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Abstract. Two control problems related to a particular underactuated mechanical
system, the reduced size US Navy crane, are addressed. The open-loop motion
planning problem is solved by showing that the model of the crane is differentially
flat with a flat output comprising the coordinates of the load as its first components.
The closed-loop global asymptotic stabilization of equilibria is achieved using an
output feedback regulator of proportional-derivative type. The extension of this
approach to tracking is analyzed based on simulation results.

1 Introduction

Cranes constitute good examples of nonlinear oscillating pendulum- like sys-
tems with challenging industrial applications. Their control has been ap-
proached by various techniques, linear [1,7,8,15] and nonlinear [6,9,14].

Cranes present two interesting properties from the control engineering
point of view. They are underactuated, i.e. the number of actuators is less
than the number of degrees of freedom (see [2]). Moreover, only partial in-
formation can be used for closed-loop control, i.e. measurement of the whole
state is unavailable (especially as far as the rope angles or the load position
are concerned) (see [13]).

In this paper the particular example of the reduced size US Navy crane
is studied. (All presented methods can be extended to a large class of similar
equipment [10].)

Two control problems are addressed: open-loop real-time motion planning
and closed-loop stabilization. The solution presented to the open-loop motion
planning problem allows to calculate the necessary control input as to move
the load along any (sufficiently smooth) trajectory in the working space using
the flatness property [3,4,5] of the system. The second control problem is
the closed-loop stabilization of both an equilibrium and a trajectory. Since
the only measurements available are the motor positions (recall that the
load position or the rope angles are not measured) this problem can not be
solved using full state feedback. Instead, a classical PD output regulation
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is proposed. Global closed-loop stability of equilibria can be proved using
LaSalle’s invariance principle [12] and the particular structure of the crane
dynamics. Note that this result is of particular practical interest to reduce
the time to damp the oscillations of the load during harbor operations [16].

Simulation results show that the same regulator may also be used for
tracking. Based on experimental considerations, it appears that our PD reg-
ulator together with flatness based trajectory planning outperforms the glob-
ally stabilizing regulator, though no proof is presented herein.

The remaining part of the paper is organized as follows. The next section
is devoted to the general description of the experimental setup. Modeling
equations are given in Section 3. The solution of the open-loop motion plan-
ning problem is presented in Section 4 based on the flatness property of the
model. Asymptotic global stability of equilibria in closed-loop using output
feedback regulators of proportional-derivative type is studied in Section 5.
Simulation results of an extension of the same controller with open-loop tra-
jectory planning for tracking are presented in Section 6.

2 General description of the experimental setup

The reduced scale (1:80 size) model1 of the US-Navy crane is depicted in
Figure 1. Four DC motors (three of them winching ropes) are mounted on the
structure allowing to manipulate the load in a three dimensional workspace.

The control objective is to move the load swiftly from an initial position to
a desired final position without sway and avoiding obstacles. Since the accel-
erations of the motors tend to create oscillations of the load, simultaneously
fast and swayless displacements are hard to realize.

The reduced size model comprises:

• A load (maximal nominal mass: 800g)
• A mobile pulley guiding the rope which hoists the load.
• A rotate platform actuated by the DC motor no.4 using a synchronous

belt transmission.
• A hoisting system mounted on the rotate platform comprising three ropes

winched by three DC motors (motors no.1, 2, 3):
– A horizontal rope attached to the mobile pulley and ending up on the

winch of motor 1.
– a vertical rope attached to the mobile pulley and ending up on the

winch of motor 2. This rope prevents the mobile pulley from falling.
– A rope attached to the load passing through the mobile pulley and

ending up on the winch of motor 3.
• A power electronics unit2. It receives sensor signals from the incremental

encoders mounted on the motor axes and transmits them to a computer.
It also provides the necessary power amplification to the DC motors.

1 the reduced scale model was made by Walter Rumsey, Paris, France
2 the power electronics unit was made by the Institut d’Automatique of the École

Polytechnique Fédérale de Lausanne, Switzerland
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Fig. 1. The reduced (1:80) size US Navy crane in the authors’ lab.

The control algorithm is implemented on a personal computer equipped with
a standard data acquisition card. The measured signals are the rotation angles
of the motor axes which allow to calculate directly the rope lengths and the
rotation angle of the platform. The corresponding velocities are calculated
using numerical derivation.

3 Model Equations

Figure 2 gives the schematic representation of the crane. The electronic time
constants are negligible w.r.t. the mechanical time constants. Consequently,
the input variables of the model are the torques T1, T2, T3, T4 delivered by
the motors no.1− 4 respectively.

Observe that along each rope there is an intermediate pulley fixed to the
boom. Since the length of the rope sections between these pulleys and the
winches of the motors are constant, we consider that the motors drive directly
the axis of the intermediate pulleys and we reduce all rotating inertias along
each rope on these axes. The same simplification is made concerning the belt
transmission, i.e. we consider that motor 4 drives directly the axis of the
rotate platform and we reduce all rotating inertias to this axis. All ropes are
considered to be rigid.

The following variables and inertia parameters are introduced:
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Fig. 2. Simplified representation of the 3D US Navy crane

• x1, x2, x3: position of the load,
• x01, x02, x03: position of the mobile pulley,
• x11, x12, x13: position of the pulley winding the horizontal rope attached

to the mobile pulley,
• x21, x22, x23: position of the pulley winding the vertical rope attached to

the mobile pulley,
• x31, x32, x33: position of the pulley hoisting the load,
• L0: length of the rope section between the pulley hoisting the load and

the mobile pulley,
• L1: length of the horizontal rope attached to the mobile pulley,
• L2: length of the vertical rope attached to the mobile pulley,
• L3: length of the rope attached to the load,
• m: mass of the load,
• m0: mass of the mobile pulley,
• m1,m2,m3: rotating inertias reduced to the intermediate pulleys’ axis,
• M : rotating inertia reduced to the axis of the rotate platform

The construction of the crane is such that the three intermediate pulleys are
aligned. Thus we introduce two geometric parameters α2 and α3 such that
xij = αix1j for = 2, 3 and j = 1, 2, 3. Observe also that xi3 = constant,
i = 1, 2, 3.

Denote by q = (q1 . . . q12)T = (x1, x2, x3, x01, x02, x03, x11, x12, L0, L1,
L2, L3)T the vector of system variables.
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Geometric constraints are present due to the various cable distances that
need to be compatible with each other.

Theorem 1. The dynamics associated to the US Navy crane are

mẍ1=λ1(x1 − x01)
mẍ2=λ1(x2 − x02)
mẍ3=λ1(x3 − x03)−mg

m0ẍ01=−λ1(x1−x01)−λ2(x01−x11)−λ3(x01−α2x11)−λ4(x01−α3x11)
m0ẍ02=−λ1(x2−x02)−λ2(x02−x12)−λ3(x02−α2x12)−λ4(x02−α3x12)
m0ẍ03=−λ1(x3−x03)−λ2(x03−x13)−λ3(x03−α2x13)−λ4(x03−α3x13)−m0g

0=λ1(L3 − L0)− λ4L0 (1)
m1L̈1=−λ2L1 + T1

m2L̈2=−λ3L2 + T2

m3L̈3=−λ1(L3 − L0) + T3

Mẍ11=−λ2(x01−x11)−α2λ3(x01−α2x11)−α3λ4(x01−α3x11)−λ5x11−T4x12

Mẍ12=−λ2(x02−x12)−α2λ3(x02−α2x12)−α3λ4(x02−α3x12)−λ5x12+T4x11

subject to the constraints

C1 =
1
2

(
3∑
i=1

(xi − x0i)2 − (L3 − L0)2

)
= 0

C2 =
1
2

(
3∑
i=1

(x0i − x1i)2 − L2
1

)
= 0

C3 =
1
2

(
3∑
i=1

(x0i − α2x1i)2 − L2
2

)
= 0

C4 =
1
2

(
3∑
i=1

(x0i − α3x1i)2 − L2
0

)
= 0

C5 =
1
2
(
x2

31 + x2
32 − r2

)
= 0

(2)

The multipliers λ1 . . . λ5 are associated to the constraints C1 . . . C5. Recall
that the kinetic and the potential energy of the system read

Wk=
1
2

(
3∑
i=1

(
mẋ2

i +m0ẋ
2
0i

)
+

2∑
i=1

Mẋ2
1i +m1L̇

2
1 +m2L̇

2
2 +m3L̇

2
3

)
Wp=mgx3 +m0gx03,

hence the Lagrangian is defined by L = Wk −Wp. A proof of this result can
be found in [10].
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4 Flatness and Motion Planning

4.1 Flatness

A flat output is given by Y = (Y1, . . . , Y4)T = (x1, x2, x3, x03)T , the coordi-
nates of the load and the height of the mobile pulley. As long as we omit free-
fall reference trajectories, i.e. ẍ3 6= g, the first three equations of (1) give λ1,
x01 and x02 as functions of Y and Ÿ . Equations 5 to 8 of (1) and Constraints
C1, C4 and C5 of (2) can then be used to express {λ2, λ3, λ4, x11, λ12, L3, L0}
as expressions of λ1, x1, x2, x3, x01, x02, x03 and derivatives up to order 2 (thus
giving expressions involving Y , Ẏ , Ÿ , Y (3) and Y (4)). Next, the constraints
C2 and C3 give L1 and L2. The other equations of (1) give the inputs T1, T2,
T3 and T4 (T4 is obtained after solving the last two equations for T4 and λ5).
The inputs are expressions of Y and its derivatives up to order 6.

4.2 Motion planning

Assume that the position, velocity, acceleration, jerk and all derivatives up
to 6th order of the flat output (including the position of the load) at the
start time tI are given by (YI , ẎI , ŸI , . . . , Y

(5)
I , Y

(6)
I ) and the desired final

configuration of the flat output at time tF is (YF , ẎF , ŸF , . . . , Y
(5)
F , Y

(6)
F ). We

can construct 13 th degree polynomials,

Yci(t)=YIi + (YFi − YIi)
13∑
j=1

aji

(
t− tI
tF − tI

)j
, (3)

where the coefficients aji, j = 1 . . . 13 and i = 1 . . . 3, are computed by
solving linear equations, whose entries are combinations of the initial and final
conditions. In particular, motion planning between two different equilibria Y I
and Y F can be obtained simply by setting YI = Y I , ẎI = ŸI = . . . = Y

(5)
I =

Y
(6)
I = 0 and YF = Y F , ẎF = ŸF = . . . = Y

(5)
F = Y

(6)
F = 0. The input to

be applied that results in the above trajectories is then computed using the
flatness property as described in the previous subsection.

5 Output Feedback Regulation

We wish to stabilize the crane at a given equilibrium point of the load
(x̄1, x̄2, x̄3) and at a given height of the mobile pulley x̄03.

Using the constraints and the dynamic equations at equilibrium, we find
the equilibrium values of the remaining variables: x̄11, x̄12, L0, L1, L2, L3 and
the corresponding input torques to be applied: T 1, T 2, T 3 and T 4. (Observe
that T 4 = 0 for all equilibria). Define the error variables as eqi = q̄i−qi where
qi stands for ith component of q. Additionally define ξ = arctan(x12

x11
), the

rotation angle of the rotate platform. Then the corresponding error variable
is eξ = ξ̄ − ξ.

Recall that the measured variables are: L1, L2, L3 and ξ.
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Theorem 2. The four PD controllers,

T1 = T 1 + kd1ėL1 + kp1eL1

T2 = T 2 + kd2ėL2 + kp2eL2

T3 = T 3 + kd3ėL3 + kp3eL3

T4 = kd4ėξ + kp4eξ,

(4)

applied to the crane dynamics (1) with Constraints (2) assure closed-loop
global stability of the equilibrium (x̄1, x̄2, x̄3, x̄03).

The proof relies on two lemmas as in [11]. Let us define the following energy-
like function:

W = Wk +Wp +Wctrl, (5)

with

Wctrl =
1
2

(
3∑
i=1

kpie
2
Li + kp4e

2
ξ

)
+

3∑
i=1

T̄ieLi + T̄4eξ (6)

the “potential” energy stored in the controllers.

Lemma 1. The derivative of W along closed-loop trajectories is given by:

Ẇ = −kd1ė
2
L1
− kd2ė

2
L2
− kd3ė

2
L3
− kd4ė

2
ξ . (7)

Lemma 2. The only invariant trajectory compatible with Ẇ = 0 is the equi-
librium trajectory, i.e. x1(t) ≡ x̄1, x2(t) ≡ x̄2, x3(t) ≡ x̄3 and x03(t) = x̄03.

6 Extension to Tracking

Assume that a reference trajectory is constructed so as to steer the load from
an idle point to another idle point with obstacle avoidance. This can be done
using polynomials as described in Section 4. Denote the polynomial reference
trajectory of the flat output by Yc.

Based on flatness, one can calculate the reference trajectory of all other
variables in the system as functions of Yc, Ẏc, Ÿc, . . . , Y

(6)
c . Denote by qc =

(q1c . . . q12c)T = (x1c, x2c, x3c, x01c, x02c, x03c, x11c, x12c, L0c, L1c, L2c, L3c)T

the reference trajectory of all system variables and by T1c, T2c, T3c, T4c the
reference inputs.

We investigate in this section the closed-loop behavior of the system us-
ing the same PD regulator as before but fed by the above references. This
modified controller is referred to as the tracking controller.
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Define eqi = qic− qi where qi is the ith component of the vector q and qic
is the ith component of qc. The tracking PD controller is given by:

T1 = T1c + kd1ėL1 + kp1eL1

T2 = T2c + kd2ėL2 + kp2eL2

T3 = T3c + kd3ėL3 + kp3eL3

T4 = T4c + kd4ėξ + kp4eξ.

(8)

Note that for equilibrium trajectories we get the same PD regulator as
before.

Theorem 3. Let the final point qc(tF ) of the reference trajectory be an equi-
librium of the system and suppose that all derivatives along the reference
trajectory are bounded. Then qc(tF ) is asymptotically stable in closed-loop
using the tracking PD controller.

The stabilization property of the tracking controller given by (8) has been
validated using simulation. Comparison of the closed-loop behavior of the two
controllers during point to point steering is undertaken. The global stabilizing
controller is fed by the equilibrium reference of the desired final point and
the tracking controller is fed by the reference trajectory obtained by flatness-
based motion planning.

Two reference trajectories connecting the same initial and final points
with transit time of 2.5 seconds are envisaged. The first trajectory (Figures
3-6) is a horizontal displacement. The second one (Figures 7-9) is a parabola
in the vertical plane determined by the two points. The globally stabilizing
controller produces the same behavior in both cases with damped oscillations,
while the tracking controller stabilizes the desired reference and arrives at
the equilibrium faster and with less oscillations. The same gains kdi, kpi
(i = 1 . . . 4) are used for both controllers.

Notice that the tracking controller outperforms the global one, hence de-
creasing both the residual sway and the reaching time.
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Fig. 7. Closed-loop tracking behavior under PD control. Trajectories of the load
in the horizontal and vertical planes: i) global stabilizing equilibrium controller
(hashed line); ii) tracking controller with motion planning; iii) reference to steer
to equilibrium along a parabola (dotted).
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Fig. 8. Closed-loop tracking behavior, rope lengths: i) global stabilizing equilibrium
controller (hashed line); ii) tracking controller with motion planning; iii) reference
to steer to equilibrium along a parabola (dotted).
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Fig. 9. Closed-loop tracking behavior, motor tensions: i) global stabilizing equi-
librium controller (hashed line); ii) tracking controller with motion planning; iii)
reference to steer to equilibrium along a parabola (dotted).


