
Composites: Part A 143 (2021) 106315

A
1

Contents lists available at ScienceDirect

Composites Part A

journal homepage: www.elsevier.com/locate/compositesa

A numerical approach to characterize the viscoelastic behaviour of fibre beds
and to evaluate the influence of strain deviations on viscoelastic parameter
extraction
Vincent Werlen a,b,∗, Christian Rytka a, Véronique Michaud b

a Institute of Polymer Engineering (IKT), University of Applied Sciences and Arts Northwestern Switzerland (FHNW), CH-5210 Windisch, Switzerland
b Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
A. Fabrics/textiles
B. Mechanical properties
C. Analytical modelling
D. Mechanical testing

A B S T R A C T

The development of a robust material model able to accurately describe fibre bed compaction at different strain
and strain rates is highly desirable because it is essential for the simulation of many composite manufacturing
processes. In this study, we investigate the validity of an analytical viscoelastic model approach for different
fabrics and at a wide range of strains, both in dry and wet conditions. We propose a numerical approach to
determine the parameters of the material model that can overcome simplifications usually met with analytical
approaches. We show that a three-branches Maxwell model with strain dependent stiffness and strain-rate
dependent dampers can accurately describe the viscoelastic compaction behaviour of fibre beds at different
strains and strain speeds, both in dry and wet conditions. We demonstrate that strain deviations have a
considerable impact on the viscoelastic parameter extraction and should be taken into account.
1. Introduction

During manufacturing of fibre-reinforced composites the fibre bed
will usually be compacted to increase the fibre volume fraction and to
improve the part mechanical properties. The modelling of several man-
ufacturing techniques such as Compression Resin Transfer Moulding
(CRTM) [1,2], Resin Film Infusion (RFI) [3–5] or direct thermoplastic
melt impregnation [6,7] requires knowledge about the fibre bed stress
response.

The description of the mechanical behaviour of fibre textiles has
been and is still an active research topic as witnessed by the rich
literature dealing with this matter [8–21]. During the compaction of
a stack of textiles the fibres are pressed together and act as elastic
bending beams. Fibres and tows slide past each other to rearrange
themselves, causing friction forces. The resulting nesting of the fibres
and fibre bundles is thereby influenced by the lubrication of the textile.
These combined effects result in a complex viscoelastic behaviour [22].

The characterization of fibre beds is no trivial task and significantly
different results can be obtained with the same material depending
on the testing equipment and methodology. The first international
benchmark exercise on textile permeability and compressibility charac-
terization highlighted that the main source of variation is uncertainty
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in the measurement of the cavity height [23], mainly due to machine
compliance. To counteract this effect, methods such as that presented
by Sousa and al., which presented an indirect thickness measurement
method, can be applied to identify and eliminate errors in cavity
height measurement [24]. During the characterization of fibre beds,
several effects will cause a deviation between the prescribed and the
measured strain. These different effects are listed below together with
the terminology that is adopted in this article:

• Machine compliance: The compliance of the testing machine
itself leads to errors in cavity height measurements. This is usually
corrected on the basis of an empty compaction curve.

• Machine deflection: As the applied force decreases during relax-
ation, the machine deformation decreases as well, which induces
a change in cavity height. This behaviour was reported by Sousa
and al. [24] and could significantly impact the results but has
been neglected by the analytical approach adopted by many
authors.

• Actuation error: The deviation between the prescribed and mea-
sured cavity height caused by the controller inaccuracy. This
effect especially takes place at the start and end of a compaction
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because the control of the machine needs to react to the measured
force values.

In this article, we adopt a numerical approach to determine the
parameters of the material model that can overcome simplifications
usually met with analytical approach and consider machine deflection
and actuation error which are usually neglected. This methodology is
applied to the three-branches Maxwell recently proposed by Danzi [18].
We investigate its validity for different fabrics at a wide range of strains
and strain rates in both dry and wet conditions. Finally, we inves-
tigate the impact of neglecting machine deflection during parameter
extraction on the quality of the results.

1.1. State of the art

Early models only considered the elastic response of the fibre beds.
In 1946, Van Wyk modelled the compression behaviour of wool with
bending beams [8]. Several authors subsequently proposed models
based on the same assumption, such as Gutowski [25] or Toll [19] who
considered different types of assembly following a micromechanical
approach.

However, fibre beds display a pronounced viscoelastic behaviour
and soon time-dependent models were proposed. This matter was com-
monly described with rheological models consisting of a combination
of spring and dampers, usually a generalized Maxwell model. Also
known as the Maxwell–Wiechert model, it consists of a spring placed
in parallel with an arbitrary number of spring-dashpot elements called
Maxwell elements. Kim and McCarthy [20] were the first to describe
the relaxation of fibre textiles with this model in 1991, using a linear
model with five spring-dashpot elements.

In further studies several Maxwell models were proposed with a
different number of branches and nonlinear springs to describe the
quasi-static response of the textile [11] or strain-dependent parame-
ters [10], following the findings of Bickerton et al. [22] who found
that the time dependent response of fibre beds depends on the strain
and compaction rate. More recently, Danzi et al. [18] proposed a three-
branches Maxwell model with strain-dependent springs and strain-rate
dependent dashpots, which was found to give good results over a
wide range of strains and strain speeds. However, this model was only
verified with one dry textile so that its performance with different
textiles remains to be proven both in dry and wet conditions.

1.2. Approach

We are interested in developing an efficient model that can be
applied for different fabrics under both dry and wet conditions, at a
wide range of fibre volume fractions including very high compaction
levels, which are for example relevant for composite manufacturing
methods such as CRTM, film stacking [4] or direct thermoplastic melt
impregnation [6,7]. The approach and methodology adopted here ini-
tially follows that proposed by Danzi [18]. Therefore, we consider
a variant of the Maxwell model with three branches as shown in
Fig. 1: an elastic branch with strain dependent stiffness E0(𝜖), three
viscoelastic branches with strain dependent stiffnesses E1(𝜖), E2(𝜖),
E3(𝜖) and strain-rate dependent relaxation times 𝜏1(𝜖̇), 𝜏2(𝜖̇) and 𝜏3(𝜖̇)
where the subscript indicates to which branch the parameter belongs
to. The branches are sorted with increasing order of relaxation time so
that the first, second and third branches are responsible respectively for
the short-, middle- and long-term response of the fibre bed.

The different models presented above generally rely on an analytical
approach considering a linear generalized Maxwell model to derive
nonlinear parameters. In this study, we investigate the use of a finite
difference numerical approach in order to improve the data analysis,
and to quantify the impact of some simplifications usually taken in
the analytical approach, such as the assumption of a perfectly constant
strain during a relaxation experiment. For the parameter extraction
2

Fig. 1. Schematic representation of a Maxwell model with three branches. The elastic
branch is characterized by a single spring on the left while the viscoelastic branches
consist of a spring and damper in series.

Fig. 2. Pictures of the different textiles used for the experiments.

we consider small compaction steps and approximate the viscoelastic
branches behaviour as linear but consider a non-linear elastic branch.
The compaction history of the textile is neglected and we assume that
the superposition principle for multiple steps functions can be applied
to derive model parameters.

2. Materials and methods

2.1. Materials

Different textile architectures based either on glass or carbon yarns
have been considered to evaluate the performance of the model on
a broad range of materials. Four different textiles were selected and
tested in this study: a chopped glass fibres mat shown in Fig. 2(a), a
quasi-unidirectional (UD) glass weave shown in Fig. 2(b), a biaxial car-
bon non-crimp fabric with +/−45◦ fibre orientation shown in Fig. 2(c)
and a carbon plain weave shown in Fig. 2(d). For each of these fabrics
the areal weight was measured with a scale while the density of the
fabric was measured with the buoyancy method using a Kern precision
scale with an immersion set-up, three samples were tested for both
methods.

2.2. Experimental test setup

Single plies were cut to squares with a side length of 175 mm using
a CNC cutting machine. The plies were then laid with an orientation
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Table 1
Overview of the multiple compaction step procedure. The 5N corresponds to the preload
at the beginning of the test.

Step nr. Maximum force [kN] Maximum stress [Pa] Holding time [s]

– 5e−3 349 0
0 20e−3 1397 30
1 0.1 6.99 e3 500
2 0.2 1.40 e4 500
3 0.3 2.10 e4 500
4 1 6.99 e4 500
5 2 1.40 e5 500
6 3 2.10 e5 500
7 10 6.99 e5 1000
8 15 1.05 e6 1000
9 20 1.40 e6 1000
10 40 2.79 e6 1000
11 60 4.19 e6 1000
12 95 6.64 e6 1000

of 0◦ to form a stack, whereby the number of plies is chosen for
each material such that the total thickness is approximatively 13 mm
in uncompressed state. Each textile was tested in both dry and wet
conditions with a Zwick Roell Z100 universal testing machine. The
sample is placed between two steel plates with a diameter of 135 mm
as shown in Fig. 3, whereas the bottom one is perforated and a groove
allows the fluid to flow. The bottom plate contained ⌀2 mm holes
spaced with a regular distance of 4 mm between each others. The
grooves underneath are 2.2 mm wide and regularly spaced at 3.7 mm
distance. The plies were individually impregnated with the 200 cSt
silicon oil Xiameter PMX 200 (Dow Europe GmbH) for wet experiments.
The individual plies were then stacked and gently pressed with a roll
such as to evacuate air between them.

The machine was calibrated to correct compliance prior to compres-
sion testing in order to enable a precise cavity height measurement.
An empty compaction test was performed to check the quality of the
compliance correction and to properly set the tool distance before each
set of experiments.

2.3. Experimental testing procedure

The experimental testing procedure is based on multiple steps com-
paction with constant compaction velocity and variable holding times
at a given position. The experiment was repeated with the following
compaction velocities: 0.1, 0.5, 2.0, 6.0 and 12.0 mm/min, each time
with a new textile sample. The compaction velocities were chosen such
as to cover a broad range of strain speeds while taking the limits of the
mechanical testing machine into account. The test is designed to gain
information on the time dependent response of the fibre bed over a
range of strains and strain speeds.

The testing procedure consists of twelve compaction steps covering
the whole range of fibre volume fractions as summarized in Table 1.
The compaction goes on until a defined force is reached before letting
the fibre relax at constant strain for a given period of time. The stress
is directly obtained by dividing the force with the compaction tool
area. The stress differences at each compaction steps are defined as
large enough in order to guarantee a minimal tool displacement and
a sufficient measurement quality but as small as possible in order to
minimize changes in the viscoelastic fibre bed behaviour. This results
in a greater relative stress increase at higher fibre volume fractions
because of the non-linear fibre behaviour. The first, fourth, seventh
and tenth compaction steps are larger steps used as transitions between
different regions of fibre volume fractions and are not considered in
the evaluation of the model parameters, but are used to verify that the
model remains valid at larger strains. The holding time is reduced at
lower fibre volume fractions to minimize the total experiment duration.
3

The fibre bed response is commonly described through its fibre
volume fraction 𝜈𝑓 rather than its strain. The fibre volume fraction
is obtained with Eq. (1), where N is the number of layers, Aw the
real weight of the fabric, 𝜌 the density of the fabric and h the cavity
eight, which is measured as the cross-head displacement corrected
ith machine compliance. The strain is directly related to the cavity
eight with Eq. (2) where the strain 𝜖 is defined as positive with closing
ool distance.

f =
NAw
𝜌h (1)

𝜖 =
h0 − h

h0
(2)

Thereby, h0 is the initial tool separation distance corresponding to
the stack thickness in uncompressed state. These two equations can be
combined to relate fibre volume fraction and strain:

𝜈f =
NAw

𝜌h0(1 − 𝜖)
(3)

2.4. Model approach

A Finite Difference Method (FDM) is adopted to obtain the response
of the Maxwell model, which can be assumed linear over sufficiently
small intervals. The model response of a Maxwell model is the sum of
the stresses of the individual branches. For the present case with three
viscoelastic branches it reads:

𝜎 = 𝜎0 +
i=3
∑

i=1
𝜎i (4)

where 𝜎 is the stress, the superscript 0 denotes the elastic branch
and the superscripts from 1 to 3 the viscoelastic branches. The stress
response of the elastic branch is given by Eq. (5). For the branches
with a spring and a damper in series the viscoelastic behaviour is
strain-rate dependent [26] and the stress response is described with the
constitutive Eq. (6).

𝜎0 = E0(𝜖)𝜖 (5)
𝜕𝜖
𝜕t = 1

Ei

𝜕𝜎i
𝜕t +

𝜎i
𝜂i(𝜖̇)

(6)

𝜏(𝜖̇) =
𝜂i(𝜖̇)
Ei

(7)

In these equations 𝜖 is the overall strain and 𝜎 the stress. The
superscript 0 denotes the elastic branch and the superscripts from 1 to 3
the viscoelastic branches. E(𝜖) is the strain dependent Young’s modulus,
𝜂i(𝜖̇) the strain-rate dependent viscosity of the dashpot elements and
𝜏i(𝜖̇) their corresponding relaxation time. With the FDM approach the
derivatives are transformed into finite differences 𝛿 and the viscoelastic
branches are linearized. This implies that the parameters of these
branches are constant over 𝛿t and the strain rate as well. Relating the
dashpot viscosity with the relaxation time as expressed in Eq. (7) into
(6) yields:

𝜎i(t + 𝛿t) = 𝜎i(t) + Ei𝛿𝜖i −
𝜎i

𝜏i(𝜖̇)
𝛿t (8)

This equation can be solved if the initial conditions are known. We
assume that the fibre bed is completely relaxed at the end of each
step, contiguous to the start of the next compaction. The stress in
each viscoelastic branch is therefore zero as initial conditions. Bringing
together Eqs. (4), (5) and (8) enables to numerically solve the Maxwell
model with:

𝜎(t + 𝛥t) = E0(𝜖)𝜖 +
i=3
∑

i=1

[

𝜎i(t) + Ei𝛥𝜖i −
𝜎i

𝜏i(𝜖̇)
𝛿t
]

(9)

This approach provides the stress response as a function of time
if the model parameters are already known. However, there is no
direct way to extract these parameters with known stress response. The
measured stress response for a given strain input is therefore compared
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Fig. 3. Setup of the compaction test.
to the stress response obtained with the FDM method and a given
set of parameters. The parameters are then optimized with a Simplex
algorithm [27] such that the FDM model response corresponds to the
measurements. The algorithm is implemented in a three dimensional
manner, meaning that three parameters can be optimized at once while
the others are fixed. At each iteration, the model response is calculated
with the FDM method and the current set of parameters. The sum of the
square differences (SSQ) between the FDM model response 𝜎FDM(t) and
the measurements 𝜎(t) is evaluated with Eq. (10). Based on that, the
algorithm defines a new set of model parameters such as to minimize
the SSQ. The iteration goes on until convergences is observed, at which
point the parameters are returned as solution.

SSQ =
tend
∑

tstart

[

(

𝜎FDM(t) − 𝜎(t)
)2] (10)

The sampling rate was set to make a measurement each 0.25s or if
the tool displacement exceeded 10 𝜇m. As this time scale is one order
of magnitude lower than the effects taking place in the branch with
the fastest relaxation time (around 2s), the time interval is sufficiently
small for the behaviour to be well approximated as linear. The approach
to determine the parameters of the Maxwell model is very similar to
that proposed by Danzi [18]. In the procedure that we have defined,
no more than three parameters will be determined at once, meaning
that the three dimensional optimization algorithm described above is
sufficient. The properties found with the fitting algorithm at each of
the compaction steps are associated with the fibre volume fraction at
the beginning of the holding step.

The model parameters extraction can be separated in three stages.
During the first step the strain dependent compression modulus of the
elastic branch E0(𝜈f) is extracted. Then, the Young’s moduli Ei(𝜈f) of
the viscoelastic branches are determined at the reference strain speed.
Finally, the strain-rate dependent relaxation times 𝜏i(𝜖̇) are extracted.
During this procedure the large compaction steps (N◦ 1,4,7 and 10, see
Table 1) are not considered. Note that the Young’s moduli are expressed
as function of the fibre volume fraction in the following and can easily
be transformed as a function of the strain using Eq. (2).
Stage 1: Definition of the compression modulus.

The elastic branch of the Maxwell model is responsible for the quasi-
static response of the fibre bed. The stress and strain values at the end
of the different steps form the quasi-static compaction curve because it
is assumed that the fibre-bed is completely relaxed at the end of each
compaction step. This curve takes an exponential form as suggested by
Robitaille and Gauvin [28] and we fit it to Eq. (11). In this equation,
A and B are fitting parameters while 𝜈f0 is the initial fibre volume
fraction. The strain is calculated based on the cavity height h0 which
we measured at the preload of 5N, see Table 1. Fitting of the quasi-
static datapoints to Eq. (11) allows to extract the Young’s Modulus of
4

the elastic branch E0(𝜈f). Due to measurements errors it can happen
that a force is recorded at the measured 𝜈f0, leading to a divide by zero
in Eq. (11), therefore 𝜈f0 is fitted as well rather than measured.

E0(𝜈f) =
A ⋅ eB⋅𝜈f

|

𝜈f0
𝜈f

− 1|
(11)

Stage 2: Definition of the Young’s moduli of the viscoelastic branches.
The stiffness parameters Ei of the three viscoelastic branches are

extracted with the optimization algorithm explained earlier at each
compaction step of the reference speed, which we arbitrarily set to
2 mm/s. Thereby we consider that these stiffnesses are constant over
each compaction step. Meaningful guessed values are used for the
relaxation times: 2, 20 and 200 s which were found to provide good
fits. Using the model parameters derived in Stage 1 for the Young’s
modulus E0(𝜈f) comes along with its fitting error. As a result, the
measured stress might be incorrectly parted into elastic and viscoelastic
stress, which will not tend towards zero for quasi-static states at the
beginning and end of the compaction steps. Incorrect determination of
the viscoelastic stress will perturb the optimization algorithm and cause
improper parameter extraction. For this reason, we define a measured
Young’s modulus for each compaction step by fitting the quasi-static
values at the beginning and the end of the current step to Eq. (11),
where the fitted value of 𝜈f0 obtained in stage one is used. This stiffness
is not constant but a function of the measured fibre volume fraction.
Note that the measured Young’s modulus is only used for parameter
extraction and will not be part of the model.

Fig. 4 represents the strain input imposed to the fibre bed and
the corresponding measured stress response. The elastic stress response
obtained with the Maxwell model on the basis of the measured and
modelled Young’s modulus are displayed as well. The measured stiff-
ness yields a correct quasi-static stress response and allows a proper
extraction of the measured elastic stress response. The optimization
algorithm will fit the stiffness parameters to the viscoelastic response,
which is the difference between the measured stress and the elastic
response. The fitting procedure yields a set of stiffness parameters Ei
for each compaction step. These display an exponential dependence on
the fibre volume fraction and are fitted to a function of the form A⋅eB⋅𝜈f .
The parameter set for the second stage is summarized in Table Table 2.
Stage 3: Definition of the relaxation times.

The third stage aims at describing the variation of the relaxation
times as a function of the strain speed. The FDM model uses the
same compaction modulus E0 for the same reasons, as well as the
set of stiffness parameters Ei obtained in Stage 2 for the viscoelastic
branches, still considered as constant over the individual compaction
steps. During parameter extraction, the relaxation times are fitted to
the measurements for each compaction step at the different compaction
speeds with the optimization algorithm. The relaxation times are as-

sumed constant within a compaction step. The fitted variables are then
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Fig. 4. Fig. 4(a): Representation of the strain curve imposed to the fibre bed. Fig. 4(b): Representation of the corresponding measured stress response along with the elastic stress
modelled with the FDM method based on different Young’s moduli. The label ‘‘measured‘‘ indicates that the measured stiffness has been used while the label ‘‘modelled‘‘ is linked
to the stiffness derived in stage one.
E

associated with the measured average strain speed at each step, which
corresponds to the strain difference from the start of compaction to
the start of relaxation over the elapsed time. The relaxation times with
respect to the strain speed are finally fitted to a function of the form
A ⋅𝜖̇-B, which is found to provide a better fit than the function A⋅eB⋅𝜖̇

proposed by Danzi [18]. The parameter set for the second stage is
summarized in Table Table 3.

2.5. Model accuracy

To quantify the accuracy of the model, the stress response of the
fibre bed is calculated for each compaction step based on the measured
strain with the resulting model and compared to the measured stress
response. At the beginning and towards the end of a compaction step,
the difference corresponds to the modelling error of the elastic branch
since the viscoelastic response is negligible. However, at the peak stress
the viscoelastic response is the highest and we expect the modelling
error to overall reach its maximum at this point. For this reason, the
model accuracy is measured at the peak stress.

The total model error is the sum of the errors emanating from the
elastic and viscoelastic branches and they can add up but also subtract
from each other. It is desirable to know the extent of their respective
contribution to the total model error, which cannot yet be directly read
from the measurements. For this reason, the measured stress response
is parted into an elastic and viscoelastic part using the same method
presented in the second stage based on the measured Young’s modulus.
At the peak measured stress, it reads:

𝜎max
meas.(𝜖, 𝜖̇) = 𝜎max

E,meas.(𝜖) + 𝜎max
VE,meas.(𝜖̇) (12)

where the subscript meas. denotes the measured stress, max that
the property is measured at the peak stress, E the elastic and VE the
viscoelastic stress. The modelled peak stress obtained with the FDM
method is easily parted into elastic and viscoelastic parts and it can
be written as:

𝜎max
model(𝜖, 𝜖̇) = 𝜎max

E,model(𝜖) + 𝜎max
VE,model(𝜖̇) (13)

The total relative modelling error is defined in Eq. (14). The mea-
sured relative elastic error is defined in Eq. (15) as the difference
between the measured and modelled elastic stress at the peak stress
5

Table 2
Parameter set for the second stage.

E0(𝜈f) Approximated at each step

Ei
1, Ei

2, Ei
3 Fitting variable

𝜏1 = 2, 𝜏2 = 20, 𝜏3 = 200 Fixed parameters

Table 3
Parameter set for the third stage.

E0(𝜈f) Approximated at each step

Ei
1, Ei

2, Ei
3 Derived in Stage 2

𝜏1, 𝜏2, 𝜏3 Fitting variables

divided by the measured peak stress. The measured relative viscoelastic
error is defined in a similar way in Eq. (16).

Error =
|𝜎max

meas.(𝜖, 𝜖̇) − 𝜎max
model(𝜖, 𝜖̇)|

𝜎max
meas.(𝜖, 𝜖̇)

(14)

ErrorE =
|𝜎max

E,meas.(𝜖) − 𝜎max
E,model(𝜖)|

𝜎max
meas.(𝜖, 𝜖̇)

(15)

rrorVE =
|𝜎max

VE,meas.(𝜖̇) − 𝜎max
VE,model(𝜖̇)|

𝜎max
meas.(𝜖, 𝜖̇)

(16)

3. Results

3.1. Materials

The measured material properties are reported in Table 4. The
densities of the fabrics are in the expected range for carbon and glass.
The small deviations can arise due to different fibre types, sizing or
experimental measurement errors. The textile architecture influences
the fibre volume fraction and thus the number of layers required to
reach a certain thickness in uncompressed state. The thickness of the
glass mat is above the target value, but we do not expect it to have any
impact on the measured strain or outcome.

3.2. Definition of model parameters

In the following, the analysis and illustrations describes the results
obtained with the carbon plain weave in dry condition if not explicitly
specified otherwise. These results are representative of the behaviour
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Fig. 5. 5(a): Tool distance as a function of time for the multiple compaction steps at different strain rates for the carbon plain weave in dry condition. 5(b) Corresponding
easured stress as a function of time.
able 4
aterial properties of the different fabrics and measured initial sample height.
Fabric Areal weight Density Number Sample height

[ g
m2 ] [ kg

m3 ] of layers [mm]

Glass mat 571 2400 14 17.1
Glass quasi-UD 931 2524 16 13.8
Carbon plain weave 203 1754 45 13.3
Carbon biaxial 571 1711 14 13.9

observed with the other textiles in both dry and wet conditions. Dif-
ferent or noticeable behaviour of the other fabrics are described when
relevant for the analysis.

Fig. 5 shows the tool distance and resulting stress value obtained
for a multiple steps compaction test, which is the basis of the following
analysis. Even though the initial sample thickness is similar for all
the fabrics, we obtain varying final sample thicknesses because of the
different textile behaviour. Still, the strain profile is comparable each
time and we do not expect it to have any effect on the analysis.
Stage 1: Fig. 6 shows the quasi-static stress response of the five multiple
steps compaction experiments performed at different strain rates, and
the resulting fitted curve. We obtain an overall good fit quality over the
entire data set which spans over the whole range of fibre volume frac-
tions. Note that the measured value typically spans over several order
of magnitudes due to the exponential behaviour of the fibre beds and
the measurements covering the whole range of fibre volume fractions.
The fitting of the Young’s moduli is performed in a logarithmic scale
because it ranges over three order of magnitudes.

The coefficients of determination R2 of the fits for the different
experiments are listed in Table 5. We obtain an excellent fit quality,
comparable for all the experiments. Yet, we also observe a relatively
elevated scatter of the measurements which is acceptable because fibre
beds are known to display such a behaviour. The fit quality is compa-
rable in dry and wet conditions. The fibre beds display a lower stiffness
in wet conditions, as observed by several authors [12]. Lubricated
fibres can slide past each other and rearrange themselves more easily
due to a reduced friction. Table 6 summarizes the fitted parameters
6

Fig. 6. Quasi-static data points of the Young’s modulus E0 in function of the fibre
volume content obtained with different compaction speeds and resulting fitting curve
for the carbon plain weave in dry condition. The fitting curve of the carbon plain
weave obtained in wet conditions is displayed along for comparison.

of Eq. (11) obtained for the different tests. The stiffening parameter B
is responsible for the shape of the exponential curve, the parameter A is
a simple multiplication factor and 𝜈f0 corresponds to the fibre volume
fraction in uncompressed state.

The stiffening parameter remains rather constant for a same ma-
terial independently of its state. However, the multiplication factor
decreases in wet state, indicating that the quasi-static stress response
is smaller at equal fibre volume fraction. The fitted uncompressed fibre
volume fractions in dry and wet states are very close to each other,
except for the quasi-UD weave. The 𝜈f0 obtained are generally smaller
than the fibre volume fraction measured at the preload of 5N, which is
an expected behaviour considering the very low stiffness of fibre beds
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Table 5
Resulting fit quality of the different experiments.

Material State R2

Glass mat Dry 0.992
Glass mat Wet 0.996
Glass quasi-UD Dry 0.988
Glass quasi-UD Wet 0.991
Carbon biaxial Dry 0.996
Carbon biaxial Wet 0.994
Carbon plain weave Dry 0.993
Carbon plain weave Wet 0.992

Table 6
Resulting model parameters for the compression modulus E0.

Material State A B 𝜈f0

Glass mat Dry 94.64 16.42 0.144
Glass mat Wet 70.17 16.98 0.153
Glass quasi-UD Dry 0.12 22.93 0.276
Glass quasi-UD Wet 0.03 24.22 0.414
Carbon biaxial Dry 1.14 19.91 0.279
Carbon biaxial Wet 0.68 20.66 0.262
Carbon plain weave Dry 0.71 21.23 0.333
Carbon plain weave Wet 0.26 22.49 0.348

close to their uncompressed states. This trend is not observed for the
quasi-UD glass weave in dry conditions and we impute this behaviour
to a poorer fit, also observable in Table 5. The values obtained at the
first stage otherwise reflect an expected behaviour.

When comparing the different materials we observe that the range
of stiffnesses is rather similar and from 104 to 107 Pa in dry conditions.
The carbon plain weave has a higher stiffness at low fibre volume
fractions (2.2⋅104 Pa), probably because the weaving contributes to a
higher initial number of contact points between bundles. The range
of fibre volume fractions is changing depending on the material and
degree of fibre alignment. The quasi-UD weave and the carbon biaxial
fibres with straight fibres reach the highest fibre volume fraction at
maximal load with 0.78, the carbon weave slightly less with 0.75,
the glass dry fibres only 0.67 since the fibres are neither aligned nor
organized. The fibre volume fraction at the preload is also significantly
lower for the glass mat with a fibre volume fraction of 0.2 against 0.38
to 0.46 for the other materials.
Stage 2: Fig. 7(a) shows an average result of the stiffness parameter
extraction procedure, for which the modelled stress response is fitted
to the measured one. We observe an overall very good fit quality with
higher deviation in the mid-term holding step. The long-term stress
response error is rather low and corresponds to the remaining stress in
the viscoelastic branches, validating the quasi-static assumption at the
end of the compaction steps. We also note that the fit quality slightly
decreases at very high fibre volume fraction, yet remains largely ac-
ceptable. The stress response of the individual viscoelastic branches of
the Maxwell model for the fitted curve shown in Fig. 7(a) is displayed
in Fig. 7(b).

At the end of the stiffness parameter extraction, the set of relaxation
times in function of the fibre volume fraction is fitted for each of the
parameter E1, E2 and E3 as shown in Fig. 8(a) on a logarithmic scale.
The quality of the fit is very good for all the three branches, whose
Young’s moduli once again span over three order of magnitudes. For
comparison, the same fit is displayed for the carbon plain weave in
wet condition in Fig. 8(b). One can see that the two figures display
a strikingly similar behaviour. The difference of values in dry of wet
conditions are hardly noticeable because of the logarithmic scale. The
stiffness is decreasing from the first to the third branch, however the
amplitude of their response is comparable because of the increasing
relaxation time as shown in Fig. 7(b).

Table 7 summarizes the result of the fitting procedure for all the
samples, where similar fitting results are obtained. We observe that the
7

Table 7
Resulting fit quality of the quasi-static compaction curve.

Sample State R2 value

E1 E2 E3

Glass mat Dry 0.994 0.997 0.995
Glass mat Wet 0.996 0.996 0.996
Glass quasi-UD Dry 0.996 0.985 0.977
Glass quasi-UD Wet 0.995 0.987 0.978
Carbon biaxial Dry 0.990 0.995 0.992
Carbon biaxial Wet 0.998 0.997 0.994
Carbon plain weave Dry 0.999 0.992 0.977
Carbon plain weave Wet 0.999 0.997 0.982

Table 8
Resulting model parameters for the Young’s moduli E𝑖.

Material State Branch A B

Glass mat

Dry E1 99.1 23.9
E2 210 20.7
E3 17.1 24.0

Wet E1 244 22.0
E2 271 20.1
E3 28.1 23.1

Glass quasi-UD

Dry E1 6.01⋅10−1 26.2
E2 7.82⋅10−3 29.7
E3 3.65⋅10−4 33.4

Wet E1 1.22⋅10−1 28.1
E2 1.36⋅10−3 31.8
E3 8.03⋅10−5 35.2

Carbon biaxial

Dry E1 6.51 23.0
E2 1.57 23.2
E3 6.53⋅10−2 27.0

Wet E1 48.7 20.5
E2 1.42 23.2
E3 8.54⋅10−2 26.4

Carbon plain weave

Dry E1 3.20 23.8
E2 6.63⋅10−2 26.2
E3 4.20⋅10−3 29.4

Wet E1 2.22⋅10−1 29.3
E2 1.04⋅10−1 25.8
E3 6.99⋅10−4 32.1

fit is usually better suited to the fibre beds in wet conditions. Such a
behaviour might be explained by the fact that fibres gliding past each
other can be modelled with a viscoelastic model, which is however
less suited when the fibres are sliding because it is a friction-based
mechanism.

Table 8 displays the parameters resulting from the fitting of the
individual viscoelastic branches for the different tests. We observe that
the stiffening factor B is rather similar in dry and wet conditions as
expected. The different materials exhibits similar viscoelastic branches
stiffness behaviour over the range of measured fibre volume fraction. In
uncompressed state, the dry glass mat has almost equivalent stiffnesses
E1 and E2 whereas the first is about one order of magnitude larger than
the latter in other textiles.
Stage 3: Fig. 9 shows a typical result of the relaxation time extraction
procedure, for which the modelled stress response is fitted to the
measured one. The quality of the fit is improved when compared to
stage 2 since all of the parameters have been extracted. The fit quality
at other compaction speeds is of comparable quality. Figs. 9(a) and 9(b)
compare the fit for the carbon plain weave in dry and wet conditions,
one can see similar fit qualities. These two Figures also allows to
observe the change of behaviour in the textile response when in wet
condition, one can clearly see that the amplitude of the relaxation is
more pronounced when wet.

The obtained relaxation times with corresponding measured com-
paction speeds have been fitted for the different viscoelastic branches
as shown in Fig. 10, which displays both the dry and the wet case. In

the dry case, we obtain a fit quality which is decreasing from the first
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Fig. 7. Fig. 7(a) displays the measured fibre bed stress response in function of the time for the sixth compaction step at reference speed for the carbon plain weave in dry
condition, along with the result of the fitting procedure. Fig. 7(b) displays the stress response of the individual viscoelastic branches of the Maxwell model.
Fig. 8. Stiffness value of the different viscoelastic branches as a function of the fibre volume fraction for the reference compaction speed of the carbon plain weave in dry condition
in Fig. 8(a) and in wet condition in Fig. 8(b).
to the third branch. While for the first branch the fit is very good, it
is fair for the second and poor for the third. In any cases, the mean
relative error between the data points and the fit is 7.7% so that the
accuracy remains sufficient. The relaxation time for the third branch
seems to depend linearly on the strain speed rather than exponentially.
The reader will notice that although five different compaction velocities
have been prescribed, the measured strain rates are rather dispersed.
This is due to the actuation error of the machine, which tend to increase
at more elevated compaction velocities. We observe that the fit quality
decreases in wet conditions, but overall the same considerations apply.

Table 9 displays the R2 values of the three branches for the different
xperiments. We globally observe the same trends and fit quality in
ll the experiments. The carbon plain weave displays a noticeable
ehaviour in the fitting of E3 since the other fabrics have much better
it qualities. Table 10 displays the parameters resulting from the fitting
f the relaxation times for the different tests. We observe similar
rends and no particular differences between the relaxation times of
he different materials.
Modelling Error: The quality of the model is appreciated by mod-

lling the stress as a function of time for the different compaction steps
8

Table 9
Resulting fit quality of the quasi-static compaction curve.

Sample State R2 value

𝜏1 𝜏2 𝜏3
Glass mat Dry 0.831 0.706 0.420
Glass mat Wet 0.860 0.803 0.766
Glass quasi-UD Dry 0.914 0.608 0.466
Glass quasi-UD Wet 0.905 0.582 0.355
Carbon biaxial Dry 0.962 0.731 0.315
Carbon biaxial Wet 0.905 0.750 0.304
Carbon plain weave Dry 0.966 0.929 0.059
Carbon plain weave Wet 0.775 0.963 0.854

based on the measured strains before weighting it against the measured
stress curves. Fig. 11 shows an example highlighting the difference
between the modelled and measured stress, in this case for a large
compaction step. Note that the difference between the curves towards
the end of the compaction step is entirely due to fitting inaccuracies
of E0, which can be an important source of discrepancy between
measurements and predictions.
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Fig. 9. Measured fibre bed stress response as a function of the time for the sixth compaction step of the carbon plain weave in dry condition in Fig. 9(a) and in wet condition
in Fig. 9(b) at reference speed, along with the result of the fitting procedure during the relaxation time parameters extraction.
Fig. 10. Relaxation times of the different viscoelastic branches in function of the compaction speed for the carbon plain weave in dry condition in Fig. 10(a) and wet condition
n Fig. 10(b).
Fig. 11. Measured and modelled stress in function of the time for the sixth compaction
step at reference speed for the carbon plain weave in dry condition.
9

Fig. 12 displays the modelling error averaged over the different
compaction speeds in Fig. 12(a) and the compaction steps in Fig. 12(b).
We observe little variation of the model accuracy over the whole range
of the compaction speeds. As the viscoelastic response becomes larger
at more elevated strain speeds, its contribution to the modelling error
raises as well. When averaged over the different compaction steps,
we observe that the modelling error has important discrepancies. This
behaviour can be explained on one hand by the different fit qualities
which can change from location to location. On the other hand, the
total error is the sum of the errors of the elastic and viscoelastic
branches, which can either add up or cancel each other.

In Fig. 12(b) the results for the large compaction steps – the first,
fourth, seventh and tenth step – do not stand out, validating the model
even at larger strains. Overall, the mean modelling error amounts to
12.98%, which is very accurate considering that fibre beds displays
large discrepancies in their behaviour.

Analytical models as presented in [10,18,20] assume a perfectly
constant strain during relaxation, and many present constitutive equa-
tions based on a generalized linear Maxwell model where the stiffness
E0 is assumed constant over a small compaction step. As we consider

small variations in strain during relaxation, assuming a constant elastic
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Fig. 12. Fig. 12(a) shows the mean modelling error over different compaction speeds for the carbon plain weave in dry condition and Fig. 12(b). The dashed line is the overall
mean modelling error.
Table 10
Resulting model parameters for the relaxation times 𝜏i.

Material State Branch A B

Glass mat

Wet 𝜏1 2.04⋅10-2 0.73
𝜏2 1.61 0.46
𝜏3 178 6.26⋅10-2

Wet 𝜏1 6.79⋅10-2 0.59
𝜏2 1.37 0.50
𝜏3 120 0.13

Glass quasi-UD

Wet 𝜏1 1.46⋅10-2 0.78
𝜏2 5.34 0.30
𝜏3 188 5.81⋅10-2

Wet 𝜏1 1.16⋅10-2 0.81
𝜏2 4.35 0.32
𝜏3 173 6.43⋅10-2

Carbon biaxial

Wet 𝜏1 1.73⋅10-2 0.77
𝜏2 3.18 0.38
𝜏3 204 4.72⋅10-2

Wet 𝜏1 2.19⋅10-2 0.71
𝜏2 1.46 0.49
𝜏3 149 8.24⋅10-2

Carbon plain weave

Wet 𝜏1 1.49⋅10-2 0.78
𝜏2 2.88 0.40
𝜏3 252 1.71⋅10-2

Wet 𝜏1 3.79⋅10-2 0.67
𝜏2 0.34 0.70
𝜏3 54.7 0.24

stiffness E0 is not reasonable because of its exponential behaviour.
The numerical method presented thus considers the measured strain
and introduces a variable stiffness E0(𝜈f) to correctly model the elastic
stress. This results in a better parameter extraction as the measured
stress is more accurately parted into elastic and viscoelastic stress. The
stiffnesses of the viscoelastic branches are yet still assumed constant
during the parameter extraction and the compaction steps are kept
as small as possible for this reason. The impact of this assumption is
thought to be rather small but should still be quantified in future work.

Table 11 displays the mean modelling error of the different exper-
iments. The accuracy of the viscoelastic model is globally lower when
applied to wet fibre beds. Albeit this decreasing accuracy, the modelling
errors are deemed to remain fully acceptable. We suppose that the
variations of the mean modelling errors between the different materials
either in dry or wet conditions are mainly due to statistical effects. It
is very interesting to note that while for some fabrics the main source
of modelling error comes from the elastic branch, for others it is the
10
Table 11
Resulting modelling accuracy of the different samples.

Material State Mean modelling error [%]

Total Elastic Viscoelastic

Glass mat Dry 16.38 8.57 11.58
Glass mat Wet 13.32 6.64 11.52
Glass quasi-UD Dry 18.38 13.13 5.79
Glass quasi-UD Wet 13.82 11.37 5.40
Carbon biaxial Dry 12.38 7.77 7.37
Carbon biaxial Wet 20.19 8.94 14.12
Carbon plain weave Dry 12.98 12.30 2.31
Carbon plain weave Wet 18.68 10.51 14.10

viscoelastic ones. One should also keep in mind that as the viscoelastic
stress response becomes larger, the modelling error repartition will shift
towards the viscoelastic part according to Eqs. (15) and (16).

3.3. Influence of strain deviations

We noticed significant differences between the prescribed and the
measured strains, especially at higher loads. This behaviour is thought
to be primarily caused by a combination of machine deflection and
actuation error. Machine deflection can be well observed in Fig. 13,
where one can see the measured strain significantly deviating from the
prescribed strain during relaxation. Regarding the actuation error, we
observe that the measured average strain speed considerably differs
from the prescribed one at elevated loads and strain speeds. This
indicates that the testing machine is getting closer to its limits. An
analytical approach is mostly adopted in the literature, in which the
assumed ideal strain profile is based on the strain profile prescribed to
the machine, yet we note high discrepancies between the prescribed
and measured strain profiles. Although analytical methods could be
based on the measured average strain speed instead of the prescribed
one, this is not a standard practice. We also observe that the strain
speed is not perfectly constant during compaction, which is another
consequence of actuation error that is not considered in analytical
methods.

To investigate the effects of strain deviations on the results, the
model parameters at reference were extracted with the assumed strain
as input to the FDM model at each step. The assumed strain profile
consists of a compaction at constant strain rate until the strain value
corresponding to the measured fibre volume fraction at the end of

relaxation is reached. The strain rate is set at the measured strain
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Fig. 13. Strain as a function of time during a compaction step, as prescribed to the
testing machine, as assumed for the analytical model and as measured for the twelfth
compaction step at reference speed for the carbon plain weave in dry condition.

Fig. 14. Measured viscoelastic stress along with the stress modelled based on the pa-
rameters extracted with the numerical and analytical methods for the sixth compaction
step at reference speed for the carbon plain weave in dry condition.

rate. Then, a constant strain is assumed until the end of the relaxation
step. An example of the assumed strain profile is shown in Fig. 13, as
compared to the prescribed strain and the measured strain. The stress
response was modelled based on the measured strain and the extracted
model parameters and compared to the measured stress. The modelling
error was calculated with the same procedure as mentioned earlier.
The elastic parameters are not affected by actuation error and we thus
consider the viscoelastic modelling error only.

Fig. 14 displays an example of measured viscoelastic stress along
with two stress curves modelled based on the measured strain profile
and parameters extracted either with the measured or assumed strain
profile. As one can see, the difference between the two stress curves
is consequent and the analytical method yields far less precise results.
This highlights the necessity to consider the effects of strain deviations
during parameter extraction to accurately describe the viscoelastic
behaviour of textiles. Using an assumed ideal strain will otherwise
result in erroneous model parameter definition and incorrect stress
modelling of the fibre bed.

In Fig. 15 we compare the viscoelastic modelling error obtained
numerically (measured strain) and analytically (assumed strain). The
11
Table 12
Resulting modelling accuracy of the different samples.

Material State Mean Viscoelastic modelling
error [%]

Numerical Analytical

Glass mat Dry 11.58 26.45
Glass mat Wet 11.52 22.30
Glass quasi-UD Dry 5.79 7.80
Glass quasi-UD Wet 5.40 10.85
Carbon biaxial Dry 7.37 16.40
Carbon biaxial Wet 14.12 19.56
Carbon plain weave Dry 2.31 8.85
Carbon plain weave Wet 14.10 14.86

viscoelastic error increases by a factor higher than three if actuation
error is not considered. We obtain a significantly greater modelling
error with the numerical method even for the firsts compaction steps
with low stress levels, which is unexpected. The difference between
the numerical and analytical modelling error is rather constant over
the range of applied loads and compaction speeds as on can see in
Fig. 15(b). Another interesting observation is that the relaxation times
are closer to a constant value when extracted with the measured strain
profile, as it should be according to the model assumptions. This
behaviour is certainly based on the fact that the measured and assumed
strain speed can significantly differ from each other. The same analysis
was repeated for all the experiments and the results are reported in
Table 12, where the same trends are observed for all experiments.

It is known that precise measurement of the tool distance is nec-
essary for accurate compaction tests. The previous findings underly
the importance of both correct strain and strain rate measurement.
However, the extent of the effects of strain deviations is noteworthy.
Hence, more accurate methods should be used in future works such as
the one proposed by Sousa and al. [24], which measures both loading
and unloading compliance. In addition, one should carefully consider
the limits of the testing equipment as the imposed strain speed might
not be constant during compaction or deviate from the prescriptions.

4. Conclusion

In this article, we validate the use of a non-linear variant of the
three-branches Maxwell–Wiechert model with strain dependent stiff-
nesses and strain-rate dependent relaxation times as proposed by Danzi
et al. [18] in order to model the compressive behaviour of several
textiles as a function of strain and strain rate. We propose a method to
numerically solve the model by linearizing it over small time intervals,
allowing to calculate the textile response for any strain profile. We
demonstrate that the model yields accurate results over a wide range
of textile architectures and fibre volume fractions in both dry and wet
conditions considering the large variability of fibre beds.

We present and validate a numerical method for parameter extrac-
tion overcoming simplifications usually met in analytical models such
as a constant Young’s modulus E0 and an ideal strain profile. The
parameter extraction is based on the measured strain profile rather
than the prescribed one as both can differ due to machine deflection
and actuation error. This method also enables model validation with
any strain profile, which should be considered in future research.
Because in the approach that we follow, presented by Danzi [18], only
three parameters are optimized at once, the global minimum is not
guaranteed to be found. In addition, it has not been established that the
necessary and sufficient conditions for the simplex algorithm to find the
global minimum are present. However, the quality of the fits that we
present in this article proves the validity of the approach and suggests
that the improvement provided by finding the global minimum is rather
small.

The model presented here does not take into account any effects
related to cyclic compaction, which have a direct influence on the
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Fig. 15. Viscoelastic modelling error with parameters extracted based on the measured (numerical) and assumed (analytical) strain for the carbon plain weave in dry condition.
Fig. 15(a) shows the viscoelastic modelling error over the compaction steps and Fig. 15(b) over the compaction speed . The dashed line is the overall mean viscoelastic modelling
error.
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textile compaction response [12], and therefore only applies to textiles
which have not been subjected to multiple compaction/ decompaction
cycles. The model is rather intended for processes where the textile will
be subjected to a single compaction such as encountered in CRTM or
RFI. Processes with a wide range of strain, strain speeds and strain
profiles can be modelled. Regarding that, the influence of the com-
paction history on the results should be quantified in future work to
evaluate its effect, which may probably very much depend on the
textile architecture. It remains to be verified if the developed model
remains valid for relaxation, which would enables other applications
such as direct thermoplastic melt infusion.

We observe that the measured strain profile differs from the pre-
scribed one in terms of total strain and strain rate, moreover the strain
rate is not perfectly constant during compaction. We show that strain
deviations resulting from machine compliance and actuation error have
an important impact that can skew the viscoelastic parameter extrac-
tion if not considered, resulting in incorrect modelling of fibre beds
stress response. This is detrimental for the manufacturing techniques
which require knowledge about the fibre bed stress response such as
CRTM [1,2], RFI [3–5] or direct thermoplastic melt impregnation [6,7].
We find that the viscoelastic modelling error drastically decreases
when considering strain deviations, and therefore advocate for the
necessity of doing so. Another consequence of these results is that strain
deviations in the tool should be considered during manufacturing.

Because the measurements are so sensitive on the tool distance and
strain, LVDT or more accurate methods such as proposed by Sousa and
al. should be used. Further improvements on the model include for
instance the consideration of fluid pressure in fast compaction similar
to the method proposed by Saunders [29]. Saunders investigated the
fluid pressure in unperforated plates where the flow takes place in-
plane. In this study the perforated bottom plate allows fluid evacuation
at the bottom of the sample additionally to the sides and the flow
mainly takes place in the through-thickness direction. The fluid pres-
sure build-up is much smaller in that case because of the shorter flow
lengths. However, at very high compaction speeds and elevated loads,
which are significantly decreasing the ability of the fluid to flow in a
time-scale comparable to the experiment, the pressures might not be
completely safe to neglect and this issue should be examined in future
work. Besides the flow lengths, the pressure build up also depends on
the through-thickness permeability of the textile so that textiles with
12

a lower permeability are more sensitive to such effects. Additionally,
it should be investigated if actuating the crosshead during relaxation
such as to keep the cavity height constant is feasible. The very accurate
actuation required at elevated loads might be beyond the capabilities
of the actual testing machines so that actuation error might still remain
a burden that cannot be completely eliminated and needs to be dealt
with. However, the actuation of submicron-milling machines or atomic-
force microscopes is very precise but probably quite expensive. Finally,
an analysis of the influence of actuation error on the measurements can
be repeated with other models or fields using similar methods.
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