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A B S T R A C T

Traffic control for large-scale urban road networks remains a challenging problem. Aggregated dynamical
models of city-scale traffic, based on the macroscopic fundamental diagram (MFD), enable development of
model-based perimeter control methods. Involving actuation over aggregated traffic flows, perimeter control
specifies an effective and practicable congestion control solution. In this paper, we propose nonlinear model
predictive perimeter control schemes, for regulation and economic optimization objectives, with closed-loop
stability by construction. Macroscopic and microscopic simulations demonstrate the performance and domain
of attraction properties of the proposed formulations. Results indicate potential of the methods for efficient
and reliable control of city-scale traffic.
. Introduction

Improving mobility in city-scale urban road traffic networks
resents substantial challenges in development of modeling, estimation,
nd control techniques. Inadequate infrastructure, lack of coordination
etween different parts of the network, spatiotemporal congestion
ropagation, the sheer size of the system, and the interactions of
rivers with traffic management systems, among others, constitute the
omplications which arise when developing urban road network models
nd control schemes. Although development of real-time traffic control
ethods received significant attention in the literature especially in the

ast decades (see Bellemans et al., 2006; Dotoli et al., 2006; Ioslovich
t al., 2011, and for a review see Papageorgiou et al., 2003), city-
evel traffic modeling and control design for heterogeneously congested
etworks remains a challenging problem.

Many works in the literature focused on modeling and control of
rban traffic, which usually considered link-level traffic flows local
ontrol strategies (see Aboudolas et al., 2010; Diakaki et al., 2002;
ouvelas et al., 2014; Lin et al., 2011; Tettamanti et al., 2013; Varaiya,
013; van de Weg et al., 2019; Wongpiromsarn et al., 2012). Link-level
raffic models facilitate accurate simulations with high level of detail,
owever they might complicate control design for large scale networks
ue to high model complexity. Furthermore, heavily congested condi-
ions might create problems for local control strategies as congested
egions upstream are not protected. Highly detailed traffic information
ight be difficult to measure or estimate, further complicating their use

or local controllers.

∗ Corresponding author.
E-mail address: isik.sirmatel@epfl.ch (I.I. Sirmatel).

Perimeter control approach for large-scale networks appeared as
a practicable and possibly complementary option to local traffic sig-
nal control methods. In perimeter control, the idea is to manipulate
macroscopic traffic flows exchanged between neighborhood-sized areas
(i.e., regions) of the urban network by changing the green times of the
traffic lights on the boundaries (i.e., perimeters) between the regions.
Feedback control systems, using the perimeter flow manipulation as
actuator, can then be constructed by instrumenting the road network
with traffic sensors.

Model-based control design for perimeter controlled urban networks
is possible using the macroscopic fundamental diagram (MFD) of urban
traffic. First proposed by Godfrey (1969) and, for large-scale urban
networks, experimentally proven to exist by Geroliminis and Daganzo
(2008), the MFD enables modeling of an urban region with homoge-
neously distributed congestion by providing a unimodal, low-scatter,
and demand-insensitive relationship between accumulation and trip
completion flow (Geroliminis & Daganzo, 2008).

The MFD, despite being a powerful tool for building aggregated
models, might also face difficulties that can hamper its accuracy in
traffic modeling. Recently, a large number of empirical studies have
further investigated the physical properties and network conditions for
which an MFD exists with low scatter (see Fu et al., 2020; Huang
et al., 2019; Loder et al., 2019; Paipuri et al., 2020). Heterogeneously
distributed congestion over the road links, for example, can lead to
high scatter in the MFD (see Geroliminis & Sun, 2011). Despite the
challenges, it is possible to considerably reduce traffic model complex-
ity by using the MFD, thus enabling model-based network-level control
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design with aggregated, low-dimensional dynamical models. Since the
first work on MFD-based control considering a single region (see Da-
ganzo, 2007), many methods for the analysis, modeling, and control via
MFD-based traffic modeling have been proposed: Proportional–integral
control (Aboudolas & Geroliminis, 2013; Ding et al., 2017; Ingole et al.,
2020; Keyvan-Ekbatani et al., 2012, 2015a), optimal control (Aalipour
et al., 2018; Haddad, 2017a, 2017b), robust control (Ampountolas
et al., 2017; Haddad, 2015; Haddad & Shraiber, 2014; Mohajerpoor
et al., 2020; Zhong et al., 2018a), adaptive control (Haddad & Mirkin,
2016; Haddad & Zheng, 2018; Kouvelas et al., 2017a), control with
route choice (Menelaou et al., 2017, 2018), hierarchical control (Fu
et al., 2017).

Enabled via MFD-based modeling approaches, model predictive
traffic control methods also received increasing interest: MPC with
MFD-based travel time and delays as performance measures (Csikós
et al., 2017), convex formulation of the optimal perimeter control
problem yielding linear MPC (Kouvelas et al., 2017b), two-level hierar-
chical MPC with MFD-based and link-level models (Zhou et al., 2017),
multimodal MFDs network model-based MPC of city-scale ride-sourcing
systems (Ramezani & Nourinejad, 2018), MPC with perimeter control
and regional route guidance (Sirmatel & Geroliminis, 2018) and exten-
sions with a path assignment mechanism (Yildirimoglu et al., 2018),
multi-scale stochastic MPC considering conventional and connected
vehicles (Yang et al., 2018), combined operation of state estimation
and MPC (Sirmatel & Geroliminis, 2019). Detailed literature reviews
of MFD-based modeling and control can be found in Haddad (2017a)
and Sirmatel and Geroliminis (2019).

Closed-loop stability of MFD-based perimeter control schemes re-
ceived relatively modest attention in the literature. In the first work
explicitly discussing stability of MFD-based control, Haddad and Geroli-
minis (2012) consider a two-state two-region MFDs system and for-
mulate an optimal control for maximizing total trip completion. They
further develop an algorithm for constructing the boundaries of the
domain of attraction both numerically and analytically, and design a
state-feedback controller for stabilizing the system and regulating it to
a given equilibrium point. The domains of attraction for a three-state
two-region MFDs system under closed-loop with the state-feedback
controller are constructed numerically via macroscopic simulations.
In Haddad and Shraiber (2014) first a linear model of a two-state one-
region MFD system is derived by introducing uncertain parameters for
the split ratio and linearization of the MFDs around a given setpoint
(split ratio is the ratio of vehicles in a region with a certain destination
to all vehicles in the region). A robustly stabilizing proportional–
integral controller is then designed, using methods from quantitative
feedback theory, against uncertainty in the split ratio and the MFD.
The proposed controller is tested in macroscopic simulations with
various levels of inflow demand and errors in the MFDs. Results include
comparisons with an MPC controller, however no discussions of either
its closed-loop stability properties or the domains of attraction of the
proposed controllers are included. The methods proposed in Haddad
and Shraiber (2014) are extended in Haddad (2015) by considering
a multi-region MFDs system model and control input constraints. The
MFDs are linearized around a set point, and the split ratios and MFD
slopes are formulated as uncertain parameters, yielding an uncertain
linear system. A robustly stabilizing controller to regulate the system to
an equilibrium under bounded disturbances is then designed using the
interpolation-based control approach (see Nguyen et al., 2013). Results
considering a control design using a two-state two-region MFDs system
model are presented, with various macroscopic simulation scenarios
involving different initial accumulation states and levels of inflow de-
mands, comparing the proposed controller with a robust state feedback
controller designed via LMI and a nominal linear MPC controller. One-,
two-, and multi-regions MFDs system models are considered in Zhong
et al. (2018b), establishing connections between MFDs system bound-
ary conditions, inflow demand levels, and existence of equilibrium
points. The work also includes stability analysis for an uncontrolled
2

one-state one-region MFD system, together with calculation of feasi-
ble inflow demands yielding equilibrium. The results contain various
traffic scenarios considering MFDs systems with different number of
regions, comparing an uncontrolled case with a proportional controller.
In Zhong et al. (2018a) a two-state two-region MFDs system model
is used to design a robust continuous-time control Lyapunov function
(CLF) based controller, and operation of the controller is demonstrated
via macroscopic simulations considering various inflow demand trajec-
tories and control input bounds. Perimeter control systems can only
operate via updating the control inputs at the beginning of each traffic
light cycle, and since these cycles are of considerable length (e.g., 60 s
or more), the discrete-time nature of perimeter control implementation
should not be neglected. However the study in Zhong et al. (2018a)
does not examine how well the proposed continuous-time CLF-based
controller would work in such a discrete-time setting.

In spite of the aforementioned works examining stability of MFDs
systems and many other works mentioned in the previous paragraphs
focusing on MPC of perimeter controlled MFDs systems, closed-loop
stability of model predictive perimeter control remains unexplored. To
address this issue we propose nonlinear MPC schemes for the regula-
tion and economic optimization objectives for MFD-based perimeter
control with closed-loop stability by construction. To serve as a non-
predictive benchmark controller, a discrete-time CLF-based controller is
also proposed. The proposed methods enable stabilization and conges-
tion control in city-scale urban road traffic networks. Such large scale
systems are difficult to model and control via conventional link-level
methods due the sheer physical size and resulting exceedingly high
dimensional models. By controlling only a subset of traffic lights, the
perimeter flow actuation method (i.e., perimeter control) is capable of
effective actuation of aggregated traffic flows between neighborhood-
scale areas (i.e., regions). Considering aggregated traffic dynamics via
macroscopic fundamental diagram yields control-oriented dynamical
models in low dimensions enabling development of model-based con-
trol and estimation methods. Straightforward field implementation of
such advanced city traffic control systems are made possible by in-
tegrating the perimeter flow actuators and the predictive controllers
with real-time measurements from loop detectors dispersed over the
controlled areas and at the region boundaries. The proposed methods,
facilitating stabilization and efficient congestion recovery for city-scale
networks, are shown to have strong potential for practice via exten-
sive aggregated (macroscopic) and detailed (microscopic) simulations,
examining the performance and domain of attraction properties of
the controllers. Microscopic simulations involve a realistic representa-
tion of downtown Barcelona, containing more than 600 traffic lights
and 1500 road links carrying traffic of tens of thousands of vehicles,
highlight the field implementation potential of the proposed control
methods for improving efficiency and reliability of city-scale urban
road traffic.

2. Modeling

Consider a city-scale road traffic network, consisting possibly of
hundreds of links and intersections carrying the traffic of thousands
of vehicles, with heterogeneous distribution of congestion on its links.
Using the MFD, it is possible to express the rate of vehicles exiting
traffic in a neighborhood-sized area (i.e., a region) of the network as a
function of the number of vehicles (i.e., accumulation) in the region.
Note that a vehicle can exit the traffic in a region either through
ending the trip inside the region or transferring to an adjacent region.
Clustering algorithms developed for such large-scale road networks
can be used to partition the network into a set of regions to obtain
low intraregional heterogeneity of accumulation (see Saeedmanesh &
Geroliminis, 2016). A homogeneous distribution of congestion in the
resulting set of regions leads to a regional MFD that is well-defined,
i.e., a low scatter of flows is observed for the same accumulation.
Empirical results indicate that the MFD can be approximated by an
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asymmetric unimodal curve skewed to the right, which can, for exam-
ple, be chosen as a third degree polynomial (the methods in this work
are not restricted by the functional form of the MFD):

𝑔𝑖(𝑥𝑖) = 𝑎𝑖𝑥
3
𝑖 + 𝑏𝑖𝑥

2
𝑖 + 𝑐𝑖𝑥𝑖, (1)

where 𝑥𝑖 (vehicles; abbreviated henceforth as veh) is the accumulation
of region 𝑖, 𝑔𝑖(𝑥𝑖) (veh/s) is the trip completion flow of the region
(i.e., rate of vehicles exiting traffic), whereas 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are MFD
parameters.

Consider a network consisting of a set of regions  = {1, 2,… , 𝑅},
where  is the set containing the index of each region while 𝑅 is
the number of regions in the network. Associating each region with
a well-defined MFD, aggregated dynamical models of large-scale road
traffic networks can be developed based on interregional traffic flows
via following vehicle conservation equations (Ramezani et al., 2015):

𝑥̇𝑖𝑖(𝜏) = 𝑑𝑖𝑖(𝜏) − 𝑚𝑖𝑖(𝜏) +
∑

ℎ∈𝑖

𝑢ℎ𝑖(𝜏)𝑚ℎ𝑖𝑖(𝜏) (2a)

̇ 𝑖𝑗 (𝜏) = 𝑑𝑖𝑗 (𝜏) −
∑

ℎ∈𝑖

𝑢𝑖ℎ(𝜏)𝑚𝑖ℎ𝑗 (𝜏) +
∑

ℎ∈𝑖 ;ℎ≠𝑗
𝑢ℎ𝑖(𝜏)𝑚ℎ𝑖𝑗 (𝜏), (2b)

where 𝜏 ∈ R≥0 is the real time, 𝑥𝑖𝑖 ∈ R (veh) and 𝑥𝑖𝑗 ∈ R (veh) are
state variables expressing the accumulation in region 𝑖 with destination
region 𝑖 and 𝑗, respectively (with 𝑥𝑖 =

∑𝑅
𝑗=1 𝑥𝑖𝑗), 𝑑𝑖𝑖 ∈ R (veh/s) and

𝑑𝑖𝑗 ∈ R (veh/s) are (possibly measured) disturbances expressing the
rate of vehicles appearing in region 𝑖 demanding trips to destination
region 𝑖 and 𝑗, respectively, 𝑢𝑖ℎ ∈ [u, 𝑢̄] ⊂ R (with 0 ≤ u < 𝑢̄ ≤ 1)
re control inputs expressing actions of perimeter control actuators
etween each pair of adjacent regions 𝑖 and ℎ (with ℎ ∈ 𝑖; where
𝑖 is the set of regions adjacent to 𝑖) that can manipulate vehicle

lows transferring between the regions, 𝑚𝑖ℎ𝑗 (veh/s) is the vehicle flow
ttempting to transfer from 𝑖 to ℎ with destination 𝑗:

𝑖ℎ𝑗 ≜ 𝜃𝑖ℎ𝑗
𝑥𝑖𝑗
𝑥𝑖

𝑔𝑖(𝑥𝑖), (3)

where 𝜃𝑖ℎ𝑗 ∈ [0, 1] ⊂ R is the route choice term expressing, for the
vehicles exiting region 𝑖 with destination 𝑗, the ratio that is transferring
to region ℎ (with 𝑚ℎ𝑖𝑖 and 𝑚ℎ𝑖𝑗 defined similarly), whereas 𝑚𝑖𝑖 (veh/s)
s the exit (i.e., internal trip completion) flow of region 𝑖:

𝑖𝑖 ≜
𝑥𝑖𝑖
𝑥𝑖

𝑔𝑖(𝑥𝑖). (4)

Recently, several authors introduced the so-called trip based model
s an alternative description of congestion dynamics (see Arnott, 2013;
atista & Leclercq, 2019; Daganzo & Lehe, 2015; Lamotte & Geroli-
inis, 2018; Leclercq & Paipuri, 2019). Based on the speed MFD,

uch models avoid the steady-state approximation between outflow and
roduction. Trip-based models are computationally more demanding
han accumulation-based models using a production-over-trip-length
PL) approximation for outflow MFDs (such as the one used in this
aper). They may cause intractability when used for model-based con-
rol methods, and they cannot be written in a compact ODE form. Yet,
rip-based models also provide a sounder treatment of urban traffic
ropagation phenomena, avoiding some artifacts associated with PL-
ased models, such as the temporary reduction of experienced travel
ime that can follow a demand surge (see Lamotte & Geroliminis, 2016).

recent paper by Mariotte et al. (2017) contains analyses of some of
hese issues, however focuses primarily on the consequences of a non-
tationary inflow with homogeneous trip length. Nevertheless, such
odels require full knowledge of the trip length distributions, and, due

o the complex dynamics with a high dimensional state space, would
otentially cause model-based estimation control methods using such
odels to suffer from excessive computational burden.

Route choice effect can be omitted in modeling if the network
opology leads to a single obvious regional route choice, in which case
𝑖ℎ𝑗 = 1 for all time for only one region ℎ ∈ 𝑖 for each 𝑖-𝑗 pair

(with 𝑗 ≠ 𝑖). The focus in this paper is on those networks where route
choice can be omitted (see Sirmatel & Geroliminis, 2018 for a study
3

where it is included). Effects of perimeter control on queuing vehicles
at the boundary is another important issue that needs consideration.
Microscopic simulations have shown that perimeter control does not
cause strong local boundary heterogeneity if green light duration is
properly distributed by considering the capacity of intersections (see,
e.g., Keyvan-Ekbatani et al., 2015b or Kouvelas et al., 2017a). There
are works focusing on modeling and control of MFDs systems that also
take boundary queue dynamics into account (see Haddad, 2017b and Ni
& Cassidy, 2019). Extension of the methods proposed in this paper to
include boundary queue models can be considered for possible future
research.

The dynamics (2) can be written in a compact form in discrete time
as:

𝑥(𝑡 + 1) = 𝐹 (𝑥(𝑡), 𝑑(𝑡), 𝑢(𝑡)) (5)

here 𝑡 ∈ N0 is the sampled real time, 𝑥 ∈ R𝑛𝑥 (state) and 𝑑 ∈ R𝑛𝑥

disturbance) are the vectors of accumulation states (i.e., 𝑥𝑖𝑖 and 𝑥𝑖𝑗)
nd inflow demands (i.e., 𝑑𝑖𝑖 and 𝑑𝑖𝑗), respectively, and 𝑢 ∈ R𝑛𝑢 (control
nput) is the vector of perimeter control inputs (i.e., 𝑢𝑖ℎ).

. Stabilizing model-based perimeter control

.1. Congestion recovery scenario

In practice, challenging traffic scenarios for urban road networks
re usually those where the demands are so high that the system does
ot have an equilibrium. Such scenarios are typically replicated using
nflow demand trajectories that are trapezoidal in time (i.e., starts with
ero or low values, rises to high values and stays there for some time,
nd then falls to zero or low values). Simulation-based analysis of such
igh demand scenarios with trapezoidal trajectories can be found in
ost works on feedback perimeter control (see Geroliminis et al., 2013;
amezani et al., 2015; Sirmatel & Geroliminis, 2019). Here we consider
different traffic scenario that we term congestion recovery. This

cenario facilitates use of MPC methods with stability by construction
roperties which require assuming existence of an equilibrium. The
ongestion recovery scenario can be thought of as starting from the
art of the trapezoidal demand scenario where the demands returned
o low values (so that an equilibrium exists), however accumulations
an be high due to recent high demands. The objective of the traffic
ontrol system then is to recover the system from possibly high levels
f congestion (i.e., high accumulations as initial state) and steer the sys-
em towards the equilibrium point corresponding to the low demand.
uch a scenario is interesting from both the traffic engineering and
ontrol systems points of view, since successful congestion recovery
rom high accumulations is desirable for building high performance
raffic control systems, whereas it corresponds exactly to the problem
f stabilization of a constrained nonlinear system from the control
ystems point of view, for which there exists works yielding stability
y construction for MPC formulations. Congestion recovery scenar-
os considering many possible starting accumulation values (as initial
tates) corresponds then to constructing the domain of attraction of the
losed loop system. Analysis and stabilizing perimeter control design
onsidering time-varying demand profiles is an important direction for
uture research.

.2. Control tasks for feedback perimeter control

In feedback perimeter control the goal is to develop traffic con-
rol systems for efficient congestion management in large-scale urban
oad networks with perimeter control actuation. Although the ultimate
verall objective for quantitative performance can be formalized as
inimizing the total time spent (TTS) for all vehicles using the network,

he objective function used in control design can be formulated in
arious ways. Considering the connections to traffic control, here we
riefly describe the central task of stabilization alongside two control
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objectives that are directly applicable to feedback perimeter control,
namely regulation and economic optimization. We note here that we
use the term stability purely in the control theoretical sense, i.e., closed-
loop stability of the dynamical system under feedback loop with a given
controller, and not specifically in the sense of traffic flow stability.

Stabilization involves imparting the closed-loop system with stabil-
ity, which is a control theoretical property that can roughly be stated
as the capability of the system for returning to an equilibrium from an
initial state. Closed-loop stability is the most important property for a
control system, as reliable and efficient operation cannot be achieved if
the system is unstable. Regulation involves the standard control task of
steering the state of a dynamical system from an initial state to a desired
equilibrium point. Considering a constant inflow demand 𝑑(𝑡) = 𝑑𝑠
hat is small enough to yield an equilibrium (i.e., a constant feasible
emand, see Zhong et al., 2018b), and the corresponding values of
ccumulation state and perimeter control input 𝑥𝑠 and 𝑢𝑠 at equilibrium
i.e., 𝑥𝑠 = 𝐹 (𝑥𝑠, 𝑑𝑠, 𝑢𝑠)), the regulation problem can be stated as steering
he system to the equilibrium point (𝑥𝑠, 𝑢𝑠). From the traffic engineering
oint of view, regulation corresponds to bringing the accumulation of
he urban network from an arbitrary initial (possibly highly congested)
tate back to operation at equilibrium. Economic optimization involves
ormulating the control objective to correspond directly to the desired
conomically optimal system operation. Economically optimal traffic
etwork operation can be formalized via the commonly used objective
unction describing TTS in the network, corresponding to the stage
ost 𝟏𝑇 𝑥. Multiplied by the sampling time and summed over time,
his stage cost yields the TTS by all vehicles in the network. We note
ere that economic optimization is meant in the sense of economic
PC (Rawlings & Amrit, 2009), i.e., using objective functions that are,

nlike the case with regulation, not necessarily positive definite with
espect to the desired equilibrium.

For MFDs systems, any steady state 𝑥𝑠 for which the regional
ccumulations are less than or equal to their corresponding critical
ccumulations is desirable in general. Such a traffic state would mean
hat all regions are operating in free flow traffic conditions, which
orresponds to the situation where vehicles are traveling at the free
low (i.e., maximum possible) speed. In particular, comparing two such
teady state points, the one with the lower total accumulation would be
esirable since it corresponds to a safer condition with lower sustained
oading of the network. A secondary consideration might be to have a
teady state for which the regional accumulations are similar, so that
he network load is balanced. We consider here a simple approach
or choosing the steady state 𝑥𝑠: We assume a known fixed inflow

demand vector 𝑑𝑠 that is feasible, i.e., the demand is low enough for the
equation 𝑥𝑠 = 𝐹 (𝑥𝑠, 𝑑𝑠, 𝑢𝑠) to have a solution for a given 𝑢𝑠 satisfying
u ≤ 𝑢 ≤ 𝑢̄. We then choose a steady-state control input 𝑢𝑠 which is not
too small, so as not to be too restrictive on traffic, and which is in the
interior of the input constraints set defined by u ≤ 𝑢 ≤ 𝑢̄ (as required
by Chen & Allgöwer, 1998 and Amrit et al., 2011). Then, given these
fixed values of 𝑑𝑠 and 𝑢𝑠, solving 𝑥𝑠 = 𝐹 (𝑥𝑠, 𝑑𝑠, 𝑢𝑠) yields the steady state
𝑥𝑠. In practice it might be difficult to know the fixed inflow demand 𝑑𝑠
accurately, although it can be estimated without measuring it directly,
see Sirmatel and Geroliminis (2019). Furthermore, inflow demand 𝑑(𝑡)
is usually time-varying, resulting also in the steady state 𝑥𝑠 being time-
varying. However the main objective in congestion recovery control
is to bring the network back from highly congested conditions to an
equilibrium condition instead of arriving exactly at the desired steady
state 𝑥𝑠, thus reasonable errors in 𝑑𝑠 and the resulting steady-state error
are not critical for successful congestion recovery. Nevertheless, the
case of unknown and time-varying inflow demands can be treated by
including them as state variables in state estimation, which is addressed
in Section 3.6.
4

3.3. Control Lyapunov function-based controller

A function 𝑉 is a discrete-time exponentially stabilizing CLF (see
grawal & Sreenath, 2017) for the system in Eq. (5), if there exists
ositive constants 𝑐1, 𝑐2, 𝑐3 and a control input 𝑢(𝑡) (with u ≤ 𝑢(𝑡) ≤ 𝑢̄)

for all 𝑥(𝑡) (with 0 ≤ 𝑥(𝑡) ≤ 𝑥̄) such that

𝑐1‖𝑥(𝑡) − 𝑥𝑠‖
2 ≤ 𝑉 (𝑥(𝑡) − 𝑥𝑠) ≤ 𝑐2‖𝑥(𝑡) − 𝑥𝑠‖

2 (6)

𝑉 (𝑥(𝑡 + 1) − 𝑥𝑠) − 𝑉 (𝑥(𝑡) − 𝑥𝑠) + 𝑐3‖𝑥(𝑡) − 𝑥𝑠‖
2 ≤ 0. (7)

A straightforward choice for a Lyapunov function satisfying Eq. (6)
s 𝑉 (𝑥(𝑡)−𝑥𝑠) = ‖𝑥(𝑡)−𝑥𝑠‖2. A CLF-based controller (CLF-C) that renders
𝑥𝑠, 𝑢𝑠) exponentially stable for the system (5) by explicitly enforcing
q. (7) can be designed in the form of the following constrained
ptimization problem (based on the method of Agrawal & Sreenath,
017) with a regulation objective:

inimize𝑢 ‖𝑥+ − 𝑥𝑠‖
2
𝑄𝑙

+ ‖𝑢 − 𝑢𝑠‖
2
𝑅𝑙

(8)

subject to 𝑉 (𝑥+) − 𝑉 (𝑥̃(𝑡)) ≤ −𝑐3‖𝑥‖2 (9)

𝑥+ = 𝐹 (𝑥̃(𝑡), 𝑑𝑠, 𝑢) (10)

u ≤ 𝑢 ≤ 𝑢̄, (11)

where 𝑥+ is the one-step ahead predicted state, 𝑄𝑙 ∈ R𝑛𝑥×𝑛𝑥 and 𝑅𝑙 ∈
R𝑛𝑢×𝑛𝑢 are positive-definite, symmetric weighting matrices expressing
the regulation objective, 𝑥̃(𝑡) is the information about the state 𝑥(𝑡)
(either measured or estimated) available at time step 𝑡, while 𝑐3 is a
positive constant, which can be tuned for ensuring a desired decay rate
for the Lyapunov function (see §II.C in Galloway et al., 2015). Although
not considered in this paper, design of Lyapunov functions is possible
via, e.g., convex optimization-based methods considering objectives
related to maximizing the decay rate or the domain of attraction
size (see Johansen, 2000). Furthermore, it is also possible to consider
improving control performance by using more sophisticated CLF-C
formulations, for example by considering interpolation among several
controllers (see, e.g., Rubin et al., 2020). Investigating improved CLF-C
formulations for perimeter control via better design of the Lyapunov
function and control algorithms can be an interesting direction for
future research.

Using the CLF-C formulation it is possible to design feedback
perimeter controllers addressing the tasks of stabilization and regula-
tion. The problem (8) is a nonconvex nonlinear optimization problem of
relatively small size, yielding a computationally efficient formulation.
It can find potential use in situations where MPC might be unusable due
to prohibitive computational burden (e.g., for MFDs systems with many
regions; see computational efficiency results in Sirmatel & Geroliminis,
2018). Owing to lack of predictions, however, the CLF-C is restricted to
myopic decisions and thus should not be expected to outperform MPC
in terms of control performance.

3.4. Regulatory model predictive control

We consider here an MPC formulation addressing the regulation
problem in feedback perimeter control, which involves steering the
system state to a desired equilibrium (𝑥𝑠, 𝑢𝑠). From the traffic engi-
neering point of view, this corresponds to steering the accumulation
of the urban network from an arbitrary (possibly highly congested)
initial state to the equilibrium. The regulation problem can be cast as
a nonlinear MPC formulation as follows:

minimize
{𝑢𝑘}

𝑁p−1
𝑘=0

𝑁p−1
∑

𝑘=0
‖𝑥𝑘 − 𝑥𝑠‖

2
𝑄𝑟

+ ‖𝑢𝑘 − 𝑢𝑠‖
2
𝑅𝑟

(12)

ubject to 𝑥0 = 𝑥̃(𝑡) (13)

for 𝑘 = 0,… , 𝑁p − 1 ∶ (14)
𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑑𝑠, 𝑢𝑘) (15)
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u ≤ 𝑢 ≤ 𝑢̄, (16)

here 𝑘 ∈ N0 is the time interval counter, 𝑁p is the prediction
orizon, while 𝑄𝑟 ∈ R𝑛𝑥×𝑛𝑥 and 𝑅𝑟 ∈ R𝑛𝑢×𝑛𝑢 are symmetric positive-
efinite weighting matrices defining the regulation stage cost express-
ng quadratic penalty on deviations from the equilibrium.

As is well-known in control literature (see Bitmead et al., 1990),
losed-loop stability is not guaranteed using the MPC scheme Eq. (12).
ne of the standard approaches for establishing stability of the closed-

oop under nonlinear regulatory MPC is the quasi-infinite horizon
onlinear MPC method proposed in Chen and Allgöwer (1998). This
ethod involves adding a suitable terminal cost and a terminal state

onstraint to the regulatory nonlinear MPC problem (12), yielding the
ollowing formulation addressing the stabilization and regulation tasks:

minimize
{𝑢𝑘}

𝑁p−1
𝑘=0

𝑁p−1
∑

𝑘=0
‖𝑥𝑘 − 𝑥𝑠‖

2
𝑄𝑟

+ ‖𝑢𝑘 − 𝑢𝑠‖
2
𝑅𝑟

+ ‖𝑥𝑁p − 𝑥𝑠‖
2
𝑃𝑟

(17)

ubject to 𝑥0 = 𝑥̃(𝑡) (18)

for 𝑘 = 0,… , 𝑁p − 1 ∶ (19)

𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑑𝑠, 𝑢𝑘) (20)

u ≤ 𝑢 ≤ 𝑢̄ (21)

𝑥𝑁p ∈ 𝛺𝑟, (22)

here 𝑃𝑟 ∈ R𝑛𝑥×𝑛𝑥 is a symmetric positive-definite weighting matrix
efining the terminal cost, whereas 𝛺𝑟 is the terminal constraint set
efined as (Chen & Allgöwer, 1998):

𝑟 = {𝑥 ∈ R𝑛𝑥
|𝑥T𝑃𝑟𝑥 ≤ 𝛼𝑟}, (23)

ith 𝛼𝑟 a positive constant.
Suppose that 𝑃𝑟 and 𝛼𝑟 are chosen such that Chen and Allgöwer

1998): (a) The terminal region 𝛺𝑟 is control invariant for the system
nder a fictitious local linear feedback 𝑢 = 𝑢𝑠 +𝐾(𝑥− 𝑥𝑠) (i.e., once the

state 𝑥 is inside 𝛺𝑟, it will stay inside, with the control input constraints
satisfied for the local feedback, forever), (b) the terminal cost ‖𝑥−𝑥𝑠‖2𝑃𝑟
rovides an upper bound for the infinite horizon cost (incurred for
he original stage cost ‖𝑥(𝑡) − 𝑥𝑠‖2𝑄𝑟

+ ‖𝑢(𝑡) − 𝑢𝑠‖2𝑅𝑟
) under the local

eedback. Provided that the formulation and the dynamics satisfy some
urther assumptions (such as the dynamics being twice continuously
ifferentiable), and if the problem is feasible at the first time step
i.e., at 𝑡 = 0), then the system under closed-loop with the MPC (17) is
symptotically stable with a domain of attraction containing all initial
tates for which (17) is feasible (see Chen & Allgöwer, 1998 for a full
iscussion and the stability proof). The terminal ingredients 𝑃𝑟 and 𝛼𝑟
re to be chosen to satisfy the control invariance property, and there are
everal methods in the literature to compute them (see Chen et al., 2003
or a method considering ellipsoidal terminal regions based on solving a
eries of semidefinite optimization problems, and Cannon et al., 2003
or a method considering polytopic terminal regions). In particular,
he method of Chen et al. (2003) (which is also used here) consid-
rs constructing a convex semidefinite optimization problem which
nvolves simultaneously searching over the gain of a linear controller
nd an ellipsoidal set 𝛺𝑟, with the objective of maximizing the volume
f 𝛺𝑟. The set is constructed to be control invariant under the linear
ontroller, and inside the set the linear controller is stabilizing for the
onlinear system while satisfying state and input constraints.

Note that the quasi-infinite horizon NMPC method of Chen and
llgöwer (1998) is proposed for continuous-time nonlinear systems,
owever the example provided also in Chen and Allgöwer (1998)
s implemented by taking a discrete-time formulation without any
pecial modification of the method. We take the same approach in
his paper to facilitate straightforward use of the method in practical
mplementation.

Using the quasi-infinite horizon regulatory MPC formulation
RMPC) it is possible to design feedback perimeter controllers address-
ng the tasks of stabilization and regulation. In addition to the recursive
5

easibility and closed-loop stability properties ensured by its construc-
ion, this formulation has the following important advantages (Chen &
llgöwer, 1998): (i) It yields the largest domain of attraction possible

or a given terminal region 𝛺𝑟, as it ensures closed-loop stability for all
nitial states for which a system trajectory beginning at the initial state
nd terminating inside the terminal region 𝛺𝑟 exists (i.e., for which

the problem (17) is feasible). (ii) Globally optimal solutions are not
required for achieving closed-loop stability; only feasible solutions are
required. This is important because due to the nonlinear dynamics (5)
the problem (17) is nonconvex and thus it is generally not possible to
solve it to global optimality in real-time.

3.5. Economic model predictive control

We consider here an MPC formulation addressing the economic
optimization problem for feedback perimeter control. Viewed together
with the stabilization task, the economic optimization problem involves
steering the system state from an initial state to the desired equilib-
rium while trying to approximate an economically optimal closed-loop
system trajectory. From the traffic engineering point of view, the eco-
nomic optimization problem corresponds to steering the accumulation
of the urban network from an arbitrary (possibly highly congested)
initial state to the equilibrium while attempting to achieve closed-loop
accumulation trajectories that correspond to minimal TTS.

The economic optimization problem, corresponding to minimizing
TTS for large-scale urban networks, can be cast as a nonlinear MPC
problem as follows:

minimize
{𝑢𝑘}

𝑁p−1
𝑘=0

𝑁p−1
∑

𝑘=0
𝟏𝑇 𝑥𝑘 (24)

ubject to 𝑥0 = 𝑥̃(𝑡) (25)

for 𝑘 = 0,… , 𝑁p − 1 ∶ (26)

𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑑𝑠, 𝑢𝑘) (27)

u ≤ 𝑢 ≤ 𝑢̄. (28)

Similar to the case with regulatory MPC, the economic MPC formu-
lation in Eq. (24) does not guarantee closed-loop stability. Closed-loop
under economic nonlinear MPC can be established using the economic
MPC formulation involving terminal cost and constraints proposed
in Amrit et al. (2011). This method involves adding a suitable ter-
minal cost and a terminal state constraint to the economic nonlinear
MPC problem (24), yielding the following formulation addressing the
stabilization and economic optimization tasks:

minimize
{𝑢𝑘}

𝑁p−1
𝑘=0

𝑁p−1
∑

𝑘=0
𝟏𝑇 𝑥𝑘 + ‖𝑥𝑁p − 𝑥𝑠‖

2
𝑃𝑒

(29)

subject to 𝑥0 = 𝑥̃(𝑡) (30)

for 𝑘 = 0,… , 𝑁p − 1 ∶ (31)

𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑑𝑠, 𝑢𝑘) (32)

u ≤ 𝑢 ≤ 𝑢̄ (33)

𝑥𝑁p ∈ 𝛺𝑒, (34)

where 𝑃𝑒 ∈ R𝑛𝑥×𝑛𝑥 is a symmetric positive-definite weighting matrix
defining the terminal cost and 𝛺𝑒 is the terminal constraint set defined
as (Amrit et al., 2011):

𝛺𝑒 = {𝑥 ∈ R𝑛𝑥
|𝑥T𝑃𝑒𝑥 ≤ 𝛼𝑒}, (35)

with 𝛼𝑒 a positive constant. Similar to the case with the stabilizing
regulatory MPC (17), provided that 𝑃𝑒 and 𝛼𝑒 are chosen in such a
way that 𝛺𝑒 has n control invariance property, asymptotic stability of
the closed-loop system are ensured by construction of the optimization
problem (29) if it has a feasible solution at the first time step (i.e., at
𝑡 = 0) (see Amrit et al., 2011 for a full discussion, stability proof, and
a method to choose the terminal ingredients 𝑃 and 𝛼 ).
𝑒 𝑒
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3.6. Integrated state estimation and control

Presence of substantial measurement noise in practice might ad-
versely affect control performance, necessitating the use of state esti-
mators. Presence of additive process and measurement noise can be
modeled by writing the dynamics (5) and measurement as:

𝑥(𝑡 + 1) = 𝐹 (𝑥(𝑡), 𝑑(𝑡), 𝑢(𝑡)) +𝑤(𝑡) (36)

𝑦(𝑡) = 𝑥(𝑡) + 𝑣(𝑡) (37)

where 𝑤 ∈ R𝑛𝑥 is the process noise expressing uncertainty in the
ynamics (with 𝑤 ∼  (0, 𝛴𝑤)), 𝑦 ∈ R𝑛𝑥 is the vector of measurements
n 𝑥, whereas 𝑣 ∈ R𝑛𝑥 is the measurement noise vector (with 𝑣 ∼
(0, 𝛴𝑣). A nonlinear state estimator can then be constructed in the

orm of the following MHE problem (based on Sirmatel & Geroliminis,
019):

minimize
𝑤𝑘

−1
∑

𝑘=−𝑁e

‖𝑤𝑘‖
2
𝛴−1
𝑤

+
0
∑

𝑘=−𝑁e

‖𝑣𝑘‖
2
𝛴−1
𝑣

(38)

ubject to for 𝑘 = −𝑁e,… , 0 ∶ (39)

𝑣𝑘 = 𝑦(𝑡 + 𝑘) − 𝑥𝑘 (40)

𝑥𝑘 ∈  (41)

for 𝑘 = −𝑁e,… ,−1 ∶ (42)

𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑑𝑠, 𝑢(𝑡 + 𝑘)) +𝑤𝑘 (43)

where 𝑁e is estimation horizon, 𝑡 is the current time step, 𝛴𝑤 and
𝛴𝑣 are covariance matrices of the process and measurement noise,
respectively, whereas the set  denotes known physical constraints on
the state such as accumulations being non-negative. A detailed study on
MFD-based MHE formulations considering incomplete measurements
and inflow demand estimation can be found in Sirmatel and Geroliminis
(2019).

In practice, the inflow demands 𝑑(𝑡) can be unknown and time-
varying, and it might be impossible to measure them due to lack of
appropriate sensors or privacy issues. However, the perimeter control
methods discussed in this paper necessitate having information on the
demands, as it is required both for the prediction models and for
calculating the equilibrium state 𝑥𝑠. Even if the demands are unknown,
they can be estimated via including them in state estimation as con-
stant but unknown state variables, leading to the following augmented
dynamical model (following the approach in Sirmatel & Geroliminis,
2019):

𝑥(𝑡 + 1) = 𝐹 (𝑥(𝑡), 𝑑(𝑡), 𝑢(𝑡)) +𝑤(𝑡) (44)

𝑑(𝑡 + 1) = 𝑑(𝑡) +𝑤𝑑 (𝑡) (45)

where 𝑤𝑑 ∈ R𝑛𝑥 is a process noise term representing the uncertainty
in modeling the inflow demands as constant. Although potentially
inaccurate when the inflow demands have strong sustained fluctuations
in time, such an approach is shown in Sirmatel and Geroliminis (2019)
to be reasonably well performing for the cases where complete or
partial measurements (i.e., 𝑞𝑖 =

∑

𝑗∈ 𝑞𝑖𝑗 are measured) are available
on the inflow demands.

A traffic management scheme integrating state estimation and con-
trol can be designed using the estimator given in Eq. (38) together with
one of the controllers presented in Eqs. (8), (17) and (29). Operation
of the scheme is formalized in Algorithm 1.

The problems in Eqs. (8), (12) and (24) are nonconvex nonlinear
optimization problems, which can be solved reliably and efficiently via,
e.g., sequential quadratic programming or interior point solvers (for
details, see Diehl et al., 2009). Using the dynamics (2) for a network
with a reasonable size, the problem (17) is real time tractable (i.e., the
CPU time needed to solve one instance of the problem is around a
couple of seconds and thus negligible compared to the usual sampling
time values of around 90 seconds that are chosen equal to the length
6

Algorithm 1 Operation of state estimation and control.
Initialize simulation from 𝑥(0) at 𝑡 = 0. Then, at each time step 𝑡:
(1) Given measurements {𝑦(𝑡 + 𝑘)}0𝑘=−𝑁e

and control inputs {𝑢(𝑡 +
𝑘)}−1𝑘=−𝑁e

, solve the MHE problem (38) to obtain the state estimate
𝑥̂(𝑡).

2) Using the state estimate as available information, i.e., 𝑥̃(𝑡) = 𝑥̂(𝑡),
solve the optimization problem (either one of Eqs. (8), (17) and (29))
to obtain control input 𝑢(𝑡).

(3) Apply the control input 𝑢(𝑡) to the plant; if simulating, evolve
system dynamics given in Eq. (5).

Repeat steps 1, 2, and 3 for 𝑡 ∈ Z≥0 up to 𝑡final.

of the traffic light cycle; see computational efficiency results in §III.B
of Sirmatel & Geroliminis, 2018 for a network with 7 regions). For MFD
networks with many regions, the formulations might lose computa-
tional tractability. Another challenge (even if computational efficiency
could be improved through stronger software and/or hardware) is that
a large number of regions will require a more careful treatment of route
choice which will require a dynamical model with higher complexity,
causing difficulties in both control/estimator design (due to increased
state and input dimensions and model complexity) and instrumentation
(due to increased number and sophistication of required sensors and
actuators).

4. Results

In this section we examine the performance and domain of attrac-
tion properties of the controllers presented in Section 3 by computer
simulations. We construct scenarios where the concern is to recover the
city traffic from highly congested conditions and steer it back to oper-
ating at equilibrium. Detailed analyses are provided for two individual
congested scenarios for both macroscopic and microscopic simulation
(considering a single initial state for each). Extensive macroscopic
simulations are used to construct domains of attraction (by creating
a grid on the regional accumulation space and using each grid point
as the initial state for a simulation experiment), for cases of control
under no uncertainty, control under uncertainty, and control under
uncertainty with joint state estimation.

4.1. Network description and simulation setup

We consider a two-region MFDs network for macroscopic simula-
tions (see Fig. 1(a)), where the plant representing reality is a macro-
scopic simulator built via Eq. (5). The peripheral region (region 1)
having jam accumulation of 𝑛jam

1 = 26800 veh, a critical accumulation
of 𝑛cr

1 = 8933 veh, and a capacity flow of 𝑔1(𝑛cr
1 ) = 20.15 veh/s, while

the central region (region 2) has a jam accumulation of 𝑛jam
2 = 22000

veh, a critical accumulation of 𝑛cr
2 = 7333 veh, and a capacity flow

of 𝑔2(𝑛cr
2 ) = 14.4 veh/s. The perimeter control input constraints are

𝑢min = 0.1 and 𝑢max = 0.9. To yield an equilibrium point, we can chose
first the inflow demands as 𝑞11,𝑠 = 6 veh/s, 𝑞12,𝑠 = 5 veh/s, 𝑞21,𝑠 = 4
veh/s, 𝑞22,𝑠 = 2 veh/s, which represent moderate feasible demand, and
the perimeter control inputs at the equilibrium are chosen as 𝑢12,𝑠 =
0.60 and 𝑢12,𝑠 = 0.62, which represent usual values in uncongested
operation. From 𝑥𝑠 = 𝐹 (𝑥𝑠, 𝑑𝑠, 𝑢𝑠), we obtain the accumulation states
at the equilibrium as 𝑛11,𝑠 = 3232 veh, 𝑛12,𝑠 = 2649 veh, 𝑛21,𝑠 =
2581 veh, 𝑛22,𝑠 = 2763 veh, corresponding to equilibrium regional
accumulations 𝑛1,𝑠 = 5881 veh and 𝑛2,𝑠 = 5344 veh. For the microscopic
simulations, MFD parameters (i.e., 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 in Eq. (1)) required for
the prediction model are found by fitting third degree polynomial to
accumulation versus outflow data taken from a microscopic simulation
experiment with no control. Sampling time is chosen as 𝑇 = 90 s to
reflect a realistic value of traffic light cycle duration. Terminal costs

and constraints required for the stabilizing MPC formulations Eqs. (12)
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Fig. 1. (a) Schematic representation of a two region network. (b) Microscopic simulation (Aimsun) model of a real traffic network, with clustering results as links (region 1 in
yellow and region 2 in purple) and controlled intersections as disks (intersections belonging to 𝑢12 in blue and 𝑢21 in red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
and (24) are computed considering the problem data and using the
methods proposed in Chen et al. (2003) and Amrit et al. (2011), for
the regulatory and economic NMPC formulations, respectively. The
parameter 𝑐3, specifying the decay rate for the CLF-C, is chosen as 10−8

to choose a value that yields a large domain of attraction. Additional
simulation studies (which we omit for brevity) revealed that the results
do not change significantly when 𝑐3 varies within the range 10−8 ≤
𝑐3 ≤ 10−2; there are no substantial changes in either the domain of
attraction or regulation performance within this range. Increasing 𝑐3
beyond 10−2 results in noticeable decrease in the domain of attraction
size, with virtually no improvement in regulation performance. Further
research on CLF-based perimeter control schemes is needed to examine
these in detail.

Due to being computationally lightweight (with a single no con-
trol simulation experiment taking less than a second), macroscopic
simulations are essential for being able to conduct large numbers of
repetitions such as those required for numerically constructing the do-
mains of attraction. Nevertheless, evaluating traffic control algorithms
for achieving reasonable trust in their practical performance requires
the use of microscopic simulations. While macroscopic simulations
simply make use of numerical integration employing the dynamical
equations (such as those given in Eq. (2)), microscopic simulations
involve sophisticated traffic simulation software that can simulate the
behavior of individual vehicles with human drivers. Such simulations
are capable of generating results of traffic scenarios with tens of thou-
sands of vehicles interacting with each other and an urban road traffic
network taken from a real city. An important downside to microscopic
simulations is their excessive computational burden, with a single
simulation experiment requiring hours to finish execution.

For microscopic simulations we also consider a two region urban
road traffic network (see 1), where the plant representing reality is a
model replicating a real traffic network having around 1500 links and
600 intersections using the microscopic simulation package Aimsun.
The model represents a portion of the urban network of the city of
Barcelona in Spain, with an area of 12 km2, which is partitioned into
two regions using the optimization-based clustering method of Saeed-
manesh and Geroliminis (2016). The simulations involve vehicles that
adapt to traffic conditions and dynamically update their routes using
real-time traffic information and a predefined dynamic traffic assign-
ment strategy. Only a subset of the traffic signals (25 out of 600; see
the disks in 1) at the boundary of the two regions are used as actuators
of the developed controllers (as per the perimeter control approach),
while the remaining operate with pre-timed signals. Control inputs
7

are implemented by changing the ratio of durations of green and red
lights accordingly for the corresponding intersections. For example, if a
control input value of 𝑢12(𝑡) = 0.7 is computed, the green and red light
durations are set to 63 and 27 s for the 90 s period between time steps
𝑡 and 𝑡+1, respectively, for the intersections belonging to the perimeter
control input 𝑢12 (i.e., the blue disks in 1). Actual fixed-time plans of
the city (as captured by the microscopic simulation model) are applied
to the rest of the intersections, i.e., those that are not connected to the
control inputs (for more details see Kouvelas et al., 2017a).

For ensuring that the economic stage cost 𝟏𝑇 𝑥𝑘 (expressing TTS)
conforms to the requirements of the economic MPC formulation with
guaranteed closed-loop stability as proposed in Amrit et al. (2011), it
is slightly modified as follows:

𝑙(𝑥𝑘, 𝑢𝑘) = 𝟏𝑇 𝑥𝑘 + 𝑙𝑒(𝑥𝑘, 𝑢𝑘), (46)

where 𝑙𝑒(⋅) is a regularization term that is needed to ensure strict
dissipativity of the system for the supply rate 𝑙(𝑥, 𝑢) − 𝑙(𝑥𝑠, 𝑢𝑠) (which is
required for closed-loop stability under the MPC (29); see definition
1 and assumption 4 in Amrit et al., 2011), which is chosen in the
following form:

𝑙𝑒(𝑥𝑘, 𝑢𝑘) = ‖𝑥𝑘 − 𝑥𝑒‖
2
𝑄𝑒

+ ‖𝑢𝑘 − 𝑢𝑒‖
2
𝑅𝑒
, (47)

where 𝑄𝑒 ∈ R𝑛𝑥×𝑛𝑥 , 𝑅𝑒 ∈ R𝑛𝑢×𝑛𝑢 , and 𝑃𝑒 ∈ R𝑛𝑥×𝑛𝑥 are symmetric
positive-definite weighting matrices expressing a quadratic penalty on
the deviations from the regularization point (𝑥𝑒, 𝑢𝑒). The numerical
values for the regularization term are chosen as 𝑄𝑒 = 0.1⋅𝐼 , 𝑅𝑒 = 100⋅𝐼 ,
𝑥𝑒 = 3000 ⋅ 𝟏 veh, and 𝑢𝑒 = 0.6 ⋅ 𝟏, which are chosen large enough by
trial-and-error to ensure strict dissipativity.

4.2. Congested scenario via macroscopic simulation

Here we examine a single traffic scenario, where the peripheral
region is initially highly congested, with the system having an initial
state of 𝑛11(0) = 8000 veh, 𝑛12(0) = 8000 veh, 𝑛21(0) = 0 veh, 𝑛22(0) = 0
veh. Results of four macroscopic simulation experiments showing tra-
jectories of accumulation state 𝑛𝑖𝑗 , perimeter control input 𝑢𝑖ℎ, regional
accumulations on 𝑛1-𝑛2 space, and total exit flow ∑

𝑖∈ 𝑚𝑖𝑖(𝑡), comparing
the CLF-C, stabilizing regulatory NMPC (RMPC), stabilizing economic
NMPC (EMPC), and purely economic NMPC (pure EMPC, i.e., Eq. (24)),
with the MPCs having a prediction horizon of 𝑁p = 40, are given in
Fig. 2, for a time period corresponding to about 4 hours of real time.

From the figure it can be seen that all controllers are successful in
steering the system state to an equilibrium, with the MPC controllers
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Fig. 2. Accumulation state 𝑛𝑖𝑗 , perimeter control input 𝑢𝑖ℎ, and total exit flow ∑

𝑖∈ 𝑚𝑖𝑖(𝑡) trajectories for a congested scenario obtained via macroscopic simulation, comparing
LF-based controller (blue), regulatory NMPC (red), economic NMPC (yellow), and purely economic NMPC (purple): (a) 𝑛11(𝑡), (b) 𝑛12(𝑡), (c) 𝑢12(𝑡), (d) 𝑛1(𝑡)-𝑛2(𝑡), (e) 𝑛21(𝑡), (f)
22(𝑡), (g) 𝑢21(𝑡), (h) 𝑚11(𝑡) + 𝑚22(𝑡). Dashed lines show equilibrium values, while for (d) dotted lines show the critical accumulations 𝑛cr

𝑖 . (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
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aving a substantially better performance. For all three stabilizing
ontrollers, stability is guaranteed by construction, as the controller
ormulations result in stabilizing closed-loop control if they are feasible
or the initial state, which is confirmed here in simulation. The impor-
ance of this from the traffic point of view is that stability is essential in
nsuring reliable and efficient operation of traffic control systems and
chieving high mobility in urban networks.

Note that the RMPC being able to bring the system to equilibrium
aster than EMPC is related to the fact that EMPC uses the modified
tage cost Eq. (46) instead of the purely economic one 𝟏𝑇 𝑥𝑘. This mod-
fication is required for using the economic MPC formulation of Amrit
t al. (2011) with guaranteed closed-loop stability; pure EMPC cannot
e used with the method of Amrit et al. (2011) as the purely economic
tage cost 𝟏𝑇 𝑥𝑘 does not yield strict dissipativity. Regulation perfor-
ance of the pure EMPC is comparable to that of the stabilizing RMPC,

oth of which are superior to that of the stabilizing EMPC. This suggests
hat exploring stability of other MPC formulations permitting use of
urely economic costs is an interesting direction for future research,
s it can potentially yield high performance stabilizing EMPC methods
or feedback perimeter control. Note also that these results are for the
ominal case where there is no modeling and measurement uncertainty,
nd for progress towards more practical feedback perimeter control
chemes, robust control formulations should be studied where uncer-
ainty is considered in the control problem formulation (see Haddad,
015 for a study considering robust perimeter control design using a
inear model). Note also that the pure EMPC converges to a different
quilibrium, which is related to the fact that the equilibrium 𝑥𝑠 is not
nique for fixed inflow demand 𝑑𝑠, since it also depends on 𝑢𝑠, and the
ure EMPC, not being restricted to converging to 𝑢𝑠 due to its purely
conomic objective, causes the closed-loop system to converge to a
ifferent equilibrium.

.3. Congested scenario via microscopic simulation with time-varying un-
nown demands

The case of time-varying unknown inflow demands can be addressed
y including them in state estimation as in Eq. (44), modeling them
s additional state variables to be estimated. We examine here a single
acroscopic simulation scenario, with the system having an initial state

f 𝑛11(0) = 6000 veh, 𝑛12(0) = 6000 veh, 𝑛21(0) = 4000 veh, 𝑛22(0) = 4000
eh, for three different cases of measurements available on the inflow
emands: (a) No measurements available, (b) regional inflow demands
i.e., 𝑞 (𝑡), for 𝑖 ∈ , with 𝑞 (𝑡) =

∑

𝑞 𝑗(𝑡)) are measured, (c) all
𝑖 𝑖 𝑗∈ 𝑖

8

nflow demands (i.e., 𝑞𝑖𝑗(𝑡), for 𝑖, 𝑗 ∈ ) are measured. The scenario
nvolves a stabilizing regulatory MPC coupled with an MHE using the
odel Eq. (44), and is otherwise the same as the one presented in the
revious section with the congested scenario using macroscopic simu-
ation. The overall procedure however is the same for other types of
ontrollers, as it relies on using a state estimator to estimate the inflow
emands and use the estimated values when evaluating the prediction
odel of the controller, and calculating the equilibrium state in real-

ime as a function of the inflow demands (provided that the demands
re feasible, i.e., an equilibrium state exists for the demands) and
odifying the setpoints of the controllers accordingly. Results of three
acroscopic simulation experiments showing trajectories of accumu-

ation state 𝑛𝑖𝑗 , perimeter control input 𝑢𝑖ℎ, regional accumulations on
1-𝑛2 space, total exit flow ∑

𝑖∈ 𝑚𝑖𝑖(𝑡), together with true and estimated
nflow demands 𝑞𝑖𝑗 , comparing the cases with no measurements, partial
easurements, and full measurements on 𝑞𝑖𝑗 , with the MPC having a
rediction horizon of 𝑁p = 40, are given in Fig. 3, for a time period
orresponding to about 9 hours of real time.

From the figure we can make the following observations: In the
ractically relevant case of unknown and time-varying demands, even
hen no measurements on inflow demands are available, it is possible

o estimate them using a state estimator, and to successfully conduct
ongestion recovery control using stabilizing MPC. Furthermore, as
xpected, higher information content in the 𝑞𝑖𝑗 measurements leads to
etter estimation performance. Although it is omitted here for brevity,
he cases where inflow demands have continuously varying profiles can
lso be handled in the same way (see Sirmatel & Geroliminis, 2019).

.4. Congested scenario via microscopic simulation

Here we examine a single microscopic simulation experiment,
here a scenario involving an initially highly congested network (with
11(0) = 5166 veh, 𝑛12(0) = 6822 veh, 𝑛21(0) = 7457 veh, 𝑛22(0) = 5114
eh) together with a feasible constant demand is considered. The con-
rollers are designed and tuned in the same manner as those considered
n Section 4.2 with the following extensions: (1) Sensor noise is added
o the accumulation state measurements as 𝑦𝑖𝑗 (𝑡) = 𝑛𝑖𝑗 (𝑡) + 𝑣𝑖𝑗 (𝑡), with
𝑖𝑗 (𝑡) ∈  (0, 𝜎𝑣) and 𝜎𝑣 = 250 veh corresponding to a moderate amount
f noise, to reflect a practice-oriented scenario where measurements are
orrupted by noise, (2) controllers are deployed together with a MHE
cheme having an estimation horizon of 𝑁e = 20 to mitigate the adverse
ffects of measurement noise, (3) MFD parameters are obtained via
itting third degree polynomials to data from a no-control microscopic



I.I. Sirmatel and N. Geroliminis Control Engineering Practice 109 (2021) 104750

f
m
𝑞

s
d
v
t
r
c
e
i
a
o
f
M
s
f
a
f
i

t
c
p
s
a
s
p
t
d
p
s
c
t
p
d
i
M
p
m

n

Fig. 3. Accumulation state 𝑛𝑖𝑗 , perimeter control input 𝑢𝑖ℎ, total exit flow ∑

𝑖∈ 𝑚𝑖𝑖(𝑡), together with true (dashed lines) and estimated (solid lines) inflow demand 𝑞𝑖𝑗 trajectories,
or a congested scenario obtained via macroscopic simulation using regulatory NMPC with MHE considering 𝑞𝑖𝑗 estimation, comparing the cases with no measurements on 𝑞𝑖𝑗 (blue),
easurements on 𝑞𝑖 (red), and measurements on 𝑞𝑖 (yellow): (a) 𝑛11(𝑡), (b) 𝑛12(𝑡), (c) 𝑢12(𝑡), (d) 𝑛1(𝑡)-𝑛2(𝑡), (e) 𝑛21(𝑡), (f) 𝑛22(𝑡), (g) 𝑢21(𝑡), (h) 𝑚11(𝑡) + 𝑚22(𝑡), (i) 𝑞11(𝑡), (j) 𝑞12(𝑡), (k)

21(𝑡), (l) 𝑞22(𝑡). Dashed lines show equilibrium values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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imulation. Measurement noise is clipped to values within two standard
eviations of the mean, so as to avoid potentially unrealistic extreme
alues. Results of four microscopic simulation experiments showing
rajectories of accumulation state 𝑛𝑖𝑗 , perimeter control input 𝑢𝑖ℎ,
egional accumulations on 𝑛1-𝑛2 space, and total exit flow ∑

𝑖∈ 𝑚𝑖𝑖(𝑡),
omparing the CLF-C, stabilizing regulatory NMPC (RMPC), stabilizing
conomic NMPC (EMPC), and purely economic NMPC (pure EMPC,
.e., Eq. (24)), with the MPCs having a prediction horizon of 𝑁p = 40,
re given in Fig. 4, for a time period corresponding to about 5.5 h
f real time. The accumulation versus outflow data together with the
unctional forms (i.e., polynomials fitted to the data) of the outflow
FDs, for the four experiments with the different controllers (also

howing those of a no control scenario used to extract the functional
orms of the MFDs used in the dynamical models for control design),
re shown in Fig. 5. Snapshots of the traffic network for the same
our experiments, for the first 3.75 h, showing road link occupancies
n percentages taken in steps of 45 min, are given in Fig. 6.

From Fig. 4 it can be seen that all controllers are capable of steering
he system back to lightly congested conditions, indicating a successful
ongestion recovery operation, with the regulatory MPC having a better
erformance. The MFDs in Fig. 5 suggest that the scenario involves
evere levels of congestion for both regions, with accumulations well
bove the critical accumulation as indicated by the accumulation ver-
us outflow data points on the right half of the MFDs. From Fig. 6
erformance of the controllers can be seen in link-level detail, where
he initial high congestion spreads over the network and eventually
issipates, with varying rates of dissipation depending on controller
erformance, as the system returns to equilibrium. Moreover, Fig. 6
hows that congestion level of links in close proximity to the perimeter
ontrol actuated intersections (i.e., the red and blue disks) are similar
o that of the rest of the network. This suggests that the effect of
erimeter control actions on boundary queues are tolerable, since they
o not cause any high level of congestion that is not already present
n other parts of the network. These results suggest that deploying
PC together with MHE has a strong potential for practical high

erformance large-scale urban traffic control even in the presence of
easurement noise.

For dynamical systems subject to control input constraints it may
ot be possible to guarantee stability for all possible initial states. In
9

he next section we examine, via simulations, the domains of attraction
or the closed-loop system under the three controllers.

.5. Simulation-based construction of domains of attraction

.5.1. Control under no uncertainty
To investigate the domain of attraction properties of the controllers

or the two-region MFDs system, we present here a series of simulation
xperiments on a grid of initial accumulation state values 𝑥(0). The
imulations are conducted using the dynamical Eqs. (5) as simulator,
ith the process noise 𝑤(𝑡) and measurement noise 𝑣(𝑡) terms set to

ero to reflect the no uncertainty situation. The set of initial states
hat are important for the traffic point of view for the two-region
FDs system is those that have a regional accumulation between 0

nd jam accumulation, which correspond to 0 ≤ 𝑛1(0) ≤ 26800 veh
nd 0 ≤ 𝑛2(0) ≤ 22000 veh for the considered problem data. To be able
o consider a two-dimensional domain of attraction for visualization
urposes, the initial states of each simulation experiment is chosen to
e extracted as half of the initial regional accumulation (e.g., for a sce-
ario with 𝑛1(0) = 8000 veh and 𝑛2(0) = 12000, the initial state is 𝑛(0) =
4000 4000 6000 6000]T (veh)). Each grid point on the 𝑛1-𝑛2 space of
nitial states, with increments of 1000 veh, up to the jam accumulation
or each region, is simulated with the no control case (where 𝑢(𝑡) = 𝑢𝑠)
nd the three controllers, using various prediction horizon values for
he MPCs. The results are shown in Fig. 7, depicting boundaries of the
omains of attraction and phase portraits (with all initial states and
tate trajectories projected from the four-dimensional state space onto
wo-dimensional 𝑛1-𝑛2 space for visualization purposes).

The results in Fig. 7 suggest that it is possible to stabilize a sub-
tantial section of the 𝑛1-𝑛2 space of initial states using the proposed
PCs, and that the domain of attraction can be enlarged by increasing

he prediction horizon, as expected. Although not capable of reducing
TS as much as the MPCs (as shown in the previous section), owing

argely to absence of predictions, the CLF-C still has a decent domain
f attraction (comparable with the MPCs with 𝑁 = 30).
p
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𝑛
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Fig. 4. Accumulation state 𝑛𝑖𝑗 , perimeter control input 𝑢𝑖ℎ, and total exit flow ∑

𝑖∈ 𝑚𝑖𝑖(𝑡) trajectories for a congested scenario obtained via microscopic simulations, comparing
CLF-based controller (blue), regulatory NMPC (red), economic NMPC (yellow), and purely economic NMPC (purple): (a) 𝑛11(𝑡), (b) 𝑛12(𝑡), (c) 𝑢12(𝑡), (d) 𝑛1(𝑡)-𝑛2(𝑡), (e) 𝑛21(𝑡), (f)
22(𝑡), (g) 𝑢21(𝑡), (h) 𝑚11(𝑡) + 𝑚22(𝑡). Dashed lines show equilibrium values, while for (d) dotted lines show the critical accumulations 𝑛cr

𝑖 . (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Outflow MFDs, showing the functional forms 𝑔𝑖(𝑛𝑖) (black) together with accumulation versus outflow data (blue), from microscopic simulation, for region 1 (a)–(e) and
region 2 (f)–(j), for the no control scenario conducted for obtaining the MFDs (a), (f), CLF-based controller (b), (g), regulatory NMPC (c), (h), economic NMPC (d), (i), and purely
economic NMPC (e), (j). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.5.2. Control under uncertainty
Control performance and stabilization properties might be adversely

affected in the presence of uncertainty in the model and measurement
noise. Here we investigate the effect of these by using various levels
of uncertainty in the simulations. The same set of simulations as in
the previous section is conducted here, the only difference being the
introduction of process noise 𝑤(𝑡) and measurement noise 𝑣(𝑡). Standard
deviations of the process and measurement noise terms are chosen
as 𝜎𝑤 = {0.5, 1, 1.5, 2} veh/s and 𝜎𝑣 = {500, 1000, 1500, 2000} veh,
respectively, indicating a range of moderate to severe modeling and
measurement uncertainty. Process and measurement noises are clipped
to values within two standard deviations of the mean, so as to avoid
potentially unrealistic extreme values. The controllers use the measured
state 𝑦(𝑡) as available information 𝑥̃(𝑡). The results are shown in Fig. 8,
depicting boundaries of the domains of attraction (with all initial states
and state trajectories projected from the 4D 𝑛-space onto 2D 𝑛1-𝑛2 space
for visualization purposes).

From the results in Fig. 8 it can be seen that increasing the level
of uncertainty decreases size of the domain of attraction, as expected.
For low uncertainty values, the controllers are able to keep their
domains of attractions roughly the same as those in the no uncertainty
case, while for high uncertainty the domains of attractions suffer from
10
decreases in size up to 30%. These results reveal that some of the
highly congested traffic conditions cannot be recovered and brought
back to equilibrium state using these controllers when operating under
modeling and measurement uncertainty, indicating a severe loss of
authority for the controllers. Using state estimation can alleviate some
of the problems related to measurement noise, which is investigated in
the following section.

4.5.3. Joint control and state estimation under uncertainty
Domain of attraction size lost due to uncertainty can be partially

recovered using state estimation. Here we investigate the effect of using
state estimation on the domain of attraction by using various levels of
uncertainty in the simulations. The same set of simulations as in the
previous section is conducted here, with the only difference being the
controllers having access to state estimates computed by the nonlinear
MHE (38) with an estimation horizon of 𝑁e = 20. The controllers thus
use the state estimate 𝑥̂(𝑡) as available information 𝑥̃(𝑡). The results
are shown in Fig. 9, depicting boundaries of the domains of attraction
(with all initial states and state trajectories projected from the 4D 𝑛-
space onto 2D 𝑛1-𝑛2 space for visualization purposes), and in Fig. 10,
depicting a size comparison of the domains of attraction shown in Fig. 8
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Fig. 6. Snapshots of link occupancies shown on the microscopic simulation model of the traffic network, for the first 3.75 hours of the microscopic simulation experiment in steps
of 45 minutes (light yellow is 100%, dark blue is 0% occupancy) comparing CLF-C (first row), regulatory NMPC (second row), economic NMPC (third row), and purely economic
NMPC (fourth row). Controlled intersections are shown as disks (intersections belonging to 𝑢12 in blue and 𝑢21 in red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 7. Domains of attraction (a)–(d) and the phase portraits (for 𝑁p = 40 for MPCs) (e)–(h) for the no control case (a),(e), the CLF-C (b),(f), the regulatory NMPC (c),(g), and
he economic NMPC (d),(h) for the no uncertainty case. Three selected closed-loop state trajectories are shown on the phase portraits in light blue, equilibrium point is shown as

black dot, while the boundaries of the ellipsoidal terminal constraint sets are shown in black for the MPC controllers. Percentages denote the ratio of the domain size to that
f the no control case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
nd Fig. 9, where the overall noise is summarized by a noise level 𝛾,
with 𝜎𝑤 = 𝛾 ⋅ 0.5 veh/s and 𝜎𝑣 = 𝛾 ⋅ 500 veh.

From the results in Fig. 9 it can be seen that using state estimation
as a substantial effect in recovering domain of attraction, as the loss
n size due to uncertainty in this case is up to 8%, as opposed to the
alues up to 30% for the case without state estimation. The results in
ig. 10 suggest that the CLF-C is not particularly sensitive to noise,
hile for MPC substantial parts of the domain of attraction can be

ost due to uncertainty. However the figure also shows that using
HE it can be recovered to a great extent, as for joint MHE-MPC the

omain of attraction appears to be largely insensitive to noise. These
esults suggest that using state estimation, especially for operation of
PC under high levels of uncertainty, is required to maintain control
11
authority over larger domains of attraction in recovering from highly
congested traffic situations.

5. Conclusion

In this paper we proposed application of nonlinear MPC formu-
lations with guaranteed closed-loop stability, for the regulation and
economic optimization problems, to feedback perimeter control design
for MFDs networks. A discrete-time control Lyapunov function-based
controller is also proposed to serve as a non-predictive benchmark.
Performance in increasing mobility and domain of attraction proper-
ties of the proposed controllers are examined via macroscopic and
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Fig. 8. Domains of attraction for the CLF-C (a)–(d), the regulatory NMPC (e)–(h), and the economic NMPC (i)–(l), for the uncertainty case: (a)–(e)-(i) 𝜎𝑤 = 0.5 veh/s and 𝜎𝑣 = 500
veh, (b)–(f)-(j) 𝜎𝑤 = 1 veh/s and 𝜎𝑣 = 1000 veh, (c)–(g)-(k) 𝜎𝑤 = 1.5 veh/s and 𝜎𝑣 = 1500 veh, (d)–(h)-(l) 𝜎𝑤 = 2 veh/s and 𝜎𝑣 = 2000 veh. Three selected closed-loop state trajectories
(with 𝑁p = 30 for MPCs) are shown in green, while the terminal constraint sets are shown in black for the MPC controllers. Percentages denote the ratio of the domain compared
to its no uncertainty counterpart in terms of size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Domains of attraction for the CLF-C (a)–(d), the regulatory NMPC (e)–(h), and the economic NMPC (i)–(l), for the uncertainty case with joint state estimation: (a)–(e)-(i)
𝜎𝑤 = 0.5 veh/s and 𝜎𝑣 = 500 veh, (b)–(f)-(j) 𝜎𝑤 = 1 veh/s and 𝜎𝑣 = 1000 veh, (c)–(g)-(k) 𝜎𝑤 = 1.5 veh/s and 𝜎𝑣 = 1500 veh, (d)–(h)-(l) 𝜎𝑤 = 2 veh/s and 𝜎𝑣 = 2000 veh. Three
selected closed-loop state trajectories (with 𝑁p = 30 for MPCs) are shown in green, while the terminal constraint sets are shown in black for the MPC controllers. Percentages
denote the ratio of the domain compared to its no uncertainty counterpart in terms of size.
microscopic simulation experiments with and without modeling and
measurement uncertainty. Properties of joint state estimation and con-
trol in dealing with measurement uncertainty are also investigated.
12
Results indicate that through nonlinear MPC schemes with guaranteed
stability it is possible to stabilize a substantial portion of the state space
for perimeter controlled MFD networks. Although increasing level of



I.I. Sirmatel and N. Geroliminis Control Engineering Practice 109 (2021) 104750

(

u
p
w
t
f
r

D

c
i

A

e
s
a

R

A

A

A

A

Fig. 10. Normalized domain of attraction size for varying levels of process and measurement noise, with (solid lines) and without (dashed lines) joint state estimation: (a) CLF-C,
b) regulatory NMPC, (c) economic NMPC.
ncertainty decreases size of the domains of attraction, increasing
rediction horizon of the MPCs and/or using state estimation jointly
ith the controllers can be used to alleviate the adverse effects of

he uncertainty. Future research could include comparisons with other
eedback perimeter control methods and dealing with uncertainty using
obust MPC formulations.
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