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Abstract
Artificial intelligence (AI) and machine learning (ML) have become de facto tools in many
real-life applications to offer a wide range of benefits for individuals and our society. A
classic ML model is typically trained with a large-scale static dataset in an offline manner.
Therefore, it can not quickly capture new knowledge in non-stationary environments, and
it is difficult to maintain long-term memory for knowledge learned earlier. In practice,
many ML systems often need to learn new knowledge (e.g., domains, tasks, distributions,
etc.) as more data and experiences are collected, which is referred to as a lifelong ML
paradigm in this thesis. We focus on two fundamental challenges to achieve lifelong
learning. The first challenge is to quickly learn new knowledge with a small number of
observations, and we refer to it as data efficiency. The second challenge is to prevent
an ML system from forgetting the old knowledge it has previously learned, and we
refer to this challenge as knowledge retention. These two capabilities are crucial for
applying ML to most practical applications. In this thesis, we study three important
applications with these two challenges, including recommendation systems, task-oriented
dialog systems, and the image classification task.
First, we propose two approaches to improve data efficiency for task-oriented dialog
systems. The first proposed approach is based on Meta-learning, aiming to learn a
better model parameter initialization from training data. It can quickly reach a good
parameter region of new domains or tasks with a small number of labeled data. The
second proposal takes a semi-supervised self-training approach to iteratively train a
better model using sufficient unlabeled data when only a limited number of labeled data
are available. We empirically demonstrate that both approaches effectively improve data
efficiency to learn new knowledge. The second self-training method even consistently
improves state-of-the-art large-scale pre-trained models.
Second, we tackle the knowledge retention challenge to mitigate the detrimental catas-
trophic forgetting issue when neural networks learn new knowledge sequentially. We
formulate and investigate the “continual learning” setting for task-oriented dialog systems
and recommendation systems. Through extensive empirical evaluation and analysis, we
demonstrate the importance of (1) exemplar replay: storing representative historical
data and replaying them to the model while learning new knowledge; (2) dynamic reg-
ularization: applying a dynamic regularization term to put flexible constraints on not
forgetting previously learned knowledge in each model update cycle.
Lastly, we conduct several initial attempts to achieve both data efficiency and knowledge
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Abstract

retention in a unified framework. In the recommendation scenario, we propose two
approaches using different non-parametric memory modules to retain long-term knowledge.
More importantly, the two proposed non-parametric predictions computed on top of
them help learn and memorize new knowledge in a data-efficient manner. Apart from
the recommendation scenario, we propose a probabilistic evaluation protocol in the
widely studied image classification domain. It is general and versatile to simulate a
wide range of realistic lifelong learning scenarios that require both knowledge retention
and data efficiency for studying different techniques. Through experiments, we also
demonstrate the benefit of data augmentation using Mixup in various realistic lifelong
learning scenarios.

Keywords: lifelong machine learning, continual learning, few-shot learning, data effi-
ciency, knowledge retention, catastrophic forgetting, task-oriented dialog, session-based
recommendation, image classification.
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摘摘摘要要要
人工智能和机器学习已经在许多现实应用场景中已经成为不可或缺的工具, 并为我们个
体和社会提供了广泛的便利。 经典的机器学习模型通常在大规模静态数据中进行离线

的训练，因此无法较好的应用在动态环境中，并且不能保持对早期学到的知识的长期记

忆能力。 由于数据会不断被采集，经验会不断地扩充，实际场景中的机器学习系统常

常需要不断学习新知识，例如新领域，新任务，新数据分布等等。此类需要不断学习新

知识的场景是本论文讨论的“终生机器学习”框架。 我们主要探究终生机器学习场景

下的两个核心挑战。第一个挑战是从少量的观察数据中学习新知识，我们把它叫做数数数据据据

效效效率率率（（（data efficiency）））。第二个挑战是防止机器学习模型遗忘其之前已经学过的旧
知识，我们把它叫做知知知识识识保保保留留留（（（knowledge retention）））。 以上两个挑战对于机器学
习在许多实际场景中的应用是至关重要的。本论文中，我们主要研究具有上述两个挑战

的三个重要应用场景，包括推荐系统，任务导向型对话系统，图像分类任务。

首先，我们针对任务导向型对话系统提出了两个提升数据效率的方法。第一个方法基于

“元学习”（Meta-learning），该方法从训练数据中学一个更好的模型参数的初始化，
使得模型能在当新领域或者新任务仅有少量标注数据的情况下更容易地学到比较好的参

数。 第二个方法利用半监督的“自学习”（self-training）框架。该方法迭代地利用未
标注数据来不断训练一个更好的模型，以提升仅有少量标注样本时的数据效率。实验证

明以上两种方法都有效的提升了学习新知识时的数据效率，而且第二个自学习框架还进

一步提升了当前最先进的的预训练语言模型的结果。

其次，我们探索了当神经网络模型在连续的学习新知识时的“知识保留”这个挑战，目

的是防止神经网络模型的“灾难性遗忘” (catastrophic forgetting) 问题，我们在任务导
向型对话系统和推荐系统中制定和研究了“持续学习”的设定。通过大量的实验评估和

分析，我们证明了两方面技巧的有效性：（1）样本回放：在学习新知识的同时，存储
具有代表性历史数据，并将其和新的训练数据进行拼接后再对模型进行训练；（2）动
态正则：增加额外的动态正则项，每个周期对模型优化施加灵活的约束条防止遗忘先前

学到的知识。

最后，我们针对在统一框架中同时解决数据效率和知识保留两个挑战，进行了一些初

探。在推荐系统的应用场景中，我们提出两种非参数化存储模块以助于长期的知识保

留。更重要的是，分别在它们之上提出的两种非参数化预测模型有助于高效地利用数

据，从而很快地学习和记住新知识。 除了推荐的场景以外，我们还在被广泛研究的图

像分类领域中，提出了一个基于概率的评估协议。该评估协议可以模拟实际终身学习场

景中各种需要知识保留和数据效率的情况，因此其是可被用作研究各种技术的通用且全

面的评估协议。通过实验，我们还在各种实际终身学习场景中证明了使用Mixup进行数
据增强所带来的效果提升。
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1 Introduction

In the new era of big data, enormous signs of progress on artificial intelligence (AI) and
machine learning (ML) offer a wide range of benefits for individuals and our society.
However, the classic ML paradigm predominantly relies on fixed datasets and stationary
environments. A learning algorithm runs over a given fixed dataset in a batch mode to
learn a model’s parameters, which often makes an independent and identical distribution
(IID) assumption that learns different data points in isolation. Afterward, the trained
model is evaluated w.r.t. another fixed testing dataset.

As time is irreversible, our world is never stationary. Humans can quickly learn new
tasks with a limited number of observations. A shortcoming of the classic ML paradigm
is that it can not deal with non-stationary environments. The classic ML paradigm
emphasizes the final learning and optimization result from a fixed dataset. In contrast,
the sequential learning process and the ability to quickly learn with the least amount of
data are overlooked, which is referred to as the data efficiency challenge in this thesis.
In many dynamic environments, an intelligent ML system needs to frequently learn new
knowledge (e.g., tasks, domains, distributions, etc.) in a data-efficient manner based on
continuous data input.

Another shortcoming of the classic ML paradigm is that it has no explicit memory
modules. Thus it cannot retain the previously learned knowledge for a long time.
Effective knowledge retention plays an essential role in the human learning process
to (1) prevent newly learned knowledge from interfering with knowledge learned earlier
and (2) accumulate the knowledge learned in the past to help the future learning process.
Without this knowledge retention ability, ML systems can hardly reach human-level
intelligence.

To tackled the above two data efficiency and knowledge retention challenges, we take
a lifelong learning (Chen and Liu, 2018) perspective, which is also referred to as continual
learning (Ring, 1994; Zenke et al., 2017a) or incremental learning (He et al., 2011; Castro
et al., 2018) in some literature. It mainly describes a continuous learning process with
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the ability to retain and accumulate knowledge and use them to facilitate future learning
as humans often do. As lifelong learning describes a learning paradigm rather than
a concrete methodology, the research about lifelong learning needs to be grounded to
specific use cases. This thesis studies data efficiency and knowledge retention challenges
in different real-life applications, including recommendation systems, task-oriented dialog
(ToD) systems, and computer vision systems.

The two aforementioned challenges of lifelong learning are crucial for the above three
domains. In recommendation systems, we often have new items and new user preferences
that arrive sequentially in time. Therefore, a recommendation model needs to quickly
capture new and trendy patterns while maintaining old and static patterns that are still
valid. In practice, a scalable ToD system also needs to expand its knowledge to new
domains and new expressions frequently. Due to the high annotation cost in ToD systems,
training ToD models in a data-efficient manner in new domains is practically important.
At the same time, a ToD system’s capability on knowledge gained previously should
still be retained. In visual recognition systems, lifelong learning is also indispensable.
For example, a robot needs to recognize new objects in new environments quickly and
continuously while maintaining its knowledge of old ones. Apart from these three domains,
lifelong learning is also crucial for many other real-life applications. Indeed, it is crucial
for most practical ML and AI systems with temporality or scalability concerns.

The importance of the above two challenges can also be justified from a neuroscience
perspective. The complementary learning theory (McClelland et al., 1995; O’Reilly and
Norman, 2002; Blakeman and Mareschal, 2020) suggests that our brain uses a “neocortical”
and a “hippocampal” learning system to achieve complex and complementary behaviors.
The “neocortical” system (i.e., ”neocortex”) is characterized by a slow learning rate and
is responsible for learning generalities. The “hippocampal” system (i.e., ”hippocampus”)
allows short-term adaptation and aims to rapidly learn new information before integrated
with the “neocortical” system. Altogether, the ’neocortical’ and ’hippocampal’ learning
system aims to deal with the above knowledge retention and data efficiency challenges,
respectively.

In Part I, we propose two approaches to improve data efficiency for ToD systems. The
evaluation of the data efficiency ability is conducted in few-shot learning scenarios for a
dialog system to learn some new tasks or domains with a small number of labeled data.
The first proposed approach is based on a Meta-learning paradigm (Finn et al., 2017),
which aims to learn a better model parameter initialization that can quickly reach a good
parameter region of a target domain with a small number of labeled data. The second
proposal takes a semi-supervised self-training (Kohonen, 1984; Lee, 2013) paradigm to
iteratively train a better model using unlabeled data during fine-tuning the model in a
new task with limited labeled data.

In Part II, we tackle the knowledge retention challenge to combat the detrimental
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catastrophic forgetting issue when neural networks need to learn a sequence of tasks.
Applications of task-oriented dialog systems and recommendation systems are considered
accordingly. Through extensive analysis with different neural networks in different
applications, we demonstrate the importance of storing representative data in the
previous tasks and replaying them to the model while learning a new task. Furthermore,
we also reveal the complementary benefits obtained by applying a dynamic regularization
term to put stronger constraints on not forgetting previously learned knowledge.

In Part III, we propose several initial attempts to deal with data efficiency and knowl-
edge retention challenges in a unified framework. Chapter 6 focus on the domain of
recommendation systems. In the first proposed method (NECT), deep neural networks
are not used. Instead, a variable-order Markov prediction model (Begleiter et al., 2004)
is applied on top of a non-parametric memory component called context tree (Willems
et al., 1995; Garcin et al., 2013). In the second proposed approach (MAN), a neural
model’s prediction is adjusted by taking into account the k-nearest neighbors (KNN)
retrieved from a non-parametric key-value memory component similar to Grave et al.
(2017b,a); Tu et al. (2018); Orhan (2018). The non-parametric memory component helps
to retain old knowledge better, and the good memorization ability (Cohen et al., 2018;
Khandelwal et al., 2020) of KNN helps to quickly capture new knowledge with limited
observations to improve data efficiency. We empirically demonstrate that these two
proposed methods achieve promising recommendation performance, especially on new
and infrequent items. Chapter 7 proposes a probabilistic formulation to simulate a wide
range of realistic lifelong learning scenarios for the image classification task. We also
demonstrate that the data augmentation technique based on Mixup (Zhang et al., 2018)
helps to train a more robust model for better knowledge retention and data efficiency.

In the remaining part of this chapter, we explain our motivations; overview several related
learning paradigms; highlight our contributions, and outline the structure of this thesis.

1.1 Motivation

The initial motivation of this thesis is originated from the dynamic environments in
recommendation scenarios. In many domains, such as e-commerce, social media, and
news platforms, new items and user preferences frequently appear and override old ones.
Therefore, a good recommendation model needs to quickly captures these new items
or distribution shifts. This is referred to as the data efficiency challenge in this thesis.
To solve this problem, we propose two approaches in Chapter 6 using a context tree
structure and a k-Nearest Neighbor principle respectively to capture new preferences
better while maintaining old ones.

After exploring several approaches in the recommendation domain, we found that a
similar data efficiency challenge is also crucial in many other applications. Therefore, we
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extend our research boundary to a broader range of tasks. More specifically, we found that
the labeling cost in the ToD system is very high, and existing models are mostly trained
for a limited number of domains with sufficient annotations. Therefore, enabling a ToD
system to learn domains with insufficient annotations becomes a practically important
topic. With this objective in mind, we propose two approaches using Meta-learning and
self-training in Chapter 2 and 3 respectively. Recently, Meta-learning is widely used
in various few-shot learning tasks in the computer vision domain. We are pioneers in
applying it to the natural language domain, especially in ToD systems. The second
self-training proposal is mainly motivated by the fact that there are sufficient unlabeled
dialog data in practice. To this end, we proposed a self-training pipeline to utilize the
unlabeled data for gradually training a better model. We empirically demonstrate that it
achieves complimentary benefits on top of state-of-the-art large-scale pre-trained models
(Devlin et al., 2019a; Wu et al., 2020) which have been recently shown to be good few-shot
learners (Brown et al., 2020).

In the process of developing solutions for the initial data efficiency challenge, the scope
of our work has expanded, and motivation has further evolved. We found that knowledge
retention is also an important issue in most practical applications. It is crucial to achieving
lifelong learning as an ML system often needs to continually learn new knowledge (e.g.,
domains, tasks, or distributions). For example, when a ToD system needs to learn new
domains with limited annotations, its capability on old domains still needs to be retained.
A similar concern also exists in recommendation systems to retain old user preferences
when they are still valid. Therefore, we study the knowledge retention challenge in these
two application scenarios to mitigate the detrimental catastrophic forgetting issue in
Part II (Chapter 4 & 5).

Based on our several explorations in different applications, we found that the lifelong
learning setting and its corresponding issues are domain-specific and task-specific, and
existing evaluation protocols have several limitations. Therefore, we propose a proba-
bilistic evaluation protocol (GCCL) for the widely studied image classification task to
simulate a wide range of realistic lifelong learning scenarios that require both knowledge
retention and data efficiency in Chapter 7. GCCL aims to serve as a versatile evaluation
protocol to studied different lifelong learning techniques. Through extensive experiment
evaluation and analysis, we also demonstrate the benefit of data augmentation to improve
both knowledge retention and data efficiency.

1.2 Related Learning Paradigms

As described before, we focus on knowledge retention and data efficiency challenges in
lifelong learning. Several other learning paradigms have similar considerations, and we
discuss some of their similarities and differences to ours at a high level below.
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Transfer learning (Pan and Yang, 2010; Weiss et al., 2016) is a widely studied topic in
ML, which describes a process of “knowledge transfer” from some source domains to a
target domain with potentially limited labeled data to address the data efficiency challenge.
The mainstream approaches identify or learn domain-invariant features or representations
to help the performance of the target domain. Despite its great importance to the ML
community, transfer learning does not consider a sequential learning process because the
knowledge transfer is unidirectional and is a one-time process.

Multi-task learning (Ruder, 2017; Zhang and Yang, 2017) aims to learn multiple
related tasks simultaneously to achieve better performance than learning them separately.
The main idea is to utilize the relevant information shared by multiple tasks, and it also
alleviates overfitting the individual task for better generalization ability. Like transfer
learning, multi-task learning can be categorized as a classic learning paradigm without a
sequential learning process. Multiple tasks can be seen as one bigger task, and they are
learned all at once.

Online learning (Saad, 1998; Bottou and Cun, 2003) is a learning paradigm where the
model is trained on data points that arrive in a sequential order. It is often used when
it is computationally infeasible to train over the entire dataset, or some data only get
available later in time. Retaining the knowledge that the model has previously seen and
learning new knowledge in a data-efficient manner are still important topics for online
learning. However, online learning often learns a model for a single task or a single
distribution using the notion of “regret” from the optimal model so far. In this sense, it
is still similar to the classic learning paradigm because it does not concern learning new
knowledge from new tasks or new distributions.

1.3 Our Contributions

To address data efficiency and knowledge retention challenges outlined above, we propose
several novel techniques for different applications and learning scenarios. Our main
contributions in this thesis are the following:

• To improve the data efficiency for ToD systems, we propose two approaches in
Chapter 2 and 3 respectively. In a nutshell, the first Meta-learning approach
leverages meta tasks to learn a better parameter initialization from source domains
such that it can learn new domains with high data efficiency. The second proposed
approach utilizes the sufficient unlabeled data in ToD systems in a semi-supervised
learning setup to overcome the difficulty of the limited number of labeled data. A
new self-training pipeline with a novel text augmentation technique is proposed to
further improve state-of-the-art pre-trained models for different few-shot learning
tasks in ToD systems.
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• To tackle the knowledge retention challenge in ToD systems, we study a continual
learning setup in Chapter 4 to sequentially learn multiple domains for the natural
language generation module. We identify the detrimental catastrophic forgetting
issue when the model is evaluated on all seen domains (i.e., the past counts). As a
solution, we propose a method called ARPER with adaptive regularization and
periodically replaying a small number of representative samples from the past.
We empirically demonstrate that ARPER effectively mitigates the catastrophic
forgetting issue for different base models, and it performs comparably to using all
historical data every time. Our proposals and promising results obtained for data
efficiency and knowledge retention challenges may shed light on further directions
towards building more scalable ToD systems.

• For recommendation systems, precisely the session-based recommendation task,
we also formulate a continual learning setup to study the knowledge retention
challenge. We find that the catastrophic forgetting issue is less severe because (1)
some old preference patterns are still valid as previous items often reappear, and
(2) the evaluation in recommendation systems is only w.r.t. future observations
and obsolete patterns are ignored (i.e., only the future counts). The proposed
method ADER in Chapter 5 using adaptive regularization and exemplar replay
achieves promising results. It even performs better than training the model using
all historical data every time.

• Another critical issue in recommendation systems is the data efficiency challenge,
especially in very dynamic environments. To this end, we study how to quickly
capture new preference patterns on new items without forgetting old ones that are
still valid. Two methods (NECT and MAN) are proposed in Chapter 6, and the
main idea is to use a non-parametric method for both memorization and prediction.
The non-parametric nature of the two proposed methods helps them effectively
memorize and predict new patterns that are still not statistically significant for a
big neural model to capture.

• Apart from the investigation into ToD and recommendation systems, we also study
the above two challenges for the widely studied image classification task in Chapter
7. We extend the commonly used class-continual learning setup (Rebuffi et al.,
2017; Castro et al., 2018) with a probabilistic formulation to simulate a wide range
of realistic scenarios. Through benchmarking various baselines, we identify the
benefit of data augmentation using Mixup (Zhang et al., 2018) in different realistic
class-incremental learning scenarios to address both knowledge retention and data
efficiency challenges.
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1.4 Organization of the Thesis

This thesis consists of three major parts. The first part (Chapter 2 & 3) is centred around
dealing with the data efficiency challenging. Two approaches using Meta-learning and
self-training are proposed in few-shot learning scenarios for ToD systems. The second
part (Chapter 4, 5, & 7) focuses on dealing with the knowledge retention challenge
to mitigate catastrophic forgetting when a neural model learns a sequence of tasks
sequentially. Techniques and realistic learning scenarios are studied for ToD systems,
recommendation systems. The third part (Chapter 6) attempts to put together both the
data efficiency and knowledge retention challenges for recommendation systems and the
image classification task.

Specifically, different chapters of this thesis are organized in the following way:

• In Chapter 2, we propose a Meta-learning method call Meta-NLG for the few-shot
learning task of the natural language generation module in ToD systems. We
demonstrate that Meta-NLG learns new language patterns in new domains with
limited annotations very well.

• In Chapter 3, we propose a self-training approach to further improve the strong
large-scale pre-trained models for four different downstream tasks in ToD. To
gradually train a stronger Student model using unlabeled data, we demonstrate the
benefit of (1) iteratively assigning confident pseudo-labels to unlabeled data and (2)
proper text augmentation techniques to improve the model’s generalization ability.

• In Chapter 4, we study how to mitigate the catastrophic forgetting challenge while
learning a sequence of domains for the natural language generation module in ToD
systems. A method called ARPER is proposed by storing representative samples
with adaptive regularization.

• In Chapter 5, we formulate a continual learning setup for recommendation systems
and study the knowledge retention issue. The proposed method (ADER) by storing
representative samples and adaptive regularization similar to Chapter 4 also achieve
promising performance.

• In Chapter 6, we deal with knowledge retention and data efficiency together in
the recommendation domain. We demonstrate that the two proposed methods
(NECT and MAN) achieve promising results by making use of non-parametric
memorization and prediction.

• In Chapter 7, we propose a probabilistic formulation (GCCL) to simulate a wide
range of realistic continual learning scenarios that require both knowledge retention
and data efficiency. We notice that different datasets in different applications
have different characteristics. Therefore, the proposed GCCL intends to serve as a
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Figure 1.1 – Overview of the topics studied in this thesis. Highlights of different chapters
(gray) in three parts (purple) are illustrated, and the last item in each gray box indicate
the application(s) we studied.

versatile evaluation protocol to studied different techniques. We also demonstrate
the benefit of data augmentation for both challenges.

• Chapter 8 concludes the thesis with a summary and future research directions.

In Figure 1.1, we illustrate the topics in three parts (purple) to achieve lifelong learning
in this thesis. Key contributions and the studied application(s) of different chapters are
illustrated in gray boxes.
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2 Meta-Learning Improves Data
Efficiency in ToD Systems

2.1 Introduction

As an essential part of a task-oriented dialogue system (Wen et al., 2017a), the task of
natural language generation (NLG) is to produce a natural language utterance containing
the desired information given a semantic representation. Conventional methods using
hand-crafted rules often generate monotonic utterances, and it requires a substantial
amount of human engineering work. Recently, various neural approaches (Wen et al.,
2015b; Tran and Nguyen, 2017; Tseng et al., 2018) have been proposed to generate accurate,
natural, and diverse utterances. However, these methods are typically developed for
particular domains. Moreover, they are often data-intensive to train. The high annotation
cost prevents developers from building their own NLG component from scratch. Therefore,
it is beneficial to train an NLG model that can be generalized to other NLG domains or
tasks with a reasonable number of annotated data. That is, the NLG model is supposed to
learn new domains or tasks in a data-efficient manner. This is referred to as low-resource
NLG task in this chapter.

Recently, some methods have been proposed for low-resource NLG tasks. Apart from
the simple data augmentation trick (Wen et al., 2016), specialized model architectures,
including conditional variational auto-encoders (CVAEs, (Tseng et al., 2018; Tran and
Nguyen, 2018a,b)) and adversarial domain adaptation critics (Tran and Nguyen, 2018a),
have been proposed to learn domain-invariant representations. Although promising results
were reported, we found that datasets used by these methods are simple, which tend
to enumerate many slots and values in an utterance without many linguistic variations.
Consequently, over-fitting the slots and values in the low-resource target domain could
even outperform those versions trained with rich source domain examples (Tran and
Nguyen, 2018b). Fortunately, a new large-scale human-written dialog dataset (MultiWOZ,
(Budzianowski et al., 2018)) contains a variety of domains and linguistic patterns, which

This chapter is based on the paper (Mi et al., 2019) published in the International Joint Conference
on Artificial Intelligence (IJCAI, 2019).
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allows us to conduct extensive and meaningful experimental analysis for low-resource
NLG tasks. We are the first to ground the research on low-resource NLG task on this
dataset.

In this chapter, we take a Meta-learning perspective to solve the low-resource NLG task.
Meta-learning or learning-to-learn, which can date back to some early works (Naik and
Mammone, 1992), has recently attracted extensive attention. A fundamental problem is
“fast adaptation to new and limited observation data”. In pursuing this problem, there
are three categories of meta-learning methods:

• Metric-based: the idea is to learn a metric space and then use it to compare
low-resource testing samples to rich training samples. The representative works in
this category include Siamese Network (Koch, 2015), Matching Network (Vinyals
et al., 2016), Memory-augmented Neural Network (Santoro et al., 2016a), Prototype
Net (Snell et al., 2017), and Relation Network (Sung et al., 2018).

• Model-based: the idea is to use an additional meta-learner to learn to update
the original learner with a few training examples. (Andrychowicz et al., 2016)
developed a meta-learner based on LSTMs. Hypernetwork (Ha et al., 2017),
MetaNet (Munkhdalai and Yu, 2017), and TCML (Mishra et al., 2017) also
learn a separate set of representations for fast model adaptation. (Ravi and
Larochelle, 2017) proposed an LSTM-based meta-learner to learn the optimization
algorithm (gradients) used to train the original network.

• Optimization-based: the optimization algorithm itself can be designed in a way
that favors fast adaption. Model-agnostic meta-learning (MAML, (Finn et al., 2017;
Yoon et al., 2018; Gu et al., 2018)) achieved state-of-the-art performance by directly
optimizing the gradient towards a good parameter initialization for easy fine-tuning
on low-resource scenarios. It introduces no additional architectures nor parameters.
Reptile (Nichol and Schulman, 2018) is similar to MAML with only first-order
gradient. In this chapter, we propose a generalized meta optimization method
based on MAML to directly solve the intrinsic learning issues of low-resource NLG
tasks.

Metric-based or model-based techniques are mainly designed for classification tasks,
while the optimization-based approach serves as a more generalized approach with a
superior performance achieved by MAML. In this chapter, we propose a generalized meta
optimization method based on MAML to directly solve the intrinsic learning issues of
low-resource NLG tasks. Specifically, we proposed a generalized NLG algorithm called
Meta-NLG based on MAML by viewing languages in different domains or dialog act
intents as separate Meta NLG tasks. Following the essence of MAML, the goal of Meta-
NLG is to learn a better initialization of model parameters that facilitates fast adaptation
to new low-resource NLG scenarios from Meta NLG tasks rather than from individual
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data point. As Meta-NLG is model-agnostic, as long as the model can be optimized by
gradient descent, we could apply it to any existing neural NLG models to optimize them
in a way that adapts better and faster to new low-resource tasks. We extensively evaluate
Meta-NLG on the largest human written multi-domain dataset (MultiWoz) with various
low-resource NLG scenarios. Results show that Meta-NLG significantly outperforms
other optimization methods in various configurations. We further analyze the superior
performance of Meta-NLG, and show that it indeed adapts much faster and better.

2.2 Background on NLG for ToD

The NLG component of task-oriented dialog systems is to produce natural language
utterances conditioned on a semantic representation called dialog act (DA). Specifically,
the dialog act d is defined as the combination of intent I and a set of slot-value pairs
S(d) = {(si, vi)}pi=1:

d = [ I︸︷︷︸
Intent

, (s1, v1), . . . , (sp, vp)︸ ︷︷ ︸
Slot-value pairs

], (2.1)

where p is the number of slot-value pairs. Intent I controls the utterance functionality,
while slot-value pairs contain information to express. For example, “There is a restaurant
called [La Margherita] that serves [Italian] food.” is an utterance corresponding to a DA
“[Inform, (name=La Margherita, food=Italian)]”

Conditioned on a DA, a neural NLG model generates an utterance containing the desired
information word by word. For a DA d with the corresponding ground truth utterance
Y = (y1, y1, ..., yK), the probability of generating Y is factorized as below:

fθ(Y,d) =
K∏
k=1

pyk
=

K∏
k=1

p(yk|y<k,d, θ), (2.2)

where fθ is the NLG model parameterized by θ, and pyk
is the output probability (i.e.

softmax of logits) of the ground truth token yk at position k. The typical objective
function for an utterance Y with DA d is the average cross-entropy loss w.r.t. all tokens
in the utterance (Wen et al., 2015b,c; Tran and Nguyen, 2017; Peng et al., 2020b):

LCE(Y,d, fθ) = − 1
K

K∑
k=1

log(pyk
) (2.3)

A series of neural methods have been proposed for the NLG task, including HLSTM (Wen
et al., 2015a), SCLSTM (Wen et al., 2015b), Enc-Dec (Wen et al., 2015c) and RAL-
STM (Tran and Nguyen, 2017). The goal of low-resource NLG is to fine-tune a trained
NLG model on new NLG tasks (e.g., new domains) with a small number of training
examples. (Wen et al., 2016) proposed a “data counterfeiting” method to augment the
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low-resource training data in the new task without modifying the model or training pro-
cedure. (Tseng et al., 2018) proposed a semantically-conditioned variational autoencoder
(SCVAE) learn domain-invariant representations feeding to SCLSTM. They showed that
it improves SCLSTM in low-resource settings. (Tran and Nguyen, 2018b) adopted the
same idea as in (Tseng et al., 2018). They used two conditional variational autoencoders
to encode the sentence and the DA into two separate latent vectors, which are fed together
to the decoder RALSTM (Tran and Nguyen, 2017). They later designed two domain
adaptation critics with an adversarial training algorithm (Tran and Nguyen, 2018a) to
learn an indistinguishable latent representation of the source and the target domain to
better generalize to the target domain. Different from these model-based approaches, we
directly tackle the optimization issue from a meta-learning perspective.

2.3 Methodology - Meta-NLG

In this section, we first describe the objective of fine-tuning an NLG model on a low-
resource NLG task. Then, we describe how our Meta-NLG algorithm encapsulates this
objective into Meta NLG tasks and into the meta optimization algorithm to learn better
from source domains for the low-resource NLG task in new domains.

2.3.1 Fine-tune a NLG Model

Suppose fθ is the base NLG model parameterized by θ, and we have an initial θs pre-
trained with DA-utterance pairs Ds = {(dj ,Yj)}j∈s from a set s of high-resource source
tasks. When we adapt fθ to a low-resource task t with DA-utterance pairs Dt = (dt,Yt),
the fine-tuning process on Dt can be formulated as follows:

θ∗ = Adapt(Dt, θ = θs) = arg min
θ
LDt(fθ)

= arg min
θ

∑
(dt,Yt)∈Dt

LCE(Yt,dt, fθ)
(2.4)

The parameter θs will be used for initialization, and the model is further updated by new
observations Dt. The size of Dt in low-resource NLG tasks is very small due to the high
annotation cost. Therefore, a good initialization parameter θs learned from high-resource
source tasks is crucial for the adaptation performance on new low-resource NLG tasks.

2.3.2 Meta NLG Tasks

To learn a θs that can be easily fine-tuned on new low-resource NLG tasks, the idea of
our Meta-NLG algorithm is to repeatedly simulate auxiliary Meta NLG tasks from Ds
to mimic the fine-tuning process in Eq.(2.4). Then, we treat each Meta NLG task as a
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single meta training sample/episode and utilize the meta optimization objective in the
next section to directly learn from them.

Therefore, the first step is to construct a set of auxiliary Meta NLG tasks to simulate
the low-resource fine-tuning process. We construct a Meta NLG task Ti by:

Ti = (DTi ,D
′
Ti

) (2.5)

DTi and D′Ti
of each Ti are two independent subsets of DA-utterance pairs from high-

resource source data Ds. DTi and D′Ti
correspond to meta-train (support) and meta-test

(query) sets of a typical meta-learning or few-shot learning setup, and Ti is often referred
to as a training episode. This meta setup with both DTi and D′Ti

in one Meta NLG
task allows our Meta-NLG algorithm to directly learn from different Meta NLG tasks.
The usage of them will be elaborated later. Meta NLG tasks are constructed with two
additional principles:

Task modality consistency. To generalize to new NLG tasks, Meta NLG tasks follow
the same modality as the target task. For example, if our target task is to adapt to
DA-utterance pairs in a new domain, then DA-utterance pairs in each Ti are sampled
from the same source domain. We also consider adapting to new DA intents in later
experiments. In this case, DA-utterance pairs in each Ti have the same DA intent. This
setting merges the goal of task generalization.

Low-resource adaptation. To simulate the process of adapting to a low-resource
NLG task, the sizes of both subsets DTi and D

′
Ti
, especially DTi , are set small. Therefore,

when the model is updated on DTi as a part of the later meta-learning steps, it only
sees a small number of samples in that task. This setup embeds the goal of low-resource
adaptation.

2.3.3 Meta Training Objective

With the Meta NLG tasks defined above, we formulate the meta-learning objective of
Meta-NLG as below:

θMeta = MetaLearn(Ti)
= arg min

θ
EiEDTi

,D′Ti

LD′Ti

(f
θ
′
i
) (2.6)

θ
′
i = Adapt(DTi , θ) = θ − α∇θLDTi

(fθ) (2.7)
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Figure 2.1 – Comparing Meta-Learning to Multi-task Learning: θMeta meta-learned from
auxiliary Meta NLG tasks can be fine-tuned easier than θMTL to some new low-resource
tasks, e.g, t1 and t2.

The optimization for each Meta NLG task Ti is computed on D′Ti
referring to DTi . Firstly,

the model parameter θ to be optimized is updated on DTi by Eq.(2.7). This step mimics
the process when fθ is adapted to a new low-resource NLG task Ti with low-resource
observations DTi . We need to note that Eq.(2.7) is an intermediate step, and it only
provides an adapted parameter (θ′i) to our base model f to be optimized in each iteration.
Afterwards, the base model parameterized by the updated parameter (θ′i) is optimized
on D′Ti

using the meta objective in Eq.(2.6). This meta-learning optimization objective
directly optimizes the model towards generalizing to new low-resource NLG tasks by
simulating the process repeatedly with Meta NLG tasks in Eq.(2.6).

The optimization of Eq.(2.6) can be derived in Eq.(2.8) with aggregating K inner updates
before updating θ. It involves a standard first-order gradient ∇

θ
′
i
LD′Ti

(f
θ
′
i
) as well as

a gradient through another gradient ∇θ(θ
′
i). Previous study (Finn et al., 2017) shows

that the second term can be approximated for computation efficiency with a marginal
performance drop. In our case, we still use the exact optimization in Eq.(2.8) as we do
not encounter any computation difficulties even on the largest NLG dataset so far. The
second-order gradient is computed by a Hessian matrix H.

θ ← θ − β
K∑
i=1
∇θLD′Ti

(f
θ
′
i
)

= θ − β
K∑
i=1
∇
θ
′
i
LD′Ti

(f
θ
′
i
) · ∇θ(θ

′
i)

= θ − β
K∑
i=1
∇
θ
′
i
LD′Ti

(f
θ
′
i
) · ∇θ(θ − α∇θLDTi

(fθ))

= θ − β
K∑
i=1
∇
θ
′
i
LD′Ti

(f
θ
′
i
) · (I − αHθ(LDTi

(fθ)))

(2.8)
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Algorithm 1 Meta-NLG(fθ, θ0,Ds, α, β)
Input: Base NLG model: fθ, Initial parameter: θ0, Training data: Ds, Inner learning

rate: α, Meta learning rate: β, Number of inner updates before updating θ: K
Output: θMeta

1: Initialize θ = θ0
2: while θ not converge do
3: Simulate a batch of Meta NLG tasks {Ti = (DTi ,D

′
Ti

)}Ki=1
4: for i = 1...K do
5: Compute θ′i = θ − α∇θLDTi

(fθ) in Eq.(2.7)
6: end for
7: Meta update θ ← θ − β

∑K
i=1∇θLD′Ti

(f
θ
′
i
) in Eq.(2.8)

8: end while
9: θMeta ← θ

To better understand the meta objective, we compare a standard multi-task learn-
ing (MTL) objective θMTL = arg maxθ EjLDsj

(fθ) that learns from high-resource NLG
tasks sj without explicitly learning to adapt to low-resource NLG tasks. Figure 2.1
visually illustrates the differences with three high-resource source tasks {s1, s2, s3} with
optimal parameters {θs1 , θs2 , θs3} for each task. θMTL is learned from individual DA-
utterance pairs in {Ds1 ,Ds2 ,Ds3}, while Meta-NLG repeatedly constructs auxiliary Meta
NLG tasks {T1, ..., T7} from {Ds1 ,Ds2 ,Ds3} and learns θMeta from them. As a result,
θMeta is closer to θt1 and θt2 (the optimal parameters of some new low-resource tasks,
e.g, t1 and t2) than θMTL. Algorithm 1 illustrates the process to learn θMeta from Ds.
We note that batches are at the level of Meta NLG tasks, not DA-utterances pairs.
Fine-tuning Meta-NLG on a new low-resource NLG task with annotated DA-utterance
pairs Dt uses the same algorithm parameterized by (fθ, θMeta,Dt, α, β,K).

2.4 Evaluation

2.4.1 Baselines and Experiment Settings

We utilize the well-recognized semantically conditioned LSTM (SCLSTM Wen et al.
(2015b)) as the base model fθ. We use the default setting of hyperparameters (n_layer =
1, hidden_size = 100, dropout = 0.25, clip = 0.5, beam_width = 5). We implementMeta-
NLG based on the PyTorch SCLSTM implementation from (Budzianowski et al., 2018).
As Meta-NLG is model-agnostic, it is applicable to many other NLG models, and
evaluation using other NLG models is left as future work.

We include different model settings as baseline:

• Scratch-NLG: Train fθ with only low-resource target task data, ignoring all
high-resource source task data.
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Figure 2.2 – MultiWOZ dataset visualization. Left: DA intent visualization in different
domains, and the number of utterances in each domain is indicated in bracket. Right:
Slots in each domain, with domain-specific slots in bold.

• MTL-NLG: Train fθ using a multi-task learning paradigm on source task data,
then fine-tune on the low-resource target task.

• Zero-NLG: Train fθ using multi-task learning (MTL) with source task data, then
directly test on a target task without a fine-tuning step. This corresponds to a
zero-shot learning scenario.

• Supervised-NLG: Train fθ using MTL with full access to high-resource data
from both source and target tasks. Its performance serves as an upper bound using
multi-task learning without the low-resource restriction.

• Meta-NLG (proposed): Train fθ using Algorithm 1 on source task data, then
fine-tune on the low-resource target task.

For Meta-NLG, we set batch size to 50, α = 0.1, and β = 0.001. A single inner gradient
update (K = 1) is used per meta update with Adam (Kingma and Ba, 2015). The
size of a Meta NLG task is set to 400 with 200 samples assigned to DTi and D

′
Ti
. The

maximum number of epochs is set to 100 during training and fine-tuning, and early-stop
is conducted on a small validation set with size 200. The model is then evaluated on
other DA-utterance pairs in the target task.

As in earlier NLG researches, we use the BLEU-4 score (Papineni et al., 2002) and the
slot error rate (SER) as evaluation metrics. SER is computed by the ratio of the sum of
the number of missing and redundant slots in a generated utterance divided by the total
number of slots in the DA. We randomly sample the target low-resource task five times
for each experiment and reported the average score.
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Target Domain = Attraction
Supervised-NLG Zero-NLG

BLEU-4 SER BLEU-4 SER
0.5587 3.05% 0.2970 11.56%
Adapt 1000 Adapt 500 Adapt 200

BLEU-4 SER BLEU-4 SER BLEU-4 SER
Scratch-NLG 0.5102 21.84% 0.4504 36.50% 0.4089 41.83%
MTL-NLG 0.5443 13.04% 0.5324 14.34% 0.4912 23.20%
Meta-NLG 0.5667 2.26% 0.5662 2.97% 0.5641 4.30%

Table 2.1 – Results for near-domain (“Attraction”) adaption with different adaptation
sizes. Bold numbers highlight the best results except Supervised-NLG.

Target Domain = Hotel
Supervised-NLG Zero-NLG

BLEU-4 SER BLEU-4 SER
0.4393 1.82% 0.2514 13.40%
Adapt 1000 Adapt 500 Adapt 200

BLEU-4 SER BLEU-4 SER BLEU-4 SER
Scratch-NLG 0.3857 18.75% 0.3529 28.18% 0.2910 40.86%
MTL-NLG 0.4128 9.93% 0.3802 22.07% 0.3419 31.04%
Meta-NLG 0.4436 1.92% 0.4365 2.63% 0.4418 2.19%

Table 2.2 – Results for near-domain (“Hotel”) adaption with different adaptation sizes.
Bold numbers highlight the best results except Supervised-NLG.

We use a large-scale multi-domain dialog dataset (MultiWOZ, Budzianowski et al. (2018)).
The version extracted for NLG can be found at https://github.com/andy194673/nlg-
sclstm-multiwoz. It is a proper benchmark for evaluating NLG components due to its
domain complexity and rich linguistic variations. The average utterance length is 15.12,
and almost 60% of utterances have more than one dialogue act intents or domains. 69,607
annotated utterances are used, with 55,026, 7,291, 7,290 for training, validation, and
testing respectively. A visualization of DA intents in different domains are given in
Figure 2.2 (Left), and slots in different domains are summarized in Figure 2.2 (Right).

2.4.2 Domain Adaptation Results

In this section, we test when an NLG model is adapted to various low-resource language
domains. The experiment follows a leave-one-out setup by leaving one target domain
for adaptation, while using the remainder domains for training. A target domain is a
near-domain if it only contains domain-specific slots compared to the remainder domains.
In contrast, a target domain containing both domain-specific DA intents and slots is
considered as a far-domain. According to Figure 2.2, “Attraction”, “Hotel”, “Restaurant”,
and “Taxi”, are near-domains, while “Booking” and “Train” are far-domains compared to
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Target Domain = Booking
Supervised-NLG Zero-NLG

BLEU-4 SER BLEU-4 SER
0.6750 3.67% 0.3578 12.55%
Adapt 1000 Adapt 500 Adapt 200

BLEU-4 SER BLEU-4 SER BLEU-4 SER
Scratch-NLG 0.6327 24.63% 0.6267 37.96% 0.5787 46.67%
MTL-NLG 0.6347 14.55% 0.6391 14.90% 0.6171 17.19%
Meta-NLG 0.6782 7.65% 0.6492 9.08% 0.6402 12.23%

Table 2.3 – Results for far-domain (“Booking”) adaption with different adaptation sizes.
Bold numbers highlight the best results except Supervised-NLG.

Target Domain = Train
Supervised-NLG Zero-NLG

BLEU-4 SER BLEU-4 SER
0.6877 2.96% 0.3243 41.48%
Adapt 1000 Adapt 500 Adapt 200

BLEU-4 SER BLEU-4 SER BLEU-4 SER
Scratch-NLG 0.6236 16.73% 0.5825 27.61% 0.4892 44.92%
MTL-NLG 0.6322 14.63% 0.5987 25.38% 0.5248 40.35%
Meta-NLG 0.6755 7.13% 0.6373 17.31% 0.6160 23.33%

Table 2.4 – Results for far-domain (“Train”) adaption with different adaptation sizes.
Bold numbers highlight the best results except Supervised-NLG.

the remaining domains. Adapting to near-domains requires to capture unseen slots while
adapting to far-domains additionally requires to learn new language patterns. Adaptation
size is the number of DA-utterance pairs in the target domain to fine-tune the NLG model.
To test different low-resource degrees, we consider different adaptation sizes (1,000, 500,
200).

Near-domain adaptation. Results of adapting to two near-domains (“Attraction”
and “Hotel”) are presented in Table 2.1 and 2.2. Other two near-domains (“Restaurant”,
and “Taxi”) are simpler, therefore, they are not included. Several observations can be
noted. First, using only source or target domain samples does not produce competitive
performance. Using only source domain samples (Zero-NLG) performs the worst. It
obtains very low BLEU-4 scores, indicating that the sentences generated do not match
the linguistic patterns in the target domain. Using only low-resource target domain
samples (Scratch-NLG) performs slightly better, yet still much worse than MTL-NLG and
Meta-NLG. Second, Meta-NLG shows a very strong performance for this near-domain
adaptation setting. It consistently outperforms MTL-NLG and other methods with
very remarkable margins in different metrics and adaptation sizes. More importantly,
it even works better than Supervised-NLG which is trained on high-resource samples
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Book Recommend
BLEU-4 SER BLEU-4 SER

Scratch-NLG 0.7689 21.63% 0.3878 24.62%
MTL-NLG 0.7968 9.92% 0.3964 14.60%
Meta-NLG 0.8217 4.65% 0.4445 3.08%

Table 2.5 – Results for adapting to new DA intent “Book” and “Recommend” with
adaptation size 500.

in the target domain. Third, Meta-NLG is particularly strong in performance when
the adaptation size is small. As the adaptation size decreases from 1,000 to 200, the
performance of Scratch-NLG and MTL-NLG drops quickly, while Meta-NLG performs
stably well. Both BLEU-4 and SER even increase in the “Hotel” domain when the
adaptation size decreases from 500 to 200.

Far-domain adaptation. Results of adapting to two far-domains (“Booking” and
“Train”) are presented in Table 2.3 and 2.4. Again, we can see that Meta-NLG shows
very strong performance on both far-domains with different adaptation sizes. Similar
observations can be made as in the previous near-domain adaptation experiments. Because
far-domain adaptation is very challenging, Meta-NLG does not outperform Supervised-
NLG, and the performance of Meta-NLG drops more obviously as the adaptation size
decreases. Noticeably, “Train” is more difficult than “Booking” as the former contains
more slots, some of which can only be inferred from the smallest “Taxi” domain. The
improvement margin of Meta-NLG over MTL-NLG and other methods is larger on the
more difficult “Train” domain than on the “Booking” domain.

2.4.3 DA Intent Adaptation Results

It is also important for a task-oriented dialog system to adapt to new functions, namely,
supporting new dialog acts that the system has never observed before. To test this ability,
we leave certain DA intents out for adaptation in a low-resource setting. We choose
“Recommend”, “Book” as target DA intents, and we mimic the situation that a dialog
system needs to add a new function to make recommendations or bookings for customers
with a small number of annotated DA-utterance pairs. As presented in Table 2.5, results
show that Meta-NLG significantly outperforms other baselines.

2.4.4 Adaptation Curve Analysis

After seeing the superior performance of Meta-NLG, we move to an insightful analysis of
the results. To further investigate the adaptation process, we present in Figure 2.3 the
performance curves of MTL-NLG and Meta-NLG as fine-tuning epoch proceeds on the
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Figure 2.3 – SERs (red) and BLEU-4 (purple) scores of Meta-NLG and MTL-NLG on the
validation set during model fine-tuning on the target low-resource domain (Train) with adaptation
size 1000.

most challenging “Train” domain. The effect of meta-learning for low-resource NLG can
be observed by comparing the two solid curves against the corresponding dashed curves.
First, Meta-NLG adapts faster than MTL-NLG. We can see that the SER of Meta-NLG
(red-solid) decreases much more rapidly than that of MTL-NLG (red-dashed), and the
BLEU-4 score of Meta-NLG (purple-solid) also increases more quickly. The optimal
BLEU-4 and SER that MTL-NLG converges to can be obtained by Meta-NLG within 10
epochs. Second, Meta-NLG adapts better than MTL-NLG. As it can be seen, Meta-NLG
achieves a much lower SER and a higher BLEU-4 score when it converges, indicating
that it found a better θ of the base NLG model to generalize to the low-resource target
domain.

2.4.5 Human Evaluation Results

To better evaluate the quality of the generated utterances, we conduct a human evaluation.

Metrics. Given a DA and a reference utterance in a low-resource target domain with
adaptation size 500, two responses generated by Meta-NLG and MTL-NLG are presented
to three human annotators to score each of them in terms of informativeness and
naturalness (rating out of 3), and also indicate their pairwise preferences (Win-Tie-Lose)
on Meta-NLG against MTL-NLG. Informativeness is defined as whether the generated
utterance captures all the information, including multiple slots and probably multiple
DA intents, specified in the DA. Naturalness measures whether the utterance is plausibly
generated by a human.
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Attraction Hotel Booking Train
inf. nat. inf. nat. inf. nat. inf. nat.

Meta-NLG 2.91 2.90 2.90 2.89 2.84 2.91 2.73 2.93
MTL-NLG 2.70 2.87 2.57 2.83 2.65 2.86 2.47 2.83

Table 2.6 – Manual evaluation scores of informativeness (inf.), and naturalness (nat.) on
four target low-resource domains.

Attraction Hotel Booking Train
Win 50.2% 53.3% 40.1% 47.2%
Tie 42.8% 42.3% 46.2% 40.5%
Lose 7.0% 4.4% 13.7% 12.3%

Table 2.7 – Pairwise preferences (Meta-NLG vs. MTL-NLG) on four target low-resource
domains.

Annotation statistics. Cases with identical utterances generated by two models are
filtered out. We obtain in total 600 annotations on each individual metric for each
target domain. We calculate the Fleiss’ kappa (Fleiss, 1971) to measure inter-rater
consistency. The overall Fleiss’ kappa values for informativeness and naturalness are
0.475 and 0.562, indicating “Moderate Agreement”, and 0.637 for pairwise preferences,
indicating “Substantial Agreement”.

Results. Scores of informativeness and naturalness are presented in Table 2.6. Meta-
NLG outscores MTL-NLG in terms of both metrics on all four domains. Overall,
Meta-NLG received significantly (two-tailed t-test, p < 0.0005) higher scores than MTL-
NLG. Results for pairwise preferences are summarized in Table 2.7. Even though there
are a certain amount of cases where the utterances generated by different models are
nearly the same (Tie) to annotators, Meta-NLG is overall significantly preferred over
MTL-NLG (two-tailed t-test, p < 0.0001) across different target domains.

2.4.6 Case Study

Table 2.8 shows two examples in the “Train” domain. The first sample shows that
MTL-NLG fails to generate the domain-specific slot “Ticket”; instead, it mistakenly
generates slots (“Leave” and “Arrive”) that are frequently observed in the low-resource
adaptation set. In the second example, MTL-NLG failed to generate the domain-specific
slot ‘Id” and another rare slot “Dest”, while Meta-NLG succeeded both.
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Inform (Ticket†=17.60 pounds, Time=79 minutes); Offer_book?(None)
Reference The travel time is [79 minutes] and the cost is [17.60 pounds],

shall I book for you?
MTL-NLG there is a train that leaves at [slot-train-leave] and arrives at

[slot-train-arrive]. would you like me to book it for you?
[missed: Ticket†, Time; redundant: Leave, Arrive]

Meta-NLG the travel time is [79 minutes] and the price is [17.60 pounds].
would you like me to book it for you? [correct]

Inform(Arrive=7:52, Id†=TR9641, Dest‡=cambridge ,
Depart‡=the airport, Leave =7:24)

Reference [TR9641] leaves [the airport] at [7:24] and arrives in [cam-
bridge] at [7:52].

MTL-NLG i have a train that leaves [the airport] at [7:24] and arrives by
[7:52]. [missed: Id†, Dest‡]

Meta-NLG [TR9641] leaves [the airport] at [7:24] and arrives in [cam-
bridge] at [7:52]. [correct]

Table 2.8 – Sampled generated sentences when considering “Train” as the target domain
with adaptation size 500. ? indicates a domain-specific DA intent, † indicates a domain-
specific slot, and ‡ indicates a rare slot that can only be inferred from the smallest “Taxi”
domain. Redundant and missing slots are colored in orange and blue respectively.

2.5 Chapter Summary

In this chapter, we propose a generalized optimization-based meta-learning approach
Meta-NLG for the low-resource NLG task in task-oriented dialog systems to learn new
domains or new DA intents with limited annotations. Meta-NLG utilizes Meta NLG tasks
and a meta-learning optimization procedure based on MAML. Extensive experiments
on a large-scale benchmark dataset (MultiWOZ) show that Meta-NLG significantly
outperforms other training procedures, indicating that it adapts fast and well to new
low-resource settings. Our work may inspire researchers to use similar optimization
techniques for building more scalable ToD systems with high data efficiency.
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3 Self-training Improves Data
Efficiency in ToD Systems

3.1 Introduction

Large-scale pre-trained language models, such as BERT (Devlin et al., 2019a), ULMFiT
(Howard and Ruder, 2018), GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019),
and GPT-3 (Brown et al., 2020), have shown great few-shot or zero-shot learning abilities
in various NLP tasks with the help of task-agnostic language knowledge learned via
pre-training tasks. Pre-training can be seen as a semi-supervised technique, in which
models are first trained on an auxiliary task to learn task-agnostic language knowledge,
such as language modeling, followed by learning the task of interest. In task-oriented
dialog (ToD) systems, the labeling cost is very high such that the size of well-labeled
data is often small. Therefore, few-shot learning in ToD is essential and valuable in many
practical applications. Several attempts (Peng et al., 2020b,a; Wu et al., 2020) have been
proposed to leverage large-scale pre-trained language models to improve few-shot learning
in ToD. Specifically, a model pre-trained on general text corpora is further trained on
public ToD datasets.

Although labeled data is often small, a practical ToD system de facto has many unlabeled
dialog data. Therefore, utilizing unlabeled data to improve a ToD system is practically
important. In this chapter, we take a semi-supervised self-training (ST) perspective to
iteratively train a better Student model using unlabeled data (III, 1965; Yarowsky, 1995).
ST has been successfully applied to a variety of tasks, including image classification
(Yalniz et al., 2019; Xie et al., 2020; Zoph et al., 2020), automatic speech classification
(Synnaeve et al., 2019; Kahn et al., 2020; Park et al., 2020; Likhomanenko et al., 2020),
sequence generation (He et al., 2020), and natural language understanding (Du et al.,
2020).

We are going to study this research question: can self-training provide complementary
benefits on top of the strong pre-training models for few-shot learning in ToD? Recently,

This chapter is based on an ongoing work under review.

25



Chapter 3. Self-training Improves Data Efficiency in ToD Systems

Xie et al. (2020); Zoph et al. (2020) studied a similar question in the context of image
classification, showing that ST effectively refines pre-training models. Du et al. (2020)
also recently showed the benefit of ST over pre-training for general natural language
understanding. Nevertheless, their main proposal is to crawl a large amount of similar
unlabeled data from the web.

In this chapter, we propose a self-training approach based on iterative pseudo-labeling
(Lee, 2013). It first trains a Teacher on the labeled samples. The Teacher then iteratively
generates pseudo-labels for the most confident subset of unlabeled samples to train a
better Student. To train a more robust Student during self-training, we propose a data
augmentation technique called GradAug. GradAug first “masks” a fraction of tokens
of a dialog input. Then, it reconstructs the corrupted text with a pre-trained masked
language model of BERT. Different from Ng et al. (2020), the probability of masking a
token is conditioned on the gradient of the corresponding token embedding w.r.t. the
downstream task. In this way, GradAug prevents replacing tokens that are critical for a
downstream task.

The main contribution of this chapter is three-fold:

• This is the first attempt to study the effect of self-training on top of existing strong
pre-trained models for ToD in few-shot learning scenarios.

• We propose a self-training method to gradually train a stronger Student by iter-
atively labeling the most confident unlabeled data and a new text augmentation
technique (GradAug).

• We conduct extensive experiments on four downstream tasks in ToD, including
intent classification, dialog state tracking, dialog act prediction, and response
selection. Empirical results demonstrate that self-training consistently improves
state-of-the-art pre-trained models (BERT, ToD-BERT (Wu et al., 2020)).

3.2 Related Work

3.2.1 Pre-training for ToD Systems

Budzianowski and Vulic (2019) first applied GPT-2 to train a response generation
model by taking the system belief state, database entries, and last dialog turn as input.
Henderson et al. (2019) pre-trained a response selection model for ToD by first pre-
training on general-domain conversational corpora (Reddit). Ham et al. (2020) trained
the pre-trained GPT-2 for dialog state tracking and response generation on MultiWOZ
(Budzianowski et al., 2018). Hosseini-Asl et al. (2020) proposed SimpleToD to train
the pre-trained GPT-2 on three different sub-tasks (dialog state tracking, dialog act
prediction, and response generation) of ToD as a sequence prediction problem.
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Recent studies have shown that large-scale pre-trained language models are good few-shot
learners (Brown et al., 2020). Several studies have also confirmed these findings for
ToD. Peng et al. (2020b) proposed further to train a GPT-2 on public ToD corpora to
improve few-shot learning for the task of generating responses conditioned on a semantic
representation. Peng et al. (2020a) utilized GPT-2 for end-to-end response generation
from dialog contexts in a few-shot learning scenario. Wu et al. (2020) further trained a
BERT model on multiple ToD corpora to improve few-shot learning performance on four
different downstream tasks.

3.2.2 Self-training

The first focus of self-training is designing better policies to label unlabeled samples.
Zhang and Zhou (2011) evaluated the confidence via a statistic-based data editing
technique. Lee (2013) designed an annealing function that gradually increases the loss
of labeled samples during training to avoid poor local minima. Amiri (2019) utilized
a Leitner queue (Dempster, 1989) to put confident samples in the front of the queue
gradually. Niu et al. (2020) selected the most confident samples with prediction loss
below some threshold. Kumar et al. (2010); Ma et al. (2017); Li et al. (2019); Mukherjee
and Awadallah (2020) proposed to learn different sampling weights for unlabeled data
to control the selection process. Weights are learned asynchronously with the model
parameters using different metrics. For example, Ma et al. (2017); Kumar et al. (2010)
considers the loss on the validation set; Mukherjee and Awadallah (2020) selects samples
that maximize the information gain about the model parameters; Ren et al. (2020)
computes the influence on current parameters when changing the sampling weights.
Reinforcement learning (RL) methods (Chen et al., 2018; Wu et al., 2018; Ye et al., 2020)
designed an additional Q-agent as the sample selector. Nevertheless, methods using
learnable weights or RL provide marginal benefits compared to the elevated optimization
cost. Designing new sample selection schemes is not our primary focus; we will go for a
simple and effective pipeline described in Section 3.4.1. Specialized explorations on this
topic are orthogonal to ours.

The second focus of self-training is to improve the robustness of the Student model
trained from potentially noisy pseudo-labeled samples. Data augmentation techniques
are widely used. In computer vision, recent works demonstrated the benefit of different
stochastic augmentation tricks, including input transformations (Laine and Aila, 2017;
Xie et al., 2020; Zoph et al., 2020), dropout (Laine and Aila, 2017; Xie et al., 2020;
Zoph et al., 2020), adversarial samples (Miyato et al., 2019), and Mixup (Berthelot
et al., 2019, 2020). Text augmentation is very challenging because of the complex
syntactic and semantic structures. Miyato et al. (2017) utilized adversarial training to
apply perturbations to word embeddings. Wei and Zou (2019) proposed EDA using
basic synonym replacement, random insertion, swap, and deletion. Kumar et al. (2019)
proposed to maximize a monotone sub-modular function to obtain diverse paraphrases.
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Xie et al. (2019) proposed UDA applying back-translation (Edunov et al., 2018) and
word replacement using a Tf-Idf metric. He et al. (2020) studied the effect of dropout
compared to back-translation during self-training for the neural sequence generation task.
Chen et al. (2020a) proposed MixText that utilizes Manifold Mixup (Verma et al., 2019)
to interpolate hidden layers corresponding to semantic representations of BERT. Ng et al.
(2020) proposed SSMBA utilizing the masked language model of BERT to replace words.
In experiments, we compare the proposed GradAug technique with state-of-the-art text
augmentation methods.

3.3 Background of Using Pre-trained Models for Down-
stream Tasks in ToD

In this section, we first briefly overview the pipeline of utilizing large-scale pre-trained
models for four common downstream tasks (intent classification, dialog state tracking,
dialog act prediction, and response selection) in ToD. We denote the input and label of
different downstream tasks as x and y, and a prediction model is denoted as ŷx = F (x). F
can often be decomposed into two parts. The first part is a feature extractor h = A(x) ∈ Rl

which computes a hidden representation h of x, and the second part is an output network
for prediction. Large-scale pre-trained language models serve as feature extractor A to
compute a hidden representation for an input. For example, we use the [CLS] embedding
of BERT as the hidden representation h when BERT is adopted as A. Different output
networks are designed for different downstream tasks, and the details following ToD-BERT
(Wu et al., 2020) are described below.

Intent classification. This is a multi-class classification problem to predict the single
intent label y of an input utterance x. The model computes the probability over I
possible intents as:

pint = Softmax(W1 ·A(x)) ∈ RI , (3.1)

whereW1 ∈ RI×l is a trainable weight matrix, and the model is optimized by the standard
cross-entropy loss compared to the ground truth.

Dialog state tracking. It is a multi-class classification problem based on a predefined
ontology. Unlike intent classification, the dialog history (a sequence of utterances) is
used as the input x. For each (domain, slot) pair, the model predicts a score over all
potential slot values. For the i-th slot value vji of the j-th pair, the cosine similarity score
compared to the input x is computed as follows:

sji = Cosine(Gj(A(x)), A(vji )) ∈ R1, (3.2)
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where Gj is the slot projection layer of the j-th pair, and the number of layers |G| equals
the number of (domain, slot) pairs. The model is trained with the cross-entropy loss
summed over all the pairs.

Dialog act prediction. This is a multi-label classification problem to predict the
dialog act (DA) intents for the next system response. The model takes a dialog history
as input x and predicts a Bernoulli outcome for each possible DA intent as:

a = Sigmoid(W2 ·A(x)) ∈ RN , (3.3)

whereW2 ∈ RN×l is a trainable weight matrix, andN is the number of possible DA intents.
Values in a are between [0, 1], and the model is optimized by a binary cross-entropy loss
w.r.t. the ground truth. A threshold of 0.5 is applied during inference.

Response selection. This task predicts the most relevant system response from a
candidate pool. A dual-encoder model (Henderson et al., 2019) is adopted to compute
the similarity between the input dialog history x and the i-th candidate response ci:

ri = Cosine(A(x), A(ci)) ∈ R1. (3.4)

During training, we randomly sample 20 negative responses for each ground truth
response. A cross-entropy loss is applied, aiming to rank the ground truth highest.

3.4 Methodology - ST

In this section, we introduce our self-training (ST) algorithm. The overall ST algorithm
is introduced in Section 3.4.1, and a new text augmentation method (GradAug) for ST
to train a more robust Student is elaborated in Section 3.4.2.

3.4.1 Overall ST Algorithm

During training, two data pools are maintained and denoted as U (unlabeled data) and
L (labeled data). Two versions of the model are maintained, Teacher (F T ) and Student
(FS). Before the iterations of ST start, the Teacher is first trained on the initial small
number of labeled data L to “warm-up”.

Pseudo-Labeling. At the beginning of an ST iteration, the Teacher first makes
predictions on U . For every data input x ∈ U , the Teacher predicts the label of x as
ŷx = F T (x). We set the predicted score of the prediction ŷx as the confidence score sx
for this prediction. When there is only a single label in the prediction ŷx (c.f. intent
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Figure 3.1 – Pipeline of one ST iteration. The Teacher first generates predictions for
data in U . Then, the Selector chooses the most confident samples based on the Teacher ’s
predictions and assign pseudo labels to them before appending to L. Afterwards, L is
augmented by “GradAug” to train a Student. Lastly, the trained Student becomes the
Teacher in the next iteration. Multiple iterations are computed till the Student converges.

classification, response selection), sx is the prediction score corresponding to the predicted
label. When there are multiple labels in the prediction ŷx (c.f. dialog state tracking,
dialog act prediction), sx takes the mean of the prediction scores corresponding to the
predicted labels. In each iteration, the Selector chooses top-k instances from U with the
highest confidence scores, and assigns the corresponding predictions ŷx as labels to them.
These labeled instances will be moved from U to L.

Iterative Student training. The updated L is used to train a stronger Student model.
We applied dropout (Srivastava et al., 2014) and a new text augmentation technique
(GradAug) introduced later in Section 3.4.2 which augments L to LAug. At the end of
each iteration, the Teacher model is overridden by the current Student to be used in
the next iteration. We reinitialize the Student in very iteration to avoid over-fitting the
initial and earlier data in L in multiple training iterations. As noted by Xie et al. (2020);
Du et al. (2020), the Student should have an equal or larger capacity than the Teacher to
gradually learn from L with increasing size. In this chapter, we set the Student the same
size as the Teacher, and we demonstrate in experiments that consistent improvements
can be achieved without increasing model capacity.

Details of our ST algorithm are described in Algorithm 2, and the pipeline of one ST
iteration (i.e., the “While” loop in Algorithm 2) is visualized in Figure 3.1.

3.4.2 Text Augmentation (GradAug)

Next, we propose a novel text augmentation technique called “GradAug” for data in
L to train a more robust Student. Our method employs the masked language model
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Algorithm 2 Self-training (ST) for ToD
Input: Labeled data: L, Unlabeled data: U , Teacher: F T , Student: FS , Number of

pseudo-labeled data in an iteration: k, Number of augmentations per input: q
Output: A trained Student FS
1: Initialize F T and train F T on L
2: while FS not good enough & U 6= Ø do
3: Initialize FS , L′ ← Priority_list()
4: for x ∈ U do
5: Compute prediction label ŷx = F T (x)
6: Compute confidence score sx
7: L′.insert({x, ŷx, sx})
8: end for
9: L′ ← L′.top(k)

10: L← L ∪ L′, U ← U\L′
11: LAug ← GradAug(L,F T , q)
12: Train FS on LAug with dropout
13: F T ← FS

14: end while

(MLM, Devlin et al. (2019a); Liu et al. (2019b)), which is a common pre-training strategy
for BERT-like architectures. In MLM, some tokens are replaced by the special token
[MASK], and the model is asked to reconstruct the original tokens from the context.

To utilize a pre-trained MLM (e.g. BERT) for text augmentation, the first step is to
decide which tokens to mask. Random sampling is used by the original BERT framework
and a recent text augmentation method (SSMBA, Ng et al. (2020)). However, if some
crucial tokens are masked, the semantics might change after the reconstruction. For
example, if the important token “status” in Figure 3.2 is masked, top predictions from
the MLM of BERT includes “purpose”, “cost”, and “route”, which will potentially change
the original semantics.

Gradient-based token masking. Instead of randomly masking tokens, we compute
a masking probability p = [p1, ..., pn] for an input x of n tokens. For input x with token
embedding matrix1 X = [X1, ..., Xn]ᵀ ∈ Rn×d and label y, the importance of tokens in x
to the label y is computed by a saliency map (Simonyan et al., 2014) m:

m =
[
M(X1), . . . ,M(Xn)

]ᵀ
∈ Rn,

M(Xi) = 1ᵀ

∂F Ty (X)
∂Xi

 ∈ R1,
(3.5)

1We use the token embeddings of BERT-like architectures, rather than position or segmentation
embeddings.
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Figure 3.2 – An illustrative example of GradAug. First, the smooth saliency M̃ is
computed for each token, and we highlight important tokens in blue for the intent label
“flight_status”. Less important tokens are more likely to be masked. Then, the masked
token (“american”) is reconstructed by the MLM of BERT and the replacement token
“scheduled” does not change the semantics of the original sentence.

where F Ty (X) is the Teacher model’s prediction score for the label y. M(Xi) measures
the importance of the i-th token by accumulating the gradients of all elements in its
embedding Xi ∈ Rd by differentiating F Ty (X) w.r.t. Xi. The intuition is that tokens with
large gradients are important to the label y. However, previous studies (Sundararajan
et al., 2017; Smilkov et al., 2017) pointed out that raw gradients can be very noisy
and may sharply fluctuate locally. To this end, we compute a smooth saliency measure
(Smilkov et al., 2017) M̃(Xi) for the i-th token as:

M̃(Xi) = 1
m

m∑
j=1

M(X̃j
i ) ∈ R1,

X̃j
i = Xi + zj ,

(3.6)

where m Gaussian noises zj ∼ N (0,Σ) ∈ Rd with mean 0 and diagonal co-variance
matrix Σ are added to Xi to calculate m regular saliency measures, which average to the
smooth saliency M̃(Xi) for Xi. The probability pi of masking the i-th token is inversely
correlated to M̃(Xi) as:

pi ∝
1

M̃(Xi)β
, (3.7)

where β controls the flatness of the distribution p, and p is normalized by its sum. As
the probability pi to mask a token xi is inversely correlated to its importance M̃(Xi)
to a downstream task, more important tokens are less likely to be masked. We sample
15% 2 tokens of x based on p and replace them by [MASK] to corrupt x to x′. As F T is
updated in each ST iteration, p is dynamically calculated in each ST iteration.

Reconstruction using MLM. To reconstruct the masked tokens in x′, we utilize a
pre-trained MLM to predict the [MASK] tokens. For stochastic purposes suggested by

2This is the default ratio used by BERT and SSMBA.
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Algorithm 3 GradAug
Input: Labeled data: L, Teacher: F T , Number of augmentations per input: q
Output: Augmented labeled data LAug
1: Initialize LAug ← L
2: for {x, y} ∈ L do
3: Compute masking probability p using F T
4: for j ∈ 1 . . . q do
5: x′ ← Mask tokens of x based on p
6: x̂← Predict masked tokens by MLM
7: LAug.append({x̂, y})
8: end for
9: end for

Fan et al. (2018), we reconstruct each [MASK] by sampling one token from the ten most
likely tokens according to their predicted probabilities. Afterward, we get a paraphrased
x̂ of the original x as an augmentation. As our gradient-based masking scheme avoids
replacing tokens crucial to the meaning of x, the label of x̂ is preserved the same as x.

An illustrative example of GradAug is given in Figure 3.2, and the detailed procedure
applying GradAug on L is described in Algorithm 3.

3.5 Evaluation

3.5.1 Datasets and Experiment Settings

We evaluate four different datasets for four downstream tasks as in Wu et al. (2020).

OOS (Larson et al., 2019) is a benchmark dataset for intent classification in ToD. It
consists of 150 in-domain intents and 1 out-of-scope intent. The full dataset contains
15,100/3,100/5,500 samples for train/validation/test, and all data are balanced across
151 different intents.

MWOZ (Eric et al., 2020) is evaluated in three downstream tasks, including dialog state
tracking, dialogue act prediction, and response prediction. It contains 8,420/1,000/1,000
dialogues for train/validation/test. For dialog act prediction, we remove the domain
information from original labels as in Wu et al. (2020), resulting 13 DA intents.

DSTC2 (Henderson et al., 2014) and GSIM (Shah et al., 2018) are two corpus used
in dialog act prediction and response selection tasks. DSTC2 contains 1,612/506/1,117
dialogues for train/validation/test; GSIM contains 1,500/469/1,039 dialogues for train/-
validation/test. DA intent labels of DSTC2 and GSIM are mapped to universal dialogue
acts (Paul et al., 2019), resulting in 19 and 13 DA intents respectively.
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To construct different few-shot learning scenarios with unlabeled data, we randomly
sample 1% or 10% of the training data to serve as the initial labeled data L, while the
remaining are used as unlabeled data U . We report results averaged over three different
random seeds for each experiment to reduce data sampling variance. We also report the
upper bound of pre-trained models without ST using all labeled training data, referred
to as “Full”.

We test two pre-trained models: (i). uncased base BERT with 110M parameters; (ii).
ToD-BERT 3 (Wu et al., 2020) that is further pre-trained on nine public ToD datasets on
top of BERT. When ST is applied to them, the corresponding MLM is used by GradAug
to reconstruct masked tokens. Basic model parameters of the first three downstream
tasks are set the same as Wu et al. (2020). In response selection, we reduced the training
batch size from 25 to 20 to fit our computation constraint. BERT and Tod-BERT without
ST are trained on the initial labeled data until validation performance does not improve
for 20 epochs 4. When the Student is trained on LAug (c.f. Algorithm 2 line 12), we apply
early stop until validation performance does not improve for 10 epochs. If Student’s
validation performance does not improve for 3 ST iterations (c.f. Algorithm 2 line 2),
we stop ST. The number (k) of pseudo-labeled data in each ST iteration is set as the
initial size of L; the number (q) of augmentations per input for GradAug is set to 3; β
in Equation 3.7 is set to 1. An exhaustive search on hyper-parameters (k, q, β) is not
conducted because it is expensive to conduct for large pre-trained models on all four
downstream tasks. We expect better results of ST can be achieved with a thorough
hyper-parameter search by researchers without computation constraints.

3.5.2 Main Results of Four Downstream Tasks

Intent classification. Results of intent classification on OOS are presented in
Table 3.1 with accuracy of all 151 intents; 150 in-domain intents; the out-of-scope
intent, and the recall of the out-of-scope intent. ST significantly improves the pre-trained
BERT and ToD-BERT. When only 1% labeled data are used, ST achieves 33.6% and
36.8% higher accuracy on all 151 intents for BERT and ToD-BERT respectively. For
10% labeled data, the above two margins are 7.0% and 9.8%. Furthermore, ST largely
improves the recall of the out-of-scope intent, which means that it is robust to the
out-of-scope intent with more noisy distributions.

Dialog state tracking. Results of dialog state tracking on MWOZ are presented in
Table 3.2. Two common evaluation metrics (Budzianowski et al., 2018; Wu et al., 2019a)
are used: slot accuracy and joint goal accuracy. Slot accuracy is computed for each
state (domain, slot, value) to check whether the value is correctly predicted. Joint goal

3We used their joint version (ToD-BERT-jnt) pre-trained with the MLM and “response contrastive
loss” objectives

4Our different (often better) results compared to the ToD-BERT paper mainly come from this stricter
early stop criteria.
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Data Model Acc. Acc. Acc. Recall
(all) (in) (out) (out)

1%

BERT 36.5% 44.6% 81.8% 0.2%
BERT-ST 70.1% 82.2% 84.3% 15.5%
ToD-BERT 39.0% 47.1% 82.0% 2.3%
ToD-BERT-ST 75.8 % 87.8% 85.5% 21.9%

10%

BERT 73.6 % 87.4% 83.9% 11.7%
BERT-ST 80.6% 94.3% 84.9% 17.1%
ToD-BERT 75.5% 89.4% 84.1% 13.3%
ToD-BERT-ST 85.3% 94.7% 89.4% 42.8%

Full* BERT 84.9% 95.8% 88.1% 35.6%
ToD-BERT 86.6% 96.2% 89.9% 43.6%

Table 3.1 – Results of intent classification. Bold numbers indicate ST improves the
corresponding pre-trained model. Results with * are taken from Wu et al. (2020).

Data Model Joint Acc Slot Acc

1%

BERT 8.0% 84.3%
BERT-ST 8.8% 84.5%
ToD-BERT 8.4% 85.7%
ToD-BERT-ST 9.9% 86.5%

10%

BERT 21.2% 92.0%
BERT-ST 23.9% 92.4%
ToD-BERT 25.5% 93.4%
ToD-BERT-ST 28.3% 93.7%

Full* BERT 45.6% 96.6%
ToD-BERT 48.0% 96.9%

Table 3.2 – Results of dialog state tracking. Bold numbers indicate ST improves the
corresponding pre-trained model. Results with * are taken from Wu et al. (2020).

accuracy checks whether the predicted states exactly matches the ground truth states.
We can see that ST consistently improves both BERT and ToD-BERT. E.g., ST has 1.5%
and 2.8% joint goal accuracy improvement over ToD-BERT when 1% and 10% labeled
data are used respectively. Similar margins can be observed for ST on top of BERT.

Dialog act prediction. Experiments are conducted on three datasets, and results are
reported in Table 3.3. We report micro-F1 and macro-F1 scores for this multi-label
classification task. Again, the benefit of ST can be observed by the improvement for
both BERT and ToD-BERT. When 10% labeled data are used, BERT and ToD-BERT
perform similarly to their upper bound (Full), and the improvement margin of ST is
limited. When 1% labeled data are used, more notable margins of ST can be seen on the
two simpler datasets (DSTC2, GSIM) and the macro-F1 score of MWOZ.

Response selection. Results of response selection on three datasets are reported

35



Chapter 3. Self-training Improves Data Efficiency in ToD Systems

Data Model MWOZ DSTC2 GSIM
micro-F1 macro-F1 micro-F1 macro-F1 micro-F1 macro-F1

1%

BERT 83.5% 61.2% 79.1% 26.8% 70.3% 27.9%
BERT-ST 82.7% 64.2% 81.4% 27.3% 73.0% 29.8%
ToD-BERT 85.8% 67.0% 80.9% 25.3% 87.5% 37.6%
ToD-BERT-ST 86.9% 71.8% 82.7% 28.5% 92.6% 40.8%

10%

BERT 89.8% 77.8% 88.9% 35.7% 97.1% 44.1%
BERT-ST 89.5% 79.2% 92.3% 38.4% 97.6% 44.6%
ToD-BERT 90.0% 78.4% 90.6% 38.8% 98.6% 44.9%
ToD-BERT-ST 90.2% 79.6% 92.9% 40.5% 99.3% 45.6%

Full* BERT 91.4% 79.7% 92.3% 40.1% 98.7% 45.2%
ToD-BERT 91.7% 80.6% 93.8% 41.3% 99.5% 45.8%

Table 3.3 – Results of dialog act prediction. Bold numbers indicate ST improves the
corresponding pre-trained model. Results with * are taken from Wu et al. (2020).

Data Model MWOZ DSTC2 GSIM
Recall@1 Recall@3 Recall@1 Recall@3 Recall@1 Recall@3

1%

BERT 7.3% 19.5% 3.8% 9.8% 4.0% 11.4%
BERT-ST 23.8% 46.1% 36.7% 51.1% 11.1% 24.2%
ToD-BERT 37.5% 63.0% 35.7% 53.8% 11.4% 24.1%
ToD-BERT-ST 43.5% 66.3% 48.0% 64.6% 27.8% 42.9%

10%

BERT 26.1% 56.5% 27.7% 42.9% 13.4% 28.3%
BERT-ST 43.1% 66.1% 53.7% 67.1% 22.3% 40.4%
ToD-BERT 47.2% 69.4% 51.3% 66.0% 28.5% 47.8%
ToD-BERT-ST 60.2% 81.9% 58.8% 72.2% 41.8% 64.9%

Full BERT 47.5% 75.5% 46.6% 62.1% 13.4% 32.9%
ToD-BERT 66.9% 89.1% 59.5% 73.1% 43.0% 65.3%

Table 3.4 – Results of response selection. Bold numbers indicate ST improves the
corresponding pre-trained model.

in Table 3.4. We randomly sample 100 responses as negative responses and report
Recall@1&3 (Henderson et al., 2019) indicating whether the true response is ranked in
the top-1 or top-3 predicted responses. ST improves the two pre-trained models by large
margins. When 1% labeled data are used, ST achieves 6%, 12.3%, and 16.4% higher
Recall@1 accuracy over ToD-BERT on three datasets respectively. For 10% labeled data,
the three margins above are 13.0%, 7.5%, and 14.4% respectively. Larger improvements
can be observed for ST on top of BERT.

Altogether, our experiments on four different downstream tasks reveal that:

• Self-training provides complementary benefits on top of pre-training. ST consistently
improves both BERT and ToD-BERT on all four downstream tasks with only 1%
and 10% labeled data.

• Self-training is on par with customized pre-training for ToD. BERT performs worse
than ToD-BERT, yet BERT-ST achieves comparable or even better performance
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IC RS
Acc. (all) Recall@3

ToD-BERT-ST 85.3% 64.9%
w/o Smooth Saliency 81.9% 64.4%
w/o Augmentation 80.4% 54.8%
w/o Pseudo-Labeling 76.9% 49.7%
ToD-BERT 75.5% 47.8%

Table 3.5 – Ablation study of ST for intent classification (IC) on OOS and response
selection (RS) on GSIM.

than ToD-BERT that is heavily pre-trained on ToD corpora.

• Self-training bridges the gap between few-shot learning and full supervision. BERT
and ToD-BERT with 10% labeled data perform much worse than models using all
labeled data (“Full”) for intent classification and response selection. ST largely
improves performances in these two cases with results comparable to “Full”.

• The benefit of self-training is evident on two simpler single-label prediction tasks
(intent classification, response selection), indicated by 6-37% gain with 1% labeled
data; 7-15% gain with 10% labeled data. The margin is smaller on two other more
challenging multi-label prediction tasks (dialog state tracking, dialog act prediction)
that also require more complex reasoning over dialog history.

3.5.3 In-depth Analysis

In this section, we provide several in-depth analyses of the proposed self-training approach.
As case studies, we limited our discussion on intent classification (IC) on OOS and
response selection (RS) on GSIM using ToD-BERT-ST with 10% labeled data. Reported
results are accuracies on all intents and Recall@3 respectively.

Ablation study. In Table 3.5, we compare three simplified versions of ToD-BERT-ST
to understand the effects of different components. We can observe that: (i) Masking
tokens using the smooth saliency computed in Eq. (3.6) for GradAug is beneficial because
replacing it by the vanilla saliency in Eq. (3.5) (“w/o Smooth Saliency”) degrades the
performance by 3.4% and 0.5% on IC and RS. (ii) Training a more robust Student
using data augmented by GradAug is advantageous because dropping this augmentation
step (“w/o Augmentation”) impairs performance by 4.9% and 10.1%. (iii) The Pseudo-
Labeling operation to iteratively label unlabeled data is important for ST, indicated
by the 8.4% and 15.2% performance drop of “w/o Pseudo-Labeling” that only applies
GradAug to the initial labeled data without utilizing unlabeled data.
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IC RS
Acc. (all) Recall@3

Top-k (Ours) 85.3% 64.9%
Random-k 84.0% 64.1%
Least-k 82.7% 61.4%
Select-all 76.0% 50.8%

Table 3.6 – Comparison to other Selectors in ST for intent classification (IC) on OOS
and response selection (RS) on GSIM.

IC RS
Acc. (all) Recall@3

GradAug (Ours) 85.3% 64.9%
SSMBA (Ng et al., 2020) 84.6% 64.2%
MixText (Chen et al., 2020a) 83.6% 62.7%
EDA (Wei and Zou, 2019) 77.2% 57.6%
w/o Augmentation 80.4% 54.8%

Table 3.7 – Comparison to other text augmentation methods to train the Student for
intent classification (IC) on OOS and response selection (RS) on GSIM.

Comparison to other Selectors in ST. In Table 3.6, we compare our scheme of
selecting samples with top-k confident predictions from U in each iteration with (i)
Random-k: randomly select k samples; (ii) Least-k: select samples with least-k confident
predictions (iii) Select-all (Xie et al., 2020; Du et al., 2020): label all samples of U
in an iteration and relabel them in the next iteration. We could see that “Random-k”
and “Least-k” perform worse than ours, yet they both outperform “Select-all” by large
margins. We believe that it is because the initial Teacher trained on limited labeled
data is not good enough to assign reliable labels to a large number of unlabeled data.
Explorations on other sophisticated sample selection schemes are orthogonal to the focus
of this chapter and will be left as future work.

Comparison to other text augmentation methods. In Table 3.7, we compare
GradAug with three representative text augmentation methods to augment L for training
the Student. We follow the default setting of these techniques and apply them to our ST
pipeline to generate three paraphrases for each input as in GradAug. GradAug performs
better than the current state-of-the-art (SSMBA, MixText) and outperforms EDA by
large margins. As EDA might easily change the input semantics, it even performs worse
than using no data augmentation for intent classification. This result reinforces the
importance of preserving semantics during augmentation for ToD.
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3.6 Chapter Summary

We study using self-training to improve the strong pre-trained models for few-shot learning
tasks in ToD. An iterative self-training method with a new text augmentation technique
(GradAug) is proposed to gradually train a stronger Student model using unlabeled
data. Extensive empirical results on four different downstream tasks (intent classification,
dialog state tracking, dialog act prediction, and response selection) in ToD demonstrate
the consistent improvements of self-training on top of state-of-the-art pre-trained models.
Our in-depth analysis demonstrates that the proposed sample labeling scheme and the
new text augmentation technique are both critical for the final performance. Our findings
on using self-training to improve learning from limited labeled data may inspire future
studies to build scalable ToD systems or other application scenarios with rich unlabeled
data. For chapters in the next part, we study the knowledge retention challenge to
mitigate the catastrophic forgetting issue of neural networks in different applications.
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4 Continual Learning with Knowl-
edge Retention in ToD Systems

4.1 Introduction

Existing NLG models (Wen et al., 2015b; Tran and Nguyen, 2017; Tseng et al., 2018) in
ToD system are typically trained offline using annotated data from a single or a fixed
set of domains. However, a scalable ToD system in real-life applications often needs to
expand its knowledge to new domains and functionalities. Therefore, it is crucial to
develop an NLG approach with the capability of continual learning after a dialog system
is deployed. Recently, Mi et al. (2019); Qian and Yu (2019); Peng et al. (2020b) studied
learning new domains with limited training data as in our Chapter 2. However, existing
methods only consider a one-time adaptation process. The continual learning setting and
the corresponding knowledge retention issue remain to be explored. Specifically, an NLG
model should be able to continually learn new utterance patterns without forgetting the
old ones it has already learned.

We diagnose in Section 4.4.3 that neural NLG models suffer the detrimental catastrophic
forgetting issue when continually trained on new domains. A naive solution is to retrain
the NLG model using all historical data every time. However, it is not scalable due
to severe computation and storage overhead. To this end, we store a small number of
representative utterances from previous data, namely exemplars, and replay them to
the NLG model each time when it needs to be trained on new data. In this chapter,
we propose a prioritized exemplar selection scheme to choose representative and diverse
exemplar utterances for NLG. We empirically demonstrate that the prioritized exemplar
replay helps to alleviate catastrophic forgetting by a large degree.

In practice, the number of exemplars should be reasonably small to maintain a manageable
memory footprint. Therefore, the constraint of not forgetting old utterance patterns is
not strong enough. To enforce a stronger constraint, we propose a regularization method

This chapter is based on the paper (Mi et al., 2020a) published in the conference on Findings of
Empirical Methods in Natural Language Processing (Findings of EMNLP, 2020).
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based on the well-known technique, Elastic Weight Consolidation (EWC (Kirkpatrick
et al., 2017)). The idea is to use a quadratic term to regularize the parameters that
are important for previous data elastically. Besides the wide application in computer
vision, EWC has been recently applied to the domain adaptation task for Neural Machine
Translation (Thompson et al., 2019; Saunders et al., 2019). In this chapter, we combine
EWC with exemplar replay by approximating the Fisher Information Matrix w.r.t. the
carefully chosen exemplars so that not all historical data need to be stored. Furthermore,
we propose to adaptively adjust the regularization weight to consider the difference
between new and old data to flexibly deal with different new data distributions.

To summarize our contribution: (1) to the best of our knowledge, this is the first attempt
to study the practical continual learning configuration for NLG in task-oriented dialog
systems; (2) we propose a method called Adaptively Regularized Prioritized Exemplar
Replay (ARPER) for this task and benchmark it with a wide range of state-of-the-art
continual learning techniques; (3) extensive experiments are conducted on the MultiWOZ
(Budzianowski et al., 2018) dataset to continually learn new tasks, including domains and
DA intents using three base NLG models. Empirical results demonstrate the superior
performance of ARPER and its ability to mitigate catastrophic forgetting. Our code is
available at https://github.com/MiFei/Continual-Learning-for-NLG

4.2 Related Work

The background of neural NLG models is reviewed in Section 2.2. In this section, we
review some works studying continual learning and the catastrophic forgetting issue in
other NLP tasks.

The major challenge for continual learning is catastrophic forgetting (McCloskey and
Cohen, 1989; French and Chater, 2002). Methods designed to mitigate catastrophic
forgetting fall into three categories: regularization (Li and Hoiem, 2018; Kirkpatrick et al.,
2017; Zenke et al., 2017a), exemplar replay (Rebuffi et al., 2017; Chaudhry et al., 2019;
Castro et al., 2018) and dynamic architectures (Rusu et al., 2016; Maltoni and Lomonaco,
2019). Methods using dynamic architectures increase model parameters throughout the
training process, which leads to an unfair comparison with other methods. In this work,
we focus on the first two categories.

Regularization methods add specific regularization terms to consolidate knowledge learned
before. Li and Hoiem (2018) introduces knowledge distillation (Hinton et al., 2015) to
penalize model logit change, and it is widely employed by Rebuffi et al. (2017); Castro
et al. (2018); Wu et al. (2019c); Hou et al. (2019); Zhao et al. (2020). Kirkpatrick
et al. (2017); Zenke et al. (2017a); Aljundi et al. (2018) propose to penalize changes on
parameters that are crucial to old knowledge according to various importance measures.
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Exemplar replay methods store past samples, a.k.a exemplars, and replay them peri-
odically to prevent the model from forgetting previous knowledge. Besides selecting
exemplars uniformly, Rebuffi et al. (2017) incorporates the Herding technique (Welling,
2009) to select exemplars, and it soon becomes popular (Castro et al., 2018; Wu et al.,
2019c; Hou et al., 2019; Zhao et al., 2020; Mi et al., 2020b). Ramalho and Garnelo
(2019) proposes to store the most “surprising” samples that the model is least confi-
dent. Chaudhry et al. (2019) demonstrated the effectiveness of exemplars for various
continual learning tasks in computer vision. Instead of storing raw samples, Shin et al.
(2017); Riemer et al. (2019) use generative models, such as Generative Adversarial Net-
work (Goodfellow et al., 2014) or Variational AutoEncoder (Kingma and Welling, 2014),
to generate virtual samples akin to past data.

The catastrophic forgetting issue in NLP tasks has raised increasing attention recently
(Mou et al., 2016; Chronopoulou et al., 2019). Yogatama et al. (2019); Arora et al. (2019)
identified the detrimental catastrophic forgetting issue while fine-tuning ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019b). To deal with this issue, He et al. (2019a)
proposed to replay pre-train data during fine-tuning heavily, and Chen et al. (2020b)
proposed an improved Adam optimizer to recall knowledge captured during pre-training.
The catastrophic forgetting issue is also noticed in domain adaptation setups for neural
machine translation (Saunders et al., 2019; Thompson et al., 2019; Varis and Bojar,
2019) and the reading comprehension task (Xu et al., 2020). (Saunders and Byrne, 2020)
later applied EWC (Kirkpatrick et al., 2017) to retain the gender balance of translated
sentences during fine-tuning.

Lee (2017) firstly studied the continual learning setting for dialog state tracking in
task-oriented dialog systems. However, their setting is still a one-time adaptation process,
and the adopted dataset is small. Shen et al. (2019) recently applied progressive network
(Rusu et al., 2016) for the semantic slot filling task from a continual learning perspective
similar to ours. However, their method is based on a dynamic architecture that is beyond
the scope of this chapter. Liu et al. (2019a) proposed a Boolean operation of “conceptor”
matrices for continually learning sentence representations using linear encoders. Li
et al. (2020) combined continual learning and language systematic compositionality for
sequence-to-sequence learning tasks.

4.3 Methodology - ARPER

In this section, we first introduce the background of neural NLG models in Section 4.3.1,
and the continual learning formulation in Section 4.3.2. In Section 4.3.3, we introduce
the proposed method ARPER.
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Data1 Data2 Data3

NLG Model NLG Model NLG Model …...

Attraction Restaurant Hotel

Figure 4.1 – An example for a NLG model to continually learn new domains. The model
needs to perform well on all domains it has seen before. For example fθ3 needs to deal
with all three previous domains (Attraction, Restaurant, Hotel).

4.3.1 Background on Neural NLG Models 1

The NLG component of task-oriented dialog systems is to produce natural language
utterances conditioned on a semantic representation called dialog act (DA). Specifically,
the dialog act d is defined as the combination of intent I and a set of slot-value pairs
S(d) = {(si, vi)}pi=1:

d = [ I︸︷︷︸
Intent

, (s1, v1), . . . , (sp, vp)︸ ︷︷ ︸
Slot-value pairs

], (4.1)

where p is the number of slot-value pairs. Intent I controls the utterance functionality,
while slot-value pairs contain information to express. For example, “There is a restaurant
called [La Margherita] that serves [Italian] food.” is an utterance corresponding to a DA
“[Inform, (name=La Margherita, food=Italian)]”

Neural models have recently shown promising results for NLG tasks. Conditioned on a
DA, a neural NLG model generates an utterance containing the desired information word
by word. For a DA d with the corresponding ground truth utterance Y = (y1, y1, ..., yK),
the probability of generating Y is factorized as below:

fθ(Y,d) =
K∏
k=1

pyk
=

K∏
k=1

p(yk|y<k,d, θ), (4.2)

where fθ is the NLG model parameterized by θ, and pyk
is the output probability (i.e.

softmax of logits) of the ground truth token yk at position k. The typical objective
function for an utterance Y with DA d is the average cross-entropy loss w.r.t. all tokens
in the utterance (Wen et al., 2015b,c; Tran and Nguyen, 2017; Peng et al., 2020b):

LCE(Y,d, fθ) = − 1
K

K∑
k=1

log(pyk
) (4.3)

1This part recaps some contents in Section 2.2 for context coherence.
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4.3.2 Continual Learning of NLG

In practice, an NLG model needs to continually learn new domains or functionalities.
Without loss of generality, we assume that new data arrive phase by phase (Rebuffi et al.,
2017; Kirkpatrick et al., 2017). In a new phase t, new data Dt are used to train the NLG
model fθt−1 obtained till the last phase. The updated model fθt needs to perform well
on all phases so far. A phase can be defined with different modalities to reflect diverse
real-life applications. In subsequent experiments, we consider continually learning new
domains and DA intents. An example setting of continually learning new domains is
illustrated in Figure 4.1.

We emphasize that the setting of continual learning is different from that of domain
adaptation. The latter is a one-time adaptation process, and the focus is to optimize
performance on a target domain transferred from source domains but without considering
potential performance drop on source domains (Mi et al., 2019; Qian and Yu, 2019; Peng
et al., 2020b). In contrast, continual learning requires an NLG model to continually learn
new phases in multiple transfers, and the goal is to make the model perform well on all
phases learned so far.

4.3.3 Adaptively Regularized Prioritized Exemplar Replay (ARPER)

In this section, we introduce the proposed method (ARPER) with prioritized exemplar
replay and an adaptive regularization technique to further alleviate the catastrophic
forgetting issue.

Prioritized Exemplar Replay

To prevent the NLG model catastrophically forgetting utterance patterns in earlier
phases, a small subset of a phase’s utterances are selected as exemplars, and exemplars
in previous phases are replayed to the later phases. During training the NLG model fθt

for phase t, the set of exemplars in previous phases, denoted as E1:t−1 = {E1, . . . ,Et−1},
is replayed by joining with the data Dt of the current phase. Therefore, the training
objective with exemplar replay can be written as:

LER(θt) =
∑

{Y,d}∈Dt∪E1:t−1

LCE(Y,d, fθt). (4.4)

The set of exemplars of phase t, referred to as Et, is selected after fθt has been trained
and will be replayed to later phases.

The quality of exemplars is crucial to preserve the performance on previous phases. We
propose a prioritized exemplar selection method to select representative and diverse
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Algorithm 4 ARPER.SELECT_EXEMPLARS : Prioritized exemplar selection proce-
dure for phase t
1: procedure select_exemplars(Dt, fθt ,m)
2: Et ← new Priority_list()
3: Dt ← sort(Dt, key = U, order = asc)
4: while |Et| < m do
5: Sseen ← new Set()
6: for {Y,d} ∈ Dt do
7: if S(d) ∈ Sseen then continue
8: else
9: Dt.remove({Y,d})

10: Et.insert({Y,d})
11: Sseen.insert(S(d))
12: if |Et| == m then
13: return Et

14: end if
15: end if
16: end for
17: end while
18: end procedure

utterances as follows.

Representative utterances. The first criterion is that exemplars Et of a phase t
should be representative of Dt. We propose to select Et as a priority list from Dt that
minimize a priority score:

U(Y,d) = LCE(Y,d, fθt) · |S(d)|β, (4.5)

where S(d) is the set of slots in Y, and β is a hyper-parameter. This formula correlates
the representativeness of an utterance to its LCE . Intuitively, the NLG model fθt trained
on Dt should be confident with representative utterances of Dt, i.e., low LCE . However,
LCE is agnostic to the number of slots. We found that an utterance with many common
slots in a phase could also have very low LCE , yet using such utterances as exemplars may
lead to overfitting and thus forgetting of previous general knowledge. The second term
|S(d)|β controls the importance of the number of slots in an utterance to be prioritized
as exemplars. We empirically found in experiments that the best β is 0.5 (larger than 0).

Diverse utterances. The second criterion is that exemplars should contain diverse
slots of the phase, rather than being similar or repetitive. A drawback of the above
priority score is that similar or duplicated utterances containing the same set of frequent
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slots could be prioritized over utterances w.r.t. a diverse set of slots. To encourage
diversity of selected exemplars, we propose an iterative approach to add data from Dt to
the priority list Et based on the above priority score. At each iteration, if the set of slots
of the current utterance is already covered by utterances in Et, we skip it and move on
to the data with the next best priority score.

Algorithm 1 shows the procedure to select m exemplars as a priority list Et from Dt.
The outer loop allows multiple passes through Dt to select various utterances for the
same set of slots S(d).

Reducing Exemplars in Previous Phases

Algorithm 1 requires the number of exemplars to be given. A straightforward choice
is to store the same and fixed number of exemplars for each phase as in Castro et al.
(2018); Wu et al. (2019c); Hou et al. (2019). However, there are two drawbacks in this
method: (1). the memory usage increases linearly with the number of phases; (2) it does
not discriminate phases with different difficulty levels.

To this end, we propose to store a fixed number of exemplars throughout the entire
continual learning process to maintain a bounded memory footprint as in Rebuffi et al.
(2017). As more phases are continually learned, exemplars in previous phases are gradually
reduced by only keeping the ones in the front of the priority list2. The exemplar size of a
phase is set to be proportional to the training data size of the phase to differentiate the
phase’s difficulty. To be specific, suppose M exemplars are kept in total. The number of
exemplars for a phase is:

|Ei| = M · |Di|∑t
j=1 |Dj |

,∀i ∈ 1, . . . , t, (4.6)

where we choose 250/500 for M in experiments.

Constraint with Adaptive Elastic Weight Consolidation

Although exemplars of previous phases are stored and replayed, the size of exemplars
should be reasonably small (M � |D1:t|) to reduce memory overhead. As a consequence,
the constraint we have made to prevent the NLG model from catastrophically forgetting
previous utterance patterns is not strong enough. To enforce a stronger constraint, we
propose a regularization method based on the well-known Elastic Weight Consolidation
(EWC, Kirkpatrick et al., 2017) technique.

2the priority list implementation allows reducing exemplars in constant time for each phase
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Elastic weight consolidation (EWC). EWC utilizes a quadratic term to elastically
regularize parameters important for previous phases. The loss function of using the EWC
regularization together with exemplar replay for phase t can be written as:

LER_EWC(θt) = LER(θt) + λ
N∑
i

Fi(θt,i − θt−1,i)2 (4.7)

where N is the number of model parameters; θt−1,i is the i-th converged parameter of the
model trained till the previous phase; Fi = ∇2LE1:t−1

CE (θt−1,i) is the i-th diagonal element
of the Fisher Information Matrix approximated w.r.t. the set of previous exemplars
E1:t−1. Fi measures the importance of θt−1,i to previous phases represented by E1:t−1.
Typical usages of EWC compute Fi w.r.t. a uniformly sampled subset from historical data.
In contrast, we propose to compute Fi w.r.t. the carefully chosen E1:t−1 so that not all
historical data need to be stored. The scalar λ controls the contribution of the quadratic
regularization term. The idea is to elastically penalize changes on parameters important
(with large Fi) to previous phases, and more plasticity is assigned to parameters with
small Fi.

Adaptive regularization. In practice, new phases have different difficulties and
similarities compared to previous phases. Therefore, the degree of need to preserve the
previous knowledge varies. To this end, we propose an adaptive weight (λ) for the EWC
regularization term as follows:

λ = λbase

√
V1:t−1/Vt, (4.8)

where V1:t−1 is the old word vocabulary size in previous phases, and Vt is the new word
vocabulary size in the current phase t; λbase is a hyper-parameter. In general, λ increases
when the ratio of the size of old word vocabularies to that of new ones increases. In other
words, the regularization term becomes more important when the new phase contains
fewer new vocabularies to learn.

Algorithm 2 summarizes the continual learning procedure of ARPER for phase t. θt
is initialized with θt−1, and it is trained with prioritized exemplar replay and adaptive
EWC in Eq. (4.7). After training θt, exemplars Et of phase t are computed by Algorithm
1, and exemplars in previous phases are reduced by keeping the most prioritized ones to
preserve the total exemplar size.
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Algorithm 5 ARPER.LEARN_PHASE : Procedure of ARPER to learn phase t
1: procedure learn_phase(Dt,E1:t−1, fθt−1 ,M)
2: θt ← θt−1
3: while θt not converged do
4: θt ← update(LER_EWC(θt))
5: end while
6: m←M · |Dt|

Σt
j=1|Dj |

7: Et ← select_exemplars(Dt, fθt ,m)
8: for j = 1 to t− 1 do
9: Ej ← Ej .top(M · |Dj |

Σt
j=1|Dj |

)
10: end for
11: return fθt

,Et

12: end procedure

4.4 Evaluation

4.4.1 Dataset and Evluation Metric

We use the MultiWOZ dataset 3 (Budzianowski et al., 2018) containing six domains
(Attraction, Hotel, Restaurant, Booking, Taxi and Train) and seven DA intents (“Inform,
Request, Select, Recommend, Book, Offer-Booked, No-Offer”). The original train/valida-
tion/test splits are used. For methods using exemplars, both training and validation set
are continually expanded with exemplars extracted from previous phases.

To support experiments on continual learning new domains, we pre-process the original
dataset by segmenting multi-domain utterances into single-domain ones. For instance,
an utterance “The ADC Theatre is located on Park Street. Before I find your train,
could you tell me where you would like to go?” is split into two utterances with domain
“Attraction” and “Train” separately. If multiple sentences of the same domain in the
original utterance exist, they are still kept in one utterance after pre-processing. In each
continual learning phase, all training data of one domain are used to train the NLG
model, as illustrated in Figure 4.1. Similar pre-processing is done at the granularity of DA
intents for experiments in Section 4.4.5. The statistics of the pre-processed MultiWOZ
dataset is illustrated in Figure 4.2. The resulting datasets and the pre-processing scripts
are open-sourced.

Evaluation metrics. As in Chapter 2, we use the slot error rate (SER) and the
BLEU-4 score (Papineni et al., 2002) as evaluation metrics. SER is the ratio of the
number of missing and redundant slots in a generated utterance to the total number of
ground truth slots in the DA. To better evaluate the continual learning ability, we use

3extracted for NLG at https://github.com/andy194673/nlg-sclstm-multiwoz
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Figure 4.2 – Venn diagram visualizing intents in different domains. The number of
utterances of each domain (bold) and intents (italic) is indicated in parentheses.

two additional commonly used metrics (Kemker et al., 2018) for both SER and BLEU-4:

Ωall = 1
T

T∑
i=1

Ωall,i, Ωfirst = 1
T

T∑
i=1

Ωfirst,i

where T is the total number of continual learning phases; Ωall,i is the test performance on
all the phases after the ith phase has been learned; Ωfirst,i is that on the first phase after
the ith phase has been learned. Since Ω can be either SER or BLEU-4, both Ωall and
Ωfirst have two versions. Ωall evaluates the overall performance, while Ωfirst evaluates
the ability to alleviate catastrophic forgetting.

4.4.2 Baseline Methods

Two methods without exemplars are as below:

• Finetune: At each phase, the NLG model is initialized with the model obtained
till the last phase, and then fine-tuned with the data from the current phase.

• Full: At each phase, the NLG model is trained with data from the current and all
historical phases. This is the “upper bound” for continual learning w.r.t. Ωall.

Several exemplar replay (ER) methods trained with Eq. (4.4) using different exemplar
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selection schemes are compared:

• ERherding (Welling, 2009; Rebuffi et al., 2017): This scheme chooses exemplars
that best approximate the mean DA vector over all training examples of this phase.

• ERrandom: This scheme selects exemplars at random. Despite its simplicity, the
distribution of the selected exemplars is the same as the distribution of the current
phase in expectation.

• ERprio: The proposed prioritized scheme (c.f. Algorithm 1) to select representative
and diverse exemplars.

Based on ERprio, four regularization methods (including ours) to further alleviate catas-
trophic forgetting are compared:

• L2 : A static L2 regularization by setting Fi = 1 in Eq. (4.7). It regularizes all
parameters equally.

• KD (Rebuffi et al., 2017; Wu et al., 2019c; Hou et al., 2019): The widely-used
knowledge distillation (KD) loss (Hinton et al., 2015) is adopted by distilling the
prediction logit of current model w.r.t. the prediction logit of the model trained
till the last phase.

• Dropout (Mirzadeh et al., 2020): Dropout Hinton et al. (2012) is recently shown
by (Mirzadeh et al., 2020) that it effectively alleviates catastrophic forgetting. We
tune different dropout rates assigned to the non-recurrent connections.

• ARPER (c.f. Algorithm 2): The proposed method using adaptive EWC with
ERprio.

We utilize the well-recognized semantically-conditioned LSTM (SCLSTM Wen et al.,
2015b) as the base NLG model fθ 4 with one hidden layer of size 128. Dropout is
not used by default, which is evaluated as a particular regularization technique (c.f.
ERprio+Dropout). For all the above methods, the learning rate of Adam is set to 5e-3,
the batch size is set to 128, and the maximum number of epochs used to train each phase
is set to 100. Early stop to avoid over-fitting is adopted when the validation loss does not
decrease for 10 consecutive epochs. To fairly compare different methods, they are trained
with the identical configuration on the first phase to have a consistent starting point.

4Comparisons based on other base NLG models are included in Section 4.4.6.
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Figure 4.3 – Diagnose the catastrophic forgetting issue in NLG. SER (Left) and BLEU-4
(Right) on the test data of “Attraction” at different epochs when a model pre-trained
on the “Attraction” domain is continually trained on another “Train” domain.

4.4.3 Diagnose Catastrophic Forgetting in NLG

Before proceeding to our main results, we first diagnose whether the catastrophic for-
getting issue exists when training an NLG model continually. As an example, a model
pre-trained on the “Attraction” domain is continually trained on the “Train” domain.
We present test performance on “Attraction” at different epochs in Figure 4.3 with 250
exemplars.

We can observe: (1) catastrophic forgetting indeed exists as indicated by the sharp
performance drop of Finetune; (2) replaying carefully chosen exemplars helps to alleviate
catastrophic forgetting by a large degree, and ERprio does a better job than ERrandom;
and (3) ARPER greatly mitigates catastrophic forgetting by achieving similar or even
better performance compared to Full.

4.4.4 Continual Learning New Domains

In this experiment, the data from six domains are presented sequentially. We test 6 runs
with different domain order permutations. Each domain is selected as the first phase for
one time, and the remaining five domains are randomly ordered. Results averaged over 6
runs using 250 and 500 total exemplars are presented in Table 4.1. Several interesting
observations can be noted:

• All methods except Finetune perform worse on all seen phases (Ωall) than on the

54



4.4. Evaluation

250 exemplars in total 500 exemplars in total
Ωall Ωfirst Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4 SER% BLEU-4 SER% BLEU-4
Finetune 64.46 0.361 107.27 0.253 64.46 0.361 107.27 0.253
ERherding 16.89 0.535 9.89 0.532 12.25 0.555 4.53 0.568
ERrandom 10.93 0.552 6.96 0.553 8.36 0.569 4.41 0.572
ERprio 9.67?? 0.578 5.28?? 0.578 7.48?? 0.597 3.59? 0.620
ERprio+L2 14.94 0.579 5.31?? 0.587 10.51 0.596 4.28?? 0.605
ERprio+KD 8.65?? 0.586 6.87 0.601 7.37?? 0.596 4.89 0.617
ERprio+Dropout 7.15?? 0.588 5.53?? 0.594 6.09? 0.595 4.51?? 0.616
ARPER 5.22 0.590 2.99 0.624 5.12 0.598 2.81 0.627
Full 4.26 0.599 3.60 0.616 4.26 0.599 3.60 0.616

Table 4.1 – Average performance of continually learning 6 domains using 250/500 exem-
plars. Best Performance excluding “Full” are in bold in each column. In each column , ?
indicates p < 0.05 and ?? indicates p < 0.01 for a one-tailed t-test comparing ARPER to
the three top-performing competitors except Full.

first phase (Ωfirst). This is due to the diverse knowledge among different phases,
which increases the difficulty of handling all the phases. Finetune performs poorly
in both metrics because of the detrimental catastrophic forgetting issue.

• Replaying exemplars helps to alleviate the catastrophic forgetting issue. Three ER
methods substantially outperform Finetune. Moreover, the proposed prioritized
exemplar selection scheme is effective, indicated by the superior performance of
ERprio over ERherding and ERrandom.

• ARPER significantly outperforms three ER methods and other regularization-based
baselines. Compared to the three closest competitors, ARPER is significantly better
with p-value < 0.05 w.r.t SER.

• The improvement margin of ARPER is significant w.r.t SER that is critical for
measuring an output’s fidelity to a given dialog act. Different methods demonstrate
similar performance w.r.t BLEU-4, where several of them approach Full, thus are
very close to the upper bound performance.

• ARPER achieves comparable performance w.r.t to the upper bound (Full) on
all seen phases (Ωall) even with a very limited number of exemplars. Moreover,
it outperforms Full on the first phase (Ωfirst), indicating that ARPER better
mitigates forgetting the first phase than Full, and the latter is still interfered by
data in later domains.
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Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4
Finetune 49.94 0.382 44.00 0.375
ERherding 13.96 0.542 8.50 0.545
ERrandom 8.58 0.626 5.53 0.618
ERprio 8.21 0.684 5.20 0.669
ERprio+L2 6.87 0.693 4.92 0.661
ERprio+KD 10.59 0.664 10.87 0.649
ERprio+Dropout 6.32 0.689 5.55 0.658
ARPER 3.63 0.701 3.52 0.685
Full 3.08 0.694 2.98 0.672

Table 4.2 – Performance of continually learning 7 DA intents using 250 exemplars. Best
Performance excluding “Full” are in bold.

SCVAE GPT-2
Ωall Ωfirst Ωall Ωfirst

Finetune 60.83 98.86 28.69 31.76
ERherding 17.95 11.48 11.95 10.48
ERrandom 9.31 7.52 9.87 8.85
ERprio 8.92 6.16 8.72 8.20
ERprio+L2 12.47 6.67 10.51 9.20
ERprio+KD 6.32 6.09 8.41 8.09
ERprio+Dropout 8.01 8.77 7.60 7.72
ARPER 4.45 4.04 5.32 5.05
Full 3.99 4.03 4.75 4.53

Table 4.3 – SER in % of using SCVAE and GPT-2 as fθ. Best Performance excluding
“Full” are in bold.

4.4.5 Continual Learning New DA Intents

It is also essential for a phase-oriented dialog system to continually learn new functionali-
ties, namely, supporting new DA intents. To test this ability, the data of seven DA intents
are presented sequentially in the order of decreasing data size, i.e., “Inform, Request,
Book, Recommend, Offer-Booked, No-Offer, Select”. Results using 250 exemplars are
presented in Table 4.2. We can observe that ARPER still largely outperforms other
methods, and similar observations for ARPER can be made as before. Therefore, we
conclude that ARPER is able to learn new functionalities continually. Compared to
previous experiments, the performance of ERprio+KD degrades, while the performance
of ERprio+L2 improves due to the very large data size in the first phase (“Inform”),
which means that they are sensitive to phase orders.
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Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4
ARPER 4.82 0.592 3.88 0.569
w/o ER 6.41 0.584 5.85 0.559
w/o PE 5.53 0.587 5.85 0.562
w/o AR 5.57 0.587 4.57 0.563

Table 4.4 – Ablation study for ARPER. ER / PE / AR stands for the Exemplar Replay
loss / Prioritized Exemplars / Adaptive Regularization, respectively.

4.4.6 Results using Different NLG Models

In this experiment, we change the base NLG model From SCLSTM to SCVAE (Tseng
et al., 2018) and GPT-2 (Radford et al., 2019). Hyper-parameters of SCVAE are set by
default according to https://github.com/andy194673/nlg-scvae, except that the learning
rate is set to 2e-3. For GPT-2, we used the pre-trained model with 12 layers and 117M
parameters. As in Peng et al. (2020b), exact slot values are not replaced by special
placeholders during training as in SCLSTM and SCVAE. We pre-process the dialog act
d into the format of : d′ = [ I ( s1 = v1, . . . , sp = vp ) ], and the corresponding utterance
Y is appended to be Y′ with a special start token [BOS] and an end token [EOS]. d′ and
Y′ are concatenated before feeding into GPT-2. The learning rate of Adam optimizer
is set to 5e-5 without weight decay. As GPT-2 converges faster, we train maximum 10
epochs for each phase with early stop applied to 3 consecutive epochs.

Results of using 250 exemplars to continually learn 6 domains starting with “Attraction”
are presented in Table 4.3. Thanks to the large-scale pre-trained language model, GPT-2
suffers less from the catastrophic forgetting issue because of the better performance of
Finetune. In general, the relative performance patterns of different methods are similar
to those we observed in Section 4.4.4 and 4.4.5. Therefore, we can claim that the superior
performance of ARPER can generalize to different base NLG models.

4.4.7 In-depth Analysis

Ablation study. In Table 4.4, we compare several simplified versions of ARPER to
understand the effects of different components. Comparisons are based on continually
learning 6 domains staring with “Attraction”. We can observe that: (1) LER is benefi-
cial because dropping it (“w/o ER”) degrades the performance of ARPER. (2) Using
prioritized exemplars is advantageous because using random exemplars (“w/o PE”) for
ARPER impairs its performance. (3) Adaptive regularization is also effective, indicated
by the superior performance of ARPER compared to using fixed regularization weights
(“w/o AR”).
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Recommend (Addr=regent street, Fee=free,
Name=Downing College)

Reference [Downing College] is my favorite. It’s located on [regent street]
and it’s [free] to get in.

ERprio+Dropout [Downing College] is located in the city and it’s located in the
[regent street]. it’s located at located at! it’s located in the [Slot-
Hotel-Area]. (missing: Fee=fre)

ARPER I would recommend [Downing College]. It is located at [regent
street] and has a entrance fee of [free]. (correct)

Recommend (Area=centre of town, Name=saints church,
Type=architecture destination)

Reference There is a [saints church] that is an [architecture destination]
in the [centre of town], would you like that?

ERprio+Dropout I recommend [saints church] in the [centre of town]. it is
a nice. it is a guest house in a in a [Slot-Restaurant-Food].
(missing: Type=architecture destination)

ARPER [saints church] is a [architecture destination] in the [centre
of town]. (correct)

Table 4.5 – Sample utterances generated for the first domain (“Attraction”) after the
NLG is continually trained on all 6 domains using 250 exemplars. Redundant and missing
slots are colored in orange and blue respectively. Obvious grammar mistakes (redundant
repetitions) are colored in purple.

Case study. Table 4.5 shows two examples generated by ARPER and the closest
competitor (i.e., ERprio+Dropout) using SCLSTM on the first domain (“Attraction”)
after the NLG model is continually trained on all 6 domains starting with “Attraction”.
In both examples, ERprio+Dropout fails to generate slot “Fee” or “Type”, instead, it
mistakenly generates slots belonging to later domains (“Hotel” or “Restaurant”) with
several obvious redundant repetitions colored in purple. It means that the NLG model is
interfered by utterance patterns in later domains, and it forgets some old patterns it has
learned before. In contrast, ARPER succeeds in both cases without forgetting previously
learned patterns.

Flow of parameters update. To further understand the superior performance of
ARPER, we investigate the update of parameters throughout the continual learning pro-
cess. Specifically, we compare SCLSTM’s hidden layer weights obtained from consecutive
phases, and the pairwise L1 difference of two sample transitions is shown in Figure 4.4.

We can observe that ERprio+Dropout tends to update almost all parameters, while
ARPER only updates a small fraction of them. Furthermore, ARPER has different sets of
important parameters for distinct phases, indicated by different high-temperature areas
in distinct weight updating heat maps. In comparison, parameters of ERprio+Dropout
seem to be updated uniformly in different phase transitions. The above observations
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Figure 4.4 – An visualization of the change of SCLSTM’s hidden layer weights obtained
from two consecutive phases of ARPER (Top) and ERprio+Dropout (Bottom). Two
sample phase transitions (“from Attraction” to “Train”, and then from “Train” to “Hotel”)
are shown. High temperature areas of ARPER is highlighted by red bounding boxes for
better visualization.

verify that ARPER indeed elastically allocates different network parameters to distinct
NLG phases to mitigate catastrophic forgetting.

4.5 Chapter Summary

In this chapter, we study the practical continual learning setting of the natural language
generation module in ToD systems. To alleviate catastrophic forgetting, we present
ARPER which replays representative and diverse exemplars selected in a prioritized
manner, and it employs an adaptive regularization term based on EWC (Elastic Weight
Consolidation). Extensive experiments on MultiWOZ in different continual learning
scenarios reveal the superior performance of ARPER . In the next chapter, we formulate
and study a similar continual learning setup for recommendation systems. The main
setup difference from this chapter is that the evaluation is w.r.t. future observation
instead of w.r.t. all historical data.

59





5 Continual Learning with Knowl-
edge Retention in Recommenda-
tion Systems
5.1 Introduction

Due to new privacy regulations that prohibit building user preference models from
historical user data, utilizing anonymous short-term interaction data within a browser
session becomes popular. Therefore, session-based Recommendation (SR) is increasingly
used in real-life online systems, such as E-commerce and social media. The goal of SR is
to make recommendations based on user behavior obtained in short web browser sessions.
The task is to predict the user’s next actions, such as clicks, views, and even purchases,
based on previous activities in the same session.

Despite the recent success of various neural approaches (Hidasi et al., 2016; Li et al.,
2017; Liu et al., 2018; Kang and McAuley, 2018; Sun et al., 2019), they are developed in
an offline manner, in which the recommender is trained on a very large static training
set and evaluated on a very restrictive testing set in a one-time process. However, this
setup does not reflect the realistic use cases of online recommendation systems. In reality,
a recommendation model needs to be periodically updated with new data steaming in,
and the updated model is supposed to provide recommendations for user activities before
the next update. In this chapter, we propose a continual learning setup to consider such
realistic recommendation scenarios.

In this chapter, we formulate the continual learning setting for the session-based recom-
mendation task to simulate the realistic use cases of training a recommendation model
continually. To be specific, at an update cycle 1 t, the recommendation model f(θt−1)
obtained until the last update cycle t− 1 needs to be updated with new incoming data
Dt. After f(θt−1) is trained on Dt, the updated model f(θt) is evaluated w.r.t. the

This chapter is based on the paper (Mi et al., 2020c) published in the ACM Conference on
Recommender Systems (RecSys, 2020). This paper also wins the “Best Short Paper Award” at this
conference.

1An “update cycle” describes a similar notion as the “phase” in Chapter 4, and “update cycle” is a
more common and intuitive term in recommendation literature.
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Figure 5.1 – An visualization of the continual learning setup. At each update cycle t, the
model is trained with data Dt, and the updated model f(θt) is evaluated w.r.t. to data
Dt+1 before the next model update.

incoming data Dt+1 before the next update cycle t+ 1. A visualization of the continual
learning setup is illustrated in Fig. 5.1, where a recommendation model is continually
trained and tested upon receiving data in sequential update cycles.

The major challenge of continual learning is catastrophic forgetting (McCloskey and
Cohen, 1989; French and Chater, 2002). That is, a neural model updated on new data
distributions tends to forget old distributions it has learned before. A naive solution is
to retrain the model using all historical data every time. However, it suffers from severe
computation and storage overhead in large-scale recommendation applications.

To this end, we propose storing a small set of representative sequences from previous
data, namely exemplars, and replay them each time the recommendation model needs to
be trained on new data. Methods using exemplars have shown great success in different
continual learning (Rebuffi et al., 2017; Castro et al., 2018) and reinforcement learning
(Schaul et al., 2016; Andrychowicz et al., 2017) tasks. In this chapter, we propose to select
representative exemplars of an item using an herding technique (Welling, 2009; Rebuffi
et al., 2017), and its exemplar size is proportional to the item frequency in the near past.
To enforce a stronger constraint on not forgetting previous user preferences, we propose a
regularization method based on the well-known knowledge distillation technique (Hinton
et al., 2015). We propose to apply a distillation loss on the selected exemplars to preserve
the model’s knowledge. The distillation loss is further adaptively interpolated with the
regular cross-entropy loss on the new data by considering the difference between new
data and old ones to deal with different new data distributions flexibly.

Altogether, (1) we are the first to study the practical continual learning setting for the
session-based recommendation task; (2) we propose a method called Adaptively Distilled
Exemplar Replay (ADER) for this task, and benchmark it with state-of-the-art continual
learning techniques; (3) experiment results on two widely used datasets empirically
demonstrate the superior performance of ADER and its ability to mitigate catastrophic
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forgetting.2

5.2 Related Work

Literature review of general continual learning techniques to alleviate the catastrophic
forgetting issue is reviewed in Section 4.2. In this section, we mainly review some related
studies for the task of session-based recommendation.

Matrix factorization (MF) (Koren et al., 2009) is a general and classical approach to
recommendation systems. For session-based recommendation, the interaction matrix to
be decomposed is constructed from implicit sequential user feedback. Rendle et al. (2010)
proposed a model called Factorizing Personalized Markov Chains (FPMC) to factorize the
transitions in Markov chains with low-rank representation for basket recommendations.
Factored Item Similarity Models (FISM) (Kabbur et al., 2013) are based on factorizing
item-item co-occurrence statistics. Later, He and McAuley (2016) proposed a model
called FOSSIL to augment FISM with factorized Markov chains to incorporate sequen-
tial information. Recently, Session-based Matrix Factorization (SMF) was proposed
by Ludewig and Jannach (2018) for session-based recommendation tasks using session
latent vectors. They showed that SMF consistently outperforms previous MF-based
methods for SRS. However, MF-based methods are costly to train and update in terms of
both computation and storage. For example, Li et al. (2017); Wu et al. (2019b) reported
that even 120GB memory is not enough to train FPMC. Therefore, they are, in principle,
not suitable for incremental recommendation settings.

Session-based recommendation (SR) can be formulated as a sequence learning problem to
be solved by recurrent neural networks (RNNs). The first work (GRU4Rec, Hidasi et al.
(2016)) used a gated recurrent unit (GRU) to learn session representations from previous
clicks. Based on GRU4Rec, Hidasi and Karatzoglou (2018a) proposed new ranking losses
on relevant sessions, and Tan et al. (2016) proposed to augment training data. Attention
operation was first used by NARM (Li et al., 2017) to pay attention to specific parts
of the sequence. Base on NARM, Liu et al. (2018) proposed STAMP to model users’
general and short-term interests using two separate attention operations, and Ren et al.
(2019) proposed RepeatNet to predict repetitive actions in a session. Recently, Wu et al.
(2019c); Zheng et al. (2019) used graph attention to capture complex transitions of items.
Motivated by the recent success of Tansformer (Vaswani et al., 2017) and BERT (Devlin
et al., 2019a) for language model tasks, Kang and McAuley (2018) proposed SASRec
using Transformer, and Sun et al. (2019) proposed BERT4Rec to model bi-directional
information. Despite the broad exploration and success, the above methods were all
studied in a static and offline manner as in the classic machine learning paradigm.

2Code is available at: https://github.com/DoubleMuL/ADER
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5.3 Methodology - ADER

This section introduces some background of neural session-based recommenders in Section
5.3.1. In Section 5.3.2, we propose our method called “Adaptively Distilled Exemplar
Replay” (ADER) for the continual recommendation task.

5.3.1 Background on Neural Session-based Recommenders

A user action in SR is a click or view on an item, and the task is to predict the next user
action based on a sequence of user actions in the current web-browser session. Existing
neural models f(θ) typically contain two modules: a feature extractor φ(x) to compute
a compact sequence representation of the sequence x of previous user actions, and an
output layer ω(φ(x)) to predict the next user action. Various recurrent neural networks
(Hidasi et al., 2016; Hidasi and Karatzoglou, 2018a) and attention mechanisms (Li et al.,
2017; Liu et al., 2018; Kang and McAuley, 2018) have been proposed for φ, and the
common choices for the output layer ω is fully-connect layers(Hidasi et al., 2016) or
bi-linear decoders (Li et al., 2017; Kang and McAuley, 2018). In this chapter, we base
our comparison on SASRec (Kang and McAuley, 2018), and we refer readers to model
details in the original paper to avoid verbosity. Nevertheless, the techniques proposed and
compared in this chapter are agnostic to f(θ). Therefore, a more thorough comparison
using different f(θ) are left for interesting future work.

5.3.2 Adaptively Distilled Exemplar Replay (ADER)

In this section, we introduce the proposed method called ADERwith exemplar replay
and adaptive distillation.

Exemplar Replay

To alleviate the widely-recognized catastrophic forgetting issue in continual learning, the
model needs to preserve old knowledge it has learned before. To this end, we propose to
store past samples, a.k.a exemplars, and replay them periodically to preserve previous
knowledge. To maintain a manageable memory footprint, we only store a fixed total
number of exemplars throughout the entire continual learning process. Two decisions
need to be made at each cycle t: (1). how many exemplars should be stored for each
item/label? (2). what is the criterion for selecting exemplars of an item/label?

First, we design the number of exemplars of each appeared item in It (i.e., the set of
appeared items until cycle t) to be proportional to its appearance frequency. In other
words, more frequent and popular items contribute a larger portion of selected exemplars
to be replayed to the next cycle. Suppose we store N exemplars in total, the number of
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Algorithm 6 ADER: ExemplarSelection at cycle t
Input: S = Dt ∪ Et−1; Mt = [m1,m2, ...,m|It|]
1: for y = 1, ..., |It| do // for all seen items
2: Py ← {x : ∀(x, y) ∈ S}
3: µ← 1

|Py |
∑

x∈Py
φ(x) // compute the mean representation of item y

4: for k = 1, ...,my do
5: xk ← arg minx∈Py

‖µ− 1
k [φ(x) + ∑k−1

j=1 φ(xj)]‖ // select my exemplars for
y by herding

6: end for
7: Ey ← {(x1, y), ..., (xmy , y)}
8: end for
Output: exemplar set Et = ∪|It|

y=1Ey

exemplars mt,i at cycle t for an item i ∈ It is:

mt,i = N · |{x, y = i} ∈ Dt ∪ Et−1|
|Dt ∪ Et−1|

, (5.1)

where the second term is the probability that item i appears in the current update cycle,
as well as in the exemplars Et−1 we kept from the last cycle.

Therefore, the exemplar sizes of different items to be select in the cycle t can be encoded
as a vector Mt = [m1,m2, ...,m|It|].

Second, we need to decide which samples to select as exemplars for each item. We
propose to use a herding technique (Welling, 2009; Rebuffi et al., 2017) to select the most
representative sequences of an item in an iterative manner based on the distance to the
mean feature vector of the item. In each iteration, one sample from Dt ∪Et−1 that best
approximates the average feature vector (µ) over all training examples of this item (y) is
selected to Et. The details are presented in Algorithm 6.

Adaptive Distillation on Exemplars

The number of exemplars should be reasonably small to reduce memory overhead. As
a consequence, the constraint to prevent the recommender from forgetting previous
user preference patterns is not strong enough. To enforce a stronger constrain on not
forgetting old user preference patterns, we propose to use a knowledge distillation loss
(Hinton et al., 2015) on exemplars to consolidate old knowledge better.

At a cycle t, the set of exemplars to be replayed is Et−1 and the set of items till the last
cycle is It−1, the proposed knowledge distillation (KD) loss is written as:

LKD(θt) = − 1
|Et−1|

∑
(x,y)∈Et−1

∑|It−1|
i=1

p̂i · log(pi), (5.2)
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Algorithm 7 ADER: UpdateModel at cycle t
Input: Training data at cycle t: Dt, Exemplar set until cycle t− 1: Et−1, Set of items

till cycle t− 1: It−1, Set of items till cycle t: It
1: Initialize θt with θt−1
2: while θt not converged do
3: Train θt with loss in Eq. (5.4)
4: end while
5: Compute Mt using Eq. (5.1)
6: Compute Et using Algorithm 6 with θt and Mt

Output: updated θt and new exemplar set Et

where [p̂1, . . . , p̂|It−1|] is predicted distribution (softmax of logits) over It−1 generated
by f(θt−1), and [p1, . . . , p|It−1|] is the prediction of f(θt) over It−1. LKD measures the
difference between the previous model’s outputs and the current model on exemplars,
and the idea is to penalize prediction changes on items in previous update cycles.

LKD defined above is interpolated with a regular cross-entropy (CE) loss computed w.r.t.
Dt defined below:

LCE(θt) = − 1
|Dt|

∑
(x,y)∈Dt

∑|It|
i=1

δi=y · log(pi), (5.3)

In practice, the size of incoming data and the number of new items varies in different
cycles, therefore, the degree of need to preserve old knowledge varies. To this end, we
propose an adaptive weight λt to combine LKD with LCE :

LADER = LCE + λt · LKD, λt = λbase

√
|It−1|
|It|

· |Et−1|
|Dt|

(5.4)

In general, λt increases when the ratio of the number of old items to that of new items
increases, and when the ratio of the exemplar size to the current data size increases. The
idea is to rely more on LKD when the new cycle contains fewer new items or fewer data
to be learned. The overall training procedure for ADER is summarized in Algorithm 7.

5.4 Evaluation

5.4.1 Datasets and Evaluation Metrics

Two widely used datasets are adopted: (1). DIGINETICA contains click-streams
data on an e-commerce site over five months, and it is used for CIKM Cup 2016
(http://cikm2016.cs.iupui.edu/cikm-cup). (2). YOOCHOOSE is another dataset
used by RecSys Challenge 2015 (http://2015.recsyschallenge.com/challenge.html) for
predicting click-streams on another e-commerce site for over six months.
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D
IG

IN
E

T
IC

A week 0 1 2 3 4 5 6 7 8
total actions 70,739 37,586 31,089 32,687 30,419 57,913 52,225 57,100 69,042
new actions 100.00% 18.25% 13.26% 11.29% 10.12% 9.08% 6.64% 6.35% 5.42%

week 9 10 11 12 13 14 15 16 Total
total actions 82,834 82,935 50,037 63,133 70,050 71,670 56,959 77,065 993,483
new actions 5.22% 3.02% 3.01% 1.78% 1.83% 0.78% 0.45% 0.27% /

Y
O

O
C

H
O

O
SE

day 0 1 2 3 4 5 6 7 8
total actions 219,389 209,219 218,162 162,637 177,943 307,603 232,887 178,076 199,615
new actions 100.00% 3.04% 1.74% 1.29% 0.95% 0.57% 0.50% 1.09% 0.74%

day 9 10 11 12 13 14 15 16 Total
total actions 179,889 123,750 153,565 300,830 259,673 187,348 154,316 105,676 3,370,578
new actions 0.81% 1.08% 0.56% 0.56% 0.29% 0.41% 0.38% 0.35% /

Table 5.1 – Statistics of the two datasets; “new actions” indicates the percentage of
actions on new items in this update cycle; week/day 0 is only used for training, while
week/day 16 is only used for testing.

As in (Hidasi et al., 2016; Li et al., 2017; Liu et al., 2018; Kang and McAuley, 2018),
we remove sessions of length 1 and items that appear less than 5 times. To simulate
the continual learning scenario, we split the model update cycle of DIGINETICA by
weeks and YOOCHOOSE by days as its volume is much larger. Different time spans
also resemble model update cycles at different granulates. In total, 16 update cycles are
used to train the recommender on both datasets continually. 10% of the training data of
each update cycle is randomly selected as a validation set. Statistics of split datasets are
summarized in Table 5.1. We can see that YOOCHOOSE is less dynamic, indicated by
the tiny fraction of actions on new items; that is, old items heavily reappear.

Evaluation metrics. Two commonly used evaluation metrics are used: (1). HR@k:
The hit rate ratio when the desired item is among the top-k recommended items. It can
be interpreted as both precision (Liu et al., 2018; Wu et al., 2019b) and recall (Hidasi
et al., 2016; Li et al., 2017; Jannach and Ludewig, 2017) because the task is to predict
the single immediate next event. (2). MRR@k: HR@k does not consider the order
of the items recommended, while MRR@k measures the mean reciprocal ranks of the
desired item in top-k recommended items. The reciprocal rank of the desired item is the
inverse of its rank in top-k recommended items. It equals 1 for first place, 1

2 for second
place, and so on. The reciprocal rank is set to zero if the desired item is not in the top-k
items. We report the mean value of these two metrics averaged over all 16 update cycles
for easier comparison.

5.4.2 Baseline Methods

Several widely adopted baselines in continual learning literature are compared:

• Finetune: At each cycle, the recommender trained till the last task is trained
with the data from the current task.
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DIGINETICA
Finetune Dropout EWC Joint ADER

HR@20 47.28% 49.07% 47.66% 50.03% 50.21%
HR@10 35.00% 36.53% 35.48% 37.27% 37.52%
MRR@20 16.01% 16.86% 16.28% 17.31% 17.32%
MRR@10 15.16% 16.00% 15.44% 16.43% 16.45%

Table 5.2 – Performance averaged over 16 continual update cycles on DIGINETICA.

YOOCHOOSE
Finetune Dropout EWC Joint ADER

HR@20 71.86% 72.20% 71.91% 72.22% 72.38%
HR@10 63.82% 64.15% 63.89% 64.16% 64.41%
MRR@20 36.49% 36.60% 36.53% 36.65% 36.71%
MRR@10 35.92% 36.03% 35.97% 36.08% 36.14%

Table 5.3 – Performance averaged over 16 continual update cycles on YOOCHOOSE.

• Dropout (Mirzadeh et al., 2020): Dropout (Hinton et al., 2012) is recently found
by (Mirzadeh et al., 2020) that it effectively alleviates catastrophic forgetting. We
applied dropout to every self-attention and feed-forward layer.

• EWC (Kirkpatrick et al., 2017): It is a well-known method to alleviate forgetting
by regularizing parameters important to previous data estimated by the diagonal
of a Fisher information matrix computed w.r.t. exemplars.

• ADER (c.f. Algorithm 7): The proposed method using adaptively distilled
exemplars in each cycle with dropout.

• Joint: In each cycle, the recommender is trained (with dropout) using data from
the current and all historical cycles. This is a common performance “upper bound”
for continual learning.

The above methods are applied on top of the state-of-the-art base SR recommender
SASRec (Kang and McAuley, 2018) using 150 hidden units and two stacked self-attention
blocks. During continual training, we set the batch size to be 256 on DIGINETICA
and 512 on YOOCHOOSE. We use Adam optimizer with a learning rate of 5e-4. A
total of 100 epochs are trained, and “early stop” is applied if validation performance
(HR@20) does not improve for five consecutive epochs. Other hyper-parameters are
tuned to maximize HR@20. The dropout rate of Dropout, ADER, and Jointis set to 0.3;
30,000 exemplars are used by default for EWC and ADER; λbase of ADER is set to 0.8
on DIGINETICA and 1.0 on YOOCHOOSE.
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Figure 5.2 – Disentangled HR@20 (Top) and MRR@20 (Bottom) at each continual
learning update cycle on two datasets.

5.4.3 Overall Results on Two Datasets

Results averaged over 16 update cycles are presented in Table 5.2 and 5.3, and several
interesting observations can be noted:

• Finetune already works reasonably well, especially on the less dynamic YOO-
CHOOSE dataset. The performance gap between Finetune and Joint is less
significant than typical continual learning setups (Rebuffi et al., 2017; Li and
Hoiem, 2018; Wu et al., 2019c; Hou et al., 2019). The reason is that catastrophic
forgetting is not severe because old items can frequently reappear in recommendation
tasks and the evaluation is only w.r.t. the next cycle.

• EWC only outperforms Finetune marginally, and it performs worse than Dropout.

• Dropout is effective, and it notably outperforms Finetune, especially on the more
dynamic DIGINETICA dataset.

• ADER significantly outperforms other methods, and the improvement margin over
other methods is larger on the more dynamic DIGINETICA dataset. Furthermore,
it even outperforms Joint. This result empirically reveals that ADER is a promising
solution for the continual recommendation setting by effectively preserving user
preference patterns learned before.

Detailed performance at each update cycle is plotted in Figure 5.2. We can see that the
advantage of ADER is significant on the more dynamic DIGINETICA dataset. On the
less dynamic YOOCHOOSE dataset, the gain of ADER mainly comes from the more
dynamic starting cycles with relatively more actions on new items. Different methods
show comparable performance at later stable cycles with few new items, including the
vanilla Finetune.
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10k 20k 30k
HR@20 49.59% 50.05% 50.21%
HR@10 36.92% 37.40% 37.52%
MRR@20 17.04% 17.29% 17.32%
MRR@10 16.17% 16.42% 16.45%

Table 5.4 – Different exemplar sizes for ADER.

ERrandom ERloss ERherding ADERequal ADERfix ADER
HR@20 49.14% 49.31% 49.44% 49.92% 50.09% 50.21%
HR@10 36.61% 36.65% 36.88% 37.21% 37.41% 37.52%
MRR@20 16.79% 16.90% 16.95% 17.23% 17.29% 17.32%
MRR@10 15.92% 16.02% 16.08% 16.35% 16.41% 16.45%

Table 5.5 – Ablation study for ADER.

5.4.4 In-depth Analysis

In the following experiments, we conduct an in-depth analysis of the results on the more
dynamic DIGINETICA dataset.

Different number of Exemplars

We study the effect of a varying number of exemplars for ADER. Besides using 30k
exemplars, we test using only 10k/20k exemplars, and results are shown in Table 5.4. We
can see that the performance of ADER only drops marginally as exemplar size decreases
from 30k to 10k. This result reveals that ADER is insensitive to the number of exemplars,
and it works reasonably well with a smaller number of exemplars.

Ablation Study

In this experiment, we compare ADER to several simplified versions to justify our design
choices. (1) ERherding: A vanilla exemplar replay different from ADER by using a
regular LCE , rather than LKD, on exemplars. (2) ERrandom: It differs from ERherding
by selecting exemplars of an item at random. (3) ERloss: It differs from ERherding
by selecting exemplars of an item with smallest LCE . (4) ADERequal: This version
differs from ADER by selecting an equal number of exemplars for each item, that is, the
assumption that more frequent items should be stored more is removed. (5) ADERfix:
This version differs from ADER by not using the adaptive λt in Eq. (5.4), but a fixed λ.

Comparison results are presented in Table 5.5, and several observations can be noted:
(1) Herding is effective to selected exemplars, indicated by the better performance of
ERherding over ERrandom and ERloss. (2) The distillation loss in Eq. (5.2) is helpful,
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indicated by the better performance of three versions of ADER over three vanilla ER
methods. (3) Selecting exemplars proportional to item frequency is helpful, indicated by
the better performance of ADER over ADERequal. (4) The adaptive λt in Eq. (5.2) is
helpful, indicated by the better performance of ADER over ADERfix .

5.5 Chapter Summary

In this chapter, we study the practical and realistic continual learning setting for session-
based recommendation tasks. To prevent the recommender from forgetting user prefer-
ences learned before, we propose ADER by replaying carefully chosen exemplars from
previous cycles and an adaptive distillation loss. Experiment results on two widely used
datasets empirically demonstrate the promising performance of ADER. For chapters in
the next part, we study several initial attempts to deal with both data efficiency and
knowledge retention in a unified framework.
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6 Non-parametric Memorization
and Prediction in Recommenda-
tion Systems
6.1 Introduction

In many realistic learning scenarios, the demand for data efficiency and knowledge reten-
tion is equally important for a machine learning system. For example, in recommendation
applications, such as news, forums, e-commerce, and other social media, new items
are frequently added with limited observations on new user interests and preferences
drift (Koren, 2009). Therefore, recommendations need to be adapted to such changes
in a data-efficient manner. At the same time, static preferences on old items still need
to be preserved by the model. In this chapter, we study data efficiency and knowledge
retention together in the recommendation scenario and propose to use non-parametric
methods for both knowledge retention and data-efficient prediction.

In Chapter 5, we study a continual learning setup for the session-based recommendation
task to learn from multiple update cycles with proper knowledge retention. However,
new items and new user preferences between each model update cycle cannot be properly
captured. That is, events of the current cycle are predicted by the model updated until
the last cycle. As illustrated in Fig. 6.1, new items and preference distribution shifts in
the evaluation phase can not be properly captured.

This chapter studies how to quickly capture the new items and preferences during the
model inference phase. To better address the dynamic nature of the session-based
(SR) tasks, we study it from an incremental adaptation 1 perspective, referred to as
incremental session-based recommendation. In this setting, new items and preferences
appear incrementally during the evaluation phase, and models need to incorporate the

This chapter is based on two papers: Mi and Faltings (2017) is published in the International
Conference on Educational Data Mining (EDM, 2017), and Mi and Faltings (2020) is published in the
International Joint Conference on Artificial Intelligence (IJCAI, 2020).

1Some literature use the term “incremental” to denote our continual learning setup in Part II. In this
thesis, we clarify that our “incremental adaptation” refers to incrementally capturing new knowledge
during model inference/evaluation.
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Figure 6.1 – A typical session-based recommendation setting focus on predicting static
patterns and ignores new items and preference distribution shifts in the evaluation
phase. In realistic scenarios, new items (x, y, z) that are not part of the training phase
and preference distribution shifts on old items should be incrementally captured. As a
preference shift example, e is often followed by a and d in the training phase but it shifts
to 〈e→ c→ b〉 in the evaluation phase.

new preferences incrementally while preserving old ones that are still useful. The setup
requires a recommender to be incrementally updated with data observed during the
evaluation phase. We summarize two main challenges of using traditional neural networks
for incremental SR scenarios:

1. knowledge retention (McCloskey and Cohen, 1989): incorporating new patterns
requires additional training and often reduces performance on old patterns.

2. data efficiency: the number of observations on new items and patterns is often
small such that models need to capture them quickly with limited observations.

In this chapter, we propose two approaches for the incremental SR scenario. In Section 6.3,
we propose a non-parametric method, called NEighbor-guided Context Tree (NECT).
Compared to parametric models, such as neural networks, that specify a fixed and finite
number of model parameters independent of dataset size, non-parametric methods (Härdle
and Linton, 1994) assume no distribution of the underlying data as they use an unbounded
number of parameters to specify the data. A nice feature is that the amount of information
they capture evolves as the amount of data grows. This makes them particularly suitable
for incremental scenarios requiring rapid adaptation to new knowledge. NECT uses a
context-dependent tree structure (Willems et al., 1995) as a non-parametric memory
such that knowledge is maintained and retrieved elegantly by context. A prediction
model based on the mixture of experts and a recursive Bayesian weight update procedure
is applied within the tree structure. NECT also construct dynamic neighbor-guided
candidate sets, improving recommendation accuracy and computation efficiency. NECT
can address the two challenges above mentioned before. The hierarchical context tree
structure used in NECT helps address both knowledge retention and data efficiency
challenges. First, the accommodation of new knowledge is modeled by newly created
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contexts. Old contexts and their corresponding estimations remain intact such that old
knowledge is retained. Second, new items and preference patterns with very limited
observations can be immediately captured through newly created contexts to address the
data efficiency challenge.

In Section 6.4, we propose a method called Memory Augmented Neural model (MAN)
that augments a neural recommender with a non-parametric memory component with
key-value pairs to capture new items and preferences incrementally. Similar frameworks
are proposed for language model (Merity et al., 2017; Grave et al., 2017a), neural
machine translation (Tu et al., 2018), and image recognition (Orhan, 2018) tasks to
better capture minority class. A memory prediction is computed from the non-parametric
memory component using the k-nearest neighbor (KNN) principle. With a frequently
updated non-parametric memory component, the good memorization ability (Cohen
et al., 2018; Khandelwal et al., 2020) of KNN helps to quickly capture new knowledge with
limited observations to improve data efficiency. The predictions of neural and memory
components are combined by another lightweight gating network. MAN is agnostic to
the neural model as long as it learns meaningful sequence representations. Therefore, it
can be easily and broadly applied to various neural recommenders. MAN is able to deal
with the two challenges of incremental SR mentioned above. First, the non-parametric
memory component of MAN achieves a long-term memory to remember long histories
of observations to mitigate catastrophic forgetting. Second, the memory prediction of
MAN helps it to better capture new patterns with a small number of observations to
achieve data efficiency.

The contribution of this chapter is summarized as follows:

• We propose to improve both data efficiency and knowledge retention using non-
parametric methods. As a case study, we utilize a recommendation scenario that
requires both capabilities in practice.

• We propose two usages of non-parametric methods for both memorization and
prediction. NECT in Section 6.3 utilizes a hierarchical context tree structure for
memorization, and a prediction model is designed on top of it. MAN in Section
6.4 utilizes a memory component with a key-value structure, and a non-parametric
prediction based on nearest neighbors is combined with the regular neural prediction.

• We benchmark NECT and MAN with various baselines in the incremental SR
scenario, and we demonstrate that they both outperforms state-of-the-art methods
by notable margins. We analyze the results and show that it is mainly due to the
improved precision on infrequent items without losing precision on frequent ones.
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6.2 Related Work

6.2.1 Non-parametric Session-based Recommendation

Methods based on matrix factorization and neural networks for the task of session-
based recommendation are included in Section 5.2. Therefore, we mainly review some
non-parametric methods for this task in this chapter.

Collaborative filtering (CF) methods based on K-nearest neighbors have been proven
to be effective and are widely employed in industry, such as the simplest item-to-item
CF approach (Sarwar et al., 2001). However, they are unable to represent sequences.
Recently, Jannach and Ludewig (2017) proposed a session-based KNN (SKNN) based on
item co-occurrence statistics from different sessions. They show that the model is efficient
thanks to pre-computed in-memory statistics, and it achieves state-of-the-art performance.
Lately, various scoring functions (Ludewig and Jannach, 2018) were proposed based on
SKNN by putting more weight on items that appear later in a session. Recently, Garg
et al. (2019) proposed STAN to incorporate time information using decay factors at three
different places for determining session-level similarity and item relevance. Nevertheless,
these methods do not explicitly consider the sequential item transitions within a session.

Another group of non-parametric methods to predict user’s sequential actions is based
on Markov chains. Shani et al. (2005) shows that the fixed-order Markov model is
not enough for this task as the fixed-order assumption is too strong and limits the
recommendation accuracy. Therefore, they consider a finite mixture of Markov models
with fixed weights. However, it is still challenging to set the maximum order of the Markov
chain and the mixing coefficients. Variable-order Markov model (VMM) (Begleiter et al.,
2004) is a class of models that extend Markov chain models such that the order of the
Markov chain can be dynamically determined depending on different contexts. The
flexibility of VMM turns out to be of advantage for many applications (Begleiter et al.,
2004). For the method proposed in Section 6.3, we use a form of VMM using a non-
parametric structure called context tree (Willems et al., 1995), which was originally used
for lossless data compression. Kozat et al. (2007); Dimitrakakis (2010) applied it to various
discrete sequence prediction tasks. Recently, it was applied to news recommendation
by Garcin et al. (2013, 2014). However, these non-parametric methods require tuning
hyper-parameters, and the incremental adaptation issue remains to be addressed.

6.2.2 Memory Augmented Neural Model

Recently, various memory modules have been proposed to augment neural networks for
remembering long-term information (Graves et al., 2014; Sukhbaatar et al., 2015; Grave
et al., 2017b,a; Merity et al., 2017) or learning infrequent or rare events (Santoro et al.,
2016b; Kaiser et al., 2017; Sprechmann et al., 2018). Typically, a memory component M
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is maintained to remember data seen before.

There are many variants of how to read from M and mix the entries retrieved from M
with the network computation. One approach is through some differentiable context-
based lookup mechanisms (Graves et al., 2014; Sukhbaatar et al., 2015; Santoro et al.,
2016b) for learning to match the current activation to past activations stored in M.
However, these mechanisms often require strong supervision, and the size of the M has
to be limited and fixed. Another approach is using a simple mixture model. In this case,
a non-parametric prediction is computed based on the similarity between the entries
in M and the current input. The neural network’s prediction is directly interpolated
with the non-parametric prediction from M. This approach has be shown simple but
effective for language modeling (Grave et al., 2017b,a), neural machine translation (Tu
et al., 2018), and image classification (Orhan, 2018).

To scale up to the large number of entries that get stored in M, efficiently retrieving
nearest neighbors from M is necessary. Several approximate search methods have been
applied, such as locality sensitive hashing by Kaiser et al. (2017) and product quantization
by Grave et al. (2017a). Recently, Sprechmann et al. (2018) introduces a framework to
use nearest neighbors retrieved from M for parameter adaptation during model inference
for the fast acquisition of new knowledge.

Our proposed methods in Section 6.4 is inspired by a recently proposed non-parametric
memory module that is not trained jointly with neural models. Grave et al. (2017b);
Merity et al. (2017) introduce a cache to augment RNNs for language modeling task.
They later improve this cache to unbounded size (Grave et al., 2017a) and achieve
significant performance improvement. A similar memory module is also proposed for
neural machine translation tasks (Tu et al., 2018) and image recognition tasks (Orhan,
2018).

6.3 Methodology - NECT

In this section, we first introduce the context tree (CT) data structure. Then, we
present the NECT algorithm that uses the CT structure, a recursive Bayesian update
procedure, and dynamical neighbor-guided candidate item sets. Afterward, we discuss
some properties of NECT.

Before we proceed, we first recap the task of session-based recommendation described in
Chapter 5. The task is predicting user’s next event yt from a session xt = 〈x1 , . . . , xt〉
of events until time t observed in a web browser session. Each event xk is a click on an
item at time k. We use “event” and “item” interchangeably in this chapter.
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Figure 6.2 – An example context tree with sequences over with candidate item set
N = {n1, n2, n3}. For the sequence xt = 〈n2, n3, n1〉, nodes in red-dashed are active
nodes. The recursive computations in Eq.(6.4) and Eq.(6.5) are indicated by black-dashed
arrows.

6.3.1 Context Tree Structure

Before presenting our NECT algorithm, we first define the underlying context tree
structure.

Definition 1. (Suffix) Suppose xt = 〈x1 , . . . , xt〉 represents a sequence of length t. xk is
a suffix of xt if k ≤ t, and the last k elements of xt are the same as xk. For example,
〈n3, n1〉 is a suffix of sequence 〈n2, n3, n1〉. We write xk ≺ xt when xk is a suffix of xt.

Definition 2. (Context Tree) A context tree T = (V, E) is a suffix tree, composed of
nodes V and edges E. A node vi corresponds to a suffix represented by a sequence xi.
There is an edge eij from node vi to vj if xi ≺ xj, and j = i+ 1.

Definition 3. (Suffix Set) Suppose S denotes the set of all sequences in the training data.
For a node vi with the suffix sequence xi, we define the suffix set Si associated with this
node to be the set of all possible sequences in S ending with the suffix xi. Mathematically,
we could write is as Si = {x ∈ S : xi ≺ x}.

The session-based recommendation task is predicting the next event yt by P(yt|xt) from
a session xt = 〈x1 , . . . , xt〉 of events until time t. First, we identify the context relevant
to the input sequence xt by matching it to the context tree structure defined before.

Definition 4. (Context and Active Nodes of a Sequence) We define the context C(xt) of
xt to be all suffixes of xt: C(xt) = {xi : xi ≺ xt}. The set of nodes corresponds to these
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suffixes are called active nodes A(xt) = {vi ∈ V : xi ≺ xt}.

Fig. 6.2 illustrates a simple context tree with sequences over with candidate item set
N = {n1, n2, n3}. Each node in the tree corresponds to a suffix characterized by a
sequence, and it is associated with a suffix set. For instance, the node 〈n3, n1〉 represents
a suffix represented by sequence 〈n3, n1〉, and the suffix set at this node is the set of
sequences that end with suffix 〈n3, n1〉. As for context matching, the context and the
corresponding active nodes of the sequence xt = 〈n2, n3, n1〉 in Fig. 6.2 are the red-dashed
nodes because they are all suffixes of xt. The context defined in this way covers the
complete set of relevant suffixes of xt at different granularity. For example, the general
suffix at depth one captures the last (most recent) event in xt. As we go deeper along
the path of A(xt), we obtain more specific suffixes that match longer suffixes of xt.

Such hierarchical context tree structure has two properties:

• The suffix sets at a given depth do not intersect with each other ; for example, the
suffix sets at depth one in Fig. 6.2 separate sequences that end with 〈n1〉, 〈n2〉, and
〈n3〉. This property helps to separate sequences ending with different suffixes to
different paths.

• If node vi is the ancestor of node vj, then xi ≺ xj ; for example, suppose vj =
〈n3, n1〉, the sequence at its ancestor vi = 〈x1〉 is a suffix of xj . This property allows
to model suffix in a hierarchical manner with more specific and longer suffixes
obtained at deeper nodes.

In the next section, we introduce how to build a recommendation model using the
complete set of active nodes A(xt) of xt.

6.3.2 Local Expert at Each Node

For each node vi, a local prediction model (expert) is maintained to compute a probability
distribution Pi of the next item to click at this particular local context. The probability
Pi(yt = x̂) that an item x̂ is the clicked next depends on the number of times αix̂ that
this item x̂ has been clicked next when this node is active. αix̂ can be computed from
the suffix set Si of this node that includes all sequences ending with the suffix. As in
Eq.(6.1), we use a Dirichlet-multinomial prior for each expert initialized with the initial
count α0, and we set it to one in experiments. The probability is marginalized by the
total number of times that different items in the candidate set N are clicked at this local
context. Conceptually, the local expert corresponds to a standard Markov model where
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the Markov order equals to the depth i of the node.

Pi(yt = x̂) = αix̂ + α0∑
n∈N αin + α0

(6.1)

6.3.3 Combining Predictions from Local Experts

As we mentioned before that A(xt) covers the complete set of relevant suffixes for xt at
different granularity. To combine all local experts Pi associated with the active nodes in
A(xt) to generate recommendations for xt, a mixture prediction of local experts can be
computed as in Eq.(6.2) below:

P(yt = x̂|xt) =
∑

vi∈A(xt)
uiPi(yt = x̂), (6.2)

where ui is the weight assigned to the expert associated with node vi. Instead of using
fixed weights to combine the local predictions (Willems et al., 1995), we adopt a Bayesian
approach proposed by (Dimitrakakis, 2010) to learn the weights from data.

A helper weight wi ∈ [0, 1] is defined for each node vi as the probability that the prediction
is generated by expert of node vi if it can be generated by the first i active nodes from
the root. We can derive the weight ui(xt) as below:

ui = wi
∏

j:Sj⊂Si

(1− wj), (6.3)

where ∏
j:Sj⊂Si

(1− wj) computes the probability that the prediction is not generated by
nodes deeper than vi. As we look along the most specific node to the root in A(xt), with
probability equal to wi we use the local expert prediction at node vi without considering
experts at more general suffixes. Therefore, the combined prediction qi from the first i
experts from the root can be computed recursively as:

qi(yt = x̂) = wiPi(yt = x̂|xt) + (1− wi)qi−1, (x̂) (6.4)

where the local prediction Pi at the current depth is given the weight wi, while the former
combined prediction is weighted with the remaining 1−wi. For the expert node at depth
i, the recursive computation estimates whether it makes a better prediction than the
combined prediction qi−1(x̂) from shallower active experts. After the recursion from the
root to the most specific node in A(xt), qt is equivalent to P(yt = x̂|xt) in Eq.(6.2) and
we use qt to generate recommendations for a session xt.

82



6.3. Methodology - NECT

With the helper weight and the combined prediction presented above, we update the
helper weight in closed form by taking into account the success of the prediction of the
next item. As item xt+1 is clicked next, the helper weight wi at an active node vi is
updated via Bayes’ theorem as:

w′i = wiPi(yt = xt+1|xt)
qi(yt = xt+1) (6.5)

where the likelihood is the local prediction Pi at this node and it is marginalized by the
combined prediction qi on the desired next item xt+1. More derivations and proofs of
this Bayesian update can be found in (Dimitrakakis, 2010). In addition, as the combined
prediction qi is computed recursively, the helper weight is also updated in parallel to qi
on A(xt) from the root to the leave as illustrated by the dashed arrows in Figure 6.2.

6.3.4 Neighbor-guided Candidate Sets

The local prediction Pi in Eq.(6.1) and the combined prediction qi in Eq.(6.4) need to be
computed over a set of candidate items. Therefore, we to define a dynamic candidate
item set Nxt for each xt. We can simply use a fixed Nxt by including all possible items.
However, it is expensive and redundant to compute scores for a large number of items
every time. Moreover, it is not helpful to use a fixed set of candidate items for different
sessions when user interests drift in dynamic environments.

We propose to compute candidate sets conditioned on contexts based on item co-
occurrence statistics in historical sessions inspired by (Jannach and Ludewig, 2017).
We maintain an item co-occurrence matrix M that keeps track of whether two items
appeared together in any sessions in the training data. If so, these two items are neighbors
of each other. For a particular item xk, the set Nxk

of its neighbors can be easily com-
puted from the corresponding row vector in M. When we predict the next event yt given
a session xt = 〈x1 , . . . , xt〉, the neighbor-guided candidate set Nxt for xt is computed by
the set union of the neighbors of all items in xt as:

Nxt =
t⋃

k=1
Nxk

(6.6)

In this way, candidate sets are dynamically formed to handle different types of item-
s/patterns without tuning hyper-parameters. The size of Nxt could be large when
items in session xt are frequently seen in other sessions. If a session mainly contains
new or infrequent items, the corresponding Nxt will be small. Furthermore, the item
co-occurrence matrix M can be efficiently and continuously updated to include new item
co-occurrence relations.
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6.3.5 Pipeline of NECT Algorithm

For a typical training data {xt = 〈x1 , . . . , xt〉, yt = xt+1} in session-based recommendation
tasks. xt is the sequence of events till time t, and yt is the next event. The NECT
algorithm presented in Algorithm 8 contains both training and testing steps.

Training procedure. The training step is formulated as updating NECT with a single
pair of observations (xt, yt = xt+1). The set of active nodes A(xt) is computed by
matching xt to the current context tree T as described in Definition 4. First, the item
co-occurrence matrix M is update with new co-occurrence relationship between xt+1
and all items in xt. Second, local experts of all active nodes in A(xt) increment the
count on xt+1 by 1 and helper weights of all active nodes in A(xt) from the root are
updated according to Eq.(6.5) recursively based on the next event yt = xt+1. Third,
the current tree T is expanded with new nodes corresponds to all suffixes of the new
sequence xt+1 = 〈xt, xt+1〉 that are not in T . As we defined the set of all suffixes of a
sequence to be the context of this sequence in Definition 4, we denote the tree expansion
as T ′ = T ⋃

C(xt+1). The helper weight of the newly added node is initialized to one
divided by the length of the suffix because we do not trust the initial estimate at a very
specific suffix node more than its ancestors.

Testing procedure. During the recommendation step for a session xt, NECT first
computes a neighbor-guided candidate set Nxt for xt as in Eq. (6.6). Then, it matches
the current session xt to the current context tree T to identify a set of active nodes
A(xt). Lastly, it generates the Topk recommendation list using the recursive computation
though A(xt) from the root in Eq. (6.4) regarding items in Nxt .

NECT has the following three nice properties

• NECT is computationally efficient. both training and recommendation proce-
dures can be computed recursively by going through a single pass of activated nodes
(experts) from the root. For a session of events xt, it takes O(|xt|) operations to
update the model parameters and O(|xt| × |Nxt |) operations to recommend for xt,
where |xt| is the length of the session and |Nxt | is the size of the neighbor-guided
candidate set for this session. The space complexity of NECT is bounded by the
number of nodes in the context tree, and it depends on the size of the dataset as
we do not generate extra nodes unless the suffix occurs in the dataset.

• NECT is flexible. To avoid the problem of selecting a fixed order of a Markov
chain, NECT uses a flexible structure for estimating a variable-order Markov model
such that a higher order is used where necessary. Each local expert corresponds
to a Markov model with the Markov order equal to the depth of the node, and
NECT computes a dynamic mixture of these local estimations with the mixture
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Algorithm 8 NECT Recommender
1: procedure NECT-Train: (T ; M; xt = 〈x1 , . . . , xt〉; yt = xt+1)
2: Update M′ = M with xt and yt // Update item co-occurrence matrix
3: for vi ∈ A(xt) from the root do
4: α′ix = αix + 1 // Update local expert

5: w′i = wiPi(yt = xt+1|xt)
qi(x) // Update helper weight

6: end for
7: xt+1 = 〈xt, xt+1〉, T

′ = T ⋃
C(xt+1) // Expand the current tree with new suffixes

8: end procedure
9: procedure NECT-Test: (T ; M; xt = 〈x1 , . . . , xt〉)

10: Compute neighbor-guided candidate set Nxtfrom M
11: for vi ∈ A(xt) from the root do
12: for x̂ ∈ Nxt do
13: Pi(yt = x̂) = αix̂ + α0∑

n∈Nxt
αin + α0

14: qi(x̂) = wiPi(yt = x̂|xt) + (1− wi)qi−1(x̂)
15: end for
16: end for
17: Topk = argk maxx̂∈Nxt

qt(x̂) // Top-k predictions
18: end procedure

coefficients learned through a Bayesian update.

• NECT adapts fast to new patterns. As more observations arrive, more
contexts and nodes are added and updated in NECT. Adaptation to new items and
patterns can be achieved by the non-parametric hierarchical context tree structure
itself. As sessions are organized and activated by context, new items and patterns
can be immediately identified through their new contexts even though they only
appear a few times. Old items and patterns can still be accessed in their old
contexts. Therefore, both the sample inefficiency issue on new knowledge and the
knowledge retention issue on old knowledge are addressed by NECT.

As we keep adding new nodes corresponding to contexts of new sequences, the memory
can be an issue in extremely large-scale recommendation applications. We can address
this issue by a garbage collection module that keeps a record for each node and each
item when it was last activated and clicked and eliminates the oldest ones when the
memory usage achieves a particular upper bound. We do not encounter any memory
issues through our experiments, and NECT runs smoothly within 2GB memory for
different datasets without the garbage collection module. With the garbage collection
module we introduced before, we managed to run our method on a local news website
for over one year.
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6.4 Methodology - MAN

In this section, we propose another recommendation model called Memory Augmented
Neural Recommender (MAN) to address knowledge retention and data efficiency chal-
lenges for the widely used neural recommenders. Existing neural session-based rec-
ommenders typically contain two modules: an encoder gθ(xt) to compute a compact
sequence representation ct for the sequence of events xt until time t, and a decoder
fω(ct) to compute an output distribution PN ∈ Rn to predict the next event, where
n is size of the set Y of all candidate items. Recurrent neural networks (RNNs) and
fully-connected layers are common choices for encoder and decoder respectively. Our
MAN framework is agnostic to the neural recommender; therefore, we can use many
other neural architectures with an encoder-decoder structure.

Next, we present the Memory Augmented Neural recommender (MAN) to augment a
neural session-based recommender with a cache-like non-parametric memory to incremen-
tally incorporate new items and preferences. We first introduce the architecture of the
cache-like memory. Then we describe how to use it to generate non-parametric memory
predictions and how to merge memory and neural predictions through a lightweight
gating network.

6.4.1 Non-parametric Memory Structure

Motivated by Miller et al. (2016); Grave et al. (2017b); Sprechmann et al. (2018),
we design a non-parametric memory module M in the form of key-value pairs, i.e.,
M = {(key, value)}, M is queried by keys and returns corresponding values. We define
the keys to be input sequence representations computed by the neural encoder and the
values to be the corresponding label of the next event. Upon observing a training data
(xt, yt), we write a new entry to M by:

{
key ← ct=gθ(xt)

value← yt
(6.7)

To scale to a large set of observations and long histories in practical recommendation
scenarios, we do not restrict the size of M but store all entries from previous events.
Efficient retrieval and storage techniques are detailed later in Section 6.4.4. Explorations
on storage issues are orthogonal to our work and will be left as future work.

6.4.2 Memory Prediction

To support efficient incremental adaptation, the memory module is not trained jointly
with the neural recommender. Instead, it directly predicts the next event by computing
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Figure 6.3 – Computation pipeline of Memory Augmented Neural recommender (MAN).
Predictions from a neural network are augmented by predictions from a memory module
through a gating network.

a probability distribution using entries stored in M. For an input sequence xt, we first
match the current sequence representation ct = gθ(xt) against M to retrieve K nearest
neighbors N (ct) = {(ck, yk, sk)}Kk=1 of ct. sk is the similarity between the sequence
representation ck of the k-th neighbor and ct, and we use a Gaussian kernel function
sk = exp(−||ck − ct||2/2) as a measurement. Then, we use the K nearest neighbors to
compute a non-parametric memory prediction PM ∈ Rn by:

PM (yi) ∝
K∑
k=1

δ(yi = yk) · sk (6.8)

where PM (yi) is the probability on an item yi ∈ Y, δ(yi = yk) is Kronecker delta
which equals one when the equality holds and zero otherwise. PM only assigns non-zero
probabilities to at most K (number of neighbors) items because the probabilities assigned
to items that do not appear in the nearest neighbors are zero. As a result, PM is a
very sparse distribution as a mixture of the labels in N (ct) weighted by their similarities
to ct. To capture new preference patterns incrementally, M is queried and updated
incrementally during the testing phase such that PM is up-to-date.

6.4.3 Gating Network to Combine Memory and Neural Predictions

The neural prediction PN mainly captures static old preference patterns while the non-
parametric memory prediction PM can capture infrequent and new preference patterns
incrementally. To flexibly work with both scenarios, these two predictions are combined.
A simple way proposed by (Grave et al., 2017a; Orhan, 2018) is linearly interpolating them
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with a fixed weight, and we later call this version “MAN-Shallow” in our experiments in
Section 6.5.4.

To better merge these two predictions at different sequential contexts, we propose to use
a lightweight gating network (Bakhtin et al., 2018) w(ct) to learn the mixing coefficient
as a function of the sequence representation ct. We use a lightweight fully connected
neural network defined in Eq.(6.9) with a single hidden layer of 100 hidden units, tanh
as hidden layer activation function, and a Sigmoid function at the output layer.

w(ct) = σ(Wotanh(Whct + bh) + bo) (6.9)

The output of w(ct) is a scalar between 0 and 1 that measures the relative importance
of PN , while the other 1 − w(ct) fraction is multiplied to PM . The final prediction
distribution PMAN is an learning interpolation of PM and PN weighted by the output
of w(ct) computed in Eq.(6.10) .

PMAN = w(ct)PN + (1− w(ct))PM (6.10)

The gating network is trained with cross-entropy loss using PMAN as predictive distri-
bution after the normal training of the neural model with both PN and PM are fixed.
The gradients are not computed for the large number parameters of the neural model to
avoid computation overhead and interference with the trained neural model. Inspired
by (Bakhtin et al., 2018), it is trained using only validation data. The idea is to train it
using data not seen in the training data to better predict new preferences that might
appear in incremental SR scenarios. We randomly select 90% validation data for training
and the remaining 10% for early stopping. We found that this setup achieves better
performance while being much more efficient compared to using the whole training set to
train the gating network.

6.4.4 Efficient Large-scale Nearest Neighbor Computation

As the number of events in practical SR scenarios is huge and we do not restrict the size
of M, computing nearest neighbors frequently to generate PM can be expensive. We
apply a scalable retrieval method used by (Grave et al., 2017a). To avoid exhaustive
search, an inverted file table T is maintained. Keys in M are first clustered to a set of
clusters using k-means, then all keys in M can be associated with one centroid. When
we query ct in M, it is searched by firstly matching to a set of centroids to get the closest
cluster and then the set of keys in this cluster.

The clustered memory supports efficient querying, yet it is memory consuming because
each key in M needs to be stored. This can be greatly reduced by Product Quantization
(PQ (Jégou et al., 2011)) that quantizes a vector by parts (sub-quantizers), and it does
not directly store the vector but its residual, i.e., the difference between the vector and its
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Algorithm 9 Memory Augmented Neural Recommender
1: procedure MAN-Train(Dtrain, Dvalid,M)
2: Train gθ, fω w.r.t. Dtrain

3: for (xt, yt) ∈ Dtrain do
4: Compute ct = gθ(xt); store (ct, yt) to M
5: end for
6: Build the inverted table T for M
7: Fix gθ, fω, and train w(ct) w.r.t. Dvalid

8: end procedure
9: procedure MAN-Test(Dtest,M)

10: for (xt, yt) ∈ Dtest do
11: Compute ct = gθ(xt), and PN = fω(ct)
12: Query M and T to retrieve N (ct)
13: Compute PM by Eq.(6.8), PMAN by Eq.(6.10)
14: Update M and T with (ct, yt)
15: end for
16: end procedure

associated centroids. We use 28 centroids, 8 sub-quantizers per sequence representation,
and 8 bits allocated per sub-quantizer, then we only need the size of 16 (quantization code
+ centroid id = 8 + 8) bytes per vector. Therefore, a million sequence representations
can be stored with only 16 Mb memory. With an inverted table and PQ, we have a fast
approximate nearest neighbor retrieval method with a low memory footprint. We use the
FAISS 2 open-source library that also supports GPU acceleration for implementation.
FAISS supports frequently computing nearest neighbors for up to 10 million entries.

6.4.5 Overall MAN Algorithm

The computation pipeline and algorithm of MAN presented in Figure 6.3 and Algorithm
1. Next, we describe the training and testing procedures of MAN in detail and also
analyzed its computation efficiency.

Training procedure. MAN first trains the neural encoder and decoder on the training
set Dtrain. Then, it computes sequence representations for all training data and stores
them with corresponding labels to M. Afterward, the clustered memory of the inverted
table T is built with entries in M. Lastly, The gating network is trained on the validation
set Dvalid.

Testing procedure. The sequence representation ct and the neural prediction PN is
first computed. Then, M and T are queried with ct to retrieve K nearest neighbors N (ct)

2https://github.com/facebookresearch/faiss
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Training Data Validation Data Testing Data
Events Sessions Items Events Sessions Events Sessions New Events

YOOCHOOSE 6,245,412 1,535,693 22,594 693,935 170,633 748,269 178,920 8.6%
DIGINETICA 636,506 130,994 42,294 70,723 14,555 286,254 59,240 3.3%

Table 6.1 – Statistics of two datasets. The last column indicates the percentage of testing
events that involve new items not in the training set.

to compute PM . To generate the final recommendation PMAN , PM is merged with
PN weighted by the output of the gating network. Lastly, M and T are incrementally
updated with the new testing pair (ct, yt). During testing, the clustered memory in T
is not updated for computation efficiency. Running k-means to update the clustered
memory on huge data sets with large dimensions is computationally intensive. Therefore,
we need to decide when and how to update the clustering algorithm, and there will be a
trade-off between the performance benefits and the computation overhead. Studies on
this part are left for interesting future work.

Computation efficiency analysis. During training, the additional training proce-
dures of MAN on top of the regular neural recommender training are efficient because (i)
sequence representations of training data can be obtained directly from the last regular
training epoch of the neural recommender; therefore, no computation overhead is injected
at this step (line 3-5); (ii) building the clustered memory, and the inverted table for
entries in M (line 6) is also fast with the FAISS library; (iii) training the lightweight
gating network using only validation split (line 7) is much more efficient than the regular
training of the base neural recommender. During testing, querying the memory to
retrieve nearest neighbors can be done very efficiently supported by FAISS; a forward
computation through the lightweight gating network is also efficient.

6.5 Evaluation

6.5.1 Datasets and Evaluation Metrics

We used the two e-commerce datasets as mentioned in Section 5.4.1. YOOCHOOSE
contains click-streams on an e-commerce site over a span of 6 months. Following previous
works (Tan et al., 2016; Li et al., 2017), we use the latest 1/4 fraction of training sequences
because YOOCHOOSE is quite large, and this setting generates better performances.
DIGIGENTICA contains click-streams transaction data on another e-commerce site over
a span of 5 months. As these two datasets are relatively static, longer testing periods (last
week from YOOCHOOSE and the last four weeks from DIGIGENTICA) are assigned to
the incremental test set.

90



6.5. Evaluation

Items that appear less than five times and sessions of length shorter than two or longer
than 20 are filtered out. Statistics of the two datasets after pruning are summarized in
Table 6.1, and the last 10% of the training data based on time is used as the validation
set. Unlike previous static settings that remove items not in the training phase from test
sets, our test sets for the incremental SR task include events on new items that appear
only during the testing phase. The last column indicates the percentage of events in the
test data that involve items not part of the training data.

Evaluation Metrics. As in Section 5.4.1, we use HR@k and MRR@k. HR@k is
the hit rate that measures the fraction of top-k recommendations that contain the true
item clicked next. MRR@k is the mean reciprocal rank of the next clicked item in top-k
recommendations. The reciprocal rank of the desired item is the inverse of its rank in
top-k recommended items.

6.5.2 Baseline Methods

ItemKNN: This simplest K-Nearest Neighbor method, as used in Hidasi et al. (2016),
recommends items that are the most similar to the single last item in the current session.
The similarity is defined by item co-occurrence statistics across all training sessions.

SKNN (Jannach and Ludewig, 2017): Instead of considering only the single latest
item in ItemKNN, session-based KNN (SKNN) compares all items in the current session
with the items in all other sessions.

S-SKNN (Ludewig and Jannach, 2018): A later work proposes different variations
based on SKNN that assigns more weights to items appear later in a session. Different
variations in (Ludewig and Jannach, 2018) show similar performance, and we include
their Sequential Session-based KNN (S-SKNN).

GRU4Rec (Hidasi et al., 2016): It applies an recurrent neural network with a
session-parallel mini-batch technique for optimizing variable-length sequences. Apart
from the standard cross-entropy loss, they propose two ranking losses. A more recent ver-
sion (Hidasi and Karatzoglou, 2018b) of GRU4Rec explores more effective ranking losses.
In our experiments, we adopt the latest version of GRU4Rec implementation (Hidasi
and Karatzoglou, 2018b).

NARM (Li et al., 2017): Neural Attentive Recommendation Machine (NARM)
attaches an item-level attention mechanism based on the hidden representations captured
by an RNN to focus on a specific part of the session. The output layer of NARM applies
a bi-linear decoding scheme by directly computing a similarity score between an item
embedding and the latent sequence representation, followed by a softmax layer optimized
by cross-entropy loss.
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η 1e-2 5e-3 1e-3 5e-4 1e-4 5e-5 0
YOOCHOOSE

NARM 0.389 0.422 0.460 0.463 0.447 0.440 0.420
DIGINETICA

NARM 0.235 0.255 0.315 0.338 0.355 0.350 0.324

Table 6.2 – HR@5 with different learning rate η to update NARM incrementally. NARM
is fixed during testing when η = 0.

NECT (proposed in Section 6.3): It builds a non-parametric recommender based
on a structure called Context Tree to model suffixes of a sequence.

MAN (proposed in Section 6.4): The method proposed in this chapter. Two versions
(MAN-GRU4Rec and MAN-NARM) are tested using GRU4Rec and NARM as base
neural models respectively. Unless mentioned specifically, MAN is based on NARM.

During training, the hidden layer size of GRU4Rec and NARM is set to 100, and the
item embedding size of NARM is set to 50; the training batch size is set to 512; 30
epochs are trained for both models. Hyper-parameters of different models are tuned on
validation splits to maximize HR@5. The number of nearest neighbors of MAN is set to
50 for YOOCHOOSE and 100 for DIGINETICA. During testing, we update different
neural models and MAN incrementally using a single gradient descent step as every
batch of 100 events are tested. Learning rates for neural models are 5e-4 and 1e-4 for
YOOCHOOSE and DIGINETICA, and the learning rate to update the gating network
of MAN is 1e-3. Other pure non-parametric methods (Item-KNN, (S)-SKNN, NECT)
are also incrementally updated as every batch of 100 events is tested.

6.5.3 Experiment Results

In this section, we first study the effect of using different learning rates to update neural
models incrementally. Then, we analyze the overall performance of different methods.
Lastly, we provide in-depth analysis with an ablation study and disentangled performances
with different item frequencies.

Effect of Incremental Learning Rate

Before we proceed to our main results, we first highlight that the degree of updates
is important when neural models are updated incrementally. As an example, we show
the results of using different learning rates to update NARM in Table 6.2. We can see
that using large learning rates 3 to incrementally update NARM degrades performance

3Using multiple incremental training epochs has a similar effect as using large earning rates in one
epoch.
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YOOCHOOSE DIGINETICA

HR@5 MRR@5 HR@20 MRR@20 HR@5 MRR@5 HR@20 MRR@20
Item-KNN 0.205 0.114 0.403 0.127 0.112 0.042 0.186 0.056
GRU4Rec 0.359 0.216 0.582 0.228 0.191 0.114 0.382 0.135
SKNN 0.411 0.245 0.625 0.268 0.262 0.156 0.489 0.177
S-SKNN 0.416 0.247 0.628 0.272 0.279 0.170 0.497 0.185
MAN-GRU4Rec 0.447 0.269 0.657 0.293 0.331 0.203 0.545 0.226
NARM 0.463 0.280 0.682 0.303 0.358 0.221 0.566 0.242
NECT 0.464 0.298 0.652 0.319 0.377 0.247 0.524 0.261
MAN-NARM 0.476 0.292 0.689 0.314 0.381 0.234 0.599 0.258

Table 6.3 – Overall results of different models for the incremental SR task on two datasets.
Models are ranked by HR@5, and the best method in each column is in bold.

severely, while using relatively small learning rates outperforms the version when NARM
is fixed during testing (η = 0). We believe that large learning rates cause the model to
overfit new patterns while catastrophically forgetting old patterns. Therefore, we contend
that incremental updates for neural models needs to be small.

Overall Performance

The results of different methods on two datasets are summarized in Table 6.3. Several
interesting empirical results can be noted:

• NECT and MAN achieve the top and comparable performance. They both outper-
form other baselines by notable margins. The superior performance of NECT over
the state-of-the-art models is a strong signal that it is capable of learning sequential
patterns incrementally. Moreover, NECT is better than MAN in terms of MRR@k
where the order of items in the top-k recommendation list is considered.

• Both MAN-NARM and MAN-GRU4Rec consistently outperform their individual
neural modules (NARM and GRU4Rec). This result shows that the MAN architec-
ture effectively helps standard neural recommenders for incremental SR scenarios.
We observed that even though NARM significantly outperforms GRU4Rec, MAN-
GRU4Rec and MAN-NARM show comparable performances. We contend that the
memory predictions effectively compensate for the failed predictions of GRU4Rec.

6.5.4 In-depth Analysis

Ablation Study of NECT

In this section, we study why NECT works through an ablation study. We compare
NECT with three simplified versions with three different modules discarded respectively.
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YOOCHOOSE DIGINETICA

HR@5 MRR@5 HR@5 MRR@5
NECT 0.464 0.298 0.377 0.247
NECT w/o Combine 0.216 0.124 0.179 0.113
NECT w/o Bayesian 0.432 0.277 0.341 0.232
NECT w/o Neighbor 0.452 0.289 0.370 0.241

Table 6.4 – Ablation study for NECT.

(i) NECT w/o Combine: the combined prediction in Eq.(6.4) is discarded and only the
local expert prediction in Eq.(6.1) at the most specific suffix node is used to predict the
next event. This version degenerates to a basic variable-order Markov model where the
variable Markov order equals to the length of the session. (ii) NECT w/o Bayesian:
this version computes the combined prediction in Eq.(6.2) with equal weights assigned
to all active experts. Therefore, it averages all local experts, instead of using the
weights computed by Eq.(6.3) and Eq.(6.5) with Bayesian inference. (iii) NECT w/o
Neighbor: this version uses a candidate item set that includes all possible items appeared
so far, instead of using the dynamically computed neighbor-guided candidate set defined
in Section 6.3.4.

We can see from Table 6.4 that the performance drops very significantly if we only use
the single local expert at the most specific suffix node without combining all active
experts (NECT w/o Combine). It means that mixing the local predictions from the
set of active experts is a critical module in NECT. Once we utilize all active experts
obtained from context matching, dropping the Bayesian weight update (NECT w/o
Bayesian) or discarding neighbor-guided candidate sets (NECT w/o Neighbor) hurts
performance with relatively small margins. Furthermore, “NECT w/o Neighbor” requires
more computations as predictions need to be computed over a much larger set of
items. In conclusion, we contend that the context tree structure and the mixture of
predictions from active experts with Bayesian inference play essential roles in NECT
and the neighbor-guided candidate set adds extra credits to the final performance and
computation efficiency.

Ablation Study of MAN

We studied in Table 6.5 the effect of two setups in MAN, i.e., the large memory size and
the combining scheme with a gating network. Two simpler versions are compared. (i)
MAN-Shallow linearly combines neural and memory predictions with a fixed scalar
rather than the weight output by the gating network. The scalar weight is tuned on
validation splits to be 0.7 for YOOCHOOSE and 0.8 for DIGINETICA. This simple
method serves as a strong baseline in learning new vocabularies in language model tasks
(Merity et al., 2017; Grave et al., 2017a). (ii) MAN-50k/10k use fixed-size memories
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YOOCHOOSE DIGINETICA

HR@5 MRR@5 HR@5 MRR@5
MAN 0.476 0.292 0.381 0.234
MAN-Shallow 0.469 0.286 0.374 0.228
MAN-50k 0.469 0.287 0.376 0.231
MAN-10k 0.466 0.284 0.369 0.226

Table 6.5 – Ablation study for MAN. The large memory size and the gating network of
MAN gain performance benefits.

Bucket # 1 2 3 4 5
YOOCHOOSE

NECT 0.355 0.286 0.297 0.364 0.505
MAN 0.318 0.263 0.319 0.378 0.517
NARM 0.287 0.247 0.302 0.362 0.510

DIGINETICA
NECT 0.185 0.202 0.275 0.317 0.492
MAN 0.145 0.187 0.251 0.329 0.515
NARM 0.117 0.169 0.230 0.303 0.494

Table 6.6 – Disentangled performance (HR@5) at different item frequency buckets.

that only store a limited number of recent events (50k/10k). MAN-Shallow is consistently
inferior to MAN. It means the gating network makes a better decision to combine neural
and memory predictions. Furthermore, the performance drops as the size of the memory
decrease from unbounded (MAN) to 50k, and to 10k. It means that keeping a big memory
that handles long histories achieves better recommendation performance. Despite the
slight performance drop, the three simplified versions are more efficient. Therefore, they
are still suitable candidates for the industry.

Disentangled Performance by Item Frequency

To further understand for what types of events that NECT and MAN most improves
predictions, we studied the disentangled performance when items are bucketed into five
groups ordered by their occurrence frequency in training data. Bucket 1 4 contains the
least frequent items, and bucket 5 contains the most frequent items. Bucket splitting
intervals are chosen to ensure the bucket size is the same. The disentangled performances
of NECT, MAN, and NARM across five buckets are reported in Table 6.6, and the results
reveal that:

• Infrequent items are more challenging to predict. The performances of different
4Bucket 1 also contains new items in the evaluation phase that have not appeared previously.
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methods have an increasing trend as item frequency increases.

• NECT outperforms both MAN and NARM on infrequent items (small bucket
number), while the performance on infrequent items can be slightly worse than
the other two methods. Therefore, we contend that NECT is especially good at
learning new preferences on infrequent items.

• MAN consistently boosts the performance of NARM on all levels of item frequency,
and the improvement margin is more significant on infrequent items. MAN performs
slightly worse than NECT on infrequent items, while it is superior to NECT on
frequent items.

6.6 Chapter Summary

In this chapter, we propose two initial attempts to study both knowledge retention
and data efficiency in a unified framework for the session-based recommendation task.
Specifically, we study how to achieve quickly learning the new items and preferences
during model inference without forgetting old ones learned before. Two non-parameter
methods are proposed. The first one (NECT) is based on a structure called context tree,
and the second one (MAN) augments a standard neural model with a non-parametric
memory prediction. We empirically show that both proposed methods outperform state-
of-the-art methods through extensive experiments and analysis on two public datasets.
They are especially good at predicting new or infrequent items in the evaluation phase.

We believe that this is mainly thanks to the non-parametric context tree structure
in NECT and the k-Nearest Neighbor principle in MAN, which helps to memorize
preferences on new coming items quickly. The two proposed approach is interesting
because the memorization ability of non-parametric methods can be used to achieve
long-term knowledge retention and achieve data-efficient learning on new or infrequently
patterns. We hope our work could inspire more future works to consider similar principles
to develop more elegant methods to achieve both knowledge retention and data efficiency
for various practical applications.

In the next chapter, we study continual learning in the widely studied image classification
task. We extend the widely used “Class Continual Learning” setup with a probabilistic
formulation to simulate a wide range of realistic scenarios, and we highlight the importance
of data augmentation in the learning process.
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7.1 Introduction

Many real-world machine learning applications require learning from data that con-
tinually arrive over time (Chen and Liu, 2018). To this end, lifelong learning (a.k.a.
continual learning or continual learning), which learns from data arriving sequentially,
receives increasing attention. However, different applications and tasks have different
characteristics. Therefore, a standardized and versatile evaluation protocol is critical
to study and compare different techniques. A widely used setting is Class Continual
Learning (CCL (Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2019; Belouadah and
Popescu, 2019)), where data from new classes arrive phase by phase 1. In CCL, a set
of new classes need to be learned in each phase, as depicted in Figure 7.1 (Top). The
following three assumptions often exist:

1. The number of classes appearing in different phases is fixed.

2. Classes appearing in earlier phases will not appear in later phases.

3. Training samples are well-balanced across different classes in each phase.

However, these assumptions rarely hold in real-world applications. For example, in the
Internet of Things (IoT) era, a deployed object recognition model needs to incrementally
and periodically refine its model through data collected from different input devices (e.g.,
cameras, sensors) (Wen et al., 2017b). The number of different objects in an update
phase is rarely balanced, and objects might reappear continuously. For example, in a

This chapter is based on the paper (Mi et al., 2020b) published in the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPR Workshop, 2020).

1‘phase’ is referred to as ‘batch’ in (Lomonaco and Maltoni, 2017; Lomonaco et al., 2019) and as
‘task’ in (Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2019; Belouadah and Popescu, 2019). To
avoid confusion with the ‘batch’ in the model optimization stage or multi-‘task’ learning, we use ‘phase’
instead. This is also consistent with the notation in Chapter 4.
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Figure 7.1 – Comparison between CCL and GCCL. (Top) In each phase of CCL, the
model observes a fixed number of balanced classes, and classes having appeared in
previous phases will not appear again. (Bottom) These assumptions are removed in
our GCCL setting.

surveillance system at a port, a “truck” normally appear more often than a “taxi”, and
a “truck” will also appear in multiple update cycles. Recently, Lomonaco and Maltoni
(2017); Lomonaco et al. (2019) proposed a “New Instances and Classes learning” (NIC)
protocol to simulate scenarios where both new classes and new instances of each class
are spread over phases for robotic applications. However, the first and third undesired
assumptions described above are still not satisfied.

To ease these limitations in CCL, we propose a Generalized Class Continual Learning
(GCCL) framework that allows classes to appear realistically across multiple phases, as
shown in Figure 7.1 (Bottom). Precisely, we can model the incoming data sequence of
each phase with three quantities: the number of classes, the appearing classes, and the
sample size of each class, where each quantity is sampled from a probability distribution.
We can then derive a wide range of realistic scenarios by varying these distributions.

One crucial challenge of continual learning is the catastrophic forgetting (McCloskey and
Cohen, 1989; French and Chater, 2002). Many state-of-the-art CCL solutions (Lopez-Paz
and Ranzato, 2017; Li and Hoiem, 2018; Hou et al., 2019; Rebuffi et al., 2017; Castro
et al., 2018; Wu et al., 2019c; Hou et al., 2019; Zhao et al., 2020) are based on the
common assumption that classes appear in previous phases will not appear in later
phases. We find that these methods’ superior performance cannot generalize to realistic
GCCL settings as this assumption is void. There are two additional challenges in our
generalized formulation, namely data efficiency2, and imbalanced class3, which previous
CCL methods fail to overcome. To this end, we propose a simple yet effective baseline

2For each class, we sample its size over a distribution such that sample sizes for some classes can be
small.

3Different classes can have very different sample sizes.
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ReMix that incorporates Exemplar Replay(ER (Rebuffi et al., 2017; Castro et al., 2018))
to handle catastrophic forgetting and Mixup (Zhang et al., 2018) to address the additional
data efficiency and imbalanced classes challenges. To the best of our knowledge, this is
the first time Mixup is adopted in continual learning.

In experiments, we systematically simulate a wide range of realistic continual learning
scenarios using the GCCL formulation. Our extensive analysis reveals (i) state-of-the-art
methods in (Castro et al., 2018; Hou et al., 2019) perform much better than ER in CCL
settings, however, they have similar performance as ER in our GCCL settings; (ii) the
widely used distillation loss in CCL (Li and Hoiem, 2018; Rebuffi et al., 2017; Castro et al.,
2018; Hou et al., 2019; Wu et al., 2019c) is detrimental in GCCL when ER is already
applied and classes frequently reappear in static environments. (iii) our proposed ReMix
consistently outperforms state-of-the-art methods by a margin of 2-6% on CIFAR-100
and 2-3% on down-sampled ImageNet. Altogether, our work is the first to establish
a probabilistic formulation for realistic CCL settings, and the superior performance of
ReMix can lead to interesting future explorations.

7.2 Formulation of Realistic Evaluation Protocol (GCCL)

Three unrealistic assumptions are present in the existing CCL protocol: (i) the number
of classes appearing in each phase is fixed, (ii) the classes appearing in different phases
do not overlap, and (iii) classes within a phase are balanced. To ease these limitations,
we formulate a Generalized Class Continual Learning (GCCL) protocol.

First, we introduce several key concepts in use. We denote the complete set of available
classes as S with size n. The sample sizes (the number of samples) of classes appearing
in phase t are modeled as a random vector Ct ∈ Rn, where each entry Ct,i denotes the
sample size of class i. In the most general form, we can model any CCL scenarios by
sampling Ct from some vector distribution. However, using a single vector distribution
makes the easing of the aforementioned limitations of CCL intractable. To this end, we
introduce two intermediate variables: Kt and St, which denote the class number and the
appearing classes at phase t respectively. Formally, the Ct can be formulated through
three steps:

Kt ∼ D(t)
St ∼ R(W1

t ,Kt)
Ct ∼M(W2

t ,St) ,
(7.1)

where Kt, St, and Ct are sampled from three distributions D, R, andM. W1
t and W2

t

are two weight vectors determining the appearing probability and sample size of classes
in phase t.
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The above three-step formulation can simulate a wide range of continual learning scenarios
with the following three essential properties in many real-world applications.

1. A different number of classes in different phases. The number of classes Kt

appearing in phase t follows a phase-dependent discrete distribution D(t). Setting D(t)
to a constant results in a fixed Kt across different phases as in traditional CCL settings.
Therefore, by choosing a D(t) satisfying for two different phases t and t′

P (Kt 6= Kt′) > 0 , (7.2)

we ease the first limitation of CCL to allow a variable number of classes in different
phases.

2. Overlapping/Reappearing classes in different phases. Classes appearing in
phase t are modeled as a random vector St ∈ Rn. St is a binary indicator vector with
ones corresponding to classes in phase t. It is sampled from a distribution R(W1

t ,Kt)
which depends on the class number Kt and a class appearance weight vector W1

t ∈ Rn.
W1

t represents the appearing probability of each class in phase t. Classes with high
appearing probability are more likely to appear in different phases. In contrast, classes
with low appearing probability might disappear for a long sequence of phases so that
they tend to be forgotten. Different from previous CCL protocols, R does not necessarily
have disjoint supports across phases such that the following property is satisfied: for two
different phases t and t′,

P (St � St′ 6= 0) > 0 , (7.3)

where � denotes element-wise multiplication of two vectors. Therefore, the second
limitation of CCL is lifted to allow classes to reappear in later phases.

3. Different sample sizes for classes in a phase. The last step is to determine each
appearing class’s sample size in the current phase, which is encoded as a random vector
Ct. Ct follows a distributionM(W2

t ,St), which depends on the appearing classes St and
a class sample size weight vector W2

t ∈ Rn. W2
t determines the sample sizes of different

classes appearing in phase t. Varying W2
t can model different degrees of imbalanced

classes issue within a phase, and this formulation fulfills the following property: for any
two different class i and j,

P (Ct,i 6= Ct,j |Ct,i 6= 0, Ct,j 6= 0) > 0 . (7.4)

Therefore, the last limitation of CCL is released in GCCL to allow sample sizes of classes
in a phase to be different. We stress that W2

t is intrinsically different from W1
t . A class

might frequently appear among different phases in certain scenarios, but it only appears
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with a small quantity per phase. Therefore, such classes have large weights in W1
t but

small weights in W2
t , and we study such special situations in Section 7.4.3.

Remark 1. In GCCL, the reappearance of previous classes alleviates the catastrophic
forgetting challenge. However, it still exists because some classes might disappear for a
long sequence of phases.

Remark 2. The above GCCL formulation requires to tackle two more challenges other
than the catastrophic forgetting challenge:

• Data efficiency: GCCL allows sample sizes of appearing classes to be much smaller
than that in CCL to reflect potential data scarcity of some classes. Therefore, data
efficiency needs to be improved to learn from a limited amount of data.

• Imbalanced classes: GCCL allows classes to be imbalanced within a phase or across
different phases; therefore, the model needs to handle imbalanced classes.

Remark 3. The GCCL formulation covers a wide range of continual learning scenarios.
For example, traditional CCL protocols (Rebuffi et al., 2017; Castro et al., 2018; Hou
et al., 2019; Belouadah and Popescu, 2019), as well as the recent “New Instances and
Classes learning” (NIC (Lomonaco and Maltoni, 2017; Lomonaco et al., 2019)) protocol,
are special instances of our framework.

7.3 Methodology – ReMix

To tackle the aforementioned challenges in GCCL, we propose a simple yet effective
method called ReMix, which combines Exemplar Replay and Mixup.

Exemplar Replay (ER) based on Herding. ER methods (Rebuffi et al., 2017;
Castro et al., 2018; Hou et al., 2019; Wu et al., 2019c) have shown great success in CCL
to mitigate catastrophic forgetting. ER stores a couple of exemplars per class for all
experienced classes until the current phase. All exemplars in previous phases are combined
with data in the current phase to update the model. We adopt the Herding (Welling,
2009; Rebuffi et al., 2017) technique to select exemplars. Herding chooses exemplars of a
class that best approximate the average feature vector over all training examples of this
class till the current phase. Our later experiments in Section 7.4.5 justify the benefits of
Herding compared to other exemplar selection schemes.

Mixup. ER addresses catastrophic forgetting, but the issues of data efficiency and
imbalanced classes remain unsolved. To address these two challenges, we introduce the
data augmentation technique Mixup (Zhang et al., 2018) as a complementary component
to ER.
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The idea of Mixup is simple: it creates virtual training samples through a linear inter-
polation between raw training samples in order to learn smooth decision boundaries
between all classes. Formally, a virtual training sample (x̃, ỹ) is generated through a
convex combination between a pair of raw samples (xi, yi) and (xj , yj) by:

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj ,

where xi and xj are features of two input; yi and yj are the corresponding labels;
λ ∼ Beta(α, α) with hyperparameter α ∈ (0,∞).

Mixup has shown great success in different image classification (He et al., 2019b; Thu-
lasidasan et al., 2019) and object detection (Zhang et al., 2019; Yun et al., 2019) tasks.
Nevertheless, it has not been studied for continual learning scenarios.

ReMix formulation. We propose to use Exemplar Replay together with Mixup,
referred to as ReMix. As in ER, exemplars of different classes are selected by the Herding
technique, and exemplars in earlier phases are replayed in the current phase. In each
incremental training phase, Mixup is applied to training mini-batches containing both
samples in the current phase and exemplars in previous phases replayed by ER. In
Section 7.4.5, we empirically demonstrate the benefits of (i) using Mixup together with
ER, and (i) interpolating exemplars with samples in the current phase.

Three desirable properties of ReMix are analyzed below:

1. As a data augmentation method, the limited number of exemplars are augmented to
further mitigate catastrophic forgetting. Similarly, classes with insufficient samples
are also augmented to improve data efficiency.

2. The regularization effect of ReMix helps to deal with imbalanced classes. It prevents
the model from overfitting dominant classes by smoothing decision boundaries
among all classes.

3. ReMix can be easily applied to different scenarios. It requires no restrictive
assumptions on the incoming data. Also, it introduces minimal computation
overhead without extra training data nor model parameters.

7.4 Evaluation

In this section, we first describe a wide range of state-of-the-art methods evaluated in
our experiments. In Section 7.4.2, we introduce various realistic GCCL setups in our
experiments that are not yet explored. Then, we present results of different GCCL setups
on CIFAR-100 and ImageNet in Section 7.4.3 and Section 7.4.4 respectively. Lastly, we
conduct a case study with detailed analysis on ReMix in Section 7.4.5.
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Figure 7.2 – Visualizing appearing classes at different phases on CIFAR-100. Left:
Kt ∼ U(1, 100). Middle: Kt ∼ U(1, 20); Right: W1

t =BALANCE-START. Red
circles represent new classes and blue circles represent old ones. The circle size is
proportional to the sample size of the class. Visualizations for other test scenarios are
not included because they are straightforward.

7.4.1 Baseline Methods

We evaluate a wide range of representative baselines:

• Finetune: The model is updated with data in the current phase without extra
techniques nor exemplars.

• LwF (Li and Hoiem, 2018): A knowledge distillation loss is applied on top of Finetune
to prevent prediction logit changes on past classes not in the current phase.

• ER (Chaudhry et al., 2019; Rebuffi et al., 2017): It updates the model with data in
the current phase and exemplars in previous phases selected by Herding. Our default
setting stores 20 exemplars per class for CIFAR-100 and 50 exemplars for ImageNet.
Other exemplar sizes are tested in Section 7.4.5.

• iCaRL (Rebuffi et al., 2017): Based on the ER method, iCaRL applies a non-
parametric nearest-mean-of-exemplars rule for classification.

• GEM (Lopez-Paz and Ranzato, 2017): For each update, current gradients are pro-
jected to a feasible region formed by exemplar gradients. A ring buffer stores an
equivalent number of exemplars as in ER for each phase.

• CN (Hou et al., 2019): Cosine Normalization is applied to both inputs and weights
of the output layer in ER to deal with imbalanced classes.

• BF (Castro et al., 2018): After the regular training procedures as in ER, BF finetunes
the output layer with balanced exemplars to address imbalanced classes issue.

• Full: For each phase, the model is trained with data from the current phase and all
previous phases. This is a common performance “upper bound” in CCL.

• ReMix (Proposed): The method introduced in section 7.3.
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7.4.2 Various Realistic GCCL Experiment Setups

In our experiments, we use two image classification datasets, CIFAR-100 (Krizhevsky
et al., 2009) and ImageNet (Russakovsky et al., 2015) 4. We test 20 incremental training
phases, and the phase size is set to 1,000 on CIFAR-100, and 5,000 on ImageNet 5. We
use a 32-layer ResNet (He et al., 2016) for all experiments. The network is trained
by stochastic gradient descent with a mini-batch size 100. For both datasets, we use
standard data augmentation (random crop and horizontal flip). All models are trained
using the same training protocol. On CIFAR-100, each phase is trained with 100 epochs.
The learning rate starts from 0.1 and is divided by 10 after 60 and 80 epochs; weight
decay is 5e-4, and momentum is 0.9. On ImageNet, each phase is trained with 60 epochs.
The learning rate also starts from 0.1 and is divided by 10 after 36 and 48 epochs; weight
decay is 1e-4, and momentum is 0.9. Models are evaluated on the balanced test set
consisting of all classes that have appeared so far, and we report Average TOP-1 accuracy
over all phases. Three sets of experiments are designed to study the effects of the three
key factors in our GCCL formulation introduced in Section 7.2.

1. Varying class numbers. We choose D(t) as fixed uniform distributions U(1, u) to
sample the number of classesKt and evaluate different supports (U(1, 20),U(1, 50),U(1, 100)).
When u is large, the number of classes in a phase tends to be large. While testing different
u’s, we set W1

t and W2
t to be uniform distribution (UNIFORM) over all all classes in S.

In Figure 7.2 (left and middle), we visualize two cases (u set as 100 and 20 accordingly)
of appearing classes at different phases.

2. Varying appearing classes. We choose “sampling without replacement” as the
realization of the distribution R. Two types of W1

t other than UNIFORM are evaluated:

• BALANCE-START: W1
t is a phase-dependent distribution based on which

new class appearance is distributed evenly over all phases. Specifically, the first
appearing time of different classes is sampled uniformly across the total number of
phases. Next, we encode this information by setting the weights of classes that do
not appear before phase t to 0 in W1

t . With the phase-dependent W1
t defined in

this way, we can sample Kt from U(1, u), with u being a phase-dependent number
computed from the number of nonzero entries in W1

t , to allow the class number of
different phases to be a variable.

• LONGTAIL: W1
t is a fixed long-tailed distribution, where the weight wt,i for class

i is generated by an exponential function wt,i = µi (Cui et al., 2019). Different
4we use the first 200 classes of ImageNet and down-sampled images to 32 × 32 for computation

feasibility.
5We focus on varying different realistic incoming data distributions. More evaluations on a different

number of phases and phase sizes are left for future work.
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Varying Kt

U(1, 20) U(1, 50) U(1, 100)
Full 54.31 (2.82) 46.25 (2.11) 44.32 (0.90)
ReMix 41.72 (2.01) 36.75 (1.05) 37.80 (0.55)
CN 39.63 (2.31) 34.05 (1.59) 32.89 (2.09)
BF 40.71 (2.41) 34.85 (1.67) 32.13 (1.13)
ER 38.54 (1.91) 34.07 (1.89) 31.73 (1.21)
iCaRL 40.89 (1.95) 34.48 (1.77) 31.43 (1.30)
GEM 19.52 (1.35) 25.36 (1.57) 24.86 (1.36)
LwF 14.58 (1.75) 15.43 (1.46) 17.15 (0.67)
Finetune 14.33 (2.04) 13.24 (2.02) 14.61 (0.91)

Table 7.1 – Average Top-1 accuracy (%) over all phases on CIFAR-100 with Varying Kt.
Standard deviation over 5 runs with different random seeds is reported in parenthesis.

µ’s correspond to different degrees of the imbalanced classes issue. We set it to
have the largest weight 5 times larger than the smallest. We set Kt∼U(1, 100) and
W2

t = UNIFORM.

3. Varying sample sizes. We choose a multinomial distribution as a realization of
the distributionM. W2

t can be various distributions, other than UNIFORM, to reflect
different real-world scenarios:

• TASK-VARIED: W2
t varies across different phases by adding a Gaussian noise (0

mean and 20% of uniform class weight as standard deviation) on top of UNIFORM.

• LONGTAIL: W2
t takes the same fixed long-tail distribution as introduced for

W1
t .

While testing different W2
t , we set Kt∼U(1, 100) and W1

t = UNIFORM.

7.4.3 Results on CIFAR-100

Table 7.1 and 7.2 summarize the overall performance of different methods in different
GCCL setups averaged over all 20 phases. We first analyze performance patterns of
different setups, then we compare different methods and empirically show that ReMix
outperforms state-of-the-art baselines by a significant margin.

Comparison among GCCL setups

• Setups that require high data efficiency are more challenging. In Table 7.1, as
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Varying W1
t Varying W2

t

BALANCE-START LONGTAIL TASK-VARIED LONGTAIL
Full 58.21 (1.90) 43.55 (3.01) 42.99 (1.77) 41.76 (1.04)
ReMix 47.76 (1.41) 35.95 (2.33) 36.27 (1.22) 35.85 (0.63)
CN 46.49 (2.41) 31.53 (3.14) 31.31 (1.56) 29.87 (1.35)
BF 45.90 (1.63) 30.83 (3.01) 30.14 (1.43) 29.82 (1.08)
ER 45.62 (2.21) 30.69 (3.25) 30.93 (1.96) 30.63 (0.76)
iCaRL 44.11 (2.07) 30.83 (2.82) 30.36 (2.02) 29.40 (0.85)
GEM 34.42 (3.26) 24.00 (2.21) 25.12 (2.01) 24.80 (0.78)
LwF 26.33 (2.08) 15.74 (3.64) 16.21 (2.24) 15.05 (0.89)
Finetune 25.49 (2.66) 14.76 (3.96) 16.04 (2.38) 14.59 (0.87)

Table 7.2 – Average Top-1 accuracy (%) over all phases on CIFAR-100 with Varying
W1

t and W2
t . Standard deviation over 5 runs with different random seeds is reported in

parenthesis.

u in Kt ∼ U(1, u) increases from 20 to 50 and 100, the sample size per class is
reduced due to the fixed phase size and increased appearing classes per phase. The
performance of most methods, except GEM and LwF, shows a decreasing trend
due to the increased data efficiency challenge. Similarly, all methods perform well
when W1

t =balance-start as the data efficiency challenge is less significant.

• Complex class arriving patterns (e.g. TASK-VARIED and LONGTAIL) modeled
by W1

t and W2
t are more challenging than the uniform assumption in previous

CCL settings. Most methods perform worse when W1
t = LONGTAIL or W2

t =
LONGTAIL/TASK-VARIED, compared to the setup when they are UNIFORM
(column 4).

Comparison among baseline methods

• Exemplar Replay methods (iCaRL, ER, CN, BF) perform better than regularization
methods (GEM, LwF) with notable margins. iCaRL often out-performs ER in
CCL setups (Hou et al., 2019; Rebuffi et al., 2017), however, their performance gap
is negligible in various GCCL setups. CN and BF which rectify the bias of the
output layer of ER significantly outperforms ER in CCL setups (Hou et al., 2019;
Wu et al., 2019c). Nevertheless, they only yield marginal improvements over ER in
realistic GCCL setups.

• Classical regularization methods (LwF, GEM ) do not achieve promising perfor-
mance. We can see that LwF is only slightly better than Finetune. GEM is notably
better than LwF ; however, it is still inferior to other ER based methods. This
is because regularization methods restrain the model from learning reappearing
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γ 0 0.1 0.25 0.5 1 2
UNIFORM 31.73 31.17 30.76 29.77 28.83 27.78

TASK-VARIED 30.93 30.23 29.85 28.79 27.91 27.02
LONGTAIL 30.63 29.93 29.15 28.12 27.06 26.23

Table 7.3 – The distillation loss is detrimental in GCCL when ER is already applied.
Average Top-1 accuracy (%) on variations of W2

t on CIFAR-100. Different weights (γ) of
distillation loss are added to the regular cross-entropy loss of ER (γ = 0).

W1
t ,W2

t W1
t ,W2

t
SAME-LONGTAIL REVERSE-LONGTAIL

Full 39.73 (0.74) 41.41 (1.63)
ReMix 33.83 (0.45) 34.12 (1.06)
CN 30.96 (1.02) 30.79 (1.27)
ER 29.31 (1.11) 30.06 (1.71)
GEM 22.61 (1.83) 23.04 (2.25)
Finetune 14.53 (1.69) 13.29 (2.30)

Table 7.4 – Average Top-1 accuracy (%) for two other GCCL setups with varying W1
t

and W2
t . We set Kt ∼ U(1, 100). Standard deviation over 5 runs with different random

seeds is reported in parenthesis.

classes in GCCL. We further note in Table 7.3 that the widely used distillation
loss (Li and Hoiem, 2018; Rebuffi et al., 2017; Hou et al., 2019; Wu et al., 2019c)
is detrimental when ER is already applied. The distillation loss in each phase
is applied to classes not appear in the current phase. We can observe that high
weights on the distillation loss lower the original ER performance (γ = 0), which
means that the distillation loss is not helpful when classes frequently reappear.

• ReMix outperforms other methods by notable margins (2-6% over the closest
competitor) in all new settings. Specifically, our method shows multiple advantages:
(i) better data efficiency (e.g., 5% margin under Kt∼U(1, 100)); (ii) better ability
to overcome catastrophic forgetting (e.g., 4% margin under W1

t = LONGTAIL);
and (iii) more robust to imbalanced classes issue (e.g., 5% margin under W2

t =
LONGTAIL). This result demonstrates the effectiveness of ReMix in different
realistic continual learning scenarios.

Other GCCL Setups

In this experiment, we evaluate two other special scenarios to set W1
t and W2

t . In the
first scenario (same-longtail), W1

t and W2
t are the same long-tailed distribution as

described in Section 7.4.2. Classes that appear more often also appear by larger quantity
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Figure 7.3 – Detailed analysis of ReMix with different settings on CIFAR-100. (Left)
Herding v.s. Ring Buffer to select exemplars for ReMix and ER. (Middle) Performance
of ReMix and ER with varying exemplar sizes. (Right) Disentangled performance
comparing ReMix with ER regarding classes in the current phase or not.

in different phases. In the second scenario (reverse-longtail), W1
t and W2

t are set as
long-tailed distributions with reversed head. To be specific, the weight of class i is set
as µi in W1

t and µ(100−i) in W2
t . Therefore, classes have a large weight in W1

t have a
small weight in W2

t , and vice versa. In this case, a class might frequently appear among
different phases, but it tends to appear with a small quantity in each phase.

Results of several representative methods in these two GCCL setups are presented in
Table 7.4 with Kt ∼ U(1, 100). We can note very similar performance patterns as the in
Table 7.1 and 7.2. CN and ER are still better than GEM, while ReMix is still superior
to both of them.

7.4.4 Results on ImageNet

We present ImageNet results in Table 7.5 of several representative methods when Kt∼
U(1, 100), W1

t =UNIFORM, and W2
t ∈ {UNIFORM, TASK-VARIED, LONGTAIL}.

Similar performance patterns, as in CIFAR-100, can be observed. The improvement of
ER over Finetune shows the benefit of using exemplars. ReMix still outperforms ER and
other methods by substantial margins. Therefore, we contend the superior performance
of ReMix and the analyses we conduct for CIFAR-100 can generalize to more challenging
and large-scale scenarios.

7.4.5 In-depth analysis on ReMix

In this section, we analyze the success of ReMix in detail. As a case study, we limit
our discussion on CIFAR-100 with Kt∼U(1, 100), W1

t = UNIFORM, W2
t = TASK-

VARIED.
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UNIFORM TASK-VARIED LONGTAIL

Full 37.79 (0.79) 37.57 (1.30) 36.25 (1.23)
ReMix 25.39 (1.36) 25.17 (1.45) 24.58 (1.15)
CN 23.13 (1.01) 22.76 (1.51) 22.39 (1.12)
ER 22.92 (1.12) 22.27 (1.41) 21.97 (1.43)
GEM 14.81 (1.24) 14.95 (1.61) 14.38 (1.39)
Finetune 11.62 (1.17) 11.55 (1.21) 11.02 (1.28)

Table 7.5 – Average Top-1 accuracy (%) on ImageNet with varying W2
t . We set Kt ∼

U(1, 100) and W1
t =UNIFORM. Standard deviation over 5 runs with different random

seeds is reported in parenthesis.

ReMix ReMix-v1 ReMix-v2 Mixup ER

36.27 34.52 32.39 15.93 30.93

Table 7.6 – Ablation study for ReMix.

Herding is effective. Other than Herding, we test another exemplar management
scheme using a Ring Buffer to select the most recent samples as exemplars for each
class. The exemplar sizes of Ring Buffer and Herding are the same. The performance
comparison of these two schemes is presented in Figure 7.3 (Left). We can see that
Herding is consistently better than Ring Buffer across all incremental training phases for
both ReMix and ER.

Different memory sizes. In Figure 7.3 (Middle), we vary the number (20, 30, 50) of
exemplars per class selected by Herding. The increased exemplar size improves both ER
and ReMix. Nevertheless, ReMix is consistently superior to ER with different exemplar
sizes.

Disentangled performance. In Figure 7.3 (Right), we show the performance on
classes in the current phase (in-phase classes) and not in the current phase (out-phase
classes) separately. Improvements in out-phase classes demonstrate that ReMix alleviates
catastrophic forgetting issue on classes not in the current phase. Improvements in in-
phase classes show that ReMix improves data efficiency to learn classes in the current
phase quickly. Altogether, this result shows that ReMix helps to better retain previous
knowledge and to improve data efficiency.

Ablation study for ReMix. In Table 7.6, three variants of ReMix are evaluated to
show the benefits of combining ER with Mixup. The fact that Mixup (w/o exemplars)
alone fails badly shows that exemplars are crucial for ReMix. In ReMix-v1, Mixup is
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only performed among exemplars, while data in the current phase are raw. In ReMix-v2,
Mixup is only performed on data in the current phase, while exemplars are raw. Although
ReMix-v1 and ReMix-v2 outperform ER, they are both inferior to ReMix, which justifies
the importance of interpolating exemplars with samples in the current phase.

7.5 Chapter Summary

This chapter revisits the oversimplified and unrealistic setup in the current class continual
learning research and proposes a Generalized Class Continual Learning (GCCL) frame-
work. The probabilistic nature of GCCL allows it to simulate a wide range of realistic
continual learning scenarios to serve as a versatile benchmark. We identify new challenges
in GCCL and reveal the shortage of previous methods. To this end, we propose a simple
yet efficient method, ReMix, that combines Exemplar Replay and Mixup. We simulate a
wide range of realistic scenarios on CIFAR-100 and down-sampled ImageNet, and our
extensive empirical evaluations demonstrate that ReMix consistently outperforms all
previous methods. It improves both knowledge retention and data efficiency. We hope
our proposed GCCL formulation could serve as a more generalized evaluation protocol
to motivate more research ideas towards realistic lifelong learning.
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8 Conclusion

8.1 Summary

Machine learning has been instrumental for both data analysis and artificial intelligence.
It brings enormous benefits and convenience to computer science, natural science, life
science, social sciences, engineering, and beyond. More tangibly, machine learning
techniques gradually changes and improves our individual life and society. Massive
practical applications and services are enabled and improved by a wide range of “hidden”
machine learning models.

We have witnessed the great success of machine learning in recent years with the prosperity
of different deep learning techniques and exponentially increased computation power and
data scale. For example, the image classification performance is boosted by large-scale
ImageNet dataset (Russakovsky et al., 2015) and deep neural network architectures;
AlphaGo (Silver et al., 2017) achieves extraordinary performance at the game of Go by
optimizing over a huge number of Go scores; large-scale pre-trained language models
demonstrate excellent natural language understanding capability by training a big neural
model on a massive corpus. Nevertheless, most disruptive innovations and progress fall
into the category of a classic machine learning paradigm. That is, the model needs to be
trained on a big static dataset and evaluated w.r.t. new data of the same task.

However, in many real-life applications, machine learning models need to continuously
learn new tasks, domains, distributions, etc. The classic machine learning paradigm
built on top of the independent and identical distribution assumption cannot do the
job well. Therefore, we study a lifelong machine learning paradigm towards this goal,
which describes a continuous learning process with the ability to retain and accumulate
knowledge and use it to facilitate quick future learning as humans often do. This thesis
focuses on two major challenges of lifelong learning. The first data efficiency challenge
is to learn new knowledge with a small number of observations. The second knowledge
retention challenge is to prevent a machine learning system from forgetting the old
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knowledge it has previously learned.

In Part I of this thesis, we study how to improve data efficiency for task-oriented dialog
systems. As the annotation cost in task-oriented dialog systems is very high, training
a model with a small number of annotations is a practically important topic. The first
proposed approach (Chapter 2) is based on Meta-learning, aiming to learn a better
model parameter initialization that can quickly reach a good parameter region of new
domains or tasks with a small number of labeled data. More specifically, we propose
a Meta-learning approach base on MAML (Finn et al., 2017) for the natural language
generation module. Our experiments and analysis reveal that the proposed method indeed
learns new domains faster and better with a small number of labeled data. The second
proposal (Chapter 3) takes a semi-supervised self-training approach to iteratively train a
better model using the sufficient unlabeled data when only a limited number of labeled
data are available. We propose a self-training method to gradually train a stronger model
by iteratively labeling the most confident unlabeled data and a new text augmentation
technique called GradAug making use of the masked language model of BERT (Devlin
et al., 2019a). We conduct extensive experiments on four common downstream tasks in
task-oriented dialog systems, including intent classification, dialog state tracking, dialog
act prediction, and response selection. Empirical results demonstrate that the proposed
self-training technique effectively improve data efficiency, and it consistently improves
state-of-the-art pre-trained models.

In Part II, we study the knowledge retention challenge. A continual learning setup is
formulated and studied in different applications to combat the detrimental catastrophic
forgetting issue when neural networks learn new knowledge sequentially. Two chapters
in Part II consider the continual learning setup for the domain of task-oriented dialog
systems and recommendation systems, respectively. Through extensive evaluation and
analysis, we summarize two findings regarding mitigating the catastrophic forgetting issue:
(1) it is simple but effective to replay a small number of representative exemplars, i.e.,
storing representative historical data and replaying them to the model while learning new
tasks; (2) it is helpful to put an additional and dynamic constraint on top of “exemplar
reply” for not forgetting previously learned knowledge while learning new tasks.

In Part III, we attempt to achieve both data efficiency and knowledge retention in
a unified framework. Chapter 6 focuses on recommendation systems which naturally
have both concerns. That is, a recommendation system in dynamic environments needs
to capture new items and preferences with limited observations, and it also needs to
maintain its knowledge of old items and preferences. We propose two methods using two
non-parametric methods with context tree and k-Nearest Neighbor, respectively. We
demonstrate that the two proposed non-parametric memory modules help to retain long-
term knowledge. More importantly, the proposed non-parametric prediction computed
on top of them helps to capture new knowledge in a data-efficient manner. This finding
is also aligned with the recent results on the memorization ability of k-Nearest Neighbor
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(Cohen et al., 2018; Khandelwal et al., 2020). To provide a versatile and generalized
evaluation protocol to study different techniques, Chapter 7 proposes a probabilistic
formulation to simulate a wide range of realistic lifelong learning scenarios with knowledge
retention and data efficiency concerns for the image classification task. Through extensive
empirical evaluation, we also show the benefit of data augmentation using Mixup to
improve knowledge retention and data efficiency.

8.2 Future Directions

With the ever-increasing real-world use of machine learning, lifelong learning gradually
becomes vital for devising robust and scalable models in different applications. So far,
the lifelong learning ability of the machine learning system still largely lacks human-level
capability, and lifelong learning studies are still not mature. Hence, there are a number
of potential directions for future work.

With the recent advance of large-scale models pre-trained on massive general knowledge,
such as texts or images, the few-shot learning ability is greatly improved (Brown et al.,
2020; Su et al., 2020). In Chapter 3, we consider using unlabeled data to further improve
the pre-trained models. However, some applications might not have sufficient unlabeled
data. Hence, how to improve the data efficiency in this case on top of strong pre-trained
models is another challenge. For example, how to design a better fine-tune procedure for
learning a downstream task with better data efficiency? As the pre-trained models are
often very large and general, we contend that it is interesting to explore how to selectively
fuse or distill a subset of the large number of important parameters for a downstream
task to improve data efficiency.

Another crucial topic for lifelong machine learning is constructing and utilizing the
knowledge base (KB). As we mentioned before, a fundamental challenge for lifelong
machine learning is retaining knowledge to facilitate future learning on new tasks. Instead
of retaining knowledge within the representations and parameters of a machine learning
model, knowledge can be explicitly expressed and retained as domain-specific or task-
specific KB entries or graphs in many real-world applications. Such systems often have
a large and increasing number of entries in their KB. How to reason over a large KB
is a popular research area in the machine learning community. However, it remains to
explore how to better accumulate and maintain the knowledge in the KB and how to use
the accumulated past knowledge to help future learning in a data-efficient manner. The
research about KB is not conducted in this thesis, and some related explorations can be
seen at Chen and Liu (2018) for a survey.

In Chapter 6, we attempt to deal with knowledge retention and data efficiency challenges
in a unified framework by using non-parametric methods. More sophisticated approaches
can be explored as future works. We hope that more fundamental learning rules can
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be proposed inspired by biology or neuroscience concepts. For example, neuro synaptic
plasticity is an essential feature of our brain. It yields physical changes in the neural
structure and allows us to learn, remember, and adapt to dynamic environments (see
Power and Schlaggar (2017) for a survey). Recently, several studies (Ba et al., 2016;
Zenke et al., 2017b; Miconi et al., 2018, 2019) have been proposed to reformulate the
learning rules of neural networks from this perspective. From another perspective of the
complementary learning theory (McClelland et al., 1995), it describes that our brain works
by a complementary system for fast adaptation through episodic memory (hippocampus)
and long-term knowledge consolidation (neocortex). Several attempts (Lüders et al.,
2016; Parisi et al., 2018) have been proposed with this theory in mind. However, the
proposed learning rules are still not mature, and more seminal methods are expected for
long-lasting signs of progress along this journey.

Another exciting direction is to empower a machine learning system or an intelligent
agent to be curious to explore unknown and new things by itself. Classical machine
learning techniques typically require humans to assign the learning tasks and to provide
the corresponding training data. Suppose a machine learning system or a robot interacts
with the real-world environment and learn continuously; it needs to identify and formulate
its learning tasks and collect its own training data to explore the world. For example, if a
robot sees a new person, it should collect some information about the person as positive
training data. Another example is that an intelligent chatbot should learn during the
conversation, such as expanding its knowledge from previous user utterances, asking the
user when it does not understand something, and learning the user’s preference. This
direction is related to the reinforcement learning paradigm, in which an agent needs to
obtain feedback from the environment through trial and error. During the process, the
agent often needs to accumulate knowledge from different environments and improve itself
to a new environment quickly. Altogether, this direction is very challenging, and studies
about it are still limited and immature. We expect more thorough and fundamental
research to be conducted to bring the intelligence of an agent or a machine learning
system to a new height.

Besides bringing breakthroughs on fundamental theories and methodologies, many
other applications are worth studying the lifelong machine learning setup with data
efficiency and knowledge retention concerns. Apart from task-oriented dialog systems,
recommendation systems, and the image classification task considered in this thesis, it is
also valuable to study similar problems for applications such as the fundamental natural
language understanding task, open-domain dialog systems, sentiment detection, spam
detection, visual tracking and recognition systems, complex control systems, etc. We
believe that many practical learning systems will benefit from the rapidly developing
lifelong learning techniques in the near future. On the other hand, we envisage that the
gradually mature lifelong learning techniques will improve machine learning systems to
provide better service and convenience to our society.
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