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Abstract 
 

The present work deals with monochromatic wavefront aberrations in optical 

systems without symmetries. The treatment begins with a class of systems characterized by 

misaligned spherical surfaces whose behavior is analyzed using the wavefront aberration 

expansion proposed in the framework of the Nodal Aberration Theory (NAT). It is derived 

the full field behavior of the Zernike polynomials in the Fringe indexing scheme for this 

class of systems. Then, the attention is focused on a more general class of asymmetric 

systems where the misaligned surfaces can be individually double-plane symmetric. In this 

case, considering aberrations up to the 4th order, it is shown that the field dependence of 

Zernike terms is described by general second-degree polynomials. The presence of double-

plane symmetric optical surfaces induces additional perturbations to the magnitude of the 

field variation of primary aberrations for this class of systems. In particular, one observes 

that coma aberration acquires an elliptical conic shape in the field domain, while the full 

field variation of primary astigmatism magnitude is described by a class of surfaces that we 

define as “generalized Cassini surfacesˮ because these are more general than the standard 

Cassini surfaces describing the binodal behavior of astigmatism in the class of optical 

systems analyzed with NAT wavefront aberration expansion.  

These considerations are preliminary to the discussion of the second part of this 

thesis whose scope is to analyze monochromatic wavefront aberrations in a further class of 

systems, namely optical systems characterized by multiple apertures. In this sense, it is first 

introduced a general description of the wavefront aberration function in the framework of 

Hamiltonian Optics. This consists of a full power series expansion in the ray coordinates 

that provides the most general representation of optical systems without symmetries. These 

introductory remarks are necessary to carry out the analysis of optical systems with many 

apertures. Such a class of systems is well represented by light field (or plenoptic) cameras. 

Their general structure consists of a main objective followed by an ensemble of apertures 

whose function is to divide the field of view into many partitions. Each aperture defines an 

optical channel. The partial overlap between adjacent field of view partitions serves to 

extract depth information from the scene in a similar manner to stereo cameras. The 

wavefront aberration analysis of this class of systems is primarily based on the definition 

of an ensemble of base-rays playing the role of reference axis for the various channels. The 

wavefront error for each optical channel is described with a general power series in the ray 

coordinates expanded about the inherent base-ray. Finally, different approaches are 

expounded to calculate and visualize the evolution of the aberration behavior of the various 

channels of this class of optical systems.  
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Hamiltonian Optics, Nodal Aberration Theory, Asymmetric optical systems, Wavefront 

error, monochromatic aberrations, Zernike polynomials expansion, Multiple aperture 
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Riassunto 
 

Il presente lavoro di tesi si focalizza sulla teoria delle aberrazioni 

monocromatiche in sistemi ottici asimmetrici. La trattazione inizia da una classe di sistemi 

ottici composti da superfici sferiche lievemente disallineate la cui descrizione si basa 

sull’espansione delle aberrazioni del fronte d’onda proposta nell’ambito dalla Nodal 

Aberration Theory (NAT). In particolare, viene studiato il comportamento dei polinomi di 

Zernike in funzione delle coordinate del campo di vista di tali sistemi ottici. In seguito, 

viene considerata un’altra classe di sistemi ottici asimmetrici composti da superfici ottiche 

con due piani di simmetria ortogonali. In questo caso, limitando lo studio alle aberrazioni 

primarie, si dimostra che la dipendenza dei polinomi di Zernike dal campo di vista è ben 

descritta da polinomi di secondo grado. L’assenza di simmetria induce un effetto 

perturbativo sulla variazione delle aberrazioni primarie in funzione del campo di vista. Nel 

dettaglio, l’evoluzione dell’aberrazione di coma in dipendenza del campo di vista è descritta 

da superfici coniche ellittiche mentre quella dell’astigmatismo è descritta da superfici 

particolari, da noi definite come “superfici di Cassini generalizzateˮ in quanto più generali 

delle superfici di Cassini standard che, al contrario, ben descrivono il comportamento 

binodale dell’astigmatismo nella classe di sistemi ottici introdotta in precedenza.  

Queste considerazioni sono preliminari alla discussione della seconda parte di 

questo lavoro di tesi il cui obiettivo è analizzare le aberrazioni monocromatiche di 

un’ulteriore classe di sistemi ottici caratterizzati da molteplici aperture. In tal senso, viene 

dapprima introdotto un metodo generale di analisi di questa categoria di sistemi nell’ambito 

dell’Ottica Hamiltoniana. Tale metodo è basato su un’espansione in serie di potenze nelle 

coordinate dei raggi luminosi che permette di descrivere nel modo più generale il 

comportamento di sistemi ottici privi di simmetria. Queste note introduttive sono 

indispensabili per l’analisi di sistemi ottici caratterizzati da molteplici aperture, ben 

rappresentati dalla telecamera plenottica. La struttura generale di questa classe di sistemi 

ottici consta di un obiettivo seguito da un insieme di aperture la cui funzione è quella di 

dividere il campo di vista in corrispettive partizioni. Ogni apertura definisce un canale 

ottico. La parziale sovrapposizione tra partizioni contigue consente di calcolare la distanza 

degli oggetti nella profondità di campo della scena inquadrata. L’analisi delle aberrazioni 

del fronte d’onda in tali sistemi si basa primariamente sulla definizione di un insieme di 

raggi base rispetto ai quali lo sviluppo in serie di potenze delle coordinate dei raggi luminosi 

è riferito. Infine, vengono introdotti diversi approcci per calcolare e visualizzare 

l’evoluzione del comportamento delle aberrazioni monocromatiche in funzione dei 

parametri geometrici dei diversi canali di un sistema ottico con molteplici aperture.  

 

Parole chiave 

Ottica Hamiltoniana, Nodal Aberration Theory, sistemi ottici asimmetrici, errore di fronte 

d’onda, aberrazioni monocromatiche, polinomi di Zernike, sistemi ottici con molteplici 

aperture, telecamera plenottica 
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Introduction 
 

 

The work presented in this thesis is the result of a collaboration between two institutions, 

Datalogic IP Tech Srl (DLIPTECH) and École Polytechnique Fédérale de Lausanne 

(EPFL), located respectively in Bologna (Italy) and in Lausanne (Switzerland). This 

collaboration occurred in the framework of the NOLOSS project (Lossless Photon 

management – Optical design for manufacture at different length scales) and received 

funding from a MSCA-ITN-EID (Marie-Sklodowska Curie Action - Innovative Training 

Network - European Industrial Doctorate). In this particular case, the NOLOSS project has 

promoted the collaboration between industry (DLIPTECH) and academia (EPFL) in the 

field of system optics with the following work theme: “Non-conventional multi-channel 

camera for Auto-ID applications”. This work has been carried out by myself under the 

supervision of Toralf Scharf (EPFL) and Kurt Vonmetz (DLIPTECH). I have been hired 

first by EPFL from 15.01.2017 to 31.08.2017, then by DLIPTECH from 01.09.2017 to 

31.08.2019 and finally again by EPFL from 01.09.2019 to 31.12.2020. The main goal of 

this Ph.D. work has been the theoretical and experimental study and evaluation of a 

plenoptic camera in Galilean configuration for automatic identification applications. The 

experimental investigation resulted in the realization of a prototype of a plenoptic camera. 

This thesis work presents only the result of the theoretical investigation concerning the 

wavefront aberration behavior of this class of multi-channel optical systems.  

This thesis investigates the behavior of monochromatic wavefront aberrations in optical 

systems characterized by the absence of symmetry with the ultimate goal to study the 

wavefront aberrations in multiple aperture optical systems like light field (or plenoptic) 

cameras. This class of optical systems is constituted by an ensemble of individual optical 

channels whose aberration properties are strongly affected by the absence of any specific 

symmetry due to the transversal displacement of the optical surfaces with respect to the 

mechanical axis of the system.  

The first chapter of this thesis introduces the main concepts of geometrical optics in the 

framework of Hamiltonian Optics. The fundamental concepts of the characteristic function, 

wavefront aberration function and transverse ray aberration function are introduced along 

with the method of finite raytracing used to calculate them. In the second chapter, the full 

field dependence of Zernike Fringe coefficients in asymmetric optical systems with tilted 

and decentered spherical surfaces is analyzed. The wavefront aberration function is 

decomposed in terms of full field-dependent Zernike Fringe polynomials whose locations 

of the centers of symmetry in the field of view are calculated numerically and are compared 

with the centers of symmetry calculated analytically using the formulas proposed in the 

framework of the Nodal Aberration Theory. It is observed a mismatch between numerical 

and analytical calculations attributed to the presence of secondary aberrations in the optical 

system under study.  

The third chapter discusses another class of optical systems defined as perturbed double-

plane symmetric systems. These are essentially asymmetric optical systems characterized 

by weak geometrical perturbations (such as tilts and displacements) of the constituting 

optical surfaces that can be rotationally symmetric and double-plane symmetric. The 

aberrations (up to the 4th order) for this class of optical systems are decomposed again in 

terms of Zernike Fringe polynomials whose field dependence is more general than that 
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found in the second chapter. It is shown a method to calculate the full field dependence of 

primary aberrations sampling the Zernike Fringe coefficients in correspondence of few 

points in the field of view.  

In the fourth chapter, asymmetric optical systems with more severe displacements of 

the optical components are considered. A comparison is carried out between two different 

representations of the associated full field wavefront aberration function: the first is based 

on the Nodal Aberration Theory (as proposed by Thompson), while the second is based on 

decomposing the aberration function with a general power series in the ray coordinates. 

This latter representation is best suited to the analysis of this class of systems due to its 

greater generality.  

In the fifth chapter, the considerations done in the previous chapter are applied to the 

analysis and representation of the wavefront aberration function of the several channels 

constituting multiple aperture optical systems like plenoptic cameras. More in detail, 

general power series in the ray coordinates are used to decompose the wavefront function 

in numerous aberration terms deriving from the general absence of any specific symmetry 

in the channels of a plenoptic camera. The aberration coefficients are calculated fitting 

multivariate polynomials in the ray coordinates to raytracing data obtained for each channel. 

A method to visualize the evolution of such aberration coefficients as a function of the 

displacement parameters of the several channels is described. Finally, it is shown another 

method to visualize the behavior of the aberrations depending on the specific optical 

channel of interest using the Full Field Display available in programs for optical design 

such as Zemax OpticStudio.  
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 Geometrical Optics 
 

 

The application of the Hamiltonian method of computation to problems in geometrical 

optics led to the birth of the theory of Hamiltonian Optics. This theory is based on the 

fundamental concept of characteristic function corresponding to the principal function 

introduced by Hamilton in the field of dynamics. Although the relevance of the 

characteristic function is mainly theoretical, it is nevertheless a fundamental building block 

in the construction of many concepts related to geometrical optics. The primary and 

fundamental assumption on which geometrical optics is constructed consists of neglecting 

the finiteness of the wavelength of light, 𝜆0 → 0. The main implication of this assumption 

is that the phenomena of propagation of light in a medium, of refraction and reflection at 

the boundary between two media can be studied using geometrical constructions known as 

light rays. These are nothing but curves providing a geometrical description of the physical 

path followed by electromagnetic waves during their propagation and interaction with a 

medium when the phenomenon of diffraction is negligible.  

In the framework of Hamiltonian Optics, the characteristic function 𝑉(𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′) 
is introduced to describe quantitatively the propagation of light rays between two distinct 

points in space indicated as 𝑃(𝑥, 𝑦, 𝑧) and 𝑃′(𝑥′, 𝑦′, 𝑧′) where (𝑥, 𝑦, 𝑧) and (𝑥′, 𝑦′, 𝑧′) 
denote the coordinates of such points in two different reference systems. Generally, in 

imaging applications these two distinct points are qualified according to the space where 

they are situated, the object and image space respectively, and the role of the characteristic 

function (in reality being a functional) is to assign a measure to the propagation of light rays 

between 𝑃 and 𝑃′. This measure is nothing but the optical path length traveled by a light 

ray from 𝑃 to 𝑃′. More in detail, the characteristic function 𝑉 accounts not only for the path 

length associated to the propagation but also for the phenomena of refraction and reflection 

occurring during the propagation of light rays between 𝑃 and 𝑃′. In mathematical terms, 

the characteristic function 𝑉 maps a set of six spatial coordinates (related to the initial and 

final positions of a light ray) to a scalar factor corresponding exactly to the optical path 

length traveled by a light ray during its propagation in a medium with refracting index 𝑛 =
𝑛(𝑠). This latter, in general, depends on the position vector in the medium, 𝑠 = 𝑥̂𝑖 + 𝑦̂𝑗 +

𝑧̂𝑘⃗⃗. This situation is described by the following equation  

𝑉(𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′) = ∫ 𝑛(𝑠)𝛿𝑠

𝑃′

𝑃

 

Equation 1.1 

where 𝛿𝑠 = (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) expresses the length of the infinitesimal element of arc of the 

curve joining the points 𝑃 and 𝑃′. Equation 1.1 states the equivalence between the 

characteristic function and the optical distance traveled by a light ray from the point 𝑃 to 

the point 𝑃′. The expression in Equation 1.1 entails that the rays connecting the points 𝑃 

and 𝑃′ are geometrical curves but it provides no information about the modality in which 

they propagate through space. In other words, Equation 1.1 does not explain how the 

geometrical construction of these curves occurs. To this end, it is in general assumed that 

the propagation of light rays is governed by the principle of stationary action. Such principle 

states that the trajectories of light rays are determined by the condition that the optical length 

associated with the propagation between two points 𝑃 and 𝑃′ is stationary. Stated another 

way, the action (in this context represented by the characteristic function) satisfies a 
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variational principle. This assumption is immediately expressed by the following 

Equation 1.2 which imposes a precise condition to be met for the geometrical construction 

of a ray connecting two points.  

𝛿𝑉 = 0 

Equation 1.2 

The following Figure 1.1 exemplifies this situation. In particular, it shows that, among 

different potential curves connecting two points, the one satisfying Equation 1.2 describes 

the actual path traveled by a light ray.  

 

Figure 1.1: Principle of stationary action. 

The basic equations of Hamiltonian Optics can be derived from the application of the 

variational principle (Equation 1.2) to the point characteristics functions (Equation 1.1) 

joining two couples of neighbor points. This is illustrated in Figure 1.2. 

 

Figure 1.2: Comparison of the optical distances between neighboring points. 

More in details, Equation 1.1 associates a value, the optical path, to a pair of arbitrary 

points, 𝐴 and 𝐴′ in Figure 1.2. One expects that, to the first order, another couple of points 

characterized by small displacements 𝛿𝑠 = (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) and 𝛿𝑠′ = (𝛿𝑥′, 𝛿𝑦′, 𝛿𝑧′) from the 

original pairs of points (denoted as 𝐴1 and 𝐴1
′  in Figure 1.2) exhibit the same path length 

between their neighbors 𝐴 and 𝐴′. This situation is expressed mathematically by Equation 

1.3 
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𝛿𝑉 = 𝑉(𝐴1, 𝐴1
′ ) − 𝑉(𝐴, 𝐴′) =

𝜕𝑉

𝜕𝑥′
𝛿𝑥′ +

𝜕𝑉

𝜕𝑦′
𝛿𝑦′ +

𝜕𝑉

𝜕𝑧′
𝛿𝑧′ +

𝜕𝑉

𝜕𝑥
𝛿𝑥 +

𝜕𝑉

𝜕𝑦
𝛿𝑦 +

𝜕𝑉

𝜕𝑧
𝛿𝑧

= 𝑛′(𝛼′𝛿𝑥′ + 𝛽′𝛿𝑦′ + 𝛾′𝛿𝑧′) − 𝑛(𝛼𝛿𝑥 + 𝛽𝛿𝑦 + 𝛾𝛿𝑧) 

Equation 1.3 

where 𝛼, 𝛽, 𝛾, 𝛼′, 𝛽′ and 𝛾′ are the direction cosines associated with the tangents of the 

light rays at the points 𝐴 and 𝐴′. Equating corresponding terms in Equation 1.3, the basic 

equations of Hamiltonian Optics are obtained 

{
 
 

 
 𝑛′𝛼′ =

𝜕𝑉

𝜕𝑥′
      𝑛′𝛽′ =

𝜕𝑉

𝜕𝑦′
      𝑛′𝛾′ =

𝜕𝑉

𝜕𝑧′

𝑛𝛼 = −
𝜕𝑉

𝜕𝑥
      𝑛𝛽 = −

𝜕𝑉

𝜕𝑦
      𝑛𝛾 = −

𝜕𝑉

𝜕𝑧

 

Equation 1.4 

The relevance of Equation 1.4 resides in the fact that, if the characteristic function 𝑉 is 

known, then the direction cosines of a light ray passing through the points 𝐴 and 𝐴′ can be 

calculated. In general, when Equation 1.4 are applied to the propagation of light rays in an 

optical system, they can be simplified further considering that the object and image points 

are conjugate and in particular they belong respectively to the object and image base-planes 

characterized by the equations 𝑧 = 0 and 𝑧′ = 0. This further simplification implies that 

Equation 1.4 are reduced to four equations related to the 𝑥 and 𝑦 coordinates in the object 

and image spaces. Besides the point characteristic function, Hamilton introduced also the 

angle and mixed characteristic functions (not described in this context).  

The relations between a particular characteristic function (being the point, angle or 

mixed characteristic function) and the ray coordinates can be expressed with the following 

general equation 

𝑝𝑖 =
𝜕𝑉

𝜕𝑞𝑖
      (𝑖 = 1,… ,4) 

Equation 1.5 

where 𝑞𝑖 are the ray-coordinates and 𝑝𝑖  are their conjugates, represented by 𝑥, 𝑦, 𝑥′, 𝑦′ 
and 𝛼, 𝛽, 𝛼′, 𝛽′ respectively in Equation 1.4. From Equation 1.5, the characteristic function 

𝑉 can be reformulated in differential form as follows 

𝑑𝑉 =∑
𝜕𝑉

𝜕𝑞𝑖
𝑑𝑞𝑖

4

𝑖=1

=∑𝑝𝑖𝑑𝑞𝑖

4

𝑖=1

 

Equation 1.6 

In the previous considerations, it has been assumed that 𝑛(𝑠), the refractive index of the 

medium in which light rays travel, depends locally on the spatial coordinates identified by 

the vector 𝑠. In the vast majority of cases of practical interest, the propagation of light rays 

is assumed to occur in an isotropic and homogeneous medium such that 𝑛(𝑠) = 𝑛0. This 

assumption is of fundamental importance since its main implication is that light rays 

propagate along straight lines as shown in the following section where finite raytracing is 

discussed. 
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1.1 Finite raytracing 

Raytracing consists of the iteration of two operations describing the propagation of light 

rays in homogeneous media characterized by different refractive indices. In particular, these 

operations are refraction (or reflection) at the intersection point with a surface and transfer 

between two surfaces. The first operation occurs as a consequence of the change of 

refractive index encountered by a light ray when passing from a medium with an index of 

refraction 𝑛1 to another medium with an index of refraction 𝑛2 (in the case of reflection it 

is sufficient to consider 𝑛2 = −𝑛1). The second operation describes the physical 

propagation of a light ray between two optical surfaces separated by the same medium with 

a particular index of refraction.  

1.1.1 Refraction  

The application of the variational principle to the Hamilton point characteristic function can 

be used to derive the law of refraction. Substantially, this latter emerges from the 

coplanarity between three unit vectors associated with the propagation of a light ray. The 

first two unit vectors indicate respectively the directions of incidence and refraction of the 

light ray, the third unit vector is in the direction normal to the optical surface at the point of 

incidence with the light ray. In turn, the unit vectors (with their components) along the 

incident and refracted rays are denoted with 𝑟1 = (𝛼1, 𝛽1, 𝛾1) and 𝑟2 = (𝛼2, 𝛽2, 𝛾2) and the 

unit vector along the normal of the refracting surface at the point of incidence is indicated 

with 𝑔⃗ = (𝐿,𝑀,𝑁). The following Figure 1.3 shows an example of refraction of a light ray 

at the interface between two media. The light ray propagates along straight lines considering 

that the media are homogeneous with indices of refraction 𝑛1(𝑠) = 𝑛1 and 𝑛2(𝑠) = 𝑛2.  

 

Figure 1.3: Illustration of refraction (𝒏𝟐 > 𝒏𝟏). 𝑰𝟏 and 𝑰𝟐 are the angles of incidence and refraction at the 

interface. The coordinate system is right-handed with the 𝒙 axis oriented into the paper.  
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The measure of the optical distance traveled by the light ray from the point 𝑃1 to the 

point 𝑃2 is quantified by the point characteristic function 𝑉 = 𝑉(𝑃1, 𝑃2). This distance is 

the sum of two straight lines associated with the propagation of the light ray in two media 

with different refractive indices. Such straight lines are represented by the segments 𝑃1𝑃̅̅ ̅̅ ̅ =
𝑙1 and 𝑃𝑃2̅̅ ̅̅ ̅ = 𝑙2 multiplied by the refractive indices of the respective medium. This 

translates into the following measure of the optical distance, 𝑉(𝑃1𝑃𝑃2) = 𝑛1𝑙1 + 𝑛2𝑙2. The 

application of the variational principle to this optical distance requires that the position of 

the point 𝑃 is allowed to be slightly modified of a quantity 𝛿𝑙 while granting that it lies on 

the optical surface keeping fixed the geometrical distance 𝑙1 + 𝑙2. This results in the 

following equation 

𝛿𝑉 = (𝑛2𝑟2 − 𝑛1𝑟1) ∙ 𝛿𝑙 = [(𝑛2𝑟2 − 𝑛1𝑟1) × 𝑔⃗] ∙ 𝛿𝑎 = 0 

Equation 1.7 

where one considers that the variation of the geometrical distance must be perpendicular 

to 𝑔⃗, that is 𝛿𝑙 = 𝑔⃗ × 𝛿𝑎⃗ and 𝛿𝑎⃗ is an arbitrary vector. Equation 1.7 is satisfied by putting 

the term in the square bracket equal to zero. This gives Equation 1.8 which implies that the 

three aforementioned unit vectors 𝑟1, 𝑟2 and 𝑔⃗ are located in the same plane, known as plane 

of incidence, represented in green in Figure 1.3. 

𝑛2𝑟2 − 𝑛1𝑟1 = 𝜎𝑔⃗ 

Equation 1.8 

In Equation 1.8, 𝜎 is a scalar term accounting for the different magnitudes of the terms 

on the left and right sides of the equation. The explicit value of 𝜎 is obtained doing a scalar 

multiplication of both sides of Equation 1.8 with 𝑔⃗, the vector normal to the optical surface 

at the point of incidence of the light ray. Doing this scalar multiplication, it is obtained the 

following expression for the quantity 𝜎 

𝜎 = 𝑛2 cos 𝐼2 − 𝑛1 cos 𝐼1 

Equation 1.9 

and the final expression of the law of refraction can be formulated as follows 

𝑛2𝑟2 − 𝑛1𝑟1 = (𝑛2 cos 𝐼2 − 𝑛1 cos 𝐼1)𝑔⃗ 

Equation 1.10 

The expression in Equation 1.10 can be alternatively obtained starting from another 

vector formula, most frequently encountered in practice, shown in Equation 1.11 

𝑛2(𝑟2 × 𝑔⃗) = 𝑛1(𝑟1 × 𝑔⃗) 

Equation 1.11 

whose scalar version is 

𝑛2 sin 𝐼2 = 𝑛1 sin 𝐼1 

Equation 1.12 

Calculating the vector product of the left and right side of Equation 1.11 with the unit 

vector 𝑔⃗, one obtains 
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𝑛2𝑔⃗ × (𝑟2 × 𝑔⃗) = 𝑛1𝑔⃗ × (𝑟1 × 𝑔⃗) 

Equation 1.13 

and using the triple product expansion 𝑎⃗ × (𝑏⃗⃗ × 𝑐) = (𝑎⃗ ∙ 𝑐)𝑏⃗⃗ − (𝑎⃗ ∙ 𝑏⃗⃗)𝑐, Equation 

1.13 transforms into the following Equation 1.14 

𝑛2(𝑟2 − (𝑔⃗ ∙ 𝑟2)𝑔⃗) = 𝑛1(𝑟1 − (𝑔⃗ ∙ 𝑟1)𝑔⃗) 

Equation 1.14 

whose components are 

{

𝑛2𝛼2 − 𝑛1𝛼1 = 𝜎𝐿
𝑛2𝛽2 − 𝑛1𝛽1 = 𝜎𝑀
𝑛2𝛾2 − 𝑛1𝛾1 = 𝜎𝑁

 

Equation 1.15 

where 𝜎 = 𝑛2(𝑔⃗ ∙ 𝑟2) − 𝑛1(𝑔⃗ ∙ 𝑟1) = 𝑛2 cos 𝐼2 − 𝑛1 cos 𝐼1 in agreement with Equation 

1.9 obtained before.  

1.1.2 Ray transfer 

The transfer of a light ray between two spherical surfaces is shown, for clarity, in Figure 

1.4. 

 

Figure 1.4: Ray transfer from 𝑷𝟏 to 𝑷𝟐. 

In this example, the transfer occurs from the point 𝑃1 = (𝑥1, 𝑦1, 𝑧1) on the first surface 

(green), to the point 𝑃2 = (𝑥2, 𝑦2, 𝑧2) on the second surface (red). The coordinates of the 

points 𝑃1 and 𝑃2 are referred to the local reference systems of the first and second surface. 

This second operation of raytracing consists, initially, in retrieving the coordinates of the 

intersection of the light ray in question with the plane tangent to the second surface at its 

vertex, namely at the point 𝑃0 = (𝑥, 𝑦, 0). Considering as known the unit vector (or 

equivalently the direction cosines) of the light ray 𝑟 = (𝛼, 𝛽, 𝛾) and the coordinates of the 
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intersection with the preceding surface (𝑥1, 𝑦1, 𝑧1), the coordinates (𝑥, 𝑦, 0) are retrieved as 

follows 

{
𝑥 = 𝑥1 + 𝑉(𝑑 − 𝑧1)

𝑦 = 𝑦1 +𝑊(𝑑 − 𝑧1)
 

Equation 1.16 

where 𝑉 =
𝛼

𝛾
 and 𝑊 =

𝛽

𝛾
 are the direction tangents of the light ray and 𝑑 is the distance 

between the two surfaces in correspondence of their vertices. Afterward, the coordinates of 

the intersection with the spherical surface are found as follows 

{

𝑥2 = 𝑥 + 𝛼ℎ
𝑦2 = 𝑦 + 𝛽ℎ
𝑧2 = 𝛾ℎ

 

Equation 1.17 

where ℎ corresponds to the distance between the points 𝑃2 and 𝑃0, denoting respectively 

the intersection of the light ray with the second spherical surface and the intersection of the 

light ray with the plane tangent to this spherical surface at the vertex. The 𝑧2 coordinate in 

Equation 1.17 coincides with the sag (or height) of the spherical surface in its local 

coordinates system (with the origin at the vertex). In fact, the point 𝑃2 belongs to the second 

surface and its coordinates must satisfy the equation of this surface. Given that the sag of a 

spherical surface with curvature 𝑐 is calculated as 

𝑧2 =
𝑐

2
(𝑥2

2 + 𝑦2
2 + 𝑧2

2) 

Equation 1.18 

putting Equation 1.17 into Equation 1.18, the distance ℎ is found to be 

ℎ =
𝑐(𝑥2 + 𝑦2)

𝑁 − 𝑐(𝛼𝑥 + 𝛽𝑦) + √[𝛾 − 𝑐(𝛼𝑥 + 𝛽𝑦)]2 − 𝑐2(𝑥2 + 𝑦2)
 

Equation 1.19 

Substituting the value of ℎ in Equation 1.17 allows finding the coordinates of the 

intersection of the light ray with the second spherical surface in the point 𝑃2.  

Equation 1.19 is easily generalized to the case in which the second surface (towards 

which the ray transfers) is a quadric of revolution. The equation describing the sag of this 

type of surface is the following 

𝑧2 =
𝑐

2
(𝑥2

2 + 𝑦2
2 + 𝜀𝑧2

2) 

Equation 1.20 

where 𝜀 is a parameter accounting for the “degree” of asphericity of the quadric of 

revolution. In this case, Equation 1.19 turns into the following Equation 1.21 

ℎ =
𝑐(𝑥2 + 𝑦2)

𝛾 − 𝑐(𝛼𝑥 + 𝛽𝑦) + √[𝛾 − 𝑐(𝛼𝑥 + 𝛽𝑦)]2 − (1 + 𝑘𝛾2)𝑐2(𝑥2 + 𝑦2)
 

Equation 1.21 
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The parameter 𝑘 is the conic constant of the surface in question and it is calculated as 

𝑘 = 𝜀 − 1 = −𝑒2 where 𝑒 is another parameter known as eccentricity.  

In the above derivations related to the refraction of a light ray with a spherical surface, 

it has not been mentioned how the direction cosines of the vector normal to the surface, 

𝑔⃗ = (𝐿,𝑀,𝑁), are calculated. For this purpose, it is necessary to express the equation of 

the optical surface in implicit form 𝑆(𝑥, 𝑦, 𝑧) = 0 and to expand it as a Taylor series in the 

point (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧). These operations give the following expression 

𝑆(𝑥, 𝑦, 𝑧) +
𝜕𝑆

𝜕𝑥
𝛿𝑥 +

𝜕𝑆

𝜕𝑦
𝛿𝑦 +

𝜕𝑆

𝜕𝑧
𝛿𝑧 + 𝑂(2) = 0 

Equation 1.22 

Considering (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) and (
𝜕𝑆

𝜕𝑥
,
𝜕𝑆

𝜕𝑦
,
𝜕𝑆

𝜕𝑧
) as the components of two vectors, from 

Equation 1.22 it can be deduced that they are orthogonal and in particular, the latter points 

along the direction normal to the surface since the former is constrained to be on the surface. 

Consequently, one obtains the direction cosines of the normal to the surface at the point of 

intersection with a light ray as follows 

𝑔⃗ = (𝐿,𝑀,𝑁) =
−(

𝜕𝑆
𝜕𝑥
,
𝜕𝑆
𝜕𝑦
,
𝜕𝑆
𝜕𝑧
)

√[(
𝜕𝑆
𝜕𝑥
)
2

+ (
𝜕𝑆
𝜕𝑦
)
2

+ (
𝜕𝑆
𝜕𝑧
)
2

]

 

Equation 1.23 

In the case of a spherical surface, recalling from Equation 1.18 that 𝑆(𝑥, 𝑦, 𝑧) =
𝑐

2
(𝑥2 + 𝑦2 + 𝑧2) − 𝑧 = 0, the direction cosines of the normal have the following values 

𝑔⃗ = (𝐿,𝑀,𝑁) = (−𝑐𝑥, −𝑐𝑦, 1 − 𝑐𝑧) 

Equation 1.24 

and, more in general, for quadric of revolution described by Equation 1.20, the direction 

cosines of the normal are given by Equation 1.25 

𝑔⃗ = (𝐿,𝑀,𝑁) =
(−𝑐𝑥, −𝑐𝑦, 1 − 𝑐𝑧)

√1 − 2𝑐𝑘𝑧 + 𝑐2𝑘(1 + 𝑘)𝑧2
 

Equation 1.25 

Once the direction cosines of the unit vector normal to the optical surface are retrieved 

explicitly according to Equation 1.24-Equation 1.25, their expressions can be replaced into 

Equation 1.15 in order to find the relations between the direction cosines of the incident 

and refracted rays.  

The points discussed so far are preliminary to the introduction of the fundamental 

concepts of wavefront aberration and transverse ray aberration functions. These quantities 

are practically computed by tracing finite rays through an optical system and measuring the 

associated optical path lengths.  

1.2 Wavefront aberration function 

Optical design for imaging applications is aimed at developing optical systems with image-

forming capabilities whose quality and properties are defined within certain tolerances. In 
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other words, the design of an optical system is considered satisfactory if the required optical 

performances are met within defined tolerance intervals. The most common method to 

describe the optical performances of an image forming system relies on the concept of 

aberration function that is, essentially, an attempt to quantify the departure from the ideality 

of an optical system. In the present context, an optical system performs ideally if it forms 

an image that is a replica of the object, resized on a smaller or larger geometrical scale. This 

situation can be properly represented with an ideal characteristic function accounting for 

the description of the only ideal behavior of the optical system. The description of the real 

behavior of the system is encompassed in the aberration function that takes into account the 

real capability of the optical system itself to form an image as close as possible to the 

prescribed behavior. The total characteristic function 𝑉 of an optical system is described 

with the following equation 

𝑉 = 𝑉𝑖 +𝑊 

Equation 1.26 

where 𝑉𝑖 is the ideal characteristic function, while 𝑊 is the aberration function. The 

ideal characteristic function 𝑉𝑖 accounts for the ideal image-forming capabilities of an 

optical system. In the general case of an optical system without symmetries, 𝑉𝑖 describes 

the parabasal behavior of such a system. This implies that the ideal characteristic function 

contains terms up to the second degree in the ray coordinates, namely 𝑉 = 𝑉𝑖 + 𝑂(3). 
Therefore, 𝑊 = 𝑂(3) in the ray coordinates. In the more specific case of a rotationally 

symmetric system, 𝑉𝑖 describes its fundamental behavior as a projective transformation 

system meaning that the three-dimensional object space is mapped into a similar three-

dimensional image space without deformations. Consequently, the geometrical 

modification taken into account by 𝑉𝑖 is the resizing of the object occurring in the image 

space, that is the lateral magnification. Equivalently, one can say that 𝑉𝑖 does not predict 

any transverse displacement of light rays with respect to their nominal intersection 

coordinates with the image plane (resulting from only terms of the second degree). On the 

other hand, potential displacements of the intersection coordinates of light rays with the 

image plane, resulting from higher-order effects, are taken into account by the aberration 

function 𝑊. This means that the aberration function supplements the description of the 

imaging behavior of an optical system encompassing the additional deviations occurring in 

the propagation of light rays within the optical system. In addition to this, 𝑊 describes the 

departure from the ideal design of an optical system due to eventual manufacturing defects 

or assembly errors of the optical components constituting the system itself.  

At this point, it is beneficial for a better understanding to remark that the exact 

dependence of the functions in Equation 1.26 on the ray coordinates is never sought 

because, in the majority of the cases of practical interest, such expressions are expected to 

be extremely complicated. For this simple and practical reason, they are approximated with 

expansions in power series depending on the ray coordinates. The possibility of 

approximating the characteristic functions with a power series is ensured by the property of 

regularity of an optical system jointly with a particular coordinate system. This is a 

consequence of the fact that the property of regularity is necessarily associated with a 

properly defined reference system for the ray coordinates that makes the power series 

convergent.  

Therefore, the characteristic function 𝑉 is expressed as follows 

𝑉 =∑𝑉𝑛

∞

𝑛=1

 

Equation 1.27 

The terms 𝑉𝑛 are calculated as follows 



Geometrical Optics 

13 
 

𝑉𝑛 =∑∑∑𝑣𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈𝑞1
𝑛−𝜆𝑞2

𝜆−𝜇
𝑞3
𝜇−𝜈

𝑞4
𝜈

𝜇

𝜈=0

𝜆

𝜇=0

𝑛

𝜆=0

 

Equation 1.28 

where 𝑞1, 𝑞2, 𝑞3 and 𝑞4 constitute a particular set of ray coordinates and 𝑣𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 

are coefficients weighting the contribution given by the corresponding monomial in the 

power series of Equation 1.27-Equation 1.28. Since the ideal characteristic function 𝑉𝑖 is 
described by the truncation to the second order of Equation 1.27, it can be denoted with 𝑉2 

as follows 

𝑉2 = ∑ 𝑣𝑘𝑙𝑞𝑘𝑞𝑙

2

𝑘,𝑙=1

 

Equation 1.29 

where 𝑣𝑘𝑙  are coefficients multiplying any combination of the four ray coordinates up 

to the second order.  

Equations 1.27-1.29 are valid for any optical system without restrictions on the 

coefficients imposed by symmetry. In the next chapters, this power series representation 

will be extended to the wavefront aberration function 𝑊. In the remainder of this section, 

several basic concepts related to the aberration function are introduced. 

 

Two alternative approaches are commonly employed to describe the aberrations of an 

optical system, the first is based on the calculation of the wavefront error at the exit pupil, 

the second relies on the calculation of the displacement of the ray coordinates at the image 

plane. The following considerations are aimed at exemplifying more in detail the 

connection between the definition of the wavefront error and the ray transverse 

displacement at the image plane. In Figure 1.5 it is shown with a green curve a cross-section 

of the reference sphere 𝑆0, centered at the image point 𝑃0
′(𝐻𝑥0, 𝐻𝑦0) that is defined by the 

intersection of the chief ray 𝑟𝑐  with the image plane. A red curve indicates a cross-section 

of the actual wavefront surface 𝑆 generated by a congruence of light rays emerging from a 

point 𝑃 in the object space (not indicated). A particular light ray 𝑟, belonging to the 

congruence mentioned above and identified by the direction cosines (𝛼, 𝛽, 𝛾), intersects the 

reference sphere and the wavefront surface respectively in the points 𝑄0(𝜌𝑥 , 𝜌𝑦, 𝜌𝑧) and 𝑄 

and lands at the point 𝑃′(𝐻𝑥 , 𝐻𝑦) in the image plane (whose equation is 𝐻𝑧 = 0).  

 

Figure 1.5: Illustration of wavefront and transverse ray aberrations. 
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The deviation of the light ray 𝑟(𝛼, 𝛽, 𝛾) from the chief ray position 𝑃0
′(𝐻𝑥0, 𝐻𝑦0) at the 

image plane is known as transverse ray aberration. This is described with two parametric 

equations quantifying the deviation of the light ray 𝑟 in the 𝐻𝑥 and 𝐻𝑦  directions. As will 

be shown later, the transverse ray aberration is linked to the wavefront error measured along 

the ray 𝑟, that is essentially the optical distance between the points 𝑄 and 𝑄0. These two 

alternative approaches to describe the aberration behavior of a light ray and, in general, the 

aberration behavior of an optical system are linked by the characteristic function 𝑉. This 

fundamental point is developed more extensively in the following part.  

As already remarked, the wavefront error is the optical path difference between two 

points defined by the intersections between a specific light ray with the reference sphere 

and the actual wavefront surface associated with the congruence of light rays emerging 

from a point in the object space. That is to say, along the ray 𝑟(𝛼, 𝛽, 𝛾), the optical path 

difference is 𝑛′𝑄0𝑄 and this value is associated with a certain displacement of the ray 

coordinates (𝐻𝑥 , 𝐻𝑦) with respect to the point of intersection of the chief ray with the image 

plane. The optical distance from the object point 𝑃 and the intersection points 𝑄0 and 𝑄 is 

given by the respective point characteristic functions as described by the following 

Equation 1.30 

𝑊(𝜌𝑥, 𝜌𝑦) = 𝑉(𝑃, 𝑄) − 𝑉(𝑃, 𝑄0) = 𝑉(𝑃, 𝑂) − 𝑉(𝑃, 𝑄0) 

Equation 1.30 

since the points 𝑄 and 𝑂 are on the same wavefront, they have the same optical path 

length from the object point 𝑃. Differentiating Equation 1.30 with respect to the exit pupil 

coordinates, one obtains 

{
 
 

 
 𝜕𝑊

𝜕𝜌𝑥
= −

𝜕𝑉

𝜕𝜌𝑥
−
𝜕𝑉

𝜕𝜌𝑧

𝜕𝜌𝑧
𝜕𝜌𝑥

𝜕𝑊

𝜕𝜌𝑦
= −

𝜕𝑉

𝜕𝜌𝑦
−
𝜕𝑉

𝜕𝜌𝑧

𝜕𝜌𝑧
𝜕𝜌𝑦

 

Equation 1.31 

Recalling the basic equations of Hamiltonian optics (Equation 1.4) and considering that 

{
 
 

 
 
𝜕𝜌𝑧
𝜕𝜌𝑥

=
𝜌𝑥 − 𝐻𝑥0
𝜌𝑧𝑝 − 𝜌𝑧

𝜕𝜌𝑧
𝜕𝜌𝑦

=
𝜌𝑦 − 𝐻𝑦0

𝜌𝑧𝑝 − 𝜌𝑧

 

Equation 1.32 

one obtains 

{
 
 

 
 
1

𝑛′
𝜕𝑊

𝜕𝜌𝑥
= − [𝛼 +

𝛾(𝜌𝑥 −𝐻𝑥0)

𝜌𝑧𝑝 − 𝜌𝑧
]

1

𝑛′
𝜕𝑊

𝜕𝜌𝑦
= −[𝛽 +

𝛾(𝜌𝑦 − 𝐻𝑦0)

𝜌𝑧𝑝 − 𝜌𝑧
]

 

Equation 1.33 

Recalling that the directions cosines of the ray 𝑟 are equal to 
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(𝛼, 𝛽, 𝛾) =
(𝐻𝑥0 − 𝜌𝑥 , 𝐻𝑦0 − 𝜌𝑦 , 𝜌𝑧𝑝 − 𝜌𝑧)

𝑄0𝑃
′

 

Equation 1.34 

one obtains the final relations between the wavefront error and the ray coordinates 

displacement in the image plane 

{
 
 

 
 𝛿𝐻𝑥 = −

𝑄0𝑃
′

𝑛′
𝜕𝑊

𝜕𝜌𝑥

𝛿𝐻𝑦 = −
𝑄0𝑃

′

𝑛′
𝜕𝑊

𝜕𝜌𝑦

 

Equation 1.35 

In practical calculations, the distance 𝑄0𝑃
′ can be replaced with 𝑅, the radius of the 

reference sphere 𝑆0. Then, Equation 1.35 turns into 

{
 
 

 
 𝛿𝐻𝑥 = −

𝑅

𝑛′
𝜕𝑊

𝜕𝜌𝑥

𝛿𝐻𝑦 = −
𝑅

𝑛′
𝜕𝑊

𝜕𝜌𝑦

 

Equation 1.36 

In the previous considerations, the aberration function has been regarded as dependent 

on the only coordinates of intersection between the ray and the reference sphere (𝜌𝑥, 𝜌𝑦). 

In reality, the wavefront aberration function depends on the entire set of ray coordinates, 

namely 𝑊 = 𝑊(𝜌𝑥, 𝜌𝑦 , 𝐻𝑥 , 𝐻𝑦). The field coordinates (𝐻𝑥 , 𝐻𝑦) are omitted when, as in the 

present case, the field dependence of the wavefront aberration function is implicitly 

embedded in the location of the point 𝑃 in the object space from which the cone of light 

rays is emitted. The full field dependence of the wavefront aberration function will be 

treated throughout the rest of the thesis for different classes of optical systems.  

1.3 Perturbed optical systems 

As highlighted in the considerations above, the study of the wavefront aberration function 

of an optical system is based on an appropriate definition of the reference sphere. This is 

defined by specifying the radius of curvature 𝑅 and the location of its center in the image 

plane while its vertex intersects the center of the exit pupil plane. Since the full expression 

of the wavefront aberration function depends not only on the exit pupil coordinates but also 

on the field coordinates, multiple reference spheres are defined, each one referenced to a 

specific point in the FOV. In fact, from each field point, it is traced a principal ray whose 

point of intersection with the image plane defines the center of the respective reference 

sphere. Therefore, it is desirable to give an adequate definition of the reference sphere to 

give consistency to the full field expression of the wavefront aberration function. In addition 

to these considerations, an optical system can be characterized by tilted and decentered 

surfaces with respect to the mechanical axis. The analysis of the aberration behavior of such 

optical systems has to take into account the change of the wavefront aberration function due 

to this type of geometrical perturbations. Since the definition of the wavefront aberration 

function depends on the definition of the reference sphere, in general, this latter is modified 

in order to minimize the Root Mean Square wavefront error that is the square root of the 

variance of the wavefront aberration. In particular, if the center of the reference sphere is 

slightly shifted from the point 𝑃0 = (𝐻𝑥0, 𝐻𝑦0, 0) to the point 𝑃1 = (𝐻𝑥0 + 𝛿𝐻𝑥0 , 𝐻𝑦0 +
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𝛿𝐻𝑦0, 𝛿𝐻𝑧0) while its vertex is kept fixed at the origin of the exit pupil plane, the change of 

the wavefront aberration is given by the following Equation 1.37 

𝛿𝑊 = −
𝑛′(𝜌𝑥𝛿𝐻𝑥0 + 𝜌𝑦𝛿𝐻𝑦0 + 𝜌𝑧𝛿𝐻𝑧0)

𝛼′(𝜌𝑥 −𝐻𝑥0) + 𝛽
′(𝜌𝑦 −𝐻𝑦0) + 𝛾

′(𝜌𝑧 − 𝜌𝑧𝑝)

=
𝑛′

𝑅
(𝜌𝑥𝛿𝐻𝑥,0 + 𝜌𝑦𝛿𝐻𝑦,0 + 𝜌𝑧𝛿𝐻𝑧,0) 

Equation 1.37 

 This situation is illustrated in the following Figure 1.6. 

 

Figure 1.6: Change of wavefront error due to a shift of the center of the reference sphere while keeping its 

vertex fixed. 

If the change of the reference sphere is more complex than a small shift of its center, 

the effect on the phase error associated with a light ray propagating through the optical 

system can be more severe. This is the case, for example, if the vertex of the reference 

sphere is shifted from the origin of the exit pupil plane or if its curvature is changed. These 

modifications of the reference sphere occur in the actual computation of the wavefront 

aberration function of an optical system. As a matter of fact, the numerical wavefront 

function, sampled by a grid of light rays traced through the exit pupil of an optical system, 

is commonly referenced to a modified reference sphere whose displacement and curvature 

are adjusted to minimize the variance of the wavefront function itself. These remarks 

emphasize further that the change of the reference sphere, either in terms of shift or in terms 

of change of the radius of curvature, has a crucial effect on the calculation of the wavefront 

aberration function.  

Of particular interest is to analyze how the wavefront aberration of a particular ray is 

affected by the change of the radius of curvature of the reference sphere while keeping its 

center fixed at the point of intersection of the principal ray with the image plane. Since the 

aberrations are expressed with polynomials in the ray coordinates truncated at a certain 

order of interest, this type of investigation allows us to understand specifically at what order 

the aberrations start to be affected by a change of radius of curvature of the reference sphere. 

This analysis is done for a simple optical system constituted by a single refractive spherical 

surface 𝑆1 illustrated in black in the following Figure 1.7 using Zemax OpticStudio. The 

entrance pupil diameter (ENPD) is equal to 20mm, the effective focal length (EFFL) is 

equal to 96.4mm and the simulation wavelength is 𝜆0 = 0.55𝜇𝑚. The surface 𝑆1, made of 

N-BK7 glass and characterized by a radius of curvature 𝑅1 = 50𝑚𝑚, is followed by 

another surface 𝑆2 where it is set the aperture stop of the system. The exit pupil is also 

located in correspondence of 𝑆2 and its distance from the image plane, known as exit pupil 

position (EXPP), is defined to be equal to the radius of the reference sphere, denoted with 

𝑅2. For this reason, such surface 𝑆2 can represent the reference sphere of the system under 

study provided that its radius of curvature 𝑅2 is set equal to EXPP. The distance 𝑡 between 
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𝑆1 and 𝑆2 is varied in the range [0𝑚𝑚, 15𝑚𝑚]. The radius of curvature of the reference 

sphere 𝑅2 changes accordingly in the range [95.28𝑚𝑚, 80.28𝑚𝑚] and this is also the case 

for the EXPP, as explained above. The position of the image plane is automatically 

constrained to be at the paraxial focus bearing in mind that in correspondence with this 

location the height of the marginal ray is zero. While 𝑡 varies, the calculation of the 

wavefront aberration is carried out for a light ray 𝑟 whose normalized field and pupil 

coordinates are (𝐻𝑥 = 0,𝐻𝑦 = 1, 𝜌𝑥 = 0, 𝜌𝑦 = 0.5). In Figure 1.7, in addition to the 

refractive surface 𝑆1, the reference sphere 𝑆2 is shown in the two limiting positions 𝑡 =
0𝑚𝑚 (in red 𝑆2 = 𝑆2

′ ) and 𝑡 = 15𝑚𝑚 (in green 𝑆2 = 𝑆2
′′). In these two cases, the radius of 

curvature of the reference sphere is equal to 𝑅2 = 𝑅2
′ = 𝐸𝑋𝑃𝑃′ and 𝑅2 = 𝑅2

′′ = 𝐸𝑋𝑃𝑃′′ 
respectively. Therefore, varying 𝑡, the reference sphere is shifted and its curvature is 

modified.  

 

Figure 1.7: Simple system with one single refractive surface 𝑺𝟏 studied to derive the effect of the change of 

the radius of the reference sphere on the aberration associated with a light ray. The distances are in mm. 

The aperture stop is placed on the surface 𝑺𝟐 that is the reference sphere whose distance 𝒕 from 𝑺𝟏 is 

varied in the interval [𝟎𝒎𝒎,𝟏𝟓𝒎𝒎]. In red and in green are shown the two limiting cases 𝑺𝟐 = 𝑺𝟐
′  for 

𝒕 = 𝟎𝒎𝒎 and 𝑺𝟐 = 𝑺𝟐
′′ for 𝒕 = 𝟏𝟓𝒎𝒎. In correspondence of these two positions the radius of curvature of 

the reference sphere is 𝑹𝟐 = 𝑹𝟐
′  and 𝑹𝟐 = 𝑹𝟐

′′ respectively. Thus, the reference spheres 𝑺𝟐
′  and 𝑺𝟐

′′ are 

concentric. 

The wavefront aberration associated with the ray 𝑟 (in orange) is given by the optical 

path difference with respect to the chief ray 𝑐 (in blue) in waves at the wavelength 𝜆0. In 

this calculation, the chief ray is emitted from a field point with coordinates 

(𝐻𝑥 = 0,𝐻𝑦 = 10°) while the system is at infinite conjugates. The optical path lengths of 

the ray 𝑟 and the chief ray 𝑐, respectively 𝑊𝑟 and 𝑊𝑐, are affected by the shift of the 

reference sphere, denoted with (∆𝑥, ∆𝑦, ∆𝑧), and by the modification of its curvature, 

denoted with ∆𝑐. For the ray 𝑟, this quantity is given by  

𝑊𝑟 = 𝑛𝑑 = 𝑛 [
(𝐾∆𝑥 + 𝐿∆𝑦 + 𝑀∆𝑧)

cos 𝐼
+

1
2
∆𝑐(𝑥2 + 𝑦2 + 𝑧2)

cos 𝐼
] 

Equation 1.38 

where 𝑑 is the distance between the new and the old sphere along the ray 𝑟, the 

parameters (𝐾, 𝐿,𝑀) and 𝐼 are the components of the vector normal to the surface of 

incidence and the angle of incidence respectively. The optical path difference between the 

ray 𝑟 and the chief ray 𝑐 is given simply by 𝛿𝑊 = 𝑊𝑐 −𝑊𝑟. It is remarked again that 𝛿𝑊 
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is a sort of perturbation of the wavefront aberration associated with the ray 𝑟 deriving from 

a modification of the reference sphere. In the following Figure 1.8, it is shown that this 

change of the optical path 𝛿𝑊 due to a modification of the radius of the reference sphere 

varies with the square of the angular ray aberration 𝛼𝑦 along the 𝐻𝑦  direction. The angular 

ray aberration 𝛼𝑦 for the ray 𝑟 at the wavelength 𝜆0 is measured as the difference between 

the direction cosine of the ray 𝑟 along 𝐻𝑦  and the corresponding direction cosine of the 

chief ray 𝑐. It is again emphasised that such a change of the radius of the reference sphere 

is performed keeping its center of curvature fixed at the point of intersection of the chief 

ray with the image plane. 

 

Figure 1.8: The variation of the wavefront aberration due to a change of radius of the reference sphere is 

a quadratic function of the angular ray aberration. 

The fitting curve shown in Figure 1.8 puts in evidence that the variation of the optical 

path difference due to a change of curvature of the reference sphere varies quadratically 

with the angular ray aberration. This last quantity is linearly related to the transverse ray 

aberration, namely 𝛼𝑦~𝛿𝐻𝑦 = 𝑂(3). Therefore, the change of the radius of curvature of 

the reference sphere 𝑅2 determines a change of the wavefront aberration associated with a 

particular ray 𝑟 that is 𝛿𝑊~𝛼𝑦
2 = 𝑂(6). This implies that such a change of the reference 

sphere does not affect primary wavefront aberrations since these are 𝑂(4), but it affects 

secondary and higher order aberrations. This state of affairs is known as the summation 

theorem for primary aberrations [1].  
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 Scalar analytical 

expressions for the field 

dependence of Zernike 

polynomials in asymmetric 

optical systems with circular 

symmetric surfaces  
 

 

In this chapter [2], we derive a series of scalar analytical expressions describing the full 

field dependence of Zernike polynomials in optical systems without symmetries. We 

consider the general case of optical systems constituted by arbitrarily tilted and decentered 

circular symmetric surfaces. The resulting analytical formulas are inferred from a modified 

version of the full field-dependent wavefront aberration function proposed in the Nodal 

Aberration Theory (NAT). Such formula is modified with the scope of solving few critical 

points arising when primary and higher-order aberrations are both presents in an optical 

system. It is shown that when secondary aberrations are taken into account in the wavefront 

aberration function, the final effect is a perturbation to the symmetry of the field dependence 

of the Zernike polynomials. In particular, the centers of symmetry of the Zernike 

polynomial field dependences are shifted with respect to the locations predicted using the 

NAT equations as a consequence of the presence of higher-order aberrations. The retrieved 

analytical expressions are verified through surface fitting to real raytracing data obtained 

for a simple optical system.  

2.1 Introduction 

The Nodal Aberration Theory (NAT) proposed by Thompson [3, 4] constitutes a 

fundamental step forward to the development of the wave theory of aberrations for non-

circular symmetric optical systems characterized by tilted and decentered circular 

symmetric surfaces. NAT is built on the vectorial wavefront aberration formula introduced 

by Shack. Such vectorial expression is a reformulation of the scalar wavefront aberration 

formula introduced by H. H. Hopkins [5] for circular symmetric optical systems. NAT 

demonstrates that, in an optical system, the effect of geometrical perturbations such as tilt 

and decentering of optical surfaces, is to induce a particular nodal behavior in the field 

dependence of individual aberration types. This means that NAT provides a complete 

description of the aberration function of asymmetric optical systems as a function of both 

pupil and field coordinates.  
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An alternative description of the wavefront aberration function of an optical system is 

based on the use of Zernike polynomials. They represent a weighted polynomial expansion 

used to approximate the wavefront aberration function of an optical system with a circular 

pupil. The weights of individual Zernike polynomial terms in the wavefront decomposition 

are represented by multiplicative coefficients retrieved with a polynomial fitting routine 

applied to the wavefront function itself. The Zernike polynomials decomposition is 

normally applied to pupil-dependent wavefront functions whose field dependence is 

omitted because the wavefront function itself is referenced to a single field point in the field 

of view (FOV) plane. Nevertheless, such polynomial expansion can be extended to a full 

field-dependent wavefront aberration function, provided that the coefficients of the Zernike 

terms are turned into field-dependent functions. This approach opens up the possibility of 

decomposing the four-dimensional full field wavefront aberration function of an optical 

system in terms of analytical expressions consisting of the product between Zernike 

polynomials (depending on the pupil coordinates) and functions depending on the field 

coordinates.  

In the design of optical systems where the full field behavior of aberrations is of concern, 

it is desirable to dispose of such analytical expressions. For example, the design of a multi-

aperture optical system whose optical branches consist of decentered optical components 

can benefit from these formulas (as will be discussed in Chapter 5). Therefore, the main 

goal of the present work is to derive the full field dependence of Zernike polynomials for 

asymmetric optical systems constituted by tilted and decentered circular symmetric 

surfaces. For this purpose, we will use a slightly modified version of the full field wavefront 

aberration function described in the NAT theory and revisit partly the work done in [6]. 

Additionally, we aim at verifying numerically the expressions introduced in NAT to retrieve 

the location of the centers of symmetry in the FOV of primary aberrations in asymmetric 

optical systems. Finally, we validate the analytical expressions of the field dependence of 

Zernike polynomials with ray-trace-based calculation obtained for a simple optical system 

constituted by a sequence of two tilted and decentered spherical lenses.  

2.2 Full-field wavefront aberration function in asymmetric 

optical systems with tilted and decentered circular 

symmetric surfaces 

As said above, the Nodal Aberration theory was introduced to explain the occurrence of 

nodes in the full-field aberration function of optical systems characterized by tilted and 

decentered circular symmetric surfaces. The effect of surface tilt and decentering with 

respect to the mechanical axis of the system is modeled as a perturbation to the full field 

dependence of the aberration function of the optical system itself. The vectorial wavefront 

aberration function introduced by NAT is shown in Equation 2.1 [3]  

             
p mn

klm j j jj
j p n m

W H,ρ W H σ H σ ρ ρ H σ ρ  
  

      
 

Equation 2.1 

where 𝜌⃗ is the pupil vector and 𝐻⃗⃗⃗ is the field vector. It can be defined as an effective field 

vector 𝐻⃗⃗⃗𝑒𝑓𝑓 = 𝐻⃗⃗⃗ − 𝜎⃗𝑗 accounting for the perturbation induced by 𝜎⃗𝑗, a vector in the FOV 

plane pointing to the center of symmetry of the aberration fields for individual tilted and 

decentered surfaces indexed with 𝑗. The (𝑊𝑘𝑙𝑚)𝑗 are the aberration coefficients of the 

surface 𝑗, identified by the indexes 𝑚, 𝑘 = 2𝑝 + 𝑚 and 𝑙 = 2𝑛 + 𝑚. Formally, Equation 

2.1 is the extension to asymmetric optical systems with circular symmetric surfaces of the 

formula introduced by Hopkins [5] to describe the aberrations in circular symmetric optical 

systems.  
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In [6], Equation 2.1 is expanded up to secondary aberrations retaining the summation 

over the surfaces indexed with 𝑗. This formulation is valid in the case when only primary 

aberrations are of concern, but it is no longer valid to describe the behavior of higher-order 

aberrations for asymmetric optical systems consisting of circular symmetric surfaces. In 

this regard, we believe it is important to mention the following considerations. Relatively 

to circular symmetric optical systems, it is known that the contributions of primary 

aberrations can be added surface by surface according to the summation theorem for 

primary aberrations [1]. This theorem entails that, when higher-order aberrations are taken 

into account, it is no longer possible to assume the validity of this summation. More 

precisely, the summation of aberration contributions from individual surfaces is valid under 

the assumption that the total wavefront aberration function of an optical system is not 

affected by a change of the radius of curvature of the reference sphere. This assumption is 

valid only for primary aberrations (being of 4th order) since the change of the radius of the 

reference sphere determines a modification to the 6th order of the wavefront error, thus 

having an impact on aberrations of order higher than the fourth [1,7]. Additionally, we 

mention that for higher-order aberrations it is useful to discriminate between intrinsic and 

extrinsic aberrations where the former relates to a contribution that can be effectively 

ascribed to a surface 𝑗, while the latter relates to the contributions generated by the surfaces 

1,… , 𝑗 − 1 preceding the surface 𝑗. Sasiàn in [8] addressed this problem retrieving a series 

of complex formulas to calculate secondary aberration coefficients in circular symmetric 

optical systems. These observations lead us to consider a modified version of Equation 2.1 

relatively to asymmetric optical systems. Therefore, to avoid the aforementioned points of 

criticism, we remove from Equation 2.1 the summation 𝛴𝑗 over the surfaces of the optical 

system. Nevertheless, for the main purpose of this chapter, that is the calculation of the field 

dependence of Zernike Equation 2.1 which points out the possibility to identify different 

centers of symmetry in the field dependence of different aberration terms. Consequently, 

modifying Equation 2.1 consistently with the previous considerations, we obtain the 

following Equation 2.2 that is the starting point of our further derivation of the field 

dependence of Zernike polynomials 

           
p mn

klm klm klm klm

p n m

W H,ρ W H a H a ρ ρ H a ρ
  

      
 

Equation 2.2 

The coefficients 𝑊𝑘𝑙𝑚 and the displacement vectors 𝑎⃗𝑘𝑙𝑚 denote respectively the net 

aberration coefficients and the net field displacement vectors of the total wavefront error of 

an asymmetric optical system. Equation 2.2 can be reduced to Equation 2.1 under the 

condition that secondary and higher-order aberrations are negligible with respect to primary 

aberrations, i.e. in optical systems with small apertures and small field angles. In this case, 

we can use the following Equations 2.3 to calculate the net primary aberration coefficients 

and displacement vectors as shown in [3, 9, 10, 11].  

klm klm, j

j

klm, j j
j

klm
klm

W W

W σ

a
W

 












 

Equation 2.3  

In Equations 2.3, the summation over the surfaces 𝑗 is valid supposing that the optical 

system is characterized predominantly by primary aberrations, in fact, the coefficients 𝑊𝑘𝑙𝑚 

are nothing but the Seidel sums [1]. On the other side, if we are concerned with higher-

order aberrations, the calculation of the coefficients 𝑊𝑘𝑙𝑚 and displacement vectors 𝑎⃗𝑘𝑙𝑚 is 
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no longer accurate if Equations 2.3 are used. In this case, the displacement vectors 𝑎⃗𝑘𝑙𝑚 

related to primary aberrations are affected by the contribution of higher-order aberrations 

and in addition to this, the coefficients 𝑊𝑘𝑙𝑚 cannot be simply calculated summing the 

aberration contributions of different surfaces in the optical system.  

As mentioned above, in Equation 2.2 we retain the general structure of Equation 2.1 

which highlights the possibility to identify a center of symmetry (located by the field 

displacement vector) in the field dependence of different aberration terms. Developing 

Equation 2.2 up to the 6th order, we obtain the following Equation 2.4 describing the 

wavefront aberration function constituted by primary and secondary aberrations for 

asymmetric optical systems with tilted and decentered circular symmetric surfaces.  

  

     

           

       

   

000 020 111 111

2
040 131 131 220 220 220

2

222 222 311 311 311 311

3
060 151 151

, a

W ρ ρ W H a ρ ρ ρ W H a H a ρ ρ

W H a ρ +W H a H a H a ρ

W ρ ρ W H a ρ

W H W W W H        

             
   

            
     

 
 

     


       

           

           

 

2 2
240 240 240

2

242 242 331 331 331 331

3

333 333 420 420 420 420 420

422 422

ρ ρ W H a H a ρ ρ

W H a ρ ρ ρ W H a H a H a ρ ρ ρ

W H a ρ +W H a H a H a H a ρ ρ

W H a H

      
  

               
     

              
     

      

   

2

422 422

151 151

2

a H a ρ

W H a ρ ρ ρ

     
   

   
 


 

Equation 2.4 

 In general, the aberration coefficients 𝑊𝑘𝑙𝑚 in Equation 2.4 are different from the 

aberration coefficients related to the wavefront aberration function of a corresponding 

circular symmetric optical system. As a matter of fact, expanding Equation 2.4, we obtain 

a power series in the ray coordinates containing terms of even and odd degree up to the 6th 

order while the wavefront aberration function of a circular symmetric system contains only 

terms of even order. It is worth noting that if secondary aberrations give a significant 

contribution to the total wavefront aberration function in Equation 2.4, then several lower-

order terms (of both even and odd order) are generated and added to the terms attributable 

to primary aberrations. Therefore, in Equation 2.4 the displacement vectors locating the 

centers of symmetry of the field dependence of primary aberrations are influenced by the 

presence of higher-order aberrations. Such perturbative effect of higher-order aberrations 

on primary aberrations is treated in [10, 11] where effective aberration coefficients and 

effective field displacement vectors are introduced to account for the shift induced by 

secondary aberrations.  

In Equation 2.4 each aberration term exhibits a center of symmetry that in general does 

not coincide with a node location for the specific aberration type. In particular, as regards 

binodal astigmatism, the vector 𝑎⃗222 locates the intermediate position in the FOV plane 

between the two nodes characterizing this aberration type. Equivalently, the vector 𝑎⃗222 

indicates the center of symmetry of primary astigmatism in the FOV plane in a non-circular 

symmetric optical system. On the other hand, regarding primary coma the vector 𝑎⃗131 

locates at the same time the center of symmetry of this aberration and the position of its 

single node in the FOV plane.  

In order to retrieve the field dependence of Zernike coefficients in asymmetric optical 

systems, we proceed to convert Equation 2.4 into a scalar form. The reference system used 

in this work is shown in Figure 2.1. 
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Figure 2.1: Reference system. 

The vectors 𝜌⃗, 𝐻⃗⃗⃗ and 𝑎⃗𝑘𝑙𝑚 are respectively  
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  

 
  
   

Equation 2.5 

Using the expression exposed by Thompson in [3, 4] to calculate the square of a generic 

vector 𝑣⃗ = 𝑣𝑥𝑖 + 𝑣𝑦𝑗 (where 𝑣⃗ = 𝑣𝑒𝑖𝛼 = 𝑣 cos 𝛼 𝑖 + 𝑣 sin 𝛼 𝑗)  

 
2 2 2

2 cos 2

2sin 2

x x y

y x y

v v vv
v

v v vv





    
         

    
 

Equation 2.6 

one obtains the following series of equations from Equation 2.7 to Equation 2.15 for all 

primary aberrations and only a few secondary aberrations. Among them, we consider 

oblique spherical aberration 𝑊𝑂𝑆𝐴, field cubed coma 𝑊𝐶𝐶 , secondary field curvature 𝑊𝐹𝐶2 

and secondary astigmatism 𝑊𝐴2. These secondary aberrations are explicitly considered 

because they give a more consistent contribution to the field dependence of Zernike 

coefficients shown below in the ray-trace-based example. The complete scalar full field 

wavefront aberration function 𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) for asymmetric optical systems constituted 

by tilted and decentered circular symmetric surfaces is finally given by the sum of terms 

exposed in equations from Equation 2.7 to Equation 2.15.  

We obtain for primary spherical aberration 𝑊𝑆𝐴(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) the well-known field 

independent expression in Equation 2.7.  
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Equation 2.7 

For primary coma 𝑊𝐶(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), one obtains Equation 2.8. 
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Equation 2.8 

For primary astigmatism 𝑊𝐴(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), one obtains Equation 2.9. 
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Equation 2.9 

Relatively to field curvature 𝑊𝐹𝐶(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), one obtains the following Equation 

2.10. 
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Equation 2.10 

For Equation 2.9 and Equation 2.10 we have considered that field curvature and primary 

astigmatism are referred to the medial astigmatic surface setting 𝑊220 = 𝑊220𝑆 +
𝑊222

2
 

(where the subscript of the term 𝑊220𝑆 stands for Sagittal). For distortion 𝑊𝐷(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), 

we obtain Equation 2.11. 
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Equation 2.11 

For oblique spherical aberration 𝑊𝑂𝑆𝐴(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), we obtain Equation 2.12 similar to 

Equation 2.10 for field curvature regarding the only field dependence. 
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Equation 2.12 

In Equation 2.12 the coefficient 𝑊240 is defined as 𝑊240 = 𝑊240𝑆 +
𝑊242

2
 in order to 

reference it to the medial surface. For field cubed coma 𝑊𝐶𝐶(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), we obtain 

Equation 2.13 similar to Equation 2.11 obtained for distortion (concerning the only field 

behavior)   
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Equation 2.13 

In Equation 2.13 the coefficient 𝑊331𝑀 is defined as 𝑊331𝑀 = 𝑊331 +
3

4
𝑊333. This 

implies that it contains part of trefoil aberration weighted by the coefficient 𝑊333.  

For secondary field curvature 𝑊𝐹𝐶2(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), we obtain Equation 2.14. 
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Equation 2.14 

Finally, for secondary astigmatism 𝑊𝐴2(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), we obtain Equation 2.15. 
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Equation 2.15 

To be noted that in Equation 2.14 and Equation 2.15, similarly with what we have done 

previously for primary field curvature and primary astigmatism, we have set 𝑊420 =

𝑊420𝑆 +
𝑊422

2
 in order to fix the medial astigmatic surface as a reference.  

The total scalar full field-dependent and pupil dependent wavefront aberration function 

𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) results from the sum of individual aberration terms reported from Equation 

2.7 to Equation 2.15. The remaining secondary aberration terms are not mentioned in this 

work because they are less relevant in the ray-trace data used for verification in the last 

paragraph. The scalar wavefront aberration function 𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) is used in the 

following part to retrieve the field behavior of Zernike coefficients in asymmetric optical 

systems constituted by tilted and decentered surfaces.  

2.3 Full-field dependence of Zernike polynomials in 

asymmetric systems  

As said before, in this chapter we partly revisit the work done in [6] using a slightly different 

version of the full field wavefront aberration function proposed in NAT. Such reformulation 

of the wavefront aberration function is essentially designed to avoid contradictions with the 

summation theorem for primary aberrations. In this section, we derive the full field 

dependence of Zernike polynomials for asymmetric optical systems that contain circular 

symmetric surfaces. Further on, we provide a numerical verification of the expressions 

derived in the present section.  

Zernike polynomials, indicated in this work as 𝐶𝑛
𝑚(𝜌, 𝜗), are a complete set of 

polynomials depending on the radial and azimuthal coordinates of the pupil. They are 

orthonormal in a continuous fashion over the interior of a unit circle and are expressed as 

the product of a polynomial function 𝑅𝑛
𝑚(𝜌) which depends only on the radial coordinate 



Scalar analytical expressions for the field dependence of Zernike polynomials in 

asymmetric optical systems with circular symmetric surfaces 

28 
 

and a trigonometric function 𝐺𝑚(𝜗) that depends only on the azimuthal coordinate. In 

detail, they are described as follows 

       , ,m m m m m m

n n n n nC F R G F Z      
 

Equation 2.16 

where 𝐹𝑛
𝑚 are the Zernike coefficients and 𝑍𝑛

𝑚(𝜌, 𝜗) are pupil dependent functions 

resulting from the product between 𝑅𝑛
𝑚(𝜌) and 𝐺𝑚(𝜗). We use the Fringe indexing scheme. 

Similarly to what has been shown by Gray et al. in [12] for the case of circular symmetric 

optical systems, the computation of the field dependence of Zernike coefficients in 

asymmetric optical systems is retrieved by projecting the scalar full field-dependent and 

pupil dependent wavefront aberration function 𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) into the Zernike 

polynomial basis. Equivalently, the field-dependent coefficients of individual Zernike 

polynomials in asymmetric optical systems are obtained computing the following double 

integral with respect to the polar coordinates of the pupil shown in Equation 2.17 

     
2 1

0 0

1
, , , , ,

m m

n x y x y n

nm

F H H W H H Z d d
N
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Equation 2.17 

where 𝑁𝑛𝑚 is the norm of Zernike polynomials. The computation of Equation 2.17 

results in a new expression (Equation 2.18) for the full field wavefront aberration function 

in asymmetric optical systems described as the sum of full field-dependent Zernike 

polynomials. Individual terms in Equation 2.18 are given by the product between the field-

dependent coefficients 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) retrieved with Equation 2.17 and the respective Zernike 

polynomials 𝑍𝑛
𝑚(𝜌, 𝜗). The field dependent terms 𝐹𝑛

𝑚(𝐻𝑥 , 𝐻𝑦) in Equation 2.18 are 

determined by the contributions of various aberration types with different centers of 

symmetry and weighted by their respective wave aberration coefficients 𝑊𝑘𝑙𝑚. The field 

dependent functions 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) are actually power series containing terms of even and 

odd order in the field coordinates originated by the absence of a well-defined symmetry in 

optical systems with displaced and tilted surfaces. Writing the result down leads to Equation 

2.18 that reads 
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Equation 2.18 

 The terms in Equation 2.18 correspond to the first nine Zernike polynomials using the 

Fringe indexing scheme. These terms are at most of the 4th order in their pupil coordinates 

dependence. Considering their field coordinates dependence, Equation 2.18 explicitly 

shows that in an asymmetric optical system the full field behavior of Zernike polynomials 

is described by a superposition of polynomial surfaces whose respective displacements in 

the FOV plane are defined by the centers of symmetry of the inherent aberration types 

contributing to the description of the Zernike terms in question. In fact, we see that 

considering explicitly the contributions from only the primary aberrations (setting to zero 

the wave coefficients 𝑊𝑘𝑙𝑚 related to secondary aberrations), the field dependence of 

Zernike polynomials in asymmetric optical systems is unchanged with respect to their field 

dependence in circular symmetric optical systems. The only difference being that in the 

former case the full field behavior of Zernike polynomials exhibits a new center of 
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symmetry displaced from the origin of the FOV plane. On the other hand, taking into 

consideration the contributions to the full field dependence of Zernike terms deriving jointly 

from primary and secondary aberrations, we can observe that in an asymmetric optical 

system the field dependence of each Zernike term no longer exhibits a well-defined 

symmetry because of the concomitant contribution of different order terms. In fact, it results 

from the superposition of field surfaces with not coincident centers of symmetry.  

From the above derivation, Equation 2.18 demonstrates that the co-presence of primary 

and secondary aberrations modifies the symmetry of the field behavior of individual 

Zernike polynomials. In addition to this, when higher-order field surfaces (related to 

secondary aberrations) are overlaid to lower-order field surfaces (related to primary 

aberrations), the centers of symmetry of the latter can be displaced in the FOV plane. In 

optical systems where only primary aberrations are considered to contribute to the 

wavefront deformation, the aberration coefficients 𝑊𝑘𝑙𝑚 and the centers of symmetry of the 

field dependence of Zernike polynomials 𝑎⃗𝑘𝑙𝑚 can be calculated using Equation 2.3. In this 

specific case, using Equation 2.3 to calculate the total primary aberration coefficients 𝑊𝑘𝑙𝑚, 

is equivalent to assume that tilts and displacements of the surfaces in the optical system 

under study induce weak perturbations to the original symmetry of the system. In the 

following section, we compare the analytical result obtained so far with ray tracing data 

calculated for a simple optical system. Additionally, we calculate the centers of symmetry 

of primary aberrations using Equation 2.3 (derived from NAT) in order to compare the 

prediction of NAT equations with real raytracing data.  

2.4 Validation of results 

To validate the analytical expressions describing the full field behavior of Zernike 

coefficients in asymmetric optical systems shown in the previous section, we compare them 

with real raytracing data obtained for a simple system constituted of a sequence of two tilted 

and decentered plano-convex spherical lenses. The 3D layout of the optical system under 

study is shown in Figure 2.2. 

 

Figure 2.2: 3D layout and reference system of the optical system under study (the dimensions are in mm). 

The lenses are indicated respectively with L1 and L2. In red and green are highlighted the local 

coordinate systems of the curved surfaces in both plano-convex spherical lenses. 

 The system is at infinite conjugates. The aperture stop position is at the first surface 

(plane surface) of the first spherical lens L1 and the entrance pupil diameter is 𝐸𝑁𝑃𝐷 =
10𝑚𝑚. The simulation wavelength is 𝜆 = 0.55𝜇𝑚 and the FOV is 40° x 40°. It is worth 

pointing out that the field coordinates in the FOV plane can be equivalently described in 

terms of object height or image height. We represent the field coordinates 𝐻𝑥 and 𝐻𝑦  in 

terms of field angles in degrees measured with respect to the object space 𝑧 axis and the 

paraxial entrance pupil position (in this example located in correspondence of the plane 

surface of L1 where it is also located the aperture stop of the optical system) [13]. The 
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spherical lenses are tilted and decentered with respect to the mechanical axis of the system 

as reported in Table 2.1. The distance between the two lenses is 20 mm. The image plane 

is at 292.4mm from the last optical surface. This distance has been chosen to minimize the 

RMS wavefront error and to constrain the defocus aberration to be zero for the field point 

(𝐻𝑥 = 0°, 𝐻𝑦 = 0°). The parameters used for this example are summarized in Table 2.1. 

The simulation is performed with Zemax OpticStudio [13]. 

Table 2.1: Simulation parameters 

 Parameter Symbol Value 

 

 

 

 

L1 

Diameter 𝐷1 50 mm 

Radius of curvature 𝑅1 -400 mm 

Thickness 𝑡1 7 mm 

Glass 𝑔1 N-BK7 

Conic constant 𝑐1 0 

x decentering 𝐷𝑥,1 -2 mm 

y decentering 𝐷𝑦,1 -2 mm 

x tilt 𝜏𝑥,1 -2 ° 

y tilt 𝜏𝑦,1 -2 ° 

 

 

 

L2 

Diameter 𝐷2 50 mm 

Radius of curvature 𝑅2 -250 mm 

Thickness 𝑡2 5 mm 

Glass 𝑔2 N-BK7 

Conic constant 𝑐2 0 

x decentering Dx,2 2 mm 

y decentering Dy,2 2 mm 

x tilt τx,2 2 ° 

y tilt τy,2 2 ° 

 

 In Table 2.2 we report the values of the Seidel aberration coefficients in waves for the 

circular symmetric version of the optical system under test obtained by setting to zero the 

parameters related to tilt and displacement of the two lenses L1 and L2. 

Table 2.2: Seidel coefficients and displacement vectors 

 𝑊131 (𝜆) 𝑊222 (𝜆) 𝑊220,𝑆 (𝜆) 𝜎𝑥 (°) 𝜎𝑦 (°) 

L1 -0.2956 8.2344 6.9259 -1.55 2.44 

L2 -0.9095 7.2874 8.1377 1.55 -3.25 

TOT -1.2051 15.5217 15.0636   

 

 The coefficients 𝑊220,𝑆 reported in Table 2.2 are the sagittal field curvature Seidel 

terms. The Seidel coefficients related to spherical aberration are not reported because this 

aberration is independent of the field angle, while those related to distortion are not reported 

because in the following we neglect this aberration type (the reason for this will be clarified 

later). The calculation of the vectors 𝜎⃗ = (𝜎𝑥 , 𝜎𝑦) is performed using the real raytracing 

method exposed in [14]. In this example, the 𝜎⃗ vectors are calculated for the lenses L1 and 

L2. In Figure 2.3 we show the 𝜎⃗ vectors describing the field perturbations due to 

decentering (in blue) and tilt (in red) of the lenses L1 (in the upper part) and L2 (in the 

bottom part of the graph). The final displacement vectors (in green) result from the 

cumulative effect of decentering and tilt respectively for L1 and L2.  
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Figure 2.3: Field displacement vectors in the FOV plane. 

In what follows, we propose a quantitative comparison between numerical data 

simulated with raytracing and the surface models shown in Equation 2.18 corresponding to 

the field behavior of the first nine Zernike coefficients 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) in the Fringe indexing 

scheme. The verification of the proposed analytical expressions is carried out fitting the 

surface models 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) to the ray-trace data. The RMSE (Root Mean Squared Error) 

and SSE (Sum of Squares due to Error) of the fitting process are indicated to report on the 

goodness of the fit along with the values of the parameters in the equations of the model 

surfaces for the full field dependence of the Zernike coefficients. The ray-trace data shown 

in the following figures from Figure 2.4 to Figure 2.12 result from the computation of the 

respective Zernike coefficient over a grid of 101 × 101 field points. For each of these field 

points, a grid of 128 × 128 rays is traced through the pupil of the optical system. The 

resulting wavefront matrix (with 128 × 128 elements) contains the optical path difference 

of the rays with respect to the reference sphere in correspondence with their intersection 

points with it. From the retrieved wavefront data, the mean value is subtracted and it is 

calculated the square root of its variance. Therefore, the data contained in the wavefront 

aberration matrix for each field point correspond to the RMS wavefront error referenced to 

its mean [7, 13]. In the calculation of the optical path difference of light rays, the reference 

sphere is centered on the point of intersection of the chief ray with the image plane and its 

radius is equal to the distance between the exit pupil and the image plane of the optical 

system (in this example the exit pupil is located 322mm before the image plane).  

The surface models 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) used to fit the ray-trace data and indicated in the text 

box on the right side of every figure contain only the most relevant contributions from the 

constituting aberration types. More in detail, considering the example in Figure 2.4 and 

recalling from Equation 2.18 that the complete expression of 𝐹0
0(𝐻𝑥 , 𝐻𝑦) contains also the 

contributions of defocus (𝑊020) and primary spherical aberrations (𝑊040) in addition to 

those of primary field curvature (𝑊220) and secondary spherical aberration (𝑊420), in the 

surface fitting model 𝐹0
0(𝐻𝑥 , 𝐻𝑦) we have omitted the coefficients 𝑊020 and 𝑊040 because, 

as said before, the last surface to image distance of the optical system has been optimized 

to minimize the RMS wavefront error and the defocus term in correspondence to the center 

of the FOV (this implies that the coefficient 𝑊020 is always zero in the fitting models and 

the contribution of the coefficient 𝑊040 is encompassed in the contribution of other terms). 
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Figure 2.4: Surface fitting of the field dependence of the first Zernike coefficient (𝒎 = 𝟎, 𝒏 = 𝟎). 

 In Figure 2.4 the full field behavior of the first Zernike coefficient is given by the 

superposition of a quadratic and a quartic surface respectively represented by primary field 

curvature and secondary spherical aberration. The contribution of oblique spherical 

aberration (𝑊240) is omitted in this case because such term exhibits the same quadratic 

dependence on the field coordinates as primary field curvature. These two overlapped 

polynomial surfaces exhibit different centers of symmetry. The contribution of primary 

field curvature to the field dependence of this Zernike polynomial is dominant for small 

FOV. When a wider FOV is required, the contribution from oblique spherical aberration 

becomes more and more relevant. 

 

Figure 2.5: Surface fitting of the field dependence of the second Zernike coefficient (𝒎 = 𝟏, 𝒏 = 𝟏). 

 

Figure 2.6: Surface fitting of the field dependence of the third Zernike coefficient (𝒎 = −𝟏, 𝒏 = 𝟏). 
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 In Figure 2.5 and Figure 2.6 the surface fitting of the second and third Zernike 

coefficients full-field behavior is carried out neglecting the contribution of distortion 

𝑊𝐷(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) because this aberration type does not degrade the image quality formed 

by an optical system. In fact, distortion is an image shape aberration measured differently 

from other aberrations. In particular, it is quantified tracing a grid of chief rays through the 

optical system and measuring the difference between the predicted and the real landing 

coordinates of such chief rays in the image plane. On the other side, the RMS wavefront 

error calculated for a specific field point is the optical path length difference of light rays 

over the pupil with respect to the chief ray. Therefore, the calculation of the RMS wavefront 

error does not account for distortion because the reference sphere is centered on the chief 

ray. From the fitting results in Figure 2.5 and Figure 2.6, we can observe that the centers of 

symmetry of the field dependence of the second and third Zernike coefficients, describing 

a displacement along the 𝐻𝑥 (Figure 2.5) and 𝐻𝑦  (Figure 2.6) directions, is located in the 

field point (𝑎131,𝑥
𝑎131,𝑦

) = (0.92986°
−1.8202°

) that represents the center of symmetry and also the node 

location of primary coma. This is also a consequence of the fact that the fitting models 𝐹1
1 

and 𝐹1
−1 do not include the linear displacement aberration 𝑊111 (boresight error) because 

its contribution is subtracted from the calculation of the wavefront phase. This is justified 

because 𝑊111 shifts the image location but otherwise has no effect on image quality. Thus, 

the same result obtained for 𝐹1
1 and 𝐹1

−1 will be obtained in the case of higher order Zernike 

terms 𝐹3
1 and 𝐹3

−1 related to primary coma. Notice that the coefficients 𝑊131 and 𝑊331 

almost coincide in Figure 2.5 and Figure 2.6. These values are retrieved later as concerns 

the field dependence of Zernike polynomials 𝐹3
1 and 𝐹3

−1 because, as explained above, from 

the calculation of 𝐹1
1 and 𝐹1

−1 has been removed the contribution given by the field 

displacement term locating the center of the shifted image plane. The coefficients 𝑊131 and 

𝑊331 are the wavefront aberration coefficients weighting the magnitude of primary coma 

and field-cubed secondary coma. The calculation of the primary coma node location using 

Equation 2.3 gives the following result (𝑎131,𝑥
𝑎131,𝑦

) = ( 0.7877°
−1.8568°

). The slight difference with the 

surface fitting result is probably due to the relevant contribution of higher order aberration 

terms such as field-cubed coma 𝑊331 that can shift the node position of a lower order 

aberration term such as primary coma as discussed in [10].  

 

Figure 2.7: Surface fitting of the field dependence of the fourth Zernike coefficient (𝒎 = 𝟎, 𝒏 = 𝟐). 

 The surface fitting result in Figure 2.7, related to the field dependence of the fourth 

Zernike Fringe coefficient, coincides with the result previously obtained for the first 

Zernike Fringe coefficient. This is due to the fact that both Zernike coefficients (the first 

and the fourth) exhibit the same dependence on the field coordinates but different behavior 

with respect to the pupil coordinates; in fact, the first one is a piston-like term while the 

fourth is a defocus term. The location of primary field curvature node, calculated using 

Equation 2.3, is (𝑎220,𝑥
𝑎220,𝑦

) = ( 0.0503°
−0.5021°

). This calculation is referenced to the medial focal 
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surface according to [3] using the data in Table 2.2. The mismatch with the raytracing data 

(𝑎220,𝑥
𝑎220,𝑦

) = (−0.086096°
−0.24654°

) is attributed to the significance of secondary aberration due to the 

wide FOV considered in this example. 

 

Figure 2.8: Surface fitting of the field dependence of the fifth Zernike coefficient (𝒎 = 𝟐, 𝒏 = 𝟐). 

 

Figure 2.9: Surface fitting of the field dependence of the sixth Zernike coefficient (𝒎 = −𝟐,𝒏 = 𝟐). 

 Regarding the surface fitting results in Figure 2.8 and Figure 2.9 for the field behavior 

of Zernike terms related to astigmatism, we can observe that the center of symmetry related 

to the field dependence of primary astigmatism is approximately the same in the two 

figures, being (𝑎222,𝑥
𝑎222,𝑦

) = (−0.11088°
−0.5631°

) for Figure 2.8 and (𝑎222,𝑥
𝑎222,𝑦

) = (−0.12509°
−0.57205°

) for Figure 2.9. 

The calculation of the center of symmetry of binodal astigmatism with Equation 2.3 gives 

the following result (𝑎222,𝑥
𝑎222,𝑦

) = ( 0.0135°
−0.4347°

). The values of the aberration coefficients used for 

this calculation are relative to the tangential image surface. In practice, 𝑊220𝑇,𝑗 = 𝑊220𝑆,𝑗 +

𝑊222,𝑗 where the values of 𝑊220𝑆,𝑗 and 𝑊222,𝑗 are those reported in Table 2.2 (with 𝑗 =

L1, L2) and 𝑊220𝑇,𝑗 are the field curvature aberration coefficients referenced to the 

tangential image surface. We believe that this mismatch with the raytracing data is due to 

the important role played by secondary aberrations. In both examples, for larger FOV the 

contribution of secondary astigmatism (characterized by its center of symmetry not co-

located with the center of symmetry of primary astigmatism) becomes more relevant. This 

can be observed in Figure 2.9 where at the corner of the FOV (𝐻𝑥 = 20°, 𝐻𝑦 = 20°) the 

field behavior of the sixth Zernike polynomial tends to be slightly curved.  
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Figure 2.10: Surface fitting of the field dependence of the seventh Zernike coefficient (𝒎 = 𝟏, 𝒏 = 𝟑). 

 

Figure 2.11: Surface fitting of the field dependence of the eighth Zernike coefficient (𝒎 = −𝟏,𝒏 = 𝟑). 

 The surface fitting results shown in Figure 2.10 and Figure 2.11 for primary coma 

replicate what has been previously obtained for the second and third Zernike Fringe 

coefficients related to tilt along the 𝐻𝑥 and 𝐻𝑦  directions. The location of the center of 

symmetry in the FOV plane for primary coma is found to be (𝑎131,𝑥
𝑎131,𝑦

) = (0.93026°
−1.8207°

). For this 

type of aberration, as mentioned above, the location of its node in the FOV plane coincides 

with the center of symmetry of the field dependence of the inherent Zernike polynomials. 

In particular, the coordinate along the 𝐻𝑥 direction is determined by the displacement 

related to the seventh Zernike term and the coordinate along the 𝐻𝑦  direction is due to the 

eighth Zernike polynomial. Observing Figure 2.10 and Figure 2.11, we can see that for 

larger values of the FOV the surfaces tend to be slightly “distorted”. This behavior is due 

to the third-order contribution (in the field coordinates) provided by field-cubed coma that 

has indeed the same field dependence of distortion so that the surfaces exhibit a barrel 

distortion-like deformation. Nonetheless, we point out that, even though such behavior is 

reminiscent of distortion, it cannot be ascribed to this type of aberration because, in line 

with the remarks above, distortion is not calculated with the raytracing method presented 

here.  
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Figure 2.12: Surface fitting of the field dependence of the ninth Zernike coefficient (𝒎 = 𝟎, 𝒏 = 𝟒). 

 Finally, in Figure 2.12 it is shown the surface fitting result obtained for the field 

behavior of the ninth Zernike Fringe coefficient dominated by the contribution of primary 

spherical aberration and oblique spherical aberration. In this case, we can observe that the 

center of symmetry of oblique spherical aberration is retrieved in the field point located in 

(𝑎240,𝑥
𝑎240,𝑦

) = (−1.8121°
2.3096°

).  

2.5 Digression on the origin of the binodal behavior of 

primary astigmatism magnitude 

The fifth (𝑚 = 2, 𝑛 = 2) and sixth (𝑚 = −2, 𝑛 = 2) Zernike Fringe terms are involved in 

the calculation of primary astigmatism. Since it results from the combination of these two 

terms, it is a vectorial aberration described by a magnitude and a phase. It is well known 

that the full field dependence of the magnitude of primary astigmatism in symmetric optical 

systems is described by a paraboloid of revolution. On the opposite side, the full field 

behavior of the magnitude of primary astigmatism in optical systems without symmetry 

(described by NAT [3]) exhibits a binodal behavior. This behavior consists of the 

occurrence of two nodes in the FOV. The nodes are specific locations in the FOV where 

the magnitude of primary astigmatism vanishes. The binodal behavior of primary 

astigmatism is not only characteristic of asymmetric systems consisting of tilted and 

decentered circular symmetric surfaces, but also of asymmetric systems containing tilted 

and decentered surfaces characterized by double-plane symmetry. This last class of optical 

systems is the subject of investigation in the following chapter where a mathematical 

description of this phenomenon is given. In this context, we suggest an intuitive explanation 

of the occurrence of this behavior.  

The origin of the binodal behavior of primary astigmatism magnitude can be understood 

by studying the full field behavior of the tangential and sagittal field curvature surfaces 

associated with an asymmetric optical system. In this context, the tangential and sagittal 

directions are defined to lie along the 𝑦 and 𝑥 axis of the FOV plane. In particular, the 

tangential plane is the 𝑦𝑧 plane and the sagittal plane is orthogonal to the 𝑦𝑧 plane and 

intersects the center of the entrance pupil [13]. A short digression on the roles of 

astigmatism and field curvature in circular symmetric systems is a preliminary and 

necessary step to understand better the following considerations related to asymmetric 

optical systems.  

Studying the aberration behavior of an optical system, field curvature and astigmatism 

are coupled together giving rise to tangential and sagittal curved image surfaces. These two 

surfaces are distinct if primary astigmatism does not vanish and, in this case, the separation 

between them in the meridional and the sagittal planes increases quadratically with the field 

coordinates. In a circular symmetric optical system, the study of aberrations is restricted to 

the meridional plane and consequently, the tangential and sagittal focal surfaces are 
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commonly represented as two different focal lines, whose curvatures depend jointly on the 

aberration coefficients of astigmatism and field curvature. These surfaces (or lines if the 

analysis is restricted to the meridional plane) are characterized by the fact that the distance 

between the tangential surface and the Petzval surface is three times the distance between 

the sagittal surface and the Petzval surface. Additionally, the intermediate surface between 

the sagittal and tangential surfaces is defined as the medial focal surface. Considering the 

asymmetric optical system of the previous section (Figure 2.2), the corresponding circular 

symmetric system is obtained setting to zero the tilt (𝜏𝑥,1 = 0, 𝜏𝑦,1 = 0, 𝜏𝑥,2 = 0, 𝜏𝑦,2 = 0) 

and displacement parameters (𝐷𝑥,1 = 0, 𝐷𝑦,1 = 0, 𝐷𝑥,2 = 0, 𝐷𝑦,2 = 0) of the lenses L1 and 

L2. The calculation of the tangential and sagittal focal surfaces in the optical system thus 

obtained, can be carried out by retrieving the distance between the paraxial image position 

and the image plane in the tangential plane and the sagittal plane respectively. The paraxial 

image position is located where the marginal ray height is equal to zero. Reiterating the 

calculations of these two focal distances with respect to a grid of field points in the FOV, 

the results shown in Figure 2.13 are generated.  

 

Figure 2.13: a) Tangential and sagittal image surfaces for the circular symmetric version of the optical 

system analyzed in section 2.4. The surface plot is cut along the tangential plane (𝒚𝒛) to emphasize that, 

along the 𝒚 direction, the curvature of the tangential image surface is larger than that of the sagittal image 

surface. The height of the surfaces is measured in mm from the paraxial image surface. b) The top view 

emphasizes the coincidence of these two image surfaces at the origin of the FOV. 

In correspondence to the origin of the FOV, there is no separation between the two focal 

surfaces because primary astigmatism vanishes on-axis in symmetric systems while 

considering any other off-axis field point, the separation between the sagittal and tangential 

image surfaces is proportional to the magnitude of astigmatism. The coincidence between 

these two surfaces in the origin of the FOV is evident if we observe Figure 2.13b while in 

Figure 2.13a it is put in evidence the separation between these two surfaces for any off-axis 

field point.   

On the other hand, asymmetric optical systems with displaced rotationally symmetric 

surfaces are characterized by a separation between the sagittal and tangential image surfaces 

even in correspondence with the origin of the FOV. This situation is due to the fact that in 

asymmetric optical systems the field dependence of field curvature and astigmatism are 

perturbed by different field displacement vectors (indicated with 𝜎⃗ in NAT). These vectors 

shift differently the sagittal and tangential image surfaces and the nodes of primary 

astigmatism magnitude are to be found along the curves defined by the intersection of the 

sagittal and tangential image surfaces themselves. In the points of intersection of these two 

image surfaces, primary astigmatism vanishes by definition. The nodes of primary 

astigmatism magnitude thus coincide with the field points where the distance between the 

paraxial image surface and the sagittal focal surface equals the distance between the 

paraxial image surface and the tangential focal surface. In the following Figure 2.14, it is 
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shown the overlap between the perturbed tangential and sagittal focal surfaces in the case 

of the asymmetric optical system shown in the example in Figure 2.2 in the previous section. 

 

Figure 2.14: a) Tangential and sagittal image surfaces for the asymmetric optical system analyzed in the 

previous section. b) Top view of the tangential and sagittal image surfaces. 

Figure 2.14a shows again that in the 𝑦𝑧 plane the curvature of the tangential image 

surface is larger than that of the sagittal image surface but these two surfaces are displaced 

due to the lack of symmetry. Furthermore, in Figure 2.14b it is emphasized that there is no 

longer coincidence between the tangential and sagittal focal surfaces at the origin of the 

FOV. In the following Figure 2.15, we show the field-dependent magnitude of primary 

astigmatism (for the asymmetric system of the previous section) overlapped to the 

tangential and sagittal focal surfaces to show more clearly that the location of the nodes of 

primary astigmatism is in correspondence to the intersection between the tangential and 

sagittal focal surfaces.  

 

Figure 2.15: Contour plot of the full field-dependent magnitude of primary astigmatism overlapped to the 

tangential and sagittal focal surfaces. The black dots indicate the positions of the nodes of primary 

astigmatism. 

In the next chapter, we will provide a mathematical model to describe such behavior in 

double-plane symmetric optical systems characterized by perturbations of the optical 

surfaces (such model is more general and adaptable to the class of optical systems dealt 

with in the present chapter).  
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2.6 Full-field behavior of higher-order Zernike terms  

The analysis of the full field behavior of the Zernike terms from the tenth to the fifteenth 

order (in the Fringe indexing scheme) requires first to obtain their respective expressions in 

scalar form starting from Equation 2.4. In particular, the field behavior of these Zernike 

terms depends on secondary aberration terms such as elliptical coma 𝑊𝐸𝐶(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗), 

secondary astigmatism 𝑊𝑂𝑆𝐴2(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) and field linear fifth order coma 

𝑊𝐶5(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) in addition to the aberration terms already introduced in section 2.3. 

Elliptical coma (also known as trefoil) has the following full-field expression 
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Equation 2.19 

One can observe that the final expression in Equation 2.19 (in curly bracket) is 

composed of two pairs of terms characterized by two different behaviors with respect to the 

pupil coordinates. The first pair of terms depends on 𝜌3 cos 3𝜗 and 𝜌3 sin 3𝜗, while the 

second pair of terms depends on 𝜌3 cos 𝜗 and 𝜌3 sin 𝜗. Therefore, the second couple of 

terms exhibits the same pupil dependence characteristic of field cubed coma 𝑊𝐶𝐶  and, for 

this reason, in section 2.3 the coefficient for medial field cubed coma has been defined as 

𝑊331𝑀 = 𝑊331 +
3

4
𝑊333, namely the sum of two contributions, of which the first strictly 

derives from field cubed coma, while the second is due to elliptical coma. On the other side, 

the other two terms in the final expression of Equation 2.19 (those depending on 𝜌3 cos 3𝜗 

and 𝜌3 sin 3𝜗) are to be considered as purely trefoil terms that are involved in the 

calculation of the field dependence of the tenth and eleventh Zernike coefficient in the 

Fringe indexing scheme (Figure 2.16-Figure 2.17).  

The full field expression of secondary oblique spherical aberration is shown in Equation 

2.20. 
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Equation 2.20 

The full field expression of linear field fifth order coma is the following 
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Finally, it is also reported in Equation 2.22 the full field expression for an aberration 

term of 8th order, namely tertiary oblique spherical aberration whose 4th order field 

dependence is suited to describe the full field behavior of the twelfth and thirteenth Zernike 

Fringe coefficients.  
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Equation 2.22  

Like what has been shown in section 2.3, the full field dependence of the Zernike Fringe 

coefficients (from the 10th to the 15th) can be calculated again using Equation 2.17 where 

the complete scalar expression of the wavefront aberration function (also including the 

expressions from Equation 2.19 to Equation 2.22) is projected onto the Zernike basis 

functions. Thus, the full field expression of these six Zernike terms is made explicit in the 

following Equation 2.23 that is the continuation of Equation 2.18 in section 2.3.  
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Equation 2.23 

The verification of these expressions can be again carried out fitting them to raytracing 

data calculated for the example of section 2.4. These results are reported in the following 

figures from Figure 2.16 to Figure 2.18. 

 

Figure 2.16: Surface fitting of the field dependence of the tenth Zernike coefficient (𝒎 = 𝟑, 𝒏 = 𝟑). 
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Figure 2.17: Surface fitting of the field dependence of the eleventh Zernike coefficient (𝒎 = −𝟑, 𝒏 = 𝟑). 

A proper combination of the full field dependences of the tenth and eleventh Zernike 

coefficients gives rise to the vectorial expression of trefoil aberration. This type of 

aberrations is characterized by the presence of three nodes over the FOV in an asymmetric 

optical system.  

 

Figure 2.18: Surface fitting of the field dependence of the twelfth Zernike coefficient (𝒎 = 𝟐, 𝒏 = 𝟒). 

 

Figure 2.19: Surface fitting of the field dependence of the thirteenth Zernike coefficient (𝒎 = −𝟐, 𝒏 = 𝟒). 

The combination of the field dependences of these two last Zernike coefficients results 

in another vectorial aberration whose magnitude behaves similarly in magnitude as primary 
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astigmatism since, also in this case, two nodes occur in the FOV of an asymmetric optical 

system.  

 

Figure 2.20: Surface fitting of the field dependence of the fourteenth Zernike coefficient (𝒎 = 𝟏, 𝒏 = 𝟓). 

 

Figure 2.21: Surface fitting of the field dependence of the fifteenth Zernike coefficient (𝒎 = −𝟏,𝒏 = 𝟓). 

Finally, the combination of the field dependences of the fourteenth and fifteenth Zernike 

terms originates a vectorial aberration whose field dependence features one single node. 

The field behavior of the Zernike coefficients (in the Fringe indexing scheme) shown 

up to this point is useful to determine the occurrence of nodes for specific aberration types 

in asymmetric optical systems constituted by arbitrarily tilted and decentered surfaces. The 

equations of NAT [3] are applicable to locate the nodes of aberrations in the case only 

primary aberrations are of concern. If higher-order aberrations are relevant in an 

asymmetric optical system, the positions of their inherent nodes can be found with real 

raytracing computing the respective Zernike coefficients in correspondence of a grid of 

points over the FOV.  

2.7 Conclusions 

In this chapter, we presented a series of scalar analytical formulas describing the full 

field dependence of Zernike polynomials that derives from the field behavior of their 

inherent coefficients in asymmetric optical systems characterized by tilted and decentered 

circular symmetric surfaces. The starting point of such derivation is a modified version of 

the vectorial wavefront aberration function proposed in the Nodal Aberration theory. Such 

function is first transformed into its scalar counterpart, then it is projected onto the basis of 

Zernike polynomials in the Fringe indexing scheme in order to retrieve the full field 
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behavior of individual Zernike coefficients. It is highlighted the presence of centers of 

symmetry for the field dependence of individual Zernike terms when they are described by 

the contribution of the only primary aberrations. Furthermore, it is emphasized that 

secondary aberrations change the symmetry of the field behavior of Zernike coefficients 

adding higher-order overlay field surfaces with different centers of symmetry.  

 

 

 

 



 

46 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

  



 

47 
 

 Full-field dependence 

of primary aberrations in 

perturbed double-plane 

symmetric systems with a 

circular pupil  
 

 

This chapter [15] deals with the theory of primary aberrations for perturbed double-plane 

symmetric optical systems consisting of a combination of tilted and decentered surfaces and 

a circular pupil. First, the analytical expressions describing the full field behavior of Zernike 

polynomials are derived from the fourth-order wavefront aberration function for this class 

of optical systems. Then, such expressions are combined to retrieve the full field 

dependence of primary coma, primary astigmatism, and field curvature. They are described 

by an elliptical conic-shaped surface with a variable apex location over the field of view, 

by a binodal surface with two nodes over the field of view, and by a general elliptical surface 

with one node. The proposed analytical expressions provide a better understanding of the 

primary aberration behavior for these systems and can be of great use in their optical design 

and aberration correction. An optical system constituted by a pair of tilted and decentered 

biconic lenses is studied to validate the proposed expressions. 

3.1 Introduction 

Over the past century, numerous authors have investigated the aberrations of optical 

systems emphasizing their intrinsic connection with the symmetry properties of the systems 

themselves. In this regard, the contributions of Hopkins, Buchdahl, Burfoot, Wynne, Sands 

[5, 16, 17, 18, 19] are of outstanding relevance. More recently, the introduction of a 

vectorial formulation of the wavefront aberration function due to Shack, initially for the 

only circular symmetric systems, has later paved the way to the investigation of optical 

systems without symmetry. Of particular relevance are the Nodal Aberration Theory (NAT) 

[3, 4] describing asymmetric optical systems with tilted and decentered circular symmetric 

surfaces, the study of bilateral symmetric and anamorphic systems [20, 21, 22, 23] and the 

investigation of optical systems with freeform surfaces [24, 25].  

The goal of the present paper is to study the primary aberrations behavior in perturbed 

double-plane symmetric systems. This class of optical systems is characterized by a full 

double-plane symmetry in the absence of geometrical perturbations, such as tilts and 

displacements of the optical components with respect to the mechanical axis of the system 

itself. The presence of misalignments of the optical surfaces reduces the general double-

plane symmetry of the system inducing characteristic modifications to the field dependence 

of primary aberrations, particularly evident in the displacement of the location of the node 

in the FOV. We derive a series of analytical expressions (with effective coefficients) 

describing the full field behavior of primary aberrations for this category of optical systems 

with geometrical perturbations. Our treatment starts from the general expression of the full 

field wavefront aberration function for double-plane symmetric systems deriving from the 
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theory of Hamiltonian optics. This expression is first generalized to include the 

description of perturbed double-plane symmetric systems, then it is projected onto the basis 

of Zernike polynomials to retrieve the latter’s full field dependence for the optical systems 

of our concern. Finally, the full field Zernike polynomials are properly combined to 

elaborate a more advantageous analytical formulation (with effective coefficients) of the 

primary aberrations in perturbed double-plane symmetric systems. Formally, these 

expressions are analogous to the corresponding expression of the wavefront aberration 

function for a circular symmetric system in the Hopkins notation where the coefficients of 

the aberration terms are represented by the Seidel sums [5]. Such formal similarity between 

the primary aberration functions of circular symmetric and perturbed double-plane 

symmetric systems fosters a better understanding of the aberration behavior of the latter. 

The retrieved analytical expressions can be applied fruitfully in the optical design and 

optimization of this class of systems providing a better insight about the general behavior 

of their primary aberrations also in relation to the geometrical perturbations of their optical 

components. Moreover, it is shown that the effective aberration coefficients, present in the 

proposed analytical expressions, can be easily calculated by sampling the Zernike 

coefficients in correspondence with few field points of interest in the FOV. This is possible 

only in the case higher-order aberrations are negligible.   

We show that in perturbed double-plane symmetric systems the full field magnitude of 

primary astigmatism exhibits a binodal behavior described by a surface model similar to a 

Cassini surface (that on the contrary well describes the binodal behavior of primary 

astigmatism in asymmetric optical systems with tilted and decentered surfaces as shown in 

NAT). On the other side, primary coma magnitude and field curvature full-field dependence 

are described by an elliptic conic-shaped surface and by a general ellipsoidal surface 

respectively. Distortion is neglected because it does not determine image blur, being an 

image shape aberration. In fact, its effect is to change the shape of the image introducing 

an error mapping between points in the object plane and corresponding points in the image 

plane. In the final section, an optical system consisting of a combination of biconic lenses 

(both tilted and decentered) is studied in order to verify the primary full field wavefront 

aberration function proposed in this paper. It is worth noting that this class of optical 

systems can be alternatively studied in the framework of the generalized nodal aberration 

theory [25] as shown in [26] relatively to an optical system constituted by double-plane 

symmetric surfaces. The results of [25] are related to freeform systems and consequently, 

no assumptions are made on the underlying symmetry of the optical systems under study. 

In the present paper, we follow a different approach for the analysis of the optical systems 

of our interest. In fact, we start our analysis by making specific assumptions on the 

symmetry properties of such systems and additionally we make use of the principles 

exposed in the theory of Hamiltonian optics [16] to introduce their general wavefront 

aberration function. We believe that our proposal, to describe the full field dependence of 

primary aberrations with functions with new effective coefficients obtained from 

recombination of Zernike polynomials, facilitates the understanding of the class of optical 

systems of our interest and can be beneficial for their design and optimization.  

3.2 Full-field dependence of Zernike polynomials 

According to the theory of Hamiltonian Optics [16], the 4th order wavefront aberration 

function of a double-plane symmetric system (supposing that lower orders are absent) is 

obtained combining the six reflection invariants 𝜌𝑥
2, 𝜌𝑥𝐻𝑥 , 𝐻𝑥

2, 𝜌𝑦
2, 𝜌𝑦𝐻𝑦, 𝐻𝑦

2. The resulting 

equation is constituted by 21 terms (two of which are redundant and for this reason are 

omitted) weighted by proper coefficients with the notation 𝑤𝑘𝑙𝑝𝑞  where the subscripts 𝑘, 𝑙, 𝑝 

and 𝑞 indicate respectively the power to which the ray coordinates 𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥 and 𝜌𝑦 are 

raised. Since we are concerned with 4th order (or primary) aberrations, the values of the 

subscripts 𝑘, 𝑙, 𝑝 and 𝑞 are constrained by the condition 𝑘 + 𝑙 + 𝑝 + 𝑞 = 4. Such equation 

is written as follows 
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Equation 3.1 

The last three coefficients 𝑤4000, 𝑤2200 and 𝑤0400 are set to zero since they correspond 

to quartic piston terms. The remaining 16 coefficients 𝑤𝑘𝑙𝑝𝑞  (with 𝑘 = 0,1,2,3, 𝑙 = 0,1,2,3, 

𝑝 = 0,1,2,3,4 and 𝑞 = 0,1,2,3,4) can be collected according to their dependence on the 

pupil and field coordinates in order to clarify their respective meaning. In detail, the first 

three coefficients describe spherical aberrations, the coefficients from the fourth to the 

seventh indicate coma aberration, those from the eighth to the twelfth describe a 

combination of astigmatism and field curvature, and finally, the coefficients from the 

thirteenth to the sixteenth quantify distortion.  

We are interested in the analysis and description of double-plane symmetric systems 

whose symmetry properties are perturbed by internal misalignments such as eventual tilts 

and displacements of the optical components. In the most general case, when the 

components of a symmetric optical system are arbitrarily perturbed, the optical system itself 

is converted into an asymmetric system. In this context, we assume that this situation can 

be described as a perturbation to the FOV of the optical system. In other words, we assume 

that the presence of geometrical perturbations to the components of an otherwise double-

plane symmetric system induces displacements to the FOV (or to the image plane). Upon 

closer inspection, this assumption is very similar to the one on which the NAT is founded 

[3]. According to NAT, an asymmetric optical system with tilted and decentered circular 

symmetric surfaces can be studied summing (over the surfaces of the system) the net 

contributions to the full field-dependent wavefront aberration function. Thus, the resulting 

aberration function is the sum of circular symmetric contributions oriented along their axis 

of symmetries whose intersections with the image plane define different nodes' positions. 

The shift of these nodes from the origin of the FOV is described with an equivalent 

displacement (perturbation) of the image plane. Despite this, in the optical systems of our 

concern, we do not address the problem of finding the individual contribution of each 

surface to the total wavefront aberration function, but we focus our attention directly on the 

total full field wavefront aberration function of the optical system. Bearing in mind these 

considerations, in agreement with the principles of Hamiltonian optics [16], the optical 

systems of our interest can be described generalizing Equation 3.1 including odd and even 

lower order terms to account for the net perturbations occurring to the image plane of the 

system. As a matter of fact, the occurrence of geometrical perturbations (such as tilt and 

decentering of surfaces constituting the optical system) generates several terms in the 

polynomial expansion of the wavefront error (Equation 3.1) containing lower orders in the 

field coordinates 𝐻𝑥 and 𝐻𝑦 . Such lower order terms, properly weighted by their respective 

coefficients 𝑤𝑘𝑙𝑝𝑞  (where 𝑘 + 𝑙 + 𝑝 + 𝑞 ≤ 3), reveal that geometrical perturbations to the 

optical surfaces are at the origin of corresponding perturbations to the system FOV. In 

practice, the field of view (or equivalently the image plane) of such an optical system is 

displaced as a consequence of the reduction of symmetry determined by perturbed surfaces 

in the system itself. This state of affairs translates into the following modification of 

Equation 3.1 where terms of order lower than 4 are included in the wavefront aberration 

expansion as shown in Equation 3.2 
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Equation 3.2 

Equation 3.2 contains 4th order terms (𝑘 + 𝑙 + 𝑝 + 𝑞 = 4) collected in round brackets 

with the inherent lower order terms (𝑘 + 𝑙 + 𝑝 + 𝑞 ≤ 3) highlighted with bolded 

characters. The lower order terms derive essentially from a polynomial expansion in the 

only field coordinates 𝐻𝑥 and 𝐻𝑦  of the 4th order terms present in Equation 3.1. It is worth 

noting that in general the coefficients of the 4th order terms present in Equation 3.2 are 

different from those of the respective terms in Equation 3.1. They differ, essentially, 

because Equation 3.1 describes the 4th order aberration function of a purely double-plane 

symmetric system, while Equation 3.2 describes the 4th order aberration function of an 

asymmetric optical system (that we have defined here as perturbed double-plane 

symmetric) whose lower order terms arise from the perturbation induced to the original 

double-plane symmetry. For the sake of clarity and at the risk of being redundant, it is 

important to remark again that the inclusion of these lower order terms in the wavefront 

aberration function is to some extent similar to what is done in NAT where the displacement 

of the field coordinates (due to misalignments of the circular symmetric surfaces 

constituting an optical system) results exactly in a polynomial expansion of the aberration 

terms with respect to the field coordinates 𝐻𝑥 and 𝐻𝑦  [3].  

Equation 3.2 is the starting point for the derivation of the field behavior of Zernike 

polynomials. In this work, we use the Fringe indexing scheme. These analytical expressions 

are necessary to retrieve the full field formulas describing primary aberrations for the 

category of optical systems about which we are concerned. The full field dependence of 

Zernike polynomials in perturbed double-plane symmetric systems characterized by the 

presence of misaligned components can be retrieved projecting the wavefront aberration 

function in Equation 3.2 (transformed in polar coordinates) onto the basis functions 

constituted by the polynomials themselves analogously to what has been done in the 

previous chapter for the field dependence of Zernike polynomials in asymmetric systems 

with rotationally symmetric surfaces. It is worth mentioning that, to our knowledge, the 

idea of expanding the wavefront deformation in Zernike polynomials over the pupil and the 

FOV was proposed for the first time in [27]. Assuming that the optical systems of our 

interest are characterized by a circular stop, the coordinates 𝜌𝑥 and 𝜌𝑦 denoting the 

intersection point of a ray with the aperture stop, can be written equivalently in polar 

coordinates as 𝜌𝑥 = 𝜌 cos 𝜗 and 𝜌𝑦 = 𝜌 sin 𝜗 where the angle 𝜗 is measured counter 

clockwise from the axis 𝜌𝑥. The basis of the Zernike polynomials in the Fringe indexing 

scheme is expressed as follows 



Full-field dependence of primary aberrations in perturbed double-plane symmetric 

systems with a circular pupil 

51 
 

       , ,m m m m m m
n n n n nC F R G F Z      

 

Equation 3.3 

𝑍𝑛
𝑚(𝜌, 𝜗) results from the product between 𝑅𝑛

𝑚(𝜌) and 𝐺𝑚(𝜗) where the former is a 

polynomial function depending on the only radial coordinate 𝜌 of the pupil and the latter is 

a trigonometric function depending on the azimuthal coordinate 𝜗, while 𝐹𝑛
𝑚 denotes the 

Zernike coefficients that are multiplicative factors weighting the respective polynomials. 

The full field dependence of such coefficients 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) can be retrieved calculating the 

following integral expression 
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Equation 3.4 

where the factor 𝑁𝑛𝑚 represents the norm of the respective Zernike polynomials. The 

result of the integral Equation 3.4 is shown in the following series of equations from 

Equation 3.5 to Equation 3.13 where the coefficients 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) are written in full to 

emphasize the dependence on the field coordinates 𝐻𝑥 and 𝐻𝑦 . It is fundamental to note 

that in the following series of equations (Equation 3.5 - Equation 3.13), the field dependence 

of Zernike coefficients is obtained from the field dependence of several polynomial terms 

constituting the wavefront aberration function 𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) up to the 4th order shown in 

Equation 3.2.  

0002 0004 0020 0022 0040

2 2
0102 0120 0202 02200 0

0

2 2
1002 1020 2002 202

0

0

2 8 2 24 8

( , , , ) ( , )
4 4 4 4

4 4 4 4

y y y y

x y

x x x x

w w w w w

w H w H w H w H
C H H Z

w H w H w H w H

   

 
     

 
 

     
 
 
   
 
   

Equation 3.5  
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Equation 3.6 
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Equation 3.7 
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Equation 3.8 
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Equation 3.11 
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Equation 3.13 

Equations from Equation 3.5 to Equation 3.13 result from the product between a field-

dependent function and the respective pupil-dependent Zernike polynomial. The field-

dependent functions 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) constitute analytical expressions describing the field 

behavior of the first 9 Zernike Fringe polynomials for perturbed double-plane symmetric 

optical systems. This result is functional to the main goal of this chapter, namely the 

investigation of primary aberrations in perturbed double-plane symmetric optical systems 

consisting of tilted and decentered surfaces and circular pupils. It is worth making two 

important remarks at the end of this section to clarify further what has been done so far. 

The first important aspect to remark is that this method to derive the field dependence of 

Zernike polynomials can be easily extended to the study of more general systems without 

imposing the condition of double-plane symmetry. This can be done using a wavefront 

aberration function 𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) more general than that in Equation 3.2 containing all 

the possible terms of a full polynomial expansion in the ray coordinates 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 and 𝜌𝑦. 

The second important aspect to remark is that this method works also for systems 

characterized by large geometrical perturbations provided that the wavefront aberration 

function in Equation 3.2 is expanded up to higher orders (for example up to the 6th order if 

secondary aberrations are of concern or up to the 8th order if tertiary aberrations are 

relevant). In the present case, we intentionally focus our attention on primary aberrations. 

This implies that the derived formulas can be applied to optical systems characterized by 

“weak” geometrical perturbations. In the following section, the full field-dependent Zernike 

polynomials shown in Equation 3.5 – Equation 3.13 will be combined in order to retrieve 

the full field behavior of primary aberrations for the optical systems of our concern in this 

chapter.  

3.3 Full-field primary aberrations 

The computation of primary aberrations of an optical system can be carried out properly 

combining the first 9 Zernike polynomials. In particular, it is well known that, in this way, 

the full field magnitude and phase of vectorial aberrations such as primary astigmatism and 

primary coma can be retrieved. In the following Equation 3.14, the Zernike polynomials in 

the Fringe indexing scheme are recombined according to the formulation presented in 

Equation 61 in [28] to find the full field dependence of primary aberrations in the optical 

systems of our interest. The Zernike polynomials are written with their full field and pupil 

dependence. To be noted that in the following Equation 3.14 the pupil dependent parts of 

the Zernike polynomials (in Equation 3.5 to Equation 3.13 indicated with 𝑍𝑛
𝑚(𝜌, 𝜗)) are 

written explicitly, while the field dependent parts are indicated as previously with 

𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦). Additionally, to limit the complexity of Equation 3.14, we have omitted the 

contribution of lower order Zernike terms corresponding to piston (𝑍0
0), tilt along 𝜌𝑥 (𝑍1

1) 

and tilt along 𝜌𝑦 (𝑍1
−1). This choice is justified by the fact that, in the actual computation of 

the Zernike terms describing the wavefront aberration function of an optical system, the 

wavefront function itself can be referenced to a properly shifted and tilted reference sphere 

with the scope of minimizing the RMS wavefront error. In practice, this means that the 

contribution of tilt along 𝜌𝑥 and 𝜌𝑦 can be subtracted out from the wavefront aberration 

function referencing the wavefront error (or equivalently the optical path difference of light 

rays) to the chief ray. 
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Equation 3.14 

Individual terms of Equation 3.14 represent primary aberrations. We emphasize that the 

full field variation of individual primary aberration terms in Equation 3.14 is embedded in 

the field dependence of the Zernike polynomials involved in the calculation of the primary 

aberrations themselves. As previously remarked, the reformulation of primary aberrations 

(resulting from the combination of Zernike polynomials) exposed in Equation 3.14 is 

functional to the scope of the present chapter, that is the investigation of the full field 

behavior of primary aberrations in perturbed double-plane symmetric optical systems. In 

addition to this, it is important to note the formal similarity between Equation 3.14 and the 

corresponding wavefront aberration function for circular symmetric systems in the Hopkins 

notation [5], with the difference that in the latter the field dependence is considered in the 

only meridional plane (because it is related to circular symmetric systems), while in 

Equation 3.14 the full two-dimensional field dependence of aberrations is taken into 

account. Moreover, the second and the fourth term of Equation 3.14, corresponding 

respectively to primary coma and primary astigmatism, are described also by a phase term 

that is dependent only on the field coordinates. For this reason, primary coma and 

astigmatism can be represented as vectors and, in this work, we refer to them as vectorial 

aberrations.  

In the following sections, we focus our analysis on the only field dependence of 

individual terms shown in Equation 3.14. In particular, we indicate the magnitude and phase 

of the full field behavior of vectorial aberrations with 𝑀𝑖(𝐻𝑥 , 𝐻𝑦) and 𝑃𝑖(𝐻𝑥 , 𝐻𝑦) 

respectively where the subscript 𝑖 can be any of the following strings 𝑖 = {𝑠, 𝑐, 𝑎, 𝑓𝑐} 
standing for spherical aberration, coma, astigmatism and field curvature respectively. We 

remark that spherical aberration and field curvature do not have a phase term and 

consequently only their magnitudes will be discussed in the following part. The field-

dependent part of the Zernike polynomials contained in the expressions of magnitude and 

phase of primary aberrations are simplified combining the coefficients 𝑤𝑘𝑙𝑝𝑞  in Equation 

3.2 with the same field coordinates dependence. As we will see, this simplification of the 

polynomials expressions describing the field dependence of Zernike coefficients (Equation 

3.5 to Equation 3.13) derives from the pupil dependence of the Zernike polynomials 

themselves. The simplification of these expressions is aimed at obtaining new expressions 

with new effective coefficients whose application can be advantageous in the design and 

optimization of the optical systems under study.  

3.3.1 Full-field behavior of spherical aberration 

Spherical aberration is described by the first term in Equation 3.14. Writing the explicit 

expression of 𝐹4
0, we obtain the following Equation 3.15  
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Equation 3.15 
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whose inspection immediately reveals that spherical aberration is field independent.  

3.3.2 Full-field behavior of Primary Coma 

The full field primary coma magnitude 𝑀𝑐 and phase 𝑃𝑐 are contained in the second term 

of Equation 3.14. They result from the combination of the field-dependent parts of the 

Zernike Fringe terms 𝐶3
1 and 𝐶3

−1 as follows  
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Equation 3.16 

In Equation 3.16 the expressions of 𝐹3
1 and 𝐹3

−1 (deriving from Equation 3.11 and 

Equation 3.12) are simplified combining the coefficients 𝑤𝑘𝑙𝑝𝑞  with the same field 

dependence in order to obtain new effective coefficients indicated with 𝑠𝑘𝑙  and 𝑟𝑘𝑙 . In this 

specific case, we obtain respectively  
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Equation 3.17 

This simplification is justified by the nature of the Zernike polynomials in question 

whose aperture dependence is described in rectangular coordinates by the following 

expressions 𝑍3
1(𝜌𝑥 , 𝜌𝑦) = 3𝜌𝑥

3 + 3𝜌𝑥𝜌𝑦
2 − 2𝜌𝑥 and 𝑍3

−1(𝜌𝑥, 𝜌𝑦) = 3𝜌𝑦
3 + 3𝜌𝑥

2𝜌𝑦 − 2𝜌𝑦. 

Therefore, the coefficients 𝑤𝑘𝑙𝑝𝑞  in the expression of 𝐹3
1 with 𝑝𝑞 = {3,0} and 𝑝𝑞 = {1,2} 

and with the same subscripts 𝑘𝑙 are combined. For example in Equation 3.17, 𝑤0012 is 

combined with 𝑤0030 to give 𝑠00 because both of them share the same dependence on the 

field coordinates (i.e. they have the same subscripts 𝑘 = 0 and 𝑙 = 0) and in addition to 

this, their pupil coordinates dependence is relative to the monomials contained in the 

expression of 𝑍3
1(𝜌𝑥 , 𝜌𝑦) reported above, namely 𝜌𝑥

3 and 𝜌𝑥𝜌𝑦
2. To summarize, regarding 

𝐹3
1, the coefficients 𝑤𝑘𝑙30 and 𝑤𝑘𝑙12 are combined in a new effective coefficient 𝑠𝑘𝑙 , while 

the coefficients 𝑤𝑘𝑙03 and 𝑤𝑘𝑙21 are combined in a new effective coefficient 𝑟𝑘𝑙  for the case 

of 𝐹3
−1. The introduction of these effective coefficients 𝑠𝑘𝑙  and 𝑟𝑘𝑙  is of great aid in the 

optimization of the optical systems under study. More specifically, from Equation 3.16 we 

infer that 𝑠𝑘𝑙  and 𝑟𝑘𝑙  can be calculated evaluating the respective Zernike coefficients in two 

field points of reference, for example at the origin (𝐻𝑥 = 0,𝐻𝑦 = 0) and at the corner 

(𝐻𝑥 = 0.707, 𝐻𝑦 = 0.707) of the field of view (here the field is expressed in normalized 

coordinates). We obtain  
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Equation 3.18 

Equation 3.18 shows that the effective coefficients 𝑠𝑘𝑙  and 𝑟𝑘𝑙  can be easily obtained 

calculating the respective Zernike coefficients 𝐹3
1 and 𝐹3

−1 (in this case in the Fringe 

indexing scheme) in correspondence of two field points of interest, the first is the origin of 

the FOV while the choice of the second point is at the discretion of the optical designer. 

Here, we choose the upper right point at the corner of the FOV in normalized coordinates. 

The expression of the full field primary coma magnitude 𝑀𝑐(𝐻𝑥 , 𝐻𝑦) in Equation 3.16 

describes an elliptical conic surface whose vertex is displaced in the FOV in a point 

corresponding to its node. This entails that the magnitude of primary coma exhibits a linear 

dependence on the coordinates of the field starting from its node that is located in the point 

(𝑐𝑥 = −
𝑠00

𝑠10
, 𝑐𝑦 = −

𝑟00

𝑟01
), calculated using the effective coefficients 𝑠𝑘𝑙  and 𝑟𝑘𝑙 . In addition 

to this, such a linear dependence is different in the tangential and sagittal directions due to 

the underlying double-plane symmetry of the optical system. In fact, the coefficients 𝑠10 

and 𝑟01 (indicating the slopes of 𝐹3
1 and 𝐹3

−1) are different. Figure 3.1a shows this behavior 

and Figure 3.1b shows that the level curves are ellipses.  

 

Figure 3.1: a) Conic-shaped surface describing the full field magnitude of primary coma. b) Elliptical level 

curves of full-field primary coma magnitude. 

The full field behavior of primary coma phase 𝑃𝑐 is described with the following 

expression deriving from the second term in Equation 3.14  
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Equation 3.19 
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where the same considerations as before apply. This behavior is shown in Figure 3.2 for 

the sake of completeness. In correspondence with each point (𝐻𝑥 , 𝐻𝑦), the phase indicates 

the azimuthal orientation of primary coma aberration in the FOV plane.  

 

Figure 3.2: Full-field phase of primary coma. 

In general, the magnitude and phase of vectorial aberrations are represented jointly in 

the so-called Full Field Display [13] where specific icons, characterized by certain sizes 

and orientations and located over a grid of points in the FOV, are used to symbolize the 

inherent vectorial aberrations (with their magnitude and phase values).  

Equation 3.16 and Equation 3.19 can be conveniently used in the design of this category 

of optical systems. The optimization process can be properly controlled by building the 

merit function with the effective aberration coefficients 𝑠𝑘𝑙  and 𝑟𝑘𝑙  obtained computing the 

respective Zernike coefficients in correspondence of two field points of interest. This 

understanding can be of great aid in the definition and control of the optimization of this 

class of optical systems. 

3.3.3 Full-field behavior of Primary Astigmatism 

Full-field primary astigmatism is calculated with the fourth term in Equation 3.14. Its 

magnitude 𝑀𝑎 results from the combination of the Zernike coefficients 𝐹2
2 and 𝐹2

−2 as 

follows 
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Equation 3.20 

Analogously to the case of primary coma, the coefficients 𝑤𝑘𝑙𝑝𝑞  exhibiting the same 

field dependence (but different pupil coordinates dependence) are combined. This is again 

justified by the pupil dependent expressions of the involved Zernike polynomials, namely 

𝑍2
2(𝜌𝑥 , 𝜌𝑦) = 𝜌𝑥

2 − 𝜌𝑦
2 and 𝑍2

−2(𝜌𝑥, 𝜌𝑦) = 2𝜌𝑥𝜌𝑦. More in detail, regarding the expression 

of 𝐹2
2 (Equation 3.9), the coefficients 𝑤𝑘𝑙𝑝𝑞  with the same dependence on the field (i.e. with 

the same subscripts 𝑘𝑙) but with different dependence on the pupil coordinates (i.e. with 

different subscripts 𝑝𝑞) are combined. The following sets of coefficients are summed to 

obtain a series of equivalent effective coefficients 𝑢𝑘𝑙 shown in Equation 3.21:  
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Equation 3.21 

Regarding 𝐹2
−2, the following coefficients (Equation 3.22) are simplified with the 

notation 𝑣𝑘𝑙  retaining only their field dependence:  

0011
00

1011
10

0111
01

1111
11

2

2

2

2

w
v

w
v

w
v

w
v








 

Equation 3.22 

Similarly with the considerations done in the previous section relatively to primary 

coma, the effective coefficients 𝑢𝑘𝑙 and 𝑣𝑘𝑙  can be used advantageously in the optimization 

of this category of systems. In particular, they can be calculated from the involved Zernike 

coefficients 𝐹2
2 and 𝐹2

−2 as shown in Equation 3.23  
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Equation 3.23 

In Equation 3.23 the field points of interest used to compute the effective coefficients 

𝑢𝑘𝑙 and 𝑣𝑘𝑙  are again the origin of the FOV (𝐻𝑥 = 0,𝐻𝑦 = 0) and five additional points at 

the corners of the FOV in normalized coordinates, namely (𝐻𝑥 = 1,𝐻𝑦 = 0), 
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(𝐻𝑥 = −1,𝐻𝑦 = 0), (𝐻𝑥 = 0,𝐻𝑦 = 1), (𝐻𝑥 = 0,𝐻𝑦 = −1) and (𝐻𝑥 = 0.707, 𝐻𝑦 =

0.707). In particular, the effective coefficients 𝑢10 and 𝑢20 can be calculated solving a 

system of two linear equations with two unknowns where the two linear equations are the 

second and third in Equation 3.23. The effective coefficients 𝑢01 and 𝑢02 can be calculated 

solving another system of two linear equations with two unknowns where the two linear 

equations are the fourth and fifth in Equation 3.23. The calculation of the effective 

coefficients 𝑣𝑘𝑙  is easier because it does not require to solve systems of equations but it can 

be done retrieving directly the values of the inherent Zernike coefficient in correspondence 

of the field points of interest as shown in Equation 3.23. The surface 𝑀𝑎(𝐻𝑥 , 𝐻𝑦) described 

in Equation 3.20 exhibits a binodal behavior similar to the one characterizing the full field 

dependence of primary astigmatism in asymmetric systems described by NAT. More in 

detail, the binodal behavior of primary astigmatism in NAT optical systems is well 

described with Cassini surfaces whose level curves are Cassini ovals. On the other side, the 

binodal behavior of primary astigmatism in perturbed double-plane symmetric optical 

systems, described by 𝑀𝑎(𝐻𝑥 , 𝐻𝑦) in Equation 3.20, is more general than Cassini surfaces 

(Figure 3.3c). As a matter of fact, the level curves of this type of surface are rational 

bicircular quartics (Figure 3.3d), a more general family of curves to which Cassini ovals 

belong. For this reason, in this chapter, we define the category of surfaces described by 

𝑀𝑎(𝐻𝑥 , 𝐻𝑦) in Equation 3.20 as generalized Cassini surfaces. These two behaviors are 

shown for comparison in Figure 3.3. 

 

 
Figure 3.3: a) Cassini surface describing the full field behavior of primary astigmatism magnitude in NAT 

systems. b) Cassini ovals representing the level curves of Cassini surfaces. The lemniscate is emphasized 

with a bold dash-dot line. c) Generalized Cassini surfaces describing the full field behavior of astigmatism 

magnitude in perturbed double-plane symmetric systems. d) Rational bicircular quartic curves 

representing the level curves of generalized Cassini surfaces. In all figures, (𝒂𝒙, 𝒂𝒚) and (𝒃𝒙, 𝒃𝒚) denote 

the coordinates of the nodes of primary astigmatism in the image plane. 
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In Figure 3.3d it is emphasized the fact that the location of the node in the FOV of the 

systems of our interest is defined by the intersection of two conic sections (in red and green) 

respectively described by the equations 𝐹2
2(𝐻𝑥 , 𝐻𝑦) = 0 and 𝐹2

−2(𝐻𝑥 , 𝐻𝑦) = 0. These two 

equations are nothing but the zero level curves of the equations of the surfaces described 

by 𝑧1 = 𝐹2
2(𝐻𝑥 , 𝐻𝑦) and 𝑧2 = 𝐹2

−2(𝐻𝑥 , 𝐻𝑦) respectively. As a consequence, the nodes of 

primary astigmatism can be located solving the system of two second-degree equations 

𝐹2
2(𝐻𝑥 , 𝐻𝑦) = 0 and 𝐹2

−2(𝐻𝑥 , 𝐻𝑦) = 0. This observation is particularly relevant because it 

contributes to clarifying the origin of the two nodes visible in the magnitude of primary 

astigmatism. This fact is emphasized further in the following Figure 3.4 where the surfaces 

𝑧1 = 𝐹2
2(𝐻𝑥 , 𝐻𝑦) and 𝑧2 = 𝐹2

−2(𝐻𝑥 , 𝐻𝑦) are overlapped and the origin of nodes of primary 

astigmatism in correspondence of the intersections between their respective zero level 

curves 𝑧1 = 0 and 𝑧2 = 0 is highlighted.  

 

Figure 3.4: Origin of the binodal behavior of primary astigmatism magnitude. The surfaces 𝒛𝟏 and 𝒛𝟐 

(along with their zero level curves) are in red and green respectively. The intersection points define the 

nodes of primary astigmatism magnitude. 

The full field behavior of primary astigmatism phase 𝑃𝑎(𝐻𝑥 , 𝐻𝑦) is described by an 

expression as follows deriving from the fourth term in Equation 3.14. 
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Equation 3.24 

The previous considerations relative to the simplification of the coefficients 𝑤𝑘𝑙𝑝𝑞  

remain valid. This behavior is shown in Figure 3.5. 
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Figure 3.5: Full-field behavior of primary astigmatism phase. 

The magnitude and phase of primary astigmatism are in general represented jointly in 

the Full Field Display with icons represented by bars with variable sizes and orientations 

corresponding respectively to the magnitude and phase of this aberration type. 

Similarly with what we have previously said for primary coma, in this case, the values 

of the effective coefficients 𝑢𝑘𝑙 and 𝑣𝑘𝑙  can be properly targeted in customized merit 

functions defined in the optimization routines during the optical design of this class of 

systems. 

3.3.4 Full-field behavior of Field Curvature  

Field curvature 𝑀𝑓𝑐 as a function of field coordinates is calculated as follows (from the 

third term in Equation 3.14) 

   2
2 2

0 0 2
2 4 2 2( , ) 2 ( , ) 6 ( , ) ( , ) ( , )fc x y x y x y x y x yM H H F H H F H H F H H F H H   

 

Equation 3.25 

Field curvature aberration is zero for on-axis field points and exhibits a quadratic 

dependence on the field coordinate for circular symmetric systems. Regarding optical 

systems described by NAT, the behavior is substantially the same with the additional 

possibility for a displacement of the node location in the FOV. In perturbed double-plane 

symmetric optical systems, the behavior of 𝑀𝑓𝑐(𝐻𝑥 , 𝐻𝑦) is more general than the previous 

two cases. In fact, the variation of field curvature with the field coordinates is generally 

described by an elliptical surface displaced in the FOV. This situation is expressed by the 

following Equation 3.26 obtained from Equation 3.25 replacing the terms 𝐹𝑛
𝑚 with their 

explicit expressions (deriving from Equation 3.8, Equation 3.9, Equation 3.10 and Equation 

3.13) after simplifying the coefficients 𝑤𝑘𝑙𝑝𝑞  as it is shown below 

   
2

2 2 2
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Equation 3.26 

The effective coefficients 𝑡𝑘𝑙 are obtained in Equation 3.27. 
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Equation 3.27 

The coefficient 𝑡00 contains the additional field independent contribution given by 

spherical aberration. Equation 3.20, relative to primary astigmatism magnitude and 

contained in Equation 3.26, has been discussed in the previous sub-section and for this 

reason, it is not expressed explicitly in Equation 3.26. It is important to note that the 

presence of this term in the expression for field curvature intrinsically results from the 

recombination of the inherent Zernike polynomials as shown in Equation 3.14. In fact, the 

full field Zernike polynomials 𝐶2
2 and 𝐶2

−2 quantify the joint contributions of primary 

astigmatism and defocus to the total wavefront aberration function. The new effective 

coefficients 𝑡𝑘𝑙 can be again retrieved calculating the involved Zernike coefficients in 

correspondence of specific field points of interest. These are the origin of the FOV and four 

additional points at the corners of the FOV in normalized coordinates, namely 

(𝐻𝑥 = 1,𝐻𝑦 = 0), (𝐻𝑥 = −1,𝐻𝑦 = 0), (𝐻𝑥 = 0,𝐻𝑦 = 1) and (𝐻𝑥 = 0,𝐻𝑦 = −1). More 

in detail, the effective coefficients are found as shown in Equation 3.28. 
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Equation 3.28 

The effective coefficients 𝑡10 and 𝑡20 are obtained solving a system of two linear 

equations (the second and the third in Equation 3.28) with two unknowns, while the 

effective coefficients 𝑡01 and 𝑡02 are retrieved solving another system of two linear 

equations (the fourth and the fifth in Equation 3.28) with two unknowns. Equation 3.28 

along with Equation 3.23, previously discussed relative to the effective coefficients of 

astigmatism and computed in the same field points of interest, allows to completely 

determine the surface describing the field behavior of field curvature expressed with 

Equation 3.26. After the effective coefficients 𝑢𝑘𝑙, 𝑣𝑘𝑙  and 𝑡𝑘𝑙 are retrieved with Equation 

3.23 and Equation 3.28 respectively, the full field surface 𝑀𝑓𝑐(𝐻𝑥 , 𝐻𝑦) in Equation 3.26 or 

alternatively its zero level curves 𝑀𝑓𝑐(𝐻𝑥 , 𝐻𝑦) = 0 can be easily calculated. The full 

expression of 𝑀𝑓𝑐(𝐻𝑥 , 𝐻𝑦) describes in general an elliptical surface with a sort of 

deformations in correspondence of the nodes of primary astigmatism. In Figure 3.6a it is 

shown the full field behavior described with an elliptical surface without the deformation 

induced by the nodes of primary astigmatism. In the last section related to the simulation 

example, we will show the effect of considering the additional contribution of the 
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magnitude of primary astigmatism to the total expression of field curvature. In Figure 3.6b 

the associated zero level curves are shown to be ellipses decentered and rotated in the FOV. 

This observation is useful to find the coordinates of the node of field curvature that 

coincides with the center of symmetry of such a family of ellipses. More specifically, the 

ellipsoidal surface contained in Equation 3.26 is described by the part of the equation 

containing the effective coefficients 𝑡𝑘𝑙, namely 𝐸(𝐻𝑥 , 𝐻𝑦) = 𝑡00 + 𝑡10𝐻𝑥 + 𝑡01𝐻𝑦 +

𝑡20𝐻𝑥
2 + 𝑡02𝐻𝑦

2. The inherent level curves are found setting 𝐸(𝐻𝑥 , 𝐻𝑦) = 0, that is a 

second-degree polynomial equation in the field coordinates, describing precisely an ellipse. 

For this reason, the coordinates (𝑑𝑥 , 𝑑𝑦) of the node of field curvature can be calculated as 

𝑑𝑥 =
−0.5𝑡02𝑡10

𝛿
 and 𝑑𝑦 =

−0.5𝑡20𝑡01

𝛿
, where 𝛿 = 𝑑𝑒𝑡 [

𝑡20 0
0 𝑡02

] is the determinant of the 

matrix of the quadratic form associated with the equation 𝐸(𝐻𝑥 , 𝐻𝑦) = 0.  

 

Figure 3.6: a) Displaced and rotated double-symmetric surface describing the full field behavior of field 

curvature. b) The level curves are ellipses. 

So far, we have explicitly restricted our analysis to only primary aberrations. If higher-

order aberrations are present, it is necessary to consider the previous Equation 3.2 expanded 

up to the order of interest (for example 6th order) and again project the Zernike polynomials 

basis using Equation 3.4. The retrieved expressions of 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦) will consist of 

polynomials of order higher than the second (for example of 4th order). In this case, in 

general, it is not possible to determine such full-field expressions sampling the respective 

Zernike coefficients in correspondence of few field points, therefore different approaches 

must be put in place to simplify the study of this category of optical systems.  

3.4 Verification of results: an example with two aspheric 

lenses 

In order to demonstrate the full field behavior of primary aberrations (except distortion) in 

perturbed double-plane symmetric optical systems with circular pupil, we consider an 

optical system constituted by a combination of two aspheric lenses whose first surface is 

planar and the second one is biconic. Both lenses are tilted and decentered with respect to 

the mechanical axis of the system. A biconic surface is characterized by different conic 

constants (𝜀𝑦 ≠ 𝜀𝑥) and different radii of curvatures (𝑅𝑦 ≠ 𝑅𝑥) along the tangential and 

sagittal directions respectively. As a consequence, a biconic surface is intrinsically double-

plane symmetric in both 𝑥 and 𝑦 sections.  

The layout of the optical system under study and the reference system are shown in Figure 

3.7. 
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Figure 3.7: Layout and reference system of the optical system (the dimensions are in mm). The tangential 

and sagittal sections of the biconic surface are shown respectively in red and green. Two ray bundles are 

shown: in blue for the field point (𝑯𝒙 = 𝟎,𝑯𝒚 = 𝟎) and in orange for the field point (𝑯𝒙 = 𝟎. 𝟕𝟎𝟕,𝑯𝒚 =

𝟎. 𝟕𝟎𝟕). 

The system is set at infinite conjugates with an Entrance Pupil Diameter equal to 

𝐸𝑁𝑃𝐷 = 10𝑚𝑚. The simulation wavelength is 𝜆 = 0.55𝜇𝑚 and the FOV is 7° x 7°. The 

distance between the two lenses is 20mm. The stop position is at the first plane surface and 

the distance between the last surface and the image plane is optimized in order to minimize 

the RMS wavefront error.  

The parameters used for this example are summarized in Table 3.1. The parameters of 

the initial surfaces of the first and second biconic lenses are omitted because both surfaces 

are planar. The ray-tracing simulation is performed in OpticStudio [13].  

Table 3.1: Simulation parameters of the optical system under study 

 Parameter Symbol Value 

 

 

 

 

 

First Biconic  

Lens 

Diameter 𝐷1 50mm 

Sagittal Radius 𝑅𝑥 -402 mm 

Tangential Radius 𝑅𝑦 -400 mm 

Thickness 𝑡1 7 mm 

Glass 𝑔1 N-BK7 

Conic constant x 𝜀𝑥 24 

Conic constant y 𝜀𝑦 -8 

x decentering 𝐷𝑥,1 3.7mm 

y decentering 𝐷𝑦,1 2.3mm 

x tilt 𝜏𝑥,1 2.6° 

y tilt 𝜏𝑦,1 -1.8° 

 

 

 

 

Second Biconic 

Lens 

Diameter 𝐷2 50mm 

Sagittal Radius 𝑅𝑥 -250mm 

Tangential Radius 𝑅𝑦 -249mm 

Thickness 𝑡2 5 mm 

Glass 𝑔2 N-BK7 

Conic constant x 𝜀𝑥 3 

Conic constant y 𝜀𝑦 -2 

x decentering Dx,2 2.4mm 

y decentering Dy,2 -1.5mm 
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x tilt τx,2 -3.8° 

y tilt τy,2 2.6° 

 

In the following sections, we show the simulation results related to the full field 

behavior of individual aberration types for the optical system under study and we validate 

the mathematical models presented in the previous sections through surface fitting. The 

quality of the fit is quantified by calculating the corresponding RMSE (Root Mean Squared 

Error) and SSE (Sum of Squares due to Error).  

3.4.1 Primary coma 

Primary coma magnitude varies linearly with the distance from its node that can be 

displaced from the center of the FOV depending on the symmetry properties of the optical 

system. As previously said, the general model describing such behavior is an elliptic conic-

shaped surface with variable apex position in the FOV. This is demonstrated by fitting the 

model surface in Equation 3.16 to the simulation results. Figure 3.8 and Figure 3.9 show 

the fitting result. 

 

Figure 3.8: Conic-shaped surface fit to full-field primary coma magnitude. 

Figure 3.9 shows that the level curves of the fitted model (Equation 3.16) to the primary 

coma magnitude data are ellipses whose displacement in the FOV corresponds to the node 

location. The coefficients in the box on the right side of Figure 3.9 result from the fitting 

process. Their values coincide with those of the effective coefficients 𝑠𝑘𝑙  and 𝑟𝑘𝑙  calculated 

with Equation 3.18 reported in the previous section. The computation of the effective 

coefficients with Equation 3.18 is carried out sampling the inherent Zernike coefficients in 

only two points in the FOV, the first of which is the origin of the FOV while the second is 

chosen by us to be at the corner of the FOV, namely (𝐻𝑥 = 0.707, 𝐻𝑦 = 0.707). This result 

is particularly useful considering that the full field behavior of primary coma can be 

completely determined in this category of optical systems by the direct computation of the 

effective coefficients 𝑠𝑘𝑙  and 𝑟𝑘𝑙  in two predefined field points of interest.   
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Figure 3.9: Contour plot of the conic-shaped full-field primary coma magnitude data. 

The node of primary coma in the FOV is located in (𝑐𝑥 = −
𝑠00

𝑠10
= −2.0228°, 𝑐𝑦 =

−
𝑟00

𝑟01
= 3.0984°). The phase of primary coma is modeled with a surface described by 

Equation 3.19. Figure 3.10 shows the fit result for completeness. To be noticed that the 

calculation of the phase is done using the four-quadrant inverse tangent.  

 

Figure 3.10: Surface model fitting the primary coma phase data. 

3.4.2 Primary Astigmatism 

The field dependence of primary astigmatism magnitude exhibits a generalized Cassinian 

behavior. This is demonstrated by fitting the surface model (Equation 3.20) to the simulated 

field-dependent primary astigmatism magnitude as shown in Figure 3.11 and Figure 3.12. 
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Figure 3.11: Generalized Cassini surface fit to full-field primary astigmatism magnitude of perturbed 

double-plane symmetric systems. 

Figure 3.12 shows the level curves of the fitted model (Equation 3.20) to the simulation 

data. As previously remarked, such curves are rational bicircular quartic, a family of curves 

including also the Cassini ovals. 

 

Figure 3.12: Rational bicircular quartic curves define the contour plot of the generalized Cassini surface 

fitting the full field primary astigmatism magnitude data. 

The values of the effective coefficients 𝑢𝑘𝑙 and 𝑣𝑘𝑙  reported in the text box on the right 

side of Figure 3.12 are obtained fitting the surface model for primary astigmatism 

magnitude to the simulation data. Analogously to the above observations about the effective 

coefficients of primary coma, the values of the effective coefficients of astigmatism 𝑢𝑘𝑙 and 

𝑣𝑘𝑙  can be alternatively found using Equation 3.23 described in the previous section. With 

this equation, only a few field points of interest are sufficient to retrieve the values of the 

effective coefficients and consequently the complete behavior of Equation 3.20. The nodes 

of primary astigmatism are located by the intersection points between the conics defined by 

the equations 𝐹2
2(𝐻𝑥 , 𝐻𝑦) = 0 and 𝐹2

−2(𝐻𝑥 , 𝐻𝑦) = 0 given explicitly in Equation 3.29 
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Equation 3.29 
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In Figure 3.12 they are represented in red and green respectively. The intersection points 

between these curves can be found solving the system of two second-degree equations in 

two variables shown in Equation 3.29. In this example, we obtain (𝑎𝑥 = −6.146°, 𝑎𝑦 =

3.164°) and (𝑏𝑥 = 5.249°, 𝑏𝑦 = −1.296°). We point out again that Equation 3.29 defines 

the zero level curves of the respective surfaces 𝑧1 = 𝐹2
2(𝐻𝑥 , 𝐻𝑦) and 𝑧2 = 𝐹2

−2(𝐻𝑥 , 𝐻𝑦). 

Such zero level curves can be alternatively referred to as nodal lines as it is done in [29]. 

The surface model of Equation 3.24 fitting the phase of primary astigmatism is displayed 

in Figure 3.13. 

 

Figure 3.13: a) Surface model fitting the primary astigmatism phase. b) Contour plot of the surface model 

for primary astigmatism phase. The conic sections whose intersections locate the nodes of primary 

astigmatism are shown in red and green. 

Figure 3.13b shows again the conic sections described by Equation 3.29, in this case, 

overlapped to the contour plot of primary astigmatism phase. 

3.4.3 Field curvature 

The full field dependence of field curvature is modeled by Equation 3.25 and Equation 3.26. 

Figure 3.14 and Figure 3.15 display the fitting result.  

 

Figure 3.14: Fitting of full-field behavior of field curvature with the surface model in Equation 3.26. 

The level curves are elliptical except close to the nodes of primary astigmatism 

(indicated with two green dots in Figure 3.15). These are the areas where the nodes of 

primary astigmatism are located. 
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Figure 3.15: Full-field behavior of field curvature: contour plot of the simulated data. 

The fitting result relative to field curvature contains the same coefficients previously 

reported in the surface model for primary astigmatism indicated with 𝑢𝑘𝑙 and 𝑣𝑘𝑙 . These 

effective coefficients have almost the same values retrieved in the previous section 

regarding primary astigmatism magnitude. The effective coefficients 𝑡𝑘𝑙 can be 

alternatively obtained using Equation 3.28 where the involved Zernike coefficients, 𝐹2
0 and 

𝐹4
0, are sampled in correspondence with five field points of interest. In this particular 

example, we can observe that the contribution of primary astigmatism (with effective 

coefficients 𝑢𝑘𝑙 and 𝑣𝑘𝑙) to field curvature causes a sort of “distortion” to the elliptical level 

curves described by the part of Equation 3.26 with effective coefficients 𝑡𝑘𝑙 (shown also in 

the text box in Figure 3.15). The node of field curvature coincides with the center of 

symmetry of the family of ellipses described by the part of Equation 3.26 containing the 

effective coefficients 𝑡𝑘𝑙, namely 𝐸(𝐻𝑥 , 𝐻𝑦) = 𝑡00 + 𝑡10𝐻𝑥 + 𝑡01𝐻𝑦 + 𝑡20𝐻𝑥
2 + 𝑡02𝐻𝑦

2. 

Bearing in mind the considerations done in the previous section, the coordinates of the node 

of field curvature are found to be (𝑑𝑥 = −0.6788°, 𝑑𝑦 = 0.2209°) in this example.  

The computation of the effective coefficients for the various types of primary 

aberrations is performed evaluating the inherent Zernike coefficients in correspondence 

with few field points of interest. And as shown for coma, astigmatism and field curvature, 

the location of the respective nodes can be carried out algebraically directly from the 

introduced formulas containing effective coefficients. This fact is of particular importance 

because it allows determining the complete full-field behavior of primary aberration in 

perturbed double-plane symmetric optical systems in a form similar to the wavefront 

aberration function in the Hopkins notation for circular symmetric optical systems. We 

emphasize especially that this formulation promotes a better understanding of the general 

behavior of this category of optical systems and can be fruitfully used for their optimization 

during optical design, for example building proper merit functions containing the desired 

values of the effective coefficients.  

3.5 Conclusions 

In this chapter, we have presented a series of analytical formulas describing the full field 

dependence of Zernike polynomials for perturbed double-plane symmetric optical systems 

characterized by misalignments of the internal components. Such expressions are derived 

projecting the general full field wavefront aberration function of double-plane symmetric 

systems up to the 4th order onto the basis of pupil-dependent Zernike polynomials in the 

Fringe indexing scheme. In turn, such expressions are combined to define full field-

dependent and pupil-dependent analytical formulas with effective coefficients for primary 

aberrations (excluding distortion) for perturbed double-plane symmetric systems with a 

circular pupil. The proposed analytical expressions account for both magnitude and phase 
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of vectorial aberrations such as primary coma and primary astigmatism. In particular, the 

full field behavior of the magnitudes of primary astigmatism, primary coma and field 

curvature are described respectively with a special binodal surface (more general than the 

Cassini surface), with an elliptical conic-shaped surface and with a general elliptical surface 

with double-plane symmetry that is slightly distorted in correspondence of the astigmatism 

nodes. The location of nodes of individual aberrations over the FOV is accounted for by the 

displacement and rotation of the respective surfaces in the FOV. The application of these 

expressions with new effective coefficients can be particularly beneficial to the design and 

optimization of optical systems characterized in general by double-plane symmetry. The 

proposed analytical expressions are verified with a numerical example relative to an optical 

system consisting of misaligned biconic surfaces. 
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 Asymmetric systems 

with decentred spherical 

surfaces in the framework of 

Hamiltonian Optics: a 

comparison with Nodal 

Aberration Theory 
 

 

The goal of the present chapter is to carry out a comparison between two different 

descriptions of asymmetric optical systems with decentered spherical surfaces. The first 

description is provided in the framework of Hamiltonian Optics, the second is given with 

the formulation of the Nodal Aberration Theory. These two theories are simply compared 

based on their respective full field wavefront aberration expansions. Particular aberration 

terms in the general power series expansion of Hamiltonian Optics are not included in the 

NAT formulation. The computation of these specific aberration terms in an asymmetric 

system with decentered spherical surfaces allows us to define what are the actual limits of 

applicability of NAT to the analysis of this category of optical systems. Such computations 

consist of fitting the general multivariate polynomial model foreseen by Hamiltonian Optics 

to the wavefront aberration data obtained with real raytracing. The ultimate scope of the 

considerations presented here is to justify the use of the Hamilton power series expansion 

rather than the NAT formula to describe this category of optical systems. In this sense, the 

present chapter is ancillary to the next one where this computational approach is extensively 

used to investigate the full field aberration behavior of optical systems with multiple 

apertures. Finally, this chapter is also intended to pave the way to an integration of the 

Nodal Aberration Theory [3] into the more general and complete theory of Hamiltonian 

Optics [16].  

4.1 Introduction 

As already remarked in the previous chapters, the relevance of Hamiltonian Optics comes 

from the possibility to predict the structure of the characteristic function of an optical system 

taking into consideration its symmetry properties. In the most general case of an optical 

system without symmetry, the characteristic function is expected to be expanded with a 

polynomial in the ray coordinates whose all terms are potentially different from zero. On 

the opposite side, a circular symmetric system exhibits a simplified characteristic function 

(if compared to the aforementioned case), resulting from certain combinations of the only 

rotational invariants. In fact, this class of optical systems is characterized by the co-presence 

of axial symmetry and plane symmetry and consequently, most of the coefficients 

multiplying the terms of the polynomial expansion are identically zero. Between these two 

opposite cases, different typologies of optical systems with an intermediate degree of 
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symmetry can be devised. For example, in [16], it is described a class of systems, named 

semi-symmetric optical systems, characterized by only axial symmetry (while plane-

symmetry is absent). Optical systems with only plane-symmetry were addressed in [30]. In 

[20], bilateral symmetric optical systems are introduced as plane-symmetric systems where 

the optical surfaces can be additionally tilted in the plane of symmetry. The several classes 

of optical systems mentioned up to now are characterized by a common point, that is the 

possibility to be described, in the framework of Hamiltonian Optics, with a power series 

expansion in the ray coordinates whose aberration terms reflect the underlying symmetry.  

The Nodal Aberration theory (NAT) deals with asymmetric optical systems constituted 

by tilted and decentered rotationally symmetric surfaces reformulating the scalar wavefront 

aberration expansion proposed by Hopkins for circular symmetric system into a more 

general vectorial form. Such vectorial reformulation has proved to be beneficial for the 

treatment of general asymmetric systems with rotationally symmetric surfaces (as 

demonstrated by Thompson). Nevertheless, in such a vast theoretical development it does 

not seem to have been emphasized sufficiently the underlying derivation of NAT [3] from 

the theory of Hamiltonian optics. In fact, from a careful examination of both theories, it 

emerges clearly that the former is already contained in the latter. More specifically, the 

vectorial full-field aberration function introduced in NAT is encompassed in the 

characteristic function of a general asymmetric system as foreseen by Hamiltonian Optics. 

This can be demonstrated considering that, as mentioned above, the theory of Hamiltonian 

Optics prescribes a polynomial description of the characteristic function where, in the most 

general case, all the coefficients multiplying the polynomial terms are different from zero. 

On the other hand, the formula expressing the wavefront aberration function introduced in 

NAT is less general than the corresponding formula envisaged by Hamiltonian Optics. This 

state of things is clarified in this chapter where the polynomial expansions of the wavefront 

aberration proposed in the framework of these two theories are compared to highlight their 

main differences. In the following section, we give an overview of the parabasal behavior 

of asymmetric optical systems, necessary to introduce the concept of base-ray. In the last 

section, we analyze the full field wavefront aberration function of a simplified optical 

system in various geometrical configurations. These configurations are distinguished from 

one another by different values of the decentering parameters of the second lens composing 

the system. The choice to analyze the variation of the aberrations depending on these 

specific geometrical parameters is functional to the topic dealt with in the next chapter, 

which is the study of optical systems with multiple apertures. The present analysis indeed 

lends itself to being adapted to the study of this last class of optical systems since they can 

be classified based on specific decentering parameters, as will be clarified later.  

4.2 Parabasal optics of systems without symmetries 

As already said in the introduction of this thesis, the characteristic function quantifies the 

optical path length between any pairs of points belonging to two well-defined base-planes 

in an optical system. This implies that it is of primary importance to fix the anterior and the 

posterior base-planes constituting the starting and arrival planes of the rays passing through 

the system. At the same level, in order to study the properties of an asymmetric optical 

system, it is fundamental to make an adequate choice of the base-ray. This last one plays 

the role of reference axis in a general system without symmetries. In fact, the calculation of 

the optical path length of any light ray connecting two points lying on the anterior and 

posterior base-planes is referenced to the optical path traced by the base-ray. The 

application of the point characteristic function to the calculation of these optical distances 

is consistent only if the property of regularity is ensured for the optical system under study. 

This is the possibility to express the characteristic function (and hence the wavefront 

aberration function) of an optical system with a polynomial expansion. In the case of an 

asymmetric optical system consisting of decentered surfaces, this property is provided by 

appropriately defining the reference systems of the ray coordinates to lie along the base-ray 

at the point of intersection with the anterior and the posterior base-planes respectively. This 

point clarifies the reason why the definition of such base-ray is of primary importance, 
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certainly comparable to that of the optical axis in a rotationally symmetric system. In 

addition to this, the base-ray is defined to pass through the center of the aperture stop of an 

optical system. Thus, tracing the base-ray through the system also serves to fix the origin 

of the local reference systems of the different optical surfaces at the point of intersection 

with the base-ray itself. Moreover, such local reference systems have their 𝑧 axis lying 

along the base-ray. Last but not least, the base-ray specifies the local reference system at 

the exit pupil plane of an optical system. In practical calculations, the distance between the 

exit pupil plane and the image plane is defined to be the radius of the reference sphere to 

which the wavefront aberration function is referenced. Therefore, once a base-ray is 

properly defined in a system without symmetries, the optical aberration associated with an 

arbitrary ray (belonging to a pencil of light rays) can be described as the optical path length 

difference between the light ray itself and the base-ray. Alternatively, the optical aberration 

of an arbitrary ray can be also defined as the optical distance between the reference sphere 

(centered at the point of intersection between the base-ray and the image plane) and the 

wavefront of the pencil along the light ray in question. This situation is illustrated in the 

following Figure 4.1 where it is traced the base-ray of an optical system without symmetries 

along with the exit pupil plane and the reference sphere.  

 

Figure 4.1: Example of an asymmetric optical system. The local reference systems at the exit pupil plane 

and the image plane are shown. They are located along the base-ray, in red. A wavefront surface is shown 

in yellow at the exit pupil plane and the reference sphere is shown in red. In green, several displaced 

optical surfaces are shown. This system is displaced from the mechanical axis (m. a.). 

Once the base-ray has been traced, the parabasal behavior of an asymmetric optical 

system can be investigated. This clarifies further that the result of a parabasal analysis is 

strictly dependent on the particular definition of the base-ray.  

Analogous to paraxial optics, parabasal optics deals with the behavior of light rays near 

the base-ray. As mentioned in Chapter 1 of this thesis, the behavior of parabasal rays is 

described by the characteristic function truncated to the second degree shown in Equation 

4.1 
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Equation 4.1 

Applying the basic equations of Hamiltonian Optics (shown in Chapter 1) to Equation 

4.1, one obtains four equations describing the parabasal relations between the ray 

coordinates and their conjugates.  

The practical computation of such parabasal relations is done by tracing few parabasal 

rays through the optical system under study and retrieving the final values of the ray 

coordinates at the points of intersection with the posterior base-plane. Such parabasal rays 

are conveniently defined fixing their initial coordinates at the anterior base-plane. The 

relations obtained in this way are linear transformations from the object space coordinates 

to the image-space coordinates.  

4.3 General power series description of the full field 

wavefront aberration function 

In the present section, it is introduced the general full field wavefront aberration function 

within the framework of the theory of Hamiltonian Optics. The importance of this theory 

relies on its rigorous and exhaustive description of the imagery of optical systems classified 

according to their symmetry properties. As illustrated in Figure 4.1, the wavefront 

aberration function associated with a light ray is expressed as the difference between the 

point characteristic function at the origin of the exit pupil plane and the point characteristic 

function at the point of intersection of the light ray with the wavefront itself. This entails 

that the considerations done in the introduction relatively to the expansion in power series 

of the point characteristic function can be extended to the wavefront aberration function. 

Consequently, taking for granted again that a general optical system is regular with respect 

to a chosen reference system, its general full field wavefront aberration function 𝑊 =

𝑊(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) can be expanded as a power series in the ray coordinates 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 and 

𝜌𝑦 containing terms of even and odd degree up to the order 𝑛𝑐 of concern. Thus, the full 

field wavefront aberration function is expressed as follows  
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Equation 4.2 

where 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 are coefficients weighting the respective monomials. The maximum 

number of coefficients in the power series up to the order 𝑛𝑐 is given by the binomial 

coefficient (𝑛𝑐+4
𝑛𝑐
) =

(𝑛𝑐+4)!

𝑛𝑐!4!
. In the most general case of an optical system without any 

symmetry, all the coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 can be different from zero. This observation 

emphasizes the fundamental role played by symmetry in the theory of aberrations. In fact, 

whenever an optical system exhibits a particular symmetry, then the number of aberration 

coefficients calculated with Equation 4.2 is reduced accordingly.  

The computation of the coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 in the general power series in 

Equation 4.2 can be done through real raytracing. Families of rays, traced through the 

optical system, are identified by their intersection points with the field plane and the exit 

pupil plane. The phase of rays is measured at the intersection point with the reference 

sphere. Such phase is the optical path difference of a ray with respect to the chief ray in 

correspondence of the intersection point with the reference sphere. Therefore, these phase 
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data are nothing but the wavefront aberration function related to a specific field point in the 

FOV plane. Reiterating this calculation over a grid of field points allows obtaining the full 

field wavefront aberration function. Then, the coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 can be retrieved 

fitting (in the least-squares sense) the multivariate polynomial model in Equation 4.2 (up to 

the desired order 𝑛𝑐) to the ray-trace data. In section 4.5, this approach is used to calculate 

the value of few particular aberration coefficients of the power series in Equation 4.2 for 

different geometrical configurations of the optical system that will be analyzed. In Chapter 

5 of the thesis, this same approach is used to calculate the actual coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 

for the various branches of an optical system with multiple apertures.  

In the following section, a comparison is made between the more general wavefront 

aberration function of Equation 4.2 provided by Hamiltonian Optics and that less general 

introduced by NAT. This allows delineating more clearly the limits of applicability of the 

latter.  

4.4 Comparison with the NAT wavefront aberration 

function 

In this section, some important considerations are done regarding the nature of the 

wavefront aberration function in the NAT formulation. In particular, the main goal is to 

make a comparison between the aberration terms present in the general power series shown 

in Equation 4.2 and the respective aberration terms of the NAT wavefront aberration 

formula. This comparison is done between terms up to the 4th degree. It is important to point 

out that, relatively to NAT, it is considered that version of the wavefront aberration function 

without the summation of the aberration contributions over the surfaces of the optical 

system, that is Equation 2.4 in Chapter 2. This is done, again, to circumvent the intrinsic 

criticality of Equation 2.2 in Chapter 2 in describing optical systems characterized by 

significant secondary aberrations. In fact, in this scenario, the summation theorem for 

primary aberrations is inapplicable and it is more convenient to use a formulation 

characterized by the absence of any summation over the optical surfaces, as already 

explained in Chapter 2.  

The power series in the ray coordinates shown in Equation 4.2 provides a very general 

description of the wavefront aberration behavior of an optical system. This description is 

not limited to asymmetric systems consisting of only tilted and decentered spherical 

surfaces, but it is also extended to asymmetric optical systems constituted by surfaces with 

arbitrary shapes. Such surfaces must meet the essential condition of regularity, that is the 

possibility to be locally approximated with a polynomial. This observation underlines the 

greater generality of Equation 4.2 compared to the corresponding formulation provided by 

NAT. As a matter of fact, NAT is concerned with optical systems made of arbitrarily tilted 

and displaced only rotationally symmetric surfaces. To clarify further this state of things, 

in the following it is carried out a comparison between the aberration terms of both formulas 

with the additional aim to provide a better understanding of the meaning of the numerous 

terms contained in the power series in Equation 4.2. In fact, the juxtaposition of the 

aberration terms in Equation 4.2 with their counterparts in the NAT wavefront aberration 

formula gives insight into their respective meaning. Furthermore, the aberration terms that 

are not accounted for in the NAT formulation, are immediately put in evidence. This 

comparison is preliminary to the following section where some of the aberration 

coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈 listed in the tables, will be calculated for a very simple optical 

system in different geometrical configurations. An attempt will be made to define the limits 

of applicability of the NAT wavefront aberration formula to the description of the aberration 

behavior of asymmetric systems with decentered spherical surfaces.  

The following tables from 4.1 to 4.4 point out the correspondence between the 

aberration terms of the two formulations. In order of appearance, Tables from Table 4.1 to 

Table 4.4 show a comparison of the aberration terms of spherical aberration, coma, 

astigmatism and field curvature and distortion.  
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Table 4.1: Spherical Aberration terms 

Power series expansion NAT expansion  

𝑤0040𝜌𝑥
4 

𝑊040(𝜌𝑥
2 + 𝜌𝑦

2)
2
 

4th order 

𝑤0022𝜌𝑥
2𝜌𝑦

2 

𝑤0004𝜌𝑦
4 

𝑤0031𝜌𝑥
3𝜌𝑦 - 

𝑤0013𝜌𝑥𝜌𝑦
3 - 

 

Among the five primary spherical aberration terms foreseen by the Hamilton wavefront 

aberration function, the first three are collected together in a single aberration term in the 

NAT formula, while the last two terms are not foreseen. As will be explained in the next 

section, the study of the dependence of these spherical aberration coefficients, 𝑤0031 and 

𝑤0013, on the parameters defining the various geometrical configurations of the system that 

will be analyzed, helps to recognize when NAT is unsuitable for such description.  

Table 4.2 compares the primary coma aberration coefficients in the general Hamilton 

formula and in the NAT representation.  

Table 4.2: Coma Aberration terms 

Power series expansion NAT expansion 

4th order 

𝑤1030𝐻𝑥𝜌𝑥
3 

𝑊131𝐻𝑥𝜌𝑥(𝜌𝑥
2 + 𝜌𝑦

2) 
𝑤1012𝐻𝑥𝜌𝑥𝜌𝑦

2 

𝑤1003𝐻𝑥𝜌𝑦
3 - 

𝑤1021𝐻𝑥𝜌𝑥
2𝜌𝑦 - 

𝑤0103𝐻𝑦𝜌𝑦
3 

𝑊131𝐻𝑦𝜌𝑦(𝜌𝑥
2 + 𝜌𝑦

2) 
𝑤0121𝐻𝑦𝜌𝑥

2𝜌𝑦 

𝑤0130𝐻𝑦𝜌𝑥
3 - 

𝑤0112𝐻𝑦𝜌𝑥𝜌𝑦
2 - 

𝑤0030𝜌𝑥
3 

−𝑊131𝑎131,𝑥𝜌𝑥(𝜌𝑥
2 + 𝜌𝑦

2) 

3rd order 
𝑤0012𝜌𝑥𝜌𝑦

2 

𝑤0003𝜌𝑦
3 

−𝑊131𝑎131,𝑦𝜌𝑦(𝜌𝑥
2 + 𝜌𝑦

2) 
𝑤0021𝜌𝑥

2𝜌𝑦 

 

Among the eight terms describing primary coma in the general power series in Equation 

4.2, four are not accounted for in the NAT formulation. Moreover, the four remaining terms 

are collected in two pairs of terms with the same aberration coefficient. Similarly, the 3rd 

order comatic terms are collected in two pairs of terms with the same aberration coefficient.  

Table 4.3 deals with the aberration coefficients of primary astigmatism and field 

curvature. To prevent any misunderstanding, it needs to be clarified that the 3rd and 2nd order 

terms, listed in Table 4.3 below, are considered to be part of astigmatism and field curvature 

in the sense that, according to the NAT formulation (Equation 2.4, Chapter 2), they are 

generated from a “perturbation” of the field dependence of these 4th order aberration terms. 

Therefore, the 3rd order aberration coefficients 𝑤1011 and 𝑤0111 can be defined as linear 

astigmatism terms and those with coefficients 𝑤1020, 𝑤1002, 𝑤0120 and 𝑤0102 can be defined 

as field tilt terms. In addition to this, the 2nd order terms with aberration coefficients 𝑤0020, 

𝑤0011 and 𝑤0002 can be defined as constant astigmatism terms. These 3rd and 2nd order terms 

(generated by a field perturbation) will be added to other aberration terms of the same order 

like defocus (that is of 2nd order) if present. On the other side, in the general power series 

expansion of Equation 4.2, terms of 2nd and 3rd order are not considered to derive from an 
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eventual field perturbation of 4th or higher-order terms, but rather they are intrinsically 

present in the expansion due to the lack of symmetry of an optical system.  

Table 4.3: Astigmatism and field curvature terms 

Power series expansion NAT expansion  

𝑤2020𝐻𝑥
2𝜌𝑥

2 (𝑊220 +
1

2
𝑊222)𝐻𝑥

2𝜌𝑥
2 

4th order 

𝑤2011𝐻𝑥
2𝜌𝑥𝜌𝑦 - 

𝑤2002𝐻𝑥
2𝜌𝑦

2 (𝑊220 −
1

2
𝑊222)𝐻𝑥

2𝜌𝑦
2 

𝑤1120𝐻𝑥𝐻𝑦𝜌𝑥
2 - 

𝑤1111𝐻𝑥𝐻𝑦𝜌𝑥𝜌𝑦 𝑊222𝐻𝑥𝐻𝑦𝜌𝑥𝜌𝑦 

𝑤1102𝐻𝑥𝐻𝑦𝜌𝑦
2 - 

𝑤0220𝐻𝑦
2𝜌𝑥

2 (𝑊220 −
1

2
𝑊222)𝐻𝑦

2𝜌𝑥
2 

𝑤0211𝐻𝑦
2𝜌𝑥𝜌𝑦 - 

𝑤0202𝐻𝑦
2𝜌𝑦

2 (𝑊220 +
1

2
𝑊222)𝐻𝑦

2𝜌𝑦
2 

𝑤1020𝐻𝑥𝜌𝑥
2 

(2𝑊220𝑎220,𝑥

+
1

2
𝑊222𝑎222,𝑥)𝐻𝑥𝜌𝑥

2 

 

 

 

 

 

3rd order 

𝑤1011𝐻𝑥𝜌𝑥𝜌𝑦 −2𝑊222𝑎222,𝑦𝐻𝑥𝜌𝑥𝜌𝑦 

𝑤1002𝐻𝑥𝜌𝑦
2 

(−2𝑊220𝑎220,𝑥
+𝑊222𝑎222,𝑥)𝐻𝑥𝜌𝑦

2 

𝑤0120𝐻𝑦𝜌𝑥
2 

(−2𝑊220𝑎220,𝑦
+𝑊222𝑎222,𝑦)𝐻𝑦𝜌𝑥

2 

𝑤0111𝐻𝑦𝜌𝑥𝜌𝑦 −𝑊222𝑎222,𝑦𝐻𝑦𝜌𝑥𝜌𝑦 

𝑤0102𝐻𝑦𝜌𝑦
2 

(−2𝑊220𝑎220,𝑦
−𝑊222𝑎222,𝑦)𝐻𝑦𝜌𝑦

2 

𝑤0020𝜌𝑥
2 

[𝑊220(𝑎220,𝑥
2 + 𝑎220,𝑦

2 )

+
1

2
𝑊222(𝑎222,𝑥

2

− 𝑎222,𝑦
2 )] 𝜌𝑥

2 

2nd order 

𝑤0002𝜌𝑦
2 

[𝑊220(𝑎220,𝑥
2 + 𝑎220,𝑦

2 )

−
1

2
𝑊222(𝑎222,𝑥

2

− 𝑎222,𝑦
2 )] 𝜌𝑦

2 

𝑤0011𝜌𝑥𝜌𝑦 2𝑊222𝑎222,𝑥𝑎222,𝑦𝜌𝑥𝜌𝑦 

 

Within the nine coefficients of 4th order related to astigmatism and field curvature in the 

power series expansion, there are four that have no equivalent in the NAT formulation. 

Finally, Table 4.4 makes a comparison between the distortion terms in the two formulations.  

Table 4.4: Distortion terms 

Power series expansion NAT expansion  

𝑤3010𝐻𝑥
3𝜌𝑥 𝑊311𝐻𝑥

3𝜌𝑥 4th order 
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𝑤3001𝐻𝑥
3𝜌𝑦 - 

𝑤2110𝐻𝑥
2𝐻𝑦𝜌𝑥 - 

𝑤2101𝐻𝑥
2𝐻𝑦𝜌𝑦 𝑊311𝐻𝑥

2𝐻𝑦𝜌𝑦 

𝑤1210𝐻𝑥𝐻𝑦
2𝜌𝑥 𝑊311𝐻𝑥𝐻𝑦

2𝜌𝑥 

𝑤1201𝐻𝑥𝐻𝑦
2𝜌𝑦 - 

𝑤0310𝐻𝑦
3𝜌𝑥 - 

𝑤0301𝐻𝑦
3𝜌𝑦 𝑊311𝐻𝑦

3𝜌𝑦 

𝑤2010𝐻𝑥
2𝜌𝑥 −3𝑊311𝑎311,𝑥𝐻𝑥

2𝜌𝑥 

3rd order 

𝑤2001𝐻𝑥
2𝜌𝑦 −𝑊311𝑎311,𝑦𝐻𝑥

2𝜌𝑦 

𝑤1110𝐻𝑥𝐻𝑦𝜌𝑥 −2𝑊311𝑎311,𝑦𝐻𝑥𝐻𝑦𝜌𝑥 

𝑤1101𝐻𝑥𝐻𝑦𝜌𝑦 −2𝑊311𝑎311,𝑥𝐻𝑥𝐻𝑦𝜌𝑦 

𝑤0210𝐻𝑦
2𝜌𝑥 −𝑊311𝑎311,𝑥𝐻𝑦

2𝜌𝑥 

𝑤0201𝐻𝑦
2𝜌𝑦 −3𝑊311𝑎311,𝑦𝐻𝑦

2𝜌𝑦 

𝑤1010𝐻𝑥𝜌𝑥 
𝑊311(3𝑎311,𝑥

2

+ 𝑎311,𝑦
2 )𝐻𝑥𝜌𝑥 

2nd order 
𝑤1001𝐻𝑥𝜌𝑦 2𝑊311𝑎311,𝑥𝑎311,𝑦𝐻𝑥𝜌𝑦 

𝑤0110𝐻𝑦𝜌𝑥 2𝑊311𝑎311,𝑥𝑎311,𝑦𝐻𝑦𝜌𝑥 

𝑤0101𝐻𝑦𝜌𝑦 
𝑊311(𝑎311,𝑥

2

+ 3𝑎311,𝑦
2 )𝐻𝑦𝜌𝑦 

𝑤0010𝜌𝑥 
−𝑊311𝑎311,𝑥(𝑎311,𝑥

2

+ 𝑎311,𝑦
2 )𝜌𝑥 

1st order 

𝑤0001𝜌𝑦 
−𝑊311𝑎311,𝑦(𝑎311,𝑥

2

+ 𝑎311,𝑦
2 )𝜌𝑦 

 

Considerations similar to those done for the previous aberration types remain valid for 

4th order distortion terms. 3rd, 2nd and 1st order aberration terms are respectively defined as 

quadratic distortion terms, anamorphism terms and field displacement terms. 

4.5 Study of the limits of applicability of NAT 

The strategy put in place in this section to define the limits of applicability of the NAT 

version of the wavefront aberration function is based on the practical study of the aberration 

behavior of a simple optical system constituted by the sequence of two spherical lenses of 

which the second is allowed to be displaced transversally at different distances from the 

mechanical axis of the system. The second lens is smaller in size with respect to the first 

one and in addition to this, it defines also the aperture stop of the system. In practice, every 

couple of values of the decentering parameters of the second lens defines a specific 

configuration of the optical system under study. De facto, such a system can be studied as 

a multi-configurations optical system. The study carried out in this section is, to some 

extent, an anticipation of the topic discussed in the following chapter where the several 

optical configurations (mentioned here) will be replaced by different optical branches (or 

channels) of a multiple aperture optical system. The simple system under study is 

represented in the following Figure 4.2  
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Figure 4.2: a) Simple optical system with two spherical lenses L1 and L2. While L1 is fixed, L2 is allowed 

to be decentered along the 𝒙 and 𝒚 directions of the global reference system (𝒙𝒚𝒛). In red and blue are 

indicated two configurations characterized by different transversal displacements (𝑫𝒙𝟐, 𝑫𝒚𝟐) of the 

second lens L2. b) Front view.  

In Figure 4.2 two different geometrical configurations are displayed. They differ for the 

decentering parameters of the second lens (𝐷𝑥2, 𝐷𝑦2). The following Table 4.5 reports the 

parameters of the optical system shown in Figure 4.2. 

Table 4.5: Simulation parameters 

 Parameter Symbol Value 

 

 

L1 

Diameter 𝐷1 100 mm 

Radius of curvature 𝑅1 -200 mm 

Thickness 𝑡1 15 mm 

Glass 𝑔1 N-BK7 

Conic constant 𝑐1 0 

 

 

 

 

 

L2 

Diameter 𝐷2 10 mm 

Radius of curvature 𝑅2 -15 mm 

Thickness 𝑡2 7 mm 

Glass 𝑔2 N-BK7 

Conic constant 𝑐2 0 

x decentering Dx2 Variable 

y decentering Dy2 Variable 

x tilt τx,2 0 ° 

y tilt τy,2 0 ° 

 

Each configuration can be imagined to be a particular channel of a composite optical 

system with multiple apertures. The objective of this section is to make an analysis of the 

different configurations of the system shown in Figure 4.2 comparing the respective full 

field wavefront aberration functions (Equation 4.2) obtained with the approach described 

in section 4.3. The scope of this comparison is to ascertain the conditions in which the NAT 

full field wavefront aberration function fails to describe the effective wavefront aberrations 

of the various configurations of the optical system under study. Because of the large number 

of aberration terms in the general power series expressed by Equation 4.2, the investigation 

made here is focused on the behavior of only a few terms that are more relevant for the 

analysis. The terms in question are those not included in the NAT wavefront expansion. As 

remarked in the previous section, these aberration terms result from certain combinations 

of the ray coordinates that are not considered in NAT because the terms of this latter theory 

contain combinations of the pupil coordinates, 𝜌𝑥 and 𝜌𝑦, deriving from the only rotational 

invariants (𝜌𝑥
2 + 𝜌𝑦

2) and (𝐻𝑥𝜌𝑥 + 𝐻𝑦𝜌𝑦). For example, regarding primary spherical 

aberration, the terms of election to carry out the present analysis are respectively 𝑤0031𝜌𝑥
3𝜌𝑦 

and 𝑤0013𝜌𝑥𝜌𝑦
3. Considering primary coma, the terms 𝑤1003𝐻𝑥𝜌𝑦

3, 𝑤1021𝐻𝑥𝜌𝑥
2𝜌𝑦, 
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𝑤0130𝐻𝑦𝜌𝑥
3 and 𝑤0112𝐻𝑦𝜌𝑥𝜌𝑦

2 are of interest. Continuing in the same way, for astigmatism 

and field curvature the elected terms are 𝑤2011𝐻𝑥
2𝜌𝑥𝜌𝑦, 𝑤1120𝐻𝑥𝐻𝑦𝜌𝑥

2, 𝑤1102𝐻𝑥𝐻𝑦𝜌𝑦
2 and 

𝑤0211𝐻𝑦
2𝜌𝑥𝜌𝑦. Therefore, calculating the value of the listed aberration terms for each 

geometrical configuration of the optical system under study, allows to determine exactly 

those configurations that are not properly described by the NAT wavefront aberration 

function. In particular, if the magnitude of one of the listed aberration terms is different 

from zero for a specific configuration, the consequence is that this same configuration is 

not eligible to be described with the NAT wavefront aberration formula. Alternatively, one 

can say that the eventual description with the NAT formula will introduce an error. It is 

recalled here that such configurations differ from each other for the decentering parameters 

of the second lens. This analysis, if extended to the rest of the wavefront aberration terms, 

allows to completely define the limits of applicability of NAT to this category of systems. 

Furthermore, it provides an insight into the general variation of the wavefront aberration 

function in optical systems whose “degree of symmetry” can be conveniently related to the 

value of some geometrical parameters of interest. In this particular case, the geometrical 

parameters involved in the definition of the “degree of symmetry” of any specific 

configuration of the system in Figure 4.2 are, as mentioned above, the transversal 

displacements of the second spherical lens along the 𝑥 and 𝑦 directions in the global 

reference system denoted with 𝐷𝑥2 and 𝐷𝑦2.  

Starting with the coefficients of spherical aberration (relevant for the scope of this 

study), they are respectively 𝑤0031 and 𝑤0013. Since both these coefficients exhibit the same 

variation over the decentering parameters 𝐷𝑥2 and 𝐷𝑦2, in the following Figure 4.3, it is 

shown the behavior of the first of them, 𝑤0031(𝐷𝑥2, 𝐷𝑦2). The height of the surface in 

correspondence with a grid of points in the domain 0𝑚𝑚 ≤ 𝐷𝑥2 ≤ 20𝑚𝑚 and 0𝑚𝑚 ≤
𝐷𝑦2 ≤ 20𝑚𝑚 quantifies the magnitude of the spherical aberration coefficient 

𝑤0031(𝐷𝑥2, 𝐷𝑦2) in waves (𝜆0 = 0.55𝜇𝑚). Each point (𝐷𝑥2, 𝐷𝑦2) indicates a particular 

geometrical configuration of the optical system under study, characterized exactly by the 

corresponding values of the decentering parameters of the second lens.  

 

Figure 4.3: Variation of the spherical aberration coefficient 𝒘𝟎𝟎𝟑𝟏 with respect to the decentering 

parameters of the second lens constituting the optical system in Figure 4.2. 

Figure 4.3 demonstrates that the spherical aberration coefficient in question (not 

included in the NAT wavefront aberration expansion) is nonzero for (𝐷𝑥2 ≠ 0, 𝐷𝑦2 ≠ 0) in 

the analyzed domain. This suggests that the geometrical configurations whose decentering 

parameters meet the condition above are not properly described using the NAT wavefront 

aberration function since this last formula does not include the particular spherical 

aberration coefficients shown above (it is reminded that the coefficient 𝑤0013(𝐷𝑥2, 𝐷𝑦2) is 

not shown because it exhibits the same behavior as the coefficient 𝑤0031). Following the 

same path, Figure 4.4 shows the behavior of two primary coma coefficients relevant to this 
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analysis. These are respectively 𝑤1021(𝐷𝑥2, 𝐷𝑦2) and 𝑤1003(𝐷𝑥2, 𝐷𝑦2), while the remaining 

aberration coefficients, 𝑤0112(𝐷𝑥2, 𝐷𝑦2) and 𝑤0130(𝐷𝑥2 , 𝐷𝑦2), are omitted because they 

behave exactly as the formers.  

 

Figure 4.4: Variation of the coma aberration coefficients 𝒘𝟏𝟎𝟐𝟏 and 𝒘𝟏𝟎𝟎𝟑 with respect to the decentering 

parameters of the second lens 𝑫𝒙𝟐 and 𝑫𝒚𝟐. 

Similar to the case of spherical aberration, the coma coefficients in Figure 4.4 are 

different from zero if the condition (𝐷𝑥2 ≠ 0, 𝐷𝑦2 ≠ 0) is met. This situation supports 

further the idea that an increasing numerical error is introduced using the NAT wavefront 

aberration formula to describe geometrical configurations with increasing values of the 

decentering parameters.  

Extending the considerations done before to astigmatism and field curvature, in this 

case, the aberration coefficients of interest for the present investigation are 𝑤0211(𝐷𝑥2, 𝐷𝑦2) 

and 𝑤1102(𝐷𝑥2, 𝐷𝑦2), while the other two coefficients, namely 𝑤2011(𝐷𝑥2 , 𝐷𝑦2) and 

𝑤1120(𝐷𝑥2, 𝐷𝑦2), are again neglected given that they vary exactly like the other two 

coefficients. The following Figure 4.5 illustrates the behavior of both aberration 

coefficients.  

 

Figure 4.5: Variation of astigmatism and field curvature aberration coefficients 𝒘𝟎𝟐𝟏𝟏 and 𝒘𝟏𝟏𝟎𝟐 with 

respect to the decentering parameters of the second lens 𝑫𝒙𝟐 and 𝑫𝒚𝟐. 

This last example confirms further the previous considerations regarding the increasing 

error done in the case the NAT wavefront aberration function is used to describe 

geometrical configurations with larger decentering parameters.  

The series of examples in this section and, in general, this chapter are propaedeutic to 

the next chapter where it is carried out a study about optical systems with multiple apertures. 

Substantially, the observations done up to now seem to suggest unambiguously that the use 

of the general power series formula is more promising than the NAT formula to describe 
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the aberration behavior of asymmetric systems characterized by decentered spherical 

lenses.  

4.6 Conclusions 

The general goal of this chapter is to show that, substantially, the wavefront aberration 

function introduced by NAT relatively to asymmetric optical systems is nothing but a 

reformulation of the more general wavefront aberration function described in the theory of 

Hamiltonian Optics for optical systems without symmetry. In addition to this, due to the 

greater generality of the Hamilton formulation compared to that of NAT, the former appears 

to be best suited to the analysis of the aberration behavior of asymmetric systems 

characterized by more pronounced decentering parameters of the spherical surfaces. This 

analysis has been carried out for a simplified optical system consisting of two spherical 

lenses, the latter of which is allowed to be decentered from the 𝑧 axis of the global reference 

system. Such analysis has been focused on the only transversal displacement of the second 

spherical lens, intentionally neglecting the possibility to be tilted with respect to the 

reference axis. The approach presented in this chapter is prone to be applied to the analysis 

of the full field aberration behavior of optical systems with multiple apertures, which is the 

subject of the next chapter of this thesis. In particular, the full field wavefront aberration 

function expressed by Equation 4.2 will be computed for the several branches of an optical 

system with many apertures since, as pointed out in the present chapter, this formulation is 

more appropriate for this purpose.  
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 Wavefront aberration 

behavior in multiple aperture 

systems 
 

 

In this chapter, it is proposed a general approach to describe the full field aberration 

behavior in optical systems with many apertures. The formulas presented in the previous 

chapters, properly adapted to account for the presence of several apertures in the optical 

system, are used for this purpose. The additional goal of the present treatment is to 

emphasize the possibility to exploit the occurrence of symmetries in the channels of a multi-

aperture system to acquire a better understanding of its image-forming properties and its 

aberrations. In the last section, it is shown a practical application of the considerations done 

throughout the chapter. A light field camera is studied as an exemplary realization of a 

multi-aperture optical system. In this case, it is shown the possibility to predict the 

aberration behavior of the whole optical system restricting the analysis to the only channels 

spanning the first quadrant of the field of view.  

5.1 Optical systems with multiple apertures 

The main feature of the class of optical systems of interest in this chapter is the presence of 

multiple apertures whose primary function is to perform a spatial channeling of the 

incoming light disturbance. Such a channeling, more precisely, consists of the spatial 

sampling of the incoming light. This function is, in practice, realized by providing an optical 

system with special optical components characterized by many apertures. An alternative 

way to devise and implement this category of optical systems consists of providing them 

simply with many single-aperture optical components properly decentered with respect to 

the mechanical axis of the whole system. Not surprisingly, a multiple-aperture optical 

component can be conceived as an ensemble of many single-aperture optical components 

properly arranged in a grid structure. In this case, the grid arrangement of the single-aperture 

optical components can be designed arbitrarily according to the functions of the multiple 

aperture system. The category of optical systems under study is well represented by light 

field cameras, also known as plenoptic cameras. These cameras are typically constituted by 

a main objective followed by a microlens array (MLA) that is a monolithic optical 

component consisting of many lenses whose diameters commonly range from 100𝜇𝑚 to 

1mm. In the present treatment, there is no need to restrict the diameters of such multiple 

apertures to be in that range. In fact, it is assumed that the diameters of the multiple 

apertures can be chosen arbitrarily. This assumption affects strongly the final number of 

channels that a multi-aperture system exhibits. In the last section, it is analyzed an example 

of a multiple-aperture optical system with 5x5 channels with diameters equal to 2.5mm. It 

is worth observing that, in this context, the terms optical channel and optical branch are 

used interchangeably.  

As already mentioned above, in the class of optical systems under study, multiple 

apertures ensure a spatial sampling or partitioning of the incoming light. This concept is 

further clarified if one considers that the light disturbance emitted from (or reflected by) an 

object plane, located in front of the optical system, undergoes spatial partitioning when 

traveling through the optical system itself as a direct consequence of the spatial arrangement 

of the many apertures. Such spatial partitions are then projected onto the image plane that 

is thereby nothing but a collection of resized sub-areas of the object plane. Depending on 
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the particular architecture of these optical systems and on the parameters of the 

individual optical components, a multiple-aperture system can be designed to sample the 

object plane with a prescribed overlap between adjacent partitions. This means that adjacent 

channels of the system sample a common sub-area of the object plane, corresponding to the 

region of overlap between adjacent partitions. In practice, the overlap of adjacent sub-areas 

of the object plane determines a certain degree of redundancy of the final image at the image 

plane. As a matter of fact, the final image appears as a collection of portions of the object 

plane captured from different points of observation. This effect of the shift of the point of 

observation is exploited in post-processing algorithms that, typically, allow to retrieve a 

depth map of the observed scene.  

The goal of the present chapter is to explore the opportunities offered by symmetry to 

facilitate the study of optical systems with many apertures. For the sake of clarity and to 

dispel any doubt, it is important to remark again that this category of optical systems can 

be conveniently conceived as an ensemble of independent optical sub-systems, each one 

characterized by peculiar symmetry properties. Depending on the particular optical system 

under study, it may be possible to identify groups of channels characterized by the same 

symmetry properties. In this case, the study of the whole optical system is greatly facilitated.  

5.2 Parabasal behavior 

The application of the principles of Hamiltonian Optics to the study of multi-aperture 

optical systems relies on the definition of an ensemble of base-rays, one per optical channel, 

playing the role of reference axis to which the respective characteristic functions are 

referenced. If the symmetry properties of the several branches composing a multi-aperture 

optical system are known in advance, a proper definition of the aforementioned ensemble 

of base-rays is easier. For example, the base-ray of a plane-symmetric system can be 

suitably defined in the plane of symmetry itself. In the more general case of an optical 

system without symmetry, an appropriate definition of the base-ray is not immediate. In 

this case, depending on the characteristics of the optical system under study, a base-ray can 

be conveniently defined as the ray that connects the center of the aperture stop with the 

center of the FOV on the object and image sides. In the case of a multi-channel optical 

system, the definition of a base-ray for each channel is to some extent simplified by the 

prescribed displacement of the optical components from the mechanical axis of the system. 

In fact, individual channels are characterized by a specific shift of the aperture stop with 

respect to the mechanical axis of the optical system itself. Therefore, the definition of a 

base-ray for each channel is somehow eased by the specific displacement of the respective 

pupils. In the following Figure 5.1, this concept is illustrated for a multi-aperture system 

characterized by 3x3 channels arranged in a rectangular grid.  

 

Figure 5.1: Multiple aperture system with 3x3 channels. The central channel is the only one with circular 

symmetry and its base-ray coincides with its axis of symmetry that, in turn, corresponds to the mechanical 

axis of the system as a whole. 
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As remarked above, the definition of such an ensemble of base-rays is of primary 

importance since each base-ray plays the role of reference axis for its inherent optical 

channel that, in general, can be a system without any predefined symmetry. In the case the 

system has a circular symmetric channel, the base-ray coincides with its axis of symmetry 

that, in turn, corresponds to its mechanical axis.  

Tracing the base-rays requires first the definition of a global coordinates system for the 

whole multi-aperture optical system. Such a global reference system is conveniently 

defined with the origin lying in the point of intersection between the mechanical axis of the 

multi-aperture system and an arbitrary surface preceding the multiple pupils plane. 

Additionally, the global reference system is defined to have the z-axis along the mechanical 

axis itself. Once a global reference system is established, the tracing of an ensemble of base-

rays, one per each channel, is driven by the particular displacements of the aperture stop 

surfaces of the channels themselves with respect to the z-axis of the global reference system. 

Substantially, this means that, in the raytracing algorithm, the base-rays are aimed at the 

predefined locations of the decentered pupils. A base-ray, traversing a particular channel 𝑐, 

defines a series of points of intersection with the surfaces constituting the channel itself. 

Such points of intersection, in turn, define the origin of two local coordinate systems for 

each surface of the channel 𝑐, indexed with 𝑗; the first coordinate system is related to rays 

before refraction at the surface 𝑗, while the second is related to rays after refraction. Both 

local reference systems are characterized by the fact that their respective z-axis lie along 

the base-ray at the intersection with the surface 𝑗. In line with the considerations done in 

the previous chapter, the base-ray of each channel defines also the local coordinates systems 

associated with the object plane, image plane and pupil plane. This point deserves to be 

emphasized further in order to acquire a better understanding of the information contained 

in the full field wavefront aberration function of any optical channel discussed in the next 

section. More in details, the coordinates of the local reference system in the object plane 

(or equivalently in the image plane) and those of the local reference system in the exit pupil 

plane, are the variables used to define the characteristic function associated with any light 

ray propagating through an optical channel. Therefore, these are also the variables on which 

depends the full field wavefront aberration function of each channel. These variables have 

been denoted as 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 and 𝜌𝑦 throughout this thesis. Moreover, the various reference 

spheres centered at various field points of an optical channel can be conveniently defined 

to have a common vertex at the point of intersection of the base-ray with the exit pupil 

plane. For the sake of clarity, the local coordinates systems in the image plane and the exit 

pupil plane are illustrated for a multi-aperture optical system with 9 channels in Figure 5.2. 

The reference spheres centered at the intersection between the base-ray and the image plane 

are depicted in green.  
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Figure 5.2: Multi-aperture system with the respective base-rays (red), FOV partitions (in yellow it is 

shown the domain sampled by a rectangular grid of points), exit pupil planes (in red it is shown the 

domain sampled by a rectangular grid of points) and reference spheres centered at the intersection points 

between the base-rays and the sub-FOV. The reference axis of the exit pupil and sub-FOV planes are 

indicated only for the channel 𝒄. The parameters denoting the transversal displacement of the pupils from 

the mechanical axis are 𝑫𝒙 and 𝑫𝒚.  

Once the base-rays and the reference axis of the local exit pupil and FOV planes of each 

branch of the system are defined, the parabasal behavior of the optical channels can be 

studied by tracing parabasal rays similar to the study of the paraxial behavior of circular 

symmetric optical systems. Parabasal rays are traced in a neighborhood of the base-rays.  

In the next section, few considerations are done relative to the possibility to simplify the 

study of the aberration behavior of this class of systems exploiting the symmetry of different 

FOV partitions in corresponding channels. Then, different methods of visualization of the 

aberration behavior of the various channels are described.  

5.3 Full-field wavefront aberration function in optical 

systems with many apertures 

Different strategies can be devised to describe the aberration behavior of optical systems 

with many apertures. One potential route to analyze the aberration behavior of these optical 

systems relies on the possibility to leverage the symmetry of the various channels 

constituting the system as a whole. In fact, in the category of multi-channel optical systems 

considered in this chapter, it is typically possible to make specific assumptions on the class 

of symmetry to which different groups of optical channels belong. These assumptions can 

be made based on the specific geometry of the various channels constituting the optical 

system. For instance, considering a multi-channel system like a light field camera, this 

consists of the sequence of two sub-systems, of which the first is the main objective while 

the second is the multi-aperture system, namely an array of microlenses. This latter sub-
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system’s function is to provide a channeling of the incoming light and for such reason, 

different microlenses can be regarded as defining different channels of the optical system. 

Specifically, the various optical channels can be classified depending on the peculiar 

geometrical displacement of the inherent microlens with respect to the mechanical axis of 

the system. Consequently, each channel projects a particular partition of the object-side 

FOV onto a corresponding partition of the image-side FOV located behind the microlens. 

Each image-side partition of the FOV has the same area as a microlens. Thus, the area of 

the entire image-side FOV is equal to the area of the multi-aperture plane in the present 

treatment. These observations pave the way to the application of the concepts of 

Hamiltonian Optics to the study of the aberration behavior of different optical channels 

classified according to the displacement of the respective exit pupils in the multi-aperture 

plane or equivalently, according to the displacement of the respective partitions of the 

image-side FOV.  

The following Figure 5.3 is aimed at illustrating the correspondence between the optical 

channels 𝑐1, 𝑐2, 𝑐3 and 𝑐4 whose pupils are located in corresponding positions in different 

quadrants of the image-side FOV. 

 

Figure 5.3: It is shown the overlap between the multiple aperture plane 𝑫𝒙𝑫𝒚 and the image-side FOV 

plane 𝒉𝒙𝒉𝒚. Each channel corresponds to a partition of the FOV whose local coordinates are the field 

variables 𝑯𝒙 and 𝑯𝒚 (ray coordinates). It is highlighted the correspondence between channels located in 

different quadrants of the FOV plane. 

The optical channel 𝑐1 characterized by a specific displacement of the pupil 

(𝐷𝑥 = 𝐷𝑥
𝑐1 > 0, 𝐷𝑦 = 𝐷𝑦

𝑐1 > 0) with respect to the mechanical axis of the system, can be 

expected to have a behavior that is symmetric about the origin with respect to that of the 

corresponding optical channel 𝑐3 whose specific displacement of the pupil is 

(𝐷𝑥 = 𝐷𝑥
𝑐3, 𝐷𝑦 = 𝐷𝑦

𝑐3) where (𝐷𝑥
𝑐3 = −𝐷𝑥

𝑐1 , 𝐷𝑦
𝑐3 = −𝐷𝑦

𝑐1). The same considerations are 

valid for the channels 𝑐2 and 𝑐4, symmetric about the ℎ𝑦 and ℎ𝑥 axis with respect to the 

channel 𝑐1, provided that their displacement coordinates are (𝐷𝑥
𝑐2 = −𝐷𝑥

𝑐1, 𝐷𝑦
𝑐2 = 𝐷𝑦

𝑐1) and 

(𝐷𝑥
𝑐4 = 𝐷𝑥

𝑐1 , 𝐷𝑦
𝑐4 = −𝐷𝑦

𝑐1). For the sake of simplicity, in the present treatment, multi-

aperture optical systems constituted by only spherical surfaces are taken into account. This 
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facilitates further assumptions on the symmetry of optical channels characterized by a 

similar displacement of the pupil.  

Analyzing Figure 5.3, it can be observed that the field variables (𝐻𝑥 , 𝐻𝑦) of each 

channel can be identified with the coordinates of the local reference system in the partition 

of the image-side FOV behind the channel itself. In the light of this observation, it can 

therefore be deduced that an advantageous approach to analyze optical systems with many 

apertures can be based on the study of the aberration behavior of optical channels grouped 

in the same quadrant of the plane ℎ𝑥ℎ𝑦 that is the image-side FOV of the optical system as 

a whole. The advantage of this approach will become evident in section 5.5 where the 

parametric curves describing the transverse ray aberrations will be displayed for channels 

in different quadrants of an example of a plenoptic camera. For now, it is sufficient to 

observe that, as a consequence of the previous considerations, the full field wavefront 

aberration function 𝑊𝑐3(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥 , 𝜌𝑦) of the channel 𝑐3, located in the third quadrant, 

can be easily retrieved from the full field wavefront aberration function 

𝑊𝑐1(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥 , 𝜌𝑦) of the corresponding channel 𝑐1, located in the first quadrant of the 

plane ℎ𝑥ℎ𝑦, just inverting the sign of the field coordinates of the wavefront aberration 

function itself, namely 𝐻𝑥 → −𝐻𝑥 and 𝐻𝑦 → −𝐻𝑦 . The following Equation 5.1 simply 

describes this situation for the channels mentioned above and illustrated in Figure 5.3. 

{

𝑊𝑐2(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) = 𝑊𝑐1(−𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦)

𝑊𝑐3(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) = 𝑊
𝑐1(−𝐻𝑥 , −𝐻𝑦 , 𝜌𝑥 , 𝜌𝑦)

𝑊𝑐4(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) = 𝑊𝑐1(𝐻𝑥 , −𝐻𝑦 , 𝜌𝑥, 𝜌𝑦)

 

Equation 5.1 

These observations facilitate substantially the study of the full field aberration behavior 

of multi-aperture systems like a light field camera. In fact, once the aberration behavior of 

the optical channels located in one particular quadrant of the FOV has been obtained, the 

extension of this result to optical channels belonging to the remaining quadrants is 

straightforward. Bearing in mind these considerations, in the following sections, two 

different approaches are presented to analyze the aberration behavior of a multi-aperture 

optical system. The first is based on the analysis of the aberration coefficients depending 

on the decentering parameters of the channels constituting the optical system itself. This 

first approach has been already introduced in Chapter 4 of this thesis to investigate the 

dependence of the aberration coefficients on the decentering parameters of the second lens 

constituting the simple multi-configuration system studied in that context. The second 

approach is based on a combination of Zernike Fringe coefficients to obtain full-field 

expressions for different types of aberrations represented again as functions of the 

decentering parameters. This second approach has been introduced throughout Chapters 2 

and 3. These two different descriptions of the full field wavefront aberration function of a 

system with multiple apertures can be restricted to the channels spanning the only first 

quadrant of the image-side FOV since the behavior of the channels in the remaining 

quadrants can be found with symmetry operations about the axis and the origin of the FOV 

plane. 

5.4 Wavefront aberration function expanded with a general 

power series 

Equation 4.2 from Chapter 4 can be used to describe the general behavior of the various 

branches of a multi-aperture optical system. For the sake of clarity, this equation is reported 

here as Equation 5.2 where the simple addition of a superscript 𝑐 to the wavefront function 

𝑊𝑐 and to the inherent aberration coefficients 𝑤𝑐 is useful to denote the channel to which 

this expression is related.  
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Equation 5.2 

The superscript c is assumed to be 𝑐 = 1,… , 𝑁𝑐 where 𝑁𝑐 is the total number of channels 

present in the multi-aperture optical system. The coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈
𝑐  weight the 

respective terms in the polynomial expansion in Equation 5.2. The subscripts 𝑛 − 𝜆, 𝜆 −
𝜇, 𝜇 − 𝜈, 𝜈 indicate the power to which the ray coordinates 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 and 𝜌𝑦 are raised. In 

particular, the subscript 𝑛, indicating the total power of the inherent term, is such that 𝑛 =
1,… , 𝑛𝑐 where 𝑛𝑐 is the maximum order of interest in the wavefront aberration expansion. 

For example, if we are concerned with primary or secondary aberrations (retaining the same 

nomenclature used for rotationally symmetric systems), then 𝑛𝑐 = 4 or 𝑛𝑐 = 6 respectively. 

Different channels exhibit, in general, different symmetry properties. This situation is 

reflected in the values of the aberration coefficients that can be displayed as functions of 

the decentering parameters of different channels of a multi-aperture system. This 

representation is similar to what has been discussed in Chapter 4. The main difference is 

that, in the present context, the possible displacements (𝐷𝑥 , 𝐷𝑦) of the different channels 

are constrained to be in a grid of points defined by the multiple aperture plane structure, 

while in Chapter 4 such constraint was absent.  

In agreement again with the considerations done in Chapter 4, in general in Equation 

5.2, there are 35 terms of 4th order for each optical channel. If a particular channel in the 

optical system exhibits a specific symmetry behavior, the number of 4th order terms in 

Equation 5.2 can be reduced following the specific symmetry. Equivalently, it can be 

assumed that the terms that are absent due to symmetry in the power series of Equation 5.2, 

have the respective coefficients equal to zero. For example, in a multiple aperture system 

with 5x5 optical branches, the variation of primary spherical aberration over the channels 

can be visualized displaying the inherent 4th order coefficients as functions of the channels 

decentering coordinates 𝐷𝑥 and 𝐷𝑦 . More in detail, for primary spherical aberration, the 

five inherent 4th order terms 𝜌𝑥
4, 𝜌𝑥𝜌𝑦

3, 𝜌𝑥
2𝜌𝑦

2, 𝜌𝑥
3𝜌𝑦 and 𝜌𝑦

4 are weighted by the coefficients 

𝑤0040
𝑐 , 𝑤0013

𝑐 , 𝑤0022
𝑐 , 𝑤0031

𝑐  and 𝑤0004
𝑐  respectively. As said above, these coefficients can 

be displayed as functions of the individual optical channel decentering parameters in 

analogy to what has been done in the previous chapter.  

As an alternative to the full-field wavefront aberration function, it can be equivalently 

investigated the transverse ray aberration behavior for each branch of the whole system. 

This behavior can be obtained deriving the equations that describe the ray coordinates 

displacements along the 𝐻𝑥 and 𝐻𝑦  directions in the image plane. In Equation 1.35-

Equation 1.36 in Chapter 1, these quantities have been indicated with 𝛿𝐻𝑥 and 𝛿𝐻𝑦  

respectively. To avoid misunderstanding, in this chapter they are denoted respectively with 

𝜀𝑥
𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) and 𝜀𝑦

𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥 , 𝜌𝑦) where the full dependence on the ray coordinates 

serves to point out the general nature of these two functions as will be clarified later. 

Additionally, the superscript 𝑐 specifies again the associated channel. Thus, the transverse 

ray coordinates 𝜀𝑥
𝑐 and 𝜀𝑦

𝑐 are computed as follows  

{
 
 

 
 𝜀𝑥

𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) = −
𝑅

𝑛′
𝜕𝑊𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦)

𝜕𝜌𝑥

𝜀𝑦
𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥, 𝜌𝑦) = −

𝑅

𝑛′
𝜕𝑊𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌𝑥 , 𝜌𝑦)

𝜕𝜌𝑦

 

Equation 5.3 

where 𝑛′ is the refractive index in the image space and 𝑅 is the radius of curvature of 

the reference sphere for the optical channel 𝑐. In principle, the radius of curvature of the 

reference sphere changes for different field points in the same optical channel, but in 
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practical calculations, it is conveniently considered to be equal to the exit pupil position, 

corresponding to the distance between the exit pupil and the image plane. Additionally, here 

it is supposed that the radius of curvature of the reference sphere is the same for all the 

optical channels constituting the whole optical system. This assumption is necessary to give 

consistency to the forthcoming comparison of the full field aberration behavior of different 

optical channels. As a matter of fact, in the absence of this assumption, such a comparison 

would be based on computations performed with respect to a different reference sphere for 

each optical channel and this situation would lack consistency. Recalling that the term 𝑊𝑐 

(contained in Equation 5.3) is a power series expansion in the ray coordinates, it is 

immediately evident that the transverse ray coordinates in Equation 5.3 are also described 

by two power series expansions in the ray coordinates 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 and 𝜌𝑦 whose order is 

reduced by one.  

After that, considering any channel of the whole system, the transverse ray aberrations 

along the inherent partition of FOV can be plotted fixing the field coordinates in 

correspondence with a field point of interest (𝐻𝑥 = 𝐻𝑥0, 𝐻𝑦 = 𝐻𝑦0) and replacing the pupil 

coordinates 𝜌𝑥 and 𝜌𝑦 with new parametrized coordinates 𝜌𝑥(𝑡) = 𝜌0 cos 𝑡 and 𝜌𝑦(𝑡) =

𝜌0 sin 𝑡 where 𝑡 is a parameter and 𝜌0 is the radius of the circle determined by the 

intersection of the congruence of light rays emitted from the point (𝐻𝑥0, 𝐻𝑦0) with the 

decentered exit pupil of the optical channel under study. As a consequence of this, the 

transverse ray aberrations have the following parametrized coordinates along the 𝐻𝑥 and 

𝐻𝑦  directions of the FOV partition identified by the channel 𝑐  

{
𝜀𝑥
𝑐(𝐻𝑥0, 𝐻𝑦0, 𝜌0 cos 𝑡 , 𝜌0 sin 𝑡) = 𝜀𝑥

𝑐(𝑡)

𝜀𝑦
𝑐(𝐻𝑥0, 𝐻𝑦0, 𝜌0 cos 𝑡 , 𝜌0 sin 𝑡) = 𝜀𝑦

𝑐(𝑡)
 

Equation 5.4 

If normalized pupil coordinates are used, setting 𝜌0 = 1 in Equation 5.4 implies that the 

transverse ray coordinates 𝜀𝑥
𝑐(𝑡) and 𝜀𝑦

𝑐(𝑡) in the image plane are related to a congruence 

of light rays grazing the rim of the exit pupil.  

In section 5.5, the wavefront aberration coefficients 𝑤𝑐 and the parametric curves 𝜀𝑥
𝑐(𝑡) 

and 𝜀𝑦
𝑐(𝑡) describing transverse ray aberrations are calculated for each channel of an 

example of a plenoptic camera.  

5.4.1 Wavefront aberration function expanded with full 

field-dependent Zernike polynomials 

In this section, it is shown a generalization of the formulas presented in Chapters 2 and 

3 to multiple-aperture optical systems. This generalization consists simply of allowing the 

field dependence of Zernike coefficients to be described by general power series in the field 

coordinates up to the 4th order. In this way, the peculiar nodal behavior developed by 

different types of aberrations in the FOV of the channels of a multiple aperture system can 

be easily described. Recalling Equation 3.14 from Chapter 3, it has been used to describe 

the full field behavior of primary aberrations in double-plane symmetric optical systems 

with perturbations due to tilts and displacements of the optical components. In that case, 

the full field expressions of the Zernike coefficients have been obtained projecting the full 

field wavefront aberration function of perturbed double-plane symmetric systems up to the 

4th order onto the basis of the pupil dependent Zernike polynomials in the Fringe indexing 

scheme. The resulting expressions were general power series in the field coordinates 

containing even and odd terms up to the 2nd degree since we were concerned with only 

primary aberrations. For the present treatment, these expressions are further expanded up 

to the 4th order to correctly describe the influence of higher-order aberrations on the 

behavior of the optical channels characterized by a more pronounced decentering from the 

mechanical axis of the system. In line with the treatment of Chapter 2, different types of 
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vectorial aberrations are obtained from a proper combination of the field-dependent 

expressions of the Zernike coefficients. It is worth recalling that vectorial aberrations are 

represented similarly as vectors since they are characterized by magnitude and phase. For 

the sake of clarity, Equation 3.14 from Chapter 3 is reported in full below with the addition 

of terms describing secondary aberrations. In particular, one obtains the following full field 

wavefront aberration expression 𝑊𝑐(𝐻𝑥 , 𝐻𝑦 , 𝜌, 𝜗) where the superscript 𝑐 is again 

necessary to specify each channel of the multiple aperture system. 
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Equation 5.5 

In Equation 5.5, the complete expressions of the Zernike field dependences, denoted 

with 𝐹𝑛
𝑚(𝐻𝑥 , 𝐻𝑦), are power series in the field coordinates expanded up to the 4th order to 

account for both primary and secondary aberration contributions. It is important to remark 

that, since such expressions are used here to describe the field dependence of asymmetric 

systems with arbitrarily decentered surfaces, they contain terms of both odd and even order 

in the coordinates 𝐻𝑥 and 𝐻𝑦 . In this way, a more general description is given to the possible 

field behaviors of primary and secondary aberrations for the optical channels of a multi-

aperture system using the Zernike polynomials expansion. The computation of Equation 

5.5, based on raytracing, allows obtaining the locations of the nodes of different aberration 

types in the portions of FOV inherent to the different optical channels identified with the 

superscript 𝑐. In the following section, the magnitude of the full field dependence of the 

various aberration types described in Equation 5.5 is calculated for the 5x5 channels of an 

example of a plenoptic camera.  

5.5 Application: aberrations behavior in a plenoptic camera 

In this section, it is analyzed the general behavior of a multi-aperture optical system like 

a plenoptic camera. In order to acquire a better understanding of the general structure of 

this class of optical systems, it is shown the optical layout of an example of this type of 

camera in the following Figure 5.4-Figure 5.5. The main objective is a Cooke triplet, while 

the multi-aperture component is constituted by plano-convex lenses with a radius of 

curvature 𝑅𝑐 = −8.36𝑚𝑚, diameter 𝐷 = 2.5𝑚𝑚 and working F-number 𝑊𝐹𝑁𝑂 = 5. The 

entrance pupil diameter of each channel is equal to 𝐸𝑁𝑃𝐷 = 4.25𝑚𝑚 and the effective 
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focal length is equal to 𝐸𝐹𝐹𝐿 = 19𝑚𝑚. The object plane is set at 𝑧𝑜 = 250𝑚𝑚 from the 

system. The simulation wavelength is 𝜆0 = 0.55𝜇𝑚. The system under study is 

characterized by 5x5 optical branches (or optical channels). The aperture stop for each 

branch of the system is placed in correspondence with the last surface before the image 

plane, that is the second surface of each plano-convex lens. The following results are 

obtained with Zemax OpticStudio [13].  

 

Figure 5.4: Layout of an example of a plenoptic camera: side view. 

 

Figure 5.5: Layout of an example of a plenoptic camera: isometric view. 

The optical parameters of this particular example are listed in Table 5.1, reported below. 

Table 5.1: System parameters 

Component Surface 
Radius 

(mm) 

Thickness 

(mm) 
Material 

𝐷𝑥 

(mm) 

𝐷𝑦  

(mm) 

Cooke 

Triplet 

1 22 3.25 SK16 - - 

2 -436 6  - - 
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3 -22.25 1 F2 - - 

4 20.3 4.76  - - 

5 80 5 SK16 - - 

6 -18.4 12.50  - - 

Decentred  

lenses 

7 Inf 1.25 
Fused 

Silica 
[−5,−2.5,0,2.5,5] 
[−5,−2.5,0,2.5,5] 

8 (STOP) -8.36 12.2  

  

The scope of a plenoptic camera is to project onto the image plane contiguous and 

partially overlapped portions of the object-side FOV. The degree of overlap between these 

adjacent sub-areas of the FOV plane plays a fundamental role in the realization of this 

category of optical systems that effectively behave as multi-stereo imaging systems. In the 

following Figure 5.6, this concept is exemplified to acquire a better understanding of the 

working principle of this type of optical system. It is shown the overlap between contiguous 

partitions of the object-side FOV.  

 

Figure 5.6: The object-side FOV is divided into multiple partitions, each one related to a particular 

decentered pupil in the multi-aperture plane. Adjacent partitions are partially overlapped; this means 

that the common area shared between them is “seen” from two different points of observation. 

In Figure 5.6 the centers of the several partitions of FOV ascribed to individual branches 

of the multiple aperture camera are located by their respective base-rays. For the only 

central channel (that is rotationally symmetric), the base-ray coincides with its axis of 

symmetry that, in turn, coincides with the mechanical axis of the whole optical system. In 

the following Figure 5.7, it is shown a front view of the optical system under study to 

emphasize better the overlap between the adjacent portions of the FOV and the fundamental 

role played by the base-rays of individual optical branches. It is evidenced that the base-ray 

of each optical branch connects the center of the respective portion of the FOV in the object 

space with the center of the corresponding portion of FOV in the image space while passing 

through the center of the respective aperture stop. These two planes (the object-side FOV 

and the image-side FOV) can be equivalently defined as posterior and anterior base-planes 

respectively, using the same terminology related to parabasal optics.  
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Figure 5.7: Front view of the system under study: for clarity, only 5 channels are shown along with their 

respective base-rays. 

As explained in the previous section, the individual channels of a multi-aperture 

imaging system are characterized by specific symmetries that can be studied by analyzing 

the behavior of the aberration coefficients as a function of the particular geometry of the 

optical channels. In what follows, it is first shown an analysis display for the visualization 

of the transverse ray aberrations in the FOV partitions of the system under study. Later on, 

two additional methods to analyze the wavefront aberration coefficients for the various 

channels are shown, the first based on a general power series expansion, the second based 

on a Zernike polynomials expansion.  

5.5.1 Transverse ray aberration display 

Relatively to the system under investigation, different channels are properly classified 

with the decentering parameters 𝐷𝑥 and 𝐷𝑦  of the plano-convex lenses in the multi-aperture 

plane. The aperture stop is placed in correspondence with the last surface before the image 

plane, therefore, for every channel, the exit pupil is located in this same position. Thus, a 

multiple pupil plane containing the exit pupils for the several channels coincides with the 

multi-aperture plane of the optical system under study. The parameters 𝐷𝑥 and 𝐷𝑦  are 

measured from the mechanical axis of the system that coincides with the optical axis of the 

central axially symmetric channel. As a consequence, the central channel is identified by 

𝐷𝑥 = 0𝑚𝑚 and 𝐷𝑦 = 0𝑚𝑚, while the remaining channels are characterized by parameters 

𝐷𝑥 ≠ 0𝑚𝑚 and 𝐷𝑦 ≠ 0𝑚𝑚. For the sake of clarity, the multiple aperture (and pupil) plane 

is shown in the following Figure 5.8 to highlight the respective displacements 𝐷𝑥 and 𝐷𝑦 . 

Bearing in mind the remarks done before and recalling the previous Figure 5.4-Figure 5.5, 

the partitions of the image-side FOV associated with each channel are located just after the 

respective pupils. For this reason, in Figure 5.8 it is shown a grid of parametric curves (in 

correspondence with a grid of 11x11 field points) overlapped to the sub-areas of the exit 

pupils. The 𝐻𝑥 and 𝐻𝑦  coordinates of such parametric curves, indicated with 𝜀𝑥
𝑐(𝑡) and 

𝜀𝑦
𝑐(𝑡), represent the transverse ray aberrations for the various optical channels constituting 

the plenoptic camera under study. In the particular case of Figure 5.8, 𝜀𝑥
𝑐 and 𝜀𝑦

𝑐 are 

calculated tracing 𝑁𝐻
2𝑁𝜌 = 14

2 ∗ 50 = 9800 rays through each channel of the system 

under study. Rays are traced from field points arranged in a square grid with 𝑁𝐻 = 14 points 

per side and intersect the exit pupil in 𝑁𝜌 = 50 points arranged in a circle with radius 𝜌0 =
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1 in normalized coordinates. The coordinates of the intersection of each ray with the several 

FOV partitions are measured with respect to chief rays, thus obtaining the transverse ray 

displacements. These data are then fitted (in the least-squares sense) with general power 

series up to the order 𝑛𝑐 of interest (in this case 𝑛𝑐 = 5). An alternative way to retrieve the 

parametric curves in Figure 5.8 is based on the calculation of Equation 5.3-Equation 5.4 

setting the parameter 𝜌0 equal to 1. Of course, this second method requires first the 

calculation of 𝑊𝑐 expanded with a general power series.  

 

Figure 5.8: Multiple aperture (and pupil) plane with decentering parameters 𝑫𝒙 and 𝑫𝒚 overlapped to the 

corresponding sub-areas of the image-side FOV where transverse ray aberrations are displayed as 

parametric curves over grids of 11x11 field points. This grid of points has been arbitrarily chosen for 

visualization purposes and it is different from the 14x14 sampling grid mentioned above.  

The decentering parameters of the plano-convex lenses in the multi-aperture plane play 

a substantial role in the identification of “symmetric behaviors” of the aberrations in 

different optical channels in agreement with the considerations done in the previous 

sections of this chapter. The same shapes of the parametric curves visible in a particular 

FOV partition are found also in the other corresponding partitions but relocated to different 

field points. To highlight this simple situation, parametric curves belonging to 

corresponding sub-quadrants of different FOV positions are colored in the same way. This 

important point can be understood better considering that the main objective (in this case a 

Cooke triplet) is rotationally symmetric and the decentering parameters of the plano-convex 

lenses in the multi-aperture plane act effectively as perturbations to the symmetry of the 

main objective. For this reason, parametric curves in corresponding FOV partitions have 

the same shape but different orientations depending on the peculiar displacements of the 
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pupils. Therefore, parametric curves in corresponding channels located in different 

quadrants of the FOV can be retrieved from each other performing symmetry operations of 

the FOV quadrants such as reflections about the vertical axis, about the horizontal axis and 

the origin. As a consequence, the analysis of the multi-aperture optical system shown in 

Figure 5.4-Figure 5.5 can be restricted to a single quadrant of the multi-aperture plane. This 

situation is better illustrated in the following Figure 5.9 where corresponding parametric 

curves, located in different partitions of the FOV (belonging to different quadrants), are 

plotted with the same color and labeled with the same number. In particular, the sub-FOV 

considered in this figure are at the corners of the quadrants of the full-FOV, in 

correspondence with the positions (𝐷𝑥 = 5𝑚𝑚,𝐷𝑦 = 5𝑚𝑚), (𝐷𝑥 = −5𝑚𝑚,𝐷𝑦 =

5𝑚𝑚), (𝐷𝑥 = −5𝑚𝑚,𝐷𝑦 = −5𝑚𝑚) and (𝐷𝑥 = 5𝑚𝑚,𝐷𝑦 = −5𝑚𝑚). For the sake of 

clarity, in each partition of the FOV are shown parametric curves over a grid of 3x3 field 

points. As said above, such parametric curves are general power series depending on the 

ray coordinates. In this case, these curves describe the transverse ray aberrations up to the 

5th order for different optical channels constituting the optical system as a whole.  

 

Figure 5.9: The parametric curves describing transverse ray aberrations in different field points in the 

channels 𝒄𝟐, 𝒄𝟑 and 𝒄𝟒 can be obtained from the respective curves in the channel 𝒄𝟏 through reflections 

across the axis and point reflection operations. 

Figure 5.9 is aimed at emphasizing the similarity of the aberration behavior of different 

optical channels that can be obtained by reflection symmetry operations. On close 

observation, it can be noticed that the parametric curve labeled with the number “7” (plotted 

in black) is located approximately in (𝐻𝑥 = −0.79𝑚𝑚,𝐻𝑦 = −0.79𝑚𝑚) in the sub-FOV 

whose displacement is (𝐷𝑥 = 5𝑚𝑚,𝐷𝑦 = 5𝑚𝑚) in the first quadrant. The corresponding 

curve in the sub-FOV of the channel with displacement (𝐷𝑥 = −5𝑚𝑚,𝐷𝑦 = −5𝑚𝑚) 

located in the third quadrant, is found approximately in (𝐻𝑥 = 0.79𝑚𝑚,𝐻𝑦 = 0.79𝑚𝑚). 

This example clearly illustrates that the analysis of this class of optical systems can be 

effectively simplified taking into account that, corresponding optical branches of the multi-

aperture system as a whole, can be characterized by symmetric behaviors and consequently, 
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their investigation can be conveniently restricted to the optical branches located in the same 

quadrant of the full-FOV. In the following Figure 5.10, it is shown a blow-up of the first 

quadrant of the full-FOV (previously shown in Figure 5.8). The parametric curves are again 

plotted over a grid of 11x11 field points for each sub-FOV.  

 

Figure 5.10: FOV partitions in the first quadrant. Grids of 11x11 parametric curves are displayed. 

The complete transverse ray aberration behavior over the multiple channels constituting 

the multi-aperture optical system is obtained reflecting the parametric curves in Figure 5.10, 

as explained before, with respect to the vertical axis, to the horizontal axis and the origin of 

the FOV.  

As explained up to now, the visualization of the parametric curves over a grid of field 

points for each optical channel of a multiple-aperture system can be beneficial to acquire a 

general overview of the aberration behavior of the different channels over the full-FOV. In 

this case, such parametric curves contain the contributions of all the aberrations up to the 

order of interest. If only a particular aberration type is of interest, rather than plotting the 

full power series constituting the parametric curves of the transverse ray aberrations, it is 

possible to plot only the corresponding term obtaining, in this case, the deviation of the 

light rays due to the contribution of the only aberration type taken into account.  

5.5.2 Wavefront aberration coefficients display 

An alternative way to visualize the aberration behavior of the channels of the light field 

camera considered in this example consists of displaying the magnitude of the wavefront 

aberration coefficients as a function of the displacements (𝐷𝑥 , 𝐷𝑦) of the channels 

themselves. As explained in the previous section, Equation 5.2 can be used for this purpose. 

In the following series of figures, the aberration coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈
𝑐  in Equation 5.2 
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are described as 𝑤𝑐 = 𝑤(𝐷𝑥 , 𝐷𝑦), namely as surfaces whose height, in correspondence of 

the coordinates (𝐷𝑥 , 𝐷𝑦), represents the magnitude of the associated aberration type for the 

channel whose decentering parameters are exactly (𝐷𝑥 , 𝐷𝑦). Therefore, the domain of these 

surfaces is clearly constituted by a grid of discrete points representing the decentering 

values of the respective optical channels with respect to the mechanical axis of the optical 

system or the displacements of the sub-FOV of the respective channels. The values of the 

aberration coefficients are retrieved with the method described in Chapter 4, namely fitting 

(in the least-square sense) the multivariate model (up to the 6th order) represented by 

Equation 5.2 to the raytracing data. In this case, for each channel of the light field camera 

under study is traced a number of rays equal to 𝑁𝐻
2𝑁𝜌

2 = 160000 where 𝑁𝐻 = 20 and 𝑁𝜌 =

20 are the number of sampling points along the directions of two uniform square grids in 

the FOV and exit pupil planes respectively. While tracing rays whose variables 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 

and 𝜌𝑦 are allowed to have values equal to the points of the sampling grids, it is measured 

the optical path difference with respect to the chief rays in waves at the wavelength 𝜆0 =
0.55𝜇𝑚. The rays traced from the FOV grid and passing through the center of the pupil 

grid correspond to an ensemble of chief rays to which the calculation of the optical path 

differences of other rays are referenced. In the figures below are shown the fitting results 

between the multivariate model in Equation 5.2 and the raw optical path differences of 

traced rays with respect to chief rays, that is the wavefront error associated with individual 

rays traced through the system. In these calculations, the mean value of the wavefront error 

of rays through the pupil is not subtracted out from the wavefront error of individual rays 

[13].  

Focusing on primary (or 4th order) aberrations and recalling that, in general, an optical 

branch of the multiple-aperture system is asymmetric, the total number of 4th order terms in 

the power series of Equation 5.2 is 35 (this value is given by the difference between the 

binomial coefficients (𝑛1+4
𝑛1
) − (𝑛2+4

𝑛2
) = 70 − 35 = 35 where 𝑛1 = 4 and 𝑛2 = 3 in this 

case, or calculating directly the binomial coefficient (𝑛1+3
𝑛1
) = 35 for a homogeneous 

polynomial of 4th order with four ray coordinates). More in detail, in Equation 5.2 the order 

𝑛 equals 𝑛𝑐 = 4 and for a better understanding, the coefficients 𝑤𝑛−𝜆,𝜆−𝜇,𝜇−𝜈,𝜈
𝑐  are indicated 

as 𝑤𝑘𝑙𝑝𝑞  where the superscript 𝑐 has been removed because the current optical channel is 

already identified by the decentering parameters 𝐷𝑥 and 𝐷𝑦  (being the axis of the domain) 

and 𝑛 − 𝜆, 𝜆 − 𝜇, 𝜇 − 𝜈 and 𝜈 are replaced respectively with 𝑘, 𝑙, 𝑝 and 𝑞 that are the 

exponents to which the ray coordinates 𝐻𝑥, 𝐻𝑦 , 𝜌𝑥 and 𝜌𝑦 are raised. In principle, the 

analysis of the aberrations of asymmetric optical systems should start considering terms of 

3rd order since these give the first relevant contribution to the imagery of an asymmetric 

optical system beyond the parabasal behavior. Nevertheless, in the present treatment, we 

intentionally neglect this fact because our main concern is the description of the method of 

analysis.  

The following figures are intended to give an overview of the behavior of the 4th order 

aberration coefficients for the 5x5 channels of the light field camera under study. This 

method of visualization of the aberration coefficients 𝑤𝑘𝑙𝑝𝑞 = 𝑤𝑘𝑙𝑝𝑞(𝐷𝑥 , 𝐷𝑦), namely as 

functions of the decentering parameters 𝐷𝑥 and 𝐷𝑦 , can be useful to understand the 

“structural behavior” of aberrations. Multiple aperture systems, like plenoptic cameras, can 

be conceived as an ensemble of many individual optical sub-systems differing from each 

other for some structural parameter, therefore the visualization of the aberration coefficients 

depending on such parameters can be insightful in this sense. In the following Figure 5.11, 

the behaviors of the five coefficients related to spherical aberration, 𝑤0004, 𝑤0013, 𝑤0031, 

𝑤0040 and 𝑤0022 are visualized depending on the decentering parameters −5𝑚𝑚 ≤ 𝐷𝑥 ≤
5𝑚𝑚 and −5𝑚𝑚 ≤ 𝐷𝑦 ≤ 5𝑚𝑚.  
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Figure 5.11: Wavefront aberration coefficients related to primary spherical aberration displayed as 

functions of the decentering parameters of the different channels 𝑫𝒙 and 𝑫𝒚. Each blue dot is related to a 

specific channel.  

The eight primary coma coefficients 𝑤0103, 𝑤0112, 𝑤0121, 𝑤0130, 𝑤1003, 𝑤1012, 𝑤1021 

and 𝑤1030 are displayed in the following as a function of the parameters 𝐷𝑥 and 𝐷𝑦 . 
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Relatively to field curvature and primary astigmatism, there are in total nine coefficients 

whose dependence on the decentering parameters of the optical channels is displayed in the 

following Figure 5.13.  

 

Figure 5.12: Wavefront aberration coefficients related to primary coma 
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Figure 5.13: Wavefront aberration coefficients related to field curvature and primary astigmatism. 
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The remaining 4th order terms are represented by distortion terms (characterized by a 

linear dependence on the pupil coordinates 𝜌𝑥 and 𝜌𝑦 and by a cubic dependence on the 

field coordinates 𝐻𝑥 and 𝐻𝑦). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The group of coefficients related to quartic piston terms (whose definition derives from 

the quartic dependence on the field coordinates) is omitted since they represent uniform 

phase terms over the pupil of an optical system.  

Figure 5.14: Wavefront aberration coefficients related to distortion. 
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The previous figures (from Figure 5.11 to Figure 5.14) are to be intended primarily as 

useful tools for the visualization of the aberrations behavior of different channels 

constituting an optical system with many apertures. As explained at the beginning of this 

chapter, the realization of a light field camera is not only based on the multiple aperture 

structure extensively discussed so far, but it also relies on post-processing algorithms for 

the elaboration of the captured raw images and extraction of useful information from them. 

In this sense, the visualization tools presented up to now can be of aid to design the 

necessary computational algorithms for the elaboration of the raw images providing, for 

example, a general understanding of the degradation of the image quality captured in 

correspondence of different partitions of the FOV.  

5.5.3 Zernike polynomials expansion 

In this last section, an alternative approach to represent the full field aberration behavior of 

a multi-aperture optical system is based on the formula of Equation 5.5 in section 5.4.1 

where different aberration types are calculated properly combining the full field-dependent 

expressions of Zernike coefficients in the Fringe indexing scheme. The results are 

illustrated in the following series of figures. Of particular relevance is the behavior of 

primary astigmatism magnitude, shown in Figure 5.17-Figure 5.18. In this case, the optical 

branches with decentering parameters 𝐷𝑥 = ±2.5𝑚𝑚,±5𝑚𝑚 and 𝐷𝑦 = ±2.5𝑚𝑚,±5𝑚𝑚 

exhibit an unconventional behavior for primary astigmatism magnitude.  

In the following Figure 5.15, it is reported the full field behavior of spherical aberration 

(calculated with the first term of Equation 5.5) for the various channels of the light field 

camera under study. The domain of the subplots is represented by the size in millimeters of 

the images behind the plano-convex lenses. The colorbar is referred to all the subplots in 

Figure 5.15. It is worth observing that spherical aberration is actually characterized by a 

certain field dependence, evidenced in particular in the external channels. This situation is 

the result, in this example, of the increasing relevance of secondary aberrations with the 

channel displacement from to the mechanical axis of the system. In fact, as soon as the 

decentering coordinates (𝐷𝑥 , 𝐷𝑦) increase, the field dependence of spherical aberration is 

affected by a more relevant contribution of secondary aberrations. This situation has 

repercussions on the field dependence of the Zernike Fringe term 𝐹4
0(𝐻𝑥 , 𝐻𝑦) involved in 

the calculation of spherical aberration that is described, as shown in Chapter 2, by a power 

series involving terms of second order.  
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Figure 5.15: Field dependence of spherical aberration calculated from the coefficient of the Zernike term 

(𝒏 = 𝟒,𝒎 = 𝟎) in the Fringe indexing scheme (Equation 5.5). The subplots' titles indicate the decentering 

parameters (in mm) of the inherent branch of the camera under investigation. The subplots’ domain 

corresponds to the FOV-partitions, therefore the values are in mm. 

Regarding primary coma magnitude, for each optical branch, a single node in the FOV 

partition is visible and displaced with respect to the origin (except for the central channel 

whose node is at the center of the FOV due to its rotational symmetry). It is also evident 

that the magnitude of primary coma is properly described by a circular conic surface only 

for few central channels of the multiple aperture system, while in channels with larger 

decentering parameters, it is better described by elliptical conic surfaces whose apex is 

displaced over the sub-FOV. This situation is particularly accentuated in most external 

channels.  
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Figure 5.16: Field dependence of coma aberration calculated with the coefficients of the Zernike terms 

(𝒏 = 𝟑,𝒎 = 𝟏) and (𝒏 = 𝟑,𝒎 = −𝟏) in the Fringe indexing scheme according to the second term in 

Equation 5.5. 

Such elliptical shape of the magnitude of the full field dependence of primary coma is 

not foreseen in the standard NAT [3] since this theory describes the aberration behavior in 

asymmetric optical systems (with decentered circular symmetric surfaces) characterized by 

only primary aberrations and by weak perturbations (weak decentering and tilt parameters 

of the surfaces constituting the optical system). The elliptical shape of the magnitude of the 

full field dependence of primary coma has been introduced in Chapter 3 relatively to a class 

of optical systems defined there as “perturbed” double-plane symmetric optical systems. In 

that context, the elliptical shape was due to the intrinsic double-plane symmetry of the 

investigated systems. In the present context, this behavior originates from the stronger 

perturbation induced by a more pronounced geometrical displacement of the external 

channels.  

The field dependence of primary astigmatism for various branches of the multi-aperture 

system is particularly interesting because of the development of a well-known binodal 

behavior and a novel trinodal behavior over the FOV partitions of different channels. In 

particular, the optical channels characterized by decentering parameters 𝐷𝑥 =
±2.5𝑚𝑚,±5𝑚𝑚 and 𝐷𝑥 = ±2.5𝑚𝑚,±5𝑚𝑚 exhibit three nodes over the FOV, while the 

remaining channels exhibit two nodes, except the central channel whose only node is 

located at the center of its sub-FOV (due to its rotational symmetry). Due to the strong 

variation of the magnitude of primary astigmatism over the different channels, in the 

following Figure 5.17, the surface plots related to the fourth term of Equation 5.5 are 

represented with different colorbars. In particular, the four optical channels at the corners 

of the full-FOV with decentering parameters (𝐷𝑥 = ±5𝑚𝑚,𝐷𝑦 = ±5𝑚𝑚), exhibit the 

largest variation in the magnitude of the field dependence of primary astigmatism. For this 

reason, their respective colorbars are shown just nearby. On the other side, the magnitude 

of primary astigmatism for the remaining channels with decentering parameters 

(𝐷𝑥 ≠ ±5𝑚𝑚,𝐷𝑦 ≠ ±5𝑚𝑚), is referenced to the colorbar underneath Figure 5.17.  
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Figure 5.17: Field dependence of primary astigmatism calculated with the coefficients of the Zernike 

terms (𝒏 = 𝟐,𝒎 = 𝟐) and (𝒏 = 𝟐,𝒎 = −𝟐) in the Fringe indexing scheme according to the fourth term in 

Equation 5.5. Because of the large variation of astigmatism in the various branches of the plenoptic 

camera under study, two different colormaps and colorbars are used for the most external channels 

(𝑫𝒙 = ±𝟓𝒎𝒎,𝑫𝒚 = ±𝟓𝒎𝒎) and for the remaining channels (𝑫𝒙 ≠ ±𝟓𝒎𝒎,𝑫𝒚 ≠ ±𝟓𝒎𝒎) respectively. 

In Figure 5.18 it is shown a contour plot of the data already shown in the previous Figure 

5.17 in order to highlight more clearly the occurrence of nodes in the sub-FOV of the 

various channels.   
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Figure 5.18: Contour plot of the full field-dependent magnitude of primary astigmatism for the 5x5 

channels of the system under study. 

The occurrence of three nodes in the magnitude of primary astigmatism is a 

consequence of the fact that the field dependence of the inherent Zernike coefficients 

𝐹2
2(𝐻𝑥 , 𝐻𝑦) and 𝐹2

−2(𝐻𝑥 , 𝐻𝑦) is described by polynomials of order higher than 2. Therefore, 

the increasing impact of higher-order aberrations on the external channels manifests itself 

inducing a more complex variation of the aberrations over the FOV, like the trinodal 

behavior shown in Figure 5.17-Figure 5.18.  

Regarding the full field dependence of field curvature, it is calculated with the third term 

of Equation 5.5 and it is shown in Figure 5.19. Due to the large variation of its magnitude, 

similar to the previous case, the channels at the corners of the full FOV have their colormaps 

(and colorbars), while the remaining channels are described with another colormap 

referenced to the colorbar underneath Figure 5.19. 
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Figure 5.19: Field dependence of field curvature magnitude calculated with the coefficients of the Zernike 

polynomials reported in the third term of Equation 5.5. 

5.6 Conclusions 

In this last chapter of the thesis the wavefront aberration behavior of a class of optical 

systems with multiple apertures, represented by light field cameras, has been described 

using two different polynomial expansions. The first is a general power series expansion in 

the ray coordinates introduced in the framework of Hamiltonian Optics, the second is a full 

field Zernike polynomials-based expansion. Since this class of systems can be conceived 

as an ensemble of similar optical sub-systems differing from each other for the decentering 

parameters of the aperture stop surfaces, the concepts of parabasal optics are used at the 

beginning of the chapter to define an ensemble of base-rays, one for each channel. Such 

base-rays play the role of reference axis for the different branches of the systems under 

study, therefore they enable a proper choice of the ray variables on which the general power 

series expansion depends. Using this description, the wavefront aberration and the 

transverse ray aberration behaviors of a plenoptic camera are analyzed. It is discussed the 

possibility to restrict the study of these systems to the channels spanning the only first 

quadrant of the full FOV since, the underlying symmetry of the various channels, allows to 

easily retrieve the behavior of those in the remaining quadrants of the FOV performing 

reflection symmetry operations on the ray transverse aberration curves. The second 

description, based on proper combinations of Zernike polynomials in the Fringe indexing 

scheme, allows visualizing the nodes of different aberration types over the FOV partitions 

of the several channels. Additionally, this description of the wavefront aberrations allows 

us to visualize the variation of the magnitude of different aberration types due to the 

stronger perturbative effect of the geometrical displacement of the channels. The 

consequent enhancement of higher-order aberrations is visible in a more complex variation 

of the field dependence of Zernike polynomials that generates, for example, a particular 

trinodal behavior of primary astigmatism for the most decentered channels. 
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 Conclusions 
 

 

This thesis deals with the study and representation of monochromatic wavefront aberrations 

in optical systems without symmetry and in multi-aperture optical systems. In the first 

chapter, the fundamental concepts of geometrical optics are introduced starting from 

Hamilton’s characteristic function. In particular, the method of raytracing is described along 

with the concepts of wavefront aberration function and transverse ray aberration function. 

A brief demonstration of the summation theorem for primary aberrations is provided. The 

second chapter discusses monochromatic wavefront aberrations in optical systems without 

symmetry characterized by tilted and decentered spherical surfaces. In particular, it is 

shown that the presence of secondary aberrations has a perturbative effect on the location 

of the nodes of the field dependence of primary aberrations predicted by NAT. The third 

chapter discusses a class of systems defined as perturbed double-plane symmetric optical 

systems. Primary aberrations are analyzed combining full field-dependent Zernike Fringe 

polynomials. In particular, it is described a method to retrieve the field behavior of primary 

aberrations sampling the Zernike coefficients in correspondence with few field points of 

interest. The fourth chapter compares two different methods to represent the wavefront 

aberration function in asymmetric optical systems characterized by severe displacements of 

the constituting optical surfaces. The first method is based on the NAT wavefront aberration 

expansion. The second method uses a general power series expansion in the ray coordinates 

to describe the wavefront aberration function of this class of systems. The fourth chapter 

serves to introduce the topic of the fifth chapter that is the investigation of monochromatic 

wavefront aberrations in different channels of optical systems with many apertures. This 

investigation is carried out calculating numerically the coefficients of general power series 

in the ray coordinates describing the wavefront aberration functions of individual channels 

in a plenoptic camera. This approach is necessary because the channels of an optical system 

with multiple apertures like a plenoptic camera are, in general, asymmetric and are 

characterized by severe decentering parameters of the apertures of the different optical 

channels. It is shown a convenient method to visualize the evolution of the aberration 

coefficients for the various channels of a plenoptic camera. For completeness, it is also 

described a more common method of analyzing the aberration of asymmetric systems based 

on the combination of full field-dependent Zernike polynomials. This method emphasizes 

the presence of nodes in the FOV of the various channels of a light field camera. Of 

particular interest is the trinodal behavior exhibited by the field dependence of primary 

astigmatism magnitude in specific channels.  

The numerical approach shown in this work to calculate the aberration coefficients of a 

general power series in the ray coordinates describing the wavefront aberration functions 

of the several branches of a plenoptic camera applies to the analysis of any system without 

symmetry. The only condition to be fulfilled is that the surfaces in the optical system must 

be developable in polynomial terms in the coordinates of a properly defined reference 

system. The main limitation of this method consists in the fact that the calculated 

coefficients describe the net aberrations of the whole system.  

A further improvement of the presented method would be the calculation of the 

aberration coefficients contributed by the individual surfaces constituting the optical system 



 

113 
 

itself. In this case, this knowledge would be extremely useful to the optical designer to 

understand the individual contributions given by each surface to aberration terms of 

different order in the general power series development in the ray coordinates. Furthermore, 

this additional understanding would be helpful in the optimization process guiding the 

development of correct strategies to compensate for the aberrations.  
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