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Abstract
Mixed logit models with unobserved inter- and intra-individual heterogeneity hierarchi-
cally extend standard mixed logit models by allowing tastes to vary randomly both across
individuals as well as across choice tasks encountered by the same individual. Recent
work advocates the use of these methods in choice-based recommender systems under
the premise that mixed logit models with unobserved inter- and intra-individual hetero-
geneity afford personalised preference estimation and prediction. In this research note, we
evaluate the ability of mixed logit with unobserved inter- and intra-individual heterogene-
ity to produce accurate individual-level predictions of choice behaviour. Using simulated
and real data, we show that mixed logit with unobserved inter- and intra-individual het-
erogeneity does not provide significant improvements in choice prediction accuracy over
standard mixed logit models, which only account for inter-individual taste variation. We
make these observations even in scenarios with high levels of intra-individual taste vari-
ation and when the number of choice situations per decision-maker is large. Also, the
estimation of mixed logit with unobserved inter- and intra-individual heterogeneity re-
quires at least ten times as much computation time as the estimation of standard mixed
logit models. Informed by recent advances in machine learning and econometrics, we
then discuss alternative modelling approaches, which can capture richer dependencies
between decision-makers, alternatives and attributes.

Keywords: mixed logit; unobserved heterogeneity; personalised recommendations.
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1 Introduction
The representation of taste heterogeneity is a principal concern of discrete choice analysis,
as information on the distribution of tastes is critical for demand forecasting, welfare
analysis and market segmentation (e.g. Allenby and Rossi, 1998, Ben-Akiva et al., 2019).
From the analyst’s perspective, taste variation is often random because differences in
sensitivities cannot be related to observed or observable characteristics of the decision-
maker or features of the choice context (see e.g Bhat, 1998, 2000).
Mixed random utility models such as mixed logit (McFadden and Train, 2000) provide
a powerful framework to account for unobserved taste heterogeneity in discrete choice
models. When longitudinal choice data are analysed using mixed random utility models,
it is standard practice to assume that tastes vary randomly across decision-makers but
not across choice situations encountered by the same individual (Revelt and Train, 1998).
The implicit assumption underlying this treatment of unobserved heterogeneity is that an
individual’s tastes are unique and stable (Stigler and Becker, 1977). Contrasting views
of preference formation postulate that preferences are constructed in an ad-hoc manner at
the moment of choice (Bettman et al., 1998) or learnt and discovered through experience
(Kivetz et al., 2008).
From a behavioural perspective, these alternative views of preference formation justify
accounting for both inter- and intra-individual random heterogeneity in discrete choice
models (also see Hess and Giergiczny, 2015). A straightforward way to accommodate
unobserved inter- and intra-individual heterogeneity in mixed random utility models is
to augment a normal mixing distribution in a hierarchical fashion such that case-specific
taste parameters are generated as normal perturbations around individual-specific taste
parameters (see Becker et al., 2018, Ben-Akiva et al., 2019, Bhat and Castelar, 2002, Bhat
and Sardesai, 2006, Bhat and Sidharthan, 2011, Danaf et al., 2019, Hess and Giergiczny,
2015, Hess and Rose, 2009, Hess and Train, 2011, Xie et al., 2020, Yáñez et al., 2011).
Originally, mixed logit models with unobserved inter- and intra-individual heterogene-
ity were primarily used as variance decomposition techniques in order to separate unob-
served taste variation into inter- and intra-individual terms. Yet, recent work advocates
the use of these methods in choice-based recommender systems under the premise that
mixed logit models with unobserved inter- and intra-individual heterogeneity afford per-
sonalised preference estimation and prediction (Danaf et al., 2019, Xie et al., 2020). These
studies demonstrate that mixed logit models with unobserved inter- and intra-individual
heterogeneity outperform standard logit models at out-of-sample prediction, both between
(inter-individual prediction for respondents without a history of past choices) and within
(intra-individual prediction for respondents with a history of past choices) individuals.
However, these studies do not draw comparisons with standard mixed logit models, which
account for inter-individual heterogeneity.1

With the growing availability of dynamic panel data sets, recommender systems are
increasingly employed to tailor recommendations of goods and services to individual-
specific preferences (Ansari et al., 2000, Lu et al., 2015). Recommender systems increase

1Danaf et al. (2019) and Xie et al. (2020) compare personalised and non-personalised predicted choice
probabilities of mixed logit with inter- and intra-individual heterogeneity. They conclude that personali-
sation improves within-individuals predictive accuracy. However, non-personalised choice probabilities of
mixed logit with inter- and intra-individual heterogeneity are not the same as personalised choice probabil-
ities of standard mixed logit.
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user satisfaction and lower search costs by helping users to navigate intricate choice sets in
complex goods and service services systems such as Internet marketplaces and smart mo-
bility (Ansari et al., 2000, Song et al., 2018). Accurate methods for personalised prefer-
ence estimation and prediction lie at the heart of successful recommender systems (Ansari
et al., 2000). Unlike standard recommendation methods such as collaborative and content-
based filtering, discrete choice models can be employed even when the choice set is not
persistent (Danaf et al., 2019). By accounting for alternative-specific attributes, discrete
choice models also better capture product diversity (Jiang et al., 2014).
In this research note, we evaluate the ability of mixed logit models with unobserved
inter- and intra-individual heterogeneity to provide personalised predictions of choice be-
haviour. Using simulated and real data, we show that mixed logit models with unobserved
inter- and intra-individual heterogeneity provide only marginal gains in terms of within-
individuals predictions over simpler, computationally less expensive mixed logit models
with only inter-individual heterogeneity. In light of these findings and informed by re-
cent advances at the intersection of machine learning and econometrics, we then discuss
alternative approaches to generate personalised predictions with random utility models.
We organise the remainder of this research note as follows. First, we introduce mixed logit
with unobserved inter- and intra-individual heterogeneity (Section 2). Next, we present
a simulation evaluation and a real data application (Sections 3 and 4). Then, we provide
an extended discussion of alternative modelling approaches (Section 5), and finally, we
conclude (Section 6).

2 Methodology
Mixed logit with unobserved inter- and intra-individual heterogeneity (in particular Hess
and Rose, 2009, Hess and Train, 2011) is established as follows: In choice situation t ∈
{1, . . . T }, a decision-maker n ∈ {1, . . .N} derives utility

Untj = V(Xntj,βnt) + εntj (1)

from alternative j in the set C = {1, . . . , J}. Here, V() denotes the deterministic aspect of
utility, Xntj is a vector of covariates, βnt is a collection of taste parameters, and εntj is a

stochastic disturbance. The assumption εntj
iid
∼ Gumbel(0, 1) leads to the logit model such

that the probability that decision-maker n chooses alternative j ∈ C in choice situation t
can be expressed as

P(ynt = j|Xntj,βnt, ) =
eV(Xntj,βnt)∑
j ′∈C e

V(Xntj ′ ,βnt)
, (2)

where ynt ∈ C is an indicator of the observed choice.
Note that in equation (1), the taste parameters βnt are defined as being observation-
specific. To allow for dependence between repeated observations for the same individual
and to accommodate inter-individual taste heterogeneity, it has become standard prac-
tice to adopt Revelt’s and Train’s (1998) panel estimator of mixed logit. Under this
specification, taste homogeneity across replications is assumed such that βnt = βn
∀t ∈ {1, . . . , T }. To also accommodate intra-individual taste heterogeneity in addition
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to inter-individual taste heterogeneity, the taste vector βnt can be defined as a normal
perturbation around an individual-specific parameter µn, i.e. βnt ∼ N(µn,ΣW) for
t = 1, . . . , T , where ΣW is a covariance matrix. The distribution of individual-specific
parameters µ1:N is then also assumed to be multivariate normal, i.e. µn ∼ N(ζ,ΣB) for
n = 1, . . . ,N, where ζ is a mean vector and ΣB is a covariance matrix.
Mixed logit with unobserved inter- and intra-individual heterogeneity can be estimated us-
ing either maximum simulated likelihood (MSL) or Bayesian Markov chain Monte Carlo
(MCMC) methods. In Appendix A, we describe both estimation approaches. Whereas in
MSL, the individual-specific parameters µn are treated as stochastic nuisance parameters,
these parameters are directly estimated in Bayesian estimation. Thus, it is particularly
easy to make individual-specific predictions with Bayesian methods.

3 Simulation study
In this section, we present an extensive simulation evaluation of mixed logit with unob-
served inter- and intra-individual heterogeneity. We benchmark the performance of the
model in terms of estimation time, estimation accuracy and out-of-sample predictive ac-
curacy against simpler standard logit and mixed logit models with only inter-individual
heterogeneity. We also contrast the performance of the MSL and MCMC estimators of
mixed logit with unobserved inter- and intra-individual heterogeneity in terms of estima-
tion time and accuracy.

3.1 Data and experimental setup
For the simulation study, we rely on synthetic choice data, which we create as follows:
The choice sets comprise three unlabelled alternatives, which are characterised by four
attributes. Decision-makers are assumed to be utility maximisers and to evaluate the
alternatives based on the utility specification

Untj = X
>
ntjβnt + εntj. (3)

The definition of the variables is the same as in Section 2.
We consider two experimental scenarios with different proportions of total variance that
be ascribed to intra-individual taste variation for the generation of the case-specific taste
parameters βnt. In both scenarios, βnt are drawn via the following process:

µn|ζ,ΣB ∼ N(ζ,ΣB), n = 1, . . . ,N, (4)
βnt|µn,ΣW ∼ N(µn,ΣW), n = 1, . . . ,N, t = 1, . . . , T, (5)

where ΣB = diag(σB)ΩBdiag(σB) and ΣW = diag(σW)ΩWdiag(σW). Here, {σB,σW}
represent standard deviation vectors and {ΩB,ΩW} are correlation matrices. The assumed
values of ζ,ΩB andΩW are enumerated in Appendix B. We define σ2B = 2 · (1− α) · |ζ|
and σ2W = 2 · α · |ζ| with α ∈ [0, 1], i.e. the total variance of each random parameter
is twice the absolute value of its mean, and a proportion α of the total variance is due to
intra-individual taste variation. We vary α across the two scenarios: In scenario 1, we let
α = 0.3; in scenario 2, we let α = 0.7.
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In both scenarios, the alternative-specific attributes Xntj are drawn from Uniform(0, 2),
which implies an error rate of approximately 20%, i.e. in one fifth of the cases decision-
makers deviate from the deterministically-best alternative due to the stochastic utility
component. In each scenario, we set N = 1000 and let T take a value in {10, 20}. For
each experimental scenario and for each value of T , we consider 20 replications, whereby
the data for each replication are generated using a different random seed.

3.2 Accuracy assessment
We evaluate the accuracy of the estimation approaches in terms of their ability to recover
parameters in finite sample and in terms of their predictive accuracy.

3.2.1 Parameter recovery

To assess how well the estimation approaches perform at recovering parameters, we calcu-
late the root mean square error (RMSE) for selected parameters, namely the mean vector
ζ and the unique elements {ΣB,U,ΣW,U} of the covariance matrices {ΣB,ΣW}. Given a
collection of parameters θ and its estimate θ̂, RMSE is defined as

RMSE(θ) =

√
1

J
(θ̂− θ)>(θ̂− θ), (6)

where J denotes the total number of scalar parameters collected in θ. For MSL, point
estimates of ζ, ΣB and ΣW are directly obtained. For MCMC, estimates of the parameters
of interest are given by the means of the respective posterior draws. As our aim is to
evaluate how well the estimation methods perform at recovering the distributions of the
realised individual- and observation-specific parameters {µ1:N,β1:N,1:T }, we use the sample
mean ζ0 = 1

N

∑N
n=1 µn and the sample covariances ΣB,0 = 1

N

∑N
n=1(µn − ζ0)(µn − ζ0)

>

and ΣW,0 = 1
NT

∑N
n=1

∑T
t=1(βnt−µn)(βnt−µn)

> as true parameter values for ζ, ΣB and
ΣW , respectively.

3.2.2 Predictive accuracy

To assess the predictive accuracy of the Bayesian methods, we consider two out-of-sample
prediction scenarios. In the first scenario, we predict choice probabilities for a new set of
individuals without a history of past choices, i.e. we predict between individuals. To that
end, we generate a test set consisting of 100 observations from 100 new individuals along
with each training sample. The realised choice and attributes of this sample are denoted
by y∗n and X∗n. In the second scenario, we predict choice probabilities for new choice sets
for individuals who already in the training sample and thus have a record of past choices,
i.e. we predict within individuals. To that end, we generate another test set by creating
an additional choice set for 100 individuals from the training sample. The realised choice
and attributes of this sample are denoted by y†n and X†n.
For each of the two prediction scenarios, we calculate Brier scores (Brier, 1950) with
respect to the realised choices and the predicted choice probabilities. The Brier score
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(BS) of a test set is given by

BS =
1

NJ

N∑
i=1

J∑
j=1

(
1{yn = j}− P̂nj

)2
, (7)

where 1{yn = j} is an indicator, which equals one if the condition inside the braces is true
and zero otherwise, and where P̂nj is a shorthand notation for the predicted probability
that ynt = j is observed. A lower Brier score indicates superior predictive accuracy. The
Brier score is a strictly proper scoring rule, since it is exclusively minimised by the true
predictive choice probabilities (Gneiting and Raftery, 2007).
An important feature of the Brier score is that it takes into account the predicted choice
probabilities of whole choice sets. By contrast, Danaf et al. (2019) and Xie et al. (2020)
use the average of the predicted probabilities of only the chosen alternatives (henceforth,
Pchosen) to evaluate predictive accuracy, with the interpretation being that a higher value
of Pchosen indicates superior predictive performance.
For mixed logit with unobserved inter- and intra-individual heterogeneity, the estimated
predicted choice probabilities for the between-individuals prediction scenario are given
by

P̂(y∗n|X
∗
n,y) =

∫ (∫
P(y∗n|X

∗
n,β)f(β|µ, Σ̂W)dβ

)
f(µ|ζ̂, Σ̂B)dµ, (8)

where ζ̂, Σ̂B and Σ̂W denote the posterior means of ζ, ΣB and ΣW , respectively. The
estimated predicted choice probabilities for the within-individuals prediction scenario are
given by

P̂(y†n|X
†
n,y) =

∫
P(y†n|X

†
n,β)f(β|µ̂n, Σ̂W)dβ, (9)

where µ̂n and Σ̂W denote the posterior means of µn and ΣW , respectively. Expressions
for the estimated predicted choice probabilities for standard logit and mixed logit with
only inter-individual heterogeneity can be obtained by omitting levels of integration from
(8) and (9).

3.3 Implementation details
We implement the MSL and MCMC estimators by writing our own Python code.2

For MSL, the numerical optimisations are carried out with the help of the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Nocedal and Wright, 2006) con-
tained in Python’s SciPy library (Jones et al., 2001) and analytical gradients are sup-
plied (see Appendix A.1 for details). We use 250 inter-individual simulation draws per
decision-maker and 250 intra-individual simulation draws per observation. The simula-
tion draws are generated via the Modified Latin Hypercube sampling (MLHS) approach
(Hess et al., 2006). To assure that the covariance matrices maintain positive-definiteness,
the optimisations are performed with respect to the Cholesky factors of the covariance
matrices. For MSL, we also take advantage of Python’s parallel processing capacities to
improve the computational efficiency of the method. We process the likelihood computa-
tions in ten parallel batches, each of which corresponds to 25 inter-individual simulation
draws.

2The code is publicly available at https://github.com/RicoKrueger/inter_intra.
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The MCMC sampler for mixed logit with unobserved inter- and intra-individual hetero-
geneity is executed with two parallel Markov chains and 400,000 iterations for each chain,
whereby the initial 200,000 iterations of each chain are discarded for burn-in. After burn-
in, every tenth draw is retained to moderate storage requirements and to facilitate post-
simulation computations. For standard logit and mixed logit with only inter-individual
heterogeneity, the MCMC samplers are executed with two parallel Markov chains and
100,000 iterations for each chain, whereby the initial 50,000 iterations of each chain are
discarded for burn-in. After burn-in, every fifth draw is kept.

3.4 Results
In Table 1, we compare the predictive accuracy of the models that were estimated using
Bayesian methods. For each experimental scenario S and number of choice situations per
individual T , we report the means and the standard errors of the Brier scores as well as
the average predicted probabilities of the chosen alternative (Pchosen) for the between- and
within-individuals prediction scenarios across 20 resamples. In our subsequent discus-
sion, we focus on the Brier score, as it is strictly proper. Nonetheless, Pchosen leads to the
same general conclusions.
Across the different experimental scenarios and the considered methods, we do not ob-
serve any significant differences in between-individuals predictive accuracy. As expected,
standard logit without individual-specific parameters yields the same predictive accuracy
in the between- and the within-individuals prediction scenarios. Due to the presence of
individual-specific parameters, both mixed logit models improve the within-individuals
predictive accuracy of standard logit by a significant margin. For instance, in scenario 1
for T = 20, MNL produces an average Brier score of 0.200, while mixed logit with only
inter-individual heterogeneity and mixed logit with both inter- and intra-individual het-
erogeneity yield Brier scores of 0.152 and 0.149, respectively. Another insight is that the
within-individuals predictive accuracy of mixed logit improves relative to standard logit,
as more choice situations are included in the estimation. For example, in scenario 1, the
Brier of mixed logit with only inter-individual heterogeneity is 0.165 for T = 10, while it
is 0.152 for T = 20.
Interestingly, mixed logit with unobserved inter- and intra-individual heterogeneity does
not offer significantly more accurate within-individuals predictions than standard mixed
logit in any of the considered experimental scenarios. The difference in Brier scores of
the two methods is at most 0.003. Also, the proportion of variance α that is due to intra-
individual taste variation does not affect the within-individuals prediction performance of
considered mixed logit models. For example, for T = 20, the average Brier score for the
within-individuals prediction scenario of mixed logit with unobserved inter- and intra-
individual heterogeneity is 0.149 and 0.150 in both scenario 1 (α = 0.3) and scenario 2
(α = 0.7). We highlight that even in even in scenario 2, in which intra-individual taste
variation accounts for 70% of the total variance in tastes, mixed logit with unobserved
inter- and intra-individual heterogeneity does not outperform simple mixed logit with
only inter-individual heterogeneity.
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BrierB BrierW Pchosen
B Pchosen

W

S T Method Mean SE [%] Mean SE [%] Mean SE [%] Mean SE [%]

1 10 MNL (MCMC) 0.202 0.200 0.201 0.229 0.394 0.311 0.395 0.372
MXL-inter (MCMC) 0.199 0.222 0.165 0.318 0.401 0.336 0.541 0.606
MXL-inter-intra (MCMC) 0.198 0.235 0.163 0.306 0.404 0.361 0.539 0.581

1 20 MNL (MCMC) 0.199 0.156 0.200 0.187 0.398 0.246 0.397 0.278
MXL-inter (MCMC) 0.196 0.170 0.152 0.392 0.406 0.274 0.567 0.708
MXL-inter-intra (MCMC) 0.196 0.181 0.149 0.392 0.409 0.296 0.570 0.708

2 10 MNL (MCMC) 0.202 0.206 0.201 0.226 0.394 0.339 0.395 0.375
MXL-inter (MCMC) 0.199 0.220 0.167 0.293 0.401 0.351 0.536 0.542
MXL-inter-intra (MCMC) 0.199 0.224 0.164 0.285 0.404 0.355 0.536 0.512

2 20 MNL (MCMC) 0.202 0.197 0.206 0.208 0.394 0.329 0.388 0.347
MXL-inter (MCMC) 0.200 0.201 0.152 0.391 0.401 0.321 0.565 0.662
MXL-inter-intra (MCMC) 0.199 0.209 0.150 0.380 0.404 0.327 0.566 0.636

Note: The reported values are averages and standard errors across 20 replications. S = experimental sce-
nario. T = observations per individual. Brier = Brier score. Pchosen = average predicted probability of chosen
alternative. B = between-individuals. W = within-individuals.

Table 1: Predictive accuracy on simulated data

Furthermore, Table 2 contrasts the estimation times of the different methods across the
considered experimental scenarios. Mixed logit with only inter-individual heterogeneity
is substantially faster than mixed logit with unobserved inter- and intra-individual hetero-
geneity. In all of the considered simulation scenarios, MSL with analytical gradients is
faster than MCMC. For example, in scenario 1 for T = 10, the average estimation time
of simple mixed logit is 285 seconds, while the average computation times of mixed logit
with unobserved inter- and intra-individual heterogeneity estimated via MCMC and MSL
are approximately tenfold with 3,423 seconds and 2,933 seconds, respectively.
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Time [s]
S T Method Mean SE

1 10 MNL (MCMC) 83.3 1.3
MXL-inter (MCMC) 284.9 2.7
MXL-inter-intra (MCMC) 3422.9 28.2
MXL-inter-intra (MSL) 2932.7 86.9

1 20 MNL (MCMC) 159.9 2.1
MXL-inter (MCMC) 423.7 0.7
MXL-inter-intra (MCMC) 6135.6 75.6
MXL-inter-intra (MSL) 5003.8 122.2

2 10 MNL (MCMC) 84.6 1.7
MXL-inter (MCMC) 287.4 2.1
MXL-inter-intra (MCMC) 3792.7 57.2
MXL-inter-intra (MSL) 3085.6 162.7

2 20 MNL (MCMC) 186.2 3.3
MXL-inter (MCMC) 413.7 4.4
MXL-inter-intra (MCMC) 6706.4 61.9
MXL-inter-intra (MSL) 4372.6 156.0

Note: The reported values are averages and standard er-
rors across 20 replications. S = experimental scenario. T
= observations per individual.

Table 2: Estimation time on simulated data

Last, Table 3 compares the estimation accuracy of the MSL and MCMC estimators of
mixed logit with unobserved inter- and intra-individual heterogeneity. Overall, we ob-
serve minor differences between the two estimators across the considered experimental
scenarios. MSL is slightly more accurate than MCMC when the number of choice tasks
per decision-maker is T = 10, while the converse seems to hold when T = 20.

RMSE(ζ) RMSE(ΣB) RMSE(ΣW)
S T Method Mean SE [%] Mean SE [%] Mean SE [%]

1 10 MXL-inter-intra (MCMC) 0.037 0.491 0.072 1.032 0.071 0.694
MXL-inter-intra (MSL) 0.034 0.310 0.062 0.590 0.063 0.388

1 20 MXL-inter-intra (MCMC) 0.023 0.268 0.036 0.293 0.039 0.255
MXL-inter-intra (MSL) 0.032 0.322 0.044 0.236 0.038 0.259

2 10 MXL-inter-intra (MCMC) 0.044 0.530 0.086 1.253 0.079 0.763
MXL-inter-intra (MSL) 0.040 0.409 0.073 0.862 0.073 0.592

2 20 MXL-inter-intra (MCMC) 0.021 0.289 0.041 0.511 0.040 0.313
MXL-inter-intra (MSL) 0.034 0.370 0.049 0.347 0.041 0.323

Note: The reported values are averages and standard errors across 20 replications. S = exper-
imental scenario. T = observations per individual. RMSE = root mean square error.

Table 3: Estimation accuracy on simulated data
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4 Real data application
In this section, we evaluate the performance of mixed logit with unobserved inter- and
intra-individual heterogeneity using real data.

4.1 Data and utility specification
Data for the empirical application are sourced from a stated preference survey on choices
of holiday packages (Keane and Wasi, 2013, Louviere et al., 2008).3 The data include
observations from 683 respondents who each completed 32 choice tasks, which involved
a choice of the best alternative of two unlabelled holiday packages characterised by 16
attributes. The final model specification includes nine attributes. Tastes with respect to
five of these attributes are treated as fixed utility parameters, and taste with respect to the
remaining four attributes are treated as random parameters. Table 4 provides a description
of the considered attributes and shows which attributes pertain to fixed taste parameters
parameters and which attributes pertain to random parameters.

Attribute Levels

Attributes with fixed taste parameters
Price 0 ($999), 1 ($1200)
Meal inclusion 0 (no), 1 (yes)
Distance from hotel to attractions 0 (200m), 1 (5km)
Local tours available 0 (no), 1 (yes)
Individual tour 0 (organised tour), 1 (individual)

Attributes with random taste parameters
Overseas destination 0 (Australia), 1 (Overseas)
Length of stay 0 (7 days), 1 (12 days)
4-star accommodation 0 (2-star), 1 (4-star)
Beach or pool available 0 (no), 1 (yes)

Table 4: Attributes and levels of holiday package stated choice data

The data are randomly split into a training set and two test sets. The training set includes
20 choice tasks from each of 633 respondents. One test set is used to evaluate the between-
individuals predictive ability of the considered models. It includes one choice task from
each of the remaining 50 respondents. The second test set is used to evaluate the within-
individuals predictive ability. It is formed by randomly selecting one of the remaining
choice tasks from each of 200 respondents in the training sample. We create ten of such
random splits and compare the performance of the different choice models across these
splits.
Mixed logit with unobserved inter- and intra-individual heterogeneity assumes a utility
specification of the following form:

Untj =
(
Xrandom
ntj

)>
βnt +

(
Xfixed
ntj

)>
γ+ εntj. (10)

3The data are publicly available in the online supplement of Keane and Wasi (2013).
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Here, Xrandom
ntj is vector of attributes with individual- and observation-specific random taste

parameters βnt, and Xfixed
ntj is a vector of attributes with fixed taste parameters γ. εntj is a

stochastic disturbance with distribution Gumbel(0, 1). The utilities of standard logit and
mixed logit with only inter- and intra-individual heterogeneity are specified analogously.

4.2 Results
In Table 5, we compare the predictive accuracy of those discrete choice models which
were estimated using Bayesian methods. For each model, we report the means and the
standard errors of the Brier scores and the average predicted choice probabilities of the
chosen alternative for the between- and the within-individuals prediction scenarios across
ten random splits of the considered choice data. Overall, results are consistent with the
results of the simulation evaluation. We do not observe any noteworthy differences in
between-individuals predictive accuracy across methods. Both mixed logit models of-
fer better within-individuals predictive accuracy than standard logit, but the more com-
plex mixed logit model with unobserved inter- and intra-individual heterogeneity does
not provide any benefits over the simpler mixed logit model with only inter-individual
heterogeneity.

BrierB BrierW Pchosen
B Pchosen

W

Method Mean SE [%] Mean SE [%] Mean SE [%] Mean SE [%]

MNL (MCMC) 0.221 0.843 0.214 0.395 0.562 0.868 0.571 0.371
MXL-inter (MCMC) 0.222 0.845 0.183 0.418 0.561 0.882 0.647 0.372
MXL-inter-intra (MCMC) 0.222 0.857 0.183 0.421 0.561 0.894 0.646 0.395

Note: The reported values are averages and standard errors across ten random splits. Brier = Brier
score. Pchosen = average predicted probability of chosen alternative. B = between-individuals. W =
within-individuals.

Table 5: Predictive accuracy on real data

Furthermore, Table 6 enumerates detailed estimation results for one the random splits
of the stated choice data. The fixed taste parameters and the means of the random taste
parameters of the three mixed logit models have the same signs. For mixed logit with
unobserved inter- and intra-individual heterogeneity, the MSL and MCMC estimates ex-
hibit a close correspondence. Due to its ability to decompose taste variation into inter-
and intra-individual components, mixed logit with unobserved inter- and intra-individual
heterogeneity affords interesting behavioural insights into the sources of taste variation.
We find evidence of substantial intra-individual taste variation. For example, MCMC
suggests that 5.240

6.149+5.240
= 46.0% variation in tastes with respect to the attribute “over-

seas destination” are due to intra-individual heterogeneity. Similarly, MSL indicates that
2.943

2.657+2.943
= 52.6% of variation in tastes with respect to the attributes “4-star accommo-

dation” can be ascribed to intra-individual heterogeneity.
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MNL MXL-inter MXL-inter-intra MXL-inter-intra
(MCMC) (MCMC) (MCMC) (MSL)

Parameter Mean SD Mean SD Mean SD Est. SE

Fixed parameters
Price 0.175 0.019 -0.445 0.035 -0.734 0.090 -0.732 0.077
Meal inclusion 0.370 0.019 0.560 0.029 0.972 0.136 0.949 0.122
Distance from hotel to attractions 0.666 0.018 -0.184 0.028 -0.311 0.059 -0.307 0.051
Local tours avail. 0.189 0.012 0.187 0.031 0.298 0.058 0.294 0.052
Individual tour -0.315 0.024 0.215 0.030 0.350 0.060 0.350 0.049

Random parameters: Means
Overseas destination 0.412 0.021 0.298 0.066 0.545 0.139 0.546 0.129
Length of stay -0.145 0.020 0.569 0.045 1.005 0.157 0.947 0.140
4-star accommodation 0.144 0.026 0.913 0.050 1.534 0.223 1.460 0.197
Beach or pool avail. 0.177 0.026 0.234 0.023 0.363 0.058 0.362 0.059

Random parameters: Inter-respondent covariance
Overseas destination vs. overseas destination 1.839 0.183 6.149 1.558 5.740 1.425
Length of stay vs. overseas destination 0.225 0.084 0.737 0.308 0.774 0.319
Length of stay vs. length of stay 0.430 0.073 1.408 0.397 1.205 0.351
4-star accommodation vs. overseas destination 0.084 0.087 0.247 0.300 0.344 0.281
4-star accommodation vs. length of stay 0.017 0.058 0.107 0.189 -0.096 0.173
4-star accommodation vs. 4-star accommodation 0.990 0.099 2.923 0.815 2.657 0.703
Beach or pool avail. vs. overseas destination 0.029 0.039 0.097 0.129 0.090 0.129
Beach or pool avail. vs. length of stay -0.005 0.024 -0.035 0.074 -0.077 0.076
Beach or pool avail. vs. 4-star accommodation -0.022 0.030 -0.093 0.102 -0.114 0.113
Beach or pool avail. vs. beach or pool avail. 0.096 0.020 0.260 0.086 0.218 0.070

Random parameters: Intra-respondent covariance
Overseas destination vs. overseas destination 5.240 1.743 4.751 1.473
Length of stay vs. overseas destination 0.176 0.298 0.168 0.438
Length of stay vs. length of stay 0.191 0.196 0.114 0.190
4-star accommodation vs. overseas destination 0.278 0.543 0.401 0.505
4-star accommodation vs. length of stay -0.227 0.195 -0.499 0.405
4-star accommodation vs. 4-star accommodation 3.335 1.603 2.943 2.586
Beach or pool avail. vs. overseas destination 0.119 0.217 0.379 0.319
Beach or pool avail. vs. length of stay 0.055 0.045 0.098 0.181
Beach or pool avail. vs. 4-star accommodation -0.157 0.190 -0.154 0.774
Beach or pool avail. vs. beach or pool avail. 0.188 0.201 0.315 1.070

Note: For MCMC, the posterior mean and the posterior standard deviation are reported. For MSL, the point estimate and the
asymptotic standard error are reported. For MSL, the standard errors of the covariance elements are obtained using a parametric
bootstrap with 10,000 draws.

Table 6: Estimation results for one of the random splits of the real data

Finally, Table 7 gives the estimation times of the choice models across the ten random
splits. Mixed logit with only inter-individual heterogeneity is substantially faster than
mixed logit with unobserved inter- and intra-individual heterogeneity. MSL is slower
than MCMC due to the presence of fixed utility parameters.

Time [s]
Method Mean SE

MNL (MCMC) 89.0 2.3
MXL-inter (MCMC) 312.5 6.0
MXL-inter-intra (MCMC) 2971.5 129.7
MXL-inter-intra (MSL) 7389.5 462.2

Note: The reported values are averages and
standard errors across ten random splits.

Table 7: Estimation time on real data
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5 Extended discussion
Our analysis suggests that mixed logit models with unobserved inter- and intra-individual
heterogeneity do not provide significant improvements over simpler mixed logit mod-
els which only account for unobserved inter-individual heterogeneity in terms of within-
individuals predictive accuracy. The inability of the former to outperform the latter can
be ascribed to the former’s predominant emphasis on nonstructural random heterogene-
ity. Thus, there is a need to explore alternative modelling approaches which have the po-
tential to provide accurate individualised predictions of choice behaviour by accounting
for richer dependencies between products and consumers’ preferences as well as tempo-
ral correlations between choices in a flexible framework. In what follows, we discuss
four strands of the literature and evaluate their relevance in creating choice-based recom-
mender systems within the random utility maximisation (RUM) framework.

5.1 Collaborative filtering
Various filtering approaches such as matrix factorisation have emerged as powerful tools
to generate personalised recommendations in recommender systems (Gopalan et al., 2013,
Koren et al., 2009, Mnih and Salakhutdinov, 2008). The fundamental idea of collaborative
filtering is to predict a consumer’s preferences based on other consumers’ preferences of
while also exploiting interdependencies between products. Matrix factorisation provides
a mapping of both consumers and products into a joint latent factor space and learns a
sparse matrix of dimension # of consumers × # of products. Each cell of this matrix
represents one consumer’s preference that each consumer has for each product, which
is a function of a sum of the product of a latent vector of alternative characteristics and
a latent vector of consumer preferences for each of those product characteristics (see
Gopalan et al., 2013, for details of the formulation).
Learning such a sparse matrix is computationally challenging, but advancements in varia-
tional Bayes have made the estimation of these models tractable for large data sets. Recent
studies on matrix factorisation methods also account for dynamic consumer preferences
and social network effects (Hosseini et al., 2018). A combination of scalability, ability
to account for dynamics and social aspects, and superior predictive accuracy have made
matrix factorisation methods popular in industrial applications. However, they have re-
ceived limited attention of applied econometrics and marketing communities due to i)
focus on prediction, instead of inference; ii) no underlying economic theory or lack of un-
derstanding about the relation between matrix factorisation and canonical models based
on RUM theory; iii) inability to model time-varying choice sets and product-specific at-
tributes. Economists and machine learning researchers came together recently to address
second and third limitations of this powerful tool. Athey et al. (2018) illustrate how ma-
trix factorisation methods can be integrated into standard RUM frameworks to predict an
individual’s choice of restaurants using mobile location data. The main idea is to augment
the original utility equation with the consumer- and product-level covariates by including
a vector of latent characteristics for each restaurant as well as latent preferences of con-
sumers for these characteristics. The framework thus incorporates the key component
(i.e., sparse latent construct) of standard matrix factorisation models in the RUM frame-
work and adopts variational Bayes for scalable estimation and prediction. In another such
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study, Donnelly et al. (2019) use a similar framework to model consumer preferences
across multiple categories of products in a supermarket. These theory-driven advance-
ments would hopefully convince applied choice modellers about the benefits of matrix
factorisation methods for personalised predictions.

5.2 Collaborative learning
Zhu et al. (2020) propose a choice model with time-varying parameters in a collaborative
learning framework. Similar to latent class models, this model assumes that there are
several unique underlying preference patterns (i.e., classes), but rather than assigning each
consumer to one class and assuming preferences of all class members to be the same, a
vector of weights (membership vector) is specified to represent the degree of resemblance
of the consumer’s preferences to each preference pattern. Temporal variation in these
unique preference patterns is captured by time-varying model parameters. Whereas this
framework is already a good alternative to the mixed logit model with inter-and intra-
heterogeneity, it can further be improved by taking inspiration from Athey et al. (2018)
and incorporating the latent structure of matrix factorisation in the utility equation.

5.3 Amortised variational inference
Recent application of amortised variational inference (AVI) in the estimation of the mixed
logit model also offers possibilities to improve the choice prediction accuracy (Rodrigues,
2020). Instead of introducing consumer-level local variational parameters for random
parameters, AVI maps observed choices and covariates with corresponding variational
parameters using a deep neural network to avoid the growth of variational parameters with
the sample size. AVI thus includes a generic inference network that takes a consumer’s
data as input and provides the approximate posterior distribution of her random taste
parameters as output. In other words, AVI provides a trained inference network as a
byproduct of the estimation, which can be used to obtain the posterior distribution of
random taste parameters of a new consumer or the existing consumer in a new choice
situation (Rodrigues, 2020). AVI has the potential to become a workhorse method in
online learning applications due to its fast estimation with stochastic backpropagation and
GPU-accelerated computations. AVI performs well in the initial experiments presented in
Rodrigues (2020), but its performance needs to be benchmarked against other competing
methods.

5.4 Neural network and tree-based models
To leverage benefits of machine learning advancements in discrete choice models without
compromising at interpretability and economic theory, recent RUM based choice mod-
els have adopted variants of neural networks (Sifringer et al., 2020, Wang et al., 2020)
and regression trees (Kindo et al., 2016) to specify semi- and non-parametric utility func-
tions. These advanced models claim to improve the prediction accuracy of discrete choice
models in validation samples, but they have limited focus on improving within individual
predictions, i.e. predicting choice of a consumer from training dataset in a new choice
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situation. Bringing this additional feature in these data-theory-driven models can make
them viable for online recommender systems.

6 Conclusion
In this research note, we evaluate the ability of mixed logit models with unobserved inter-
and intra-individual heterogeneity to generate individual-level predictions. Using simu-
lated and real data, we demonstrate that mixed logit with unobserved inter- and intra-
individual heterogeneity does not provide significant improvements over standard mixed
logit models which only account for inter-individual taste variation. This observation
persists even in scenarios which are characterised by high levels of intra-individual taste
variation and when the number of choice tasks per individual is large.
Besides, the estimation of mixed logit with unobserved inter- and intra-individual het-
erogeneity demands at least ten times as much computation time as the estimation of
standard mixed logit. For mixed logit with unobserved inter- and intra-individual het-
erogeneity, we also find that the maximum simulated likelihood (MSL) estimator with
analytical gradients is faster or not substantially slower then the Bayesian Markov chain
Monte Carlo (MCMC) method, which stands in contrast to previous studies which used
MSL with numerical gradients (see Becker et al., 2018).
We ascribe the inability of mixed logit with unobserved inter- and intra-individual het-
erogeneity to outperform standard mixed logit to the former’s predominant emphasis on
nonstructural random heterogeneity. In light of recent advances at the intersection of
machine learning and econometrics, we review several promising alternative modelling
approaches, which may offer superior prediction performance by flexibly capturing de-
pendencies between decision-makers, alternatives and attributes.

15



References
Akinc, D. and Vandebroek, M. (2018). Bayesian estimation of mixed logit models: Se-

lecting an appropriate prior for the covariance matrix. Journal of choice modelling,
29:133–151.

Allenby, G. M. and Rossi, P. E. (1998). Marketing models of consumer heterogeneity.
Journal of econometrics, 89(1-2):57–78.

Ansari, A., Essegaier, S., and Kohli, R. (2000). Internet recommendation systems.

Athey, S., Blei, D., Donnelly, R., Ruiz, F., and Schmidt, T. (2018). Estimating heteroge-
neous consumer preferences for restaurants and travel time using mobile location data.
In AEA Papers and Proceedings, volume 108, pages 64–67.

Becker, F., Danaf, M., Song, X., Atasoy, B., and Ben-Akiva, M. (2018). Bayesian esti-
mator for logit mixtures with inter-and intra-consumer heterogeneity. Transportation
Research Part B: Methodological, 117:1–17.

Ben-Akiva, M., McFadden, D., Train, K., et al. (2019). Foundations of stated preference
elicitation: Consumer behavior and choice-based conjoint analysis. Foundations and
Trends R© in Econometrics, 10(1-2):1–144.

Bettman, J. R., Luce, M. F., and Payne, J. W. (1998). Constructive consumer choice
processes. Journal of consumer research, 25(3):187–217.

Bhat, C. R. (1998). Accommodating variations in responsiveness to level-of-service mea-
sures in travel mode choice modeling. Transportation Research Part A: Policy and
Practice, 32(7):495–507.

Bhat, C. R. (2000). Incorporating observed and unobserved heterogeneity in urban work
travel mode choice modeling. Transportation science, 34(2):228–238.

Bhat, C. R. and Castelar, S. (2002). A unified mixed logit framework for modeling re-
vealed and stated preferences: formulation and application to congestion pricing anal-
ysis in the san francisco bay area. Transportation Research Part B: Methodological,
36(7):593–616.

Bhat, C. R. and Sardesai, R. (2006). The impact of stop-making and travel time reli-
ability on commute mode choice. Transportation Research Part B: Methodological,
40(9):709–730.

Bhat, C. R. and Sidharthan, R. (2011). A simulation evaluation of the maximum approx-
imate composite marginal likelihood (macml) estimator for mixed multinomial probit
models. Transportation Research Part B: Methodological, 45(7):940–953.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1–3.

16



Danaf, M., Becker, F., Song, X., Atasoy, B., and Ben-Akiva, M. (2019). Online discrete
choice models: Applications in personalized recommendations. Decision Support Sys-
tems, 119:35–45.

Donnelly, R., Ruiz, F. R., Blei, D., and Athey, S. (2019). Counterfactual inference for
consumer choice across many product categories. arXiv preprint arXiv:1906.02635.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378.

Gopalan, P., Hofman, J. M., and Blei, D. M. (2013). Scalable recommendation with
poisson factorization. arXiv preprint arXiv:1311.1704.

Hess, S. and Giergiczny, M. (2015). Intra-respondent heterogeneity in a stated choice
survey on wetland conservation in belarus: first steps towards creating a link with un-
certainty in contingent valuation. Environmental and Resource Economics, 60(3):327–
347.

Hess, S. and Rose, J. M. (2009). Allowing for intra-respondent variations in coefficients
estimated on repeated choice data. Transportation Research Part B: Methodological,
43(6):708–719.

Hess, S. and Train, K. E. (2011). Recovery of inter-and intra-personal heterogeneity using
mixed logit models. Transportation Research Part B: Methodological, 45(7):973–990.

Hess, S., Train, K. E., and Polak, J. W. (2006). On the use of a modified latin hypercube
sampling (mlhs) method in the estimation of a mixed logit model for vehicle choice.
Transportation Research Part B: Methodological, 40(2):147–163.

Hosseini, S. A., Khodadadi, A., Alizadeh, K., Arabzadeh, A., Farajtabar, M., Zha, H., and
Rabiee, H. R. (2018). Recurrent poisson factorization for temporal recommendation.
IEEE Transactions on Knowledge and Data Engineering, 32(1):121–134.

Huang, A. and Wand, M. P. (2013). Simple marginally noninformative prior distributions
for covariance matrices. Bayesian Anal., 8(2):439–452.

Jiang, H., Qi, X., and Sun, H. (2014). Choice-based recommender systems: a unified
approach to achieving relevancy and diversity. Operations Research, 62(5):973–993.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for
Python.

Keane, M. and Wasi, N. (2013). Comparing alternative models of heterogeneity in con-
sumer choice behavior. Journal of Applied Econometrics, 28(6):1018–1045.

Kindo, B. P., Wang, H., and Peña, E. A. (2016). Multinomial probit bayesian additive
regression trees. Stat, 5(1):119–131.

Kivetz, R., Netzer, O., and Schrift, R. (2008). The synthesis of preference: Bridging
behavioral decision research and marketing science. Journal of Consumer Psychology,
18(3):179–186.

17



Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37.

Louviere, J. J., Islam, T., Wasi, N., Street, D., and Burgess, L. (2008). Designing dis-
crete choice experiments: do optimal designs come at a price? Journal of Consumer
Research, 35(2):360–375.

Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. (2015). Recommender system appli-
cation developments: a survey. Decision Support Systems, 74:12–32.

McFadden, D. and Train, K. (2000). Mixed mnl models for discrete response. Journal of
applied Econometrics, 15(5):447–470.

Mnih, A. and Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances
in neural information processing systems, pages 1257–1264.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business
Media.

Revelt, D. and Train, K. (1998). Mixed Logit with Repeated Choices: Households’
Choices of Appliance Efficiency Level. The Review of Economics and Statistics,
80(4):647–657.

Rodrigues, F. (2020). Scaling bayesian inference of mixed multinomial logit models to
very large datasets. arXiv preprint arXiv:2004.05426.

Sifringer, B., Lurkin, V., and Alahi, A. (2020). Enhancing discrete choice models with
representation learning. Transportation Research Part B: Methodological, 140:236–
261.

Song, X., Danaf, M., Atasoy, B., and Ben-Akiva, M. (2018). Personalized menu optimiza-
tion with preference updater: a boston case study. Transportation Research Record,
2672(8):599–607.

Stigler, G. J. and Becker, G. S. (1977). De gustibus non est disputandum. The american
economic review, 67(2):76–90.

Train, K. E. (2009). Discrete Choice Methods with Simulation. Cambridge University
Press, 2nd edition.

Wang, S., Mo, B., and Zhao, J. (2020). Deep neural networks for choice analysis: Archi-
tecture design with alternative-specific utility functions. Transportation Research Part
C: Emerging Technologies, 112:234–251.

Xie, Y., Zhang, Y., Akkinepally, A. P., and Ben-Akiva, M. (2020). Personalized choice
model for managed lane travel behavior. Transportation research record, 2674(7):442–
455.

Yáñez, M. F., Cherchi, E., Heydecker, B. G., and de Dios Ortúzar, J. (2011). On the
treatment of repeated observations in panel data: efficiency of mixed logit parameter
estimates. Networks and Spatial Economics, 11(3):393–418.

18



Zhu, X., Feng, J., Huang, S., and Chen, C. (2020). An online updating method for time-
varying preference learning. Transportation Research Part C: Emerging Technologies,
121:102849.

19



A Model estimation

A.1 Maximum simulated likelihood
In maximum simulated likelihood (MSL) estimation, the mean vector ζ and the covari-
ance matrices {ΣB,ΣW} are treated as fixed, unknown parameters, whereas the individual-
and case-specific parameters µn and βnt are treated as stochastic nuisance parameters.
Point estimates of {ζ,ΣB,ΣW} are obtained via maximisation of the unconditional log-
likelihood, whereby the optimisation is in fact performed with respect to the Cholesky
factors {LB,LW} of the covariance matrices in order to maintain positive-definiteness of
{ΣB,ΣW}.
To formulate the unconditional log-likelihood, we define βnt = µn + γnt, where µn ∼

N(ζ,ΣB) is an individual-specific random parameter with density f(µn|ζ,ΣB), and where
γnt ∼ N(0,ΣW) is a case-specific random parameter with density f(γnt|ΣW). We then
obtain the unconditional log-likelihood by integrating out the stochastic nuisance param-
eters:

LL(θ) =

N∑
n=1

ln

(∫ T∏
t=1

(∫
P(ynt|Xnt,βnt)f(γnt|ΣW)dγnt

)
f(µn|ζ,ΣB)dµn

)
, (11)

where θ = {ζ,LB,LW}.
Since the integrals in expression 11 are not analytically tractable, we need to resort to
simulation to approximate the log-likelihood. The simulated log-likelihood is given by

SLL(θ) =

N∑
n=1

ln

(
1

D

D∑
d=1

T∏
t=1

(
1

R

R∑
r=1

P(ynt|Xnt,βnt,dr)

))
, (12)

where βnt,dr = ζ + LBξn,d + LWξnt,r. ξn,d and ξnt,r denote standard normal simulation
draws. For each decision-maker, we take D draws for µn and for each case, we take R
draws for γnt.
Point estimates θ̂ are then given by

θ̂ = arg max
θ

SLL(θ). (13)

This optimisation problem can be solved with the help of quasi-Newton methods such as
the limited-memory BFGS algorithm (see e.g. Nocedal and Wright, 2006). Quasi-Newton
methods rely on the gradient of the objective function to find local optima. In principle,
gradients can be approximated numerically. However, the numerical approximation of
gradients is computationally expensive, as it involves many function evaluations. Compu-
tation times can be drastically reduced when analytical or simulated gradients are supplied
to the optimiser. In the case of the mixed logit model with inter- and intra-individual het-
erogeneity, the two levels of integration impose a substantial computational burden, and
thus efficient optimisation routines are critical for moderating estimation times.
In what follows, we derive expressions for the gradients of the mixed logit model with
inter- and intra-individual heterogeneity. To the best of our knowledge, this is the first
time these gradients are presented in the literature. First, we let ϑi denote one of the

20



model parameters collected in θ. We have

∂

∂ϑi
SLL(Θ) =

N∑
n=1

1
D

∑D
d=1

∂
∂ϕi

∏T
t=1

(
1
R

∑R
r=1 P(ynt|Xnt,βnt,dr)

)
1
D

∑D
d=1

∏T
t=1

(
1
R

∑R
r=1 P(ynt|Xnt,βnt,dr)

)
.

(14)

To find the derivative in the numerator, we define

ψnt,d(θ) =
1

R

R∑
r=1

P(ynt|Xnt,βnt,dr) (15)

with

ψ ′nt,d(θ) =
∂ψnt,dr(Θ)

∂ϑi

=
1

R

R∑
r=1

(
P(ynt|Xnt,βnt,dr)

∂V(Xntj,βnt,dr)

∂ϑi

−
∑

j ′∈C:j ′ 6=ynt

(
P(ynt|Xnt,βnt,dr)P(j

′|Xnt,βnt,dr)
∂V(Xntj ′ ,βnt,dr)

∂ϑi

))
.

(16)

Note that if the deterministic aspect of the utility is specified as linear-in-parameters, i.e.

V(Xntj,βnt,dr) = X
>
ntj(ζ+ LBξn,d + LWξnt,r), (17)

we have

∂V(Xntj,βnt,dr)

∂ζ
= Xntj, (18)

∂V(Xntj,βnt,dr)

∂LB
= Xntjξ

>
n,d, (19)

∂V(Xntj,βnt,dr)

∂LW
= Xntjξ

>
nt,r. (20)

From the product rule of differentiation, it follows that

∂

∂ϑi

T∏
t=1

(
1

R

R∑
r=1

P(ynt|Xnt,βnt,dr)

)
=

(
T∏
t=1

ψnt,dr(θ)

)(
T∑
t=1

ψ ′nt,d(θ)

ψnt,d(θ)

)
. (21)

A.2 Gibbs sampling
Under a fully Bayesian approach, the parameters ζ, ΣB, ΣW are considered to be ran-
dom, unknown quantities and are thus given priors. We use a normal prior N(ξ0,Ξ0) for
mean vector ζ and Huang’s half-t prior (Huang and Wand, 2013) for the covariance ma-
trices ΣB and ΣW . The latter is hierarchically defined: It consists of an inverse Wishart
prior IW (ν+ K− 1, 2ν∆) with ν representing a known hyper-parameter and K denoting
the number of underlying random parameters indexed by k ∈ {1, . . . , K}. ∆ ≡ diag(a)
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is a diagonal matrix with elements ak distributed Gamma
(
1
2
, 1
A2

k

)
. Akinc and Vande-

broek (2018) show that Huang’s half-t prior exhibits superior non-informativity properties
compared to alternative prior specifications in the context of mixed logit with only inter-
individual heterogeneity. In the subsequent applications, we set ξ0 = 0, Ξ0 = 106IK,
ν = 2 and Ak = 103 ∀k ∈ {1, . . . , K}.
Stated succinctly, the generative process of mixed logit with unobserved inter- and intra-
individual heterogeneity is as follows:

aB,k|AB,k ∼ Gamma
(
1

2
,
1

A2B,k

)
, k = 1, . . . , K, (22)

aW,k|AW,k ∼ Gamma
(
1

2
,
1

A2W,k

)
, k = 1, . . . , K, (23)

ΣB|νB,aB ∼ IW (νB + K− 1, 2νBdiag(aB)) , aB =
[
aB,1 . . . aB,K

]> (24)

ΣW |νW,aW ∼ IW (νW + K− 1, 2νWdiag(aW)) , aW =
[
aW,1 . . . aW,K

]> (25)
ζ|ξ0,Ξ0 ∼ N(ξ0,Ξ0) (26)
µn|ζ,ΣB ∼ N(ζ,ΣB), n = 1, . . . ,N, (27)

βnt|µn,ΣW ∼ N(µn,ΣW), n = 1, . . . ,N, t = 1, . . . , T, (28)
ynt|βnt,Xnt ∼ Logit(βnt,Xnt), n = 1, . . . ,N, t = 1, . . . , T, (29)

where {ξ0,Ξ0, νB, νW, AB,1:K, AW,1:K} are known hyper-parameters, andθ = {aB,aW,ΣB,ΣW, ζ,
µ1:N,β1:N,1:Tn} is a collection of model parameters whose posterior distribution we wish
to estimate.
The generative process given in expressions (22)–(29) implies the following joint distri-
bution of the data and the model parameters:

P(y1:N,θ) =

(
N∏
n=1

Tn∏
t=1

P(ynt|βnt,Xnt)P(βnt|µn,ΣW)

)(
N∏
n=1

P(µn|ζ,ΣB)

)

P(ζ|ξ0,Ξ0)P(ΣB|ωB,BB)

(
K∏
k=1

P(aB,k|s, rB,k)

)

P(ΣW |ωW,BW)

(
K∏
k=1

P(aW,k|s, rW,k)

) (30)

whereωB = νB +K− 1, BB = 2νBdiag(aB),ωW = νW +K− 1, BW = 2νWdiag(aW),
s = 1

2
, rB,k = A−2

B,k and rW,k = A−2
W,k. By Bayes’ rule, the posterior distribution of interest

is given by

P(θ|y1:N) =
P(y1:N,θ)∫
P(y1:N,θ)dθ

∝ P(y1:N,θ). (31)

Exact inference of this posterior distribution is not possible, because the model evidence∫
P(y1:N,θ)dθ is not tractable. Hence, we resort to approximate inference methods.

Becker et al. (2018) propose a Bayesian Markov chain Monte Carlo (MCMC) method in
the form of a blocked Gibbs sampler for posterior inference in the described model. In
what follows, we present the steps involved in one iteration of the sampler:
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1. Update aB,k for all k ∈ {1, . . . , K} by sampling aB,k ∼ Gamma
(
νB+K
2
, 1
A2

B,k

+ νB
(
Σ−1
B

)
kk

)
.

2. Update ΣB by sampling ΣB ∼ IW
(
νB + N + K − 1, 2νBdiag(aB) +

∑N
n=1(µn −

ζ)(µn − ζ)
>
)

.

3. Update aW,k for all k ∈ {1, . . . , K} by sampling aW,k ∼ Gamma
(
νW+K
2
, 1
A2

W,k

+

νW
(
Σ−1
W

)
kk

)
.

4. Update ΣW by sampling ΣW ∼ IW
(
νW +

∑N
n=1 T + K − 1, 2νWdiag(aW) +∑N

n=1

∑T
t=1(βnt − µn)(βnt − µn)

>
)

.

5. Update ζ by sampling ζ ∼ N(µζ,Σζ), where Σζ =
(
Ξ−1
0 + NΣ−1

B

)−1
and µζ =

Σζ

(
Ξ−1
0 ξ0 + Σ

−1
B

∑N
n=1 µn

)
.

6. Update µn for all n ∈ {1, . . . ,N} by sampling µn ∼ N(µµn ,Σµn), where Σµn =(
Σ−1
B + TΣ−1

W

)−1
and µµn = Σµn

(
Σ−1
B ζ+ Σ

−1
W

∑T
t=1βnt

)
.

7. Update βnt for all n ∈ {1, . . . ,N} and t ∈ {1, . . . , T }:

(a) Propose β̃nt = βnt +
√
ρchol(ΣW)η, where η ∼ N(0, IK).

(b) Compute r = P(ynt|Xnt,β̃nt)φ(β̃nt|µn,ΣW)
P(ynt|Xnt,βnt)φ(βnt|µn,ΣW)

.

(c) Draw u ∼ Uniform(0, 1). If r ≤ u, accept the proposal. If r > u, reject the
proposal.

ρ is a step size, which needs to be tuned. We employ the same tuning mechanism as Train
(2009): ρ is set to an initial value of 0.1 and after each iteration, ρ is decreased by 0.001,
if the average acceptance rate across all decision-makers is less than 0.3; ρ is increased
by 0.001, if the average acceptance rate across all decision-makers is more than 0.3.

B True population parameters in the simulation study

ζ =
[
−0.5 0.5 −0.5 0.5

]>, ΩB = I4 + α ·


[r]0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

, ΩW = I4 + α ·


0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0


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