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Abstract: The optimal operation of batch processes has attracted more attention in recent years since,
in the face of growing competition, it is a natural choice for reducing production costs, improving product
quality, and meeting safety requirements and environmental regulations. Since the models currently available
in industry are poor and carry a large amount of uncertainty, standard model-based optimization techniques
are by and large ineffective, and optimization methods need to rely more on measurements.

This paper presents a new framework, whereby important characteristics of the optimal solution are identi-
fied and serve as references to a feedback control scheme. Thus, optimality is achieved by tracking, with no
numerical optimization being required on-line. When only batch-end measurements are available, the pro-
posed method leads naturally to an efficient batch-to-batch optimization scheme. The approach is illustrated
via simulation of a semi-batch reactor in the presence of uncertainty.

Keywords: Dynamic optimization, Optimal control, Batch chemical industry, On-line optimization, Batch-
to-batch optimization, Run-to-run optimization.

1 Introduction

Batch and semi-batch processes are of considerable importance in the chemical industry. A wide variety
of specialty chemicals, pharmaceutical products, and certain types of polymers are manufactured in batch
operations. Batch processes are typically used when the production volumes are low, when isolation is
required for reasons of sterility or safety, and when frequent changeovers are necessary. With the recent
trend in building small flexible plants that are close to the markets of consumption, there has been a
renewed interest in batch processing (Macchietto 1998).

This paper considers batch and semi-batch processes in the same manner and, thus herein, the term ‘batch
processes’ includes semi-batch processes as well. The operation of batch processes typically involves follow-
ing recipes that have been developed in the laboratory in such a way that they can be implemented safely
in production. However, owing to differences in both equipment and scale, industrial production almost
invariably necessitates modifications of these recipes in order to ensure productivity, safety, quality, and sat-
isfaction of operational constraints (Wiederkehr 1988). The operators use heuristics gained from experience
to adjust the process periodically (whenever this is allowed), which leads to slight improvements from batch
to batch (Verwater-Lukszo 1998). A certain conservatism is necessary to guarantee feasibility despite process
disturbances.

To shorten the time to market (by bypassing an elaborate scale-up process) and to reduce operational
costs (by reducing the conservatism), an optimization approach is called for, especially one that can handle
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uncertainty explicitly. Operational decisions such as temperature or feed rate profiles are then determined as
the solution to an optimization problem, where the objective is of economic nature and the various technical
and operational constraints are considered explicitly. Furthermore, due to the repetitive nature of batch
processes, these problems can also be addressed on a batch-to-batch basis.

The objectives of this paper are twofold: i) address the industrial practice prevailing in the batch chemical
industry and the resulting optimization challenges, and ii) present a novel scheme that uses a few pro-
cess measurements directly (i.e., without the often difficult step of model refinement) towards the goal of
optimization.

The paper is organized as follows. The industrial practice in batch processing is presented in Section 2.
Section 3 develops the measurement-based optimization framework, which is then illustrated via a simulated
example in Section 4. Finally, conclusions are drawn in Section 5.

2 Industrial Practice in Batch Processing

It is difficult to address in generic terms the perspectives prevailing in the batch chemical industry since the
processing environments and constraints differ considerably over the various activities (specialty chemicals,
pharmaceuticals, agro and bio products, etc.). Thus, the situation specific to the production of intermediates
in the specialty chemical industry will be emphasized in this section.

2.1 Operational Objectives

The fundamental objective is of economic nature. The investment (in time, personnel, capital, etc.) should
pay off, as the invested capital has to compare favorably with other possible investments. This fundamental
objective can in turn be expressed in terms of technical objectives and constraints, which are presented next.

• Productivity: This is the key word nowadays. However, high productivity requires stable production
so as to reduce the amount of corrective manual operations that are costly in terms of production time
and personnel. Reducing the time necessary for a given production is particularly interesting when the
number of batches per shift can be increased. In multi-product plants, however, equipment constraints
(bottlenecks) and logistic issues often limit productivity.

• Product quality: Quality is often impaired by the appearance of small amounts of undesired by-products.
The presence of impurities (also due to recycled solvents) is very critical since it can turn an acceptable
product into waste. Removing impurities is often not possible or can significantly reduce throughput.
When the separation of an undesirable by-product is difficult, the selectivity objective may be quite
important. Reproducibility of final product composition despite disturbances and batch-to-batch vari-
ations is important when the process has to work closely to some quality limit (for example, when the
quality limits are tight).

• Safety aspects: The safety aspects (runaway, contamination, etc.) are of course very important. Safety
requirements can lead to highly conservative operation, especially for slow and exothermic reactions.
Here, the real obstacle is the lack of on-line information. If information about the state of the process
were available, the process engineer would know how to guarantee safety or react in the case of a latent
problem.

• Time-to-market: The economic performance is strongly tied to the speed at which a new prod-
uct/process can be developed. The product lifetime of specialty chemicals is typically shorter than
for bulk chemicals. Since the production in campaigns reduces the time to learn, it is necessary to
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learn quickly and improve the productivity right away. Also, there is a trend in the specialty chemical
industry to skip pilot plant investigations unless the process is difficult to scale up.

2.2 Industrial Situation and Needs

In order to attain the aforementioned operational objectives, the industrial situation must be analyzed from
both the technical and organizational perspectives. The technical aspects are discussed in detail below. For
a discussion on the organizational aspects, the reader is referred to (Bonvin et al. 2001).

• Performance improvement: From the previous subsection, there is an immediate need to improve the
performance of batch processes. Though process improvement could be met effectively via optimization,
there have been only a few attempts in industry to optimize operations through mathematical modeling
and optimization techniques.

One of the reasons is that the chemists in the laboratories and operators in the plants were used to
thinking in terms of constant values (experimental planning results in static maps between design
variables and process performance). New sensors (e.g. spectroscopic measurements) provide time-
dependent insights, while increasing computing power (e.g. modern DCS systems) make on-line time-
varying decisions possible. As a result, the chemists in the laboratories start to vary process inputs as
a function of time.

There are situations where variable input profiles can be of considerable interest. For example, in
batch crystallization, gains of up to 500% can be obtained by adjusting the temperature, the removal
of solvent or the addition of a precipitation solvent as functions of time. Large gains are also possible
in reactive semi-batch distillation. Furthermore, it is more and more common to adjust the feed rate
in semi-batch reactors so as to force the heat generation to match the cooling capacity of the jacket.

• Constraints: When optimization is used to improve performance, constraints play an important role
since optimal operation is often on the boundary of the feasible region. Industrial processing is naturally
characterized by soft and hard constraints related to equipment and operational limitations and to
safety aspects. In batch processing, there is the additional effect of terminal constraints (selectivity
in reaction systems, purity in separation systems, admissible levels of impurities, etc.). Furthermore,
in multi-product batch production, the process has to fit in an existing plant. Thus, ensuring feasible
operation comes before the issue of optimality, and process designers normally introduce sufficient
conservatism in their design so as to guarantee feasibility even in the worst of conditions.

• Modeling: The main bottleneck in using optimization in the batch industry is the fact that standard
optimization methods rely heavily on a dynamic model of the process. It is illusory to expect con-
structing detailed kinetic models since the molecules treated in the batch industry are typically more
complex than in the commodity industry and often result in complicated reaction pathways. Thus, the
development of dynamic models may exceed one man-year, which is incompatible with the objectives
of batch processing.

Modern software tools such as Aspen Plus, PRO/II, or gPROMs have found wide application to model
continuous chemical processes (Marquardt 1996, Pantelides and Britt 1994). The situation is some-
what different in the batch specialty chemistry. Though batch-specific packages such as Batch Plus,
BATCHFRAC, CHEMCAD, BatchCAD, or BaSYS are available, they are not generally applicable.
Especially the two important unit operations, reaction and crystallization, represent a considerable
challenge to model at the industrial level.

What is often sought in batch processing is simply the ability to predict the batch outcome from
knowledge of its initial phase. Modeling is often done empirically using input/output static models on
the basis of statistical experimental designs. Sometimes the model is a set of simple linguistic rules
based on experience. Often, the model consists of a simple energy balance, or the main dynamics
are expressed via a few ordinary differential equations. The modeling objective is not accuracy but
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rather the ability to describe the major tradeoffs (e.g. conversion, separation, selectivity) present in
the process.

Thus, a large amount of uncertainty stems from modeling (errors in model structure and parameters)
since, according to the philosophy of batch processing, little time is available for the modeling task. In
addition, uncertainty enters in the reactant quality (changes in feedstock), which represents the main
source of batch-to-batch variations. Also, process disturbances and measurement noise contribute to
the uncertainty in process evolution (e.g. undetected failure of dosing systems, change in the ‘quality’
of utilities such as brine temperature, variation in the ‘quality’ of manual operations such as solid
charge).

The problem of scale-up can also be viewed as one of (model) uncertainty. The data available from
laboratory studies do not quite extrapolate to the production level. Thus, when the strategies devel-
oped in the laboratory are used at the production level, they do carry a fair amount of uncertainty.
Furthermore, the pressure to reduce costs and speed up process development calls for large scale-ups
with a considerable amount of extrapolation.

So, for an optimization approach to be useful in the batch industry, it should: i) not rely too heavily
on an accurate model of the process or, equivalently, be able to handle the uncertainty present in the
model, and ii) use the qualitative information that is available with the chemists and operators.

• Measurements: Quality measurements are typically available at the end of the batch via, for example,
off-line chromatographic methods (GC, HPLC, DC, IC). In addition, physical measurements such as
temperature, flow, pressure, or pH may be available on-line during the course of the batch. However,
they are rather unspecific with respect to the key variables (concentrations) of the chemical process.
Other on-line measurements such as conductivity, viscosity, refractive index, torque, spectroscopy, and
calorimetry are readily available in the laboratory, but rarely in production. On-line spectroscopy
(FTIR, NIR, Raman) (McLennan and Kowalski 1995, Nichols 1988) relies on multivariate calibration
for accurate results, i.e., the spectral measurements need to be calibrated with respect to known
samples containing all the absorbing species. Pseudo on-line GC and HPLC are less effective in batch
processing than with continuous processes due to relatively longer measurement delays.

When quality measurements are not directly available, state estimation (or soft sensing) is typically
utilized. However, physical on-line measurements are often too unspecific for on-line state estimation
in batch processes (e.g. heat balance models are too unspecific with respect to the chemical transfor-
mations of interest). Current practice indicates that there are very few applications of state estimation
in the specialty chemistry. However, state estimation works well in fermentation processes due to
the availability of additional physical measurements and the possibility to reconstruct concentrations
without the use of kinetic models (Bastin and Dochain 1990).

As will be described in detail later, the idea used in this paper is to go as close to the constraints
as possible with the use of measurements. This way, the conservatism that is needed to guarantee
feasibility can be considerably reduced, leading to improved performance.

An interesting feature of batch processing is the fact that batch processes are repeated over time. Thus,
the operation of the current batch can be improved by using the off-line measurements available from
previous batches. The objective is then to reach the optimum over as few batches as possible. Also, with
the tendency to skip pilot plant investigations whenever possible, this type of process improvement is of
considerable interest for the initial batches of a new production campaign.

The technical aspects specific to batch processing and the corresponding requirements with respect to process
operation improvement are summarized in Table 1. The main conclusion is that a framework that relies on
measurements rather than on an accurate model of the process for calculating the optimal inputs is indeed
needed. Such a framework is developed and analyzed in the next section.
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Industrial practice Needs
Need to improve performance Optimization approach
Operational and safety constraints Conservatism to guarantee feasibility
Inaccurate model and disturbances Measurements to compensate the effect of uncertainty
On-line and off-line measurements Tracking of constraints with reduced conservatism

Table 1: Industrial practice and corresponding needs regarding process improvement

3 Measurement-based Optimization

Uncertainty in the form of disturbances and modeling errors is always present in industrial settings. The idea
of Measurement-Based Optimization (MBO) is to compensate the effect of uncertainty using measurements.
Among the various methodologies possible, the scheme presented here will choose appropriate references,
and optimality will be achieved by tracking these references. This way, on-line numerical optimization is
avoided.

The reference signals should ideally be invariant under uncertainty. The choice of these reference signals is
based on the necessary conditions of optimality and constitutes the novelty in the proposed MBO methodol-
ogy. Thus, the optimization problem is expressed as the satisfaction of selected constraints and the regulation
of certain sensitivities around zero.

3.1 Description of the Scheme

The following steps are involved in the proposed MBO scheme:

• Determination of the structure of the optimal solution: The dynamic optimization problem considered
has two types of constraints: i) the path constraints impose bounds on the inputs and the states during
the batch, and ii) the terminal constraints limit the outcome of the batch at final time. For such a
problem, the optimal solution can be shown to have the following properties (Bonvin et al. 2001):

1. The inputs are in general discontinuous. The time at which an input switches from one interval
to another is called a switching time.

2. Two types of arcs (constraint-seeking and compromise-seeking) are possible between switching
instants. In a constraint-seeking arc, the input is determined by a path constraint, while in the
other type of interval, the input lies in the interior of the feasible region.

3. The switching instants can also be constraint-seeking or compromise-seeking, depending on whether
they are determined by terminal constraints or not.

The structure of the optimal solution is described by the type and sequence of arcs, and the set of
active terminal constraints. These can be obtained in two ways: (i) educated guess by an experienced
operator, or (ii) inspection of the solution obtained from numerical optimization using a simplified
model. Quite often, experience dictates the qualitative shape of the inputs. Otherwise, a simplified
(tendency) model of the process can be used to compute a numerical solution in which the various arcs
are identified.

• Choice of invariant references for adaptation under uncertainty: In the presence of uncertainty, the
numerical values of the inputs in the various arcs and the switching times might change considerably.
However, it is fair to assume that the type and sequence of arcs remain unchanged. Thus, even in the
presence of uncertainty, the active constraints (both path and terminal) must remain active and the
cost sensitivities must remain at zero. This way, optimality is approached by working close to the
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active constraints and by regulating the sensitivities around zero. The quantities that remain invariant
under uncertainty are referred to as invariants. The path constraints and sensitivities will be labeled
Iη and the terminal constraints and sensitivities Iπ.

It is important to identify the variables that need to be adapted in the presence of uncertainty to
meet path and terminal constraints. On the one hand, specific arcs η(t) are adjusted to meet path
constraints. On the other hand, the parameters π, which typically consists of switching times between
the various arcs and approximations of inputs in compromise-seeking arcs, are adapted to meet terminal
objectives.

• Tracking of invariants using measurements: The structure given in Figure 1 is proposed to track the
invariants by use of feedback. The invariants Iηref = 0 and Iπref = 0 are tracked with the help of path
and terminal feedback controllers, respectively. The trajectory generator computes the current inputs
u(t) as a function of η(t) and π that are generated by the path and terminal controllers. Note that
the implementation is model-free and measurement-based, though a model might be necessary to set
up the scheme.

Process
Trajectory

GeneratorPath

Controller

Terminal

Controller

Construction

of Invariants

On-line

Off-line

OPTIMALITY THROUGH FEEDBACK

π

η

IηIπ

0
0

−
−

u y

d

Figure 1: Invariant-based optimization scheme

3.2 Practical Applicability of MBO

If the structure of the optimal solution (type and sequence of arcs, active terminal constraints) of the
true (unknown) system coincides with that proposed in Step 1 of the procedure, MBO will be capable of
optimizing the true system. Thus, the applicability of MBO in practice will depend on (i) the robustness
of the proposed input structure with respect to uncertainty (modeling errors and disturbances), and (ii) the
ability to measure the path and terminal constraints. These issues are briefly discussed next.

• Role of the model: If the structure of the optimal input cannot be obtained from experience or educated
guess, then a process model is needed to determine the structure of the optimal input numerically. Thus,
the goal of the model is only to provide the correct structure for the optimal input. So, in contrast to
model-based optimization approaches or what is sought for simulation purposes, there is no need for a
detailed model or for accurate parameter values. The model simply needs to reflect the major tradeoffs
specific to the optimization problem at hand. The parts of the model that do not address these effects
can be discarded.

• Construction of invariants from measurements: If Iη and Iπ are not measured directly, they need to be
reconstructed from the available measurements. In the case of constraint-seeking arcs and parameters,
the invariants correspond to physical quantities (path or terminal constraints). Off-line measurements
of terminal quantities are in general available. In most cases, a path constraint involves a variable
that can be measured, or the constraint can be rewritten in terms of a quantity that can be measured.
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For example, the path constraint corresponds to a bound on temperature or pressure, or a constraint
on heat removal can be rewritten as a constraint on the cooling temperature. In such cases, on-line
measurement of the path constraint is directly available. On the other hand, if the path constraint
cannot be measured directly, some type of inference or state estimation is necessary.

For computation of sensitivities, either a model of the process or multiple process runs are required,
which is typically more difficult. However, since tracking path and terminal constraints is usually much
more important than regulating sensitivities, regulating the sensitivities can often be neglected. In case
this becomes an issue, the reader is referred to (Bonvin et al. 2001).

• Difference in time scale – on-line vs. off-line measurements: In general, there is a difference in time
scale between the path controller and the terminal controller. The path controller works within a batch
using on-line measurements (running index is the batch time t). The terminal controller operates on
a batch-to-batch basis using off-line measurements (running index is the batch number k). If on-line
measurements are not available, the path controller is inactive.

• Disturbance rejection and backoffs from constraints: The presence of disturbances influences both η(t)
and π and thus u(t). Disturbances affecting η(t) within the batch are rejected by the path controller.
However, the effect of any disturbance within the batch on π cannot be rejected since the terminal
controller only works on a batch-to-batch basis. Constant disturbances (e.g. raw material variations)
can be rejected from batch-to-batch by the terminal controller.

In the presence of disturbances and parametric uncertainty that cannot be compensated by feedback,
the use of conservative margins, called backoffs, is inevitable to ensure feasibility of the optimization
problem (Visser et al. 2000). The presence of measurement errors also necessitates backoffs.

4 Example - Semi-batch Reactor with a Safety Constraint

4.1 Description of the Reaction System

• Reaction: A+B → C.

• Conditions: Semi-batch, isothermal.

• Objective: Minimize the time needed to produce a given amount of C.

• Manipulated variable: Feed rate of B.

• Constraints: Input bounds, constraint on the maximum temperature reached under cooling failure,
constraint on the maximum volume.

• Comments: This reaction system is adapted from Ubrich et al. (1999). In the case of a cooling failure,
the system becomes adiabatic. The best strategy is to immediately stop the feed. Yet, due to the
presence of unreacted components in the reactor, the reaction goes on. Thus, chemical heat will be
released, which causes an increase in temperature. The maximum attainable temperature is given by
Tcf , the temperature reached following a cooling failure:

Tcf (t) = T (t) + min(cA(t), cB(t))
(−∆H)
ρ cp

(1)

where the parameters are described in the next subsection, and the term min(cA, cB) serves to calculate
the maximum extent of reaction that could occur following the failure.

Without any constraints, optimal operation would simply consist of adding all the available B at
initial time (i.e., batch operation). However, because of the safety constraint, the optimal solution
corresponds to feeding B in such a manner that the safety constraint is not violated. Once the volume
constraint is attained, the feed rate is set to zero.
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4.2 Problem Formulation

Variables and parameters: cX : Concentration of species X, nX : Number of moles of species X, V : Reactor
volume, u: Feed rate of B, cBin: Inlet concentration of B, k: Kinetic parameter, T : Reactor temperature,
Tcf : Temperature under cooling failure, ∆H: Reaction enthalpy, ρ: Density, and cp: Heat capacity.

Model equations:

˙cA = −k cA cB −
u

V
cA cA(0) = cAo (2)

˙cB = −k cA cB +
u

V
(cBin − cB) cB(0) = cBo (3)

V̇ = u V (0) = Vo (4)

The concentration of C is given by

cC =
cAoVo + cCoVo − cAV

V
. (5)

The numerical values are given in Table 2.

k 0.0482 l
mol h

T 70 ◦C
∆H −60000 J

mol
ρ 900 g

l

cp 4.2 J
gK

cBin 2 mol
l

umin 0 l
h

umax 0.1 l
h

Tcfmax 80 ◦C
Vmax 1 l
nCdes 0.6 mol

cAo 2 mol
l

cBo 0.63 mol
l

Vo 0.7 l

Table 2: Model parameters, operating bounds and initial conditions

Optimization problem:

min
u(t),tf

J = tf (6)

s.t. (2)− (5)
Tcf (t) ≤ Tcfmax
V (tf ) ≤ Vmax
nC(tf ) ≥ nCdes
umin ≤ u ≤ umax

4.3 Determination of the Structure of the Optimal Solution

Types of arcs: The possible options for the optimal solution are the input bounds and the path constraint
that corresponds to meeting the safety constraint Tcf = Tcfmax : (i) u = umin, (ii) u = umax, and (iii)
u = upath.

Specific choice of experimental conditions: The number and sequence of arcs effectively present in the optimal
solution depend on the experimental conditions. Let the experimental conditions be chosen such that the
number of moles of B that can be added is less than the initial number of moles of A, then cB(t) ≤ cA(t).
Thus, since isothermal conditions are chosen, the condition Tcf (t) ≤ Tcfmax implies cB(t) ≤ cBmax with

cBmax = ρ cp(Tcfmax−T )

(−∆H) . Furthermore, the initial condition is so chosen that as much B as possible is
present, i.e., cBo = cBmax.
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Sequence of arcs (Figure 2):

• Since the initial conditions verify cBo = cBmax, u = upath is directly applied to keep cB = cBmax, i.e.,
Tcf = Tcfmax .

• Once V = Vmax is attained, the input is set to u = umin = 0.

• Once nC = nCdes is attained, the batch is stopped.

The optimal input and the corresponding evolution of the concentrations of A, B, and C are given in
Figure 2. For the numerical values provided in Table 2, ts = 11.44 h and tf = 19.80 h. Notice that
cB = cBmax = 0.63mol

l in the first interval, which corresponds to Tcf = Tcfmax .
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Figure 2: Optimal input and evolution of the concentrations

Effect of different experimental conditions:

1. If cBo < cBmax, the optimal input has an additional arc. Initially, the input is at the upper bound,
u = umax, in order to attain the path constraint as quickly as possible. Once cB reaches cBmax, the
two arcs presented in Figure 2 form the optimal solution.

2. If the number of moles of B that can be added is larger than the initial number of moles of A, the
optimal input has an additional arc. Once cB(t) = cA(t) is attained, the input switches to its maximum
value since it does not affect Tcf any longer. Then, when the volume reaches V = Vmax, the input is
set to u = umin.

Effect of absence of constraints:

1. If the safety constraint were not there, it would be optimal to operate in batch mode, where all the
B is given at the beginning, leading to tf = 17.3 h. So, the “price” to pay for safety is a longer time
(19.8 h) to attain the same conversion.

2. Without the volume constraint, the optimal solution would correspond to feeding B along upath until
the desired amount of C is produced. Since more B could be added this way, the final time would
reduce to tf = 18.4 h.

4.4 Choice of Invariant References for Adaptation under Uncertainty

In practice, there can be considerable uncertainty in the stoichiometric and kinetic models. This is reflected
here as uncertainty in the kinetic parameter k in the range 0.03 ≤ k ≤ 0.06 (the nominal value k = 0.0482
used in the simulation is assumed to be unknown).
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Terminal Constraint Path Constraint
Optimization Scenario nC(tf ) mol max

t
cB(t) mol/l Cost Loss

(nCdes = 0.6 mol) (cBmax = 0.63 mol
l ) (h)

Open-loop application
1 of optimal 0.73 0.51 31.83 60%

conservative input
Adaptation of tf
using off-line measurements 0.62 0.51 23.18 17%
of nC(tf ) (with 5% noise)

2 Adaptation of tf
using off-line measurements 0.60 0.51 21.94 11%
of nC(tf ) (no noise)
Adaptation of upath(t) and tf
using on-line and off-line 0.62 0.61 21.42 8%
measurements (with 5% noise)

3 Adaptation of upath(t) and tf
using on-line and off-line 0.60 0.63 19.80 0%
measurements (no noise)

Table 3: Invariant-based optimization. Results averaged over 100 noise realizations, each consisting of
run-to-run adaptation over 50 batches.

During the batch, upath could be adjusted via feedback to compensate for the uncertainty and, with the
terminology introduced in Section 3, η(t) = upath(t) . The switching time ts is determined upon reaching
Vmax. Since Vo is known, the volume that can be added, Vadded, is simply Vmax − Vo. Thus, starting with
a feed tank of volume Vadded, the reactant B is fed at the rate upath until the feed tank is empty, which
determines ts. The only parameter that needs to be adjusted amidst uncertainty is the terminal time tf
and, thus, π = tf . The invariants in this example correspond to the path and terminal constraints of the
optimization problem, i.e., Iη = cB(t) − cBmax and Iπ = nC(tf ) − nCdes. In other words, upath(t) could
be adjusted using on-line measurement of cB(t) to satisfy the path constraint cB(t) = cBmax, and tf could
be adjusted in a run-to-run manner using off-line measurement of nC(tf ) in order to meet the terminal
constraint nC(tf ) = nCdes.

4.5 Tracking of Invariants using Measurements

With respect to the measurements available, different optimization scenarios are considered:
1. No measurements: In order not to violate the constraints, a conservative feed profile is designed

corresponding to the optimal solution for k = kmin. The conservative input has the same two arcs
upath and umin as the optimal input in Figure 2 with the difference that uconspath is lower and longer (in
the range 0.019 l/h – 0.014 l/h, ts = 18.33 h and tf = 31.83 h). This conservative feed profile is applied
open loop to the simulated nominal plant.

2. Batch-end measurements: Only the measurement of nC(tf ) is available and, thus, the final time tf is
updated in a batch-to-batch manner. For the first interval, upath = uconspath is applied.

3. On-line and batch-end measurements: On-line measurement of cB(t) is available (in practice, cB can be
inferred from estimation of thermal conversion). The path constraint is kept active using the feedback
upath(t) = uconspath + kp (cBmax− cB(t)) + ki

∫ t
0
(cBmax− cB(t))dt, where kp and ki are the parameters of

a PI controller. In addition, the final time tf is updated in a batch-to-batch manner.

The cases of both noise-free and noisy measurements (5% relative Gaussian measurement noise) are consid-
ered. The results are given in Table 3. If the measurements are noisy, conservative margins (backoffs) need

10



to be incorporated so as to guarantee feasibility. The backoffs used are 0.02 mol for nCdes and 0.02 mol/l
for cBmax.

It is seen that with only off-line (or batch-end) measurements, the terminal constraint can be satisfied by
adapting the final time tf . The evolution of the final time (which also represents the cost) for batch-to-batch
optimization is shown in Figure 3. It can be seen that the solution gets close to the optimum within a few
batches.

If, in addition, on-line measurements are available, the path constraint can be kept active as well. Thus, it
is possible to get quite close to the optimum by using measurements.
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Figure 3: Evolution of final time for one realization of the batch-to-batch optimization with only batch-end
measurements of nC(tf ) (5% measurement noise)

4.6 Discussion

The MBO scheme requires no model as long as it is accepted that the optimal solution qualitatively involves
two arcs, first upath and then umin. As far as the implementation is concerned, upath is determined by a
PI-controller upon tracking cBmax, and umin = 0. The switching time between the two arcs is determined
upon reaching Vmax and, thus, is determined implicitly. The final time tf is adjusted in a run-to-run manner
by a PI-controller that forces nC(tf ) to meet nCdes.

Assume that, in addition to the two modeled reactions, the true system also includes C +B → D, C → E.
This would not affect the type and sequence of arcs (upath followed by umin) since the two additional
reactions do not introduce the possibility of competition for the reactant B (Srinivasan et al. 2001). Thus,
the proposed scheme would be equally applicable even in the presence of the two additional reactions.

As a final remark, it is important to stress that the model parameters given in Table 2 are not used for
calculating the optimal feed rate. Only the off-line measurement of nC(tf ) is necessary for implementing
the batch-to-batch optimization (Scenario 2). The complete MBO scheme requires in addition the on-line
measurement of cB(t).
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5 Conclusions

The lack of reliable models and the presence of uncertainty have favored the investigation of process im-
provement via utilization of measurements (sometimes on-line, most often off-line). The major contribution
towards process improvement of a constrained batch process is through operation on active constraints.
Thus, a feedback-based framework has been proposed to keep the system ‘close’ to the active constraints. If
only off-line measurements are available, this framework results in a batch-to batch optimization scheme with
the objective to meet the terminal constraints within a few batches. If on-line measurements are available,
the path constraints can also be kept active.

The proposed invariant-based optimization scheme addresses most of the industrial requirements listed in
Table 1. More specifically,

• it is aimed at process improvement via the use of time-dependent inputs,
• it guarantees feasibility since the constraints are approached from the safe side,
• it is model-independent as far as the implementation is concerned and is robust against uncertainty

since signals that are invariant under uncertainty are tracked,
• if necessary, it uses off-line measurements only.

It is possible to perceive the proposed feedback-based optimization strategy from an industrial perspective.
Classical PID control is the most popular technique used currently in industry, and trading it to attain
optimality is unacceptable industrially. Therefore, in contrast to most model-based optimization studies,
this work attempts to use feedback control for the sake of optimality. In this sense, the approach has great
industrial potential and should help take optimization to the batch chemical industry.
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