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Abstract
Dynamic optimization of batch processes has attracted more attention in recent years since, in
the face of growing competition, it is a natural choice for reducing production costs, improving
product quality, and meeting safety requirements and environmental regulations. Since the
models currently available in industry are poor and carry a large amount of uncertainty, standard
model-based optimization techniques are by and large ineffective, and optimization methods need
to rely more on measurements.

In this paper, various measurement-based optimization strategies reported in the literature
are classified. A new framework is also presented, where important characteristics of the optimal
solution that are invariant under uncertainty are identified and serve as references to a feedback
control scheme. Thus, optimality is achieved by tracking with no numerical optimization required
on-line. When only batch-end measurements are available, the proposed method leads naturally
to an efficient batch-to-batch optimization scheme. The approach is illustrated via simulation
of a semi-batch reactor in the presence of uncertainty.

Keywords
Dynamic optimization, Optimal control, Batch chemical industry, On-line optimization, Batch-
to-batch optimization, Run-to-run optimization.

Introduction

Batch and semi-batch processes are of considerable
importance in the chemical industry. A wide vari-
ety of specialty chemicals, pharmaceutical products,
and certain types of polymers are manufactured in
batch operations. Batch processes are typically used
when the production volumes are low, when isola-
tion is required for reasons of sterility or safety, and
when frequent changeovers are necessary. With the
recent trend in building small flexible plants that are
close to the markets of consumption, there has been
a renewed interest in batch processing (Macchietto,
1998).

From a process systems point of view, the key feature
that differentiates continuous processes from batch
and semi-batch processes is that the former have a
steady state, whereas the latter are inherently time-
varying in nature (Bonvin, 1998). This paper con-
siders batch and semi-batch processes in the same

manner and, thus herein, the term ‘batch processes’
includes semi-batch processes as well.

The operation of batch processes typically involves
following recipes that have been developed in the
laboratory. However, owing to differences in both
equipment and scale, industrial production almost
invariably necessitates modifications of these recipes
in order to ensure productivity, safety, quality, and
satisfaction of operational constraints (Wiederkehr,
1988). The ‘educated trials’ method that is often
used for recipe adjustment is based on heuristics and
results in conservative profiles. Conservatism is nec-
essary here to guarantee feasibility despite process
disturbances.

To shorten the time to market (by bypassing an elab-
orate scale-up process) and to reduce operational
costs (by reducing the conservatism), an optimiza-
tion approach is called for, especially one that can
handle uncertainty explicitly. Operational decisions
such as temperature or feed rate profiles are then de-
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termined from an optimization problem, where the
objective is of economic nature and the various tech-
nical and operational constraints are considered ex-
plicitly. Furthermore, due to the repetitive nature
of batch processes, these problems can also be ad-
dressed on a batch-to-batch basis.

The objectives of this paper are threefold: i) ad-
dress the industrial practice prevailing in the batch
specialty chemical industry and discuss the result-
ing optimization challenges, ii) review the dynamic
optimization strategies available for batch processes,
with an emphasis on measurement-based techniques,
and iii) present a novel scheme that uses the available
process measurements directly (i.e., without the of-
ten difficult step of model refinement) towards the
goal of optimization. Accordingly, the paper has
three major parts:

• Industrial perspectives in batch processing: The
major operational challenges aim at speeding
up process/product development, increasing the
productivity, and satisfying safety and prod-
uct quality requirements (Allgor et al., 1996).
These tasks need to be performed in an environ-
ment characterized by a considerable amount of
uncertainty and the presence of numerous op-
erational and safety-related constraints. The
measurements available could be used to help
meet these challenges.

• Optimization strategies for batch processes:
These are reviewed and classified according to:
i) whether uncertainty is considered explicitly,
ii) whether measurements are used, iii) whether
a model is used to guide the optimization. The
type of measurements used for optimization (on-
line, off-line) adds another dimension to the
classification.

• Invariant-based optimization scheme: New in-
sights into the optimal solution for a class of
batch processes have led to an alternative way
of dealing with uncertainty. It involves: i)
the off-line characterization of the optimal so-
lution using a simplified model, ii) the selec-
tion of signals that are invariants to uncer-
tainty, and iii) a model-free implementation
by tracking these invariants using a limited
number of measurements. This results in a
model-free though measurement-based imple-
mentation that is quite robust towards uncer-
tainty. An interesting feature of this framework
is that it permits naturally to combine off-line
data from previous batches with on-line data
from the current batch.

The paper is organized as follows. The industrial
perspectives in batch processing are presented first.
The next section briefly reviews the optimization
strategies available for batch processes and proposes
a classification of the methods. The invariant-based
optimization framework is then developed and an ex-
ample is provided to illustrate the theoretical devel-
opments. Conclusions are drawn in the final section.

Industrial Perspectives in Batch Pro-
cessing

It is difficult to address in generic terms the perspec-
tives prevailing in the batch chemical industry since
the processing environments and constraints differ
considerably over the various activities (specialty
chemicals, pharmaceuticals, agro and bio products,
etc.). Thus, the situation specific to the produc-
tion of intermediates in the specialty chemical in-
dustry will be emphasized in this section. The cus-
tomer – typically an end-product manufacturer – of-
ten generates competition between several suppliers
for the production of a certain product. The suppli-
ers need to investigate the synthesis route and design
an appropriate production process. The competition
forces the suppliers to come up, under considerable
time pressure, with an attractive offer (price/kg) if
they want to obtain the major share of the deal.

Batch processes are usually carried out using rela-
tively standardized pieces of equipment whose oper-
ating conditions can be adjusted to accommodate a
variety of products. The working environment that
will be considered is that of multi-product plants.
In a multi-product plant, a number of products are
manufactured over a period of time, but at any given
time, only one product is in the process. The se-
quence of tasks to be carried out on each piece of
equipment such as heating, cooling, reaction, dis-
tillation, crystallization, drying, etc. is pre-defined,
and the equipment item in which each task is per-
formed is also specified (Mauderli and Rippin, 1979).

Operational Objectives

The fundamental objective is of economic nature.
The investment (in time, personnel, capital, etc.,)
should pay off, as the invested capital has to com-
pare favorably with other possible investments. This
fundamental objective can in turn be expressed in
terms of technical objectives and constraints, which
are presented next.
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• Productivity: This is the key word nowadays.
However, high productivity requires stable pro-
duction so as to reduce the amount of corrective
manual operations that are costly in terms of
production time and personnel. Reducing the
time necessary for a given production is partic-
ularly interesting when the number of batches
per shift can be increased. In multi-product
plants, however, equipment constraints (bottle-
necks) and logistic issues often limit productiv-
ity.
• Product quality: Quality is often impaired by

the appearance of small amounts of undesired
by-products. The presence of impurities (also
due to recycled solvents) is very critical since
it can turn an acceptable product into waste.
Removing impurities is often not possible or
can significantly reduce throughput. Also, from
an operational, logistic and regulation point of
view, it is often not possible to use blending op-
erations in order to achieve the desired average
quality.
Reproducibility of final product composition
despite disturbances and batch-to-batch varia-
tions is important when the process has to work
closely to some quality limit (for example, when
the quality limits are tight). Improving the se-
lectivity of an already efficient process is often
not seen as a critical factor. However, when
the separation of an undesirable by-product is
difficult, the selectivity objective may be quite
important.
• Safety aspects: The safety aspects (runaway,

contamination, etc.) are of course very impor-
tant. Safety requirements can lead to highly
conservative operation. Here, the real obstacle
is the lack of on-line information. If information
about the state of the process were available, the
process engineer would know how to guarantee
safety or react in the case of a latent problem.
Thus, the difficulty results from a measurement
limitation and not from a lack of operational
knowledge.
• Time-to-market: The economic performance is

strongly tied to the speed at which a new prod-
uct/process can be developed. The product life-
time of specialty chemicals is typically shorter
than for bulk chemicals. Since the production
in campaigns reduces the time to learn, it is
necessary to learn quickly and improve the pro-
ductivity right away. After a couple of years, a
profitable new product may become a commod-
ity (of much lesser value), for which the devel-
opment of a second-generation process is often

considered.
Nowadays, there is a trend in the specialty
chemical industry to skip pilot plant investi-
gations unless the process is difficult to scale
up. The situation is somewhat different in phar-
maceuticals production, where pilot plant in-
vestigations are systematically used since they
also serve to produce the small ‘first amounts’
needed.

Industrial Practice

Though the problem of meeting the aforementioned
objectives could be solved effectively as an optimiza-
tion problem, there have been only a few attempts
in industry to optimize operations through mathe-
matical modeling and optimization techniques. The
recipes are developed in the laboratory in such a way
that they can be implemented safely in production.
The operators then use heuristics gained from expe-
rience to adjust the process periodically (whenever
this is allowed), which leads to slight improvements
from batch to batch (Verwater-Lukszo, 1998). The
stumbling blocks for the use of mathematical mod-
eling and optimization techniques in industrial prac-
tice have been partly organizational and partly tech-
nical.

Organizational issues. At the organizational
level, the issues are as follows:

• Registration: Producers of active compounds
in the food and pharmaceuticals areas have to
pass through the process of registration with the
Food and Drug Administration. Since this is a
costly and time-consuming task, it is performed
simultaneously with R&D for a new production
process. Thus, the main operational parame-
ters are fixed within specified limits at an early
stage of the development. Since the specifica-
tions provided by the international standards of
operation (GMP) are quite tight, there is very
little room for maneuver left. It is important
to stress that the registration is tied to both
product and process.

• Multi-step process: In the R&D phase of a large
multi-step process, different teams work on dif-
ferent processing steps. Often, each team tries
to optimize its process subpart, thereby intro-
ducing a certain level of conservatism to ac-
count for uncertainty. Consequently, the result-
ing process is the sum of conservatively designed
subparts, which often does not correspond to
the optimum of the global process!
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• Role of control and mathematical optimization:
In many projects, control is still considered to
be a standard task that has to be performed
during the detailed engineering phase and not
as a part of the design phase of the process. It is
like ‘painting’ a controller or an optimizer once
the process has been built. At this late stage,
there is so much conservatism and robustness
in the system that it does not require a sophis-
ticated control strategy. However, the perfor-
mance may still be far from being optimal.

All these organizational problems can be resolved
by resorting to ‘global thinking’. It has become a
challenge for both project leaders and plant man-
agers to make chemists and engineers think and act
in a global way. It is done through fostering in-
terdisciplinary teamwork and simultaneous rather
than sequential work for process research, develop-
ment and production (R&D&P). The objective is
a globally optimal process and not simply the jux-
taposition of robust process subparts. Team work
amounts to having R&D&P solutions worked out si-
multaneously by interdisciplinary teams consisting
of a project leader, chemists, process engineers, pro-
duction personnel and specialists for analytics, sim-
ulation, statistics, etc.

Technical issues. The main technical issues re-
late to modeling and measurements, the presence of
both uncertainty and constraints, and the proper use
of the available degrees of freedom for process im-
provement. These are addressed next.

• Modeling: In the specialty chemical industry,
molecules are typically more complex than in
the commodity industry, which often results in
complex reaction pathways. Thus, it is illusory
to expect constructing detailed kinetic models.
The development of such models may exceed
one man-year, which is incompatible with the
objectives of batch processing. So, what is often
sought in batch processing, is simply the ability
to predict the batch outcome from knowledge of
its initial phase.

Modern software tools such as Aspen Plus,
PRO/II, or gPROMs have found wide ap-
plication to model continuous chemical pro-
cesses (Marquardt, 1996; Pantelides and Britt,
1994). The situation is somewhat different
in batch specialty chemistry. Though batch-
specific packages such as Batch Plus, BATCH-
FRAC, CHEMCAD, BatchCAD, or BaSYS are
available, they are not generally applicable. Es-
pecially the two important unit operations, re-

action and crystallization, represent a consider-
able challenge to model at the industrial level.

For batch processes, modeling is often done em-
pirically using input/output static models on
the basis of statistical experimental designs.
These include operational variables specified at
the beginning of the batch and quality vari-
ables measured at the end of the batch. Time-
dependent variables are not considered beyond
visual comparison of measured profiles. Some-
times the model is a set of simple linguistic
rules based on experience, e.g. when ‘low’ then
‘bad’. Occasionally, the model consists of a sim-
ple energy balance, or the main dynamics are
expressed via a few ordinary differential equa-
tions. The modeling objective is not accuracy
but rather the ability to semi-quantitatively de-
scribe the major tradeoffs present in the pro-
cess such as the common one between quality
and productivity in many transformation and
separation processes. For example, an increase
in reflux ratio improves distillate purity but re-
duces distillate flow rate; or a temperature in-
crease can improve the yield at the expense of
selectivity in a chemical reaction system.

• Measurements: Quality measurements are typi-
cally available at the end of the batch via, for ex-
ample, off-line chromatographic methods (GC,
HPLC, DC, IC). In addition, physical measure-
ments such as temperature, flow, pressure, or
pH may be available on-line during the course
of the batch. However, they are rather unspe-
cific with respect to the key variables (concen-
trations) of the chemical process. Other on-
line measurements such as conductivity, viscos-
ity, refractive index, torque, spectroscopy, and
calorimetry are readily available in the labora-
tory, but rarely in production. Pseudo on-line
GC and HPLC are less effective in batch pro-
cessing than with continuous processes due to
relatively longer measurement delays.

On-line spectroscopy (FTIR, NIR, Raman) has
opened up new possibilities for monitoring
chemical processes (McLennan and Kowalski,
1995; Nichols, 1988). These techniques rely on
multivariate calibration for accurate results, i.e.,
the spectral measurements need to be calibrated
with respect to known samples containing all
the absorbing species. Though on-line spec-
troscopy is getting more common in the labora-
tory, the transfer of many measurement systems
from the laboratory to the plant is still a real
challenge. For example, many processing steps
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deal with suspensions that lead to plugging and
deposition problems. Even if these problems
can be handled at the laboratory scale, they
still represent formidable challenges at the pro-
duction level. There is presently a strong push
to develop and validate measurement techniques
that can work equally well throughout the three
levels of Research, Development and Produc-
tion.
When quality measurements are not directly
available, state estimation (or soft sensing) is
typically utilized. However, physical on-line
measurements are often too unspecific for on-
line state estimation in batch processes (e.g.
heat balance models are too insensitive with
respect to the chemical transformations of in-
terest). Current practice indicates that there
are very few applications of state estimation
in specialty chemistry. However, state estima-
tion works well in fermentation processes due to
the availability of additional physical measure-
ments and the possibility to reconstruct con-
centrations without the use of kinetic models
(Bastin and Dochain, 1990).

• Uncertainty: Uncertainty is widely present in
the operation of batch processes. Firstly, it en-
ters in the reactant quality (changes in feed-
stock), which is the main source of batch-to-
batch variations. Secondly, uncertainty comes
in the form of modeling errors (errors in model
structure and parameters). These modeling er-
rors can be fairly large since, according to the
philosophy of batch processing, little time is
available for the modeling task. Thirdly, process
disturbances and measurement noise contribute
to the uncertainty in process evolution (e.g. un-
detected failure of dosing systems; change in the
‘quality’ of utilities such as brine temperature,
or of manual operations such as solid charge).
Recipe modifications from one batch to the next
to tackle uncertainty are common in the spe-
cialty chemical industry, but less so for the ex-
clusive syntheses in agro and pharmaceuticals
production. Uncertainty is typically handled
through:

– The choice of conservative operation such
as extended reaction time, lower feed rate
or temperature, the use of a slightly over-
stoichiometric mixture in order to force
the reaction to fully consume one reactant
(Robust mode).

– Feed stock analyses leading to appropri-
ate adjustments of the recipe (Feedforward

mode). Adjustment is usually done by
scaling linearly certain variables such as
the final time or the dilution, more rarely
the feed rate or the temperature.

– Rigorous quality checks through off-line
analyses, or the use of standard measure-
ments such as the temperature difference
between jacket and reactor, leading to ap-
propriate correction of the recipe (Feed-
back mode). For example, a terminal con-
straint can be met by successive addition
of small quantities of feed towards the end
of a batch to bring the reaction to the de-
sired degree of completion (Meadows and
Rawlings, 1991).

The problem of scale-up can also be viewed as
one of (model) uncertainty. The data available
from laboratory studies do not quite extrapolate
to the production level. Thus, when the strate-
gies developed in the laboratory are used at the
production level, they do carry a fair amount
of uncertainty. Furthermore, the pressure to
reduce costs and to speed up process develop-
ment calls for large scale-ups with a consider-
able amount of extrapolation. As a result, the
proposed strategies can be rather conservative.

• Constraints: Industrial processing is naturally
characterized by soft and hard constraints re-
lated to equipment and operational limitations
and to safety aspects. In batch processing,
there is the additional effect of terminal con-
straints (selectivity in reaction systems, purity
in separation systems, admissible levels of im-
purities, etc.). Furthermore, in multi-product
batch production, the process has to fit in an
existing plant. Thus, ensuring feasible opera-
tion comes before the issue of optimality, and
process designers normally introduce sufficient
conservatism in their design so as to guarantee
feasibility even in the worst of conditions.

The need to improve performance calls for a re-
duction of the conservatism that is introduced
to handle uncertainty. Performance improve-
ment can be obtained by operating closer to
constraints, which can be achieved by measur-
ing/estimating the process state with respect to
these constraints. Riding along an operational
constraint is often done when the constrained
variable is directly implemented (such as maxi-
mum feed rate) or can be measured (such as a
temperature).
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• Time-varying decisions: Traditionally, chemists
in the laboratories and operators in the plants
were used to thinking in terms of constant
values (experimental planning results in static
maps between design variables and process per-
formance). New sensors and increasing com-
puting power (e.g. spectroscopic measure-
ments, modern DCS systems) make on-line
time-varying decisions possible. Along with
these new time-dependent insights, the chemists
in the laboratory start to vary process inputs
as a function of time. The potential bene-
fit of these additional degrees of freedom is
paramount to using optimal control techniques.
There are situations where variable input pro-
files can be of direct interest:

– There may be a significant theoretical ad-
vantage of using a variable profile over the
best constant profile (Rippin, 1983). The
performance improvement can sometimes
be considerable. In batch crystallization,
for example, gains of up to 500% can be
obtained by adjusting the temperature, the
removal of solvent or the addition of a
precipitation solvent as functions of time.
Large gains are also possible in reactive
semi-batch distillation.

– It is more and more common to adjust
the feed rate in semi-batch reactors so as
to force the heat generation to match the
cooling capacity of the jacket.

An interesting feature of batch processing is the fact
that batch processes are repeated over time. Thus,
the operation of the current batch can be improved
by using the off-line measurements available from
previous batches. The objective is then to get to
the optimum over as few batches as possible. Also,
with the tendency to skip pilot plant investigations
whenever possible, this type of process improvement
is of considerable interest for the initial batches of a
new production campaign.

Implications for Optimization

The industrial situation, as far as technical issues are
concerned, can be summarized as follows:
• There is an immediate need to improve the per-

formance of batch processes.
• Models are poor, incomplete or nonexistent.
• On-line measurements are rare, and state es-

timation is difficult; however, off-line measure-
ments can be made available if needed.

• There is considerable uncertainty (model inac-
curacies, variations in feedstock, process distur-
bances).
• Several operational and safety constraints need

to be met.

The implications of the current industrial situation
regarding the choice of an appropriate optimization
approach are presented in Table 1. The details will
be clarified in the forthcoming sections. The main
conclusion is that a framework that uses (preferably
off-line) measurements rather than a model of the
process for implementing the optimal inputs is in-
deed required.

Industrial
situation

Implications for optimization

Need to improve
performance

Use optimization for comput-
ing time-dependent decisions

Absence of a reli-
able model

Use measurements for imple-
menting optimal inputs

Few on-line mea-
surements

Use off-line measurements in
a batch-to-batch optimiza-
tion scheme

Presence of uncer-
tainty

Identify and track signals
that are invariant to uncer-
tainty

Operational and
safety constraints

Track constraints so as to re-
duce conservatism

Table 1: Implications of the industrial situation re-
garding the choice of an appropriate optimization
approach

Overview of Batch Process Optimiza-
tion

The optimization of batch processes typically in-
volves both dynamic and static constraints and falls
under the class of dynamic optimization. Possible
scenarios in dynamic optimization are depicted in
Figure 1. The first level of classification depends on
whether or not uncertainty (e.g., variations in initial
conditions, unknown model parameters, or process
disturbances) is considered. The standard approach
is to discard uncertainty, leading to a nominal solu-
tion that may not even be feasible, let alone optimal,
in the presence of uncertainty.

The second level concerns the type of information
that can be used to combat uncertainty. If mea-
surements are not available, a conservative stand is
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Dynamic Optimization

Nominal Optimization
(discards uncertainty)

Optimization under Uncertainty

No Measurements
Robust Optimization

(conservative)

Measurements
Measurement-based

Optimization

Model-based
Repeated Optimization

Model-free
Implicit Optimization

Fixed
Model

(accuracy
of model)

Refined
Model

(persistency
of excitation)

Evolution/
Interpolation
(curse of dim-
ensionality)

Reference
tracking

(what to track
for optimality)

❅
❅
❅❘

�
�
�✠

❅
❅
❅❘

�
�
�✠

❅
❅
❅❘

�
�
�✠

❅
❅
❅❘

�
�
�✠

❅
❅
❅❘

�
�
�✠

Problem:

Uncertainty:

Information:

Input calculation:

Methodology:

Figure 1: Dynamic optimization scenarios with, in parentheses, the corresponding major disadvantage

required. In contrast, conservatism can be reduced
with the use of measurements.

In the next levels, the classification is based on how
the measurements are used in order to guide the op-
timization. The calculation of inputs can be either
model-based or model-free. In the model-based case,
the type of model that is used (fixed or refined) af-
fects the resulting methodology. If the input cal-
culation is model-free, the current measurement is
either compared to a reference or used for interpo-
lation between pre-computed optimal values. The
different scenarios are discussed in detail next.

Nominal Optimization

In nominal optimization, the uncertainty is simply
discarded. A typical batch optimization problem
consists in achieving a desired product quality at
the most economical cost, or maximizing the prod-
uct yield for a given batch time. The optimization
can be stated mathematically as follows:

min
u(t)

J = φ(x(tf )) (1)

s.t. ẋ = F (x, u), x(0) = x0 (2)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (3)

where J is the scalar performance index to be min-
imized, x the n-vector of states with known initial

conditions x0, u the m-vector of inputs, F a vec-
tor field describing the dynamics of the system, S
the ζ-vector of path constraints (which include state
constraints and input bounds), T the τ -vector of ter-
minal constraints, φ a smooth scalar function repre-
senting the terminal cost, and tf the final time.

The problem (1)–(3) is quite general. Even when
an integral cost needs to be considered, i.e., J =
φ̄(x(tf )) +

∫ tf
0

L(x, u)dt, where L a smooth func-
tion, it can be converted into the form (1)–(3) by
the introduction of an additional state: ẋcost =
L(x, u), xcost(0) = 0, and J = φ̄(x(tf ))+xcost(tf ) =
φ(x(tf )). Let J∗ be the optimal solution to (1)–(3).
It is interesting to note that the minimum time prob-
lem with an additional constraint φ(x(tf )) ≤ J∗, i.e,

min
tf ,u(t)

tf (4)

s.t. ẋ = F (x, u), x(0) = x0 (5)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (6)
φ(x(tf )) ≤ J∗ (7)

will lead to exactly the same optimal inputs as (1)–
(3), though the numerical conditioning of the two
problems, (1)–(3) and (4)–(7), may differ consider-
ably. The equivalence of solutions is verified using
the necessary conditions of optimality. So, without
loss of generality, the final time will be assumed fixed
in this paper.
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Application of Pontryagin’s Maximum Principle
(PMP) to (1)–(3) results in the following Hamilto-
nian (Bryson and Ho, 1975; Kirk, 1970):

H = λT F (x, u) + µT S(x, u) (8)

λ̇T = −∂H

∂x
, λT (tf ) =

∂φ

∂x

∣∣∣∣
tf

+ νT
(
∂T

∂x

)∣∣∣∣
tf

(9)

where λ(t) �= 0 is the n-vector of adjoint states (La-
grange multipliers for the system equations), µ(t) ≥
0 the ζ-vector of Lagrange multipliers for the path
constraints, and ν ≥ 0 the τ -vector of Lagrange mul-
tipliers for the terminal constraints. The Lagrange
multipliers µ and ν are nonzero when the corre-
sponding constraints are active and zero otherwise
so that µTS(x, u) = 0 and νTT (x(tf )) = 0 always.
The first-order necessary condition for optimality of
the input ui is:

Hui =
∂H

∂ui
= λT

∂F

∂ui
+µT

∂S

∂ui
= λTFui+µTSui = 0.

(10)

Note that, in this paper, PMP will not be used
to determine the optimal solution numerically since
this procedure is well known to be ill-conditioned
(Bryson, 1999). However, PMP will be used to de-
cipher the characteristics of the optimal solution.

Robust Optimization

In the presence of uncertainty, the classical open-loop
implementation of off-line calculated nominal opti-
mal inputs may not lead to optimal performance.
Moreover, constraint satisfaction, which becomes
important in the presence of safety constraints, may
not be guaranteed unless a conservative strategy is
adopted. In general, it can be assumed that the
model structure is known and the uncertainty con-
centrated in the model parameters and disturbances.
Thus, in the uncertain scenario, the optimization can
be formulated as follows:

min
u(t)

J = φ(x(tf )) (11)

s.t. ẋ = F (x, θ, u) + d, x(0) = x0

S(x, u) ≤ 0, T (x(tf )) ≤ 0

where θ is the vector of uncertain parameters, and
d(t) the unknown disturbance vector. In addition,
the initial conditions x0 could also be uncertain.

To solve this optimization problem, an approach re-
ferred to as robust optimization, where the uncer-
tainty is taken into account explicitly, is proposed

in the literature (Terwiesch et al., 1994). The un-
certainty is dealt with by considering all (several)
possible values for the uncertain parameters. The
optimization is performed either by considering the
worst-case scenario or in an expected sense. The
solution obtained is conservative but corresponds to
the best possibility when measurements are not used.

Measurement-based Optimization (MBO)

The conservatism described in the subsection above
can be considerably reduced with the use of measure-
ments, thereby leading to a better cost. Consider the
optimization problem in the presence of uncertainty
and measurements as described below:

min
uk[tl,tf ]

Jk = φ(xk(tf )) (12)

s.t. ẋk = F (xk, θ, uk) + dk, xk(0) = xk0

yk = h(xk, θ) + vk

S(xk, u) ≤ 0, T (xk(tf )) ≤ 0
given yj(i), i = {1, · · · , N}

∀ j = {1, · · · , k − 1}, and
i = {1, · · · , l} for j = k.

where xk(t) is the state vector, uk(t) the input vec-
tor, dk(t) the process disturbance, vk(t) the mea-
surement noise, and Jk the cost function for the
kth batch. Let y = h(x, θ), a p-dimensional vector,
be the combination of states that can be measured,
yj(i) the ith measurement taken during the jth

batch, and N the number of measurements within a
batch. The objective is to utilize the measurements
from the previous (k − 1) batches and the measure-
ments up to the current time, tl, of the kth batch in
order to tackle the uncertainty in θ and determine
the optimal input policy for the remaining time in-
terval [tl, tf ] of the kth batch.

Role of the model in the calculation of the
inputs. Among the measurement-based optimiza-
tion schemes, a classification can be done according
to whether or not a model is used to guide the opti-
mization.

Model-based input calculation: Repeated optimiza-
tion. In optimization, the model of the system can
be used to predict the evolution of the system, com-
pute the cost sensitivity with respect to input vari-
ations so as to obtain search directions, and update
the inputs towards the optimum. Measurements are
then used to estimate the current states and param-
eters. As the estimation and optimization tasks are
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typically repeated over time, this scheme is often re-
ferred to as repeated optimization. The model is
either fixed or refined using measurements, the ad-
vantages and disadvantages of which are discussed
next.

• Fixed model: If the model is not adjusted, it
needs to be fairly accurate. This, however, is
against the philosophy of the approach that
assumes the presence of (considerable) uncer-
tainty. If the uncertainty is only in the form
of disturbances and not in the model parame-
ters, it might be sufficient to use a fixed model.
On the other hand, if the model is not accu-
rate enough, the methodology will have diffi-
culty converging to the optimal solution. Note
that, since the measurements are used to esti-
mate the states only (and not the parameters),
there is no need for persistent inputs.
• Refined model: When model refinement is used,

the need to start with an accurate model is al-
leviated, but it is necessary to excite appropri-
ately the system for estimating the uncertain
parameters. However, the optimal inputs may
not provide sufficient excitation. On the other
hand, if sufficiently exciting inputs are provided
for parameter identification, the resulting solu-
tion may not be optimal. This leads to a con-
flict between the objectives of parameter esti-
mation and optimization. This conflict has been
studied in the adaptive control literature un-
der the label dual control problem (Roberts and
Williams, 1981; Wittenmark, 1995).

Model-free input calculation: Implicit optimization.
In this approach, measurements are used directly to
update the inputs towards the optimum, i.e., with-
out using a model and explicit numerical optimiza-
tion. However, a model might be used a priori to
characterize the optimal solution. The classification
here is based on whether the measurement is used for
interpolation between pre-computed optimal values
or simply compared to a reference.

• Evolution/interpolation: The inputs are com-
puted from past data and current measure-
ments. If only batch-end measurements are
used, the difference in cost between successive
experimental runs can be used to provide the
update direction for the inputs (evolutionary
programming). The on-line version of this ap-
proach is based on the feedback optimal solution
– the solution to the Hamilton-Jacobi-Bellman
equation (Kirk, 1970) – being stored in one form

or the other (e.g., neural network, look-up table,
or dynamic programming).

The main drawback of this approach is the curse
of dimensionality. A large number of experi-
mental runs are needed to converge to the opti-
mum if only batch-end measurements are used.
The use of the method with on-line measure-
ments requires either a computationally expen-
sive look-up table or a closed-form feedback law,
which is analytically expensive or impossible to
obtain in many cases.
• Reference tracking: The inputs are computed

using feedback controllers that track appropri-
ate references. The main question here is what
references should be tracked. In most of the
studies found in the literature, the references
correspond to optimal trajectories computed
off-line using a nominal model. Such an ap-
proach, however, is not guaranteed to be opti-
mal in the presence of uncertainty. As will be
explained later, this paper uses the concept of
invariants to chose references, the tracking of
which implies optimality.

Type of measurements. The type of measure-
ments (off-line or on-line) can add another level to
the classification of optimization strategies.

• Off-line measurements: Off-line measurements
include measurements taken at the end of the
batch (batch-end measurements) and, possibly,
off-line analysis of samples taken during the
batch. These measurements cannot be used to
improve the current batch but only subsequent
ones. Off-line measurements are most common
in industrial practice. They enable the set-up
of a batch-to-batch optimization approach to ac-
count for parametric uncertainty by exploiting
the fact that batch processes are typically re-
peated. Process knowledge obtained from pre-
vious batches is used to update the operating
strategy of the current batch. This approach
requires solving an optimization problem at the
beginning of each batch. The objective is then
to get to the optimum over a few batches.
• On-line measurements: When information is

available during the course of the batch, an on-
line optimization approach can be used. Mea-
surements are used to compensate for uncer-
tainty both within the batch and, possibly, also
in a batch-to-batch manner. With this compen-
sation, the variability caused by uncertainty is
reduced to a large extent. Thus, it is possible
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to guarantee feasibility with smaller conserva-
tive margins which, in turn, helps improve the
cost.

MBO vs. MPC. Model-predictive control (MPC),
which has been well studied in the literature (see
Rawlings et al. (1994); Qin and Badgwell (1997);
Morari and Lee (1999) for surveys), has both some
overlap and differences with MBO schemes that form
the subject of this paper. MPC typically uses the
repeated optimization approach to solve a control
problem in an optimal manner. The major points
that distinguish MBO from MPC are discussed next.

• Goal and cost function: The goal in MPC is con-
trol – choose the inputs to track given references
– whereas the goal in MBO is optimization –
maximize the yield of a product, minimize time
for a given productivity, etc. In MPC, the con-
trol problem is formulated as an optimization
with the cost function reflecting the quality of
control, which typically is quadratic in nature,
i.e., J =

∫ tf
0

(
xT Qx + uT Ru

)
dt. In contrast,

the cost function in MBO reflects the economic
objective to optimize. However, once the op-
timization problem is formulated, similar tools
are used for solution.
• Continuous vs. batch processes: MPC is

oriented principally towards continuous pro-
cesses. Stability is the main issue there and
has been studied extensively in the MPC lit-
erature (Mayne et al., 2000). In contrast, MBO
is oriented towards batch processes with a finite
terminal time. Stability does not play a crucial
role, and there is even a tendency to destabi-
lize the system towards the end for the sake of
optimality (the so-called batch kick). The im-
portant issues in MBO are feasibility and feed-
back optimality – how optimal is the operation
in the presence of constraints and uncertainty.
In contrast to MPC, MBO schemes can take
advantage of the fact that batches are typically
repeated. Run-to-run and implicit optimization
schemes are thus particular to the MBO litera-
ture.
• Role of constraints: MBO typically has solu-

tions that are on the constraints since the poten-
tial of optimization arises mainly from the pres-
ence of path and terminal constraints. Thus, it
is important to go as close to the constraints
as possible and, at the same time, guarantee
feasibility. In contrast, though MPC has been
designed to handle constraints, the typical prob-
lems considered in the framework of MPC try

to avoid the solution being on the constraints
by introducing a compromise between tracking
performance and input effort.

Certain MBO schemes in the category of repeated
optimization have been referred to as MPC schemes
in the literature (Eaton and Rawlings, 1990; Mead-
ows and Rawlings, 1991; Helbig et al., 1998; Laksh-
manan and Arkun, 1999) and, thus, fall in the grey
area between Batch MPC (Lee et al., 1999; Chin
et al., 2000) and MBO for batch processes. It might
be interesting to note that the search for optimal-
ity via tracking has also been studied for continu-
ous processes. The terms “self-optimizing control”,
“feedback control”, or “constraint control” are often
used. The reader is referred to (Skogestad, 2000) for
an overview of the work done in this area.

Classification of measurement-based opti-
mization methods. Only MBO methods (as op-
posed to MPC methods) that have been designed to
deal explicitly with uncertainty in batch processing
are considered in the classification. Table 2 illus-
trates the interplay between the type of measure-
ments (off-line vs. on-line) and the role played by
the model (model-based vs. model-free adaptation).
Representative studies available in the literature are
placed in the table.

Invariant-based Optimization

The idea of Invariant-Based Optimization (IBO) is
to identify those important characteristics of the op-
timal solution that are invariant under uncertainty
and provide them as references to a feedback con-
trol scheme. Thus, optimality is achieved by track-
ing these references without repeating numerical op-
timization. Also, the fact that batches are typi-
cally repeated over time can be used advantageously,
thereby providing the possibility of on-line and/or
batch-to-batch implementation. The methodology
consists of:

1. a parsimonious state-dependent parameteriza-
tion of the inputs,

2. the choice of signals that are invariant under
uncertainty, and

3. the tracking of invariants using measurements.

These three steps are discussed in the following sub-
sections.
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Methodology Batch-to-batch optimization
(Off-line measurements)

On-line optimization
(On-line measurements)

Model-based
Fixed model

Zafiriou and Zhu (1990)
Zafiriou et al. (1995)
Dong et al. (1996)

Meadows and Rawlings (1991)
Agarwal (1997)
Abel et al. (2000)

Model-based
Refined model

Filippi-Bossy et al. (1989)
Marchal-Brassely et al. (1992)
Rastogi et al. (1992)
Fotopoulos et al. (1994)
Le Lann et al. (1998)
Ge et al. (2000)
Martinez (2000)

Eaton and Rawlings (1990)
Ruppen et al. (1998)
Gattu and Zafiriou (1999)
Noda et al. (2000)
Lee et al. (2000)

Model-free
Evolution
Interpolation

Clarke-Pringle and MacGregor (1998) Tsen et al. (1996)
Rahman and Palanki (1996)
Yabuki and MacGregor (1997)
Krothapally et al. (1999)
Schenker and Agarwal (2000)

Model-free
Reference
tracking

Scheid et al. (1999)
Srinivasan et al. (2001)

Soroush and Kravaris (1992)
Terwiesch and Agarwal (1994)
Van Impe and Bastin (1995)
Saenz de Buruaga et al. (1997)
Ubrich et al. (1999)
Fournier et al. (1999)
Gentric et al. (1999)
Lakshmanan and Arkun (1999)
Visser et al. (2000)

Table 2: MBO methods specifically designed to compensate uncertainty

Piecewise Analytic Characterization of the
Optimal Solution

The parsimonious state-dependent parameterization
arises from intrinsic characteristics of the optimal
solution. The optimal solution is seen to possess the
following properties (Visser et al., 2000):
• The inputs are in general discontinuous, but are

analytic in between discontinuities. The time
at which an input switches from one interval to
another is called a switching time.
• Two types of arcs (constraint-seeking and

compromise-seeking) are possible between
switching instants. In a constraint-seeking arc,
the input is determined by a path constraint,
while in the other type of interval, the input lies
in the interior of the feasible region (Palanki
et al., 1993). The set of possible arcs is
generically labelled η(t).

The structure of the optimal solution is described by
the type and sequence of arcs which can be obtained
in three ways:

• educated guess by an experienced operator,
• piecewise analytical expressions for the optimal

inputs,
• inspection of the solution obtained from numer-

ical optimization.

In the most common third case, a simplified model
of the process is used to compute a numerical solu-
tion in which the various arcs need to be identified.
The exercise of obtaining the analytical expressions
for the optimal inputs is undertaken only if the nu-
merical solution cannot be interpreted easily. This
analysis is, in general, quite involved and is only in-
tended to provide insight into what constitutes the
optimal solution rather than to implement the opti-
mal solution. This analysis is discussed next.

Constraint-seeking vs. compromise-seeking
arcs.
Constraint-seeking arc for ui (Bryson and Ho,
1975). In this case, the input ui is determined
by an active constraint, say, Sj(x, u) = 0. Thus,
µj �= 0. If Sj(x, u) depends explicitly on ui (e.g., in
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the case of input bounds), the computation of the op-
timal ui is immediate. Otherwise, since Sj(x, u) = 0
over the entire interval under consideration, its time
derivatives are also zero, dk

dtk
Sj(x, u) = 0, for all k.

Note that the time differentiation of Sj(x, u) con-
tains ẋ, i.e., the dynamics of the system. Sj(x, u)
can be differentiated with respect to time until ui
appears. The optimal input is computed from that
time derivative of Sj(x, u) where ui appears. The
computed input ui is typically a function of the
states of the system, thus providing a feedback law.

Compromise-seeking arc for ui (Palanki et al.,
1993). In this arc, none of the path constraints per-
taining to the input ui is active. The input is then
determined from the necessary condition of optimal-
ity, i.e., Hui = λTFui = 0. If Fui depends explic-
itly on ui, the computation of the optimal ui is im-
mediate. Otherwise, since Hui = 0 over the entire
interval, the time derivatives of Hui are also zero,
dk

dtk
Hui = 0, for all k. Hui can be differentiated with

respect to time until ui appears, from which the op-
timal input is computed. The computed input is a
function of the states and might possibly also depend
on the adjoint variables. If ui does not appear at all
in the time differentiations of Hui , then either no
compromise-seeking arcs exist or the optimal input
ui is non-unique (Baumann, 1998).

The fact that the optimal inputs are in the interior
of the feasible region is the mathematical represen-
tation of the physical tradeoffs present in the system
and affecting the cost. If there is no intrinsic trade-
off, the input ui does not appear in the successive
time differentiations of Hui . This forms an impor-
tant subclass for practical applications. It guaran-
tees that the optimal solution is always on the path
constraints. This is the case in controllable linear
systems, feedback-linearizable systems, flat systems,
and involutive-accessible systems, a category which
encompasses many practical systems (Palanki et al.,
1993; Benthack, 1997).

Constraint-seeking vs. compromise-seeking
parameters.
Parsimonious input parameterization. The pieces
described above are sequenced in an appropriate
manner to obtain the optimal solution. The switch-
ing times and, possibly, a few variables that approx-
imate the compromise-seeking arcs completely pa-
rameterize the inputs. The decision variables of the
parameterization are labelled π. In comparison with
piecewise constant or piecewise polynomial approxi-
mations, the parameterization proposed is exact and

parsimonious.

Optimal choice of π. Once the inputs have been pa-
rameterized as u(π, x, t), the optimization problem
(1)–(3) can be written as:

min
π

J = φ(x(tf )) (13)

s.t. ẋ = F (x, u(π, x, t)), x(0) = x0 (14)
T (x(tf )) ≤ 0 (15)

Some of the parameters in π are determined by
active terminal constraints (termed the constraint-
seeking parameters) and some from sensitivities
(termed the compromise-seeking parameters). Note
the similarity with the classification of arcs for input
ui. Without loss of generality, let all τ terminal con-
straints be active at the optimum. Consequently, the
number of decision variables arising from the par-
simonious parameterization, nπ, needs to be larger
than or equal to τ in order to satisfy all terminal
constraints.

The idea is then to separate those variations in π
that keep the terminal constraints active from those
that do not affect the terminal constraints. For this,
a transformation πT → [π̄T π̃T ] is sought such that
π̄ is a τ -vector and π̃ a (nπ− τ)-vector with ∂T

∂π̃ = 0.
A linear transformation which satisfies these proper-
ties can always be found in the neighborhood of the
optimum. Then, the necessary conditions for opti-
mality of (13)–(15) are:

T = 0,
∂φ

∂π̄
+ νT

∂T

∂π̄
= 0, and

∂φ

∂π̃
= 0. (16)

The active constraints T = 0 determine the τ
decision variables π̄ while π̃ are determined from
the sensitivities ∂φ

∂π̃ = 0. Thus, π̄ corresponds
to the constraint-seeking parameters and π̃ to the
compromise-seeking parameters. The Lagrange mul-
tipliers ν are calculated from ∂φ

∂π̄ + νT ∂T
∂π̄ = 0.

Signals Invariant under Uncertainty

In the presence of uncertainty, the numerical val-
ues of the optimal input ui in the various arcs and
the input parameters π might change considerably.
However, what remains invariant under uncertainty
is the fact that the necessary condition Hui = 0 has
to be verified. Hui = 0 takes on different expres-
sions for constraint-seeking and compromise-seeking
arcs. To ease the development, it is assumed that the
uncertainty is such that it does not affect the type
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and sequence of arcs nor the set of active terminal
constraints.

Choice of invariants.
Choice of invariants for constraint-seeking and
compromise-seeking arcs. A set of signals Iηi (t) =
hηi (x(t), u(t), t), referred to as invariants for arcs,
will be chosen such that optimality is achieved by
tracking Iηref,i = 0. Note the dependence of hηi with
respect to t, which indicates that hηi can be different
in different intervals of the optimal solution.

Tracking Hui = 0 has different interpretations with
respect to the two types of arcs. In the case of
a constraint-seeking arc for ui with the constraint
Sj being active, Hui = λTFui + µj

∂Sj
∂ui

= 0, with
µj �= 0 and λTFui �= 0. The constraint has to be
active for the sake of optimality since otherwise µj
is zero and Hui �= 0. Thus, the invariant along a
constraint-seeking arc is hηi (x, u, t) = Sj(x, u). For a
compromise-seeking arc, Hui = λTFui = 0. There-
fore, the invariant is hηi (x, u, t) = λTFui(x, u).

Note that the element that remains invariant despite
uncertainty is the fact that optimal operation cor-
responds to Iηref = 0. However, the uncertainty
does have an influence on the value of Iη(t), and
the inputs need to be adapted in order to guarantee
Iηref = 0.

Choice of invariants for constraint-seeking and
compromise-seeking parameters. In addition to the
choice of invariants for the various arcs, it is im-
portant to choose the invariants for the parame-
ters π. Following similar arguments, a set of sig-
nals Iπ = hπ(x(tf )) can be constructed such that
the optimum corresponds to Iπref = 0, also in the
presence of uncertainty. Clearly, the invariants
arise from the conditions of optimality. For the
constraint-seeking parameters, they correspond to
the terminal constraints hπ(x(tf )) = T (x(tf )) and,
for the compromise-seeking parameters, to sensitiv-
ities hπ(x(tf )) = ∂φ(x(tf ))

∂π̃ .

To summarize, the invariants are as follows:

• For constraint-seeking arcs:
hηi (x, u, t) = Sj(x, u)

• For compromise-seeking arcs:
hηi (x, u, t) = λTFui(x, u)
• For constraint-seeking parameters:
hπ(x(tf )) = T (x(tf ))
• For compromise-seeking parameters:
hπ(x(tf )) = ∂φ(x(tf ))

∂π̃

Sensitivity of the cost. The sensitivity of the
cost to non-optimal operation is in general much
lower along a compromise-seeking arc than along
a constraint-seeking arc. Consider the optimal in-
put ui determined by the path constraint Sj and
the optimality condition Hui = λTFui + µj

∂Sj
∂ui

= 0
with µj �= 0. If the input does not keep the con-
straint active, µj becomes zero. Thus, the change in
cost is directly proportional to λTFui , which is non-
zero. In contrast, along a compromise-seeking arc,
Hui = λTFui = 0, and a small deviation of ui from
the optimal trajectory will result in a negligible loss
in cost. Similarly, as seen from (16), the deviation in
cost arising from the non-satisfaction of a terminal
constraint is proportional to νT ∂T

∂π̄ , whilst a small
variation of π̃ cause negligible loss in cost.

In summary, it is far more important to track the
path constraints Sj than the sensitivity λTFui . Fur-
thermore, it is far more important to track the ter-
minal constraints T than the sensitivities ∂φ

∂π̃ . Conse-
quently, it is often sufficient in practical situations to
focus attention only on constraint-seeking arcs and
parameters.

Tracking of Invariants

The core idea of the optimization scheme is to use
a model to determine the structure of the optimal
inputs and measurements to update a few input pa-
rameters and the value of the inputs in some of the
intervals. This way, the optimal inputs are deter-
mined directly from process measurements and not
from a (possibly inaccurate) model.

Optimality despite uncertainty is approached by
working close to the active constraints, i.e., where
there is much to gain! Indeed, tracking path and
terminal constraints is usually much more important
than regulating sensitivities as was argued above.
The structure given in Figure 2 is proposed to track
the invariants by use of feedback (Srinivasan et al.,
1997; Visser, 1999; Visser et al., 2000). The two ma-
jor blocks are described below:
• Analysis: This level consists of a simplified (not

necessarily accurate) model of the process. The
tasks are as follows:

1. The numerical optimizer solves the op-
timization problem using the simplified
model and provides the nominal signals x∗

and u∗.

2. The type and sequence of arcs are deci-



Dynamic Optimization in the Batch Chemical Industry, Bonvin et. al 14

Process
Trajectory

GeneratorPath

Controller

Terminal

Controller

Construction

of Invariants

On-line

Off-line

Characterization

of the solution

Choice of

Invariants

ANALYSIS

OPTIMALITY THROUGH FEEDBACK

Numerical

Optimizer

Simplified

Model

π

η

Iη
Iπ

0
0

−
−

u y

d

x∗

u∗
hη , hπ

π∗

η∗

Figure 2: Invariant-based optimization

phered from the numerical solution, lead-
ing to a parsimonious parameterization of
the inputs (characterization of the optimal
solution).

3. The invariant functions hη(x(t), u(t), t)
and hπ(x(tf )) are obtained as proposed
earlier. Note that the switching strategy
is inherent in the choice of hη.

• Optimality through feedback: The invariants
Iηref = 0 and Iπref = 0 are tracked with the help
of path and terminal feedback controllers, re-
spectively. The trajectory generator computes
the current inputs as a function of η(t) and π.

The model-based ‘Analysis’ is normally carried out
off-line once, and only the measurement-based ‘Op-
timality through feedback’ operates on-line during
process runs. Thus, the implementation is model-
free and measurement-based.

Practical applicability of IBO

If the model and the true (unknown) system share
the same input structure (type and sequence of arcs)
and the same active terminal constraints, IBO will
be capable of optimizing the true system. Thus,
the value of IBO in practice will depend on both
the robustness of the proposed input structure with

respect to uncertainty (modeling errors and distur-
bances) and the ability to measure the path and ter-
minal constraints. These issues are briefly discussed
next.

• Role of the model. Although the implementa-
tion of optimal inputs in the invariant-based
scheme is truly model-free, a model may still
be needed at the analysis step. The role of the
model is to determine the structure of the op-
timal inputs, i.e., the type and the sequence of
arcs and the set of active constraints. The struc-
ture of the inputs is obtained either numerically
or via educated guesses, with the proposed in-
put structure being verified using PMP neces-
sary conditions on the nominal model. The ap-
proach is directly applicable to large-scale in-
dustrial process, as long as the nominal model
and the real system share the same input struc-
ture. So, in contrast to model-based approaches
or what is sought of for simulation purposes,
there is no need for a detailed model or for accu-
rate parameter values. The model simply needs
to reflect the major tradeoffs specific to the op-
timization problem at hand. The parts of the
model that do not address these effects can be
discarded.
• Construction of invariants from measurements.

Since Iη and Iπ are not measured directly,
they need to be reconstructed from the avail-
able measurements. In the case of constraint-
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seeking arcs and parameters, the invariants cor-
respond to physical quantities (path or terminal
constraints). Off-line measurements of terminal
quantities are in general available. On-line mea-
surements to meet path constraints might be
more difficult. Three cases can be considered:

1. The path constraint deals directly with a
physical quantity that can be easily mea-
sured such as temperature or pressure.

2. The path constraint deals with a quantity
that cannot be directly measured, but the
constraint can be rewritten with respect to
something that can be measured. This is,
for example, possible when a heat removal
constraint can be rewritten as a constraint
on a cooling temperature.

3. Cases 1 and 2 do not apply, and some type
of inference or state estimation is necessary
to meet the constraint. This case is clearly
more involved than the two preceding ones.
The reconstruction problem is closely re-
lated to inferential control (Joseph and
Brosilow, 1978; Doyle, 1998). However,
it may well happen that a conservative
approach for meeting the path constraint
(requiring easily-available or no measure-
ments) is sufficient.

On the other hand, for compromise-seeking arcs
and parameters, the invariants are sensitivities.
For computation of sensitivities, either a model
of the process or multiple process runs are re-
quired, which is typically more difficult. How-
ever, as discussed above, the sensitivity with re-
spect to input variations in compromise-seeking
arcs and parameters can often be neglected. In
such a case, all compromise-seeking arcs and pa-
rameters are kept at their off-line determined
values, and only the constraint-seeking arcs and
parameters are adjusted.

• Difference in time scale – on-line vs. off-line
measurements. In general, there is a difference
in time scale between the path controller and
the terminal controller. The path controller
works within a batch using on-line measure-
ments (running index is the batch time t) (Ben-
thack, 1997). The terminal controller operates
on a batch-to-batch basis using off-line measure-
ments (running index is the batch number k)
(Srinivasan et al., 2001).

If on-line measurements are not available, the
path controller is inactive. If off-line measure-
ments of the path constraint are available, it is

possible to use the path controller in a batch-
to-batch mode so that the system will be closer
to the path constraint during the next batch
(Moore, 1993). On the other hand, if it is pos-
sible to predict Iπ from on-line measurements,
it might be possible to use the terminal con-
troller within the batch (Yabuki and MacGre-
gor, 1997).

The presence of disturbances influences both
η(t) and π. Disturbances affecting η(t) within
the batch are rejected by the path controller.
However, the effect of any disturbance within
the batch on π cannot be rejected since the ter-
minal controller only works on a batch-to-batch
basis. Constant disturbances (e.g. raw material
variations) can be rejected from batch-to-batch
by the terminal controller.

• Backoff from constraints. In the presence of dis-
turbances and parametric uncertainty that can-
not be compensated for by feedback, the use
of conservative margins, called backoffs, is in-
evitable to ensure feasibility of the optimization
problem (Visser et al., 2000). The presence of
measurement errors also necessitates a backoff.
Based on an estimate of the uncertainty, the
probability density function of the state vari-
ables can be calculated. The margins are then
chosen such that the spread of the states re-
mains within the feasible region with a certain
confidence level. Note that the margins typi-
cally vary with time.

• Reduction of backoff. Due to the sensitivity re-
duction characteristic of feedback control, the
conservatism can be reduced considerably in
the proposed framework in comparison with
the standard open-loop optimization schemes.
The feedback parameters can be chosen so as
to minimize the spread in the state variables
resulting from uncertainty. The use of feed-
back becomes particularly important when the
uncertainty tends to increase during a batch
run. With reduced backoffs, the process can
be driven closer to active constraints, thereby
leading to improved performance.

Example - Semi-batch Reactor with
Safety and Selectivity Constraints

Description of the Reaction System

• Reaction: A + B → C, 2 B → D.

• Conditions: Semi-batch, isothermal.
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• Objective: Maximize the amount of C at a given
final time.
• Manipulated variable: Feed rate of B.
• Constraints: Input bounds; limitation on the

heat removal rate through the jacket; constraint
on the amount of D produced.
• Comments: The reactor is kept isothermal by

(say) adjusting the cooling temperature in the
jacket, Tc. B is fed at the temperature Tin = T .
To remain isothermal, the power generated by
the reactions, qrx, must be evacuated through
the cooling jacket, i.e., qrx = UA(T−Tc). Thus,
the heat removal constraint can be expressed in
terms of a lower bound for the cooling temper-
ature, Tcmin. The variables and parameters are
described in the next subsection.
Without any constraints, optimal operation
would consist of adding the available B at ini-
tial time (i.e., batch mode). The presence of the
heat removal constraints calls for semi-batch op-
eration with constraint-seeking arcs. Further-
more, the constraint on the amount of D that
can be produced imposes a compromise-seeking
feeding of B in order to maximize C without
violating the terminal constraint on D.

Problem Formulation

Variables and parameters: cX : Concentration of
species X, nX : Number of moles of species X, V :
Reactor volume, u: Feed rate of B, cBin: Inlet con-
centration of B, k1, k2: Kinetic parameters, ∆H1,
∆H2: Reaction enthalpies, T : Reactor temperature,
Tc: Cooling temperature in the jacket, Tin: Feed
temperature, U : Heat transfer coefficient, A: Sur-
face for heat transfer, and qrx: power produced by
the reactions. The numerical values are given in Ta-
ble 3.

Model equations:

˙cA = −k1cAcB −
u

V
cA (17)

˙cB = −k1cAcB − 2 k2c
2
B +

u

V
(cBin − cB)(18)

V̇ = u (19)

with the initial conditions cA(0) = cAo, cB(0) =
cBo, and V = Vo. Assuming cC(0) = cD(0) =
0, the concentration of the species C and D
are given by cC = cAoVo−cAV

V and cD =
(cBoVo−cBV )+cBin(V−Vo)−(cAoVo−cAV )

2V . The power
produced by the reactions and Tc are given by

qrx = k1 cA cB(−∆H1)V + 2 k2 c2B(−∆H2)V (20)

Tc = T − qrx
U A

(21)

Optimization problem:

max
u(t)

J = nC(tf ) (22)

s.t. (17)− (19)
Tc(t) ≥ Tcmin

nD(tf ) ≤ nDfmax

umin ≤ u ≤ umax

k1 0.75 l/(mol h)
k2 0.014 l/(mol h)
∆H1 −7× 104 J/mol
∆H2 −5× 104 J/mol
cBin 10 mol/l
UA 8× 105 J/Kh

umin 0 l/h
umax 100 l/h
Tcmin 10 oC
nDfmax 5 mol

cAo 2 mol/l
cBo 0 mol/l
Vo 500 l
tf 2.5 h

Table 3: Model parameters, operating bounds and
initial conditions

Piecewise Analytic Characterization

Using Pontryagin’s Maximum Principle, it can be
shown that the competition between the two re-
actions results in a feed that reflects the optimal
compromise between producing C and D. This
compromise-seeking input can be calculated from
the second time derivative of Hu as:

ucomp =
V cB(k1cA(2 cBin − cB) + 4 k2cBcBin)

2 cBin (cBin − cB)
(23)

The other possible arcs correspond to the input be-
ing determined by the constraints: (i) u = umin,
(ii) u = umax, and (iii) u = upath. The input
upath corresponds to riding along the path constraint
Tc = Tcmin. The input is obtained by differentiating
the path constraint once with respect to time, i.e.,
from Ṫc = 0 :

upath =
N
D

∣∣∣∣
Tc=Tcmin

(24)

N = cBV
(
∆H1k1cA(k1(cA + cB) + 2 k2cB)

+ 4 ∆H2k2cB(k1cA + 2 k2cB)
)
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D = ∆H1k1cA(cBin − cB)
+ 4 ∆H2k2cB(2 cBin − cB)

Sequence of arcs and parsimonious parameteriza-
tion:

• The input is initially at the upper bound, u =
umax, in order to attain the path constraint as
quickly as possible.
• Once Tc reaches Tcmin, u = upath is applied in

order to keep Tc = Tcmin.
• The input switches to u = ucomp at the time

instant π so as to take advantage of the optimal
compromise in order to maximize nc(tf ) and
meet the terminal constraint nD(tf ) = nDfmax .

Since analytical expressions for the input in the
various arcs exist, the optimal solution can be pa-
rameterized using only the switching time between
the path constraint and the compromise-seeking arc.
This parameter π is determined numerically so as
to satisfy the terminal constraint nD(tf ) = nDfmax .
The invariants Iη correspond to the input bound
in the first interval, the path constraint in the
second interval and the sensitivity λTFu for the
compromise-seeking arc. For the switching time, the
invariant is the terminal constraint itself. The op-
timal input is shown in Figure 3 with the optimal
values π = 1.31h and J = 600.6 mol.

Note that the input upath given by (24) will keep the
system on the path constraint once the path con-
straint Tc = Tcmin is attained, but will not keep the
path constraint active in the presence of uncertainty.
The same can be said for ucomp in (23). Thus, the
analytical expressions for upath and ucomp will only
be used for interpretation of the nominal optimal
trajectory and not for implementation of the true
optimal solution. At the implementation level, sim-
ple PI-controllers will be used.

Measurement-based Optimization

In practice, there can be considerable uncertainty
both in the stoichiometric and kinetic models. This
is reflected here as some uncertainty for the kinetic
parameter k1 in the interval 0.4 ≤ k1 ≤ 1.2 (The
nominal value k1 = 0.75 used in the simulation
is assumed to be unknown). In order not to vio-
late the constraints, a conservative feed profile (Fig-
ure 3) would have to be designed so that: i) the
path constraint is not violated for k1 = k1max = 1.2,
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Figure 3: Nominal optimal input (solid) and Con-
servative optimal input (dotted)

and ii) the terminal constraint is not violated for
k1 = k1min = 0.4 (a small k1 corresponds to more
B in the reactor and thus to a higher production
of D). So, the conservative profile would consist of
computing upath and the first switching instant us-
ing k1 = k1max, and adjusting π so that the terminal
constraint is satisfied for k1 = k1min.

With respect to the measurements available, differ-
ent optimization scenarios are considered:

1. No measurements: The conservative optimal
feed profile defined above is applied open loop
to the simulated nominal plant.

2. Batch-end measurements: Only the measure-
ment of nD(tf ) is available and, thus, the
switching time π is updated in a batch-to-batch
manner. For the second interval, upath = uconspath,
the conservative value computed off-line using
k1max is applied. Due to the low sensitivity of
the cost with respect to the fine shape of the
input in the compromise-seeking interval, the
latter is approximated by the constant value
ucomp = 20 (l/h).

3. On-line and batch-end measurements: On-line
measurement of the cooling jacket temperature
Tc is available. The path constraint is kept
active using the feedback upath(t) = uconspath +
kp (Tcmin−Tc(t))+ki

∫ t

0
(Tcmin−Tc(t))dt, where

kp and ki are the parameters of a PI controller.
In addition, the switching time π is updated
in a batch-to-batch manner. As in Scenario 2,
the compromise-seeking arc is approximated by
ucomp = 20 (l/h).

The cases of both noise-free and noisy measurements
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Terminal Constraint Path Constraint
Optimization Scenario nD(tf ) mol min

t
Tc(t) oC Cost Loss

(nDfmax = 5 mol) (Tc,min = 10oC) (mol)
Open-loop application

1 of optimal 2.71 12.87 498.8 20%
conservative input
Adaptation of π
using off-line 4.75 11.62 582.6 3%
measurements (with 5% noise)

2 Adaptation of π
using off-line 5.00 11.50 589.2 2%
measurements (no noise)
Adaptation of upath(t) and π
using on-line and off-line 4.75 11.25 590.9 1.5%
measurements (with 5% noise)

3 Adaptation of upath(t) and π
using on-line and off-line 5.00 10.00 600.5 0.02%
measurements (no noise)

Table 4: Invariant-based optimization. Results averaged over 100 noise realizations, each consisting of
run-to-run adaptation over 50 batches.

(5% relative Gaussian measurement noise) are con-
sidered. The results are given in Table 4. If the mea-
surements are noisy, a conservative margin (backoff)
needs to be incorporated so as to guarantee feasi-
bility. The backoffs are 0.25 mol for nDfmax and
1.25oC for Tcmin.

It is seen that with only off-line (or batch-end) mea-
surements, the terminal constraint can be satisfied
by adapting the switching instant π. The evolutions
of the switching instant and the cost for batch-to-
batch optimization are shown in Figures 4 and 5.
It can be seen that the solution gets close to the
optimum within a few batches.

If, in addition, on-line measurements are available,
the path constraint can be kept active as well. Thus,
it is possible to get very close to the optimum by
using measurements. The loss of 0.02% in the last
noise-free scenario is due to the approximation of
the compromise-seeking arc by the constant value
ucomp = 20 (l/h).

Discussion

The model was only necessary to obtain the type and
sequence of arcs: umax, upath and ucomp. As far as
the implementation is concerned, umax = 100 l/h is
part of the problem formulation, upath is determined

0 10 20 30 40 50
1

1.5

2

Evolution of Switching time

Batch Number

π [h]

Figure 4: Evolution of switching time for one real-
ization of the batch-to-batch optimization with only
batch-end measurements (5% measurement noise)

by a PI-controller upon tracking Tcmin, and ucomp

= 20 l/h is a constant-value approximation to the
optimal profile computed off-line using the model.
The switching time π between upath and ucomp is
adjusted in a run-to-run manner by a PI-controller
in order to meet nDfmax . The actual value of ucomp

is of little relevance as any error in ucomp can be
easily compensated for by an appropriate shift in π.

Assume that, in addition to the two modeled reac-
tions, the true system also includes B + C → E,
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Figure 5: Evolution of cost for the same scenario as
in Figure 4

B → F . This would not affect the type and sequence
of arcs since the two additional reactions are similar
to the second reaction with respect to the effect of
the input u, i.e., they consume B away from the first
(desired) reaction. Thus the proposed scheme would
be equally applicable even in the presence of the two
additional reactions.

In the formulation of the optimization problem it
was assumed Tin = T . Even without this assump-
tion, the proposed approach is applicable. The possi-
bility of removing heat through temperature increase
of the feed from Tin to T (so-called sensible heat)
changes the heat removal constraint to:

qrx − qin ≤ UA(T − Tcmin) (25)

with qin the rate of heat removal due to the feed of
B. However, the implementation of the heat removal
constraint remains unchanged as it concerns only the
RHS of (25): upath(t) is determined as the output of
a PI-controller designed to track Tcmin.

A final important remark: The model parameters
given in Table 3 are not used for calculating the
optimal feed rate. Only the off-line measurement
of nD(tf ) and the on-line measurement of Tc(t) are
used to implement the proposed optimizing scheme.

Conclusions

This paper has addressed several optimization issues
that directly affect the operation of batch processes.
It is argued that process improvement is necessary
for the economic well-being of many batch manufac-

turers. The industrial practice specific to the batch
specialty chemistry is presented, with an emphasis
on both organizational and technical problems. On
the organizational side, the lack of global thinking in
dealing with the individual steps of a complex pro-
cess limits the potential for performance improve-
ment. On the technical side, important limitations
regarding both modeling and measurement aspects
impair the use of optimization techniques. In ad-
dition, batch processes are characterized by a con-
siderable amount of uncertainty and the presence of
operational and safety constraints.

The lack of reliable models, together with the pres-
ence of uncertainty, has favored the investigation
of process improvement via utilization of measure-
ments (sometimes on-line, most often off-line). This
paper has classified measurement-based optimiza-
tion methods reported in the literature according to
whether or not a model is used to guide the optimiza-
tion and the type of measurements (on-line, off-line)
available.

The major contribution towards process improve-
ment of a constrained batch process is through oper-
ation on active constraints. Thus, a feedback-based
framework has been proposed to keep the system
‘close’ to the active constraints. If only off-line mea-
surements are available, this framework results in a
batch-to batch optimization scheme with the objec-
tive to meet the terminal constraints within a few
batches. If on-line measurements are available, the
path constraints can also be kept active.

The proposed invariant-based optimization scheme
addresses most of the requirements stemming from
industrial practice and needs that were listed in Ta-
ble 1. More specifically,

• it is aimed at process improvement via the use
of time-dependent inputs,

• it is model-independent as far as implementa-
tion is concerned,

• if necessary, it uses only available off-line mea-
surements,

• it is robust against uncertainty since signals that
are invariant under uncertainty are tracked, and
finally,

• it guarantees feasibility since the constraints are
approached from the safe side.

The approach proposed is effective when the opti-
mization potential stems mainly from meeting path
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and/or terminal constraints. Such is the case in most
of the batch process optimization problems.

It is possible to perceive the proposed feedback-
based optimization strategy from an industrial per-
spective. Classical PID control is the most popu-
lar technique used currently in industry, and trad-
ing it to attain optimality is unacceptable industri-
ally. Therefore, in contrast to most model-based op-
timization studies, this work attempts to use feed-
back control for the sake of optimality. In this sense,
the approach has great industrial potential and could
help take optimization to the batch chemical indus-
try.
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