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Stochastic Super-Resolution for Downscaling
Time-Evolving Atmospheric Fields With a
Generative Adversarial Network

Jussi Leinonen

Abstract— Generative adversarial networks (GANs) have been
recently adopted for super-resolution, an application closely
related to what is referred to as ‘“downscaling” in the atmospheric
sciences: improving the spatial resolution of low-resolution
images. The ability of conditional GANs to generate an ensemble
of solutions for a given input lends itself naturally to stochastic
downscaling, but the stochastic nature of GANs is not usually
considered in super-resolution applications. Here, we introduce
a recurrent, stochastic super-resolution GAN that can generate
ensembles of time-evolving high-resolution atmospheric fields for
an input consisting of a low-resolution sequence of images of the
same field. We test the GAN using two data sets: one consisting
of radar-measured precipitation from Switzerland; the other of
cloud optical thickness derived from the Geostationary Earth
Observing Satellite 16 (GOES-16). We find that the GAN can gen-
erate realistic, temporally consistent super-resolution sequences
for both data sets. The statistical properties of the generated
ensemble are analyzed using rank statistics, a method adapted
from ensemble weather forecasting; these analyses indicate that
the GAN produces close to the correct amount of variability
in its outputs. As the GAN generator is fully convolutional,
it can be applied after training to input images larger than
the images used to train it. It is also able to generate time
series much longer than the training sequences, as demonstrated
by applying the generator to a three-month data set of the
precipitation radar data. The source code to our GAN is available
at https://github.com/jleinonen/downscaling-rnn-gan.

Index Terms— Atmosphere, clouds, image processing, meteo-
rological radar, neural networks, remote sensing.

I. INTRODUCTION

UPER-RESOLUTION refers to enhancing the spatial res-
olution of an image beyond the original resolution. In dig-
ital image processing, the term describes various algorithms
that take one or more low-resolution images and generate an
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estimate of a higher resolution image of the same target [1].
In climate science, downscaling! is a concept closely related
to super-resolution [2]-[4]. It is used especially in connection
with precipitation, which can vary sharply over spatial scales
of 1 km or less, while global climate models typically have
resolutions of tens or hundreds of kilometers. Downscaling
bridges this gap by producing precipitation fields at a finer
resolution for the purpose of assessing the impacts of phe-
nomena such as extreme rainfall.

Like many other image processing applications, super-
resolution has benefited from the introduction of the tech-
niques of deep learning and particularly convolutional
neural networks (CNNs). Early attempts at super-resolution
using deep CNNs focused on finding image quality met-
rics that could serve as loss functions that produce sharp
images [5]-[7]. More recently, generative adversarial net-
works (GANSs) have been used to train super-resolution CNNs
[8], [9]. GANs are a general technique for generating artifi-
cial samples [10] from the training distribution. When used
to train CNNs, they can create visually realistic artificial
images of, e.g., human faces [11] and landscapes [12].
In super-resolution applications, GANs create reconstructed
high-resolution images by using one neural network (the
discriminator) to evaluate the quality of the high-resolution
outputs, while another network (the generator) is trained to
output images that the discriminator considers to be of high
quality. The two networks are trained simultaneously against
each other (hence ‘“adversarial”), and thus, the discriminator
adaptively learns an appropriate reconstruction metric for the
data set rather than relying on expert-provided metrics. The
GAN generator may also have a noise input, which the gen-
erator learns to map to the variability of the output.

Producing a super-resolution image from only one source
image (referred to as single-image super-resolution) is an
underdetermined problem that generally does not have a
unique solution. Super-resolution techniques, therefore, try to
produce an image that is consistent with the input and that
also takes advantage of prior knowledge about the structure
of the high-resolution images. Despite the inherent uncertainty
in the super-resolution reconstruction, often, these methods

IThe terminology here is potentially confusing. Upsampling, meaning an
operation that increases the number of pixels in an image and, thus, reduces
the physical size of each pixel, is sometimes referred to as “upscaling” in
image processing. In climate science, the term “downscaling” is used instead
for an operation that reduces the physical size of pixels and, thus, improves
the resolution. We attempt to avoid this unfortunate contradiction by using
the terms “upsampling” and “downsampling” as they are defined in image
processing and the term “downscaling” as it is used in climate science.
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produce a single output for a given input and rarely estimate
the uncertainty of the output. For instance, the state-of-the-art
enhanced super-resolution GAN (ESRGAN) architecture does
not include a noise input at all and is, therefore, completely
deterministic for a given input [9]. This is often acceptable
in applications such as enhancing the resolution of natural
photographs, where a single plausible solution tends to be
sufficient.

In contrast to photograph processing, in climate and weather
applications, it is crucial to understand and quantify the
uncertainty of predictions. Classical precipitation downscaling
algorithms have used techniques such as randomized
autoregressive models [13], [14] or multifractal cascades [15],
to produce different random realizations of the high-resolution
field for a given low-resolution input. GANs offer a natural
way to model uncertainty using modern machine-learning
methods, less dependent on particular statistical assumptions
than the traditional methods. Regardless, the uncertainty
aspect has been largely ignored in earlier attempts at
improving the resolution of climate fields using deep learning
even when employing GANSs for this problem [16] or for other
super-resolution applications related to climate or remote
sensing [17]-[19] although a few studies have used GANs
to represent uncertainty in other atmospheric data problems
[20], [21]. Moreover, while GANs have been recently also
used to model the time evolution of atmospheric fields [22],
few studies using deep learning have investigated modeling
the uncertainty of the generated high-resolution image in a
manner consistent with the time evolution of atmospheric
fields—a problem analogous to video super-resolution, which
has also been studied using GANs [23], [24].

In this article, we introduce a stochastic super-resolution
GAN that can produce an ensemble of plausible high-
resolution outputs for a given input. The GAN architecture also
includes a recurrent neural network (RNN) structure, which
permits the generated outputs to evolve in time in a consistent
manner. The architecture is fully convolutional, and thus, the
networks can be trained with small images and later applied
to larger ones. We use this GAN to stochastically downscale
time series of images from two atmospheric remote-sensing
data sets: precipitation measured by the MeteoSwiss ground-
based weather radar network and cloud optical depth imaged
by the Geostationary Operational Environmental Satellite 16
(GOES-16). The same architecture is used for both data sets,
and thus, we expect that the method can be generalized to
other atmospheric variables and further applications beyond
the atmospheric field.

The rest of this article is structured as follows. Section II
describes the network architecture and training and the vali-
dation of the results. Section III describes the data sets and
their preprocessing, and Section IV presents and discusses the
evaluation results. Finally, Section V concludes this article and
presents objectives for future work.

II. METHODS
A. Overview

A GAN consists of two neural networks: the generator (G)
and the discriminator (D). The discriminator is trained to
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determine whether or not its input is an example from the
training data set, while the generator is simultaneously trained
to produce artificial samples that the discriminator classifies
as real. Thus, the generator learns to produce realistic-looking
artificial samples. In this study, we use a conditional GAN
[25], in which both G and D are given an additional condi-
tion. In the case of super-resolution, the condition is a low-
resolution image, and the discriminator is trained to distinguish
between real high-resolution images from the training data set
and artificial high-resolution images produced by the genera-
tor, conditionally to the corresponding low-resolution images.

For additional background on GANs, we refer the reader to
[26], while a general overview of deep-learning methods can
be found in [27].

B. Network Architecture

In our GAN, both G and D are deep CNNs which make
extensive use of residual blocks [28]. The residual blocks
process their input through two activation and convolution
layers and, finally, add the input to the output at the end
of processing. Consequently, an inactive residual block (one
with near-zero weights in the convolutional layers) acts as
an identity map. Thus, the number of residual blocks in a
network is often flexible since the blocks that the network
does not use simply pass their input through. As training
progresses, residual networks may activate additional blocks
as the network learns to take advantage of deeper features. The
numbers of residual blocks in our networks were determined
by an iterative design process, but, for the abovementioned
reasons, their exact number is not critically important as
having too many residual blocks need not be harmful to
performance, although it does increase computational cost.

In contrast to most GANS, our networks also employ recur-
rent layers in the form of convolutional gated recurrent units
(ConvGRUs), variants of the gated recurrent unit (GRU) [29].
These recurrent layers permit the network to learn the temporal
evolution of the fields, while the convolutional and residual
blocks learn the spatial structure. ConvGRUs replace learned
affine transforms in the standard GRU with 2-D convolutions.
ConvGRU layers learn the appropriate update rules from
one time step to the next, enabling the GAN generator to
model the evolution of the fields with time, and allowing the
discriminator to evaluate the plausibility of image sequences
rather than single images. These layers, along with the closely
related convolutional long short-term memory (LSTM) layers,
have been previously applied to modeling the time evolution
of precipitation fields [30], [31].

The architectures of our G and D networks are shown
in Fig. 1. In the following, we give brief descriptions of
the organization of the networks; the exact implementation
using TensorFlow [32] and tf.keras [33], which is Tensor-
Flow’s high-level API for building and training deep learn-
ing models, can be found in the source code published at
https://github.com/jleinonen/downscaling-rnn-gan.

The generator G starts with a time series of low-resolution
fields (the conditioning variable), given as a 4-D tensor of
dimension Ny x h x w x Ny, where N; is the number of time
steps, h and w are the pixel height and width of the image,
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Fig. 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

(a) Generator

Update noise . :
: Up 1a: Update
! ] :
: o] © '
: & S :
Low- ! & = :
Resolution | 2|& e Residual blocks : 5
' <} ' y
Sequence : S o . ConvGRU
! ! o ] < S =
' o] O O e} O ! O e} wn o~ O N x
- . < N e} n n n n Qq < X © X
> : ~N ~N N N N q Qq = X < ~N al
Q ' x x X x x x x ©° N > & =
= ' ) 9] %) Y] Y] o Q < Q X > %
<) : X X X X X X X = % 3 o X
% : & & & 9 9 & & o o O N jal
& : X x x X X X x - V) 2 <
. o <) 5] 0 0 3] 3] x x ® =< X
' 53] o) o ©
""""""""""""""""""""" 3:
N—_ —_— T T H Residual
| 0 e} O e} O |
sl S (18118 [8])8]: block &
e 3 3 3 & & . 3: Generated
& R < X 3 % | ; High-
i o [ &0 C3) 3] : Upsampling :
! : residual blocks Resolution
. First 2 i) [ | Sequence
' S} 2 -
' frame S Q S Residual blocks
: < T
' [ 2
| c
' o Residual block

S
: Initialization noise 1b: Initialization

c c A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o =] =]
. L EREIENEIE
(b) Discriminator Sl EIEREIERS)
High- = 3 3
F;‘:;ﬂ:g‘c’: 1a: Strided residual blocks
1 6: Residual blocks 6
] — 6: ConvGRU ~ Global
= ~ < ) average
& ] e 2 g R prd R pooling
SEMEEIREER g g g
= © ] - 9 L9 o L9 8x256
X 3 N 3 & & & &
e} oM
= < s = & & & &
&% © «© &
1 — | 8x512 || 8x256 | {8x1
—/ 1 e = o~ = - = Concatenate  Dense block 7:I
< N N ~ n — I N I Real/
m O
gl sl 13| |x 3 2 2 3 3 8256 fake
< ES ¥ X X X X < X X
& 3 % R R R X X X 5:
0 0 N
S R ek B Sl S = = = = = Global
Low- 2: 4: ConvGRU average
Resolution 1. Residual blocks Concatenate - 3. Residual blocks pooling
Sequence

Architectures of (a) generator and (b) discriminator. The

numbered labels correspond to the descriptions in Section II-B. The dimensions shown

here are for the training configuration where high-resolution image size h x w = 128 x 128, the number of frames per sequence Ny = 8, and the number of

variables Ny = 1 for both data sets considered here. After training,

respectively, and Ny is the number of variables. The time steps
are assumed to be at constant intervals, and the size of one

pixel

is assumed to always correspond to a constant, well-

defined physical size. The time series is processed through
the following steps of the network.

1)

2)

Encoding:

a) The low-resolution input tensor is mapped to a
larger number of channels using a convolutional
layer and concatenated with the noise input using
a different noise instance for each time step. These
data are then processed through a series of three
residual blocks. The inputs are, thus, encoded into
a deep representation.

Using a similar series of layers as with step la
above but with independent weights and only for
the first time step, the initial state of the recurrent
layer is derived.

b)

Recurrence: The time evolution of the deep represen-
tation of the field is modeled with a ConvGRU layer.
The input to the ConvGRU layer is the result of step 1a,
while the initial state is derived from step 1b.

the network can be evaluated using different values of these parameters.

3) Decoding/Upsampling: The result of the ConvGRU

4)

layer is processed through a series of alternating residual
blocks and upsampling layers. Each upsampling opera-
tion increases both spatial dimensions by a factor of two,
using bilinear interpolation on the hidden representation.
The residual blocks process the information to a less
deep level of representation. We use four upsampling
blocks, resulting in a resolution enhancement by a factor
of K = 16. Different numbers of upsampling blocks
could be used to obtain different factors of K = 2V with
N a positive integer, but this would require retraining the
GAN, requiring increased computation time for training,
and hence, we concentrate on K = 16 in this work.
Output: The output of the last hidden layer is mapped
using one final convolution to a high-resolution tensor
of dimension Ny x Kh x Kw x Ny. A sigmoid activation
constrains the final output between 0 and 1.

L» weight regularization is used in the generator. All nonrecur-

rent layers use shared weights for each time step; this allows
the generator to operate with any number of time steps. The
generator has approximately 13.6 million trainable weights.
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The discriminator D starts with a pair of high- and low-
resolution sequences. The task of the discriminator is to
determine whether or not these are a pair originating from
the training data set. The processing steps below are used to
achieve this.

1) Encoding/Downsampling:

a) The high-resolution input is processed using a
series of three residual blocks that use strided
convolutions to downsample the input and encode
it into a deep representation. As with the generator,
the same weights are used for each time step.

b) The low-resolution input is processed identically
to step la, except the convolutions are not strided,
and thus, no downsampling is performed. As a
result, the output has the same dimensions as that
of step la.

2) Combination: The outputs of steps la and 1b are con-
catenated.

3) Further Encoding: The joint output from step 2 is
processed through two residual blocks for additional
encoding.

4) Recurrence: The time consistency of the field is evalu-
ated with a ConvGRU layer; unlike with the generator,
we simply initialize the state to zeros.

5) Global Average Pooling: The average of each feature
map is taken, pooling the activations at the different
locations.

6) High-Resolution Processing: We also process the output
of step la separately through steps 3—5 using indepen-
dent weights. The motivation for this branch is to eval-
uate the quality of the high-resolution image separately
from the consistency of the low-/high-resolution pair.

7) Output: The results of steps 5 and 6 are concatenated.
The result is processed through one more fully con-
nected layer and then mapped to N; scalar values.

Spectral normalization [34] is used to constrain the discrimi-
nator. The number of trainable weights in the discriminator is
approximately 15.1 million.

Leaky rectified linear unit (ReLU) activations [35] with
negative slope 0.2 are used in both G and D except for the
update and initialization networks in G (items la and 1b in
the description of G), which uses regular ReLU activations.
Using the regular ReLU in these parts of the network proved
useful for improving stability when the generator is evaluated
over long time series, we speculate that this is because the
ReLU activation can become completely inactive, while the
leaky ReLU cannot. Meanwhile, using leaky ReLU in the
upsampling part of G (item 3 in the description) produced
fewer artifacts than regular ReL.Us.

We derived the architecture by examining the performance
impact of the various design choices, such as the width and
depth of the networks, the use of residual layers, different
types of normalization, and the choice of activation functions.
This can be analyzed rigorously using an approach called abla-
tion study, in which various features and components of the
network are removed individually, and the network is retrained
and reevaluated with each modification; each such removal is
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adopted to the final architecture if it does not significantly
degrade the results produced by the network. Although an
ablation study is an effective method for optimizing neural
network designs, the high computational cost of training the
GAN would have made it impractical for us to perform a
full ablation study with the available computational resources.
Instead, we approached the design process using the same
principles but somewhat more informally, examining the effect
of the abovementioned design choices on training metrics and
image quality in the initial stages of training and selecting
those features that appeared to have a positive effect on
performance. Similar considerations were applied to selecting
the training strategies and hyperparameters.

C. Training
Formally, the conditional GAN optimization objectives are
no}in ExyzlLp(X,y,2;0p)] (1
D
rglin EyzLG(y, 2 06)] 2
G

where x represents real samples (for us, high-resolution
sequences), y represents the condition (low-resolution
sequences), and z is the noise. We denote the discriminator
loss as Lp, the generator loss as Lg, and the corresponding
trainable weights as #p and ¢, respectively. We trained our
GAN as a Wasserstein GAN with gradient penalty (WGAN-
GP) [36], using a gradient penalty weight of y = 10. The
combined conditional WGAN-GP losses for D and G are

Lp(x,y,z;0p) = D(x,y) — D(G(y,z),y)
+7(IvsD&, VI —D*  (3)
LG(y,z;06) = D(G(y, z)) 4

where the samples X, used to compute the gradient penalty
term, are randomly weighted averages between real and gen-
erated samples

X=ex+ (1 —-¢)G(y,z) (5)

with € sampled randomly from the uniform distribution
between 0 and 1. Intuitively, the Wasserstein loss can be under-
stood as the discriminator trying to make its output as large
as possible for generated samples and as small as possible
for real samples. The gradient penalty acts to constrain the
discriminator output, which is otherwise unbounded.

As the optimization goals in (1) and (2) are contradictory,
D and G must be trained adversarially. We alternated between
training D with five batches and G with one, a strategy
that was generally found to be beneficial in [37]. We used
a batch size of 16, determined by the amount of memory
available in the graphics processing unit (GPU). The Adam
optimizer [38] was used for most of the optimization, with
a learning rate of 107 for both G and D. We found that
Adam converged quickly to reasonable image quality, but the
solutions tend to oscillate, even with reduced learning rates.
Therefore, near the end of the training after 350 000 training
sequences, we switched to stochastic gradient descent (SGD)
with a learning rate of 1075,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 03,2021 at 10:31:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEINONEN et al.: STOCHASTIC SUPER-RESOLUTION FOR DOWNSCALING TIME-EVOLVING ATMOSPHERIC FIELDS WITH A GAN 5

The generator was trained with 400000 sequences, corre-
sponding to 3.2 million individual images, and the discrimi-
nator with two million sequences (ten million images). This
corresponded to roughly 48 h for each application using an
Nvidia P100 GPU. Sample diversity was increased by using
random rotation (by 0°, 90°, 180°, or 270°) and random
mirroring on the image time series. This makes the GAN
approximately invariant with respect to 90° rotations in addi-
tion to the translation and time invariance that are features of
the network design.

D. Validation

While GANs are expected to converge towards the underly-
ing data distribution of their input data set, frequently [39]
they do not reproduce enough variability. There has been
progress in quantifying the quality and variability of generated
samples for unconditional GANs using metrics, such as the
Frechet inception distance (FID) [40], but the FID is not
directly applicable to the type of conditional GAN considered
here because the training data set generally contains only one
output for each input, and therefore, the underlying distribution
cannot be reliably estimated.

As a simple metric of image quality, we use the root-mean-
square error

N
1
RMSE = N E 1 (Xreal,i — xgen,i)z (6)
i=

where x; are the individual pixel values of the real image,
Xgen,i = G(y, z); are the corresponding pixels of the generated
image, and N is the number of pixels. To evaluate if the
generated images properly reproduce the spatial structure of
the true images, we also compute the multiscale structural
similarity index (MS-SSIM), as defined in [41], and the log
spectral distance (LSD) that gives the difference of the power
spectra in decibels (dB)

1 N Preal.i 2
LSD=,|— 1010 “‘a”) (7
> (10108 o

i=1
where Preay and Pgen are the power spectra of the real and
generated images, respectively.

For assessing whether the GAN generates the correct
amount of variability, we propose to adapt a rank-statistics
approach from ensemble weather forecasting [42], [43] to
obtain a heuristic measure of the variability of the sequences
produced by the conditional GAN. The underlying concept
is as follows. For each sample, we have a single “ground
truth” (the real high-resolution sequence) and an ensemble of
N, predictions (we can generate as many predictions as we
wish by reevaluating the GAN with different instances of the
noise). Then, for each pixel in the image, we can define the
normalized rank of the actual value among all N, predictions
as r = Ng/Np, where Ng is the number of predictions in the
ensemble for which the value of that pixel is smaller than the
corresponding ground-truth pixel (the rank is randomized for
ties). It is clear that 0 < r < 1, and if the sample is from the
same distribution as the predictions, » should be uniformly

distributed over this range when averaged over many pixels
and many sequences. Consequently, we can use the uniformity
of the distribution of r as an evaluation metric for the correct
variability of the generated images.

The distribution of r can be evaluated visually by examining
the histogram of r, as demonstrated in [44]. We can also quan-
tify the uniformity with various distribution distance metrics
between the rank distribution P, and the uniform distribution
over the possible values of r (since we take a finite sample of
predictions, the possible values are discrete). Here, we inves-
tigate several such metrics. First, the Kolmogorov—Smirnov
(KS) statistic [45] between two sets of probabilities P and Q
is defined as

KS = sup|C — D] (8)

where C and D are the cumulative distribution func-
tions (CDFs) of P and @, respectively. Second, the
Kullback-Leibler divergence (Dkp,) [46] of P with respect
to Q is

P(r;)

Dki.(PIIQ) Z P(ri) log ( Q(m) ©)
where r; are the different values that the rank can attain.
Unlike KS, Dgp, is generally not symmetric between P and
Q. Typically, P denotes the “ideal” distribution and Q an
approximation, so, in this work, we use the uniform distribu-
tion for P and the observed rank distribution for Q. As the KS
statistic measures the distance of the CDFs and Dgj, relates
to the information content difference of the probabilities,
these two statistics capture different aspects of the differences
between the rank distribution and the uniform distribution.
We also compute the outlier fraction (OF), also called outlier
percentage (OP) when given in percent units, which is defined
as the fraction of ground-truth samples that lie outside the
ensemble of predictions.

Using the complete ensemble, we can also evaluate the
image quality with a metric that utilizes the entire ensemble
of predictions and the continuous ranked probability score
(CRPS) [47]. For a given pixel, CRPS is defined as the
integral of the squared difference of the CDF of the ensemble
members (denoted as F') and the CDF of the observations. For
a single observation (the pixel xyeq),; from the real image), the
observation CDF is a Heaviside step function H shifted to the
point Xreql i, giving CRPS for the pixel i as

CRPS = / - (F(x") — H(x" — xpeal,i))dx’. (10)

The CRPS for an entire image is obtained as the mean of
the pixelwise CRPS scores. CRPS can be understood as a
generalization of the mean absolute error (MAE), to which it
is reduced if there is only one ensemble member.

In this article, all the abovementioned metrics are calculated
for the data transformed to the [0, 1] range, as explained in
Section III.

III. DATA

To demonstrate that the network can learn the structures
of different types of atmospheric fields, we trained it indepen-
dently with two data sets. The first was a collection of samples
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drawn from the MeteoSwiss weather radar composite [48] over
the year 2018 (hereafter, referred to as the “MCH-RZC” data
set). The samples were selected and processed as described
in [49] and released in [50]. The data set contains 180000
image sequences, each of which consists of eight images of
128 x 128 pixel size, each pixel corresponding to physical size
of 1 km. The time interval between subsequent images in a
sequence is 10 min. The image size and the number of images
in each sequence were chosen as a compromise between
the amount of training data and the available computational
resources. The pixel values express the precipitation rate R
in units of mm h™!; this has been derived from the radar
reflectivity, quality controlled, and corrected for various biases.
We preprocessed the RZC data by taking the logarithm of R,
which leads to regular distribution, since R is known to have
a near-lognormal distribution for R > 0 [51], making learning
easier. The R = 0 case will be discussed later in this section.

The other data set is derived from the cloud optical thickness
7 observed by the GOES-16 satellite [52] (we refer to this
data set as “GOES-COT” in the rest of this article). We used
data from April to December 2019, the period after GOES-16
full-disk scans were switched to Mode 6 that provides data
every 10 min (which is only coincidentally the same as
with the MCH-RZC data set; any time interval would work).
As the cloud optical thickness is only available at daytime
and its accuracy can be affected by high solar zenith angles,
we limited the data use to hours between 14 and 20 UTC,
corresponding to approximately 09 to 15 local solar time at
the subsatellite point. From these data, we randomly extracted
108 544 image time series of the same dimensions as the
weather radar data. The geometric distortion caused by the
Earth’s curvature and the satellite point of view was corrected
by projecting the data to orthographic projection [53] with
a spatial resolution of 2 km per pixel. In order to minimize
distortion, the sampling was constrained to a box bounded by
30°S and 30°N latitude and 105°W and 45°W longitude (the
center of the longitude range being the subsatellite point at
75°W). As with the precipitation data set, we took the loga-
rithm of 7 to make the distribution more even following [54].

The image given to the GAN during training and evaluation
is a transformed variant of the variable x [where x can be
either log(R) or log(r)]. While the distribution of both vari-
ables becomes smoother with the logarithmic transformation,
it necessitates special processing in empty (nonprecipitating
or noncloudy) regions where the logarithm is not defined.
We solve this with the following transformation: empty pixels
are mapped to 0, and the detectable range [Xmin, Xmax] 1S
shifted and scaled to [@, 1], thus transforming the entire data
set to [0, 1]. The threshold 6 is a small positive value that
separates the nonprecipitating values from the precipitating
ones. The transformation is reversible, and consequently, when
postprocessing the GAN-generated fields, we consider every
pixel with a value below 6 as empty, while the values larger
than € are mapped back to x. We used 8 =~ 0.17 for both
data sets and did not find the results particularly sensitive
to the choice of this parameter. To suppress artifacts that
would sometimes appear at the sharp edges caused by the
thresholding, we smoothen the images with a Gaussian filter
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before feeding them to the network. This filter also has the
effect of inhibiting certain artifacts in the MCH-RZC data set
that occasionally result from processing the data from multiple
radars into a single composite on a regular Cartesian grid.

Each low-resolution image is obtained from its high-
resolution counterpart by taking the average of the linear (not
logarithmic) values of R or 7 for each nonoverlapping 16 x 16
pixel tile in the image and then applying the logarithmic
transformation and the mapping to [0, 1], as described earlier.
Due to the averaging process, some of the averaged pixels may
initially have values between 0 and #; these are truncated to
0 in order to prevent the GAN from taking advantage of data
that are invisible in the visualizations.

To ensure that we avoid the scenario where the GAN simply
memorizes the training set, we set aside 10% of samples,
randomly selected, from each data set to be used as the
validation set. The samples from the validation set were not
used for training but were used to monitor the progress of
the training. Furthermore, to examine how well the GAN
generalizes to data that are not sampled from exactly the same
data as the training set, we constructed test data sets of 1024
samples for both data sources using data from a different time
period. For MCH-RZC, the test data were selected from the
year 2017, while, for GOES-COT, they were sampled from the
April 1-20, 2020, time period. Except where mentioned
otherwise, all visualizations shown in this article were gen-
erated using the test sets, ensuring that the examples are
from data that the GAN has not been exposed to during
training.

IV. RESULTS
A. Examples of Generated Sequences

We show three examples of GAN-reconstructed time series
from the MCH-RZC test data set in Fig. 2. These were
generated using the generator saved after 361600 train-
ing sequences, selected based on the metrics shown in
Sections IV-B and IV-C, as well as a subjective check of the
quality and stability of the generated sequences. For each
example, Fig. 2 shows the true high-resolution sequence, the
16 x 16 downsampled sequence, and three different recon-
structions. The first example [see Fig. 2(a)] shows a region
with different rainfall structures in different parts of the image,
with a relatively uniform structure at the top center and a
highly spatially variable structure at the bottom. At the top,
all three reconstructions produce a similar, uniform structure
that strongly resembles the texture of the original. Meanwhile,
we see a significant difference in the structure of the cells
developing at the bottom where reconstructions #1 and #2
produce much more granular structures than reconstruction
#3, which creates a much more uniform structure at the
bottom. This example demonstrates how the difference in
granularity remains consistent over time: #1 and #2 are more
spatially variable than #3 for all time steps. In Fig. 2(b), the
precipitation is organized over very short scales everywhere
in the image. The structure and orientation of the generated
cells vary between the reconstructions. None of the three
generated examples captures exactly the orientation of the
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Fig. 2. Examples of reconstructed image sequences from the MCH-RZC test
data set. (a)—(c) Real high-resolution image on the first row, the downsampled
version on the second row, and three examples of reconstructions created by
the GAN on the last three rows.

original cells, the information from which is lost in the
downsampling process. Regardless, the GAN can clearly infer
the type and scale of precipitation cells fairly accurately from
the low-resolution image and produce different guesses about
the underlying structure. The last example, in Fig. 2(c), shows
another complex scene that contains different structures in
different parts of the image. Here, too, it can be seen that
the GAN can generate different solutions for a given scene:
The overall structure is the same in all reconstructions, but the
details are quite different.

Fig. 3 displays three examples for the GOES-COT test
data set, using the generator obtained after 371200 training
sequences. These data generally have more intricate texture

STOCHASTIC SUPER-RESOLUTION FOR DOWNSCALING TIME-EVOLVING ATMOSPHERIC FIELDS WITH A GAN 7

Real

o par
EEE
b P P P

Downs.

Gen. #3 Gen. #2 Gen. #1

Real

Gen. #3 Gen. #2 Gen.#l Downs.

Real

Downs.

Gen. #3 Gen. #2 Gen. #1

2 10 50 150
Cloud optical thickness

Fig. 3. Examples of reconstructed image sequences from the GOES-COT test
data set. (a)—(c) Real high-resolution image on the first row, the downsampled
version on the second row, and three examples of reconstructions created by
the GAN on the last three rows.

than the MCH-RZC data set, with patterns occurring over
shorter scales. This is partially a result of the different
spatial resolutions of the data sets, 1 km for MCH-RZC
and 2 km for GOES-COT. The case of Fig. 3(a) has very
strong contrasts in the cloud optical thickness, sometimes
occurring over distances of only a few pixels. These con-
trasts are lost in the downsampling; regardless, the GAN is
able to generate a pattern at an approximately correct scale
and spatial structure. The reconstructions differ in terms of
the exact location of the generated clouds, reflecting the
uncertainty of the GAN about the correct solution. Fig. 3(b)
shows another case of highly complex cloud organization
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with high COT maxima and strong contrasts over short dis-
tances. This example demonstrates the time consistency of the
solutions particularly well; for example, the empty regions
are in different locations in the different images, but their
location remains consistent from one time step to the next.
Furthermore, there are differences in the texture of the clouds
between the generated images: for example, the high-COT
region in the center right of the last few frames contains a
cell structure in reconstruction #3, while it is more uniform in
reconstructions #1 and #2. Finally, Fig. 3(c) shows a highly
anisotropic case where the clouds have a strongly preferred
orientation in the original high-resolution image. The GAN has
some difficulty inferring the correct orientation, which is lost
in the downsampling and generates fairly different solutions
to reflect its uncertainty of the correct answer. Some solutions
in the corresponding figure in the Supplementary Mater-
ial (examples-goescod-random-02 .pdf)include even
more strongly oriented clouds although none match the correct
solution exactly. The generated clouds in reconstruction #2
exhibit some preferred orientation.

We selected the examples in Figs. 2 and 3 manually in order
to illustrate the behavior of the network in different cases.
As such, they are a limited and nonrepresentative sample of
the data sets. Moreover, it is impossible to convey the full
variability of the generated solutions using only the three
ensemble members that we are limited to because of space
constraints. To address this issue, we have included more
examples, randomly selected from the test data sets and with
more ensemble members generated with the GAN, in the
Supplementary Material available online alongside this article.

B. Reconstruction Quality

To assess the development of image quality as the GAN
is trained, we computed the RMSE, MS-SSIM, LSD, and
CRPS metrics, as described in Section II-D, at intervals
of 3200 generator training sequences. All of these metrics
were calculated for the data transformed to the [0, 1] range,
as explained in Section III. The evolution of the average of
these metrics over a sample drawn from the validation data
set is shown in Fig. 4. The numbers for the fully trained GAN
are shown in Table I for both the test and validation data sets.

The RMSE and MS-SSIM metrics improve rapidly in the
first 15000 generator training sequences, converging quickly
to a near-equilibrium. After this, there is little improvement in
these scores. LSD keeps improving considerably longer espe-
cially for the MCH-RZC data set, showing signs of improve-
ment until approximately 70000 sequences. The CRPS metric,
which utilizes all ensemble members, keeps improving longer
than the single-image metrics but with much more noise. After
the switch to the SGD optimizer, the noise in the single-image
metrics (but not the CRPS) is reduced, but the switch seems
to have almost no effect on the metrics except for a slight
degradation in the MS-SSIM metric for the GOES-COT data
set just after the switch.

Our subjective assessment of the generated image quality
indicated that the quality keeps increasing for longer than the
single-image metrics indicate, until at least 100 000 sequences.
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Fig. 4. Metrics of the image quality from the GAN-generated ensemble. The
blue solid line shows the RMSE, the orange dashed line shows 1—-MS-SSIM,
the green dotted line shows the LSD (divided by 50 to bring it to a similar
scale as the other metrics), and the red dashed-dotted line shows the CRPS
multiplied by 10. (a) Results for the MCH-RZC validation data set. (b) Results
for the GOES-COT validation data set.

We believe that the poor performance of the metrics is
caused by them not capturing the desired qualities of the
super-resolution reconstruction particularly well. The RMSE,
in particular, is minimized at the mean of possible solutions
and, therefore, is of limited use in assessing the performance
of GANs. The MS-SSIM is affected by similar issues because
the objective of the GAN is to generate an ensemble of
plausible solutions, and only a small fraction of those can be
expected to be a close match to the original. For instance, when
precipitation consists of small convective cells, the GAN might
create cells of the correct size and intensity but in slightly
wrong locations, leading to poor metrics in spite of perceptual
similarity. The LSD, which compares the power spectra, does
capture some of the structure but taking the power spectrum
loses information about the location of the signals. The CRPS
appears promising for evaluating conditional GANs as it
detects improvement for much longer than the other metrics.

C. Variability

In Fig. 5, we show the evolution of the variability metrics
of the GAN over time during the training, evaluated using
the validation data set using 100 ensemble members for each
validation sample. We consider the KS statistic, Dk1, and OF
as defined in Section II-D, and also plot the bias of the mean
rank from the optimal value of 1/2. During the training using
the Adam optimizer, the metrics improve rapidly at first, and
slow improvement continues for much longer than with the
single-image quality metrics discussed in the previous section.
Improvement continues until at least 300 000 sequences. After
the switch to the SGD optimizer at approximately 350000
training sequences, the oscillation in the metrics is reduced.

The variability metrics for the fully trained GAN are shown
in Table I alongside the quality metrics. The metrics near
the end of training indicate that the rank distribution is close
to uniform. At the time steps used in Section IV-A, the KS
statistic indicates that the CDF of the rank distribution differs
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TABLE I

IMAGE QUALITY AND VARIABILITY METRICS COMPUTED FOR THE TEST AND VALIDATION SETS FOR THE TRAINED GAN. (TOP) METRICS FOR THE
VALIDATION AND TESTING SETS OF BOTH THE MCH-RZC AND THE GOES-COT DATA SETS. (BOTTOM) METRICS FOR DIFFERENT METHODS
USING THE MCH-RZC TEST SET, BOLD NUMBERS DENOTING THE BEST METHOD FOR EACH METRIC

RMSE | MS-SSIM | LSD (dB) CRPS KS Dkr, OF Mean rank
GAN, MCH-RZC valid. 0.079 0.750 8.445 0.020 0.029 0.014 0.046 0.502
GAN, MCH-RZC test 0.097 0.680 8.365 0.029 0.040 0.024 0.056 0.501
GAN, GOES-COT valid. 0.140 0.422 8.652 0.054 0.059 0.046 0.073 0.494
GAN, GOES-COT test 0.133 0.456 8.817 0.061 0.052 0.044 0.073 0.506
GAN, MCH-RZC test 0.097 0.680 8.365 0.029 | 0.040 | 0.024 | 0.056 0.501
Lanczos, MCH-RZC test 0.092 0.617 18.700 — — — — —
RCNN, MCH-RZC test 0.076 0.683 23.268 — — — — —
RainFARM, MCH-RZC test | 0.243 0.134 16.484 0.131 0.202 0.318 0.294 0.516
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Fig. 5. Metrics of the rank distribution (as defined in Section II-D) of ground-
truth images in the GAN-generated ensemble, shown as a function of training
samples given to the generator. The blue solid line shows the KS statistic, the
orange dashed line shows the Kullback—Leibler divergence, the green dashed-
dotted line shows the OF, and the red dotted line shows the difference of
the mean rank and 1/2. (a) Results for the MCH-RZC validation data set.
(b) Results for the GOES-COT validation data set.

from the CDF of the uniform distribution by at most 0.029
for the MCH-RZC data set and at most 0.059 for the GOES-
COT data set. This suggests that, at least in this respect, the
GAN generates close to the appropriate amount of variability
in its outputs although there is clearly some difference in
the distributions, and therefore, the actual KS test for equal
distributions would fail. The similarity to and differences
from the uniform distribution can also be seen visually in
Fig. 6 where we show the rank distribution graphically. The
visualization shows that while there are considerably more
samples in the outlier ranks (r of either O or 1) than in the ranks
near the middle of the distribution, these outliers represent only
a minor fraction of all ranks (as also demonstrated by the OF
in Table I). In a clear majority of cases, the real sample falls
within the ensemble of predictions.

We also experimented with tuning the noise amplitude,
which was noted in [20] to increase the variability of the
generated fields. We tried different multiplication factors for
the noise, ranging from 0.5 to 3.0. We found that, for inade-
quately trained generators, noise adjustment could significantly
improve the variability metrics. On the other hand, for the
models trained to near-convergence, the optimal adjustment
factors were rather close to 1, ranging between 0.9 and 1.1
depending on the data set and the metric. Given that the
difference is minor and that there is no clear theoretical

to the MCH-RZC data set and the orange dashed lines to the GOES-COT
data set. The thick, lighter-colored lines show the results for the test data set,
while the thin, darker lines show the results for the validation data set. The
green dotted line shows the uniform distribution for comparison. (b) As (a),
but showing the CDFs of the distributions.

justification for this ad hoc adjustment, we do not apply any
adjustment to the noise amplitude in the final results.

D. Comparison to Alternative Methods

In Fig. 7, we show a comparison of our GAN-based method
to alternative techniques: Lanczos interpolation, a recurrent
CNN (RCNN) trained to optimize RMSE, and the rain-
fall filtered autoregressive model (RainFARM) algorithm of
[13]. These represent conceptually different approaches to the
downscaling problem. Lanczos interpolation is a traditional,
widely used image scaling method and is used here as a
baseline case. The RCNN trained with the RMSE loss is an
example of a more straightforward deep-learning approach; in
order to provide a fair comparison to the GAN, the RCNN
uses the same architecture as our GAN generator, except with
the noise input disabled. Finally, RainFARM is a downscaling
method developed specifically for rainfall using more tradi-
tional statistical techniques based on the Gaussian random
fields generated using power-law spectral scaling. RainFARM,
such as the GAN, can be used stochastically to generate
multiple realizations of the random field, while the RCNN
and Lanczos methods are deterministic.

The examples illustrate that GAN produces more detail and
more visually accurate reconstruction of the original image
than the alternative methods. The Lanczos interpolation and
the RMSE-trained RCNN both produce a smooth output but
with little detail at smaller scales. We also tried training the
RCNN using the MAE loss, but the results (not shown) were
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Fig. 7.  Comparison of our GAN-based method to alternative methods.
The first row shows the real high-resolution sequence, and the second row
shows the downsampled version. The subsequent rows show the different
reconstruction methods: Lanczos interpolation (third row), RCNN trained to
optimize RMSE (fourth row), the RainFARM algorithm (fifth row), and our
GAN (sixth row).

very similar to RMSE. The RainFARM algorithm can produce
more small-scale detail than the previous two methods, but it is
limited to producing the same texture everywhere in the image
and does not reproduce the structure of the high-resolution
field as accurately as the GAN. Moreover, the example shown
in Fig. 7 is one where RainFARM performs relatively well.
As Rebora et al. [13] note, RainFARM is quite sensitive to the
choice of the scaling exponent, and we found that, in some
cases, the textures produced were considerably less realistic
than in this example as a result of a poorly estimated exponent.
The GAN, on the other hand, works quite robustly and very
rarely generates any implausible artifacts.

The performance metrics for the various methods are shown
in the bottom half of Table I. These are consistent with what
is shown in Fig. 7. The GAN, Lanczos, and RCNN methods
give similar results for the RMSE and MS-SSIM metrics,
which further demonstrates that these are not particularly good
metrics for evaluating GAN performance as they penalize
solutions with higher variance. The RCNN achieves the best
RMSE metric, which is unsurprising as it was specifically
trained to optimize this metric, and it also gives the best
MS-SSIM score. With the LSD, the GAN achieves the best
score by far, while RainFARM, which produces a detailed
texture, performs better than the Lanczos and the RCNN
that produce unrealistically smooth outputs. In the ensemble
metrics, the GAN clearly outperforms RainFARM, while these
scores cannot be evaluated for the deterministic methods.

In terms of computational resources, evaluating the GAN
generator (and, by extension, the RMSE-trained RCNN, which
uses the same architecture) for one sequence of eight 128 x
128 pixel images took approximately 660 ms on a modern
quad-core Intel i7 central processing unit (CPU) and 20 ms
on an Nvidia P100 GPU. These times were obtained with a
batch size of 16; using a batch size of 1 instead increased
the evaluation time per sequence by approximately a factor of
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2 on both the CPU and the GPU (TensorFlow parallelization
becomes less efficient with smaller batches). By comparison,
the Lanczos interpolation took 11 ms seconds/sequence, and
the RainFARM algorithm, using a fairly unoptimized imple-
mentation, took 240 ms/sequence. The latter two methods were
evaluated only on the CPU. This performance comparison
demonstrates that the GAN method is relatively resource-
intensive, but evaluating the GAN for modest amounts of input
data is possible in a reasonable amount of time also on a CPU,
while a GPU is desirable for bulk processing large amounts
of data.

E. Generalization to Larger Images and Longer Sequences

Since the GAN architecture is fully convolutional, we can
apply the generator trained with relatively small (in our case,
128 x 128 pixel) inputs to fields of different sizes without any
modifications. The only restriction is that the pixels should
correspond to the same physical size as the pixels of the
training sequences, and that pixel dimensions of the input
must be divisible by the resolution enhancement factor of
16. Similarly, the recurrent structure allows us to apply the
generator to longer or shorter sequences than the training
sequences of length 8 as long as the time interval between the
frames of the sequence is the same as that used for training.

We demonstrated this capability by applying the generator
(using the same version as in Section IV-A) to the data
from the June—August 2017 archive of full frames of the
MCH-RZC data at 10-min time intervals. These data are from
a different year than the training set and, thus, are completely
independent. The frames in the data are 710 pixels wide and
640 pixels high; the width was cropped to 704 pixels to
satisfy the requirement that the dimensions be divisible by
16. The generator was applied sequentially to each frame;
the hidden state of the ConvGRU layer was propagated to
the following frame at each step. For the first step, and
wherever there is a longer than 10-min time gap between
frames (which occasionally happens due to missing data),
we used the initialization network to reinitialize the ConvGRU
state, thus interrupting the time consistency in these situations.

We show one frame of the generated sequence in Fig. 8. This
example shows a situation with different modes of precipita-
tion in different regions. It demonstrates that the GAN can
create realistic reconstructions even for much larger images
than those from the training set. The time evolution of the
generated fields can obviously not be properly illustrated with
a single image, so we provide an animation that shows the
June—August 2017 sequence as a video accompanying this
article online in the Supplementary Material.

While generating these long time series, we found that some
versions of the generator could produce artifacts when left
running for a long time. For the purposes of generating Fig. 8
and the corresponding video, we were able to suppress these
artifacts sufficiently by adjusting the generator architecture and
choosing a version of the generator that was less prone to
them. However, for those cases where the artifacts cannot be
avoided, we found a simple stabilization method, which we
describe in the Appendix.
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Fig. 8.

Example of the results of the GAN applied to full frames of the June—August 2017 data from the MCH-RZC data set, showing the situation of

July 24 at 10:00 UTC. The gray areas mask the points that are unavailable due to a lack of radar coverage. The borders of Switzerland are shown in the middle
in order to provide spatial context. (Left) Original frame. (Middle) Downsampled version fed to the generator. (Right) High-resolution frame reconstructed

by the GAN.

V. CONCLUSION AND SUMMARY

Deep learning has enabled significant advances in image
and video super-resolution, with GANSs being among the most
prominent methods. Resolution enhancement also has many
applications in the processing of observational and model data
in the weather and climate sciences. However, in weather and
climate applications, uncertainty quantification is essential.
This work addresses this need with a conditional super-
resolution GAN that operates on sequences of 2-D images and
creates an ensemble of predictions for each input. The spread
between the ensemble members represents the uncertainty of
the super-resolution reconstruction.

Rather than processing each image in a sequence inde-
pendently, our generator architecture uses a recurrent layer
to update the state of the high-resolution reconstruction in a
manner that is consistent with both the previous state and the
newly received data. The recurrent layer can, thus, be under-
stood as performing a Bayesian update on the ensemble
member, resembling an ensemble Kalman filter. Besides being
recurrent, the generator is fully convolutional, meaning that it
can operate on variable-sized inputs and produce consistent
time evolution for arbitrarily long sequences.

The representativeness of the ensemble was quantitatively
evaluated using ensemble statistics. We found that rank metrics
take longer to converge than image quality metrics, such as
MS-SSIM and RMSE, and therefore, the rank metrics can be
used to monitor the progress of the training even after image
quality metrics saturate. The CPRS quality metric, which uses
the entire ensemble, also appears to provide a better estimate
of image quality than the single-image metrics. The ensemble
metrics, therefore, seem promising for evaluating the quality
and variability produced by conditional GANs in general and
may be useful in applications beyond the geoscience domain.

The evaluation of the GAN indicates that it produces
realistic high-resolution fields with appropriate amounts of
variability. Moreover, the GAN was trained separately for
two distinct applications, proving that it can generalize to

different types of input data. We expect that it can be applied
to other similar applications as well. The GAN generator also
generalizes well to larger input images and longer sequences
than those in the training set, reducing the computational cost
of training as the GAN can be trained with relatively short
sequences of small images and then evaluated with sequences
of different length and image size.

Besides increasing the range of applications, potential future
improvements include the following.

1) Optimization of the network architecture for perfor-
mance and memory footprint using rigorous ablation
analysis.

2) Generalization of different scaling factors or possibly
producing high-resolution images for multiple scaling
factors at once (the current version is specific to the
factor of 16).

3) Resolution enhancement in the temporal in addition to
the spatial dimensions to allow time interpolation.

4) Extrapolation of the time series to allow short-term
predictions into the future, possibly in conjunction with
additional methods, such as optical flow.

5) The inclusion of auxiliary variables to help the generator
produce the right kind of fields; for instance, orography
affects precipitation formation and could be included as
an additional variable, as was previously done in a deep-
learning context in [55].

6) Further development of the rank-based methods for
evaluating conditional GANS. In particular, the ensemble
metrics in this article were evaluated pixelwise, but it
may be possible to develop a more feature-based method
similar to the FID.

APPENDIX
OPTIONAL STABILIZATION FOR LONG TIME SERIES

We found that some versions of the generator were prone
to generating artifacts when left running recurrently for many
time steps. In these cases, the generator was stable over the
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eight frames used in the training, but this was apparently not
always sufficient to guarantee stability over longer periods of
time. While we were able to avoid this in our reported exper-
iments, as described in Section IV-E, we found a relatively
simple technique to suppress the artifacts when they appear.
We report it here as it may be useful for further experiments
with such recurrent GANs.

As the initialization network did not produce any artifacts,
we were able to use the following procedure to stabilize
the evaluation of the generator. On each time step k, after
evaluating the update network, the ConvGRU state hy is
adjusted as follows:

hy := hyun + (1 - jvr)(hk - hnull) (1)
where hpyy is the ConvGRU state produced by the initial-
ization network for an all-zeros input, and A, is a relaxation
constant (we experimented with 0.01 < 4, < 0.2 for the
MCH-RZC data set). This process nudges the ConvGRU state
toward the null state. This effectively suppresses artifacts while
still allowing the update network to operate on the state from
the previous step. This procedure seems to reduce (but not
completely eliminate) the variability present in the generated
images. Therefore, while it serves to stabilize the evaluation
over long periods of time, it should only be used when
the artifacts cannot be removed using improvements to the
generator network.
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