− ρn)δ0 + ρnδ1 and αn := γρn| ln ρn| for a fixed γ > 0.

Define gρn : r ∈ (0,+∞) 7→ 2
ρn
ψ′
P

(n)
X

(
αn
ρn
r
)
For all (ρn, ε) ∈ (0, 1)2 :

gρn

(
2(1− ε)

γ

)
≤

exp
(
− ε2

16
| ln ρn|

1−ε
)

2
+

exp
(
− ε

2
| ln ρn|

)

1− ρn
;

gρn

(
2(1 + ε)

γ

)
≥ 1− 0.5 exp

(
− ε2

16
| ln ρn|

)

1 + exp
(
− ε

2
| ln ρn|

) .

Proof. The derivative of ψ
P

(n)
X

reads

ψ′
P

(n)
X

(r) =
ρn
2
E
[(

1 +
1− ρn
ρn

e−
r
2
−√rZ

)−1]

so

gρn(r) = E

[
1

1 + (1− ρn) exp
{
| ln ρn|

(
1− γr

2
−
√

γr
| ln ρn|Z

)}
]
∈ (0, 1) .

Hence, for all ε ∈ (0, 1) :

gρn

(
2(1± ε)

γ

)
= E

[
1

1 + (1− ρn) exp
{
| ln ρn|

(
∓ ε−

√
2(1±ε)
| ln ρn|Z

)}

]
. (7.23)

We see directly that, by the dominated convergence theorem,

lim
ρn→0

gρn
(

2(1+ε)/γ
)

= 1 and lim
ρn→0

gρn
(

2(1−ε)/γ
)

= 0 .

We first lower bound gρn
(

2(1+ε)/γ
)
. Using (7.23) and −ε −

√
2(1+ε)/| ln ρn| z ≤ −ε/2

for all z ≥ − ε
2

√
| ln ρn|
2(1+ε)

, it comes

gρn

(
2(1 + ε)

γ

)
=

∫ +∞

−∞

dz√
2π

e−
z2

2

1 + (1− ρn) exp
{
| ln ρn|

(
− ε−

√
2(1+ε)
| ln ρn| z

)}

≥
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− ε
2

√
| ln ρn|
2(1+ε)
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2π

e−
z2

2

1 + (1− ρn) exp
(
− ε

2
| ln ρn|

)

=
1− F

(
− ε

2

√
| ln ρn|
2(1+ε)

)

1 + (1− ρn) exp
(
− ε

2
| ln ρn|

) ≥
1− F

(
− ε

2

√
| ln ρn|

2

)

1 + exp
(
− ε

2
| ln ρn|

) ,

where F (x) :=
∫ x
−∞

dz√
2π
e−

z2

2 is the cumulative distribution function of the standard

normal distribution. Making use of the upper bound F (−x) ≤ e−
x2
/2

2
for x > 0

yields

gρn

(
2(1 + ε)

γ

)
≥ 1− 0.5 exp

(
− ε2

16
| ln ρn|

)

1 + exp
(
− ε

2
| ln ρn|

) . (7.24)
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Next we prove the upper bound on gρn
(

2(1−ε)/γ
)
. We denote the indicator function

of an event E by 1E . We have

gρn

(
2(1− ε)

γ

)
= E

[
1

1 + (1− ρn) exp
{
| ln ρn|

(
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√
2(1−ε)
| ln ρn|Z

)}

]

≤ E

[
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2

√
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1{
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√
| ln ρn|
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}

1 + (1− ρn) exp
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ε
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| ln ρn|

)
]
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)
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2
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ε
2
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)
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)
+
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(
− ε

2
| ln ρn|

)

1− ρn

≤
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(
− ε2

16
| ln ρn|

1−ε
)

2
+

exp
(
− ε

2
| ln ρn|

)

1− ρn
. (7.25)

The last inequality follows from the upper bound on F (−x) that we have already
used to obtain (7.24).

Lemma 7.4 essentially states that the global maximum of r 7→ rq
2
− 1
αn
ψ
P

(n)
X

(
αn
ρn
r
)

is located in a tight interval around 2/γ when q ∈ [aρn , bρn ]. The next step is to use
this knowledge to tightly bound the maximum value supr≥0

rq
2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r
)

for all q ∈ [aρn , bρn ]. The following lemma gives a useful bound on 1
αn
ψ
P

(n)
X

(
αn
ρn
r
)

when 0 ≤ r ≤ 2(1+ε)/γ.

Lemma 7.6. Let P (n)
X := (1− ρn)δ0 + ρnδ1 and αn := γρn| ln ρn| for a fixed γ > 0.

For every ε ∈ (0, 1) and r ∈ [0, 2(1+ε)/γ] we have

0 ≤ 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)
≤ ε

γ
+

ln 2

γ| ln ρn|
+

1

γ

√
2

π| ln ρn|
. (7.26)

Proof. The function ψ
P

(n)
X

is nondecreasing on [0,+∞) so ∀r ∈ [0, 2(1+ε)/γ] :

0 ≤ 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)
≤ 1

αn
ψ
P

(n)
X

(
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2(1 + ε)

γ

)
=
ψ
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(n)
X

(
2(1 + ε)| ln ρn|

)

γρn| ln ρn|
. (7.27)

By definition 7.17 of ψ
P

(n)
X

, the upper bound on the right-hand side of (7.27) reads

ψ
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(n)
X

(
2(1+ε)| ln ρn|
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γρn| ln ρn|
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E
[
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√
2(1+ε)| ln ρn|Z
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+
1

γ| ln ρn|
E
[
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√
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=
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E
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√
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)]

+
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γ| ln ρn|
E
[
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(

1−ρn + eε| ln ρn|+
√

2(1+ε)| ln ρn|Z
)]
. (7.28)
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To control the first term on the right-hand side of (7.28) we use that ln(1+x) ≤ x,

1− ρn
γρn| ln ρn|

E
[

ln
(

1− ρn + ρne
−(1+ε)| ln ρn|+

√
2(1+ε)| ln ρn|Z

)]

≤ 1− ρn
γ| ln ρn|

E
[
e−(1+ε)| ln ρn|+

√
2(1+ε)| ln ρn|Z − 1

]
= 0 . (7.29)

To control the second term on the right-hand side of (7.28), we use

ln
(

1− ρn + eε| ln ρn|+
√

2(1+ε)| ln ρn|z
)
≤
{

ln(1 + eε| ln ρn|) ≤ ln(2eε| ln ρn|) if z ≤ 0 ;

ln(2eε| ln ρn|+
√

2(1+ε)| ln ρn|z) if z ≥ 0 .

It directly follows that

1

γ| ln ρn|
E
[

ln
(

1− ρn + eε| ln ρn|+
√

2(1+ε)| ln ρn|Z
)]
≤ ε

γ
+

ln 2

γ| ln ρn|
+

1

γ

√
1 + ε

π| ln ρn|
.

The latter combined with (7.28) and (7.29) ends the proof.

We can now compute the limit of I(ρn, αn) when ρn → 0 and αn := γρn| ln ρn|.

Proposition 7.7. Let P (n)
X := (1− ρn)δ0 + ρnδ1 and αn := γρn| ln ρn| for a fixed

γ > 0. Then, the quantity I(ρn, αn) := inf
q∈[0,1]

sup
r≥0

iRS(q, r;αn, ρn) converges when

ρn → 0+ and

lim
ρn→0+

I(ρn, αn) = min

{
IPout(0, 1),

1

γ

}
.

Proof. Let aρn and bρn the quantities defined in Lemma 7.4. By Lemmas 7.4 and
7.6 (applied to ε = | ln ρn|−

1
4 for ρn small enough), we have ∀q ∈ [aρn , bρn ]:
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1
4 )q

γ
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1
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+
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ψ
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)
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1
4 )q

γ
. (7.30)

Therefore, ∀q ∈ [aρn , bρn ]:

IPout(q, 1) +
q

γ
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1
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+
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| ln ρn|
+
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)

≤ sup
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q

γ
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1
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.
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It directly follows that

− 1

γ

(
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1
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+
ln 2

| ln ρn|
+

√
2

π| ln ρn|

)
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q
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iRS(q, r;αn, ρn) ≤ 1

γ| ln ρn|
1
4
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IPout(q, 1) +
q

γ
. (7.31)

Note that q 7→ IPout(q, 1) + q
γ
is concave on [0, 1] so

inf
q∈[aρn ,bρn ]

IPout(q, 1) +
q

γ
= min

{
IPout(aρn , 1) +

aρn
γ
, IPout(bρn , 1) +

bρn
γ

}

−−−→
ρn→0

min
{
IPout(0, 1),

1

γ

}
; (7.32)

where the limit is due to Lemma 7.4. Combining the bounds (7.31) with the limit
(7.32) yields

lim
ρn→0

inf
q∈[aρn ,bρn ]

sup
r≥0

iRS(q, r;αn, ρn) = min
{
IPout(0, 1),

1

γ

}
. (7.33)

Upper bound on the limit superior of I(ρn, αn) The upper bound on
the limit superior of I(ρn, αn) := infq∈[0,1] supr≥0iRS(q, r;αn, ρn) follows from the
simple upper bound I(ρn, αn) ≤ infq∈[aρn ,bρn ]supr≥0iRS(q, r;αn, ρn) and the limit
(7.33),

lim sup
ρn→0+

I(ρn, αn) ≤ min

{
IPout(0, 1),

1

γ

}
. (7.34)

Matching lower bound on the limit inferior of I(ρn, αn) We first rewrite
I(ρn, αn) by splitting the segment [0, 1] = [0, aρn ] ∪ [aρn , bρn ] ∪ [bρn , 1]:

I(ρn, αn) = min

{
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sup
r≥0
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}
. (7.35)

For all q ∈ [0, aρn ], we have

supr≥0iRS(q, r;αn, ρn) = IPout(q, 1) + sup
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The function q 7→ IPout(q, 1) is decreasing and it follows that
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For all q ∈ [bρn , 1), we have
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r≥0

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}

≥ q(1 + | ln ρn|−
1
4 )

γ
− 1

αn
ψ
P

(n)
X

(
αn
ρn

2(1 + | ln ρn|−
1
4 )

γ

)

≥ bρn
γ
− 1

αn
ψ
P

(n)
X

(
αn
ρn

2(1 + | ln ρn|−
1
4 )

γ

)

≥ bρn
γ
− 1

γ

(
1

| ln ρn|
1
4

+
ln 2

| ln ρn|
+

√
2

π| ln ρn|

)
. (7.37)

The first inequality follows from the trivial lower bounds IPout(q, 1) ≥ 0 and

sup
r≥0
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)
where r̃ :=
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γ
.

To obtain the last inequality we apply Lemma 7.6 with ε = | ln ρn|−
1
4 ,

1

αn
ψ
P

(n)
X

(
αn
ρn

2(1 + | ln ρn|−
1
4 )

γ

)
≤ 1

γ

(
1

| ln ρn|
1
4

+
ln 2

| ln ρn|
+

√
2

π| ln ρn|

)
.

Note that the final lower bound (7.37) does not depend on q ∈ [bρn , 1) so the
same inequality holds for the infimum of supr≥0iRS(q, r;αn, ρn) over q ∈ [bρn , 1].
Combining (7.35), (7.36) and (7.37) yields

I(ρn, αn) ≥ min

{
IPout(aρn , 1) , inf

q∈[aρn ,bρn ]
sup
r≥0

iRS(q, r;αn, ρn) ,

bρn
γ
− 1

γ

(
1

| ln ρn|
1
4

+
ln 2

| ln ρn|
+

√
2

π| ln ρn|

)}
.

Hence (remember the limit (7.33) and that aρn → 0, bρn → 1 when ρn vanishes),

lim inf
ρn→0+

I(ρn, αn) ≥ min

{
IPout(0, 1) ; min

{
IPout(0, 1);

1

γ

}
;

1

γ

}

= min
{
IPout(0, 1) ;

1

γ

}
. (7.38)

We see thanks to (7.34) and (7.38) that the superior and inferior limits of I(ρn, αn)
match each other so limρn→0+ I(ρn, αn) = min

{
IPout(0, 1), 1

γ

}
.

We finally obtain Theorem 7.2 for the specific choice P (n)
X := (1− ρn)δ0 + ρnδ1

by combining Theorem 7.1 and Proposition 7.7 together,

lim
n→+∞

I(X∗; Y|W)

mn

= min

{
IPout(0, 1) ;

1

γ

}
. (7.39)





Appendices

7.A Proof of Theorem 7.1 with the adaptive
interpolation method

Note that it is the same to observe (7.2) or their rescaled versions

Yµ√
∆

1√
∆
ϕ
( 1√

kn
(WX∗)µ,Aµ

)
+ Zµ .

Therefore, up to a rescaling of ϕ by 1/
√

∆, we suppose ∆ = 1 all along the proof of
Theorem 7.1. For similar reason, we suppose that the second moment of X0 ∼ P0

is E[X2
0 ] = 1.

7.A.1 Interpolating estimation problem

Let (sn)n∈N∗ be a sequence of real numbers in (0, 1/2] and define Bn := [sn, 2sn]2.
We denote rmax := −2

(
∂IPout/∂q

)∣∣
q=1,ρ=1

; rmax is a positive real number. For all
ε := (ε1, ε2) ∈ Bn, we define the interpolation functions

R1(·, ε) : t ∈ [0, 1] 7→ ε1 +

∫ t

0

rε(v) dv

and

R2(·, ε) : t ∈ [0, 1] 7→ ε2 +

∫ t

0

qε(v) dv ,

where qε : [0, 1]→ [0, 1] and rε : [0, 1]→
[
0, αn

ρn
rmax

]
are two continuous functions.

We specify qε and rε more explicitly later in the proof. In particular, we will need
the families of functions (qε)ε∈Bn and (rε)ε∈Bn to satisfy the following notion of
regularity.

Definition (Regular interpolation paths). We say that the families of functions
(qε)ε∈Bn and (rε)ε∈Bn are regular if, for all t ∈ [0, 1], the function

ε 7→
(
R1(t, ε), R2(t, ε)

)

is a C1-diffeomorphism from Bn onto its image whose Jacobian determinant is
greater than, or equal, to one.

233
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Let X∗ be a n-dimensional random vector with entries X∗i
i.i.d.∼ P

(n)
X , U,V

two mn-dimensional random vectors with entries Uµ, Vµ i.i.d.∼ N (0, 1), and W a
mn × n random matrix with entries Wµi

i.i.d.∼ N (0, 1). We denote by S(t,ε) the
mn-dimensional random vector whose entries are given for all µ ∈ {1, . . . ,mn} by

S(t,ε)
µ :=

√
1− t
kn

(WX∗)µ +
√
R2(t, ε)Vµ +

√
t+ 2sn −R2(t, ε)Uµ . (7.40)

Consider the following observations coming from two types of channels,
{
Y

(t,ε)
µ ∼ Pout( · |S(t,ε)

µ ) , 1 ≤ µ ≤ mn ;

Ỹ
(t,ε)
i =

√
R1(t, ε)X∗i + Z̃i , 1 ≤ i ≤ n ;

(7.41)

where (Z̃i)
n
i=1

i.i.d.∼ N (0, 1). For a fixed t ∈ [0, 1], the inference problem is to
estimate (X∗,U) from the knowledge of V, W and the observations

Y(t,ε) :=
(
Y (t,ε)
µ

)mn
µ=1

, Ỹ(t,ε) :=
(
Ỹ

(t,ε)
i

)n
i=1

.

The joint posterior density of (X∗,U) given (Y(t,ε), Ỹ(t,ε),W,V) is

dP (x,u|Y(t,ε), Ỹ(t,ε),W,V) :=
1

Zt,ε

n∏

i=1

dP
(n)
X (xi) e

− 1
2

(√
R1(t,ε)xi−Ỹ (t,ε)

i

)2

·
mn∏

µ=1

duµ√
2π
e−

u2
µ
2 Pout

(
Y (t,ε)
µ |s(t,ε)

µ

)
, (7.42)

where

s(t,ε)
µ :=

√
1− t
kn

(Wx)µ +
√
R2(t, ε)Vµ +

√
t+ 2sn −R2(t, ε)uµ (7.43)

and Zt,ε ≡ Zt,ε(Y(t,ε), Ỹ(t,ε),W,V) is the normalization factor. The interpolating
mutual information is the conditional mutual information between (X∗,U) and
(Y(t,ε), Ỹ(t,ε)) given (W,V) and is denoted by

in,ε(t) :=
1

mn

I
(
(X∗,U); (Y(t,ε), Ỹ(t,ε))

∣∣W,V
)
. (7.44)

The perturbation ε only induces a small change in mutual information. In particu-
lar, we have the following result at t = 0.

Lemma 7.8. Suppose that (H1), (H2), (H3) hold, ∆ = EX0∼P0 [X
2
0 ] = 1, and

there exist real positive numbers Mα,Mρ/α such that ∀n ∈ N∗: αn ≤ Mα and
ρn/αn ≤Mρ/α. Then, for all ε ∈ Bn:

∣∣∣∣in,ε(0)− I(X∗; Y|W)

mn

∣∣∣∣ ≤
√
C

sn√
ρn

,

where C is a polynomial in
(
S, ‖ϕ‖∞, ‖∂xϕ

∥∥
∞, ‖∂xxϕ‖∞,Mα,Mρ/α

)
with positive

coefficients.
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We prove Lemma 7.8 in Appendix 7.E.2. At t = 1, by the chain rule for the
mutual information, we have for all ε ∈ Bn:

in,ε(1) =
I(X∗; Ỹ(1,ε)|W) + I(U; Y(1,ε)|W,V)

mn

=
I
P

(n)
X

(R1(1, ε))

αn
+ IPout(R2(1, ε), 1 + 2sn)

=
1

αn
I
P

(n)
X

(∫ 1

0

rε(t)dt

)
+ IPout

(∫ 1

0

qε(t)dt, 1

)
+O(sn) , (7.45)

where to obtain the last equality we use the Lipschitzness of I
P

(n)
X

(Lemma 2.3) and
IPout (Lemma 7.22 in Appendix 7.D), and assume that there exists Mρ/α > 0 such
that ∀n ∈ N∗ : ρn/αn ≤Mρ/α. The “big O” O(sn) is a quantity whose absolute value
is bounded by Csn where C is a polynomial in

(
S, ‖ϕ‖∞, ‖∂xϕ

∥∥
∞, ‖∂xxϕ‖∞,Mρ/α

)

with positive coefficients.

7.A.2 Fundamental sum rule

We want to compare the original model of interest (model at t = 0) to the purely
scalar one (t = 1). To do so, we use

in,ε(0) = in,ε(1)−
∫ 1

0

i′n,ε(t) dt ,

where i′n,ε(·) is the derivative of in,ε(·). Once combined with Lemma 7.8 and (7.45),
the latter identity yields (note that O(sn) = O(sn/√ρn) since 0 < ρn < 1)

I(X∗; Y|W)

mn

= O

(
sn√
ρn

)
+

1

αn
I
P

(n)
X

(∫ 1

0

rε(t) dt

)
+ IPout

(∫ 1

0

qε(t) dt, 1

)

−
∫ 1

0

i′n,ε(t) dt . (7.46)

From now on, we denote by (x,u) ∈ Rn × Rmn a pair of random vectors sampled
from the joint posterior distribution (7.A.1). We denote by angular brackets
〈−〉n,t,ε the expectations w.r.t. this posterior, i.e., for a generic function g.

〈g(x,u)〉n,t,ε :=

∫
g(x,u)dP (x,u|Y(t,ε), Ỹ(t,ε),W,V) .

We also define the scalar overlap Q := xTX∗

kn
= 1

kn

∑n
i=1X

∗
i xi, the inner product

between the true signal X∗ and the estimate x where (x,u) is sampled from the
posterior distribution (7.A.1). We compute i′n,ε in Appendix 7.E.1.

Proposition 7.9. Suppose that (H1), (H2), (H3) hold and ∆ = EX0∼P0 [X2
0 ] = 1.

Further assume that there exist real positive numbers Mα and Mρ/α such that
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∀n ∈ N∗: αn ≤ Mα, ρn/αn ≤ Mρ/α. For all y ∈ R, `y(x) := lnPout(y|x) and `′y(·)
denotes its derivative. Then, for all (t, ε) ∈ [0, 1]× Bn:

i′n,ε(t) = O

(
1

ρn
√
n

)
+

ρn
2αn

rε(t)(1− qε(t))

+
1

2
E
〈(
Q− qε(t)

)( 1

mn

mn∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)〉

n,t,ε

,

where
∣∣O
(

1
ρn
√
n

)∣∣ ≤
√
C

ρn
√
n
with C a polynomial in

(
S, ‖ϕ‖∞, ‖∂xϕ

∥∥
∞, ‖∂xxϕ‖∞,Mα,

Mρ/α

)
that has positive coefficients and does not depend on (t, ε).

The next key result states that the overlap concentrates on its expectation.
This behavior is called replica symmetric in statistical physics. Similar results
have been obtained in the spin glass literature [47], [53]. In this work we use a
formulation taylored to Bayesian inference problems as developed in the context
of LDPC codes, random linear estimation [153] and Nishimori symmetric spin
glasses [66], [147], [150].

Proposition 7.10 (Overlap concentration). Suppose that (H1), (H2), (H3) hold,
∆ = EX0∼P0 [X

2
0 ] = 1, and the family of functions (rε)ε∈Bn, (qε)ε∈Bn are regular.

Further assume that there exist real positive numbers Mα, Mρ/α and mρ/α such
that ∀n ∈ N∗: αn ≤Mα and mρ/α

n
< ρn

αn
≤Mρ/α. Then, for all t ∈ [0, 1]:

∫

Bn

dε

s2
n

∫ 1

0

dtE
〈(
Q− E〈Q〉n,t,ε

)2〉
n,t,ε
≤ CMn ,

where

Mn :=
1

s2
nρ

2
n

(
ρnn

αnmρ/α

)1/3

− s2
nρ

2
n

> 0

and C is a polynomial in
(
S, ‖ϕ‖∞, ‖∂xϕ

∥∥
∞, ‖∂xxϕ‖∞,Mα,Mρ/α,mρ/α

)
with pos-

itive coefficients.

We prove Proposition 7.10 in Appendix 7.G. We can now prove the fundamental
sum rule.

Proposition 7.11 (Fundamental sum rule). Suppose that ∀(t, ε) ∈ [0, 1]× Bn :
qε(t) = E〈Q〉n,t,ε. Under the assumptions of Proposition 7.10, we have

I(X∗; Y|W)

mn

= O
(√

Mn

)
+O

(
sn√
ρn

)

+

∫

Bn

dε

s2
n

{
1

αn
I
P

(n)
X

(∫ 1

0

rε(t)dt
)

+ IPout

(∫ 1

0

qε(t)dt, 1

)

− ρn
2αn

∫ 1

0

rε(t)
(
1− qε(t)

)
dt

}
,

where |O(
√
Mn )| ≤ √C1Mn and |O(sn/√ρn )| ≤ √C2

sn/√ρn with C1, C2 polynomi-
als in

(
S, ‖ϕ‖∞, ‖∂xϕ

∥∥
∞, ‖∂xxϕ‖∞,Mα,Mρ/α,mρ/α

)
having positive coefficients.



7.A. Proof of Theorem 7.1 with the adaptive interpolation method 237

Proof. By Cauchy-Schwarz inequality,
∣∣∣∣
∫

Bn

dε

s2
n

∫ 1

0

dtE
〈(
Q− qε(t)

)( 1

mn

mn∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)〉

n,t,ε

∣∣∣∣
2

≤
∫

Bn

dε

s2
n

∫ 1

0

dtE
〈(

1

mn

mn∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)2〉

n,t,ε

·
∫

Bn

dε

s2
n

∫ 1

0

dtE
〈(
Q− qε(t)

)2 〉
n,t,ε

.

The first factor on the right-hand side of this inequality is bounded by a constant
that depends polynomially on ‖ϕ‖∞ and ‖∂xϕ‖∞3. Since ∀(t, ε) ∈ [0, 1] × Bn :
qε(t) = E〈Q〉n,t,ε, the second term is in O(Mn) (see Proposition 7.10). Therefore,
by Proposition 7.9,
∫

Bn

dε

s2
n

∫ 1

0

dt i′n,ε(t) = O
(√

Mn

)
+O

(
1

ρn
√
n

)
+

∫

Bn

dε

s2
n

∫ 1

0

dt
ρn

2αn
rε(t)

(
1− qε(t)

)
.

(7.47)
Note that 1/ρn

√
n = O(

√
Mn). Integrating (7.46) over ε ∈ Bn and then making use

of (7.47) gives the result.

7.A.3 Matching bounds

To prove Theorem 7.1, we lower and upper bound I(X∗;Y|W)/mn by the same
quantity, up to a small error. To do so, we plug two different choices for
R(·, ε) := (R1(·, ε), R2(·, ε)) in the sum-rule of Proposition 7.11. In both cases,
the function R(·, ε) is the solution to a first-order ordinary differential equation
(ODE). We now describe these ODEs.

Fix t ∈ [0, 1] and R = (R1, R2) ∈ [0,+∞)× [0, t+ 2sn]. We observe
{
Y

(t,R2)
µ ∼ Pout( · |S(t,R2)

µ ) , 1 ≤ µ ≤ mn ;

Ỹ
(t,R1)
i =

√
R1X

∗
i + Z̃i , 1 ≤ i ≤ n ;

where

S(t,R2)
µ :=

√
1− t
kn

(WX∗)µ +
√
R2 Vµ +

√
t+ 2sn −R2 Uµ .

The joint posterior density of (X∗,U) given (Y(t,R2), Ỹ(t,R1),W,V) is

dP (x,u|Y(t,R2), Ỹ(t,R1),W,V)

∝
n∏

i=1

dP
(n)
X (xi) e

− 1
2

(√
R1xi−Ỹ (t,R1)

i

)2 mn∏

µ=1

duµ√
2π
e−

u2
µ
2 Pout(Y

(t,R2)
µ |s(t,R2)

µ ) ,

3Remember that rε takes its values in [0, αnρn rmax]. Besides, under (H2), `′
Y

(t,ε)
µ

is upper

bounded by (|Y (t,ε)
µ |+ ‖ϕ‖∞)∆−1‖∂xϕ‖∞ = (

√
∆|Zµ|+ 2‖ϕ‖∞)∆−1‖∂xϕ‖∞ (see the inequality

(7.108) in Appendix 7.D). The noise Zµ is averaged over thanks to the expectation.
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where

s(t,R2)
µ :=

√
1− t
kn

(Wx)µ +
√
R2 Vµ +

√
t+ 2sn −R2 uµ .

We denote by the angular brackets 〈−〉n,t,R the expectation with respect to this
posterior distribution and define

F
(n)
1 (t, R) := −2

αn
ρn

∂IPout

∂q

∣∣∣∣
q=E〈Q〉n,t,R,ρ=1

, F
(n)
2 (t, R) := E〈Q〉n,t,R .

Let r ∈ [0, rmax]. We consider the two following first-order ODEs:

dy

dt
=

(
αn
ρn
r, F

(n)
2 (t, y)

)
, (7.48)

dy

dt
=
(
F

(n)
1 (t, y), F

(n)
2 (t, y)

)
. (7.49)

The next proposition sums up useful properties of the solutions to these two ODEs,
i.e., our two kinds of interpolation functions. The proof is given in Appendix 7.H.

Proposition 7.12. Suppose that (H1), (H2), (H3) hold and ∆ = EX0∼P0 [X2
0 ] = 1.

For every ε ∈ Bn, there exists a unique global solution R(·, ε) : [0, 1]→ [0,+∞)2

to the initial value problem

dy

dt
=
(
F

(n)
1 (t, y) , F

(n)
2 (t, y)

)
, y(0) = ε .

R(·, ε) is continuously differentiable and the image of its derivative R′(·, ε) satisfies

R′([0, 1], ε) ⊆
[
0,
αn
ρn
rmax

]
× [0, 1] ,

where rmax := −2(∂IPout/∂q)|q=1,ρ=1 ≥ 0. Besides, for all t ∈ [0, 1], R(t, ·) is a
C1-diffeomorphism from Bn onto its image whose Jacobian determinant is greater
than, or equal to, one, i.e., ∀ε ∈ Bn :

det JR(t,·)(ε) ≥ 1

where JR(t,·) denotes the Jacobian matrix of R(t, ·). Finally, the same statement
holds true if, for a fixed r ∈ [0, rmax], we instead consider the initial value problem

dy

dt
=

(
αn
ρn
r , F

(n)
2 (t, y)

)
, y(0) = ε .

Proposition 7.13 (Upper bound). Suppose that (H1), (H2), (H3) hold and
∆ = EX0∼P0 [X2

0 ] = 1. Further assume that there exist positive numbers Mα, Mρ/α

and mρ/α such that ∀n ∈ N∗: αn ≤Mα,
mρ/α
n

< ρn
αn
≤Mρ/α. Then, ∀n ∈ N∗:

I(X∗; Y|W)

mn

≤ inf
r∈[0,rmax]

sup
q∈[0,1]

iRS

(
q, r;αn, ρn

)
+O(

√
Mn) +O

(
sn√
ρn

)
. (7.50)
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Proof. Fix r ∈ [0, rmax]. For all ε ∈ Bn, we choose R(·, ε) := (R1(·, ε), R2(·, ε)) to
be the unique solution to the ODE (7.48) with initial condition R(0, ε) = ε (see
Proposition 7.12). Then, we define

qε(t) := R′2(t, ε) = E〈Q〉n,t,ε , rε(t) := R′1(t, ε) =
αnr

ρn
.

By Proposition 7.12, the families of functions (qε)ε∈Bn and (rε)ε∈Bn are regular.
We can now apply Proposition 7.11 to get

I(X∗; Y|W)

mn

=

∫

Bn

dε

s2
n

iRS

(∫ 1

0

qε(t) dt, r;αn, ρn

)
+O(

√
Mn) +O

(
sn√
ρn

)

≤ sup
q∈[0,1]

iRS

(
q, r;αn, ρn

)
+O(

√
Mn) +O

(
sn√
ρn

)
. (7.51)

The inequality (7.51) holds for all r ∈ [0, rmax] and the constant factors in the
quantities O(

√
Mn), O

(
sn/√ρn

)
are uniform in r. Hence the inequality (7.50) with

the infimum over r.

Proposition 7.14 (Lower bound). Under the same hypotheses than Proposi-
tion 7.13, we have ∀n ∈ N∗:

I(X∗; Y|W)

mn

≥ inf
r∈[0,rmax]

sup
q∈[0,1]

iRS

(
q, r;αn, ρn

)
+O(

√
Mn) +O

(
sn√
ρn

)
. (7.52)

Proof. For all ε ∈ Bn, we choose R(·, ε) := (R1(·, ε), R2(·, ε)) to be the unique
solution to the ODE (7.49) with initial condition R(0, ε) = ε (see Proposition 7.12).
Then, we define

qε(t) := R′2(t, ε) = E〈Q〉n,t,ε , rε(t) := R′1(t, ε) = −2αn
ρn

∂IPout

∂q

∣∣∣∣
q=qε(t),ρ=1

.

By Proposition 7.12, the families of functions (qε)ε∈Bn and (rε)ε∈Bn are regular.
Note that ∀ε ∈ Bn:

1

αn
I
P

(n)
X

(∫ 1

0

rε(t) dt
)

+ IPout

(∫ 1

0

qε(t) dt, 1

)
− ρn

2αn

∫ 1

0

rε(t)
(
1− qε(t)

)
dt

≥
∫ 1

0

{
1

αn
I
P

(n)
X

(
rε(t)

)
+ IPout

(
qε(t), 1

)
− ρn

2αn
rε(t)

(
1− qε(t)

)}
dt

=

∫ 1

0

{
sup
q∈[0,1]

1

αn
I
P

(n)
X

(
rε(t)

)
+ IPout(q, 1)− ρn

2αn
rε(t)(1− q)

}
dt

=

∫ 1

0

sup
q∈[0,1]

iRS

(
q,
ρn
αn
rε(t);αn, ρn

)
dt (7.53)

≥ inf
r∈[0,rmax]

sup
q∈[0,1]

iRS

(
q, r;αn, ρn

)
. (7.54)
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The first inequality is an application of Jensen’s inequality to the concave functions
I
P

(n)
X

and IPout(·, 1) (see Lemmas 2.3 and 7.22). The subsequent equality is because
the global maximum of the concave function

h : q ∈ [0, 1] 7→ IPout(q, 1)− ρn
2αn

rε(t)(1− q)

is reached at qε(t) since h′(qε(t)) = 0. To write (7.53) we simply use the definition
(7.7) of iRS. Finally, the inequality (7.54) is because rε(t) ∈

[
0, αn

ρn
rmax

]
so we lower

bound the integrand in (7.53) by infr∈[0,rmax] supq∈[0,1] iRS(q, r;αn, ρn), a quantity
independent of t ∈ [0, 1]. We now apply Proposition 7.11 and make use of (7.54)
to obtain the inequality (7.52).

7.A.4 Combining the matching bounds

Proof of Theorem 7.1. We choose ρn = Θ(n−λ), αn = γρn| ln ρn| and sn = Θ(n−β)
with λ ∈ [0, 1/9), γ > 0, β ∈ (λ/2, 1/6− λ). Then, we apply Propositions 7.13 and
7.14, and use the identity (we refer to [29, Proposition 7 and Corollary 7 in SI]
for the proof)

inf
r∈[0,rmax]

sup
q∈[0,1]

iRS

(
q, r;αn, ρn

)
= inf

r≥0

sup
q∈[0,1]

iRS

(
q, r;αn, ρn

)

= inf
q∈[0,1]

sup
r≥0

iRS

(
q, r;αn, ρn

)
.

We obtain the upper bound
∣∣∣∣
I(X∗; Y|W)

mn

− inf
q∈[0,1]

sup
r≥0

iRS

(
q, r;αn, ρn

)∣∣∣∣ ≤ O(
√
Mn) +O

(
sn√
ρn

)
.

Optimizing over β ∈ (λ/2, 1/6− λ) to maximize the convergence rate of

O(
√
Mn) +O

(
sn√
ρn

)
= O

(
max

{
1

nβ−λ/2
,
| lnn|1/6
n1/6−λ−β

})

yields Theorem 7.1.

7.B Proof of Theorem 7.2 for a general discrete
prior

In the whole appendix we assume that P (n)
X := (1− ρn)δ0 + ρnP0 where P0 is a

discrete probability distribution with a finite support

supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v1, v1, v2, . . . , vK} ,

where 0 < v1 < v2 < · · · < vK . For all i ∈ {1, . . . , K}, P0(vi) = p+

i and
P0(−vi) = p−i where p+

i , p
−
i ≥ 0 and pi := p+

i + p−i > 0. Of course,
∑K

i=1 pi = 1.
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Note that the second moment of X0 ∼ P0 is EX2
0 =

∑K
j=1 pjv

2
j and the support of

|X0| equals {v1, v2, . . . , vK}.
For ρn, αn > 0 we denote the variational problem appearing in Theorem 7.1 by

I(ρn, αn) := inf
q∈[0,EX2

0 ]
sup
r≥0

iRS(q, r;αn, ρn) ,

where the potential iRS is defined in (7.7). Let X∗ ∼ P
(n)
X and Z ∼ N (0, 1) be

independent random variables. We define for all r ≥ 0:

ψ
P

(n)
X

(r) := E
[

ln

∫
dP

(n)
X (x)e−

r
2
x2+rX∗x+

√
rxZ
]

(7.55)

= E
[

ln
(

1− ρn + ρn

K∑

i=1

e−
rv2
i

2

(
p+

i e
rX∗vi+

√
rZvi + p−i e

−rX∗vi−
√
rZvi
))]

.

Note that I
P

(n)
X

(r) := I(X∗;
√
r X∗ + Z) = rρnEX2

0/2− ψ
P

(n)
X

(r) where X0 ∼ P0 so

I(ρn, αn) = inf
q∈[0,EX2

0 ]
IPout(q,EX2

0 ) + sup
r≥0

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}
. (7.56)

The latter expression for I(ρn, αn) is easier to work with. We point out that ψ
P

(n)
X

is twice differentiable, nondecreasing, strictly convex and (ρnEX2
0/2)-Lipschitz on

[0,+∞) (see Lemma 2.3) while IPout( · ,EX2
0 ) is nonincreasing concave on [0,EX2

0 ]
(see [29, Appendix B.2, Proposition 18]).

Our goal is now to compute the limit of I(ρn, αn) when αn := γρn| ln ρn| for
a fixed γ > 0 and ρn → 0. We first look where the supremum over r is reached
depending on the value of q ∈ [0,EX2

0 ].

Lemma 7.15. Let P (n)
X := (1− ρn)δ0 + ρnP0 where P0 is a discrete distribution

with finite support supp(P0) ⊆ {±v1,±v2, . . . ,±vK} with 0 < v1 < v2 < · · · < vK .
Let αn := γρn| ln ρn| for a fixed γ > 0. Define gρn : r ∈ (0,+∞) 7→ 2

ρn
ψ′
P

(n)
X

(
αn
ρn
r
)

and ∀ρn ∈ (0, e−1),∀j ∈ {1, . . . , K} :

a(j)
ρn

:= gρn

(
2(1− | ln ρn|−

1
4 )

γv2
j

)
, b(j)

ρn
:= gρn

(
2(1 + | ln ρn|−

1
4 )

γv2
j

)
. (7.57)

Let X0 ∼ P0. For ρn small enough, we have

ρnE[X0]2 < a(K)
ρn < b(K)

ρn < a(K−1)
ρn < b(K−1)

ρn < · · · < a(1)
ρn < b(1)

ρn < EX2
0 , (7.58)

and for all j ∈ {1, . . . , K} :

lim
ρn→0

a(j)
ρn = E[X2

01{|X0|>vj}] ; lim
ρn→0

b(j)
ρn = E[X2

01{|X0|≥vj}] . (7.59)

Besides, for every q ∈ (ρnE[X]2,EX2
0 ) there exists a unique r∗n(q) ∈ (0,+∞) such

that

r∗n(q)q

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r∗n(q)

)
= sup

r≥0

rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)
, (7.60)
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and ∀j ∈ {1, . . . , K},∀q ∈ [a
(j)
ρn , b

(j)
ρn ]:

2(1− | ln ρn|−
1
4 )

γv2
j

≤ r∗n(q) ≤ 2(1 + | ln ρn|−
1
4 )

γv2
j

.

These bounds are tight, namely, r∗n(a
(j)
ρn ) = 2(1−| ln ρn|−

1
4 )

γv2
j

and r∗n(b
(j)
ρn ) = 2(1+| ln ρn|−

1
4 )

γv2
j

.

Proof. For every q ∈ (0, 1) we define fρn,q : r ∈ [0,+∞) 7→ rq
2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r
)

whose supremum over r we want to compute. The derivative of fρn,q with respect
to r reads

f ′ρn,q(r) =
q

2
− 1

ρn
ψ′
P

(n)
X

(
αn
ρn
r

)
.

The derivative ψ′
P

(n)
X

is continuously increasing and thus one-to-one from (0,+∞)

onto (ρ2
nE[X0]

2/2, ρnEX2
0/2). Therefore, if q ∈ (0, ρnE[X0]

2) then f ′ρn,q ≤ 0 and
the supremum of fρn,q is achieved at r = 0. On the contrary, if q ∈ (ρn,EX2

0 ) then
there exists a unique solution r∗n(q) ∈ (0,+∞) to the stationary point equation
f ′ρn,q(r) = 0. As fρn,q is concave (ψP0,n is convex) this solution r∗n(q) is the global
maximum of fρn,q. Let us transform the stationary point equation. We have

fρn,q(r) = 0⇔ 2

ρn
ψ′
P

(n)
X

(
αn
ρn
r

)
= q ⇔ gρn(r) = q , (7.61)

where gρn : r 7→ 2
ρn
ψ′
P

(n)
X

(αnr/ρn) is continuously increasing and one-to-one from

(0,+∞) to (ρnEX2
0 ,EX2

0 ). Thus, by definition of a(j)
ρn and b(j)

ρn , we have

r∗n(a(j)
ρn ) =

2(1− | ln ρn|−
1
4 )

γv2
j

, r∗n(b(j)
ρn ) = 2

(
1+| ln ρn|−

1
4

)
/γv2

j .

Besides, if q =∈ [a
(j)
ρn , b

(j)
ρn ] then

2(1− | ln ρn|−
1
4 )

γv2
j

≤ r∗n(q) ≤ 2(1 + | ln ρn|−
1
4 )

γv2
j

,

since gρn is increasing on [0,+∞), gρn(r∗n(q)) = q and a(j)
ρn = gρn(2(1−| ln ρn|−

1
4 )/γv2

j ),
b

(j)
ρn = gρn(2(1+| ln ρn|−

1
4 )/γv2

j). Because gρn is increasing and 0 < v1 < · · · < vk, it is
clear that we have the ordering (7.58) provided that ρn is close enough to 0.

We are left with proving the limits (7.59). In order to so, we first rewrite the
derivative of ψ

P
(n)
X

. For all r ≥ 0, we have

ψ′
P

(n)
X

(r) =
1

2
E


X∗ ρn

∑K
i=1 vie

− rv
2
i

2

(
p+

i e
rX∗vi+

√
rZvi − p−i e−rX

∗vi−
√
rZvi
)

1− ρn + ρn
∑K

i=1 e
− rv

2
i

2

(
p+

i e
rX∗vi+

√
rZvi + p−i e

−rX∗vi−
√
rZvi
)




=
ρ2
n

2

K∑

j=1

p+

j vjE




∑K
i=1 vie

− rv
2
i

2

(
p+

i e
rvivj+

√
rZvi − p−i e−rvivj−

√
rZvi
)

1− ρn + ρn
∑K

i=1 e
− rv

2
i

2

(
p+

i e
rvivj+

√
rZvi + p−i e

−rvivj−
√
rZvi
)




+
ρ2
n

2

K∑

j=1

p−j vjE




∑K
i=1 vie

− rv
2
i

2

(
p−i e

rvivj+
√
rZvi − p+

i e
−rvivj−

√
rZvi
)

1− ρn + ρn
∑K

i=1 e
− rv

2
i

2

(
p−i e

rvivj+
√
rZvi + p+

i e
−rvivj−

√
rZvi
)
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and, after diving numerator and denominator by ρn, we get

ψ′
P

(n)
X

(r) =
ρn
2

K∑

j=1

p+

j vjE




∑K
i=1 vie

− rv
2
i

2

(
p+

i e
rvivj+

√
rZvi − p−i e−rvivj−

√
rZvi
)

1−ρn
ρn

+
∑K

i=1 e
− rv

2
i

2

(
p+

i e
rvivj+

√
rZvi + p−i e

−rvivj−
√
rZvi
)




+
ρn
2

K∑

j=1

p−j vjE




∑K
i=1 vie

− rv
2
i

2

(
p−i e

rvivj+
√
rZvi − p+

i e
−rvivj−

√
rZvi
)

1−ρn
ρn

+
∑K

i=1 e
− rv

2
i

2

(
p−i e

rvivj+
√
rZvi + p+

i e
−rvivj−

√
rZvi
)


 .

This last expression shortens to

ψ′
P

(n)
X

(r) =
ρn
2

K∑

j=1

p+

j vjE
[
h(Z, r, vj; ρn,v,p

+,p−)
]

+
ρn
2

K∑

j=1

p−j vjE
[
h(Z, r, vj; ρn,v,p

−,p+)
]

; (7.62)

where v := (v1, v2, . . . , vK), p+ := (p+

1 , p
+

2 , . . . , p
+

K), p− := (p−1 , p
−
2 , . . . , p

−
K) and we

define ∀(z, r, u) ∈ R× [0,+∞)× (0,+∞):

h(z, r, u; ρn,v,p
±,p∓)

:=

K∑
i=1

vie
− r(vi−u)2

2
+
√
rz(vi−u)

(
p±i − p∓i e−2rviu−2

√
rzvi
)

1−ρn
ρn

e−
ru2

2
−√rzu +

K∑
i=1

e−
r(vi−u)2

2
+
√
rz(vi−u)

(
p±i + p∓i e

−2rviu−2
√
rzvi
) .

Note that ∀z ∈ R :

h

(
z,

2(1 + | ln ρn|−
1
4 )| ln ρn|

v2
k

, vj; ρn,v,p
±,p∓

)
−−−→
ρn→0

{
0 if j < k ;

vj if j ≥ k .
(7.63)

h

(
z,

2(1− | ln ρn|−
1
4 )| ln ρn|

v2
k

, vj; ρn,v,p
±,p∓

)
−−−→
ρn→0

{
0 if j ≤ k ;

vj if j > k .
(7.64)

By the dominated convergence theorem, making use of the identity (7.62) and
the limit (7.63), we have ∀k ∈ {1, . . . , K} :

a(k)
ρn

:= gρn

(
2(1− | ln ρn|−

1
4 )

γv2
k

)

=
2

ρn
ψ′
P

(n)
X

(
2(1− | ln ρn|−

1
4 )| ln ρn|

v2
k

)

=
K∑

j=1

p+

j vjE
[
h

(
z,

2(1− | ln ρn|−
1
4 )| ln ρn|

v2
k

, vj; v,p
+,p−

)]

+
K∑

j=1

p−j vjE
[
h

(
z,

2(1− | ln ρn|−
1
4 )| ln ρn|

v2
k

, vj; v,p
−,p+

)]

−−−→
ρn→0

∑

j>k

p+

j v
2
j +

∑

j>k

p−j v
2
j = E[X2

01{|X0|>vk}] .
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Similarly, using this time the limit (7.64), we have ∀k ∈ {1, . . . , K} :

b(k)
ρn

:= gρn

(
2(1 + | ln ρn|−

1
4 )

γv2
k

)

=
2

ρn
ψ′
P

(n)
X

(
2(1 + | ln ρn|−

1
4 )| ln ρn|

v2
k

)

=
K∑

j=1

p+

j vjE
[
h

(
z,

2(1 + | ln ρn|−
1
4 )| ln ρn|

v2
k

, vj; v,p
+,p−

)]

+
K∑

j=1

p−j vjE
[
h

(
z,

2(1 + | ln ρn|−
1
4 )| ln ρn|

v2
k

, vj; v,p
−,p+

)]

−−−→
ρn→0

∑

j≥k
p+

j v
2
j +

∑

j≥k
p−j v

2
j = E[X2

01{|X0|≥vk}] .

Note that limρn→0 b
(j)
ρn = limρn→0 a

(j−1)
ρn . Thus, Lemma 7.15 essentially states

that, in the limit ρn → 0, the segment [0,EX2
0 ] can be broken into K subsegments

[a
(j)
ρn , b

(j)
ρn ] such that the point where the supremum over r is achieved is located in

an interval shrinking on r∗ := 2/γv2
j for all q ∈ [a

(j)
ρn , b

(j)
ρn ]. The next step is then to

determine what is the limit of 1
αn
ψ
P

(n)
X

(
αn
ρn

2
γv2
j

)
.

Lemma 7.16. Let P (n)
X := (1− ρn)δ0 + ρnP0 where P0 is a discrete distribution

with finite support supp(P0) ⊆ {±v1,±v2, . . . ,±vK} with 0 < v1 < v2 < · · · < vK .
Let αn := γρn| ln ρn| for a fixed γ > 0. Then, for every k ∈ {1, . . . , K} :

lim
ρn→0

1

αn
ψ
P

(n)
X

(
αn
ρn

2(1± | ln ρn|−
1
4 )

γv2
k

)
=

E[X2
01{|X0|≥vk}]

γv2
k

− P(|X0| ≥ vk)

γ
, (7.65)

where X0 ∼ P0.

Proof. Fix k ∈ {1, . . . , K}. The function ψ
P

(n)
X

is Lipschitz continuous with

Lipschitz constant ρnEX2
0

2
. Therefore,

∣∣∣∣
1

αn
ψ
P

(n)
X

(
αn
ρn

2(1± | ln ρn|−
1
4 )

γv2
k

)
− 1

αn
ψ
P

(n)
X

(
αn
ρn

2

γv2
k

)∣∣∣∣

≤ ρnEX2
0

2αn

∣∣∣∣
αn
ρn

2| ln ρn|−
1
4

γv2
k

∣∣∣∣ =
EX2

0

γv2
k

| ln ρn|−
1
4 .

The latter inequality shows that the limits of 1
αn
ψ
P

(n)
X

(
αn
ρn

2(1+| ln ρn|−1/4)

γv2
k

)
and

1
αn
ψ
P

(n)
X

(
αn
ρn

2(1−| ln ρn|−1/4)

γv2
k

)
are the same and equal to the limit of 1

αn
ψ
P

(n)
X

(
αn
ρn

2
γv2
k

)
.
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To compute the latter, let us write ψ
P

(n)
X

(r) in a more explicit form. For all r ≥ 0:

ψ
P

(n)
X

(r) := E
[

ln

∫
dP

(n)
X (x)e−

r
2
x2+rX∗x+

√
rxZ
]
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[
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(
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K∑
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e−
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i

2

(
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i e
rX∗vi+

√
rZvi + p−i e

−rX∗vi−
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))]

=(1− ρn)E
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1− ρn + ρn
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e−
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i

2

(
p+
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√
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−√rZvi)
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+ ρn
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i
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−rvjvi−
√
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))]

+ ρn

K∑
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1− ρn + ρn
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e−
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(
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i e
−rvjvi+

√
rZvi + p−i e

rvjvi−
√
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))]

=(1− ρn)E
[

ln
(

1− ρn + ρn
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e−
rv2
i
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(
p+

i e
√
rZvi + p−i e

−√rZvi)
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+ ρn
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1− ρn + ρn

K∑

i=1

e−
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(
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i e
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√
rZvi + p−i e

−rvjvi−
√
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+ ρn
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p−j E
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(
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rv2
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(
p−i e

rvjvi+
√
rZvi + p+

i e
−rvjvi−

√
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,

where the last equality is obtained by replacing Z by −Z in the expectations
of the last sum over j without changing the values of these expectations since
Z ∼ N (0, 1) has a symmetric distribution. Hence, we see that

ψ
P

(n)
X

(r) = (1− ρn)E
[

ln
(

1− ρn + ρn

K∑

i=1

e−
rv2
i

2

(
p+

i e
√
rZvi + p−i e

−√rZvi)
)]

+
ρnrEX2

0

2
+ ρn ln ρn + ρn

K∑

j=1

p+

j E
[

ln h̃(Z, r, vj; ρn,v,p
+,p−)

]

+ ρn

K∑

j=1

p−j E
[

ln h̃(Z, r, vj; ρn,v,p
−,p+)

]
, (7.66)

where v := (v1, v2, . . . , vK), p+ := (p+

1 , p
+

2 , . . . , p
+

K), p− := (p−1 , p
−
2 , . . . , p

−
K) and we

define ∀(z, r, u) ∈ R× [0,+∞)× (0,+∞):

h̃(z, r, u; ρn,v,p
±,p∓)

:=
1− ρn
ρn

e−
ru2

2
−√rzu +

K∑

i=1

e−
r(vi−u)2

2
+
√
rz(vi−u)

(
p±i + p∓i e

−2rviu−2
√
rzvi
)
.
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It follows directly from (7.66) that

1

αn
ψ
P

(n)
X

(
αn
ρn

2

γv2
k

)
=
Aρn
γ

+
EX2

0

γv2
k

− 1

γ

+
1

γ

K∑

j=1

p+

j E
[ ln h̃

(
Z, 2| ln ρn|

v2
k
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+
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(
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]
, (7.67)

where

Aρn =
1− ρn
ρn| ln ρn|

· E ln

(
1− ρn + ρn
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k

∣∣∣∣ 12Z))
.

Next we show that Aρn vanishes when ρn → 0. We can use the inequalities
x

1+x
≤ ln(1 + x) ≤ x, valid for all x > −1, to get the following bounds on Aρn :

Aρn ≤
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≥ − 1

| ln ρn|
.

The last inequality is because (x−1)/(1−ρn+ρnx) ≥ −1/(1−ρn) for x > 0. Together the
upper bound and lower bound imply that |Aρn| ≤ 1/| ln ρn| −−−→

ρn→0
0. To conclude

the proof, we need to compute the limits of each summand in both sums over
j ∈ {1, . . . , K} on the right-hand side of (7.67). Note that ∀z ∈ R:
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.
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From this last expression we easily deduce the following pointwise limits for all
z ∈ R :

ln h̃

(
z, 2| ln ρn|

v2
k

, vj; ρn,v,p
±,p∓

)

| ln ρn|
−−−→
ρn→0

{
1− v2

j

v2
k

if j < k ;

0 if j ≥ k .
(7.68)

By the dominated convergence theorem, making use of the pointwise limits (7.68),
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)
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(
Z, 2| ln ρn|
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k
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)
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−−−→
ρn→0

∑

j<k

(p+

j + p−j )

(
1− v2

j

v2
k

)
= P(|X0| < vk)−

E[X2
01{|X0|<vk}]

v2
k

. (7.69)

Combining the identity (7.67), limρn→0Aρn = 0 and the limit (7.69) yields

lim
ρn→0

1

αn
ψ
P

(n)
X

(
αn
ρn

2

γv2
k

)
=

EX2
0

γv2
k

− 1

γ
+

P(|X0| < vk)

γ
− E[X2

01{|X0|<vk}]

γv2
k

=
E[X2

01{|X0|≥vk}]

γv2
k

− P(|X0| ≥ vk)

γ
,

thus ending the proof of the proposition.

We can now use Lemmas 7.15 and 7.16 to determine the limits when ρn → 0
of the infimum of supr≥0 iRS(q, r;αn, ρn) over q restrained to different subsegments
of [0,EX2

0 ].

Proposition 7.17. Let P (n)
X := (1−ρn)δ0+ρnP0 where P0 is a discrete distribution

with finite support supp(P0) ⊆ {±v1,±v2, . . . ,±vK} with 0 < v1 < v2 < · · · < vK .
Let αn := γρn| ln ρn| for a fixed γ > 0. Then, ∀k ∈ {1, . . . , K} :

lim
ρn→0+

inf
q∈[a

(k)
ρn ,b

(k)
ρn ]

sup
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,
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}
, (7.70)

while ∀k ∈ {2, . . . , K} :

lim
ρn→0+

inf
q∈[b
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ρn ,a

(k−1)
ρn ]

sup
r≥0

iRS(q, r;αn, ρn)

= IPout(E[X2
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2
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γ
. (7.71)

Finally,

lim
ρn→0+

inf
q∈[0,a

(K)
ρn ]

sup
r≥0

iRS(q, r;αn, ρn) = IPout(0,EX2
0 ) , (7.72)

lim inf
ρn→0+

inf
q∈[b

(1)
ρn ,1]

sup
r≥0

iRS(q, r;αn, ρn) ≥ 1

γ
. (7.73)
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Proof. In the whole proof ρn is close enough to 0 for the ordering (7.58) to hold.
First we prove (7.70). Fix k ∈ {1, . . . , K}. By Lemma 7.15, for all q ∈ [a

(k)
ρn , b
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ρn ]:
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. (7.74)

These inequalities are valid for every q ∈ [a
(k)
ρn , b

(k)
ρn ] so the same inequalities will

hold if we take the infimum over q ∈ [a
(k)
ρn , b
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ρn ] in (7.74). Note that
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are concave functions on [a
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. (7.75)

The limit when ρn → 0 follows from (7.59) in Lemma 7.15 and (7.65) in
Lemma 7.16. Taking the infimum over q ∈ [a

(k)
ρn , b

(k)
ρn ] in (7.74) and using the

fact that the upper and lower bounds have the same limit (7.75) ends the proof
of (7.70).
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We now turn to the proof of the limit (7.71). Fix k ∈ {2, . . . , K}. Since it is
the supremum of nondecreasing functions, the function
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(n)
X

: q ∈ [0,EX2
0 ] 7→ sup
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By Lemma 7.15, we have
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k and r∗n(a
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1−| ln ρn|−1/4

)
/γv2

k−1. Making
use of the limits (7.59) in Lemma 7.15 and (7.65) in Lemma 7.16 yields

lim
ρn→0+

ψ̃
P

(n)
X

(b(k)
ρn ) =

E[X2
01{|X0|≥vk}]

γv2
k

− E[X2
01{|X0|≥vk}]

γv2
k

+
P(|X0| ≥ vk)

γ

=
P(|X0| ≥ vk)

γ
;

lim
ρn→0+

ψ̃
P

(n)
X

(a(k−1)
ρn ) =

E[X2
01{|X0|>vk−1}]

γv2
k−1

− E[X2
01{|X0|≥vk−1}]

γv2
k−1

+
P(|X0| ≥ vk−1)

γ

=
P(|X0| ≥ vk)

γ
.

Besides, lim
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Hence, the lower and upper bounds in (7.76) have the same limit. It ends the
proof of (7.71).

The proof of (7.72) is similar to the one of (7.71). We have the bounds
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2
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P
(n)
X

(
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ρn

)
. (7.77)
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The function IPout(·,EX2
0 ) is continuous and limρn→0+ a

(K)
ρn = 0 so

lim
ρn→0+

IPout(a
(K)
ρn ,EX

2
0 ) = IPout(0,EX2

0 ) .

Clearly, ψ̃
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(0) = 0. By Lemma 7.15,
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,

where r∗n(a
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ρn ) = 2(1−| ln ρn|−1/4)/γv2

K. It follows from the limits (7.59) (Lemma 7.15)
and (7.65) (Lemma 7.16) that limρn→0+ ψ̃

P
(n)
X
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ρn ) = 0. Thus, the lower and

upper bounds in (7.77) have the same limit. It ends the proof of (7.72).
We are left with proving (7.73). The fact that IPout(·,EX2

0 ) and ψ̃
P

(n)
X

are
respectively nonincreasing and nondecreasing imply that
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(7.78)
Note that the right-hand side of (7.78) has a limit. More precisely,
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γv2
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+
P(|X0| ≥ v1)

γ
=

1

γ
.

Taking the limit inferior on both sides of (7.78) and using the latter limit proves
the inequality (7.73).

Proposition 7.18. Let P (n)
X := (1−ρn)δ0+ρnP0 where P0 is a discrete distribution

with finite support

supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v1, v1, v2, . . . , vK} ,

where 0 < v1 < · · · < vK < vK+1 = +∞. Let αn := γρn| ln ρn| for a fixed γ > 0
and X0 ∼ P0. Then, the quantity I(ρn, αn) := infq∈[0,EX2

0 ] supr≥0 iRS(q, r;αn, ρn)
has a limit when ρn → 0+ and

lim
ρn→0+

I(ρn, αn) = min
1≤k≤K+1

{
IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ

}
.

Proof. The proof goes in two steps. We first prove a upper bound on the limit
superior of I(ρn, αn), and then prove a lower bound on the limit inferior thats
turns out to match the limit superior.
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Upper bound on the limit superior Note the following trivial upper bound:

I(ρn, αn) ≤ min
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{
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(k)
ρn ,b

(k)
ρn ]

sup
r≥0

iRS(q, r;αn, ρn)

}
. (7.79)

The upper bound on the limit superior of I(ρn, αn) thus directly follows from
(7.79) and Proposition 7.17 on the limits of the infimums over q ∈ [a

(k)
ρn , b

(k)
ρn ]
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(7.80)

Matching lower bound on the limit inferior The lower bound on the limit
inferior is obtained by studying the infimum on each segment of the following
partition:

[0,EX2
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By Proposition 7.17, we directly have:
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Following the partition (7.81), the limit inferior of infq∈[0,EX2
0 ] supr≥0 iRS(q, r;αn, ρn)

is equal to the minimum of the above four limits inferior. Hence,
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ρn→0+

I(ρn, αn) ≥ min
1≤k≤K+1

{
IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ

}
.

(7.82)
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We see that the lower bound (7.82) on the limit inferior matches the upper bound
(7.80) on the limit superior, thus ending the proof.

Proof of Theorem 7.2 Combining Theorem 7.1 together with Proposition 7.18
gives Theorem 7.2.

7.C Asymptotic minimum mean-square error:
proof of Theorem 7.3

Let X̂ = X̂(Y,W) be an estimator of X∗ that is a function of the observations Y
and the measurement matrix W. Then the mean-square error of this estimator
is E‖X∗−X̂‖2/kn ∈ [0,EX0∼P0X

2
0 ] where the normalization factor kn := nρn is the

expected sparsity of X∗. It is well-known that the Bayes estimator E[X∗|Y,W]
achieves the minimum mean-square error (MMSE) among all estimators of the
form X̂(Y,W). We denote the mean-square error of the Bayes estimator by

MMSE(X∗|Y,W) :=
E‖X∗ − E[X∗|Y,W]‖2

kn
. (7.83)

The MMSE is therefore a tight lower bound on the error that we achieve when
estimating X∗ from the observations Y and the known measurement matrix W.
For this reason a result on the MMSE is easier to interprete than a result on the
normalized mutual information I(X∗;Y|W)/mn. In this section, we prove Theorem 7.3,
that is, a formula for the asymptotic MMSE when n diverges to infinity while
ρn = Θ(n−λ) with λ ∈ (0, 1/9) and αn = γρn| ln ρn| with γ > 0. The proof of
this theorem is given at the end of this section. The proof relies on the I-MMSE
relation [51] that links the MMSE to the derivative of the mutual information
with respect to the signal-to-noise ratio of some well-chosen observation channel.
For this reason, we first have to determine the asymptotic mutual information of
a modified inference problem in which, in addition to the observations (7.2), we
have access to the side information Ỹ(τ) =

√
αnτ/ρn X∗ + Z̃ with τ > 0 and Z̃ an

additive white Gaussian noise. Indeed, the parameter τ is akin to a signal-to-noise
ratio and the derivative of the mutual information I(X∗;Y,Ỹ(τ)|W)/mn with respect
to τ yields half the MMSE [51]:

∂

∂τ

(
I(X∗; Y, Ỹ(τ)|W)

mn

)
=

MMSE(X∗|Y, Ỹ(τ),W)

2
−−−→
τ→0+

MMSE(X∗|Y,W)

2
.

7.C.1 Generalized linear estimation with side information

Let (X∗i )ni=1
i.i.d.∼ P

(n)
X be the components of the signal vector X∗. We now have

access to the observations



Yµ ∼ Pout

(
·
∣∣∣ (WX∗)µ√

kn

)
, 1 ≤ µ ≤ mn ;

Ỹ
(τ)
i =

√
αn
ρn
τ X∗i + Z̃i , 1 ≤ i ≤ n ;

(7.84)



7.C. Asymptotic minimum mean-square error: proof of Theorem 7.3 253

where τ ≥ 0. Remember that the transition kernel Pout is defined in (7.4) using the
activation function ϕ and the probability distribution PA. The side information
only induces a small change in the RS potential whose extremization gives the
asymptotic normalized mutual information. More precisely, the potential now
reads

iRS(q, r, τ ;αn, ρn) :=
1

αn
I
P

(n)
X

(
αn
ρn

(r+ τ)

)
+ IPout

(
q,EX2

0

)
− r(EX

2
0 − q)
2

, (7.85)

where X0 ∼ P0. We then have the following generalization of Theorem 7.1.

Theorem 7.19 (Normalized mutual information of the GLM with side information
at sublinear sparsity and sampling rate). Suppose that ∆ > 0 and the following
hypotheses hold:

(H1) There exists S > 0 such that the support of P0 is included in [−S, S].
(H2) ϕ is bounded, and its first and second partial derivatives with respect to its

first argument exist, are bounded and continuous. They are denoted ∂xϕ,
∂xxϕ.

(H3) Wµi
i.i.d.∼ N (0, 1) for (µ, i) ∈ {1, . . . ,mn} × {1, . . . , n}.

Let ρn = Θ(n−λ) with λ ∈ [0, 1/9) and αn = γρn| ln ρn| with γ > 0. Then, ∀n ∈ N∗:
∣∣∣∣
I(X∗; Y, Ỹ(τ)|W)

mn

− inf
q∈[0,EX2

0 ]
sup
r≥0

iRS(q, r, τ ;αn, ρn)

∣∣∣∣ ≤
√
C | lnn|1/6
n

1
12
− 3λ

4

, (7.86)

where X0 ∼ P0 and C is a polynomial in
(
τ, S,

∥∥ ϕ√
∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞, λ, γ

)

with positive coefficients.

Proof. The proof is similar to the proof of Theorem 7.1 except for a small change
in the adaptive interpolation method due to the side information. More precisely,
at t ∈ [0, 1], we have access to the observations

{
Y

(t,ε)
µ ∼ Pout( · |S(t,ε)

µ ) , 1 ≤ µ ≤ mn ;

Ỹ
(t,ε,τ)
i =

√
αn
ρn
τ +R1(t, ε)X∗i + Z̃i , 1 ≤ i ≤ n ;

(7.87)

where X∗i
i.i.d.∼ P

(n)
X , Z̃i i.i.d.∼ N (0, 1) and

S(t,ε)
µ :=

√
1− t
kn

n∑

i=1

WµiX
∗
i +

√
R2(t, ε)Vµ +

√
t+ 2sn −R2(t, ε)Uµ

with Wµi, Vµ, Uµ
i.i.d.∼ N (0, 1). The proof then goes by looking to the interpolating

mutual information I((X∗,U);(Y(t,ε),Ỹ(t,ε,τ))|W)/mn, and follows exactly the same lines
than the proof of Theorem 7.1. In particular, the interpolation functions (R1, R2)
are chosen a posteriori as the solutions to the same first-order ordinary differential
equations than for Theorem 7.1.
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Let X∗ ∼ P
(n)
X and Z ∼ N (0, 1) be independent random variables. We define

for all r ≥ 0:

ψ
P

(n)
X

(r) := E
[

ln

∫
dP

(n)
X (x)e−

r
2
X2

0 +rX∗x+
√
rxZ
]
.

Note that I
P

(n)
X

(r) := I(X∗;
√
r X∗ + Z) =

rρnE[X2
0 ]

2
− ψ

P
(n)
X

(r) where X0 ∼ P0.
For fixed ρn, αn > 0 and τ ≥ 0, we denote the variational problem appearing in
Theorem 7.1 by

I(ρn, αn, τ) := inf
q∈[0,EX2

0 ]
sup
r≥0

iRS(q, r, τ ;αn, ρn)

= inf
q∈[0,EX2

0 ]
IPout

(
q,EX2

0

)
+
τEX2

0

2
+ sup

r≥0

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn

(r + τ)

)}

= inf
q∈[0,EX2

0 ]
IPout

(
q,EX2

0

)
+
τ(EX2

0 − q)
2

+ sup
r≥τ

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}
,

(7.88)

where X0 ∼ P0. Similarly to what is done in Section 7.4 when P0 = δ1, we
compute the limit of I(ρn, αn, τ) when P0 is a discrete distribution with finite
support.

Proposition 7.20. Let P (n)
X := (1−ρn)δ0 +ρnP0 where P0 is a discrete probability

distribution with finite support

supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v1, v1, v2, . . . , vK} ,

where 0 < v1 < · · · < vK < vK+1 = +∞. Let αn := γρn| ln ρn| for a fixed γ > 0.
For every τ ∈ [0, 2/γv2

K), the limit of I(ρn, αn, τ) defined in (7.88) exists when
ρn → 0+ and (in what follows X0 ∼ P0)

lim
ρn→0+

I(ρn, αn, τ) = min
1≤k≤K+1

{
IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ

+
τE[X2

01{|X0|<vk}]

2

}
.

Proof. Fix τ ∈ [0, 2/γv2
K) and define ĨPout(q,EX2

0 ) := IPout(q,EX2
0 )+

τ(EX2
0−q)

2
. From

(7.88), we have

I(ρn, αn, τ) = inf
q∈[0,EX2

0 ]
ĨPout(q,EX2

0 ) + sup
r≥τ

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}
. (7.89)

Note that (7.89) has a form similar to I(ρn, αn) defined by (7.56) in Appendix 7.B.
The only differences are that ĨPout( · ,EX2

0 ) replaces IPout( · ,EX2
0 ) and the supre-

mum is over r ∈ [τ,+∞) instead of r ∈ [0,+∞). Crucially, ĨPout( · ,EX2
0 ) is

concave nonincreasing on [0,EX2
0 ] exactly like IPout( · ,EX2

0 ). For these reasons,
we can reproduce most of the analysis of Appendix 7.B – where we compute
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the limit limρn→0+ I(ρn, αn) – in order to obtain the limit of I(ρn, αn, τ) when ρn
vanishes positively. We just need to be careful with the fact that the supremum
is now over r ∈ [τ,+∞).

By Lemma 7.15 in Appendix 7.B, for every q ∈ (ρnE[X0]2,EX2
0 ) there exists

a unique r∗n(q) ∈ (0,+∞) such that

r∗n(q)q

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r∗n(q)

)
= sup

r≥0

rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)
, (7.90)

and r∗n(q) ≥ 2(1−| ln ρn|−
1
4 )/γv2

K for all q ∈ [a
(K)
ρn ,EX2

0 ), where a(K)
ρn is defined in

the same lemma by (7.57). By assumption τ < 2/γv2
K so r∗n(q) > τ for all

q ∈ [a
(K)
ρn ,EX2

0 ) when ρn is close enough to 0. It follows that ∀q ∈ [a
(K)
ρn ,EX2

0 ) :

r∗n(q)q

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r∗n(q)

)
= sup

r≥τ

rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)
, (7.91)

where we have replaced the supremum over r ∈ [0,+∞) in (7.90) by a supremum
over r ∈ [τ,+∞). Thanks to the identity (7.91) we can repeat the analysis leading
to Propositions 7.17 and 7.18, replacing IPout(·,EX2

0 ) by ĨPout(·,EX2
0 ) (this makes

no difference as we only need for ĨPout(·,EX2
0 ) to be concave nonincreasing), and

we obtain the limit

lim
ρn→0+

inf
q∈[a

(K)
ρn ,EX2

0 ]
sup
r≥τ

ĨPout(q,EX2
0 ) +

rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)

= min
1≤k≤K+1

ĨPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ
. (7.92)

Note that the limit (7.92) is for the infimum over q ∈ [a
(K)
ρn ,EX2

0 ], not the
infimum over q ∈ [0,EX2

0 ]. This is because, for q ∈ (ρnEX2
0 , a

(K)
ρn ), r∗n(q) does not

necessarily satisfy (7.91). However, the limit (7.92) directly implies the following
upper bound on the limit superior,

lim sup
ρn→0+

I(ρn, αn, τ) ≤ min
1≤k≤K+1

ĨPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ
.

(7.93)
In order to lower bound the limit inferior, we have to lower bound the infimum over
q ∈ [0, a

(K)
ρn ] of ĨPout(q,EX2

0 )+supr≥τ
{
rq
2
− 1

αn
ψ
P

(n)
X

(
αnr/ρn

)}
. Because ĨPout(·,EX2

0 )

is nonincreasing and q 7→ supr≥τ
{
rq
2
− 1

αn
ψ
P

(n)
X

(
αnr/ρn

)}
is nondecreasing (it is the

supremum of nondecreasing functions), we have

inf
q∈[0,a

(K)
ρn ]

ĨPout(q,EX2
0 ) + sup

r≥τ

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}

≥ ĨPout(a
(K)
ρn ,EX

2
0 ) + sup

r≥τ

{
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}

= ĨPout(a
(K)
ρn ,EX

2
0 )− 1

αn
ψ
P

(n)
X

(
αn
ρn
τ

)
. (7.94)
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The last equality follows from ψ
P

(n)
X

being nondecreasing (see Lemma 2.3). We
can use the computations in the proof of Lemma 7.16 to write 1

αn
ψ
P

(n)
X

(
αnτ
ρn

)
more

explicitly.We have

1

αn
ψ
P

(n)
X

(
αnτ

ρn

)
=
Bρn

γ
+
τEX2

0

2
− 1

γ

+
1

γ

K∑

j=1

p+

j E
[

ln h̃
(
Z, γτ | ln ρn|, vj; ρn,v,p+,p−

)

| ln ρn|

]

+
1

γ

K∑

j=1

p−j E
[

ln h̃
(
Z, γτ | ln ρn|, vj; ρn,v,p−,p+

)

| ln ρn|

]
, (7.95)

where

Bρn :=
1− ρn
ρn| ln ρn|

E
[

ln

(
1− ρn

+ ρn

K∑

i=1

e
− γτ

2v2
k

| ln ρn|
(
p+

i e
√
γτ | ln ρn|v2

i Z + p−i e
−
√
γτ | ln ρn|v2

i Z

))]

and ∀z ∈ R :

h̃
(
z, γτ | ln ρn|, vj; ρn,v,p±,p∓

)
:= (1− ρn)e

| ln ρn|
(

1−
γτv2

j
2
−
√

γτv2
j

| ln ρn|
z

)

+
K∑

i=1

e
−| ln ρn|

(
γτ(vi−vj)2

2
−
√

γτ
| ln ρn|

(vi−vj)z
)(
p±i + p∓i e

−2| ln ρn|vi(γτvj+z
√

γτ/| ln ρn| )
)
.

(7.96)

We can show, exactly as it is done for Aρn in the proof of Lemma 7.16, that
|Bρn| ≤ 1/| ln ρn|. Besides, as τ < 2/γv2

K, we have 1− γτv2
j/2 > 0 for all j ∈ {1, . . . , K}

and we easily deduce from (7.96) that ∀j ∈ {1, . . . , K},∀z ∈ R :

lim
ρn→0+

ln h̃
(
z, γτ | ln ρn|, vj; ρn,v,p±,p∓

)

| ln ρn|
= 1− γτv2

j

2
. (7.97)

By the dominated convergence theorem, making use of the pointwise limits (7.97),

lim
ρn→0+

K∑

j=1

p+

j E
[

ln h̃
(
Z, γτ | ln ρn|, vj; ρn,v,p+,p−

)

| ln ρn|

]

+ p−j E
[

ln h̃
(
Z, γτ | ln ρn|, vj; ρn,v,p−,p+

)

| ln ρn|

]

=
K∑

j=1

(p+

j + p−j )

(
1− γτv2

j

2

)
= 1− γτEX2

0

2
.

Combining the identity (7.95) with the latter limit and limρn→0+ Bρn = 0 yields

lim
ρn→0

1

αn
ψ
P

(n)
X

(
αn
ρn
τ

)
=
τEX2

0

2
− 1

γ
+

1

γ

(
1− γτEX2

0

2

)
= 0 . (7.98)
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Then, the lower bound (7.94) together with (7.98) and limρn→0+ a
(K)
ρn = 0 (see

Lemma 7.15) implies that

lim inf
ρn→0+

inf
q∈[0,a

(K)
ρn ]

ĨPout(q,EX2
0 ) + sup

r≥τ

{
rq

2
− 1

αn
ψ
P

(n)
X

(
αn
ρn
r

)}
≥ ĨPout(0,EX2

0 ) .

Finally, we combine the latter inequality with the limit (7.92) to obtain

lim inf
ρn→0+

I(ρn, αn, τ) ≥ min
1≤k≤K+1

ĨPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ
.

This lower bound on the limit inferior matches the upper bound on the limit
superior in (7.93). Hence,

lim
ρn→0+

I(ρn, αn, τ) = min
1≤k≤K+1

ĨPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ

= min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+
τE[X2

01{|X0|<vk}]

2
+

P(|X0| ≥ vk)

γ
,

where the last equality follows simply from the definition of ĨPout .

The next theorem is a direct corollary of Theorem 7.19 and Proposition 7.20.

Theorem 7.21. Suppose that ∆ > 0 and P (n)
X := (1− ρn)δ0 + ρnP0 where P0 is a

discrete probability distribution with finite support

supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v2,−v1, v1, v2, . . . , vK−1, vK} ,
where 0 < v1 < v2 < · · · < vK < vK+1 = +∞. Further assume that the following
hypotheses hold:

(H2) ϕ is bounded, and its first and second partial derivatives with respect to its
first argument exist, are bounded and continuous. They are denoted ∂xϕ,
∂xxϕ.

(H3) Wµi
i.i.d.∼ N (0, 1) for (µ, i) ∈ {1, . . . ,mn} × {1, . . . , n}.

Let ρn = Θ(n−λ) with λ ∈ (0, 1/9) and αn = γρn| ln ρn| with γ > 0. Then,
∀τ ∈ [0, 2/γv2

K):

lim
n→+∞

I(X∗; Y, Ỹ(τ)|W)

mn

= min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+
τE[X2

01{|X0|<vk}]

2
+

P(|X0| ≥ vk)

γ
.

7.C.2 Proof of Theorem 7.3

For all n ∈ N∗ and τ ∈ [0,+∞) we denote by in(τ) the normalized conditional
mutual information between X∗ and the observations Y, Ỹ(τ) (defined in (7.84))
given W,

in(τ) :=
I(X∗; Y, Ỹ(τ)|W)

mn

.
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We place ourselves in the regime of Theorem 7.3, that is, ρn = Θ(n−λ) with
λ ∈ [0, 1/9) and αn = γρn| ln ρn| with γ > 0. By Theorem 7.21, if the side
information is low enough, that is, τ < 2/γv2

K, then limn→+∞ in(τ) = i(τ) where

i(τ) := min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+
τE[X2

01{|X0|<vk}]

2
+

P(|X0| ≥ vk)

γ
.

(7.99)
We first establish a few properties of the function in. The posterior density of X∗

given W and the observations (Y, Ỹ(τ)) is

dP
(
x
∣∣Y, Ỹ(τ),W

)
:=

1

Z(Y, Ỹ(τ),W)

n∏

i=1

dP
(n)
X (xi) e

− 1
2

(
Ỹ

(τ)
i −
√

αnτ
ρn

xi

)2

·
mn∏

µ=1

Pout

(
Yµ

∣∣∣∣
(Wx)µ√

kn

)
, (7.100)

where Z(Y, Ỹ(τ),W) is a normalization factor. In what follows, x denotes a
n-dimensional random vector distributed with respect to the posterior distribution
(7.100). We denote by angular brackets 〈−〉n,τ the expectation with respect to
this posterior. By definition of the mutual information we have

in(τ) = −E lnZ(Y, Ỹ(τ),W)

mn

+
1

mn

E
[

ln
n∏

i=1

e−
1
2

(
Ỹ

(τ)
i −
√

αnτ
ρn

X∗i

)2 mn∏

µ=1

Pout

(
Yµ

∣∣∣∣
(WX∗)µ√

kn

)]

= −E lnZ(Y, Ỹ(τ),W)

mn

− 1

2αn
+ E

[
lnPout

(
Y1

∣∣∣∣
(WX∗)1√

kn

)]
.

Derivation under the expectation sign, justified by the dominated convergence
theorem, yields the first derivative of in. We obtain

i′n(τ) =
1

mn

n∑

i=1

E
[〈(

Ỹ
(τ)
i −

√
αnτ

ρnτ
xi

)
1

2

√
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〉

n,τ

]

=
1

mn
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E
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Ỹ
(τ)
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√
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ρnτ
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)
1

2

√
αn
ρnτ

(xi −X∗i )

〉

n,τ

]

=
1

2mn

√
αn
ρnτ

E
[
Z̃i(〈xi〉n,τ −X∗i )

]

=
1

2mn

√
αn
ρnτ

n∑

i=1

E
[
Z̃i〈xi〉n,τ

]

=
1

2mn

αn
ρn

n∑

i=1

E
[
〈x2

i 〉n,τ − 〈xi〉2n,τ
]

=
E‖X∗ − E[X∗|Y,Y(τ),W]‖2

2kn
. (7.101)
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The second equality is due to the Nishimori identity, the third to the definition
of Ỹ (τ)

i , and the second-to-last to a Gaussian integration by parts with respect
to Z̃i. The final identity (7.101) is the I-MMSE relationship given without proof
at the beginning of this appendix. Further differentiating with respect to τ , and
integrating by parts with respect to the standard Gaussian random variables Z̃i,
gives

i′′n(τ) = − 1

2kn

n∑

i=1

E
[〈

(xi − 〈xi〉n,τ )2
〉2

n,τ

]
.

The latter shows that in is concave as its second derivative is nonpositive. We have
shown that (in)n∈N∗ is a sequence of continuously differentiable concave functions
on [0, 2/γv2

K) that converges pointwise to i defined by (7.99). By Griffiths’ lemma
[52, Appendix A], if the pointwise limit (7.99) is differentiable at τ ∈ [0, 2/γv2

K)
then

lim
n→+∞

i′n(τ) = i′(τ) . (7.102)

The final step is to determine i′(τ). Suppose that the minimization problem

min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+

P(|X0| ≥ vk)

γ
(7.103)

has a unique solution k∗ ∈ {1, . . . , K + 1}. Then, there exists ε ∈ [0, 2/γv2
K) such

that, for all τ ∈ [0, ε), k∗ is the unique solution to the minimization problem

min
1≤k≤K+1

IPout

(
E[X2

01{|X0|≥vk}],EX
2
0

)
+
τE[X2

01{|X0|<vk}]

2
+

P(|X0| ≥ vk)

γ
.

Therefore, ∀τ ∈ [0, ε) :

i(τ) = IPout

(
E[X2

01{|X0|≥vk∗}],EX
2
0

)
+
τE[X2

01{|X0|<vk∗}]

2
+

P(|X0| ≥ vk∗)

γ
,

i′(τ) =
E[X2

01{|X0|<vk∗}]

2
.

Combining the latter with (7.101) and (7.102) yields ∀τ ∈ [0, ε) :

lim
n→+∞

E‖X∗ − E[X∗|Y, Ỹ(τ),W]‖2

kn
= lim

n→+∞
2i′n(τ) = 2i′(τ) = E[X2

01{|X0|<vk∗}] .

In particular, at τ = 0, we have

lim
n→+∞

E‖X∗ − E[X∗|Y,W]‖2

kn
= E[X2

01{|X0|<vk∗}]

whenever the minimization problem (7.103) has a unique solution k∗.
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7.C.3 All-or-nothing phenomenon and its generalization

We now look at the asymptotic MMSE as a function of the number of mea-
surements, i.e., as a function of the parameter γ that controls the number of
measurements mn = γ · nρn| log ρn|. Let X0 ∼ P0 and assume that supp|X0| = K.
We place ourselves under the assumptions of Theorem 7.3. The functions
k 7→ IPout

(
E[X2

01{|X0|≥vk}],E[X2
0 ]
)
and k 7→ P(|X0| ≥ vk) are nondecreasing

and increasing on {1, 2, . . . , K + 1}, respectively. Hence, the minimization prob-
lem on the right-hand side of (7.8) has a unique solution denoted k∗(γ) for all
but K or less values of γ ∈ (0,+∞), and γ1 < γ2 ⇒ k∗(γ1) ≥ k∗(γ2) (assuming
k∗(γ1), k∗(γ2) are well-defined). By Theorem 7.3, it implies that the asymptotic
MMSE as a function of γ is nonincreasing and piecewise constant; its image
is included in {EX2

0 ,E[X2
01{|X0|≤vK−1}], . . . ,E[X2

01{|X0|≤v1}], 0}. The asymptotic
MMSE has at most K discontinuities. As γ increases past a discontinuity, the
asymptotic MMSE jumps from E[X2

01{|X0|<vk∗1 }
] for some k∗1 ∈ {2, . . . , K + 1}

down to a lower value E[X2
01{|X0|<vk∗2 }

] where k∗2 ∈ {1, . . . , k∗1 − 1}.
Therefore, when K = 1, the asymptotic MMSE has one discontinuity at

γc := 1/IPout(0,EX2
0 ) where it jumps down from EX2

0 to 0: this is the all-or-
nothing phenomenon previously observed in [32], [33], [154] for a linear activation
function ϕ(x) = x and a deterministic distribution P0. Theorem 7.3 generalizes
this all-or-nothing phenomenon to activation functions satisfying mild conditions
and any discrete distribution P0 whose support is included in {−v, v} for some
v > 0.

When K > 1, the phenomenology is more complex. The asymptotic MMSE
exhibits intermediate plateaus between the plateaus “MMSE = EX2

0 ” (no recon-
struction at all) for low values of γ and “MMSE = 0” (perfect reconstruction) for
large values of γ. For illustration purposes, we now define the following three
discrete distributions with support size K ≥ 1 and unit second moment:

• P
(K)
unif is the uniform distribution on {√a, 2√a, . . . ,K√a} with

a :=
6

(K + 1)(2K + 1)
.

• P
(K)
linear is the distribution on {

√
b, 2
√
b, . . . ,K

√
b} with

b :=
K∑

j=1

1

Kj2
and P

(K)
linear(i

√
b) :=

1

Ki2b
,

so that EX2
0 = 1 and E[X2

01{|X0|<k
√
b}] = (k−1)/K where X0 ∼ P

(K)
linear, i.e., the

quantity E[X2
01{|X0|<vk}] increases linearly with k.

• P
(K,p)
binom is the binomial distribution on {√c, 2√c, . . . ,K√c} with

c :=
1

(K − 1)(K − 2)p2 + 3(K − 1)p+ 1
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Figure 7.C.1: Minimum mean-square error in the asymptotic regime of Theorem 7.3 for
∆ ∈ [0, 4] and γ ∈ (0, 10.5]. From left to right: the activation function is linear ϕ(x) = x,
the ReLU ϕ(x) = max(0, x) and the sign function ϕ(x) = sign(x). Top to bottom: the
prior distribution P0 of the nonzero elements of X∗ is P (5)

unif , P
(5)
linear and P (5,0.2)

binom .

and

P
(K,p)
binom(i

√
c) :=

(
K − 1

i− 1

)
pi−1(1− p)K−i .

In Figure 7.C.1 we plot the asymptotic MMSE (using Theorem 7.3) as a function
of the noise variance ∆ and the parameter γ for three different activation functions
and P0 ∈ {P (5)

unif , P
(5)
linear, P

(5,0.2)
binom }.
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7.D Properties of the mutual information IPout

Lemma 7.22. Let ∆ be a positive real number, kA a nonnegative integer, PA a
probability distribution over RkA and ϕ : R× RkA → R be a bounded measurable
function. Further assume that the first and second partial derivatives of ϕ with
respect to its first argument, denoted ∂xϕ and ∂xxϕ, exist and are bounded.
Let U, V, Z ∼ N (0, 1) and A ∼ PA be independent random variables. Define
IPout(q, ρ) := I(U ; Ỹ (q,ρ)|V ) the conditional mutual information between U and
Ỹ (q,ρ) := ϕ(

√
ρ− q U +

√
q V,A) +

√
∆Z given V . Then,

• ∀ρ ∈ (0,+∞) : q 7→ IPout(q, ρ) is continuously twice differentiable, nonin-
creasing, concave and Lipschitz continuous on [0, ρ] with Lipschitz constant
C1

(∥∥ ϕ√
∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞
)
, where

C1(a, b) := (4a2 + 1)b2 .

• ∀q ∈ [0,+∞) = ρ 7→ IPout(q, ρ) is Lipschitz continuous on [q,+∞) with
Lipschitz constant C2

(∥∥ ϕ√
∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞
)
, where

C2(a, b, c) := b2(128a4 + 12a2 + 27) + c
(
16a3 + 4

√
2/π
)
.

Proof. Define Pout(y|x) :=
∫ dPA(a)√

2π∆
e−

1
2∆

(y−ϕ(x,a))2 . The posterior density function
of U given (V, Ỹ (q,ρ)) is

dP (w|V, Ỹ (q,ρ)) :=
1

Z(q, ρ)

du√
2π

e−
u2

2 Pout(Ỹ
(q,ρ)|√ρ− q u+

√
q V ) , (7.104)

where Z(q, ρ) :=
∫

du√
2π
e−

u2

2 Pout(Ỹ
(q,ρ)|√ρ− q u +

√
q V ) is the normalization

factor. Then,

IPout(q, ρ) = E
[

lnPout(Ỹ
(q,ρ)|√ρ− q U +

√
q V )

]
− E lnZ(q, ρ)

= E lnZ(ρ, ρ)− E lnZ(q, ρ) . (7.105)

It is shown in [29, Appendix B.2, Proposition 18] that, for all ρ ∈ (0,+∞),
q 7→ E lnZ(q, ρ) is continuously twice differentiable, convex and nondecreasing
on [0, ρ], i.e., q 7→ IPout(q, ρ) is continuously twice differentiable, concave and
nonincreasing on [0, ρ].

We now prove the Lipschitzness of IPout(·, ρ) by upper bounding the partial
derivative of IPout with respect to q. We denote by the angular brackets 〈−〉q,ρ
the expectation with respect to the posterior distribution (7.104), i.e.,

〈g(w)〉q,ρ :=

∫
g(w)dP (w|V, Ỹ (q,ρ)) .

Let `y(x) := lnPout(y|x). We know from [29, Appendix B.2, Proposition 18] that
∀ρ ∈ (0,+∞),∀q ∈ [0, ρ]:

∂ IPout

∂q

∣∣∣
q,ρ

= −∂ E lnZ
∂q

∣∣∣
q,ρ

= −1

2
E
[〈
`′
Ỹ (q,ρ)

(√
ρ− q u+

√
q V
)〉2

q,ρ

]
.
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By Jensen’s inequality and the Nishimory identity, it directly follows that
∣∣∣∣
∂ IPout

∂q

∣∣∣
q,ρ

∣∣∣∣ ≤
1

2
E
[〈
`′
Ỹ (q,ρ)

(√
ρ− q u+

√
q V
)2
〉
q,ρ

]

=
1

2
E
[
`′
Ỹ (q,ρ)

(√
ρ− q U +

√
q V
)2
]
. (7.106)

Remember that ∂xϕ, ∂xxϕ denote the first and second partial derivatives of ϕ with
respect to its first coordinate. The infinity norms ‖ϕ‖∞ and ‖∂xϕ‖∞ are finite by
assumptions. Note that ∀x ∈ R:

`′y(x) =

∫ y−ϕ(x,a)
∆

∂xϕ(x, a)dPA(a)√
2π∆

e−
1

2∆
(y−ϕ(x,a))2

∫ dPA(a)√
2π∆

e−
1

2∆
(y−ϕ(x,a))2

; (7.107)

|`′y(x)| ≤ |y|+ ‖ϕ‖∞
∆

‖∂xϕ‖∞ (7.108)

Thus, |`′
Ỹ (q,ρ)

(x)| ≤ 2‖ϕ‖∞+
√

∆|Z|
∆

‖∂xϕ‖∞. This upper bound combined with (7.106)
yields ∣∣∣∣

∂ IPout

∂q

∣∣∣
q,ρ

∣∣∣∣ ≤
4‖ϕ‖2

∞ + ∆

∆2
‖∂xϕ‖2

∞ , (7.109)

hence IPout(·, ρ) is Lipschitz continuous with Lipschitz constant 4‖ϕ‖2∞+∆/∆2‖∂xϕ‖2
∞.

To prove the second point of the lemma, we upper bound the partial derivative
of IPout with respect to ρ. Note that

E lnZ(q, ρ) = E
[ ∫

dy e`y(
√
ρ−q U+

√
q V ) ln

(∫
du√
2π
e`y(
√
ρ−q u+

√
q V )−u2

2

)]
.

Differentiating the right-hand side under the expectation and integral signs, we
get

∂ E lnZ
∂ρ

∣∣∣∣
q,ρ

= E
[

U

2
√
ρ− q

∫
dy
(
`′y(x)e`y(x)

)∣∣
x=
√
ρ−q U+

√
q V

ln

∫
du√
2π
e`y(
√
ρ−q u+

√
q V )−u2

2

]

+ E
[〈

w

2
√
ρ− q `

′
Ỹ (q,ρ)(

√
ρ− q u+

√
q V )

〉

q,ρ

]

= E
[

U

2
√
ρ− q

∫
dy
(
`′y(x)e`y(x)

)∣∣
x=
√
ρ−q U+

√
q V

ln

∫
du√
2π
e`y(
√
ρ−q u+

√
q V )−u2

2

]

+ E
[

U

2
√
ρ− q `

′
Ỹ (q,ρ)(

√
ρ− q U +

√
q V )

]

=
1

2
E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣∣

x=
√
ρ−q U+

√
q V

lnZ(q, ρ)

]

+
1

2
E
[
`′′
Ỹ (q,ρ)(

√
ρ− q U +

√
q V )

]
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=
1

2
E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣∣

x=
√
ρ−q U+

√
q V

(lnZ(q, ρ) + 1)

]

− 1

2
E
[
`′
Ỹ (q,ρ)(

√
ρ− q U +

√
q V )2

]
. (7.110)

The second equality is due to the Nishimori identity and the third to a Gaussian
integration by parts with respect to U . Let us define ∀ρ ∈ [0,+∞) :

h(ρ) := E lnZ(ρ, ρ) = E[

∫
dy e`y(

√
ρ V )`y(

√
ρ V )] .

Its derivative is

h′(ρ) = E
[
V

2
√
ρ

∫
dy e`y(

√
ρ V )
(
`y(
√
ρ V ) + 1

)
`′y(
√
ρ V )

]

=
1

2
E
[ ∫

dy e`y(
√
ρ V )
(
`′′y(
√
ρ V ) + `′y(

√
ρ V )2

)(
`y(
√
ρ V ) + 1

)]

+
1

2
E
[ ∫

dy e`y(
√
ρ V )`′y(

√
ρ V )2

]

=
1

2
E
[(
`′′
Ỹ (ρ,ρ)(x) + `′

Ỹ (ρ,ρ)(x)2
)∣∣
x=
√
ρ V

(lnZ(ρ, ρ) + 1)
]

+
1

2
E
[
`′
Ỹ (ρ,ρ)(

√
ρ V )2

]
. (7.111)

Differentiating both sides of (7.105) with respect to ρ, and using (7.110) and
(7.111), yields

∂ IPout

∂ρ

∣∣∣
q,ρ

=
1

2
E
[(
`′′
Ỹ (ρ,ρ)(x) + `′

Ỹ (ρ,ρ)(x)2
)∣∣∣

x=
√
ρ V

(lnZ(ρ, ρ) + 1)

]

− 1

2
E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣∣

x=
√
ρ−q U+

√
q V

(lnZ(q, ρ) + 1)

]

+
1

2
E
[
`′
Ỹ (q,ρ)(

√
ρ V )2

]
+

1

2
E
[
`′
Ỹ (ρ,ρ)(

√
ρ− q U +

√
q V )2

]
. (7.112)

The last two summands on the right-hand side of (7.112) are upper bounded
by 4‖ϕ‖2∞+∆

∆2 ‖∂xϕ‖2
∞ (see the proof of the Lipschitzness of IPout(·, ρ) earlier in this

proof). The first two summands on the right-hand side of (7.112) involve the
function (x, y) 7→ `′′y(x) + `′y(x)2. We have

`′′y(x) + `′y(x)2 =

∫ ((y−ϕ(x,a))2−∆)∂xϕ(x,a)2+∆∂xxϕ(x,a)(y−ϕ(x,a))
∆2

dPA(a)√
2π∆

e−
1

2∆
(y−ϕ(x,a))2

∫ dPA(a)√
2π∆

e−
1

2∆
(y−ϕ(x,a))2

.

(7.113)
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Then, by a direct computation, we obtain
∫ +∞

−∞
(`′′y(x) + `′y(x)2)e`y(x)dy

=

∫
dPA(a)

∫ +∞

−∞

((y − ϕ(x, a))2 −∆)∂xϕ(x, a)2 + ∆∂xxϕ(x, a)(y − ϕ(x, a))

∆2

· e
− (y−ϕ(x,a))2

2∆ dy√
2π∆

=

∫
dPA(a)

∫ +∞

−∞

(ỹ2 − 1)∂xϕ(x, a)2 +
√

∆ ∂xxϕ(x, a)ỹ

∆

e−
ỹ2

2 dỹ√
2π

= 0 . (7.114)

Therefore,

E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣
x=
√
ρ−q U+

√
q V

]

= E
[(∫ +∞

−∞
(`′′y(x) + `′y(x)2)e`y(x)dy

)∣∣∣∣
x=
√
ρ−q U+

√
q V

]
= 0 .

The latter directly implies that

E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣
x=
√
ρ−q U+

√
q V

(lnZ(q, ρ) + 1)
]

= E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣
x=
√
ρ−q U+

√
q V

(
lnZ(q, ρ) +

ln(2π∆)

2

)]
. (7.115)

We now use the identity (7.113) for `′′y(x) + `′y(x)2 to get the upper bound
∣∣`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
∣∣

≤
(
(2‖ϕ‖∞ +

√
∆|Z|)2 + ∆

)
‖∂xϕ‖2

∞ + ∆‖∂xxϕ‖∞(2‖ϕ‖∞ +
√

∆|Z|)
∆2

. (7.116)

We trivially have Pout(y|x) ≤ 1/
√

2π∆ so

lnZ(q, ρ) = ln

∫
du√
2π
e−

u2

2 Pout(Ỹ
(q,ρ)|√ρ− q u+

√
q V ) ≤ − ln(2π∆)

2
;

Besides, by Jensen’s inequality,

lnZ(q, ρ) = ln

∫
du√
2π
e−

u2

2 dPA(a)
1√

2π∆
e−

1
2∆

(Ỹ (q,ρ)−ϕ(x,a))2

≥
∫

du√
2π
e−

u2

2 dPA(a)

(
− ln(2π∆)

2
− (Ỹ (q,ρ) − ϕ(x, a))2

2∆

)

≥ − ln(2π∆)

2
− (2‖ϕ‖∞ +

√
∆|Z|)2

2∆
.
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Hence, ∣∣∣∣ lnZ(q, ρ) +
ln(2π∆)

2

∣∣∣∣ ≤
(2‖ϕ‖∞ +

√
∆|Z|)2

2∆
. (7.117)

Combining (7.115), (7.116), (7.117) yields an upper bound of the second term on
the right-hand side of (7.112),

∣∣∣∣
1

2
E
[(
`′′
Ỹ (q,ρ)(x) + `′

Ỹ (q,ρ)(x)2
)∣∣
x=
√
ρ−q U+

√
q V

(lnZ(q, ρ) + 1)
]∣∣∣∣

≤ C

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞
,

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
∞

)
,

where C(a, b, c) := b2(64a4 + 6a2 + 13.5) + c
(
8a3 + 2

√
2
π

)
. This upper bound holds

for all q ∈ [0, ρ]. In particular, it holds for the first term on the right-hand side
of (7.112) where q = ρ. We now have an upper bound for each summand on the
right-hand side of (7.112) and we combine them to get ∀ρ ∈ [q,+∞) :

∂ IPout

∂ρ

∣∣∣
q,ρ
≤ 2C

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞
,

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
∞

)
+ 2

(
4

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+ 1

)∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞
.

It concludes the proof of the Lipschitzness of IPout(q, ·) on [q,+∞).

7.E Properties of the interpolating mutual
information

Remember that `y(x) := lnPout(y|x) and `′y(·), `′′y(·) are the first and second deriva-
tives of `y(·). We denote by P ′out(y|x) and P ′′out(y|x) the first and second derivatives
of x 7→ Pout(y|x). Finally, we define the scalar overlap Q := 1

kn

∑n
i=1 X

∗
i xi.

7.E.1 Derivative of the interpolating mutual information

Proposition 7.9 (extended version). Suppose that ∆ > 0, (H1), (H2), (H3)
hold, and EX0∼P0 [X2

0 ] = 1. The derivative of the interpolating mutual information
(7.44) with respect to t satisfies for all (t, ε) ∈ [0, 1]× Bn:

i′n,ε(t) = O

(
1√
nρn

)
+O

(√
αn
ρn

Var
lnZt,ε
mn

)
+

ρn
2αn

rε(t)(1− qε(t))

+
1

2
E
〈(
Q− qε(t)

)( 1

mn

mn∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)〉

n,t,ε

, (7.118)

where
∣∣∣∣O
(

1√
nρn

)∣∣∣∣ ≤
S2C√
nρn

and
∣∣∣∣O
(√

αn
ρn

Var
lnZt,ε
mn

)∣∣∣∣ ≤ S2

√
D
αn
ρn

Var
lnZt,ε
mn

;
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with (∂xϕ and ∂xxϕ are the first and second partial derivatives of ϕ with respect
to its first coordinate)

C :=

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞

(
64

∥∥∥∥
ϕ√
∆

∥∥∥∥
4

∞
+ 2

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+

25

2

)
+

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
∞

(
8

∥∥∥∥
ϕ√
∆

∥∥∥∥
3

∞
+ 2

√
2

π

)
,

D :=

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
4

∞
+

1

2

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞
.

In addition, if both sequences (αn)n and (ρn/αn)n are bounded, i.e., there exist real
positive numbers Mα,Mρ/α such that ∀n ∈ N∗ : αn ≤Mα, ρn/αn ≤Mρ/α, then for
all (t, ε) ∈ [0, 1]× Bn:

i′n,ε(t) = O

(
1√
n ρn

)
+

ρn
2αn

rε(t)(1− qε(t))

+
1

2
E
〈(
Q− qε(t)

)( 1

mn

mn∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)〉

n,t,ε

, (7.119)

where
∣∣∣∣O
(

1√
n ρn

)∣∣∣∣ ≤
S2C + S2

√
D
(
C̃1 +Mρ/αC̃2 +MαC̃3

)
√
n ρn

and C̃1, C̃2, C̃3 are the polynomials in
(
S,
∥∥ ϕ√

∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞
)
defined in

Proposition 7.23.

Proof. Remember that Zt,ε is the normalization to the joint posterior density of
(X∗,U) given (Y(t,ε), Ỹ(t,ε),W,V). We define the average interpolating free en-
tropy fn,ε(t) := E lnZt,ε/mn. Note that in,ε(t) := I((X∗,U);(Y(t,ε),Ỹ(t,ε))|W,V)/mn satisfies

in,ε(t) = −E lnZt,ε
mn

+
1

mn

E
[

ln
(
e−
‖Z̃‖2

2 Pout(Y
(t,ε)
µ |S(t,ε)

µ )
)]

= −fn,ε(t)−
1

2αn
+ E

[
lnPout(Y

(t,ε)
1 |S(t,ε)

1 )
]

Given X∗, S(t,ε)
1 ∼ N (0, V (t)) where ρ(t) := 1−t

kn
‖X∗‖2 + t+ 2sn. Thus,

E lnPout(Y
(t,ε)

1 |S(t,ε)
1 ) = E

[
E[lnPout(Y

(t,ε)
1 |S(t,ε)

1 )|X∗]
]

= E[h(ρ(t))] ,

where h : ρ ∈ [0,+∞) 7→ EV∼N (0,1)

∫
`y(
√
ρ V )e`y(

√
ρ V )dy. All in all, we have

in,ε(t) = E[h(ρ(t))]− fn,ε(t)−
1

2αn
. (7.120)

We directly obtain that the derivative of in,ε(·) is

i′n,ε(t) = −E
[
h′(ρ(t))

(‖X∗‖2

kn
− 1

)]
− f ′n,ε(t) , (7.121)
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where h′ and f ′n,ε are the derivatives of h and fn,ε, respectively. In Lemma 7.22 of
Appendix 7.D, we compute h′ and show that ∀ρ ∈ [0,+∞) :

|h′(ρ)| ≤ C := C

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞
,

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
∞

)
,

where C(a, b, c) := b2(64a4 + 2a2 + 12.5) + c
(
8a3 + 2

√
2/π
)
. The first term on the

right-hand side of (7.121) thus satisfies
∣∣∣∣E
[
h′(ρ(t))

(‖X∗‖2

kn
− 1

)]∣∣∣∣ ≤ C

√
Var

(‖X∗‖2

kn

)
=
C

kn

√
nVar

(
(X∗1 )2

)
=

CS2

√
nρn

.

(7.122)
We now turn to the computation of f ′n,ε.

Derivative of the average interpolating free entropy Note that

fn,ε(t) =
1

mn

E
[ ∫

dydỹ√
2π

n e
−Ht,ε(X∗,U;y,ỹ,W,V) ln

∫
dP

(n)
X (x)Du e−Ht,ε(x,u;y,ỹ,W,V)

]

(7.123)
where the expectation is over X∗, W, V and U, Du := du√

2π
mn e−

‖u‖2
2 , and the

Hamiltonian Ht,ε is

Ht,ε(x,u; y, ỹ,W,V) := −
mn∑

µ=1

lnPout(yµ|s(t,ε)
µ ) +

1

2

n∑

i=1

(
ỹi −

√
R1(t, ε)xi

)2
,

where

s(t,ε)
µ :=

√
1− t
kn

(Wx)µ +
√
R2(t, ε)Vµ +

√
t+ 2sn −R2(t, ε)uµ .

We will need the partial derivative of Ht,ε with respect to t, denoted H′t,ε,

H′t,ε(x,u; y, ỹ,W,V) := −
mn∑

µ=1

∂s
(t,ε)
µ

∂t
`′yµ(s(t,ε)

µ )

− rε(t)

2
√
R1(t, ε)

n∑

i=1

xi(ỹi −
√
R1(t, ε)xi) . (7.124)

Differentiating the right-hand side of (7.123) under the expectation and integral
signs, we obtain

f ′n,ε(t) = − 1

mn

E
[
H′t,ε(X∗,U; Y(t,ε), Ỹ(t,ε),W,V) lnZt,ε

]

− 1

mn

E
〈
H′t,ε(x,u; Y(t,ε), Ỹ(t,ε),W,V)

〉
n,t,ε

= − 1

mn

E
[
H′t,ε(X∗,U; Y(t,ε), Ỹ(t,ε),W,V) lnZt,ε

]

− 1

mn

E[H′t,ε(X∗,U; Y(t,ε), Ỹ(t,ε),W,V)] . (7.125)
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The last equality follows from the Nishimory identity

E 〈H′t,ε(x,u; Y(t,ε), Ỹ(t,ε),W,V)〉n,t,ε = E[H′t,ε(X∗,U; Y(t,ε), Ỹ(t,ε),W,V)] .

Evaluating (7.124) at (x,u; y, ỹ,W,V) = (X∗,U; Y(t,ε), Ỹ(t,ε),W,V) yields

H′t,ε(X∗,U; Y(t,ε), Ỹ(t,ε),W,V) = −
mn∑

µ=1

∂S
(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ )

− rε(t)

2
√
R1(t, ε)

n∑

i=1

X∗i Z̃i . (7.126)

The expectation of (7.126) is zero. Indeed,

EH′t,ε(X∗,U; Y(t,ε),Ỹ(t,ε),W,V) = −
mn∑

µ=1

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ )

]

= −
mn∑

µ=1

E
[
∂S

(t,ε)
µ

∂t
E
[
`′
Y

(t,ε)
µ

(S(t,ε)
µ )

∣∣∣X∗,U,V,W
]]

= −
mn∑

µ=1

E
[
∂S

(t,ε)
µ

∂t

∫
`′y(S

(t,ε)
µ )Pout(y |S(t,ε)

µ )dy

]

= −
mn∑

µ=1

E
[
∂S

(t,ε)
µ

∂t

∫
P ′out(y |S(t,ε)

µ )dy

]

= 0 ,

where the last equality is because ∀x ∈ R:

∫
P ′out(y |x)dy =

∫
dPA(a)∂xϕ(x, a)

∫
y − ϕ(x, a)

∆

e−
(y−ϕ(x,a))2

2∆√
2π∆

dy = 0 .

The expectation of (7.126) being zero, (7.125) simplifies to

f ′n,ε(t) =
1

mn

mn∑

µ=1

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]

+
1

mn

rε(t)

2
√
R1(t, ε)

n∑

i=1

E
[
X∗i Z̃i lnZt,ε

]
. (7.127)

Let us compute the first kind of expectation on the right-hand side of (7.127),
∀µ ∈ {1, . . . ,mn}:

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]
= −1

2
E
[

(WX∗)µ√
kn(1− t)

`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]

+
1

2
E
[(

qε(t)Vµ√
R2(t, ε)

+
(1− qε(t))Uµ√
t+ 2sn −R2(t, ε)

)
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]
. (7.128)
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An integration by parts w.r.t. the independent standard Gaussian random variables
(Wµi)

n
i=1 gives

E
[

(WX∗)µ√
kn(1− t)

`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]

=
n∑

i=1

E
[

WµiX
∗
i√

kn(1− t)

∫
dydỹ `′yµ(S(t,ε)

µ )e−Ht,ε(X
∗,U;y,ỹ,W,V)

· ln
(∫

dP
(n)
X (x)Du e−Ht,ε(x,u;y,ỹ,W,V)

)]

=
n∑

i=1

E
[

(X∗i )2

kn

(
`′′
Y

(t,ε)
µ

(S(t,ε)
µ ) + `′

Y
(t,ε)
µ

(S(t,ε)
µ )2

)
lnZt,ε

]

+
n∑

i=1

E
[X∗i `′Y (t,ε)

µ

(S
(t,ε)
µ )

kn

〈
xi`
′
Y

(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

]

= E
[‖X∗‖2

kn

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )
lnZt,ε

]
+ E

〈
Q`′

Y
(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

,

(7.129)

where, in the last equality, we use the identity `′′y(x) + `′y(x)2 =
P ′′out(y|x)

Pout(y|x)
. Another

Gaussian integration by parts, this time with respect to Vµ ∼ N (0, 1), gives

E
[
qε(t)Vµ√
R2(t, ε)

`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]

= E
[
qε(t)Vµ√
R2(t, ε)

∫
dydỹ `′yµ(S(t,ε)

µ )e−Ht,ε(X
∗,U;y,ỹ,W,V)

· ln
(∫

dP
(n)
X (x)Du e−Ht,ε(x,u;y,ỹ,W,V)

)]

= E
[
qε(t)

(
`′′
Y

(t,ε)
µ

(S(t,ε)
µ ) + `′

Y
(t,ε)
µ

(S(t,ε)
µ )2

)
lnZt,ε

]

+ E
[
qε(t)`

′
Y

(t,ε)
µ

(S(t,ε)
µ )

〈
`′
Y

(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

]

= E
[
qε(t)

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )
lnZt,ε

]
+ E

〈
qε(t)`

′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

,

(7.130)

Finally, a Gaussian integration by part w.r.t. Uµ ∼ N (0, 1) gives

E
[

(1− qε(t))Uµ√
t+ 2sn −R2(t, ε)

`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]

= E
[
(1− qε(t))

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )
lnZt,ε

]
. (7.131)
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After plugging (7.129), (7.130) and (7.131) back in (7.128), we get

E
[
∂S

(t,ε)
µ

∂t
`′
Y

(t,ε)
µ

(S(t,ε)
µ ) lnZt,ε

]
= −1

2
E
[
P ′′out(Y

(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(‖X∗‖2

kn
− 1

)
lnZt,ε

]

− 1

2
E
〈(
Q− qε(t)

)
`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )

〉
n,t,ε

. (7.132)

We now compute the second kind of expectation on the right-hand side of (7.127),

E
[
X∗i Z̃i lnZt,ε

]
=E
[
X∗i Z̃i ln

∫
dP

(n)
X (x)DuPout(Y

(t,ε)
µ |s(t,ε)

µ )e
−

n∑
i=1

(
√
R1(t,ε)(X∗i −xi)+Z̃i)

2

2

]

= −E
[
X∗i
〈√

R1(t, ε)(X∗i − xi) + Z̃i
〉
n,t,ε

]

= −
√
R1(t, ε)E

〈
(ρn −X∗i xi)

〉
n,t,ε

, (7.133)

where the second equality follows from a Gaussian integration by parts w.r.t.
Z̃i ∼ N (0, 1). Plugging the two simplified expectations (7.132) and (7.133) back
in (7.127) yields

f ′n,ε(t) = − ρn
2αn

rε(t)(1− qε(t))−
1

2
E
[ mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(‖X∗‖2

kn
− 1

)
lnZt,ε
mn

]

− 1

2
E
〈(
Q− qε(t)

)( 1

mn

mn∑

µ=1

`′
Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)〉

n,t,ε

. (7.134)

In order to end the proof of the proposition, we have to to upper bound the
quantity

A(t,ε)
n := E

[ mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(‖X∗‖2

kn
− 1

)
lnZt,ε
mn

]
(7.135)

that appears on the right-hand side of (7.134).

Upper bouding the quantity (7.135) Remember that `′′y(x)+`′y(x)2 =
P ′′out(y|x)

Pout(y|x)

and Pout(y|x) = e`y(x). Therefore, ∀x ∈ R:
∫ +∞

−∞
P ′′out(y|x)dy =

∫ +∞

−∞
(`′′y(x) + `′y(x)2)e`y(x)dy = 0 ,

where the second equality is due to the computation (7.114) in the proof of
Lemma 7.22, Appendix 7.D. Thus, using the tower property of the conditionnal
expectation, we have for all µ ∈ {1, . . . ,m}:

E
[ mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

(‖X∗‖2

kn
− 1

)]

= E
[(‖X∗‖2
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− 1

) mn∑

µ=1

E
[
P ′′out(Y

(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

∣∣∣∣X∗,S(t,ε)

]]

= E
[(‖X∗‖2

kn
− 1

) mn∑

µ=1

∫ +∞

−∞
P ′′out(y|S(t,ε)

µ )dy

]
= 0 .
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The latter identity implies that

∣∣A(t,ε)
n

∣∣ =

∣∣∣∣E
[ mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )
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(t,ε)
µ |S(t,ε)

µ )

(‖X∗‖2
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)(
lnZt,ε
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− fn,ε(t)
)]∣∣∣∣

≤ E
[( mn∑
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P ′′out(Y
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µ |S(t,ε)

µ )
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µ |S(t,ε)

µ )

)2(‖X∗‖2

kn
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)2 ] 1
2
√
Var

lnZt,ε
mn

, (7.136)

where the inequality is due to Cauchy-Schwarz inequality. Again by tower property
of the conditional expectation, we have

E
[( mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2(‖X∗‖2
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− 1

)2 ]
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− 1
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E
[( mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2 ∣∣∣∣X∗,S(t,ε)
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. (7.137)

Note that, conditionally on S(t,ε), the random variables
(
P ′′out(Y

(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)mn
µ=1

are

i.i.d. and centered. Therefore,

E
[( mn∑

µ=1

P ′′out(Y
(t,ε)
µ |S(t,ε)

µ )

Pout(Y
(t,ε)
µ |S(t,ε)

µ )

)2 ∣∣∣∣X∗,S(t,ε)

]
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=mnE
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1 |S(t,ε)
1 )
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1 |S(t,ε)
1 )

)2 ∣∣∣∣S(t,ε)

]

=mnE
[ ∫ +∞

−∞

P ′′out(y|S(t,ε)
1 )2

Pout(y|S(t,ε)
1 )
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]
. (7.138)

We now use the formula (7.113) for `′′y(x) + `′y(x)2 = P ′′out(y|x)/Pout(y|x) (see the proof
of Lemma 7.22 in Appendix 7.D). By Jensen’s equality, ∀x ∈ R:

(
P ′′out(y|x)

Pout(y|x)

)2

≤
∫ ( ((y−ϕ(x,a))2−∆)∂xϕ(x,a)2+∆∂xxϕ(x,a)(y−ϕ(x,a))

∆2

)2
dPA(a)√

2π∆
e−

(y−ϕ(x,a))2

2∆

∫ dPA(a)√
2π∆
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2∆

=
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dPA(a)√

2π∆
e−
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2∆
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.

It follows that ∀x ∈ R:
∫ +∞

−∞

P ′′out(y|x)2
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∫
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√
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∆
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Dỹ
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∥∥∥∥
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∆

∥∥∥∥
4

∞
+ 2

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
2

∞
.
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where Dỹ := dỹ√
2π
e−

ỹ2

2 . Let D :=
∥∥∂xϕ√

∆

∥∥4

∞ + 1
2

∥∥∂xxϕ√
∆

∥∥2

∞. Combining this last upper
bound with (7.138) and (7.137) yields

E
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)2(‖X∗‖2
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≤ 4DmnVar
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)
=

4DαnS
4

ρn
.

Going back to (7.136), we have ∀(t, ε) ∈ [0, 1]× Bn:

|A(t,ε)
n | ≤ 2S2

√
D
αn
ρn

Var
lnZt,ε
mn

. (7.139)

Putting everything together: proofs of (7.118) and (7.119) Combining
(7.121) and (7.134) yields the following formula for the derivative of in,ε (remember
the definition (7.135) of A(t,ε)

n ):

i′n,ε(t) =
A

(t,ε)
n

2
− E

[
h′(ρ(t))

(‖X∗‖2

kn
− 1

)]
+

ρn
2αn

rε(t)(1− qε(t))

+
1

2
E
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Q− qε(t)

)( 1
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mn∑
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Y

(t,ε)
µ

(S(t,ε)
µ )`′

Y
(t,ε)
µ

(s(t,ε)
µ )− ρn

αn
rε(t)

)〉

n,t,ε

. (7.140)

Thanks to the upper bounds (7.122) and (7.139), we see that the first and
second summands on the right-hand side of (7.140) are O

(√
αn
ρn
Var(lnZt,ε/mn)

)

and O(1/√nρn), respectively. It ends the proof of (7.118).
It remains to prove the identity (7.119) that holds under the additional

assumption that ∀n : αn ≤ Mα, ρn/αn ≤ Mρ/α. Combining (7.139) with the
upper bound (7.154) on the variance of Var(lnZt,ε/mn) (see Proposition 7.23 in
Appendix 7.F) gives

∣∣∣∣
A

(t,ε)
n

2

∣∣∣∣ ≤
S2

√
D(C̃1 +Mρ/αC̃2 +MαC̃3)

√
nρn

.

The constants C̃1, C̃2, C̃3 are defined in Proposition 7.23 while D has been defined
earlier in the proof. Besides, 1/√nρn ≤ 1/√nρn as ρn ≤ 1 and we can loosen the
upper bound (7.122) to

∣∣∣∣E
[
h′(ρ(t))

(‖X∗‖2

kn
− 1

)]∣∣∣∣ ≤
CS2

√
nρn

.

Hence, the term A
(t,ε)
n /2−E

[
h′(ρ(t))(‖X∗‖2/kn− 1)

]
on the right-hand side of (7.140)

is O(1/√nρn), proving (7.119).
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7.E.2 Proof of Lemma 7.8

Proof. At t = 0, the functions rε and qε do not play any role since R1(0, ε) = ε1 and
R2(0, ε) = ε2. In Appendix 7.A, we restrict ε := (ε1, ε2) to be in Bn := [sn, 2sn]2.
However, nothing prevents us to define observations (Y(0,ε), Ỹ(0,ε)) using (7.41)
with t = 0 and ε ∈ [0, 2sn]2 ⊇ Bn. We thus extend the interpolating normalized
mutual information at t = 0 to every ε in [0, 2sn]2 ⊇ Bn,

in,ε(0) :=
I
(
(X∗,U); (Y(0,ε), Ỹ(0,ε))

∣∣W,V
)

mn

.

Note that the variation we want to control in this lemma satisfies
∣∣∣∣in,ε(0)− I(X∗; Y|W)

mn

∣∣∣∣ ≤
∣∣∣∣in,ε(0)− in,ε=(0,0)(0)

∣∣∣∣+

∣∣∣∣in,ε=(0,0)(0)− I(X∗; Y|W)

mn

∣∣∣∣ .
(7.141)

We upper bound the two terms on the right-hand side of (7.141) separately.

1) By the I-MMSE relationship (see [51]), we have for all ε ∈ [0, 2sn]2:

∣∣∣∣
∂in,ε(0)

∂ε1

∣∣∣∣ =
1

2αn
E
[(
X∗1 − 〈x1〉n,0,ε

)2 ] ≤ E[(X∗1 )2]

2αn
=

ρn
2αn

. (7.142)

To upper bound the absolute value of the partial derivative with respect to ε2, we
use that ∀ε ∈ [0, 2sn]2:

∂in,ε(0)

∂ε2
= −1

2
E
[
`′
Y

(0,ε)
1

(S
(0,ε)
1 )

〈
`′
Y

(0,ε)
1

(s
(0,ε)
1 )

〉
n,0,ε

]
.

This identity is obtained in a similar fashion to the computation of the derivative
of in,ε(·) in Appendix 7.E.1 (see (7.130) and (7.131) in particular). Under the
hypothesis (H2), we obtain in the proof of Lemma 7.22 the upper bound (7.108)
on |`′y(x)|. Thus, ∀x ∈ R :

∣∣`′
Y

(0,ε)
1

(x)
∣∣ ≤ (2‖ϕ‖∞ + |Z1|)‖∂xϕ‖∞ and

∣∣∣∣
∂in,ε(0)

∂ε2

∣∣∣∣ ≤
1

2
E
[
(2‖ϕ‖∞ + |Z1|)2‖∂xϕ‖2

∞
]
≤ (4‖ϕ‖2

∞ + 1)‖∂xϕ‖2
∞ . (7.143)

By the mean value theorem, and the upper bounds (7.142), (7.143), we have

∣∣∣in,ε(0)− in,ε=(0,0)(0)
∣∣∣ ≤ ρn

2αn
|ε1|+ (4‖ϕ‖2

∞ + 1)‖∂xϕ‖2
∞|ε2|

≤
(
ρn

2αn
+ (4‖ϕ‖2

∞ + 1)‖∂xϕ‖2
∞

)
2sn

≤
(
Mρ/α + 2(4‖ϕ‖2

∞ + 1)‖∂xϕ‖2
∞

)
sn . (7.144)
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2) We now upper bound the second term on the right-hand side of (7.141).
Define the following observations where X∗ i.i.d.∼ P

(n)
X , W := (Wµi)

i.i.d.∼ N (0, 1),
U := (Uµ)mnµ=1

i.i.d.∼ N (0, 1) and η ∈ [0,+∞):

Y (η)
µ ∼ Pout

(
·
∣∣∣∣

(WX∗)µ√
kn

+
√
η Uµ

)
+ Zµ , 1 ≤ µ ≤ mn . (7.145)

The joint posterior density of (X∗,U) given (Y(η),W) is

dP (x,u|Y(η),W) :=
1

Zη
dP

(n)
X (x)

mn∏

µ=1

duµ√
2π
e−

u2
µ
2 Pout

(
Y (η)
µ

∣∣∣∣
(Wx)µ√

kn
+
√
η uµ

)
,

where Zη is the normalization factor. Define the average free entropy

fn(η) := E lnZρ/mn .

The normalized mutual information in(η) := 1
mn
I
(
(X∗,U); Y(η)

∣∣W
)
satisfies

in(ρ) = E
[
h

(‖X∗‖2

kn
+ η

)]
− fn(ρ)− 1

2αn
. (7.146)

where h : ρ ∈ [0,+∞) 7→ EV∼N (0,1)

∫
`y(
√
ρ V )e`y(

√
ρ V )dy. The identity (7.146)

can be obtained exactly as the identity (7.120) in Appendix 7.E.1. Under the
assumptions of the lemma, all the hypotheses of domination are reunited to
make sure that η 7→ in(η) is continuous on [0, 2sn] and differentiable on (0, 2sn).
Therefore, by the mean-value theorem, there exists η∗ ∈ (0, 2sn) such that:

∣∣∣∣in,ε=(0,0)(0)− I(X∗; Y|W)

mn

∣∣∣∣ =
∣∣in(2sn)− in(0)

∣∣ = |i′n(η∗)|2sn . (7.147)

Again, in a similar fashion to the computation of the derivative of in,ε(·) in
Appendix 7.E.1, we can show that ∀η ∈ [0,+∞):

i′n(ρ) = E
[
h′
(‖X∗‖2

kn
+ η

)]
− f ′n(ρ) ; (7.148)

f ′n(ρ) =
1

2
E

[
mn∑

µ=1

P ′′out

(
Y

(ρ)
µ

∣∣ (WX∗)µ√
kn

+
√
η Uµ

)

Pout

(
Y

(ρ)
µ

∣∣ (WX∗)µ√
kn

+
√
η Uµ

) lnZρ
mn

]
. (7.149)

In Lemma 7.22 of Appendix 7.D, we compute h′ and show that ∀ρ ∈ [0,+∞) :

|h′(ρ)| ≤ C := C

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞
,

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
∞

)
,

where C(a, b, c) := b2(64a4 + 2a2 + 12.5) + c
(
8a3 + 2

√
2/π
)
. The first term on the

right-hand side of (7.148) thus satisfies
∣∣∣∣E
[
h′
(‖X∗‖2

kn
+ η

)]∣∣∣∣ ≤ C . (7.150)
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The second term, f ′n(ρ), is similar to the quantity A(t,ε)
n defined in (7.135). We

upper bound A(t,ε)
n in the proof of Proposition 7.9 in Appendix 7.E.1. We can

follow the same steps than for upper bounding A(t,ε)
n and obtain

|f ′n(η)| ≤
√
DmnVar

lnZη
mn

. (7.151)

Note that Zη=2sn = Zt=0,ε=(0,0). By Proposition 7.23 in Appendix 7.F, we
have Var(lnZη=2sn/mn) ≤ C̃/nαnρn, where C̃ is a polynomial in S, ‖ϕ‖∞, ‖∂xϕ‖∞,
‖∂xxϕ‖∞, Mα,Mρ/α with positive coefficients. In fact, this upper bound holds for
all η ∈ [0, 2sn], i.e., ∀η ∈ [0, 2sn] :

Var

(
lnZη
mn

)
≤ C̃

nαnρn
.

The proof of this uniform bound on Var
(

lnZη/mn
)
is the same as the one of

Proposition 7.23, only that it is simpler because there is no second channel similar
to Ỹ(t,ε). We now combine (7.147), (7.148), (7.150), (7.151) to finally obtain:

∣∣∣∣in,ε=(0,0)(0)− I(X∗; Y|W)

mn

∣∣∣∣ ≤
(
C +

√
DC̃

ρn

)
2sn . (7.152)

3) To end the proof of the lemma, we just need to plug (7.144), (7.152) back in
(7.141) and use that ρn ∈ (0, 1],

∣∣∣∣in,ε(0)− I(X∗; Y|W)

mn

∣∣∣∣ ≤
(
Mρ/α + 2(4‖ϕ‖2

∞ + 1)‖∂xϕ‖2
∞ + 2C +

√
DC̃

) sn√
ρn

.

7.F Concentration of the free entropy

In this appendix we show that the log-partition function per data point, or free
entropy, of the interpolating model studied in Section 7.A.1 concentrates around
its expectation.

Proposition 7.23 (Free entropy concentration). Suppose that ∆ > 0, (H1), (H2),
(H3) hold, and EX0∼P0 [X2

0 ] = 1. Then, ∀(t, ε) ∈ [0, 1]× Bn:

Var

(
lnZt,ε
mn

)
≤ 1

nαnρn

(
C̃1 +

ρn
αn
C̃2 + αnC̃3

)
, (7.153)
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where (∂xϕ and ∂xxϕ are the first and second partial derivatives of ϕ with respect
to its first coordinate):

C̃1 := 1.5 + 4

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+ 8S2

(
4

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+ 1

)∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞

+

(
2

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

+

√
2

π

)2(
2

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+ (16 + 4S2)

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞

)
;

C̃2 := 1.5 + 12S2 ;

C̃3 := 8S2

(
3

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞
+

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

∥∥∥∥
∂xxϕ√

∆

∥∥∥∥
∞

+ 12

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+ 2

√
2

π

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
2

∞

)2

.

In addition, if there exist real positive numbers Mα,Mρ/α such that ∀n ∈ N∗ :
αn ≤Mα, ρn/αn ≤Mρ/α then for all (t, ε) ∈ [0, 1]× Bn:

Var

(
lnZt,ε
mn

)
≤ C

nαnρn
, (7.154)

where C := C̃1 +Mρ/αC̃2 +MαC̃3.

To lighten notations, we define k1 :=
√
R2(t, ε), k2 :=

√
t+ 2sn −R2(t, ε). Let

X∗ := (X∗i )ni=1
i.i.d.∼ P

(n)
X , W := (Wµi)

i.i.d.∼ N (0, 1), V := (Vµ)mnµ=1
i.i.d.∼ N (0, 1) and

U := (Uµ)mnµ=1
i.i.d.∼ N (0, 1) be independent random variables. Remember that

S(t,ε)
µ :=

√
1− t
kn

(WX∗)µ + k1 Vµ + k2 Uµ (7.155)

and, at t ∈ [0, 1], we observe
{
Y

(t,ε)
µ ∼ ϕ

(
S

(t,ε)
µ ,Aµ

)
+
√

∆Zµ , 1 ≤ µ ≤ mn ;

Ỹ
(t,ε)
i =

√
R1(t, ε)X∗i + Z̃i , 1 ≤ i ≤ n ;

(7.156)

where (Zµ)mnµ=1, (Z̃i)
n
i=1

i.i.d.∼ N (0, 1) and (Aµ)mnµ=1
i.i.d.∼ PA. Zt,ε is the normalization

to the joint posterior density of (X∗,U) given (Y(t,ε), Ỹ(t,ε),W,V), i.e.,

Zt,ε :=

∫
dP

(n)
X (x)Du e−

‖
√
R1(t,ε)x−Ỹ(t,ε)‖2

2 Pout(Y
(t,ε)
µ |s(t,ε)

µ ) ,

where Du := due−
‖u‖2

2√
2π
mn and s(t,ε)

µ :=
√

1−t
kn

(Wx)µ + k1 Vµ + k2 uµ. We define

Γ(t,ε)
µ :=

ϕ
(
S

(t,ε)
µ ,Aµ

)
− ϕ

(
s

(t,ε)
µ , aµ

)

∆
.
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By definition, Pout(Y
(t,ε)
µ |s(t,ε)

µ ) =
∫
dPA(aµ) 1√

2π∆
e−

1
2

(Γ
(t,ε)
µ +Zµ)2 . Therefore, the

interpolating free entropy satisfies

lnZt,ε
mn

=
1

2
ln(2π∆)− 1

2mn

mn∑

µ=1

Z2
µ −

1

2mn

n∑

i=1

Z̃2
i +

ln Ẑt,ε
mn

, (7.157)

where

Ẑt,ε :=

∫
dP

(n)
X (x)Du dPA(aµ) e−Ĥt,ε(x,u,a) (7.158)

with

Ĥt,ε(x,u, a) :=
1

2

mn∑

µ=1

(Γ(t,ε)
µ )2 + 2ZµΓ(t,ε)

µ

+
1

2

n∑

i=1

R1(t, ε)(X∗i − xi)2 + 2Z ′i
√
R1(t, ε)(X∗i − xi) . (7.159)

From (7.157), it directly directly that

Var

(
lnZt,ε
mn

)
≤ 3Var

(
1

2mn

mn∑

µ=1

Z2
µ

)
+ 3Var

(
1

2mn

n∑

i=1

Z̃2
i

)
+ 3Var

(
ln Ẑt,ε
mn

)

=
3

2αnn
+

3

2α2
nn

+ 3Var

(
ln Ẑt,ε
mn

)
(7.160)

In order to prove Proposition 7.23, it remains to show that ln Ẑt,ε/mn concentrates.
We first show the concentration w.r.t. all Gaussian variables W,V,Z,Z′,U, then
the concentration w.r.t. A and finally the one w.r.t. X∗. The order in which we
prove the concentrations does matter.

We denote ∂xϕ and ∂xxϕ the first and second partial derivatives of ϕ with
respect to its first coordinate. Note that |R1| ≤ 2sn + αn

ρn
rmax. Thanks to the

inequality (7.109) in Appendix 7.D, we obtain

rmax := 2

∣∣∣∣
∂IPout

∂q

∣∣∣∣
q=1,ρ=1

∣∣∣∣ ≤ 2C1

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞

)
,

where C1(a, b) := (4a2 + 1)b2. Then, the quantity

Kn := 2

(
sn +

αn
ρn
C1

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞

))

upper bounds |R1|. Besides, |R2| is upper bounded by 2.

Concentration with respect to the Gaussian random variables

Lemma 7.24. Let EZ,Z̃ be the expectation w.r.t. (Z, Z̃) only. Under the assump-
tions of Theorem 7.1, we have for all (t, ε) ∈ [0, 1]× Bn:

E
[( ln Ẑt,ε

mn

− 1

mn

EZ,Z′ ln Ẑt,ε
)2]
≤ C2

nαnρn
+

C3

nα2
n

,

where C2 := 4
∥∥ ϕ√

∆

∥∥2

∞ + 8S2C1

(∥∥ ϕ√
∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞
)
and C3 = 4S2.
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Proof. In this proof, we see g(Z, Z̃) := ln Ẑt,ε/mn as a function of Z and Z̃, and
we work conditionally on all other random variables. We have

‖∇g‖2 = ‖∇Z g‖2 + ‖∇Z̃ g‖2 ,

where each partial derivative has the form ∂g/∂x = −m−1
n 〈∂Ĥt,εg/∂x〉t,ε. We find that

‖∇Z g‖2 = m−2
n

mn∑

µ=1

〈Γ(t,ε)
µ 〉2t,ε ≤ 4m−1

n

∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
,

‖∇Z̃ g‖2 = m−2
n R1(t, ε)

n∑

i=1

(X∗i − 〈xi〉t,ε)2 ≤ 4KnS
2m−2

n n .

Thus, ‖∇g‖2 ≤ 4m−1
n

(∥∥ ϕ√
∆

∥∥2

∞ + KnS2

αn

)
. By the Gaussian-Poincaré inequality

(Proposition 2.7), we have

EZ,Z̃

[(
ln Ẑt,ε
mn

−
EZ,Z̃ ln Ẑt,ε

mn

)2]
≤ 4

nαn

(∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+
KnS

2

αn

)

=
4

nαn

(∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+

2S2sn
αn

+
2S2

ρn
C1

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞

))

≤ 4

nαnρn

(∥∥∥∥
ϕ√
∆

∥∥∥∥
2

∞
+ 2S2C1

(∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
,

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞

))
+

4S2

nα2
n

.

The last inequality follows from ρn ≤ 1 and 2sn ≤ 1. Taking the full expectation
on both sides of this last inequality gives the result.

Lemma 7.25. Let EG be the expectation w.r.t. (Z, Z̃,V,U,W) only. Under the
assumptions of Theorem 7.1, we have for all (t, ε) ∈ [0, 1]× Bn:

E
[(EZ,Z̃ ln Ẑt,ε

mn

− EG ln Ẑt,ε
mn

)2]
≤ C4

nαnρn
, (7.161)

where C4 :=
(
4
∥∥ ϕ√

∆

∥∥
∞ + 2

√
2/π
)2

(4 + S2)
∥∥∂xϕ√

∆

∥∥2

∞.

Proof. In this proof we see g(V,U,W) = EZ,Z̃ ln Ẑt,ε/mn as a function of V, U,
W and we work conditionally on A, X∗. Each partial derivative of g has the form
∂g/∂x = −m−1

n EZ,Z̃[〈∂Ĥt,ε/∂x〉t,ε]. We first compute the partial derivative w.r.t. Vµ,

∣∣∣∣
∂g

∂Vµ

∣∣∣∣ = m−1
n

∣∣∣∣EZ,Z̃

〈
(Γ(t,ε)

µ + Zµ)
∂Γ

(t,ε)
µ

∂Vµ

〉

t,ε

∣∣∣∣

≤ m−1
n EZ,Z̃

[(
(2

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

+ |Zµ|
)

2
√

2

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞

]

= m−1
n

(
4

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

+ 2

√
2

π

)√
2

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞
.
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The same inequality holds for |∂g/∂Uµ|. To compute the partial derivative w.r.t.
Wµi, we first remark that

∂Γ
(t,ε)
µ

∂Wµi

=

√
1− t
∆kn

{
X∗i ∂xϕ

(√1− t
kn

(WX∗)µ + k1Vµ + k2Uµ,Aµ

)

− xi ∂xϕ
(√1− t

kn
(Wx)µ + k1Vµ + k2uµ, aµ

)}
.

Therefore,
∣∣∣∣
∂g

∂Wµi

∣∣∣∣ = m−1
n

∣∣∣∣EZ,Z̃

〈
(Γ(t,ε)

µ + Zµ)
∂Γ

(t,ε)
µ

∂Wµi

〉

t,ε

∣∣∣∣

≤ 1

mn

√
kn

EZ,Z̃

[(
2

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

+ |Zµ|
)

2S

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞

]

=
1

mn

√
kn

(
4

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

+ 2

√
2

π

)
S

∥∥∥∥
∂xϕ√

∆

∥∥∥∥
∞
.

Putting together these inequalities on the partial derivatives of g, we find that

‖∇g‖2 =
mn∑

µ=1

∣∣∣ ∂g
∂Vµ

∣∣∣
2

+
mn∑

µ=1

∣∣∣ ∂g
∂Uµ

∣∣∣
2

+
mn∑
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n∑

i=1

∣∣∣ ∂g
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2

≤ 4

mn

(
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∞
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√
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∆
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mnρn

(
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√
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(4 + S2)
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∆
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∞

We use ρn ≤ 1 to obtain the last inequality. To end the proof of the lemma, we
apply the Gaussian-Poincaré inequality (Proposition 2.7) as we did in the proof
of Lemma 7.24.

Concentration with respect to the random stream Next, we use Efron-
Stein inequality (Proposition 2.5) to show that EG ln Ẑt,ε/mn concentrates w.r.t.
A.

Lemma 7.26. Let EA be the expectation w.r.t. A only. Under the assumptions
of Theorem 7.1, we have for all (t, ε) ∈ [0, 1]× Bn:

E
[(

EG ln Ẑt,ε
mn

− EG,A ln Ẑt,ε
mn

)2 ]
≤ C5

nαn
, (7.162)

where C5 := 2
(

2
∥∥ ϕ√

∆

∥∥
∞ +

√
2
π

)2∥∥ ϕ√
∆

∥∥2

∞.

Proof. We see g(A) = EG ln Ẑt,ε/mn as a function of A only. Let ν ∈ {1, . . . ,mn}.
Let A := {Aµ}mnµ=1 and A(ν) := {A(ν)

µ }mnµ=1 where A1,A2, . . . ,Amn ,A
(ν)
ν

i.i.d.∼ PA
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and A(ν)
µ := Aµ for µ 6= ν. We want to bound the difference g(A)− g(A(ν)). We

denote by Ĥ(ν)
t,ε and Γ

(t,ε)(ν)
µ the quantities Ĥt,ε and Γ

(t,ε)
µ where A is replaced by

A(ν). By Jensen’s inequality, we have

1

mn

EG〈Ĥ(ν)
t,ε − Ĥt,ε〉(ν)

t,ε ≤ g(A)− g(A(ν)) ≤ 1

mn

EG〈Ĥ(ν)
t,ε − Ĥt,ε〉t,ε , (7.163)

where the angular brackets 〈−〉t,ε and 〈−〉(ν)
t,ε denote the expectation with re-

spect to the probability distributions ∝ dP
(n)
X (x)Du dPA(aµ) e−Ĥt,ε(x,u,a) and

∝ dP
(n)
X (x)Du dPA(aµ) e−Ĥ

(ν)
t,ε (x,u,a), respectively. From the definition (7.159) of

Ĥt,ε, we have

Ĥ(ν)
t,ε − Ĥt,ε =

1

2

((
Γ(t,ε)(ν)
ν

)2 −
(
Γ(t,ε)
ν

)2
+ 2Zν

(
Γ(t,ε)(ν)
ν − Γ(t,ε)

ν

))
.

Note that

∣∣∣
(
Γ(t,ε)(ν)
ν

)2 −
(
Γ(t,ε)
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)2
+ 2Zν

(
Γ(t,ε)(ν)
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∥∥∥∥
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∥∥∥∥
2

∞
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ϕ√
∆

∥∥∥∥
∞
.

Therefore, ∀ν ∈ {1, . . . ,mn} :

∣∣g(A)− g(A(ν))
∣∣ ≤ 2

mn

(
2

∥∥∥∥
ϕ√
∆

∥∥∥∥
∞

+

√
2

π

)∥∥∥∥
ϕ√
∆

∥∥∥∥
∞
. (7.164)

To conclude the proof, we just need to apply Efron-Stein inequality (Proposi-
tion 2.5).

Concentration with respect to the signal

Lemma 7.27. Under the assumptions of Theorem 7.1, for all (t, ε) ∈ [0, 1]× Bn:

E
[(

E[ln Ẑt,ε|X∗]
mn

− E ln Ẑt,ε
mn

)2 ]
≤ C6

nρn
+
C7ρn
nα2

n

,

where C7 := 8S2 and

C6 := 8S2
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∞

)2

.
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Proof. We see g(X∗) = E[ln Ẑt,ε|X∗]/mn as a function of X∗. For all j ∈ {1, . . . , n} :

∂g

∂X∗j
= − 1

mn

E
[〈

∂Ĥt,ε

∂X∗j

〉

n,t,ε

∣∣∣∣X∗
]

= − 1

mn

√
1− t
∆kn

mn∑
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E
[
Wµj∂xϕ(S(t,ε)

µ ,Aµ)
(
〈Γ(t,ε)
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∣∣∣X∗
]

+
1
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E
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]

+
R1(t, ε)
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E
[
(X∗j − 〈xj〉n,t,ε)

∣∣X∗
]

(7.165)

To get the last equality we use that E
√
R1(t, ε) Z̃j|X∗] = 0 and

E[Wµj∂xϕ(S(t,ε)
µ ,Aµ)Zµ|X∗] = E[Wµj∂xϕ(S(t,ε)

µ ,Aµ)|X∗]E[Zµ] = 0 .

A Gaussian integration by parts with respect to Wµj yields

E
[
Wµj∂xϕ(S(t,ε)

µ ,Aµ)〈Γ(t,ε)
µ 〉n,t,ε
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It directly follows that
∣∣E
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Wµj∂xϕ(S

(t,ε)
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Making use of this upper bound, we obtain for all j ∈ {1, . . . , n}:
∣∣∣∣
∂g

∂X∗j
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C̃6

kn
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∞

))

=
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+
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nαn
. (7.166)

For a fixed j ∈ {1, . . . , n}, let X(j) be a random vector such that X(j)
i = X∗i

for i 6= j and X(j)
j ∼ P

(n)
X independently of everything else. By the mean-value

theorem, and thanks to (7.166), we have

EX∗EX(j)
j

[(
g(X∗)− g(X∗(j))
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≤
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E
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∥∥∥∥
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))2

+
16S2ρn
n2α2

n

,

where in the last equality we use that

E
[(
X∗j −X(j)

j

)2]
= 2ρnEX0∼P0 [X2

0 ]− 2ρ2
nEX0∼P0 [X0]2 ≤ 2ρnEX0∼P0 [X2

0 ] = 2ρn

and the simple inequality (a+ b)2 ≤ 2a2 + 2b2. To end the proof we just need to
apply Proposition 2.5.

Proof of Proposition 7.23 Combining Lemmas 7.24, 7.25, 7.26 and 7.27
yields

Var

(
ln Ẑt,ε
mn

)
≤ C2 + C4

nαnρn
+
C3 + C7ρn

nα2
n

+
C5

nαn
+

C6

nρn
. (7.167)

Plugging (7.167) back in (7.160) finally gives

Var

(
lnZt,ε
mn

)
≤ C2 + C4

nαnρn
+
C3 + C7ρn + 1.5

nα2
n

+
C5 + 1.5

nαn
+

C6

nρn

≤ C2 + C4 + C5 + 1.5

nαnρn
+
C3 + C7 + 1.5

nα2
n

+
C6

nρn

=
1

nαnρn

(
C2 + C4 + C5 + 1.5 +

ρn
αn

(C3 + C7 + 1.5) + αnC6

)
,

where we use ρn ≤ 1 to obtain the second inequality.
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7.G Concentration of the overlap

In this appendix we prove Proposition 7.10. Define the average free entropy
fn,ε(t) := E[lnZt,ε]/mnE lnZt,ε. In this section we think of it as a function of
R1 = R1(t, ε) and R2 = R2(t, ε), i.e., (R1, R2) 7→ fn,ε(t). Similarly, we view the
free entropy for a realization of the quenched disorder variables as a function

(R1, R2) 7→ Fn,ε(t) :=
lnZt,ε(Y(t), Ỹ(t,ε),W,V)

mn

.

In this appendix, to lighten the notations, we drop the indices of the angular
brackets 〈−〉n,t,ε and simply write 〈−〉. We denote with · the scalar product
between two vectors. We define:

L :=
1

kn

(‖x‖2

2
− xTX∗ − xTZ̃

2
√
R1

)
.

The fluctuations of the overlap Q := xTX∗

kn
and those of L are related through the

inequality

1

4
E
〈
(Q− E〈Q〉)2

〉
≤ E

〈
(L − E〈L〉)2

〉
. (7.168)

The proof of (7.168) is based on integrations by parts with respect to Z̃ and a
repeated use of the Nishimori identity (see Lemma 2.1). Proposition 7.10 is then
a direct consequence of the following result.

Proposition 7.28 (Concentration of L on E〈L〉). Suppose that ∆ > 0, (H1),
(H2), (H3) hold, EX0∼P0 [X

2
0 ] = 1, and the family of functions (rε)ε∈Bn, (qε)ε∈Bn

are regular. Further assume that there exist real positive numbers Mα,Mρ/α,mρ/α

such that ∀n ∈ N∗:

αn ≤Mα and
mρ/α

n
<
ρn
αn
≤Mρ/α .

Let (sn)n∈N∗ be a sequence of real numbers in (0, 1/2]. Define Bn := [sn, 2sn]2.
Then, ∀t ∈ [0, 1]:

∫

Bn
dεE

〈
(L − E〈L〉n,t,ε)2

〉
n,t,ε
≤ C

ρ2
n

(
ρnn

αnmρ/α

)1
3 − ρ2

n

, (7.169)

where C is a polynomial in
(
S,
∥∥ ϕ√

∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞,Mα,Mρ/α,mρ/α

)
with

positive coefficients.

Due to the identity E
〈
(L − E〈L〉)2

〉
= E

〈
(L − 〈L〉)2

〉
+ E

[
(〈L〉 − E〈L〉)2

]
,

Proposition 7.10 directly follows from the next two lemmas.

Lemma 7.29 (Concentration of L on 〈L〉). Under the assumptions of Proposition
7.28, ∀t ∈ [0, 1]: ∫

Bn
dεE

〈
(L − 〈L〉n,t,ε)2

〉
n,t,ε
≤ 1

nρn
.
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The second lemma states that L concentrates w.r.t. the realizations of the
quenched disorder variables. It is a consequence of the concentration of the free
entropy (see Proposition 7.23 in Appendix 7.F).

Lemma 7.30 (Concentration of 〈L〉 on E〈L〉). Under the assumptions of Propo-
sition 7.10, ∀t ∈ [0, 1]:

∫

Bn
dεE

[
(〈L〉n,t,ε − E〈L〉n,t,ε)2

]
≤ C

ρ2
n

(
ρnn

αnmρ/α

)1
3 − ρ2

n

, (7.170)

where C is a polynomial in
(
S,
∥∥ ϕ√

∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞,Mα,Mρ/α,mρ/α

)
with

positive coefficients.

We now turn to the proof of Lemmas 7.29 and 7.30. The main ingredient will
be a set of formulas for the first two partial derivatives of the free entropy w.r.t.
R1 = R1(t, ε). For any given realization of the quenched disorder,

dFn,ε(t)

dR1

= − ρn
αn
〈L〉 − 1

2mn

(
‖X∗‖2 +

Z̃TX∗√
R1

)
, (7.171)

1

mn

d2Fn,ε(t)

dR2
1

=
( ρn
αn

)2

(〈L2〉 − 〈L〉2) +
1

4m2
nR

3/2
1

Z̃T(X∗ − 〈x〉) . (7.172)

Taking an expectation on both sides of (7.171) yields

dfn,ε(t)

dR1

= − ρn
αn

(
E〈L〉+

1

2

)
=

ρn
2αn

(E‖〈x〉‖2

kn
− 1
)
. (7.173)

To obtain the second equality, we simplify E〈L〉 thanks to a Gaussian integration
by parts w.r.t. Z̃ and the Nishimori identity E〈xTX∗〉 = E‖〈x〉‖2 (see Lemma 2.1).
Taking an expectation on both sides of (7.172) and integrating by parts w.r.t. the
standard Gaussian random vector Z̃ gives

1

mn

d2fn,ε(t)

dR2
1

=
( ρn
αn

)2

E[〈L2〉 − 〈L〉2]− 1

4m2
nR1

E
[
〈‖x‖2〉 − ‖〈x〉‖2

]
. (7.174)

Proof of Lemma 7.29. From (7.174) we directly obtain that

E
〈
(L − 〈L〉)2

〉
=
(αn
ρn

)2 1

mn

d2fn,ε(t)

dR2
1

+
(αn
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)2 1

4m2
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E
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〈‖x‖2〉 − ‖〈x〉‖2

]

≤ αn
ρ2
nn

d2fn,ε(t)

dR2
1

+
1

4ε1nρn
, (7.175)

where we used that E〈‖x‖2〉 = E‖X∗‖2 = nρn by the Nishimori identity and
R1 ≥ ε1. Remember that Bn := [sn, 2sn]2. By assumption the families of functions
(qε)ε∈Bn and (rε)ε∈Bn are regular. Therefore, Rt : (ε1, ε2) 7→ (R1(t, ε), R2(t, ε)) is a
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C1-diffeomorphism whose Jacobian determinant |JRt | satisfies ∀ε ∈ Bn : |JRt(ε)| ≥
1. Integrating both sides of (7.175) over ε ∈ Bn yields

∫

Bn
dεE

〈
(L − 〈L〉)2

〉
≤ αn
ρ2
nn

∫

Rt(Bn)
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1

+
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4nρn

∫

Bn

dε1
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dε2

≤ αn
ρ2
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∫
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dR2
1

+
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4nρn
ln 2 . (7.176)

Note that Rt(Bn) ⊆
[
sn, 2sn + αn

ρn
rmax

]
× [sn, 2sn + 1] (by definition of the inter-

polation functions). Thus,

∫

Bn
dεE

〈
(L − 〈L〉)2

〉
≤ αn
ρ2
nn

∫ 2sn+1

sn
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[
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R1=sn

+
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ln 2
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2ρnn

+
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4nρn
ln 2 ≤ 1

nρn
, (7.177)

To obtain the second inequality, we bound the partial derivative of the free entropy
using (7.173) and E‖〈x〉‖2〉 ≤ E〈‖x‖2〉 = nρn (again by the Nishimori identity),

∣∣∣∣
dfn,ε(t)

dR1

∣∣∣∣ = −dfn,ε(t)
dR1

=
ρn

2αn

(
1− E‖〈x〉‖2

kn

)
≤ ρn

2αn
. (7.178)

The last inequality follows from sn ≤ 1/2 and (ln 2)/2 < 1.

Proof of Lemma 7.30. We define the two functions

F̃ (R1) := Fn,ε(t)−
√
R1

mn

2S
n∑

i=1

|Z̃i| (7.179)

f̃(R1) := EF̃ (R1) = fn,ε(t)−
√
R1

αn
2S E|Z̃1| . (7.180)

Thanks to (7.172), we see that the second derivative of F̃ (R1) is nonnegative so
F̃ (R1) is convex. Without the extra term on the right-hand side of (7.179), Fn,ε(t)
is not necessarily convex in R1 although fn,ε(t) is convex (it can be shown easily).
Note that f̃(R1) is also convex. Define A := 1

mn

∑n
i=1 |Z̃i| − E|Z̃i|. From (7.179)

and (7.180), we directly obtain that

F̃ (R1)− f̃(R1) = Fn,ε(t)− fn,ε(t)−
√
R12SA . (7.181)

Thanks to (7.171) and (7.173), the difference of the derivatives (w.r.t. R1) satisfies

F̃ ′(R1)− f̃ ′(R1) =
ρn
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)
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Z̃TX∗
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√
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)
− SA√

R1

.

(7.182)
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For all δ ∈ (0, sn), Cδ(R1) := f̃ ′(R1 + δ) − f̃ ′(R1 − δ) ≥ 0 (this is well-defined
because δ < sn ≤ R1). It follows from Lemma 2.8 (applied to the convex functions
G = F̃ , g = f̃) and the two identities (7.181),(7.182) that ∀δ ∈ (0, sn):
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∣∣
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The last inequality is due to
√
R1 + δ+

√
R1 − δ ≤ 2

√
R1. Taking the square and

then the expectation on both sides of the inequality (7.183), and making use of
(
∑6

i=1 vi)
2 ≤ 6

∑6
i=1 v

2
i (by convexity), yields

E
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+

3

2
Var

(‖X∗‖2

kn
+

Z̃TX∗

kn
√
R1

)
.

(7.184)

By Proposition 7.23, under our assumptions, the free entropy Fn,ε(t) = lnZt,ε/mn
concentrates such that

Var
(
Fn,ε(t)

)
≤ C

nαnρn
(7.185)

where C is a polynomial in
(
S,
∥∥ ϕ√

∆

∥∥
∞,
∥∥∂xϕ√

∆

∥∥
∞,
∥∥∂xxϕ√

∆

∥∥
∞
)
with positive coeffi-

cients. Remark that, by independence of the noise variables, we have:

E[A2] ≤ 1− 2/π

nα2
n

<
1

nα2
n

. (7.186)

Also, the last term on the right hand side of (7.184) satisfies
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√
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)
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)
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√
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)

=
n

k2
n

Var
(
(X∗1 )2
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+

n
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(
X∗1 Z̃1

)
≤ S4
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+

1

nρnR1

.
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Plugging (7.185), (7.186) and the latter inequality back in (7.184) yields

E
[(
〈L〉 − E〈L〉

)2 ] ≤ 18Cαn
nρ3

nδ
2

+ 6

(
αnCδ(R1)
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+
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+
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, (7.187)

where the last inequality follows from R−1
1 ≤ δ−1 ≤ R1/δ2.

The next step is to integrate both sides of (7.187) over ε ∈ Bn := [sn, 2sn]2.
By assumption, the families of functions (qε)ε∈Bn and (rε)ε∈Bn are regular so

Rt : (ε1, ε2) 7→ (R1(t, ε), R2(t, ε))

is a C1-diffeomorphism whose Jacobian determinant |JRt | satisfies ∀ε ∈ Bn :
|JRt(ε)| ≥ 1. Besides, Rt(Bn) ⊆

[
sn, Kn

]
× [sn, 2sn + 1] where Kn := 2sn+ αn

ρn
rmax.

Therefore,
∫
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, (7.188)

where we use that Kn = (2snρn/αn + rmax)(αn/ρn) ≤ (Mρ/α + rmax)(αn/ρn) as sn ≤ 1/2

and ρn/αn ≤Mρ/α. We now upper bound the integral of (αnCδ(R1)/ρn)2. Remember
that Cδ(R1) := f̃ ′(R1 + δ)− f̃ ′(R1 − δ) ≥ 0. By the definition (7.180) of f̃ and
the upper bound (7.178), we have

|f̃ ′(R1)| ≤ ρn
2αn

+
S

αn
√
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E|Z̃1| ≤
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. (7.189)

This inequality directly implies that |Cδ(R1)| ≤ 1
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(
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)
, hence
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By the mean value theorem and the upper bound (7.189), we have
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uniformly in R2. Therefore,
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For all ε ∈ Bn, we have R1(t, ε) ≥ sn so (remember that
∫
Bn dε = s2

n)

∫

Bn
dε

3

2nρn

(
S4 +

1

R1(t, ε)

)
≤ 3

2nρn

∫

Bn
dε

(
S4 +

1

sn

)

≤ 3sn
2nρn

(S4sn + 1) ≤ 3sn
2nρn

(
S4

2
+ 1

)
. (7.191)

Integrating both sides of (7.187) over ε ∈ Bn and making use of (7.188), (7.190),
(7.191) yields
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We can use ρn/αn ≤ Mρ/α, ρn ≤ 1, δ ≤ sn, and sn ≤ 1/2 (in this order) to show
that
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Making use of this upper bound, we finally obtain
∫
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dεE
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where C1 := 18C + 294S2rmax + (294S2 + 3S4/8 + 3/4)Mρ/α and C2 := 9(1 + 2S)2.
The convergence of the ratio δ/sn to zero is a necessary condition for the

second term on the right-hand side of (7.192) to vanish. If δ/sn → 0 then(
ρ2
n(sn/δ−1)

)−1
= Θ(δ/ρ2

nsn). In that situation, both terms on the right-hand side of
(7.192) are equivalent, that is, αns2n/nρ3

nδ
2 = Θ(δ/ρ2

nsn), if we choose δ ∝ (αn/nρn)
1
3 sn.

Note that we can choose δ ∝ (αn/nρn)
1
3 sn and still make sure that δ ∈ (0, sn)
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because there exists mρ/α such that ρn
αn
>

mρ/α
n

for all n > 0. Plugging the choice

δ =
(mρ/ααn

nρn

) 1
3 sn back in (7.192) ends the proof of the lemma,
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7.H Proof of Proposition 7.12

Before proving the proposition, we recall a few definitions for reader’s convenience.
We suppose that (H1), (H2), (H3) hold and ∆ = EX0∼P0 [X2

0 ] = 1. For all n ∈ N∗,
we define the interval Bn := [sn, 2sn] where (sn)n∈N∗ is a sequence of real numbers
in (0, 1/2]. Let X∗i

i.i.d.∼ P
(n)
X , Aµ

i.i.d.∼ PA and Wµi, Vµ, Uµ, Zµ, Z̃i
i.i.d.∼ N (0, 1) for

i = 1 . . . n and µ = 1 . . .mn. For t ∈ [0, 1] and R := (R1, R2) ∈ [0,+∞)×[0, t+2sn],
consider the observations





Y
(t,R2)
µ = ϕ

(
S

(t,R2)
µ ,Aµ

)
+ Zµ , 1 ≤ µ ≤ mn ;

∼ Pout

(
·
∣∣S(t,R2)

µ

)

Ỹ
(t,R1)
i =

√
R1X

∗
i + Z̃i , 1 ≤ i ≤ n ;

where

S(t,R2)
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√
1− t
kn

(WX∗)µ +
√
R2 Vµ +

√
t+ 2sn −R2 Uµ .

The joint posterior density of (X∗,U) given (Y(t,R2), Ỹ(t,R1),W,V) is

dP (x,u|Y(t,R2), Ỹ(t,R1),W,V) :=
1

Zt,R

n∏

i=1

dP
(n)
X (xi) e

− 1
2

(√
R1xi−Ỹ (t,R1)

i

)2

·
mn∏

µ=1

duµ√
2π
e−

u2
µ
2 Pout(Y

(t,R2)
µ |s(t,R2)

µ ) ,

where Zt,R is a normalization factor and

s(t,R2)
µ :=

√
1− t
kn

(Wx)µ +
√
R2 Vµ +

√
t+ 2sn −R2 uµ .

We denote by the angular brackets 〈−〉n,t,R the expectation with respect to this
posterior distribution. We define

F
(n)
1 (t, R) := −2

αn
ρn

∂IPout

∂q

∣∣∣∣
q=E〈Q〉n,t,R,ρ=1

, F
(n)
2 (t, R) := E〈Q〉n,t,R ,

where Q := 1
kn

∑n
i=1 X

∗
i xi. We now repeat and prove Proposition 7.12.
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Proposition 7.12. Suppose that (H1), (H2), (H3) hold and ∆ = EX0∼P0 [X2
0 ] = 1.

For every ε ∈ Bn, there exists a unique global solution R(·, ε) : [0, 1]→ [0,+∞)2

to the initial value problem

dy

dt
=
(
F

(n)
1 (t, y) , F

(n)
2 (t, y)

)
, y(0) = ε .

R(·, ε) is continuously differentiable and the image of its derivative R′(·, ε) satisfies

R′([0, 1], ε) ⊆
[
0,
αn
ρn
rmax

]
× [0, 1] ,

where rmax := −2(∂IPout/∂q)|q=1,ρ=1 ≥ 0. Besides, for all t ∈ [0, 1], R(t, ·) is a
C1-diffeomorphism from Bn onto its image whose Jacobian determinant is greater
than, or equal to, one, i.e., ∀ε ∈ Bn :

det JR(t,·)(ε) ≥ 1

where JR(t,·) denotes the Jacobian matrix of R(t, ·). Finally, the same statement
holds true if, for a fixed r ∈ [0, rmax], we instead consider the initial value problem

dy

dt
=

(
αn
ρn
r , F

(n)
2 (t, y)

)
, y(0) = ε .

Proof. We only give the proof for the ODE dy/dt = (F
(n)
1 (t, y), F

(n)
2 (t, y)) since

the one for the ODE dy/dt = (αnr/ρn, F
(n)
2 (t, y)) is simpler and follows the same

arguments.
By Jensen’s inequality and the Nishimori identity (see Lemma 2.1),

E〈Q〉n,t,R :=
E[〈x〉Tn,t,RX∗]

kn
=

E‖〈x〉n,t,R‖2

kn
≤ E〈‖x‖2〉n,t,R

kn
=

E ‖X∗‖2

kn
= 1 ,

i.e., E〈Q〉n,t,R ∈ [0, 1]. By Lemma 7.22, the function q 7→ IPout(q, 1) is con-
tinuously twice differentiable, concave and nonincreasing on [0, 1]. Therefore,
q 7→ −2(∂IPout/∂q)|q,ρ=1 is nonnegative and nondecreasing on [0, 1], which implies
that −2(∂IPout/∂q)|q,ρ=1 ∈ [0, rmax]. We have thus shown that the domain of defini-
tion of the function F : (t, R) 7→ (F

(n)
1 (t, R), F

(n)
2 (t, R)) is

Dn :=
{

(t, R1, R2) ∈ [0, 1]× [0,+∞)2 : R2 ≤ 2sn + t
}
,

and F takes its values in [0, αnrmax/ρn]× [0, 1].
To invoke the Picard-Lindelöf theorem [104, Theorem 1.1], we have to check

that F is continuous in t and uniformly Lipschitz continuous in R (meaning that
the Lipschitz constant is independent of t). We can show that F is continuous
on Dn and that, for all t ∈ [0, 1], F (t, ·) is differentiable on (0,+∞)× (0, t+ 2sn)
thanks to the standard theorems of continuity and differentiation under the integral
sign. The domination hypotheses are indeed verified because (H1), (H2) hold. To
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check the uniform Lipschitzness, we show that the Jacobian matrix JF (t,·)(R) of
F (t, ·) is uniformly bounded in (t, R). For all (R1, R2) ∈ (0,+∞)× (0, t+ 2sn) :

JF (t,·)(R) =



c(t, R) c(t, R)

1 1






∂F

(n)
2

∂R1

∣∣∣
t,R

0

0
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(n)
2

∂R2
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t,R


 , (7.193)

where c(t, R) := −2αn
ρn

∂2IPout

∂q2

∣∣∣
q=F

(n)
2 (t,R),ρ=1

and
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E
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; (7.194)
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〉
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(7.195)

The function `′y(·) is the derivative of `y : x 7→ lnPout(y|x). Both ∂F
(n)
2 /∂R1 and

∂F
(n)
2 /∂R2 are clearly nonnegative. Using the assumption (H1), we easily obtain

from (7.194) that

0 ≤ ∂F
(n)
2

∂R1

∣∣∣∣
t,R

≤ 4S4n

ρn
. (7.196)

In the proof of Lemma 7.22, under the hypothesis (H2), we obtain the upper
bound (7.108) on |`′y(x)|. It yields ∀x ∈ R : |`′

Y
(t,R)
µ

(x)| ≤ (2‖ϕ‖∞ + |Zµ|)‖∂xϕ‖∞.
Thus, we easily see from (7.195) that

0 ≤ ∂F
(n)
2

∂R2

∣∣∣∣
t,R

≤ 8S2(4‖ϕ‖2
∞ + 1)‖∂xϕ‖2

∞
αnn

ρn
. (7.197)

Finally, by Lemma 7.22, q 7→ −(∂2IPout/∂q2)|q,ρ=1 is nonnegative continuous on the
interval [0, 1], so −(∂2IPout/∂q2)|q,ρ=1 ∈ [0, C] for some constant C independent of q
and c(t, R) ∈ [0, 2Cαn/ρn]. Combining the latter with (7.193), (7.196) and (7.197)
shows that JF (t,·)(R) is uniformly bounded in

(t, R) ∈
{

(t, R1, R2) ∈ [0, 1]× (0,+∞)2 : R2 < 2sn + t
}
.

By the mean-value theorem, this implies that F is uniformly Lipschitz continuous
in R.

By the Picard-Lindelöf theorem [104, Theorem 1.1], for all ε ∈ Bn there exists a
unique solution to the initial value problem dy/dt = F (t, y), y(0) = ε that we denote
R(·, ε) : [0, δ]→ [0,+∞)2. Here δ ∈ [0, 1] is such that [0, δ] is the maximal interval
of existence of the solution. The function F takes its values in [0, αnrmax/ρn]× [0, 1]
and ε ∈ Bn so ∀t ∈ [0, δ] : R(t, ε) ∈ [sn, 2sn + tαnrmax/ρn]× [sn, 2sn + t]. It means
that δ = 1 (the solution never leaves the domain of definition of F ).
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Each initial condition ε ∈ Bn is tied to a unique solution R(·, ε). This implies
that the function ε 7→ R(t, ε) is injective. Its Jacobian determinant is given by
Liouville’s formula [104, Chapter V, Corollary 3.1]:

det JR(t,·)(ε) = exp

∫ t

0

ds

(
∂F

(n)
1

∂R1

+
∂F

(n)
2

∂R2

)∣∣∣∣
s,R(s,ε)

= exp

∫ t

0

ds

(
c
(
s, R(s, ε)

)∂F (n)
2

∂R1

∣∣∣∣
s,R(s,ε)

+
∂F

(n)
2

∂R2

∣∣∣∣
s,R(s,ε)

)
.

This Jacobian determinant is greater than, or equal to, one since we have shown
earlier in the proof that c(t, R), ∂F (n)

1 /∂R1 and ∂F
(n)
2 /∂R2 are nonnegative. The fact

that the Jacobian determinant is bounded away from 0 uniformly in ε implies,
by the inverse function theorem, that the injective function ε 7→ R(t, ε) is a
C1-diffeomorphism from Bn onto its image.





Conclusion and possible directions 8
In this thesis, we have given precise characterizations, in high-dimensional regimes,
of the statistical limits of estimation tasks associated with two ubiquitous statistical
models, namely, noisy tensor factorization and generalized linear models. Our
approach is information theoretic; we prove exact formulas for the normalized
mutual informations associated with these estimation problems and leverage
the relationship between mutual information and Bayes optimal inference. Our
proofs are based on techniques that were first developed to prove that the replica
ansatz for the free energy of large spin systems is exact. In recent years these
techniques have been successfully applied to compute high-dimensional limits of
normalized mutual informations, the latter being akin to free energies. Remarkable
properties specific to the Bayes optimal setting, in particular the Nishimori identity,
distinguish these proofs from the ones found in stastical physics. The adaptive
interpolation method makes good use of these properties in order to propose a
simplified and unified way to prove replica symmetric formulas for the asymptotic
normalized mutual information. Prior knowledge of the replica ansatz remains
valuable as it guides us towards the correct interpolation scheme.

The adaptive interpolation method was proposed in [37], [87]. Each chapter of
the present work extends the method to more general settings. In Chapter 3 we
use an adaptive interpolation to demonstrate the exactness of the RS formula even
in situation where the prior distribution of the estimated signal is not factorable
(the factors U and V of the rank-one matrix UVT do not have i.i.d. components).
The adaptive interpolation relies on the concentration of the order parameter
called the overlap, a measure of the correlation between the estimated signal
and a sample drawn from the posterior distribution given the observations. In
Chapter 3 we apply the adaptive interpolation to situations where the overlap
is not a scalar but a matrix of size K ×K, K being the rank of the estimated
tensor, and prove a concentration result for this matrix overlap. The latter is not
a straightforward extension of existing proofs for the concentration of the scalar
overlap. It requires new ideas and technical arguments to make sure that, at a
fixed step t ∈ [0, 1] of the interpolation, the interpolation path seen as a function
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of the initial condition to the ODE has nice properties (invertibility, regularity,
the image is a subset of the positive semidefinite cone appropriately bounded).
In Chapters 5 and 6 we illustrate and exploit the modularity of the adaptive
interpolation to analyze more complex models. For example, in Chapter 5, we
go once more beyond the traditional model where the “spike” that generates the
estimated rank-one tensor has i.i.d. components. The model differs from the one
of Chapter 3 since the spike is generated by a latent vector. The modularity of
the adaptive interpolation allows us to deduce a RS formula for the normalized
mutual information by simply reusing the interpolation scheme of the i.i.d. case
while the model towards which we interpolate is none other than a one-layer
GLM (whose associated normalized mutual information is computed by another
adaptive interpolation [29]). Thanks to this RS formula, we are able to analyze
how the MMSE depends on the structure of the spike, that is, the ratio of latent to
ambient space dimensions. Finally, in Chapter 7, we study the one-layer GLM of
[29] in a high-dimensional regime that is different from the kind of regimes studied
in statistical physics and the other chapters of this thesis. The estimated signal is
extremely sparse in the sense that the number of nonzero entries is sublinear in
its size, and we show that the signal can be effectively recovered with a (large
enough) sublinear number of measurements. We prove that the RS formula for
the normalized mutual information is still valid in such a high-dimensional limit.
We then simplify this sup-inf formula into a minimization problem over a finite set
of values. The latter highlights the phenomenology specific to the studied regime;
the MMSE takes a finite number of values and sharply transitions from one to the
other at values of the sampling rate for which the solution to the minimization
problem is not unique.

Let us conclude with some of the challenges that we are faced with when
trying to further extend the adaptive interpolation method.

Concentration of the free entropy A step that is common to all the proofs
of RS formulas in this thesis is demonstrating that the free entropy concentrates
around its expectation at all time t of the interpolation. In most chapters, the
proof is straightforward thanks to the usual concentration inequalities given in
Chapter 2. However, in Chapters 5 and 6, we study models where a generative
prior is stacked over a rank-one tensor factorization problem and a one-layer GLM,
respectively, and the proof of the concentration becomes more involved.

Note that in Chapter 6 we prove the RS formula associated with a two-layer
GLM by interpolating towards two decoupled channels, whose one of them is a
one-layer GLM (see the observations Ỹ (t,ε)

i in (6.19)). In fact, taking for granted
the concentration of the free entropy, we can prove by induction the RS formula
associated with a L-layer GLM with an adaptive interpolation that has a form
similar to the one in Chapter 6, except that the one-layer GLM is replaced by
a (L − 1)-layer one. Unfortunately, for L ≥ 3, it is not clear how to prove the
concentration of the free entropy by using the same strategy that in Appendix 6.D.
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Better concentration of the overlap In all the proofs of this thesis, we bound
the variance of the overlap Q by the variance of an auxiliary quantity L. We then
prove that the variance E〈(L − E〈L〉)2〉, where the angular brackets 〈−〉 denote
an expectation with respect to the posterior distribution, vanishes if we average
it over the initial condition of the interpolation functions (the average smoothens
the phase transitions that might appear for some initial conditions). To do so,
we show separately that both averages of E〈(L − 〈L〉)2〉 and E〈(〈L〉 − E〈L〉)2〉
vanish. However, the upper bound on the average of E〈(L − 〈L〉)2〉 is stronger
than the one on the average of E〈(〈L〉−E〈L〉)2〉; the concentration of 〈L〉 around
its expectation is the bottleneck to better concentration results for the overlap.

In this thesis we focus on deriving asymptotic formulas for the normalized
mutual information, hence we rarely care about the speed of convergence to the
limit, except in Chapter 7. In the latter the sparse signal X∗ has a sublinear sparsity
kn = Θ(n1−λ) with λ ∈ (0, 1), but we need λ ∈ (0, 1/9) to prove the RS formula.
This constraint is due to the upper bound on the average of E〈(〈L〉 − E〈L〉)2〉
in Lemma 7.30. If this upper bound was as strong as the upper bound on the
average of E〈(L − 〈L〉)2〉 in Lemma 7.29 then we could extend the validity of
the RS formula to λ ∈ (0, 1/2), that is, stronger regimes of sublinear sparsity. In
that regard, let us mention that [33] proves the existence of an all-or-nothing
phenomenon in sparse linear regression in a regime where λ ∈ (1/2, 1). It would be
interesting to answer whether or not the bottleneck constituted by Lemma 7.30
can be widened.

More general measurement matrices In this thesis we study generalized
linear models where the entries of the measurement matrices (W(1),W(2) in
Chapter 6, W in Chapter 7) are independent standard Gaussian random variables.
There are a lot of interest in proving RS formulas for a wider variety of matrices. For
example, the weights of a feedforward neural networks are surely not independent
once the weights have been trained, even if they are initialized with independent
standard Gaussian random variables. Having formulas that are not restricted to
matrices whose entries are independent standard Gaussians would allow us to
track how the mutual informations between different layers of the neural network
evolve during training [75]. As an example, let us consider the linear model

Y := WX +
√

∆ Z ,

where W ∈ Rm×n is a random matrix, X ∈ Rn a random vector whose entries
are i.i.d. with respect to a distribution PX , Z ∈ Rm a standard Gaussian random
vector, and ∆ > 0. This model has applications in compressed sensing and
code-division multiple access (CDMA) systems. The first replica analysis of this
model is due to Tanaka [163] in the context of CDMA (the entries of X are ±1)
and for a matrix W with entries Wij

i.i.d.∼ N (0, 1). There are now multiple proofs
of the corresponding RS formula [44], [73]. Since Tanaka’s work, RS formulas for
more general matrices have been derived [139], [164] but proving their validity
remains a challenge. Suppose that W := UΣVT where U is an orthogonal matrix
drawn from the Haar measure on O(n) (the set of n× n orthogonal matrices), V



298 Conclusion and possible directions

an orthogonal matrix drawn from the Haar measure on O(m), and Σ ∈ Rm×n

a diagonal matrix with nonnegative entries. Further assume that the empirical
distribution of the diagonal entries of Σ converges to a measure µ in the high-
dimensional limit n → +∞, m/n → α. The definition of W is nothing but a
singular value decomposition and thus encompasses a lot of applications. The RS
ansatz for the normalized mutual information associated with this model is [164]

lim
n→+∞

I(X; Y|W)

n
!?
= sup
q∈[0,EX2]

inf
r≥0

{
I(X;

√
r X + Z) +

1

2

∫ EX2−q
∆

0

Rµ(−z) dz

− r(EX2 − q)
2

}
,

where X ∼ PX ⊥ Z ∼ N (0, 1) and Rµ is the R-transform of the measure µ
[165]. There are two hindrances when trying to set up an interpolation for this
model. First and foremost, it is not clear towards which channels we should
interpolate. In particular, it is not clear what kind of channel we need in order for
the primitive of the R-transform to appear. Second, the derivative with respect
to t of the normalized mutual information associated with the interpolating model
is simplified thanks to a Gaussian integration by parts when W has independent
Gaussian entries. It is of course not possible to take this approach if W := UΣVT.
However, it might be possible to exploit the invariance by rotation of the Haar
measure on O(n); see for example Pastur and Vasilchuk’s computation of the
moments of traces of Haar-distributed matrices [166].
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