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Abstract
Functional time series is a temporally ordered sequence of not necessarily independent ran-

dom curves. While the statistical analysis of such data has been traditionally carried out under

the assumption of completely observed functional data, it may well happen that the statis-

tician only has access to a relatively low number of sparse measurements for each random

curve. These discrete measurements may be moreover irregularly scattered in each curve’s

domain, missing altogether for some curves, and be contaminated by measurement noise.

This sparse sampling protocol escapes from the reach of established estimators in functional

time series analysis and therefore requires development of a novel methodology.

The core objective of this thesis is development of a non-parametric statistical toolbox for

analysis of sparsely observed functional time series data. Assuming smoothness of the latent

curves, we construct a local-polynomial-smoother based estimator of the spectral density

operator producing a consistent estimator of the complete second order structure of the data.

Moreover, the spectral domain recovery approach allows for prediction of latent curve data at

a given time by borrowing strength from the estimated dynamic correlations in the entire time

series across time. Further to predicting the latent curves from their noisy point samples, the

method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves

as a basis for forecasting.

A classical non-parametric apparatus for encoding the dependence between a pair of or

among a multiple functional time series, whether sparsely or fully observed, is the functional

lagged regression model. This consists of a linear filter between the regressors time series and

the response. We show how to tailor the smoother based estimators for the estimation of the

cross-spectral density operators and the cross-covariance operators and, by means of spectral

truncation and Tikhonov regularisation techniques, how to estimate the lagged regression

filter and predict the response process.

The simulation studies revealed the following findings: (i) if one has freedom to design a sam-

pling scheme with a fixed number of measurements, it is advantageous to sparsely distribute

these measurements in a longer time horizon rather than concentrating over a shorter time

horizon to achieve dense measurements in order to diminish the spectral density estimation

error, (ii) the developed functional recovery predictor surpasses the static predictor not exploit-

ing the temporal dependence, (iii) neither of the two considered regularisation techniques

can, in general, dominate the other for the estimation in functional lagged regression models.

The new methodologies are illustrated by applications to real data: the meteorological data
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Abstract

revolving around the fair-weather atmospheric electricity measured in Tashkent, Uzbekistan,

and at Wank mountain, Germany; and a case study analysing the dependence of the US

Treasury yield curve on macroeconomic variables.

As a secondary contribution, we present a novel simulation method for general stationary

functional time series defined through their spectral properties. A simulation study shows

universality of such approach and superiority of the spectral domain simulation over the

temporal domain in some situations.

Keywords: functional data analysis, spectral density operator, autocovariance operator, non-

parametric regression, functional lagged regression, spectral domain simulation, fair-weather

electricity, US Treasury yield curve.
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Résumé
Les séries temporelles fonctionnelles sont des séquences de courbes aléatoires ordonnées dans

le temps et non nécessairement indépendantes. Traditionnellement, l’analyse statistique de

telles séries se fait sous l’hypothèse que les données fonctionnelles sont complètement obser-

vées. Cependant, il arrive que le statisticien n’ait accès qu’à un nombre relativement restreint

de mesures éparses pour chaque courbe aléatoire. De plus, ces mesures discrètes peuvent être

dispersée de façon irrégulière sur le domaine de la courbe ou complètement absentes pour

certaines courbes, ou bien contaminées par des erreurs de mesures. Les estimateurs établis

pour l’analyse des séries temporelles fonctionnelles ne tiennent pas compte de tels protocoles

d’échantillonnage et nécessite donc le développement d’une nouvelle méthodologie.

L’objectif principal de cette thèse est le développement d’outils statistiques non-paramétriques

pour analyser des séries temporelles fonctionnelle observées de façon éparse. En supposant

que les courbes latentes sont régulières, nous construisons un estimateur de l’opérateur de

densité spectrale basé sur la régression locale. Nous obtenons ainsi un estimateur consistent

de la structure de second ordre des données. En outre, nous faisons appel à l’approche de la

prédiction dans le domaine spectrale pour estimer les courbes latentes à un temps donnée

basées les corrélations dynamiques estimées le long de séries entière. Ainsi, notre méthode

permet d’estimer la courbe latente à partir d’observations empiriques, mais aussi de retrouver

des parties non-observées de la série, réduire le bruit, et servir de base pour des prévisions

dans le future.

Le modèle de régression fonctionnelle décalée est une technique non-paramétrique classique

pour décrire la dépendance entre deux ou plusieurs séries temporelles fonctionnelles. Il s’agit

d’un filtre linéaire entre les séries temporelles et la réponse. Nous adaptons des approches

basées sur le lissage à l’estimation des opérateurs de densité spectrale croisée et les opérateurs

de covariance croisée et nous utilisons troncature spectrale et la régularisation de Tikhonov afin

d’estimer le filtre de régression décalée et prédire la variable de réponse.

Les simulations montrent les résultats suivants : (i) Dans le cas où on peut définir librement un

plan d’échantillonnage avec un nombre fixé de mesures, il est plus avantageux de distribuer ces

mesures le long d’une longue période plutôt que de les condenser sur une période plus courte

en obtenant des mesures plus denses pour minimiser l’erreur d’estimation de la densité

spectrale. (ii) Le prédicateur proposé est plus performant que le prédicateur statique qui

ne tient pas compte de la dépendance temporelle. (iii) D’une façon générale, aucune des

deux techniques de régularisation considérées ne peut dominer l’autre pour l’estimation
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Résumé

dans le modèle de régression fonctionnelle décalée. La nouvelle méthodologie est illustrée à

travers des applications à des données réelles : Notre première étude concerne des données

météorologiques et particulièrement l’électricité atmosphérique par beau temps mesurée en

Tachkent, Ouzbékistan, et au Wank en Allemagne. Dans un deuxième exemple, nous analysons

la dépendance entre la courbe des taux du trésor des États-Unis et certaines variables macro-

économiques.

Une contribution secondaire de cette thèse est d’introduire une nouvelle méthode pour simu-

ler des séries temporelles fonctionnelles stationnaires à partir de leur propriétés spectrales.

Nous démontrons que cette approche est universelle et que dans certaines situations, une

simulation basée sur le domaine spectral est supérieure à celle basée sur le domaine temporel.

Mots-clés : données fonctionnelles, opérateur de densité spectral, opérateur de covariance,

régression non-paramétrique, régression fonctionnelle décalée, simulation dans le domaine

spectrale, électricité atmosphérique par beau temps, courbe des taux du trésor des États-Unis.
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Introduction

Functional data analysis is a statistical discipline consisting of approaches and methodologies

to analyse data ensembles of random functions (Ramsay and Silverman, 2013; Ferraty and

Vieu, 2006; Hsing and Eubank, 2015; Wang et al., 2016) where each function is viewed as one

data object, an atom, or one sample element. Examples of such data sets include growth

curves, handwriting data, weather records, or speech recordings (Ramsay and Silverman, 2007).

From the statistical viewpoint, inferences from such data can be seen as the inference problem

over repeated independent realisations of a stochastic process. The infinite dimensional

probabilistic nature of stochastic processes brings over many challenges where the functional

data analysis methodologies need to deviate from multivariate analysis methods: the analysis

of infinite dimensional problems requires tools from functional analysis while many standard

inference problems may become ill-posed. Another challenge comes from the fact that the

random curves, as infinite dimensional objects, can never be observed directly in real data

problems. Indeed, they can be recorded only by a finite number of measurements and the

random curves themselves must be considered as latent objects. If this sampling is sufficiently

dense, however, a pre-smoothing step can be applied and the data are then treated as genuinely

functional while provably retaining the same asymptotic performance (Hall et al., 2006). This

pre-smoothing approach was promoted and popularised by Ramsay and Silverman (2013,

2007).

In some cases, however, the pure “platonic” functional data are recorded only at a small num-

ber of locations in their domain, in which case we speak about sparsely observed functional

data. Figure 1 demonstrates this phenomenon. Data sets admitting this sparse sampling

regime often include longitudinal studies (Yao et al., 2005a) where the measurements of a

certain subject are recorded at regular or irregular intervals, while different subjects are con-

sidered to be independent but coming from the same population. In their seminal paper, Yao

et al. (2005a) demonstrated how to overcome the sparsity challenge and statistically infer the

probabilistic properties of the underlying latent stochastic process up to second order. Specifi-

cally they showed how to employ local-polynomial smoothing techniques for the estimation

of the mean function and the covariance kernel. These two objects are quintessential for

statistical applications such us the dimensionality reduction, latent trajectory prediction (Yao

et al., 2005a), or regression (Yao et al., 2005b). The local-polynomial smoothing techniques

have been later improved by Hall et al. (2006) and Li and Hsing (2010) who strengthened the
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Figure 1 – Left: The “Theory" picture, where X t (x), x ∈ [0,1], is a fully observed functional
datum (solid line). Right: The “Practice" picture, where the functional datum X t (x), x ∈ [0,1],
is latent, and one can either observe dense noiseless observations (dotted line) or sparse
noisy observations (crosses) with additive noise Yt j = X t (xt j )+ εt j observed at locations
xt j , j = 1, . . . ,6. In the dense case, one can typically behave as if the true latent function were
observed. The sparse case, however, needs new tools.

non-parametric convergence rate and allowed for mixed regimes where some functional data

are observed sparsely while some densely. Other notable approaches on how to deal with

sparsity include fitting by minimizing a convex criterion function and expressing the estimator

within a reproducing kernel Hilbert space (Cai and Yuan, 2010; Wong and Zhang, 2019), and

expressing the latent functional data in a pre-specified basis and estimating the dynamics

using the expectation maximisation algorithm (Rice and Wu, 2001; James et al., 2000).

Another challenge in functional data may comes in the form of dependence. Until now, we

have considered functional data being manifested as an independent samples from the same

population, hence the problem falls within the classical independent identically distributed

setting. In many applications, however, the data, whether multivariate or functional, are

recorded sequentially, forming a temporal sequence of measurements. In this sense, a tempo-

rally ordered sequence indexed by integers consisting of functional data is called functional

time series. Historically, the development of statistical methods analysing functional time se-

ries data has relied on generalisations of univariate and multivariate linear time series models

into function spaces (Bosq, 2000; Blanke and Bosq, 2007). This is a non-trivial task thanks to

the inherent ill-posedness of many inverse problems in infinite dimensions. More recently,

the field has moved away from the realm of linear processes. Hörmann and Kokoszka (2010)

considered weakly dependent functional time series, showed the effect of this weak temporal

dependence on principal component analysis, and studied the problem of estimating the long-

run covariance operator. Moreover, they introduced the concept of Lp -m-approximability

which proved to be useful in proving many asymptotic results in functional time series liter-

ature. Horváth et al. (2013) provided additional contributions for functional time series by

deriving a central limit theorem for the mean function of a stationary weakly dependent time

series and also studied the long-run covariance operator estimation problem.

Further advancement in functional time series research moved on to estimation of complete

second order structure by fully non-parametric techniques while especially fruitful became

2



Introduction

the analysis and estimation in the spectral domain. Panaretos and Tavakoli (2013a) generalised

the definitions of the spectral density and the spectral density matrix from the univariate or

multivariate time series analysis respectively, and defined their infinite dimensional coun-

terpart: the spectral density operators and the spectral density kernels, and showed how these

object can be used for optimal dimensionality reduction by the means of the harmonic princi-

pal components using the Cramér-Karhunen-Loève representation. Panaretos and Tavakoli

(2013b) showed how to estimate the said spectral density operators and kernels by the means

of periodogram smoothing while their asymptotic theory generalises the cumulant-type mix-

ing conditions, à la Brillinger (1981). In independent parallel work, Hörmann et al. (2015a)

introduced the dynamic principal components using similar ideas as the harmonic principal

components of Panaretos and Tavakoli (2013a). Moreover, Hörmann et al. (2015a) provided

with an alternative estimator of the spectral density operator by the functional version of

Bartlett’s estimate (Bartlett, 1950) while relying on Lp -m-approximability for their asymptotic

theory.

Despite recent progress in functional time series research, the focus has been almost exclu-

sively on fully observed functional time series. These methods can be successfully applied

only in the dense observation regime where the functional data can be constructed by a

pre-smoothing step. According to our knowledge, there are only a handful of exceptions

considering discrete measurements on functional time series: Panaretos and Tavakoli (2013b)

showed that their asymptotic results are stable under dense discrete observations regimes with

measurement errors of decaying magnitude, and Kowal et al. (2017) studied the functional

autoregressive processes by the means of Bayesian hierarchical Gaussian models. A related

problem was studied by Paul and Peng (2011), who considered correlated sparsely observed

functional data with separable covariance structure, but the focus was not on dynamics.

The primary objective of this thesis is to address this important gap in literature and provide

a framework of non-parametric estimation, prediction, and regression for functional time

series dynamics observed sparsely, irregularly and with measurement errors. Therefore we

speak about genuinely sparse data in the same vein as the sparse observation framework due

to Yao et al. (2005a) and as visualised on Figure 1. We consider the problems of estimating the

complete first and second order dynamics of such data, estimation of the cross-dependence

between multiple sparsely observed functional time series, and recovering the latent func-

tional data. Furthermore, we analyse the lagged regression link between two sparsely observed

functional time series.

A secondary objective of this thesis is the problem of simulation of functional time series

with given spectral properties. During the development of the results on sparsely observed

functional time series it became apparent that functional time series defined directly through

their spectrum could become useful for Monte Carlo assessments of proposed methods.

In the past, most simulation studies relied on functional linear processes, most often only

functional autoregressive processes, to asses the novel methods even if their applicability went

beyond the linear case. Our spectral simulation method can generate samples from arbitrary
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stationary functional time series defined through their spectral density operators and thus

extending assessment opportunities well beyond the functional linear processes. Moreover,

some functional time series analysis methods depend heavily (Hörmann et al., 2015b; Zhang,

2016; Tavakoli and Panaretos, 2016) on the spectral properties of the data, rather than on their

specification in the temporal domain. Therefore simulating functional time series samples

with “custom” defined spectral density operators can be useful to assess the performance of

such methods.

Detailed overview and the novel contributions of the thesis

Chapter 1 presents the background theory of functional data analysis that the novel results

of this thesis are built on. Firstly, in Section 1.1 we review the basics of operator theory with

special attention to trace class & Hilbert-Schmidt operators, and the integral operators defined

by a kernel function. We rigorously define Hilbert space valued random elements which serve

as the probabilistic model for functional data and discuss the subtle differences between

these random elements and stochastic processes, and provide conditions where this dual

perspective intersects. Moreover we establish basic results in the statistical inference for

samples of independent identically distributed random data. Secondly, in Section 1.2 we

present the concept of sparsely observed functional data where the observations are seen as a

sampled version of a latent functional datum. We explain the difference between dense and

sparse sampling schemes and introduce the smoother-based estimators for sparsely observed

independent identically distributed data.

Thirdly, Section 1.3 of Chapter 1 introduces the temporal dependence structure among func-

tional data by defining the notion of functional time series. We establish the basic definitions

such as stationarity, the mean function, and the lagged autocovariance operators. Attention

is given to various notions of weak dependence: the cumulant-mixing conditions, Lp -m-

approximability, and the strong mixing conditions, which turn out to be useful for establishing

the asymptotic behaviour of estimators. The spectral domain approach for capturing and

encoding the full second order structure is considered: we recall the definitions of the spec-

tral density operator and the weak spectral density operator; and how they can be used for

dimensionality reduction using the Cramér-Karhunen-Loève decomposition. Furthermore, the

concept of a linear filter helps to construct another functional time series from the original one

while providing with simple spectral analysis of the new time series and the cross-dependence

relation of the two. This is done through the notions of the frequency response function and

the cross-spectral density operator. These tools are particularly useful for the spectral analysis

of functional linear processes. Subsection 1.3.8 includes the derivation of the spectral den-

sity operators of the FARMA(p, q) and the possibly long-range dependent FARFIMA(p,d , q)

processes which are novel contributions in spectral theory of functional time series that have

been presented in Rubín and Panaretos (2020c). We end the section with some inferential

results in the case of fully observed functional time series data: we consider estimators of the

mean function, the lagged autocovariance operators, and the spectral density operators.
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Chapter 2 presents the core results of the thesis: the toolbox for estimation and prediction for

sparsely observed functional time series. Firstly we rigorously establish the sparsely sampled

functional time series framework for a single functional time series. We introduce the novel

smoother based estimators of the mean function, the lagged autocovariance operators, and

the spectral density operators. In particular, the estimated spectral density operator structure

is useful in providing a consistent estimator of the entire second-order dynamics of data which

can be used for functional data recovery: the prediction of the latent functional data while

allowing for uncertainty quantification by means of confidence bands. Section 2.3 establishes

the asymptotic behaviour justifications of the above mentioned estimators. Notably we prove

consistency and convergence rates under two different sets of conditions. Firstly, we prove

(suboptimal) convergence rates under the cumulant-mixing conditions by generalising the

proof techniques from the independent case. Secondly, by imposing stronger conditions,

the α-mixing conditions, we succeeded in obtaining the convergence rates that match the

known minimax optimal convergence rates in the non-parametric literature. At the end

of the section we demonstrate how to estimate the cross-dependence manifested by the

cross-covariance operators and the cross-spectral density operators for pairs of time series

consisting of sparsely or fully observed functional time series, and multivariate time series.

The results of this chapter are primarily based on Rubín and Panaretos (2020b) and partly on

Rubín and Panaretos (2020a), while extending some of the results further.

The functional lagged regression problem, the model constituting the general linear coupling

between two functional time series by the means of a filter, is studied in Chapter 3. The

spectral analysis of the problem reveals that the model becomes quite simple in the spectral

domain, where the cross-spectral density between the response process and the regressor

time series is simply a composition of the frequency response function of the filter and the

spectral density operator of the regressor time series. In order to estimate this frequency

response function, and hence the regression filter itself, one needs to solve an ill-posed inverse

problem. We propose two methods to overcome this challenge: spectral truncation essentially

projecting the inversion problem into finite dimensions, and Tikhonov regularisation adding

a scaled identity operator to the uninvertible spectral density operator, making the inversion

possible. We prove the consistency of the filter coefficient estimator by the both regularisa-

tion techniques when the data come from the sparsely observed functional time series and

discuss, in general, the advantages and the disadvantages of both. Furthermore, we extend

the functional lagged regression model for designs with multiple input regression time series

including a combination of sparsely or fully observed functional time series, or multivariate

time series. The contents of this chapter are based on Rubín and Panaretos (2020a) while some

of the results are further developed.

Chapter 4 provides empirical demonstrations by means of simulations studies and data

analyses:

• The simulation study of Section 4.1 probes the finite sample performance of the spectral

density operator estimator and the functional recovery predictor of Chapter 2. In par-
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ticular the study answers the design question whether the spectral density estimation

reduces estimation error when the functional time series is sampled more densely but

over shorter period of time, or if one should sacrifice the spatial resolution and observe

the time series over a longer time-horizon. It turns out that the latter is true. Moreover

the simulation study reveals that the latent functional data prediction achieves up to

60 % prediction error reduction by incorporating the temporal dependence over the

estimator treating the data as independent.

• The second simulation study, presented in Section 4.2, probes the finite sample per-

formance of the functional lagged regression estimators introduced in Chapter 3. Our

simulation study reveals that neither of the two considered regularisation methods, the

spectral truncation and the Tikhonov regularisation, can dominate the other as their

performance depends on the spectral density operators’ eigenfunction alignment and

spacing.

• Section 4.3 illustrates the core methodologies introduced in Chapter 2 on the analysis of

the fair-weather atmospheric electricity data measured in Tashkent, Uzbekistan, repre-

senting a genuine sparsely observed functional time series. Our analysis discovered and

estimated the intra-day variation, the yearly-periodicity, and the intra-day covariance

structure as well as dependence across days. Moreover, we illustrate the functional

recovery predictor of Section 2.2.

• In Section 4.4 we analyse the dependence of the reported visibility at the Wank mountain,

Germany, on the sparsely observed functional time series of fair-weather atmospheric

electricity and the fully observed functional time series of intra-day temperatures. The

comparison of the two considered regularisation techniques suggest that Tikhonov regu-

larisation outperforms spectral truncation. Moreover, Figure 4.15 provides a transparent

visualisation schema of a lagged regression model with multiple regressors.

• Finally, in Section 4.5 we analyse the dependence of the US Treasury yield curve, treated

as a sparsely observed functional time series, on some macroeconomic variables. Our

non-parametric estimation procedure confirms previous findings in the econometrics

literature conducted by parametric approaches, in particular we found that the US

federal funds target rate strongly impacts the short end of the yield curve.

The first simulation study (Section 4.1) and the Tashkent data analysis (Section 4.3) appeared

in Rubín and Panaretos (2020b), while the second simulation study (Section 4.2) and the Wank

data analysis (Section 4.4) were presented in Rubín and Panaretos (2020a). The US Treasury

yield curve (Section 4.5) was analysed in Rubín (2020).

Chapter 5 presents a novel simulation method for generating functional time series samples.

We introduce a general framework on how to simulate stationary functional time series in

the spectral domain and how to implement the simulation algorithm in a few concrete set-

ups. The spectral domain simulation methods enjoy often faster computational speed than
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the discretisation of the spatial domain and simulation in the temporal domain approach,

while constituting a universal simulation method for processes defined through their spectral

properties. The results presented in this chapter are based on Rubín and Panaretos (2020c).

Finally, Chapter 6 concludes the thesis by listing some possible directions of future research

development in the domain of sparsely observed functional time series.
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1 Functional data analysis

This chapter provides an overview of the fundamental theory upon which the results of

this thesis are built. We start from the basics of the functional data analysis, a branch of

statistics considering inference problems with infinite dimensional data. Later we present the

challenges of sparse data and the state-of-the art tools for serially dependent functional data,

the so-called functional time series.

Section 1.1 reviews the foundations of functional data analysis (Ramsay and Silverman, 2013;

Hsing and Eubank, 2015). In order to rigorously analyse functional data, a dataset composed

of curves, we firstly present the theory of random variables in function spaces, typically

L2([0,1],R), which serves as the probabilistic model for random curves. This concept requires

some tools from functional analysis and operator theory while special attention is given to

trace-class operators as they play an important role in the behaviour of random elements.

In Section 1.2 we revisit two main approaches how to deal with sparsely observed functional

data. If the data are measured discretely and possibly with error but there is enough signal

within the measurements of each curve, one may resort to a pre-processing step and smooth

the discrete data to construct curves (Ramsay and Silverman, 2013). If the discrete measure-

ments are very sparse, however, the development of a new method is needed. We review

the seminal article by Yao et al. (2005a) who introduced non-parametric estimators using

local-polynomial smoothers.

Section 1.3 presents the deviation from the setting of independent identically distributed

random data to data sets where the curves are collected serially and dependence might be

present. Such data set can arise when, for example, an intra-day development of a certain

variable is recorded day-by-day, constructing a series of intra-day curves. We present the

basic probabilistic and statistical concepts of such objects, called functional time series. In

particular we present the spectral approach developed in Panaretos and Tavakoli (2013a,b)

and Hörmann et al. (2015a,b), and review the basic results on estimation assuming a fully

observed functional data.
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Chapter 1. Functional data analysis

1.1 The basis for functional data analysis

1.1.1 Operator theory background

Throughout this thesis we work with a separable Hilbert space H equipped with the inner

product 〈·, ·〉 and the induced norm ‖ · ‖. Typically we consider H = L2([0,1],R) or H =
L2([0,1],C) with its usual inner product

〈
f , g

〉= ∫ 1
0 f (x)g (x)dx for f , g ∈ L2([0,1],C) where x̄

denotes the complex conjugate of a complex number x ∈C. The theoretical results derived

within Subsection 1.1.1 are, in general, valid for any separable Hilbert space. The results on

sparsely observed functional data necessitate the concepts of continuity and smoothness

and we shall model them as smooth functions in L2([0,1],R). Therefore we the results in the

following subsections, sections, and chapters are predominantly formulated for L2([0,1],R).

A linear mapping T : H →H is called a bounded linear operator on H if

‖T ‖L (H )
de f= sup{‖T v‖H : v ∈H ,‖v‖ ≤ 1} <∞.

The space of bounded operators on H , denoted as L (H ), equipped with the operator norm

‖ ·‖L (H ) is a Banach space.

The adjoint operator to a bounded operator T is defined as the unique operator T ∗ ∈L (H )

such that

〈Tu, v〉 = 〈u,T ∗v〉, u, v ∈H .

The operator T ∈L (H ) is called

• compact if for any bounded sequence (vn)∞n=1 in H , the sequence (T vn)∞n=1 contains a

convergent subsequence,

• self-adjoint if T = T ∗,

• non-negative definite if

〈Tu,u〉 ≥ 0, u ∈H .

In complex Hilbert spaces, non-negative definite operators are necessarily self-adjoint.

Compact operators admit the following decompositions as sums of rank one operators defined

by the notion of the tensor product. For vectors/functions f , g ∈ H defined their tensor

product as the operator f ⊗ g : H →H , v 7→ 〈v, g 〉 f .

Proposition 1.1.1. A compact operator T ∈ L (H ) admits a singular value decomposition.

Specifically there exist a sequence of non-negative real numbers {σ j }∞j=1 decreasing to zero called

the singular values of T , and orthonormal sequences {ϕ j }∞j=1, {ψ j }∞j=1 in H such that

T =
∞∑

j=1
σ j

(
ϕ j ⊗ψ j

)= ∞∑
j=1

σ j 〈·,ψ j 〉ϕ j

10
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where the sum is understood in the operator norm. If T ∈ L (H ) is moreover self-adjoint

then it admits the spectral decomposition, i.e. there exists a sequence of real numbers {λ j }∞j=1

converging to zero called the eigenvalues of T , and an orthonormal sequence {ϕ j }∞j=1 in H

called the eigenfunctions of T such that

T =
∞∑

j=1
λ j

(
ϕ j ⊗ϕ j

)= ∞∑
j=1

λ j 〈·,ϕ j 〉ϕ j

where the sum is understood in the operator norm. If T ∈L (H ) is furthermore non-negative

definite, the eigenvalues of T are real and non-negative.

The class of compact operators can be further refined to the two following classes of operators.

• An operator T ∈L (H ) is called Hilbert-Schmidt if for any orthonormal basis (e j )∞j=1 in

H ,

‖T ‖2
2

de f=
∞∑

j=1

∥∥Te j
∥∥2 <∞.

In that case, ‖T ‖2 is the Hilbert-Schmidt norm of T and its definition is independent of

the choice of (e j )∞j=1. The space of Hilbert-Schmidt operators, denoted as L2(H ), is

itself a separable Hilbert space with the inner product

〈T1,T2〉2 =
∞∑

j=1

〈
T1e j ,T2e j

〉
for T1,T2 ∈H where the definition is again independent of the choice of the orthonor-

mal basis (e j )∞j=1. Moreover, if T ∈ L2(H ) is furthermore self-adjoint then we may

choose e j ≡ϕ j to be the eigenfunction basis and therefore ‖T ‖2 =
(∑∞

j=1λ
2
j

)1/2
.

• An operator T ∈ L (H ) is called trace-class (or nuclear) if for any orthonormal basis

(e j )∞j=1 in H

‖T ‖1
de f=

∞∑
j=1

〈(
T ∗T

)1/2 e j ,e j

〉
<∞

where (T ∗T )1/2 is the so-called square root operator of the non-negative self-adjoint

operator T ∗T , i.e. (T ∗T )1/2 (T ∗T )1/2 = T ∗T . Such operator exists uniquely.

In that case, ‖T ‖1 is the trace norm of T and we may define the trace of T as

TrT =
∞∑

j=1

〈
Te j ,e j

〉
.

The definitions are independent of the choice of the orthonormal basis (e j )∞j=1. If T

is furthermore self-adjoint we may set e j ≡ϕ j to be the eigenfunction basis and then

‖T ‖1 =
∑∞

j=1 |λ j |.

11
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The space of trace-class operators is denoted L1(H ) and, being equipped with the

norm ‖T ‖1, is a Banach space.

The above defined classes of operators satisfy the following chain of inclusions

L1(H ) ⊂L2(H ) ⊂Lcompact (H ) ⊂L (H )

where Lcompact (H ) is the set of compact operators on H .

1.1.2 Kernel functions, integral operators, and Mercer’s theorem

The key objects of interest of this thesis are covariance operators and spectral density operators

(to be defined later in this chapter) and the crucial ingredient for their definition are the notions

of a bivariate kernel and the integral operator, and their properties. For the purpose of this

subsection we consider H = L2([0,1],R), i.e. the square integrable function with the domain

[0,1] but any other compact interval is appropriate.

A kernel function is a bivariate function K : [0,1]× [0,1] →C. The kernel function K induces by

right integration a linear operator K:

(
K f

)
(s) =

∫ 1

0
K (s, t ) f (t )dt , f ∈ L2([0,1],C), s ∈ [0,1]. (1.1)

A sufficient condition for the operator defined by (1.1) is, for example, continuity of the kernel

K . In that case, the operator K is moreover compact.

The kernel function K is called non-negative definite if
∫ 1

0

∫ 1
0 K (s, t) f (s) f (t)ds dt ≥ 0 for all

f ∈ L2([0,1],C). In fact, the kernel function K is non-negative definite if and only if the operator

K is non-negative definite. Moreover, the kernel function K is symmetric (i.e. K (s, t ) = K (t , s)

for s, t ∈ [0,1]) if and only if K is self-adjoint.

In fact, the integral operators with square integrable kernels correspond to Hilbert-Schmidt

operators by Hilbert-Schmidt kernel theorem.

Theorem 1.1.2 (Heil (2018)[Thm 8.4.8]).

(i) Let K (·, ·) be a kernel function such that
∫ 1

0

∫ 1
0 |K (s, t)|2 ds dt < ∞. Then the integral

operator K defined by (1.1) is Hilbert-Schmidt and
∫ 1

0

∫ 1
0 |K (s, t )|2 ds dt = ‖K‖2

2.

(ii) Let T ∈ L2(L2([0,1],C)), i.e. let T be a Hilbert-Schmidt operator on L2([0,1],C). Then

there exist a kernel function K : [0,1]× [0,1] →C satisfying
∫ 1

0

∫ 1
0 |K (s, t )|2 ds dt <∞ such

that K (·, ·) induces the operator T . Formally, for its induced integral operator K defined

by (1.1) holds: K= T .

We give a special attention to symmetric and non-negative definite kernels because, as we

later see, they represent key components in functional data analysis (Subsection 1.1.3) and
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the spectral analysis of functional time series (Subsection 1.3.4). Moreover, the symmetric and

non-negative definite kernel K can be represented by the eigenvalues and eigenfunctions of

K by Mercer’s theorem:

Theorem 1.1.3 (Hsing and Eubank (2015)[Thm 4.6.5]). Let K (·, ·) be a continuous, symmetric,

non-negative kernel and K its corresponding integral operator. Denote {λ j }∞j=1 the eigenvalues

and {ϕ j }∞j=1 the eigenfunctions of K. Then {ϕ j }∞j=1 are continuous functions in L2([0,1],C) and

the kernel K admits the representation

K (s, t ) =
∞∑

j=1
λ jϕ j (s)ϕ j (t ), s, t ∈ [0,1],

where the sum converges absolutely and uniformly.

Corollary 1.1.4 (Hsing and Eubank (2015)[Thm 4.6.7]). Under the conditions of Theorem 1.1.3,

the operator K is trace-class and

TrK= ‖K‖1 =
∫ 1

0
K (t , t )dt ,

‖K‖2
2 =

∫ 1

0

∫ 1

0
K 2(s, t )ds dt .

1.1.3 Random elements in infinite dimensional spaces

Throughout the this section and the whole thesis we assume that there is a given complete

probability space (Ω,F,P) large enough to allow for the existence of the all considered ran-

dom objects. In functional data analysis it is common to consider a random curve as a

stochastic process, i.e. a collection of random variables X ≡ {X (x) : x ∈ [0,1]} where X (x) is a

F-measurable random variable for each x ∈ [0,1]. However, this fact alone, together with the

existence of the second moments, does not automatically guarantee that the process X is a

F-measurable random element in L2([0,1],R). There are two techniques how to overcome

this issue: either one assumes that the stochastic process takes values in a reproducing kernel

Hilbert space (RKHS) (Berlinet and Thomas-Agnan, 2011) or requiring the stochastic process

to be mean-square continuous (Hsing and Eubank, 2015). In the following we outline the

second approach starting with some basic definitions for stochastic processes.

The mean function µ of the stochastic process X is defined as

µ(x) = E [X (x)] , x ∈ [0,1], (1.2)

and its covariance kernel R X as

R X (x, y) = E[(
X (x)−µ(x)

)(
X (y)−µ(y)

)]
, x, y ∈ [0,1]. (1.3)

The covariance operator RX is induced by the right-hand integration (1.1) from the covariance

kernel.
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Chapter 1. Functional data analysis

Throughout the thesis we assume that the random process X satisfies

lim
n→∞E [|X (xn)−X (x)

∣∣2]= 0

for all sequences {xn}∞n=1 ⊂ [0,1] such that xn → x ∈ [0,1]. Such process is called mean-square

continuous.

Proposition 1.1.5 (Hsing and Eubank (2015)[Thm 7.3.2]). Let X ≡ {X (x) : x ∈ [0,1]} be a

stochastic process with finite second moments. Then the following statements are equivalent.

(i) The process X is mean-square continuous.

(ii) Its mean function is continuous on [0,1] and its covariance kernel is continuous on [0,1]2.

(iii) Its mean function is continuous on [0,1] and its covariance kernel is continuous on the

diagonal of [0,1]2.

Consider now the stochastic process X as a mapping jointly from the curves’ domain [0,1]

and the probability space (Ω,F,P), i.e. as a function (x,ω) 7→ X (x,ω). The following theo-

rem provides with a sufficient condition for X to be well-defined as a random element in

L2([0,1],R).

Theorem 1.1.6 (Hsing and Eubank (2015)[Theorems 7.4.1 and 7.4.2]). Let X be a mean-square

continuous stochastic process. Moreover assume that the mappings x 7→ X (ω, x), x ∈ [0,1], are

continuous for each ω ∈Ω. Then the mapping (x,ω) 7→ X (x,ω) is jointly measurable and the

mapping ω 7→ X (ω, ·) is an F-measurable mapping to L2([0,1],R), i.e. X is a random element in

L2([0,1]).

From now on we shall adopt this dual perspective and view the object X as both a stochastic

process with continuous trajectories with well-defined evaluations X (x) and as a random

element in L2([0,1],R). Consequently, the mean function µ defined in (1.2) is an element of

L2([0,1],R) and the covariance operator RX associated with the covariance kernel (1.3) can be

written as

RX = E[(
X −µ)⊗ (

X −µ)]
where ⊗ is the tensor product defined as f ⊗ g = 〈·, f 〉g as an operator on L2([0,1],R). Further-

more E
[‖X ‖2

]<∞.

The covariance operator is the central object of interest in functional data analysis because it

is the key to optimal dimensionality reduction. The celebrated Karhunen-Loève expansion

(Karhunen, 1946; Loève, 1946; Ash and Gardner, 2014; Grenander, 1981) provides with optimal

finite rank approximation scheme for stochastic processes.

Theorem 1.1.7 (Karhunen-Loève expansion). Let X ∈ L2([0,1],R) be a mean-square continu-

ous stochastic process with continuous sample trajectories with mean function µ, covariance
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1.1. The basis for functional data analysis

kernel having decomposition by Mercer’s theorem 1.1.3, R X (x, y) =∑∞
j=1λ jϕ j (x)ϕ j (y) where

{λ j ,ϕ j }∞j=1 is the eigendecomposition of the covariance operator RX . Then the process X can be

approximated by the sums

Xn(x) =µ(x)+
n∑

j=1
ξ jϕ j (x), x ∈ [0,1]. (1.4)

where ξ j = 〈X −µ,ϕ j 〉, j ∈N in the two following regimes of convergence

sup
x∈[0,1]

E
[|X (x)−Xn(x)|2]→ 0, as n →∞, (1.5)

E
[‖X −Xn‖2]→ 0, as n →∞. (1.6)

For j ,k ∈N, Eξ j = 0 and Eξ jξk =λ jδ j ,k with δ j ,k = 1 if j = k and zero otherwise. Moreover, the

representation (1.4) is optimal. Fix n ∈N and take an arbitrary orthonormal sequence {e j }∞j=1.

Then

E

[∥∥∥∥∥X −µ−
n∑

j=1

〈
X −µ,e j

〉
e j

∥∥∥∥∥
2]

≥ E[‖X −Xn‖2] . (1.7)

The optimality (1.7) of the Karhunen-Loève expansion (1.4) is crucial for functional principal

component analysis (Grenander, 1950; Dauxois et al., 1982) as a dimensionality reduction

technique. Moreover, it constitutes a vehicle for functional linear models (Müller, 2005; Morris,

2015) and clustering algorithms (Chiou and Li, 2008; Leng and Müller, 2006; Peng and Müller,

2008), the serves as a basis for regularisation of ill-posed inverse problems (Panaretos et al.,

2010; Wang et al., 2016)

The above stated results can be straightforwardly extended to complex-valued stochastic

processes and random elements in L2([0,1],C).

1.1.4 Inference for fully observed functional data

In this section we review the basic inference results for the first and the second order structure

of functional data. The setting presented here can be seen as abstract because we shall assume

that we fully observed n curves, specifically we observe independent identically distributed

L2([0,1],R)-valued random elements X1, . . . , Xn with E‖X1‖2 <∞.

The natural estimators of the mean function µ and the covariance kernel R X of X1 are given by

µ̂(x) = 1

n

n∑
j=1

X j (x), x ∈ [0,1],

R̂ X (x, y) = 1

n

n∑
j=1

(
X j (x)− µ̂(x)

)(
X j (y)− µ̂(y)

)
, x, y ∈ [0,1].

Denote R̂X the integral operator induced by the kernel R̂ X .
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Chapter 1. Functional data analysis

The analysis of the consistency and the asymptotic distribution of the estimators are direct

consequences of the functional versions of the strong law of large numbers and the central

limit theorem. Just as in the univariate and the multivariate case, the central limit theorem

involves convergence to the normal distribution whose definition in infinite dimensional

spaces is reviewed bellow.

Definition 1.1.8. The H -valued random element X is said to follow a normal distribution

with the mean µX ∈H and the covariance operator RX ∈L1(H ), denoting X ∼ N (µX ,RX ), if〈
X −µX , f

〉∼ N
(
0,

〈
RX f , f

〉)
for all f ∈H .

Proposition 1.1.9 (Bosq (2000)[Thms 2.4, 2.7]). Let {Y j }∞j=1 be a sequence of independent

identically distributed random elements in H .

• Assume that EY1 =µY is well defined. Then

1

n

n∑
i=1

Yi
a.s.→ µY , as n →∞.

• Assume that E‖Y1‖2 <∞ and denote µY = EY1 and RY = E[(Y1 −µY )⊗ (Y1 −µY )]. Then

n−1/2
n∑

i=1

(
Yi −µY

) d→ Z , as n →∞,

where Z ∼ N (0,RY ).

Corollary 1.1.10. Let {X j }∞j=1 be a sequence of independent identically distributed functional

data in L2([0,1],R) with E‖X1‖2 < ∞, and denoting the mean µ = EX1 and the covariance

operator RX = E[(X1 −µ)⊗ (X1 −µ)].

(i) Then the empirical mean is a consistent estimator

µ̂
a.s.→ µ, as n →∞,

and asymptotically normal

n1/2 (
µ̂−µ) d→ Z1, as n →∞,

where Z1 ∼ N (0,RX ) and the above convergences are understood in the L2([0,1],R)-norm.

(ii) The empirical covariance operator is consistent

R̂X a.s.→ RX , as n →∞,
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1.2. Sparsely observed functional data

and, assuming further E‖X1‖4 <∞, it is also asymptotically normal

n1/2 (
R̂X −RX ) d→ Z2, as n →∞,

where Z2 is a L2(L2([0,1],R))-valued random element with the covariance operator RZ2

given by

RZ2 = E [Z2 ⊗Z2] = E[{
(X −µ)⊗ (X −µ)−RX }⊗̃{

(X −µ)⊗ (X −µ)−RX }]
where ⊗̃ is the tensor product on L2(L2([0,1],R)) defined for A ,B ∈ L2(L2([0,1],R))

as an operator given by (A ⊗̃B)C = 〈C ,A 〉L2(L2([0,1],R))B for C ∈ L2(L2([0,1],R)). The

convergences above are understood in the L2(L2([0,1],R))-norm.

Proof. The part (i) is a direct application of Proposition 1.1.9, setting Yi = Xi , i ∈ N, and

H = L2([0,1],R). The part (ii) is again an application of Proposition 1.1.9 but this time to the

random elements Yi = (Xi −µ)⊗(Xi −µ), i ∈N, and the Hilbert space H =L2(L2([0,1],R)).

1.2 Sparsely observed functional data

1.2.1 Different regimes of sparsity

The theoretical setting of fully observed functional data as introduced in Subsection 1.1.4

cannot be realistic in any application. Due to the impossibility of storing infinite dimensional

data, the functional data are recorder only by means of finite number of measurements.

Throughout this thesis we consider the sampling regime manifested by point-wise evaluation

of the functions on a finite grid which are further corrupted by an additive noise, often

interpreted as a measurement error. We consider the usual model (Shi et al., 1996; Staniswalis

and Lee, 1998; Rice and Wu, 2001; Yao et al., 2005a) for functional data:

Ui j = Xi (xi j )+εi j , i = 1, . . . ,n, j = 1, . . . , Ni , (1.8)

where xi j is the measurement location for the j -th observation on the i -th curve for i =
1, . . . ,n, j = 1, . . . , Ni with Ni denoting the number of observations available on the i -th curve.

The measurement noise contamination {εi j } is assumed to be an ensemble of independent

identically distributed zero-mean random variables with variance σ2 > 0 which are indepen-

dent on the underlying functional data X1, . . . , Xn .

Suitable estimation procedures and their performances obviously depend on the number of

measurements available per curve. Generally speaking, we may split the discussion into two

regimes:

• Dense sampling. When each curve is sampled with high frequency, we have enough

information to well estimate the curve Xi from the observations realised on this curve
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Chapter 1. Functional data analysis

Ui j , j = 1, . . . , Ni . The estimation of the functional data Xi , done separately for each

i = 1, . . . ,n, relies on smoothing methods (Ramsay and Silverman, 2013, 2007) some

of which are reviewed in Subsection 1.2.2. This procedure is the reason why we speak

about “smooth-first-then-estimate” approach because once the pre-smoothing step is

done we work with the estimates as if we were given fully observed functional data.

The asymptotic theory derived under dense sampling regime provides with an inter-

esting observation. If the resolution of the discrete sampling is sufficiently dense, for

example if mini=1,...,n Ni À n1/4 an the gaps between measurements are uniform, then

the convergence rates for the estimation of the mean function µ and the covariance

operator RX are still of order
p

n (Hall et al., 2006; Li and Hsing, 2010), just like in the

case of fully observed functional data (Corollary 1.1.10). This essentially means that the

estimator from such densely sampled discretely measured data are as good as if we had

access to the full functional data instead, at least asymptotically speaking.

• Sparse sampling. In many applications, however, the functional data are not sampled

densely. The number of observation locations can be quite low in comparison with

the sample size n, maybe even bounded maxi=1,...,n Ni ≤C <∞. Under such genuinely

sparse sampling regime, a development of new methods under the name “estimate-first-

then-smooth” is required. These methods use the information across the entire data

sample when constructing the estimates for individual curves, thus “borrow strength”

from the other observations. In Subsection 1.2.3, we review the smoother based estima-

tors introduced in the article by Yao et al. (2005a).

1.2.2 “Smooth-first-then-estimate” approach

The “smooth-first-then-estimate” approach views the transition from the discretely recorded

date into continuously defined functional data simply a preprocessing step. This approach

was popularised by Ramsay and Silverman (2013) who also explains the methodology by

applications on a handful of case studies in (Ramsay and Silverman, 2007).

Considering the sampling regime (1.8) with a regular grid, i.e. N1 = ·· · = Nn ≡ N and x1 j =
·· · = xn j ≡ x j , j = 1, . . . , N . The classical path is to express the latent functional data X1, . . . , Xn

as a linear combination of a fixed and finite number p of basis functions ϕ1, . . . ,ϕK :

Xi (x) =
K∑

k=1
ci kϕk (x), x ∈ [0,1], i = 1, . . . ,n, (1.9)

where {ci j } are unknown coefficients. The common choice of the basis functions ϕ1, . . . ,ϕK

include the B-splines, which are efficient in expressing smooth curves (Ramsay and Silverman,

2007), the Fourier basis for periodic data (Ramsay and Silverman, 2007), and the wavelets,

which are capable to capture rapid changes even with a low number of basis elements (Mallat,

1999).
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1.2. Sparsely observed functional data

The usual method to estimate the unknown coefficients ci = (ci 1, . . . ,ci k ) by minimising the

ordinary least squares

N∑
j=1

(
Ui j −

K∑
k=1

ci kϕk (x j )

)2

= (Ui −Φci )>(Ui −Φci ) = ‖Ui −Φci‖2 (1.10)

where the Ui = (Ui 1, . . . ,Ui Ni ) andΦ is a N ×K matrix defined as {ϕk (x j )}. The ordinary least

squares estimator of ci is given by

ci =
(
Φ>Φ

)−1
Φ>Ui .

Besides the basis choice, which is usually done by domain knowledge and expected properties

of the smooth curves as discussed above, the goodness of fit of the representation (1.9) depends

on the specification of the number of basis functions K . The selection of K come down to

a typical bias-variance trade-off. A small value K could mean that the representation (1.9)

cannot fit well the underlying functional data, while a large value of K results in over-fitting

meaning the interpolation starts to pick up the noise in the measurements and the visualised

fit would feature to many abrupt changes.

Because the selection of the discrete parameter K might be challenging, an alternative to the

ordinary least squares fit (1.10) is to impose roughness penalisation into the loss function

(1.10). This approach essentially shifts the selection problem into a continuous tuning param-

eter and usually provides a better fit to real data (Ramsay and Silverman, 2007). The penalised

least squares estimator f of the functional datum Xi becomes

f = argmin
f ∈C 2([0,1])

{(
Ui j − f (x j )

)2 +λ
∫ 1

0

[
∂2

∂x2 f (x)

]2

dx

}
(1.11)

where the minimisation runs through C 2([0,1]), i.e. the space of twice continuously differ-

entiable functions on [0,1], and where λ > 0 is a tuning parameter called the smoothing

parameter.

Remarkably, the minimum of the infinite dimensional optimisation problem (1.11) lays in a

finite dimensional vector space. Using the framework of reproducing kernel Hilbert spaces

it can be shown that the solutions is in fact a cubic spline (de Boor, 1978; Heckman, 2012).

The penalisation in (1.11) is based on the second derivative of the functional data, thus it is

trying to push the fitted curves towards linear functions and it penalises quick deviations from

the linearity. For a more general discussion of the use of roughness penalty in statistics see,

e.g. Green and Silverman (1993). It should be noted that the loss function in (1.11) penalising

the roughness is only one of the possibilities and any penalty given by a reproducing kernel

Hilbert space norm is applicable and the conclusions of the discussion in this paragraph apply.

Alternative smoothing methods to obtain the estimates of functional data include kernel
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smoothing, localised basis or polynomial expansions (Wand and Jones, 1994; Fan and Gijbels,

1996; Efromovich, 2008).

1.2.3 Kernel smoothing based estimators

Estimation of model dynamics by kernel smoothers

In this section we are going to present in more detail the kernel smoothing methods (Fan

and Gijbels, 1996) (also known as local polynomial regression) for the estimation of the first

and the second order structure of the data distribution. Not only do these objects produce

insights for the data dynamics interpretation, but they can also be used to estimate the latent

functional data themselves.

We are again considering the sampling scheme (1.8) but, this time, we consider the more

difficult case with the numbers of observations Ni quite small for each curve and where

the observation grid {xt j } can be irregular. This challenging setting is also commonly called

longitudinal data.

The foundational article considering the connections between longitudinal data analysis

and the functional data analysis is due to Yao et al. (2005a) who proposed to estimate the

mean function µ and the covariance kernel R X (·, ·) by the means of the kernel smoothers and

established a method to estimate the principal scores through calculating the conditional

expectation (PACE), which we are going to review here.

Kernel smoothing is a non-parametric technique to estimate the regression function by per-

forming a polynomial regression at each input point (evaluation point), incorporating always

only the neighbouring points. Moreover, the observations are weighted in terms of the distance

from the each evaluation point by the means of a kernel function. Throughout this presenta-

tion, we work with the Epanechnikov kernel defined as K (υ) = (3/4)(1−υ2) for υ ∈ [−1,1] and

zero otherwise, but any other usual choice of kernels is appropriate. For other kernels and

their comparison, see Fan and Gijbels (1996)[§3.2.6].

First of all, let us estimate the mean function µ using the local-liner smoother. Yao et al.

(2005a) propose to pool all the data and look at the scatter plot {(xi j ,Ui j ) : j = 1, . . . , Ni ; i =
1, . . . ,n}. Because the additive measurement errors {εi j } in the scheme (1.8) have zero mean, it

immediately follows that E
[
Ui j |xi j

]=µ(xi j ) and therefore the mean function can be estimated

by smoothing the said scatter plot. In particular, Yao et al. (2005a) propose to use the local-

linear smoother to estimate the mean function at point x ∈ [0,1] as µ̂(x) = ĉ(1)
0 by minimising

the following sum of squares

(
ĉ(1)

0 , ĉ(1)
1

)
= argmin

c (1)
0 ,c (1)

1

n∑
i=1

Ni∑
j=1

K

(
x −xi j

Bµ

){
Ui j − c(1)

0 − c(1)
1 (x −xi j )

}2

where Bµ > 0 is the bandwidth parameter for the smoothing.
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Next, we now focus on the second order structure of the data and want to estimate the

covariance kernel R X (·, ·). Yao et al. (2005a) define the “raw” covariances as

Gi (xi j , xi k ) = (Ui j − µ̂(xi j ))(Ui k − µ̂(xi k )).

We anticipate that

E
[
Gi (xi j , xi k )|xi j , xi k

]≈ R X (xi j , xi k )+σ2δ j k (1.12)

where δ j k = 1 if i = k and zero otherwise. The deviation of the expectation on the left-hand

side of (1.12) from the expression on the right-hand side stems only from the estimator µ̂. If

we knew the true value of µ, (1.12) would be an equality. Moreover, (1.12) reveals that the

additive measurement errors {εi j } contribute only to the diagonal of the covariance kernel,

which was already observed by Staniswalis and Lee (1998). Thus, Yao et al. (2005a) propose

to estimate the covariance kernel R X (·, ·) by smoothing the three dimensional scatter plot

{(xi j , xi k ,Gi (xi j , xi k )) : j ,k = 1, . . . , Ni j 6= k; i = 1, . . . ,n} by a local-linear surface smoother. The

covariance kernel at point (x, y) ∈ [0,1]2 is estimated by R̂ X (x, y) = ĉ(2)
0 where ĉ(2)

0 is obtained

by solving the following least squares problem

(
ĉ(2)

0 , ĉ(2)
1 , ĉ(2)

2

)
= argmin

c (2)
0 ,c (2)

1 ,c (2)
2

n∑
i=1

∑
j 6=k

K

(
x −xi j

BR

)
K

(
x −xi k

BR

)
×

{
Gi (xi j , xi k )− c(2)

0 − c(2)
1 (x −xi j )− c(2)

2 (x −xi k )
}2

where BR > 0 is the bandwidth parameter.

Finally we aim to estimate the measurement error variance σ2 by the approach suggested

by (Yao et al., 2003, 2005a) for which we need the two following ingredients: the estimator

of the diagonal of the covariance kernel of {X t } with and without the measurement noise

contamination. Firstly, we estimate the diagonal of R X (·, ·) without the measurement noise

contamination by the local-quadratic smoother along the direction perpendicular to the

diagonal. For x ∈ [0,1] we set R̄ X (x) = ĉ(3)
0 where

(
ĉ(3)

0 , ĉ(3)
1 , ĉ(3)

2

)
= argmin

c (3)
0 ,c (3)

1 ,c (3)
2

n∑
i=1

Ni∑
j=1

Ni∑
k=1

j 6=k

K

(
xi j −x

BR

)
K

(
xi k −x

BR

)

×
{

Gi (xi j , xi k )− ĉ(3)
0 − ĉ(3)

1 ∆(xi j , xi k )− ĉ(3)
2 ∆(xi j , xi k )2

}2

where ∆(xi j , xi k ) is the distance of the point (xi j , xi k ) from the diagonal equipped with the

positive sign if the point (xi j , xi k ) is above the diagonal, and with the negative sign if below.

Formally

∆(xi j , xi k ) = sign
(
xi k −xi j

)√(
P (xi j , xi k )−xi j

)2 + (
P (xi j , xi k )−xi k

)2 (1.13)

where sign(·) ∈ {−1,0,1} is the sign function and P (xi j , xi k ) is the first coordinate of the point
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(xi j , xi k ) projected onto the diagonal of [0,1]2.

Secondly, we estimate the function x 7→ R X (x, x)+σ2, x ∈ [0,1], i.e. the noise contaminated

diagonal of the covariance kernel R X (·, ·). For x ∈ [0,1] and a bandwidth parameter BV > 0, we

use the local-linear line smoother and set V̂ (x) = ĉ(4)
0 where

(
ĉ(4)

0 , ĉ(4)
1

)
= argmin

c (4)
0 ,c (4)

1

n∑
i=1

Nt∑
j=1

K

(
xi j −x

BV

){
Gi (xi j , xi j )− c(3)

0 − c(3)
1 (x −xi j )

}2
.

Having the estimates R̄(·) and V̂ (·), the measurement error variance σ2 is estimated by inte-

grating the difference

σ̂2 =
∫ 1

0

(
V̂ (x)− R̄ X (x)

)
dx. (1.14)

In case the right-hand side of (1.14) is negative, we recommend to replace it by a small positive

number following the methodology of Yao et al. (2005a).

Principal components analysis through conditional expectation (PACE)

Once the above presented estimators are established, Yao et al. (2005a) explained how to

estimate the Principal Component scores by Conditional Expectation (PACE). We start the

review of their methodology by the description of the case with known model dynamics,

i.e. with the known parameters µ,R X ,σ2, and later we plug-in their estimated values. The

covariance operator RX corresponding to the covariance kernel R X is self-adjoint and non-

negative definite, therefore it features the spectral decomposition

RX =
∞∑

k=1
λkϕk ⊗ϕk

where {λk }∞k=1 are its eigenvalues and {ϕk }∞k=1 the eigenfunctions.

In the setting of the densely observed functional data, the principal component scores are

traditionally estimated by approximating the integral

ξi k =
∫ 1

0

(
Xi (x)−µ(x)

)
ϕk (x)d t

by the approximating sum

ξ̂i k =
Ni∑
j=2

(
Ui j − µ̂(xi j )

)
ϕk (xi j )(xi j −xi , j−1).

The limitation of this approach is that the summation cannot approximate ξi k well in the

sparse design. Moreover, the values of Xi are not observed and one has to substitute Ui j for

Xi (xi j ) regardless of the presence of measurement errors and additional shrinkage would be
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required (Yao et al. (2003)).

To overcome this challenge Yao et al. (2005a) propose to predict the score ξi k by the conditional

expectation

E
[
ξi k |Ui 1, . . . ,Ui Ni

]
. (1.15)

This conditional expectation is easy to calculate under the assumption that X is a Gaussian

process. Denote

Ũi =
(
Ui 1, . . . ,Ui Ni

)> , X̃i =
(
Xi (xi 1), . . . , Xi (xi Ni ))

)> ,

µi =
(
µ(x1i ), . . . ,µ(x1N1 )

)> , ϕi k = (
ϕk (xi 1), . . . ,ϕk (xi Ni )

)> .

Then the conditional expectation (1.15) can be written as

E
[
ξi k |Ũi

]= E [ξi k ]+cov(ξi k ,Ũi )var(Ũi )−1 (
Ũi −µi

)
,

where

ΣŨi
= var(Ũi ) = var(X̃i )+σ2INi =

( ∞∑
k=1

λkϕk (xi j )ϕk (xi l )

)Ni

j ,l=1

+σ2INi . (1.16)

where we have used

cov(Xi (xi j ), Xi (xi l )) = cov

( ∞∑
k=1

ξi kϕk (xi j ),
∞∑

m=1
ξi mϕm(xi l )

)
=

=
∞∑

k,m=1
cov(ξi k ,ξi m)ϕk (xi j )ϕm(xi l ) =

∞∑
k=1

var(ξi k )ϕk (xi j )ϕk (xi l ) =
∞∑

k=1
λkϕk (xi j )ϕk (xi l ).

Now, thanks to the lack of correlation among ξi k ’s and the fact that ξi k and εi j are independent,

cov(ξi k ,Ui j ) = cov

(
ξi k ,µ(xi j )+

∞∑
l=1

ξi lϕl (xi l )+εi l

)
=

∞∑
l=1

cov(ξi k ,ξi l )φl (xi l ) =λkϕk (xi k ),

Composing the above stated results together yields the PACE estimates the principal compo-

nents

ξ̃P
i k =λkϕ

>
i kΣ

−1
Ui

(
Ũi −µi

)
. (1.17)

Now, the model dynamics parameters µ,RX ,σ2 are in general unknown, hence need to be

estimated for example by the methods described in Subsection 1.2.3. Denote the spectral

decomposition of the estimator

R̂X =
∞∑

k=1
λ̂kϕ̂k ⊗ ϕ̂k . (1.18)

Because the kernel based methods do not guarantee that the resulting covariance operator

is non-negative definite, the spectral decomposition (1.18) may feature some negative tail

23



Chapter 1. Functional data analysis

eigenvalues λ̂k . It is recommended to discard these eigenvalues altogether (Yao et al. (2005a)

speaks about the “fitted” covariance operator). Moreover, Yao et al. (2005a) suggest to truncate

the expansion (1.18) to a number K of principal components determined, as a model selection

problem, by one of the following ways:

• leave-one-curve-out cross-validation,

• AIC and BIC information criteria based on Gaussianity assumption,

• subjective truncation at certain threshold 0 < τ < 1 such that the percentage of the

total variance explained by the leading principal components not exceeding τ, say

τ= 0.9,0.95.

Having truncated the negative eigenvalues and possibly truncated the spectral representation

of the empirical covariance operator (1.18), the PACE estimator is then constructed from

its theoretical counterpart (1.17) by substituting the unknown quantities by their empirical

estimators:

ξ̂P
i k = λ̂kϕ̂

>
i kΣ̂

−1
Ui

(
Ũi − µ̂i

)
. (1.19)

It can be shown Yao et al. (2005a)[Thm 3] that under certain conditions, the PACE estimator

(1.19) is consistent for its theoretical counterpart (1.17)

ξ̂P
i k

p→ ξ̃P
i k , as n →∞,

in the sparse regime.

Once the estimators of the principal components have been constructed, the latent functional

data Xi can be recovered by

X̂i (x) = µ̂(x)+
K∑

k=1
ξ̂P

i kϕ̂k (x). (1.20)

Since the predictor (1.20) involves the quantities Σ̂ and µ̂, which have been constructed from

the entire data set, the recovery (1.20) is said that it is “borrowing strength” from the other

observations, using the language by Yao et al. (2005a).

1.3 Functional time series

1.3.1 History and state-of-the art of functional time series research

The research of functional time series, a temporally ordered sequence of dependent functional

data, is historically linked to the study of functional linear processes, primarily the functional

autoregressive process (Bosq, 1983, 1991, 1996, 1999; Mas, 2007). The functional autoregressive

process is particularly important because it allows for an explicit formula for the functional

best linear predictor (Bosq, 2000; Kargin and Onatski, 2008) that has been used extensively
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in literature (Besse and Cardot, 1996; Besse et al., 2000) together with some variants of the

forecasting algorithm (Damon and Guillas, 2002; Antoniadis and Sapatinas, 2003). Further

to the functional autoregressive processes, the prediction problem was studied also for the

functional moving average processes (Chen et al., 2016; Aue and Klepsch, 2017) and the

functional autoregressive moving average processes (Klepsch et al., 2017). It is perhaps fair

to say that the family of linear processes is well understood in the context of functional time

series, which is underlined by overview publications by Bosq (2000); Bosq and Blanke (2008).

Further development in functional time series domain was due to abandoning the linear

structure and investigating sequences of stationary processes. Hörmann and Kokoszka (2010)

established the notion of Lp -m-approximability for weakly dependent functional time series

and studied the estimation of the long-run covariance operator. Horváth et al. (2013) provided

with a central limit theorem for weakly dependent functional data. On top of that, additional

univariate or multivariate methods have been adapted for the functional time series setting

that serve for prediction (Aue et al., 2015, 2017; Klepsch and Klüppelberg, 2017; Laurini, 2014;

Hörmann et al., 2013) and testing (Aue and van Delft, 2020; Górecki et al., 2018; Gao et al.,

2019).

Parallel to the time domain approaches, the statistical analysis of functional time series has

been fruitful also in the spectral domain. The foundational work is due to Panaretos and

Tavakoli (2013b) who established the underlying spectral theory for functional time series and

Panaretos and Tavakoli (2013a) established the Cramér-Karhunen-Loeve representation of

a functional time series. Moreover, Panaretos and Tavakoli (2013a); Hörmann et al. (2015a);

Kidziński et al. (2018) established estimators of the spectral density operators and studied

spectral domain dimensionality reduction techniques based on harmonic/dynamic principal

components analysis. Furthermore, the spectral domain tools have been successfully used to

solve other problems, such as functional lagged regression (Hörmann et al., 2015b; Pham and

Panaretos, 2018), stationarity testing (Horváth et al., 2014), periodicity detection (Hörmann

et al., 2018), two-sample testing problem (Tavakoli and Panaretos, 2016; Leucht et al., 2018),

or white noise testing (Zhang, 2016). Further theoretical contributions in the functional time

series spectral theory include van Delft and Eichler (2020) and Kokoszka and Jouzdani (2020)

Another frontier that was tackled in the functional time series literature is the concept of

long-range dependence. Li et al. (2019) generalised this phenomenon known from univariate

and multivariate time series literature (Granger and Joyeux, 1980; Hosking, 1981) into function

spaces and defined the functional autoregressive fractionally integrated moving average

process. Shang (2020) provided with quantitative comparison of long-range dependence

estimators. In order to allow the spectral analysis of long-range dependent functional time

series, the concept of spectral density needs to be generalised into the notion of the weak

spectral density operator (Tavakoli, 2014). Some spectral domain results for possibly long-

range dependent Gaussian processes are established by Ruiz-Medina (2019).

Other contributions in functional time series literature include locally stationary functional
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time series (van Delft et al., 2017; van Delft and Eichler, 2018; van Delft and Dette, 2018;

Barigozzi et al., 2019) or functional factor models (Kokoszka et al., 2015; Hays et al., 2012; Gao

et al., 2019; Tavakoli et al., 2020).

1.3.2 Framework and notation

As we established in Subsection 1.1.3, the classical approach in functional data analysis is to

view the data as random objects in the Hilbert space H , the usual choice being L2([0,1],R).

While the setup of the independent identically distributed functional data reviewed in Subsec-

tion 1.1.4 and Section 1.2 is relevant in many applications, the functional data may also come

ordered in time and exhibit temporal dependence. Ignoring this temporal dependence could

lead to wrong conclusions and, therefore, a development of time series models in functional

settings is needed.

A functional time series is a time ordered sequence of random elements in L2([0,1],R), denoted

as {X t }t∈Z. Throughout this thesis we work exclusively with time series with finite second

moments, i.e. E‖X t‖2 <∞, t ∈Z, and which are second order stationary in the time variable t

(see the definition bellow). These basic assumptions are imposed implicitly without explicitly

repeating them in the stated definitions, results or theorems.

Definition 1.3.1. A functional time series {X t (x) : x ∈ [0,1]}t∈Z is called second-order stationary

in the time variable t , if the expectations EX t and E[X t+h ⊗X t ] are independent of t ∈Z for all

values h ∈Z. Moreover, X is called strictly stationary if for any tuple (t1, . . . , tk ) ∈Zk with k ∈N,

the random elements (X t1+h , . . . , X tk+h) and (X t1 , . . . , X tk ) share the same law for any h ∈Z.

Definition 1.3.1 allows to define the mean function µ(x) = EX0(x), x ∈ [0,1], and the lag-h

autocovariance kernel Rh(x, y) = cov(Xh(x), X0(y)) = E[(Xh(x)−µ(x))(X0(y)−µ(y))], x, y ∈ [0,1]

for h ∈Z. The corresponding integral operator to Rh is called the lag-h autocovariance operator,

is denoted as RX
h and satisfies RX

h = E[(Xh −µ)⊗ (X0 −µ)].

The framework of stationary functional time series is broad, therefore more structure is re-

quired to deliver results useful for a statistical inference. There are essentially two approaches:

(i) The “parametric approach". The first approach to probabilistic modelling of functional

time series relies on defining dynamical models for the data, usually as functional linear

processes, the generalisation of scalar or multivariate linear processes into function

spaces, which are reviewed in Subsection 1.3.8. The statistical inference is then concen-

trated on estimation of these models’ infinite dimensional parameters and performing

forecasts. We call this approach as “parametric" despite the parameters involved in

such models being infinite dimensional which corresponds strictly speaking to non-

parametric statistics. This fact is in contrast with the following approach.

(ii) The fully non-parametric approach. The second way is to analyse the second order

structure of the functional time series directly without imposing a specific dynamics of
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the process. Especially fruitful turns out to be the spectral domain statistical inference

reviewed in Subsection 1.3.4. However, the non-parametric statistical analysis from a

single realisation of {X t (x) : x ∈ [0,1]}t∈Z requires to limit the amount of temporal depen-

dence among the values of X t for varying t . Some concepts of the weak dependence

conditions are reviewed in Subsection 1.3.3.

1.3.3 Weak dependence structure and mixing conditions

In order to probe the statistical properties from a single realisation of a functional time series,

we need to assume that temporal dependence sufficiently diminishes with the increasing

separation in the temporal domain. Essentially, if we split the functional time series {X t (x) :

x ∈ [0,1]}t∈Z into two parts, {X t }s1
t=−∞ and {X t }∞t=s2

for s1 < s2, we want to define a notion of

the vanishing dependence as the distance s2 − s1 grows. Generally speaking, we call any such

condition limiting the dependence of the above listed partitions a weak dependence condition.

In the following we review the most commonly used instances of weak dependence.

Cumulant mixing conditions

Perhaps the most intuitive notion of the weak dependence relies on the second moments of

functional time series. The second order structure of the stationary functional time series

{X t (x) : x ∈ [0,1]}t∈Z is governed by the autocovariance kernels R X
h (·, ·), and equivalently the

autocovariance operators RX
h , for h ∈Z. In order to limit the temporal dependence we would

like to impose the conditions on the speed of decay of R X
h (·, ·) and RX

h . A priori it is not clear

what norm one should consider for these objects and, as it turns out, various norms have been

considered in different articles.

Relying on the second-order structure, the weak dependence condition can be manifested in

one of the following ways ∑
h∈Z

∥∥RX
h

∥∥
2 <∞, (1.21)∑

h∈Z

∥∥RX
h

∥∥
1 <∞, (1.22)∑

h∈Z

∥∥RX
h

∥∥
L (H ) <∞, (1.23)∑

h∈Z

∣∣Tr(RX
h )

∣∣<∞, (1.24)∑
h∈Z

∣∣∣∣∣∣R X
h

∣∣∣∣∣∣∞ <∞, (1.25)∑
h∈Z

∣∣∣∣∣∣R X
h

∣∣∣∣∣∣
2 <∞ (1.26)

where |||·|||∞ denotes the supremum norm defined as
∣∣∣∣∣∣R X

h

∣∣∣∣∣∣
∞ = supx,y∈[0,1] |R X

h (x, y)| and |||·|||2
denotes the Frobenius norm

∣∣∣∣∣∣R X
h

∣∣∣∣∣∣
2
= (

Î |R X
h (x, y)|2 dx dy)1/2.
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We can go one step further and consider the higher order moment dependence structures,

relying on the notion of the cumulants kernels (Panaretos and Tavakoli, 2013b). Assum-

ing E‖X t‖k < ∞ for all t ∈ Z allows us to define the k-th order cumulant kernel of X t as

Cum(X t1 , . . . , X tk ) for t1, . . . , tk ∈Z by

Cum(X t1 , . . . , X tk )(x1, . . . , xk ) = cum(X t1 (x1), . . . , X tk (xk )), x1, . . . , xk ∈ [0,1],

where cum(Y1, . . . ,Yk ) is the cumulant of the scalar random variables Y1, . . . ,Yk defined as

(Rosenblatt, 2012)

cum(Y1, . . . ,Yk ) = ∑
v=(v1,...,vp )

(−1)p−1(p −1)!
p∏
`=1

E

[ ∏
j∈v`

Y j

]

where the sum is over all unordered partitions of 1, . . . ,k.

The functional time series {X t } is called k-th order stationary, if for all j = 1, . . . ,k −1

Cum(X t1+h , . . . , X t j+h)(x1, . . . , x j ) = Cum(X t1 , . . . , X t j )(x1, . . . , x j )

for any t1, . . . , t j ∈Z, h ∈Z and x1, . . . , x j ∈ [0,1].

Panaretos and Tavakoli (2013b) consider two sets of conditions based on cumulants.

Definition 1.3.2. Let l ∈N0 and k ∈N.

• The functional time series {X t } satisfies the C(l,k) condition if it is k-th order stationary

and ∑
t1,...,tk−1

(1+|t j |l )
∣∣∣∣∣∣Cum(X t1 , . . . , X tk−1 , X0)

∣∣∣∣∣∣
2 <∞

for each j = 1, . . . ,k −1. The Frobenius norm of a cumulant kernel of order j is defined

as
∣∣∣∣∣∣Cum(Z1, . . . , Z j )

∣∣∣∣∣∣
2 =

∫
[0,1] j |Cum(Z1, . . . , Z j )(x1, . . . , x j )|2 dx1 . . .dx j .

• The functional time series {X t } satisfies the C′(l,k) condition if it is k-th order stationary

and ∑
t1,...,tk−1

(1+|t j |l )
∣∣∣∣∣∣Cum(X t1 , . . . , X tk−1 , X0)

∣∣∣∣∣∣∞ <∞

for each j = 1, . . . ,k −1 where |||·|||∞ denotes the supremum norm.

In particular, the 4-th order cumulant conditions are required for the proofs of the asymptotic

behaviour of spectral density operators estimators in Chapter 2.

α-mixing conditions

One of the most famous dependence conditions, at least in the realm of scalar time series, is

called α-mixing, or strong mixing (Rosenblatt, 2012; Doukhan, 2012).
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Definition 1.3.3. The strictly stationary functional time series {X t (x) : x ∈ [0,1]}t∈Z isα-mixing,

or strong mixing, if

α(m) = sup
A∈F0−∞,B∈F+∞

m

|P(A∩B)−P(A)P(B)|

satisfies α(m) → 0 as m →∞ where F0−∞ is the sigma algebra generated by {. . . , X−1, X0} and

F+∞
m is the sigma algebra generated by {Xm , Xm+1, . . .}.

Usually, assuming α(m) → 0 as m →∞ alone is insufficient for the proofs and one needs to

further impose a certain rate of the decay.

α-mixing conditions have been successfully applied in the functional time series literature. An-

toniadis et al. (2009) used α-mixing for the prediction problem and Aston and Kirch (2012b,a)

considered the change-point detection problem for fMRI data. In this thesis we consider

α-mixing conditions in Theorems 2.3.4 and 2.3.5 for the proof of optimal convergence rates

of the non-parametric estimators established in Chapter 2 as opposed to the suboptimal

convergence rates demonstrated in Theorems 2.3.1 and 2.3.2 proof under weaker cumulant

mixing conditions.

Lp -m-approximability

Another weak dependence concept is that of Lp -m-approximability, introduced by Hörmann

and Kokoszka (2010). The heuristic behind their definition is to approximate the functional

time series by m-dependent processes where a process is called m-dependent if the sigma

algebras (defined in the previous paragraph) Fm−∞ and F0−∞ are independent while the ap-

proximation is valid in the stochastic Lp norm defined as (E‖X ‖p )1/p for a random element

X .

Definition 1.3.4. A functional time series {X t } is called Lp -m-approximable with p ≥ 1 if

E‖X t‖p <∞, t ∈Z, and it can be represented as X t = f (εt ,εt−1, . . . ) where {εt }t∈Z is a sequence

of independent identically distributed random elements taking values and a measurable space

S and f : S∞ → L2([0,1],R) is a measurable function. Moreover, denote {ε′t }t∈Z an independent

copy of {εt }t∈Z and let

X (m)
t = f (εt ,εt−1, . . . ,εt−m+1,ε′t−m ,ε′t−m−1, . . . )

then we require
∞∑

m=1

(
E
∥∥Xm −X (m)

m

∥∥p
)1/p <∞.

Hörmann and Kokoszka (2010) show that Lp -m-approximability is not directly comparable

with α-mixing conditions but seems to be easier to verify. Moreover, they give sufficient

conditions for a functional linear process to be Lp -m-approximable and show an example

when a simple autoregressive process of order 1 may fail to satisfy α-mixing.
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Horváth et al. (2013) derived some inference results for L2-m-approximable functional time

series, such as the consistency of the mean function and the estimator of the long-run co-

variance operator
∑

h∈ZRX
h . Further articles that successfully used the assumptions of Lp -m-

approximability include Kokoszka and Reimherr (2013); Hörmann et al. (2015b); Aue et al.

(2014, 2015); Hörmann et al. (2013, 2015a,b, 2018).

1.3.4 Spectral analysis of functional time series

Spectral analysis comprises an established collection of methods in univariate and multi-

variate time series analysis (Brockwell and Davis, 2009; Priestley, 1981a,b; Brillinger, 1983)

and signal processing (Stoica and Moses, 1997). The principal idea of this approach is to

express a stochastic process or a signal as a Fourier transform of a process whose components

are independent (or at least uncorrelated) for distinct frequencies. As a consequence, the

probabilistic analysis of some problems, e.g. the lagged regression (Chapter 3) or simulation of

stochastic processes (Chapter 5), simplifies greatly resulting into the popularity of the spectral

analysis.

In this subsection we are going to present the spectral approach to functional time series

analysis. The generalisation of the key objects in the spectral domain analysis have been first

published by Panaretos and Tavakoli (2013a) who defined the spectral density operators and

spectral density kernels under various weak dependence conditions. Later, the notion of spec-

tral density was extended to the concept of weak spectral density operator by Tavakoli (2014)

which does not require weak dependence and allows for the spectral analysis of time series

with long-range dependence, such as the analysis of the FARFIMA process in Subsection 1.3.8.

Spectral density operators under weak dependence

Analogous to the notion of the spectral density of a univariate time series (Priestley, 1981a), the

spectral density operator and the spectral density kernels are defines as a Fourier transform of

the autocovariance operators RX
h and the autocovariance kernels R X

h respectively. The spectral

density operators {F X
ω }ω∈[−π,π] and the spectral density kernels { f X

ω (x, y) : (x, y) ∈ [0,1]2}ω∈[−π,π]

are therefore defined by the formula

F X
ω = 1

2π

∑
h∈Z

RX
h e− ihω, ω ∈ [−π,π], (1.27)

f X
ω (x, y) = 1

2π

∑
h∈Z

R X
h (x, y)e− ihω, ω ∈ [−π,π], (1.28)

provided that the formulae (1.27) and (1.28) converge in an appropriate sense.

First, we present the definition by Panaretos and Tavakoli (2013b) of the spectral density

operator under the strongest considered norm, the trace norm. Moreover, Panaretos and

Tavakoli (2013b) defined also the spectral density kernel in the pointwise sense.
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Proposition 1.3.5 (Panaretos and Tavakoli (2013b)). Assume the weak dependence condition

(1.22), then (1.27) converges in the trace norm and defines the spectral density operator as an

self-adjoint, non-negative, trace-class operator. Moreover, the spectral density operators are

bounded in the trace norm∥∥F X
ω

∥∥
1 ≤

1

2π

∑
h∈Z

∥∥RX
h

∥∥
1 , ω ∈ [−π,π]

and we have the inverse formula

RX
h =

∫ π

−π
F X
ω dω, h ∈Z (1.29)

in the trace norm.

Assuming further either the condition (1.25) (set p = 2) or (1.26) (set p = ∞), the spectral

density kernel (1.28) is well defined and the sum converges in the Frobenius norm |||·|||2 or in

the supremum norm |||·|||∞ respectively. Moreover, the spectral density kernels are uniformly

continuous in |||·|||p for p ∈ {2,∞}, and the inversion formula holds in |||·|||p

R X
h (x, y) =

∫ π

−π
f X
ω (x, y)dω, h ∈Z. (1.30)

Hörmann et al. (2015a) defined the spectral density operator assuming the sumability of

the autocovariance operators in the Hilbert-Schmidt norm resulting in a slightly weaker

assumption.

Proposition 1.3.6 (Hörmann et al. (2015a)[Appendix A.2]). Assume the condition (1.21). Then

the spectral density operator (1.27) is well-defined and the sum converges in the Hilbert-Schmidt

norm and the inversion formula (1.29) hold in the Hilbert-Schmidt norm. Moreover, the spectral

density operator is self-adjoint, non-negative definite and Hilbert-Schmidt.

The advantage of the slightly weaker assumption (1.21) is that it is implied by the concept of

L2-m-approximability (Subsection 1.3.3).

Corollary 1.3.7 (Hörmann et al. (2015a)[Proposition 6]). Assume that the functional time series

{X t } is L2-m-approximable. Then the condition (1.21) is satisfied and therefore the conclusions

of Proposition 1.3.6 hold. On top of that, the spectral density operators are in fact trace-class.

In fact, Tavakoli (2014) has given the weakest weak dependence condition, and demonstrated

that the sumability in the operator norm (1.23) is sufficient for the definition of the spectral

density operator.

Proposition 1.3.8 (Tavakoli (2014)[Definition 2.3.5]). Assume the condition (1.23). Then the

spectral density operator (1.27) is well-defined and the sum converges in the operator norm.

Moreover, the spectral density operators are continuous in ω with respect to the operator norm,

are non-negative and compact, and the inversion formula (1.29) holds in the operator norm.
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Assuming further (1.24), the spectral density operators are bounded uniformly in the trace norm

∥∥F X
ω

∥∥
1 ≤

1

2π

∑
h∈Z

∣∣TrRX
h

∣∣<∞, ω ∈ [−π,π].

Weak spectral density operator

Finally, we present here the concept of the weak spectral density operator as presented by

Tavakoli (2014) which states the definition from the inversion formula perspective. Consider

the functional time series {X t } with values in the real separable Hilbert space H and denote

the complexification of this space as H C.

Definition 1.3.9 (Tavakoli (2014)[Definition 2.3.1]). Let {X t }t∈Z be an H -valued second order

stationary functional time series with finite second moments. If there exists a mapping

F X ∈ L1([−π,π],L1(H C)) (i.e. the Bochner space of the integrable mappings from [−π,π]

into the space of trace-class operators on H C with the trace norm) such that

RX
h =

∫ π

−π
F X
ω e ihωdω (1.31)

for all h ∈Z, then F X is called the weak spectral density operator.

Since the weak spectral density operator is defined only as an element of the aforementioned

Bochner space, it is defined uniquely only almost everywhere, and the pointwise evaluations

ω→F X
ω are not defined for fixed ω ∈ [−π,π].

Obviously, if the spectral density operator is defined under the conditions of Proposition 1.3.5,

the spectral density operators is also the weak spectral density operator.

The advantage of the definition of the weak spectral density operator is that it allows, for

example, for functional time series with long-range dependence structure whose spectral

density is unbounded at the neighbourhood of zero, see the spectral analysis of the long-range

dependent FARFIMA process in Subsection 1.3.8.

1.3.5 The Cramér-Karhunen-Loève decomposition

While the Karhunen-Loève expansion (Theorem 1.1.7) provides with optimal dimensionality

reduction for the set-up of independent identically distributed sequence {X t }, it is not the

best approach when the temporal dependence among {X t } is present. In this section we shall

gather some results on dimensionality reduction for functional time series in the spectral

domain which are important for the simulation of functional time series with given spectrum

(Chapter 5).

In order to take into account the temporal dependence one begins by decomposing the time

series into distinct frequencies, a step made rigorous by means of the functional Cramér
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representation, due to Panaretos and Tavakoli (2013a)[Thm 2.1] and Tavakoli (2014)[Thm

2.4.3]. We combine the two statements into a single statement, to be used for our purposes,

below.

Consider the functional time series {X t }t∈Z with values in the real separable Hilbert space H

and denote its complexification as H C.

Proposition 1.3.10 (Functional Cramér representation). Let the functional time series X ≡
{X t }t∈Z admit the weak spectral density operator F X ∈ Lp ([−π,π],L1(H C) for some p ∈ (1,∞].

Then X permits the functional Cramér representation

X t =
∫ π

−π
e i tωdZω, almost surely. (1.32)

where stochastic integral (1.32) can be understood in Riemann–Stieltjes limit sense

E

[∥∥∥∥∥X t −
K∑

k=1
e i tωk

(
Zωk+1 −Zωk

)∥∥∥∥∥
2]

→∞, as K →∞, (1.33)

where −π=ω1 < ·· · <ωk+1 =π and max |ωk+1 −ωk |→ 0 as K →∞. For each ω ∈ [−π,π], Zω is

a random element in H C defined by

Zω = lim
T→∞

∑
|t |<T

(
1+ |t |

T

)
gω(t )X−t (1.34)

where the limit holds with respect to E‖ ·‖2 and

gω(t ) = 1

2π

∫ ω

−π
e− i tαdα, ω ∈ [−π,π].

Moreover, the process {Zω}ω∈[−π,π] satisfies E[‖Zω‖2
2] = ∫ ω

−π ‖F X
α ‖1 dα for ω ∈ [−π,π] and E[Zω⊗

Zω′ ] = ∫ min(ω,ω′)
−π F X

α dα for ω,ω′ ∈ [−π,π], and has orthogonal increments

E
〈

Zω1 −Zω2 , Zω3 −Zω4

〉= 0, ω1 >ω2 ≥ω3 >ω4.

The Cramér representation (1.32) provides a scheme for decomposing X into distinct frequen-

cies. For 0 =ω1 < ·· · <ωk+1 = 2π we have an approximation by (1.33)

X t ≈
K∑

k=1
e i tωk

(
Zωk+1 −Zωk

)
. (1.35)

The approximation (1.35) essentially decomposes the functional time series {X t }t∈Z into

uncorrelated components Zωk+1 −Zωk , k = 1, . . . ,K . Heuristically, the covariance operator of

the increment Zωk+1 −Zωk is expected to be close to F X
ωk

(ωk+1 −ωk ). By virtue of being a non-

negative definite operator, the spectral density operator F X
ω , admits a spectral decomposition
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of its own at each frequency ω,

F X
ω =

∞∑
n=1

λn(ω)ϕn(ω)⊗ϕn(ω) (1.36)

where {λn(ω)}∞n=1 are the eigenvalues of F X
ω , called the harmonic eigenvalues, and their

associate eigenfunctions {ϕn(ω)}∞n=1, called the harmonic eigenfunctions. This suggests a

second level of approximation, namely using the Karhunen-Loève expansion to write

X t ≈
K∑

k=1
e i tωk

∞∑
n=1

ξ(k)
n ϕn(ωk )

with ξ(k)
n = 〈Zωk+1 −Zωk ,ϕn(ωk )〉/√λn(ωk ) and then truncating at N ∈N

X t ≈
K∑

k=1
e i tωk

N∑
n=1

ξ(k)
n ϕn(ωk ). (1.37)

The approximation (1.37) consists of finite number of uncorrelated random variables ξ(k)
n , k =

1. . . ,K , n = 1, . . . , N and will serve as the basis for our simulation method described in Section

5.1.1. To rigorously define this approach, and show its optimality, we must consider the

stochastic integral ∫ π

−π
e i tωC (ω)dZω (1.38)

which can be defined by the means similar to the Itô stochastic integral, rigorously proved in

Panaretos and Tavakoli (2013a) and Tavakoli (2014). If F ∈ L([−π,π],L1(H C)) for p ∈ (1,∞],

then (1.38) is well defined for C ∈ M where M is the completion of L2q ([−π,π],L (H C)),

where p−1 +q−1 = 1, with respect to the norm ‖ ·‖M =p〈·, ·〉M where

〈A,B〉M =
∫ π

−π
Tr

(
A(ω)F X

ω B(ω)∗
)

dω, A,B ∈M .

In this notation, one has (Panaretos and Tavakoli (2013a)[Thm 3.7], Tavakoli (2014)[Thm

2.8.2]):

Proposition 1.3.11 (Optimality of Cramér-Karhunen-Loève representation). Let the functional

time series X ≡ {X t }t∈Z, satisfying the functional Cramér representation (1.32), admit the weak

spectral density operator F X ∈ L1([−π,π],L1(H C)) such that the function ω ∈ [−π,π] 7→F X
ω

is continuous on [−π,π] with respect to the operator norm ‖ · ‖L (H C) and all the non-zero

harmonic eigenvalues of F X
ω are distinct, ω ∈ [−π,π]. Let

X ∗
t =

∫ π

−π
e i tωC (ω)dZω

with C ∈M . Let N : [−π,π] →N be a càdlàg function. Then, the solution to

minE
[∥∥X t −X ∗

t

∥∥2
]

subject to rank(C (ω)) ≤ N (ω)
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is given by

C (ω) =
N (ω)∑
n=1

ϕn(ω)⊗ϕn(ω).

Moreover, the approximation error is given by

E
[∥∥X t −X ∗

t

∥∥2
]
=

∫ π

−π

{ ∞∑
n=N (ω)+1

λn(ω)

}
dω.

Proposition 1.3.11 justifies that the process

X ∗
t =

∫ π

−π

N∑
n=1

e i tω (
ϕn(ω)⊗ϕn(ω)

)
dZω (1.39)

yields optimal dimension reduction when we set the rank requirement N (ω) ≡ N ∈Nuniformly

across all frequencies. Although the definition of the finite dimensional reduction (1.39)

appears quite abstract, it turns out that one can represent X ∗ in one-to-one manner as an

N -dimensional multivariate time series using a particular choice of the filter of the original

time series X . Because the simulation method presented in Chapter 5 is based directly on the

approximations (1.37) and (1.39), we do not pursue the multivariate time series representation

here and refer the reader to Panaretos and Tavakoli (2013a); Tavakoli (2014).

An equivalent dimension reduction technique and multivariate time series representation

result, defined entirely in terms of filtering (without reference to a representation theorem

such as Proposition 1.3.11) was introduced by Hörmann et al. (2015a).

1.3.6 Cross-covariance operators and cross-spectral density

Until now, the presented theory has dealt only with one functional time series. It is however

common in applications that the dependence between multiple time series is of interest. In

this section we introduce the basic definition of analysis of such dependence by means of the

cross-covariance operators and the cross-spectral density operator.

Let X = {X t }t∈Z and Y = {Yt }t∈Z be stationary functional time series with finite second mo-

ments in the space L2([0,1],R) and denote their mean functions as µX and µY . Furthermore

consider a univariate time series Z = {Zt }t∈Z with the mean µZ .

For h ∈Z, define the lag-h cross-covariance operators of X and Y or Z by the formulae

RX Y
h = E[

(Xh −µX )⊗ (Y0 −µY )
] (∈L2(L2([0,1],R))

)
,

RX Z
h = E[

(Xh −µX )(Z0 −µZ )
] (∈ L2([0,1],R)

)
,

RZ X
h = 〈·,RX Z

h 〉 (∈ L2([0,1],R)∗
)

,

where L2([0,1],R)∗ denotes the space of linear functionals on L2([0,1],R), also called the dual
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space of L2([0,1],R). The lag-h cross-covariance kernels are defined by

R X Y
h (x, y) = E[(

Xh(x)−µX (x)
)(

Y0(y)−µY (y)
)]

, x, y ∈ [0,1],

R X Z
h (x) = E[(

Xh(x)−µX (x)
)

(Z0 −µZ )
]

, x ∈ [0,1].

Furthermore, we define the cross-spectral density operators by the formulae

F X Y
ω = 1

2π

∑
h∈Z

RX Y
h e− ihω, ω ∈ [−π,π], (1.40)

F X Z
ω = 1

2π

∑
h∈Z

RX Z
h e− ihω, ω ∈ [−π,π], (1.41)

F Z X
ω = 1

2π

∑
h∈Z

RZ X
h e− ihω, ω ∈ [−π,π], (1.42)

where (1.40) converges in the Hilbert-Schmidt norm if∑
h∈Z

∥∥RX Y
h

∥∥
2 <∞,

and (1.41) converges in the vector norm and (1.42) in the operator norm, provided∑
h∈Z

∥∥RX Z
h

∥∥<∞.

The cross-spectral density kernels are defined by the formulae

f X Y
ω (x, y) = 1

2π

∑
h∈Z

R X Y
h (x, y)e− ihω, x, y ∈ [0,1], ω ∈ [−π,π], (1.43)

f X Z
ω (x) = 1

2π

∑
h∈Z

R X Z
h (x)e− ihω, x ∈ [0,1], ω ∈ [−π,π], (1.44)

where (1.43) and (1.44) converge in the supremum norm, provided∑
h∈Z

sup
x,y∈[0,1]

∣∣R X Y
h (x, y)

∣∣<∞,∑
h∈Z

sup
x∈[0,1]

∣∣R X Z
h (x)

∣∣<∞,

respectively.

1.3.7 Functional filters and frequency response functions

Let X = {X t }t∈Z be a mean-zero stationary functional time series in the separable real Hilbert

space H1, with the weak spectral density operator

F X ∈ Lp ([−π,π],L1(H C
1 )) for some p ∈ (1,∞]. (1.45)
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Therefore, its lag-h autocovariance operators RX
h satisfy

RX
h =

∫ π

−π
F X
ω e ihωdω, h ∈Z.

A functional filter, or simply a filter, is a sequence of coefficients {θs}s∈Z where θs ∈L (H1,H2)

and H2 is a possible different separable real Hilbert space and L (H1,H2) is the space of

bounded linear operator from H1 to H2. Formally, define the filtered functional time series

Y = {Yt }t∈Z as

Yt =
∑
s∈Z

θs X t−s , t ∈Z, (1.46)

and the frequency response function of {θs} as

Θ(ω) = ∑
s∈Z

θse− i sω, ω ∈ [−π,π], (1.47)

provided (1.46) and (1.47) converge in an appropriate sense which is justified by the following

two proposition that are direct consequences of Tavakoli (2014)[Thm 2.5.5, Remark 2.5.6].

Proposition 1.3.12. Assume (1.45) and that the filter {θs} satisfies∑
s∈Z

‖θs‖L (H1,H2) <∞.

Then the sum on the right-hand side of (1.46) converges with respect to E‖ ·‖2 and Y = {Yt }t∈Z
is a second-order stationary mean-zero functional time series with values in H2. Moreover, the

sum on the right-hand side of (1.47) converges in M (defined in Subsection 1.3.5) and the weak

spectral density operator F Y ∈ L1([−π,π],L1(H C
2 )) of the functional time series Y = {Yt }t∈Z is

given by

F Y
ω =Θ(ω)F X

ω Θ(ω)∗, ω ∈ [−π,π] (1.48)

and the lag-h autocovariance operators of Y are given by

RY
h = E [Yh ⊗Y0] =

∫ π

−π
F Y
ω e i tωdω, h ∈Z. (1.49)

Furthermore, if (1.23) and (1.24) hold for the time series X , then
∑

h∈Z ‖RY
h ‖L (H2) <∞.

Proposition 1.3.13. Assume that the functional time series X is m-correlated for some m ∈N,

i.e. RX
h = 0 for |h| > m, and the filter {θs} satisfies∑

s∈Z
‖θs‖2

L (H1,H2) <∞.

Then the sum on the right-hand side of (1.46) converges with respect to E‖ ·‖2 and Y = {Yt }t∈Z
is a second-order stationary mean-zero functional time series with values in H2, the right-hand

side of (1.47) converges in M (defined in Subsection 1.3.5), the weak spectral density operator
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F Y ∈ L1([−π,π],L1(H C
2 )) is given by (1.48) and the inverse formula (1.49) holds.

Hörmann et al. (2015b) provided with one more sufficient condition for the frequency re-

sponse function to be well-defined and to guarantee the existence of the cross-spectral density

operator:

Proposition 1.3.14 (Hörmann et al. (2015b)). Assume the weak-dependence condition (1.21)

and that the filter {θs} satisfies ∑
s∈Z

‖θs‖L (H1,H2) <∞.

Then in addition to the conclusions of Proposition 1.3.12, the cross-covariance operators satisfy

RY X
h = ∑

k∈Z
θkRX

h−k , k ∈Z, (1.50)∑
h∈Z

∥∥RY X
h

∥∥
2 <∞, (1.51)

and the cross-spectral density operator between Y and X is given by

F Y X
ω =Θ(ω)F X

ω , ω ∈ [−π,π]. (1.52)

Similarly to Proposition 1.3.14 proved by Hörmann et al. (2015b) we can show the correspond-

ing result for the cross-spectral density kernel.

Proposition 1.3.15. If H1 = L2([0,1],R) and (1.25) holds, then we have the following results:

• H2 = L2([0,1],R) and the filter coefficients θs are Hilbert-Schmidt operators represented

by kernels (θs f )(x) = ∫ 1
0 Ts(x, y) f (y)dy for f ∈ L2([0,1],R) satisfying∑

s∈Z
sup

x,y∈[0,1]

∣∣Ts(x, y)
∣∣<∞, (1.53)

then the cross-covariance kernel between Y and X is given by

RY X
h (s, t ) = ∑

k∈Z

∫ 1

0
Tk (s, x)R X

h−k (x, t )dx, s, t ∈ [0,1], h ∈Z, (1.54)

satisfies ∑
h∈Z

sup
s,t∈[0,1]

∣∣RY X
h (s, t )

∣∣<∞. (1.55)

Therefore the cross-spectral density kernel is given by (1.43).

• H2 = R and the filter coefficients θs are functionals on H1 associated with its Riez-

representers Ts(·) via the equation θs g = 〈Ts , g 〉 = ∫ 1
0 Ts(x)g (x)dx for g ∈ L2([0,1],R).

Assume further that ∑
s∈Z

sup
x∈[0,1]

|Ts(x)| <∞. (1.56)
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Then the cross-covariance between Y and X is given by

RY X
h (x) = ∑

k∈Z

∫ 1

0
Tk (y)R X

h−k (y, x)dy, x ∈ [0,1], h ∈Z, (1.57)

and they satisfy ∑
h∈Z

sup
x∈[0,1]

∣∣RY X
h (x)

∣∣<∞. (1.58)

Consequently, the cross-spectral density is given by (1.44).

Proof. Assume now that H1 = H2 = L2([0,1],R). In order to verify (1.54) we start with the

right hand side of (1.50) and expressing the operator θsR
X
h−k as an integral operator. For

g ∈ L2([0,1],R):

(
θsR

X
h−k g

)
(x) =

∫ 1

0
Tk (x, y)

(∫ 1

0
R X

h−k (y, z)g (z)dz

)
dy =

∫ 1

0

(∫ 1

0
Tk (x, y)R X

h−k (y, z)dy

)
g (z)dz.

(1.59)

Therefore
∫ 1

0 Tk (x, y)R X
h−k (y, z)dy is the kernel of the integral operator of θsR

X
h−k and (1.54)

holds. Furthermore, (1.25) and (1.53) imply (1.55).

The case with H1 = L2([0,1],R), H2 = R and the derivation of (1.57) are analogous to (1.59)

and the claim (1.58) follows from the assumptions (1.25) and (1.56).

1.3.8 Linear functional time series

The early functional time series research is linked to the study of linear processes in infinite

dimensional spaces. In particular, Bosq (1983, 1991, 1996, 1999); Mas (2007) considered

linear processes in Hilbert and Banach spaces, provided with the theoretical toolbox for the

asymptotic analysis of these probabilistic processes, and studied the estimation and prediction

problems. An extensive review of functional linear processes can be found in Bosq (2000).

Introduction: functional autoregressive and moving average processes

The most basic stochastic linear process is the autoregressive process of order 1 (Bosq, 2000; Mas,

2007), denoted as FAR(1), defined as a H -valued stochastic process satisfying the iterative

equation (
X t −µ

)=A
(
X t−1 −µ

)+εt , t ∈Z, (1.60)

where µ is the mean function, the autoregressive operator A is a bounded linear operator, A ∈
L (H ), and {εt }t∈Z is a sequence of mean-zero independent identically distributed random

elements in H with the covariance operator Σ.

Proposition 1.3.16 (Bosq (2000)). Suppose one of the two following equivalent conditions:

(i) There exists j0 ∈N such that ‖A j0‖L (H ) < 1.
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(ii) There exist a > 0 and 0 < b < 1 such that ‖A j‖L (H ) ≤ ab j for all j ∈N0.

Then, there exists a unique stationary solution to the iterative equation (1.60) which is given by

X t =µ+
∞∑

j=0
A j εt− j

and the autocovariance operators of {X t } are given by

RX
0 =

∞∑
j=0

A jΣA ∗ j ,

RX
h =A hRX

0 , h ∈N0,

RX
−h =RX

0 A ∗h , h ∈N0.

The condition (ii) of Proposition 1.3.16 also guarantees that
∑∞

j=0 ‖A j‖L (H ) <∞.

Another functional linear process that has been analysed is the functional moving average

process (Chen et al., 2016) of order 1, denoted as FMA(1), as defined as

X t =µ+εt +Bεt−1, t ∈Z,

where B ∈L (H ) and µ, {εt } are like before. It is trivial to verify that

RX
0 =Σ+BΣB∗,

RX
1 =BΣ,

RX
−1 =ΣB∗,

RX
h = 0, |h| ≥ 2.

Functional moving average autoregressive process

The combination of the functional autoregressive processes and the moving average pro-

cesses constitutes the class of functional autoregressive moving average processes, denoted as

FARMA(p, q), has been presented by Klepsch et al. (2017). In the following text we recall the

time domain analysis of FARMA processes and then develop our new results on the frequency

domain analysis thereof.

The FARMA(p, q) process, p, q ∈N0, is a sequence X = {X t }t∈Z of random H -elements, satisfy-

ing the equation

(
X t −µ

)= p∑
j=1

A j
(
X t− j −µ

)+εt +
q∑

j=1
B j εt− j , t ∈Z, (1.61)

where A1, . . . ,Ap and B1, . . . ,Bq are bounded linear operators and {εt }t∈Z is a sequence of
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zero-mean i.i.d. random elements in H with the covariance operator S .

The time-domain analysis of the FARMA(p, q) process was considered by Klepsch et al. (2017),

who in particular established:

Theorem 1.3.17 (Klepsch et al. (2017)). Assume that there exists j0 ∈N such that the operator

Ã =


A1 · · · Ap−1 Ap

I 0
. . .

...

I 0


satisfies

‖Ã j0‖L (H p ) < 1 (1.62)

where I is the identity operator on H and ‖ · ‖L (H p ) denotes the operator norm on L (H p ), the

space of bounded linear operators acting on the product space H p =H ×·· ·×H . Then the

FARMA(p, q) process defined by (1.61) is uniquely defined, stationary, and causal.

We now show that, under the same assumptions as those by Klepsch et al. (2017), we may

characterise the FARMA(p, q) process in the spectral domain:

Theorem 1.3.18. Under the assumptions of Theorem 1.3.17, the process satisfies the weak

dependence condition (1.23) with RX
h , and its spectral density operator at frequency ω ∈ [−π,π]

is given by

F X
ω = 1

2π
A(e− iω)−1B(e− iω)S B(e− iω)∗

[
A(e− iω)∗

]−1
(1.63)

where

A(z) = I−A1z −·· ·−Ap zp , (1.64)

B(z) = I+B1z +·· ·+Bp zq . (1.65)

are H -valued polynomials in the variable z ∈C.

Proof. Denoting ∆ to be the backshift operator, the equation (1.61) can be rewritten as

A(∆)X t =B(∆)εt . (1.66)

We start with the analysis of the moving average part ηt =B(∆)εt . The spectral density operator

of the stochastic innovation process {εt } is trivially given by F ε
ω = (2π)−1S . The filter B(∆),

whose filter coefficients are given by B(∆)s = Bs for s = 0, . . . , q and B(∆)s = 0 otherwise,

defines the frequency response function B(ω) =B(e− iω). Thus, the moving average process

η= {ηt } admits the spectral density operator

F
η
ω = 1

2π
B(e− iω)S B(e− iω)∗
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by Proposition 1.3.12. Obviously, the moving average process η = {ηt } is q-correlated, i.e.

R
η

h = 0 for |h| > q , and therefore satisfies the conditions (1.23) and (1.22), and it is easy to

verify that F η ∈ L∞([−π,π],L1(H C)).

We now wish to invert (1.66) and write the process X as

X t =A−1(∆) [B(∆)εt ] =A−1(∆)ηt . (1.67)

As part of their existence proof, Klepsch et al. (2017)[Thm 3.8] defined a state space process

representation of (1.61) as a process in the product space H p


X t

X t−1
...

X t−p+1


︸ ︷︷ ︸

Ξt

=


A1 · · · Ap−1 Ap

I 0
. . .

...

I 0


︸ ︷︷ ︸

Ã


X t−1

X t−2
...

X t−p


︸ ︷︷ ︸
Ξt−1

+


ηt

0
...

0


︸ ︷︷ ︸
η̃t

, t ∈Z.

They showed that the process Ξ can be written as

Ξt =
∞∑

j=0
Ã j η̃t− j , t ∈Z, (1.68)

where ∞∑
j=0

‖Ã j‖L (H p ) <∞ (1.69)

by the assumption (1.62). Set P1 to be the projection operator onto the first component:

P1 : H p → H , ( f1, . . . , fn) 7→ f1.

Applying P1 to (1.68) yields X t = ∑∞
j=0 P1Ã

j P∗
1 ηt− j which essentially means that the filter

A(∆)−1 is given by (A(∆)−1)s = P1Ã
sP∗

1 for s ≥ 0 and zero otherwise. Moreover, (1.69) implies∑
s∈Z

∥∥[A(∆)−1]s
∥∥

L (H ) <∞. (1.70)

Finally, the application of Proposition 1.3.12 onto the filter A(∆)−1 and functional time se-

ries η gives us the spectral density of X given by the formula (1.63). Moreover, because η

is q-correlated, it trivially satisfies the conditions (1.23) and (1.22) with R
η

h , therefore the

FARMA(p, q) process X also satisfies the weak dependence conditions (1.23) with RX
h .

Functional autoregressive fractionally integrated moving average process

Long range dependence (a.k.a. long memory) is a well known phenomenon in time series

analysis, consisting in a time series exhibiting slow decay of its temporal dependence (Hurst,
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1951; Mandelbrot and van Ness, 1968; Beran, 1994; Palma, 2007). The need to model and

analyse such series has led to the definition of autoregressive fractionally integrated moving

average (ARFIMA) processes (Granger and Joyeux, 1980; Hosking, 1981).

Such long-range dependencies have also been detected functional time series, for example

in series of daily volatility (Casas and Gao, 2008), and inspired the theoretical framework of

long-range dependent functional time series model (Li et al., 2019) and associated estimation

methods (Shang, 2020).

Li et al. (2019) defined the functional ARFIMA process, denoted as FARFIMA(p,d , q), with

p, q ∈N0 and d ∈ (−1/2,1/2) models as a sequence X̃ = {X̃ t }t∈Z of random H -elements via the

equation

(I−∆)d X̃ t = X t (1.71)

where ∆ is the back-shift operator and X = {X t }t∈Z is the FARMA(p, q) process defined via

equation (1.61). The operation (I−∆)d denotes the fractional integration with the power

d ∈ (−1/2,1/2) of the filtration I−∆. Refer to Li et al. (2019) or Hosking (1981) for the definition

of the fractional powers.

When d = 0, the FARFIMA(p,d , q) reduces to the FARMA(p, q) model.

Li et al. (2019) established the existence and uniqueness results of the FARFIMA(p,d , q) process

and its time-domain properties:

Theorem 1.3.19 (Li et al. (2019)). The FARFIMA(p,d , q) process X̃ = {X̃ t }t∈Z with p, q ∈ N0

and d ∈ (−1/2,1/2) defined by the equation (1.71) exists and constitutes a uniquely defined

stationary causal functional time series provided the autoregressive part satisfies the condition

(1.62). Furthermore, if d ∈ (0,1/2) the FARFIMA(p,d , q) process exhibits the long-memory

dependence, according to the definition of Li et al. (2019).

Under the same assumptions as Li et al. (2019) we now determine the analytical expression of

the spectral density operators of the FARFIMA(p,d , q) process:

Theorem 1.3.20. Under the assumptions of Theorem 1.3.19, the FARFIMA(p,d , q) process

admits the weak spectral density F X̃ ∈ L1([−π,π],L1(H C)) satisfying

F X̃
ω = 1

2π

[
2sin

(ω
2

)]−2d
A(e− iω)−1B(e− iω)S B(e− iω)∗

[
A(e− iω)∗

]−1
, ω ∈ (−π,π), (1.72)

where A and B are given at (1.64) and (1.65). The lag-h autocovariance operators of X̃ satisfy

R X̃
h =

∫ π

−π
F X̃
ω e ihωdω, h ∈Z.

Proof. Building upon the results of Theorem 1.3.17 we write the FARMA(p, q) process as

X t =A(∆)−1B(∆)εt =A(∆)−1ηt
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where ηt =B(∆)εt is the functional moving average process. Formally inverting the filter (1.71)

yields

X̃ t = (I−∆)−d X t = (I−∆)−dA(∆)−1ηt

Following the proof of Hosking (1981)[Thm 1], define the function c(z) = (1−z)−d , z ∈C. Then

the power series expansion of c converges for |z| ≤ 1 as long as d < 1/2 and we can write

c(z) =∑∞
k=0 ck zk , |z| ≤ 1. Moreover, using the binomial expansion for (1−z)−d it can be shown

(Hosking, 1981) that the coefficients satisfy

ck ∼ kd−1

(d −1)!
, as k →∞. (1.73)

Define with the filter C = {Ck }k∈Z with filter coefficients Ck = ck I for k ∈ N0 where I is the

identity operator on H C, and zero otherwise. Obviously C = (I−∆)−d in the sense of equality

of filters. By the asymptotic relation (1.73), the filter satisfies∑
k∈Z

‖Ck‖2
L (H C) <∞. (1.74)

The convolution of the filters C and A(∆)−1, denoted as D =C ∗A(∆)−1, is given by

Ds =


∑s
k=0 Ck

[
A(∆)−1

]
s−k , s ≥ 0,

0, s < 0.

Young’s convolution inequality (Hewitt and Ross, 2012)[Thm 20.18], (1.70) and (1.74) imply∑
k∈Z

‖Dk‖2
L (H C) <∞.

Because the moving average process ηt is q-correlated, Proposition 1.3.13 implies existence

and stationary of the FARFIMA(p,d , q) process defined by the filter X̃ t =Dηt =C
[
A(∆)−1ηt

]
.

Moreover, the process X̃ admits the weak spectral density F X̃ ∈ L1([−π,π],L1(H C)) given by

F X̃
ω = 1

2π
D(ω)F η

ωD(ω)∗

= 1

2π
c(e− iω)A(e− iω)B(e− iω)S B(e− iω)∗

[
A(e− iω)∗

]−1
c(e− iω)

= 1

2π
[2sin(ω/2)]−2d A(e− iω)B(e− iω)S B(e− iω)∗

[
A(e− iω)∗

]−1
,

for ω ∈ (−π,π), where we have used that c(e− iω) I = (1− e− iω)−d I = ∑∞
k=0 Ck e− ikω is the fre-

quency response function of the filter C and c(e− iω)c(e− iω) = |1−e− iω|−2d = [2sin(ω/2)]−2d .

Note that for d > 0, the term [2sin(ω/2)]−2d in formula (1.72) is unbounded in the neigh-
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bourhood of 0. The spectral density being unbounded in the neighbourhood of zero is

quintessential also for the univariate ARFIMA processes (Hosking, 1981).

1.3.9 Inference for fully observed functional time series

In this subsection we list some previous results concerning estimation for fully observed

functional time series. We start with the estimation of the mean function and proceed with

the second order structure of the data embodied by the lagged autocovariance operators and

the spectral density operators.

Estimation of the mean function

The first order structure of the functional time series data is often overlooked in functional

time series methodological research literature as it is seen as uncomplicated and hence the

mean function is often assumed to be zero. Indeed, the sufficient condition for the empirical

mean function µ̂= (1/T )
∑T

t=1 X t of the functional time series {X t } is the weak-dependence

condition (1.22) alone. We prove this simple result in the following proposition.

Proposition 1.3.21. Let X = {X t }t∈Z be a functional time series in H with mean function µ

and lagged autocovariance operators RX
h ,h ∈ Z satisfying (1.22). Then, the empirical mean

function satisfies

Eµ̂=µ,

var
(
µ̂
)= 1

T

∑
|h|≤T

(
1− |h|

T

)
RX

h ,

E
[∥∥µ̂−µ∥∥2

H

]
≤ 1

T

∑
h∈Z

∥∥RX
h

∥∥
1 ,

and hence µ̂ is an unbiased and
p

T -consistent estimator of µ in the H -norm as T →∞.

Proof. Clearly Eµ̂=µ, hence the estimator is unbiased. Calculating its variance yields

var
(
µ̂
)= 1

T 2

T∑
t=1

T∑
t ′=1

RX
t−t ′ =

1

T

∑
|h|≤T

(
1− |h|

T

)
RX

h .

And finally, taking the trace norm over the above equation proves the last statement

E
[∥∥µ̂−µ∥∥2

H

]
= var

(‖µ̂‖H

)= ∥∥∥∥∥ 1

T

∑
|h|≤T

1−|h|
T

RX
h

∥∥∥∥∥
1

≤ 1

T

∑
|h|≤T

1−|h|
T

∥∥RX
h

∥∥
1 ≤

1

T

∑
h∈Z

∥∥RX
h

∥∥
1 .

A deeper analysis of the empirical mean function consistency is provided by Bosq (2000)[§2.4]
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who studied in fact Banach space valued functional time series and gave weaker conditions

for the empirical mean consistency. Other results on empirical mean function estimation can

be found in Horváth and Kokoszka (2012); Horváth et al. (2013).

Estimation of lagged autocovariance and cross-covariance operators

The second order structure of functional time series data is quintessential for many functional

time series applications. Consider a pair of stationary functional time series {X t } and {Yt }

with values in the Hilbert spaces H1 and H2 respectively. We are interested in estimating the

lag-h autocovariance operator RX
h = E[

(Xh −µX )⊗ (X0 −µX )
]

and the lag-h cross-covariance

operator RY X
h = E[

(Yh −µY )⊗ (X0 −µX )
]

for fixed h > 0 where µX = EX0 and µY = EY0 are the

mean functions of the respective functional time series.

Having the sample (Y1, X1), . . . , (YT , XT ), we estimate the lag-h autocovariance operator and

the cross-covariance operator by their empirical counterparts

R̂X
h = 1

T

T−h∑
t=1

(
X t+h − µ̂X

)⊗ (
X t − µ̂X

)
, (1.75)

R̂Y X
h = 1

T

T−h∑
t=1

(
Yt+h − µ̂Y

)⊗ (
X t − µ̂X

)
. (1.76)

The consistency of the above estimators, however, is not guaranteed solely by the weak depen-

dence and finer assumptions are necessary. In the following we provide with the consistency

results under L4-m-approximability.

Proposition 1.3.22 (Hörmann et al. (2015b)[Lemma 5]).

• Let {X t } be an L4-m-approximable functional time series in H1. Then for fixed h ∈N, the

lag-h empirical autocovariance operator (1.75) satisfies

E
[∥∥R̂X

h −RX
h

∥∥
L2(H1)

]
≤ κ

T 1/2

where the constant κ is independent of h and T .

• Let {(Yt , X t )} be an L4-m-approximable functional time series in H2×H1. Then for fixed

h ∈N, the lag-h empirical cross-covariance operator (1.76) satisfies

E
[∥∥R̂Y X

h −RY X
h

∥∥
L2(H1,H2)

]
≤ κ

T 1/2

where the constant κ is independent of h and T .

An alternative treatment of the asymptotic results for the autocovariance operators estimators

of autoregressive processes is presented in Bosq (2000)[Chapter 4].
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Estimation in the spectral domain

To estimate the spectral density operators {F X
ω } one has to resort to smoothing or a differ-

ent sort of regularization at some point. Panaretos and Tavakoli (2013b) performed kernel

smoothing of the periodogram in the spectral domain whereas Hörmann et al. (2015a) made

use of Barlett’s estimate. Bartlett’s estimate involves a weighted average of the lagged autoco-

variances, with a choice of weights that downweighs higher order lags. From the theoretical

perspective, this approach is equivalent to kernel smoothing of the periodogram (Priestley,

1981a, §6.2.3). In fact, Bartlett’s weights correspond to the Fourier coefficients of the smooth-

ing kernel, assumed compactly supported. In the following we review the two approaches,

starting with the periodogram smoothing.

Let {X t }t∈Z be an H -valued functional time series where H is a real separable Hilbert space

and denote H C its complexification. Panaretos and Tavakoli (2013b) and Tavakoli (2014)

consider the discrete Fourier transform of the sample X0, . . . , XT−1 defined by

X̃ω = 1

2πT

T−1∑
t=0

X t e− iωt , ω ∈ [−π,π],

where X̃ω takes values in H C, and the periodogram by

P X
ω = X̃ω⊗ X̃ω, ω ∈ [−π,π],

where X̃ω ∈ H C is the complex conjugate element to X̃ω, and the periodogram P X
ω is an

operator in L1(H C).

As in the univariate or multivariate case (Brillinger, 1983), the periodogram of the functional

time series is an unbiased but inconsistent estimator of the spectral density operator F X
ω .

Therefore one needs to address this issue by smoothing. Consider a smoothing kernel K (·) as

an even probability density function bounded in variation with compact support on [0,1] and

the weights

W (x) = ∑
j∈Z

1

BP
K

(
x +2π j

BP

)
where BP > 0 is the smoothing bandwidth. Panaretos and Tavakoli (2013b) then defined the

smoothed peridogram as

F̃ X
ω = 2π

T

T−1∑
s=1

W

(
ω− 2πs

T

)
P X

2πs
T

, ω ∈ [−π,π], (1.77)

and proved its asymptotic behaviour.

Proposition 1.3.23 (Panaretos and Tavakoli (2013b) or Tavakoli (2014)[§3.5]). Assume that the

functional time series {X t (x) : x ∈ [0,1]}t∈Z satisfies the conditions C(1,2) and C(0,4) (Defini-

tion 1.3.2) and that BP → 0 as T →∞. Then the smoother periodogram estimator (1.77) is
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consistent and

sup
ω∈[−π,π]

E
[∥∥F̃ X

ω −F X
ω

∥∥2
2

]
=OP(B 2

P +B−2
P T −1),∫ π

−π
E
[∥∥F̃ X

ω −F X
ω

∥∥2
2

]
dω=OP(B 2

P +B−1
P T −1),

as T →∞.

The other approach to the smoothing of the periodogram in the spectral domain is the Bartlett’s

estimator (Hörmann et al., 2015a,b) in the temporal domain. Throughout the entire thesis we

restrict attention to triangular window (Barlett’s weights) defined as Wh = (1−|h|/L) for |h| < L

and 0 otherwise for span parameter L ∈N as it seems to be a popular choice (Hörmann and

Kokoszka, 2010; Hörmann et al., 2015a).

For the samples X1, . . . , XT and Y1, . . . ,YT of functional time series in H1 and H2, define the

Bartlett’s estimator

F̂ X
ω = 1

2π

L∑
h=−L

WhR̂X
h e− ihω, ω ∈ [−π,π], (1.78)

F̂ Y X
ω = 1

2π

L∑
h=−L

WhR̂Y X
h e− ihω, ω ∈ [−π,π], (1.79)

where R̂X
h and R̂Y X

h are the standard empirical autocovariance and cross-covariance operators

(1.75) and (1.76).

Proposition 1.3.24 (Hörmann et al. (2015b)[Lemma 1]). Assume that the Bartlett’s span pa-

rameter L →∞ as T →∞.

• Let {X t } be an L4-m-approximable functional time series in H1. Then the spectral density

estimator (1.78) is consistent

sup
ω∈[−π,π]

∥∥F̂ X
ω −F X

ω

∥∥
L (H1) =OP

(
ψX

T

)
, as T →∞,

where {ψX
T } is a null-sequence.

• Let {Yt , X t } be an L4-m-approximable functional time series in H2 ×H1. Then the cross-

spectral density estimator (1.79) is consistent

sup
ω∈[−π,π]

∥∥F̂ Y X
ω −F Y X

ω

∥∥
L (H1,H2) =OP

(
ψY X

T

)
, as T →∞,

where {ψY X
T } is a null-sequence.

The sequences {ψX
T } and {ψY X

T } are given by complicated formulae which can be found in

Hörmann et al. (2015b).
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2 Sparsely observed functional time
series

This chapter introduces the core results of the thesis: the estimators of the first and the

second order dynamics of sparsely observed functional time series and the cross-dependence

between two functional time series. Most of the results presented in this chapter are collected

from Rubín and Panaretos (2020b) and some of the cross-dependence estimation results from

Rubín and Panaretos (2020a), while some of the results are extended further.

We deal in detail with the estimation when the data come from a single sparsely observed

functional time series in Section 2.1. We present the estimators of the model dynamics

components in the time domain: the mean function and the autocovariance operators; and

the estimator of the spectral density operator. The spectral density operators encode the

entire second order structure of the data, which we benefit from in Section 2.2 and show

how to predict (recover) the latent functional data themselves. In Section 2.3 we analyse the

asymptotic behaviour of the proposed estimators while the proofs being technical and long

are postponed until Section 2.7. Section 2.4 introduces the estimators of the dependence

between two time series manifested by the estimation of the cross-spectral density operator.

We present estimators of the cross-spectral densities for all possible pairs of time series fully

or sparsely observed functional time series, or of univariate and multivariate time series. The

proposed methodology is tested on a simulation study in Section 4.1 and demonstrated on

the application to the fair-weather atmospheric electricity in Section 4.3.

2.1 Estimation of functional time series dynamics from sparse data

2.1.1 Notations and sparse observation regime

We consider the functional time series {X t (x) : x ∈ [0,1]}t∈Z as a time series of continuous and

smooth curves in the Hilbert space H1 = L2([0,1],R). The smoothness is essential for our

methods and the concrete smoothness assumptions are listed in Section 2.3. Moreover, the

functional time series is assumed to be observed only at discrete and sparse measurement
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locations with noise contamination, i.e. we assume the model

Ut j = X t (xt j )+εX
t j , j = 1, . . . , N X

t , t = 1, . . . ,T, (2.1)

where xt j ∈ [0,1] is the position of the j -th measurement on the t-th curve for j = 1, . . . , N X
t

with N X
t the number of measurements on t-th curve. The additive noise {εX

t j } is assumed to

be an ensemble of independent identically distributed random variables with mean zero and

variance σ2
X > 0.

The sampling regime (2.1) is assumed to satisfy the following probabilistic assumptions:

• The measurement locations {xt j } is an ensemble of independent identically distributed

random variables with values in the domain [0,1].

• The counts of measurement locations {Nt } are independent identically distributed

random variables with the N0-valued law N satisfying P(N > 1) > 0 and EN <∞. We

allow N = 0 with positive probability resulting into the fact that some curves X1, . . . , XT

may be sampled nowhere.

• The measurement locations {xt j }, their counts {Nt }, the measurement error {εt j }, and

the underlying functional time series {X t } are independent.

We assume that the time series X is second-order stationary and denote its lag-h autoco-

variance operator at autocovariance kernel as RX
h and R X

h respectively, as defined in Subsec-

tion 1.3.2. The elemental assumption is the weak dependence

(A1) The stationary functional time series {X t (x) : x ∈ [0,1]}t∈Z satisfies the weak dependence

assumptions (1.22) and (1.25).

Therefore, the spectral density operator and the spectral density kernel are well-defined by the

formulae (1.27) and (1.28) respectively. Furthermore, the lag-h autocovariance operators and

kernels can be recovered by the formulae (1.29) and (1.30) respectively, by Proposition 1.3.5.

2.1.2 Estimation in the time domain

Given the sparsely observed data {Ut j } generated by the observation scheme (2.1), we wish

to estimate the mean function µX and the lagged autocovariance kernels R X
h (·, ·). We are

proposing to estimate the mean function µX , the lag-0 covariance kernel R X
0 (·, ·), and the

measurement error variance σ2
X by similar tools as in the independent identically distributed

case reviewed in Subsection 1.2.3, therefore we adjust here the notations for the functional

time series data and do not repeat the local-polynomial regression background discussed in

detail in the aforementioned subsection.
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Throughout the thesis, we work with the Epanechnikov kernel K (v) = (3/4)(1− v2) for v ∈
[−1,1], and 0 otherwise, but any other usual smoothing kernel would be appropriate. Let

Bµ > 0 be the bandwidth parameter. We define the estimator of µX (x) as µ̂X (x) = ĉ(1)
0 by

minimizing the weighted sum of squares:

(
ĉ(1)

0 , ĉ(1)
1

)
= argmin

c (1)
0 ,c (1)

1

T∑
t=1

Ni∑
j=1

K

(
x −xi j

Bµ

){
Ut j − c(1)

0 − c(1)
1 (x −xt j )

}2
. (2.2)

For the estimation of lagged autocovariance kernel define the “raw” covariances

G X
h,t (xt+h, j , xtk ) = (Ut+h, j − µ̂X (xt+h, j ))(Utk − µ̂X (xtk )) (2.3)

where |h| < T, t = max(1,1−h), . . . ,max(T,T −h), j = 1, . . . , Nt+h and k = 1, . . . , Nt .

Since the measurement errors {εt j } contribute only to the diagonal of the lag-0 autocovariance

kernel, cov(Ut+h, j ,Utk ) = R X
h (xt+h, j , xtk )+σ21[h=0, j=k] where 1[h=0, j=k] = 1 if the condition in

the subscript is satisfied and zero otherwise, the “raw” covariances satisfy also

E
[
G X

h,t (xt+h, j , xtk )
]
≈ R X

h (xt+h, j , xtk )+σ21[h=0, j=k]

where the approximation “≈” stems only from the fact that the estimated µ̂ is supplied in (2.3).

Hence, the diagonal must be removed only when estimating the lag-0 covariance kernel.

The lag-0 covariance kernel is estimated by letting R̂ X
0 (x, y) = b̂0 where b̂0 is obtained by

minimizing the following weighted sum of squares:

(
ĉ(2)

0 , ĉ(2)
1 , ĉ(2)

2

)
= argmin

c (2)
0 ,c (2)

1 ,c (2)
2

T∑
t=1

Ni∑
j ,k=1
j 6=k

K

(
x −xt j

BR

)
K

(
x −xtk

BR

)

×
{

G X
0,t (xt j , xtk )− c(2)

0 − c(2)
1 (x −xt j )− c(2)

2 (x −xtk )
}2

(2.4)

The measurement error variance σ2
X is estimated in the same way as described in Subsec-

tion 1.2.3. We estimate the diagonal of R X
0 (·, ·) by the surface-smoother that is local-quadratic

in the direction perpendicular to the diagonal. For x ∈ [0,1] we set R̄ X
0 (x) = ĉ(3)

0 where

(
ĉ(3)

0 , ĉ(3)
1 , ĉ(3)

2

)
= argmin

c (3)
0 ,c (3)

1 ,c (3)
2

T∑
t=1

Nt∑
j=1

Ni∑
k=1

j 6=k

K

(
xt j −x

BR

)
K

(
xtk −x

BR

)

×
{

G X
h,t (xt j , xtk )− c(3)

0 − c(3)
1 ∆(xt j , xtk )− c(3)

2 ∆(xt j , xtk )2
}2

(2.5)

with ∆(·, ·) defined in (1.13). The function x 7→ R X (x, x)+σ2, x ∈ [0,1] is estimated by the
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local-linear line smoother by setting V̂ (x) = ĉ(4)
0 where

(
ĉ(4)

0 , ĉ(4)
1

)
= argmin

c (4)
0 ,c (4)

1

T∑
t=1

Nt∑
j=1

K

(
xt j −x

BV

){
G X

h,t (xt j , xt j )− c(4)
0 − c(4)

1 (x −xt j )
}2

. (2.6)

for x ∈ [0,1] and a bandwidth parameter BV > 0.

The measurement error variance σ2
X is estimated by integrating the difference

σ̂2
X =

∫ 1

0

(
V̂ (x)− R̄ X

0 (x)
)

dx. (2.7)

Next, we proceed with the estimation of the lag-h autocovariance kernels for h > 0. We define

the estimator R̂ X
h (x, y) = ĉ(5)

0 for h = 1, . . . ,T −1 by minimizing

(
ĉ(5)

0 , ĉ(5)
1 , ĉ(5)

2

)
= argmin

c (5)
0 ,c (5)

1 ,c (5)
2

T−h∑
t=1

Nt+h∑
j=1

Nt∑
k=1

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
×

{
G X

h,t (xt+h, j , xtk )− c(5)
0 − c(5)

1 (xt+h, j −x)− c(5)
2 (xtk − y)

}2
(2.8)

For h < 0 we set R̂ X
h (x, y) = R̂ X

−h(y, x), x, y ∈ [0,1]. Observe that we did not need to remove the

diagonal as in (2.4). Denote the corresponding empirical lagged autocovariance operators,

defined as the integral operators, by R̂X
h .

2.1.3 Spectral density kernel estimation

To estimate the spectral density kernels fω one has to resort to smoothing or a different sort of

regularization at some point. Panaretos and Tavakoli (2013b) performed kernel smoothing of

the periodogram in the spectral domain whereas Hörmann et al. (2015a) made use of Barlett’s

estimate. Bartlett’s estimate involves a weighted average of the lagged autocovariances, with a

choice of weights that downweighs higher order lags. From the theoretical perspective, these

two approaches are equivalent (Priestley, 1981a, §6.2.3). In fact, the weights supplied in the

weighted average correspond to the Fourier coefficients of the smoothing kernel, assumed

compactly supported.

We opt for the Barlett’s weights (or the triangular window) defined as Wh = (1− |h|/L) for

|h| < L and 0 otherwise for Barlett’s span parameter L ∈N as it seems to be a popular choice

(Hörmann and Kokoszka, 2010; Hörmann et al., 2015a). It should be noted that other choices

of weights are possible (Rice and Shang, 2017) and the so-called local quadratic windows

(Parzen, Bartlett-Pristley, etc.) improve the asymptotic bias. See Priestley (1981a, §7.5) for

the detailed discussion in one-dimensional case. The statement seems to also be true for

functional time series (van Delft, 2019).

We could use the formula (1.78) and plug-in the smoothed autocovariance kernels obtained in
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2.1. Estimation of functional time series dynamics from sparse data

Section 2.1.2 but instead, we opt to show how to directly construct a smoother-based estimator

of the spectral density kernels because this approach is, in a sense canonical. Specifically,

we estimate the spectral density kernel at frequency ω ∈ [−π,π] by the local-linear surface-

smoother applied to the “raw” covariances multiplied by complex exponentials. The weights

for the smoother are based both on the spatial distance from the raw covariances as well as

the time lag. Specifically, for each ω ∈ [−π,π] we estimate the spectral density kernel as

f̂ω(x, y) = L

2π
ĉ(6)

0 ∈C (2.9)

where ĉ(6)
0 is obtained by minimizing the following weighted sum of squares

(ĉ(6)
0 , ĉ(6)

1 , ĉ(6)
2 ) = argmin

(c (6)
0 ,c (6)

1 ,c (6)
2 )∈C3

L∑
h=−L

1

Nh

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣G X
h,t (xt+h, j , xtk )e− ihω−

− c(6)
0 − c(6)

1 (xt+h, j −x)− c(6)
2 (xtk − y)

∣∣2Wh
1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
(2.10)

where Nh = (T −|h|)(N̄ )2 for h 6= 0, N0 = T (N 2 − N̄ ), and where N̄ = (1/n)
∑T

t=1 Nt and N 2 =
(1/n)

∑T
t=1 N 2

t .

It turns out that the minimizer of this complex minimization problem can be expressed

explicitly. Moreover, the minimizer depends only on a few quantities that are independent ofω,

and can be pre-calculated. The estimator can be thus constructed for a given ω by multiplying

these quantities by complex exponentials and performing a handful of inexpensive arithmetic

operations. Consequently, it is computationally feasible to evaluate the estimator (2.9) on a

dense grid of frequencies. The explicit form is stated in (2.72).

Denote the integral operator corresponding to f̂ω(·, ·) as F̂ω. We can go back to the temporal

domain by integrating the spectral density and reproduce the estimators of the autocovariance

kernels and operators by the inverse formulae (1.29) and (1.30)

R̃h(·, ·) =
∫ π

−π
f̂ω(·, ·)e ihωdω, R̃h =

∫ π

−π
F̂ωe ihωdω. (2.11)

The estimators of spectral density kernels f̂ω(·, ·),ω ∈ [−π,π], are achieved by kernel smoothing.

Therefore, especially for smaller sample sizes, the operators F̂ω,ω ∈ [−π,π], might not be

strictly non-negative, and may feature some tail negative eigenvalues of small modulus. To

ensure numerical stability of the method in the following section, it is recommended to

truncate these negative eigenvalues of F̂ω at each frequency ω ∈ [−π,π].
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2.1.4 Periodic behaviour identification

As discussed at the beginning of Section 2.1.3, the choice of Bartlett’s span parameter L is

related to the bandwidth for smoothing in the frequency domain. To achieve consistent

spectral density estimation, the parameter L needs to be kept quite small (cf. condition (B10)

and Theorem 2.3.2). However, for the purpose of exploratory data analysis, it is useful to

explore the data for periodic behaviour in a similar way as a periodogram is used in the case of

scalar time series.

When the periodicity examination is indeed of interest, we propose to evaluate the estimator

(2.9) for a fairly large value of L. The selection of adequate value of L is a question of computa-

tional power available because the computational time to evaluate (2.9) grows linearly in L. In

the data analysis Section 4.3 we work with L = 1000, which is roughly half of the considered

time series length.

Once the estimator (2.9) is evaluated for a given value of L we propose to calculate the trace

of the spectral density operator at frequency ω ∈ (0,π). Peaks in this plot indicate periodic

behaviour of the functional time series. The existence of periodicity is not only a useful insight

into the nature of the data but may us prompt into approaching the periodic behaviour in a

different way, for example by modelling the periodicity in a deterministic way as we do it in

the data analysis carried out in Section 4.3.

2.2 Functional data recovery framework and confidence bands

We now consider the problem of recovering the latent functional data {X t (x) : x ∈ [0,1]} given

the sparse noisy samples {Ut j }, and provide with confidence bands to quantify uncertainty of

the prediction.

2.2.1 Introduction: best linear unbiased predictors

In this short subsection we outline the construction of predictors of random elements given

an finite dimensional observation. The construction requires the knowledge of the second

order structure and guarantees optimality in the class of unbiased and linear functions of the

observation.

Let X be a random element in the Hilbert space H and Y ∈ Rd be a random vector with

finite second moments, and denote their means, the covariance operator and matrix, and the

cross-covariance operator

µX = EX ∈H , RX = var(X ) = E[
(X −µX )⊗ (X −µX )

] ∈L1(H ), (2.12)

µY = EY ∈Rd , RY = var(Y ) = E[
(Y −µY )(Y −µY )>

] ∈Rd×d , (2.13)
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2.2. Functional data recovery framework and confidence bands

RX Y = cov(X ,Y ) = E[
(X −µX )⊗ (Y −µY )

] ∈L2(Rd ,H ). (2.14)

We are interested in constructing a predictor of X as a function of the observed value of Y .

The predictorΠ(X ,Y ) is called the best linear unbiased predictor of X , if it is linear function of

Y and

• is unbiased: E [Π(X ,Y )−X ] = 0,

• the covariance operator of var(Π(X ,Y )−X ) = E[(Π(X ,Y )−X )⊗ (Π(X ,Y )−X )] is mini-

mized, i.e. for any other linear unbiased predictor X̃ , the self-adjoint operator var(X̃ −
X )−var(Π(X ,Y )−X ) is non-negative definite.

The following proposition provides with a recipe how to construct the best linear unbiased

predictors given the second order structure.

Proposition 2.2.1. Let X and Y admit the moments (2.12), (2.13), (2.14), and assume that

the matrix RY is invertible. Then the best linear unbiased predictor of X given Y , denoted as

Π(X ,Y ), is determined by the formula

Π(X ,Y ) =µX +RX Y (
RY )−1 (

Y −µY
)

. (2.15)

Proof. The predictor given the formula (2.15) is clearly linear in Y and unbiased by

E [Π(X ,Y )] =µX +RX Y (
RY )−1 (

µY −µY
)=µX .

It remains to show that the covariance operator var(Π(X ,Y )−X ) is minimised among unbiased

linear predictors. We show that Π(X ,Y ) is in fact the projection of X onto the subspace of

random elements on H of the form a +BY where a ∈H and B ∈L (Rd ,H ). It is sufficient

to verify thatΠ(X ,Y )−X is orthogonal to any such a +BY . Indeed,

cov(Π(X ,Y )−X , a +BY ) = cov
(
RX Y (

RY )−1 (
Y −µY

)−X ,Y
)
B∗ =

=RX Y (
RY )−1

RY B∗−RX Y B∗ = 0.

Now, sinceΠ(X ,Y ) is the projection of X onto the subspace of random elements on H of the

form a +BY , the distance var(a +BY −X ) is minimised for a +BY =Π(X ,Y ).

2.2.2 Prediction of latent functional data

Coming back to the problem of sparsely observed functional time series defined in Subsec-

tion 2.1.1, consider the random element XT = [X1, . . . , XT ] ∈ H ⊗T composed of “stacked”

functional data (formally, it is an element of the product Hilbert space H ⊗T ). The first and
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second order structure of this random element is given by

E [XT ] =MT = [µ, . . . ,µ] ∈H ⊗T , (2.16)

var(XT ) =ST =


R0 R∗

1 R∗
2 . . . R∗

T−1

R1 R0 R∗
1 . . . R∗

T−2
...

...
...

. . .
...

RT−1 RT−2 RT−3 . . . R0

 ∈L (H ⊗T ). (2.17)

Define the stacked observables as UT = (U11, . . . ,U1N1 , . . . ,Ut1, . . . ,Ut Nt , . . . ,UT N1 , . . . ,UT NT ) ∈
RN T

1 where N (T )
1 = ∑T

t=1 Nt is the total number of observations up to time T . By analogy

to UT , stack the measurement errors {εt j } and denote this vector ET ∈ RN (T )
1 . Note that

var(ET ) =σ2IN (T )
1

where IN (T )
1

is the identity matrix of size N (T )
1 . Further define the evaluation

operators Ht , t = 1, . . . ,T, and the joint evaluation operatorHT by

Ht : H →RNt ,

g 7→ (g (xt1), . . . , g (xt Nt )),

HT : H ⊗T →RN (T )
1 ,

[g1, . . . , gT ] 7→ [H1g1, . . . , HT gT ].

Finally, for t = 1, . . . ,T , define the projection operator

Pt : H ⊗T →H ,

[g1, . . . , gT ] 7→ g t .

In this notation we can rewrite the observation scheme (2.1) as

UT =HTXT +ET .

By Proposition 2.2.1, the best linear unbiased predictor of XT given UT , which we denote by

Π(XT ,UT ), is given by the formula

Π(XT ,UT ) =MT +STH
∗
T (HTSTH

∗
T +σ2IN (T )

1
)−1(UT −HTMT ) ∈H ⊗T (2.18)

where ∗ denotes the adjoint operator. The term HTSTH
∗
T is in fact a positive semi-definite

matrix. Owing to the fact that σ2 > 0, the matrixHTSTH
∗
T +σ2IN (T )

1
is always invertible.

Now fix s ∈ {1, . . . ,T }. The best linear unbiased predictor of the functional datum Xs , which we

denote byΠ(Xs ,UT ), is given by

Π(Xs ,UT ) = PsΠ(XT ,UT ) ∈H . (2.19)
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Hence the recovery of Xs by the formula (2.19) uses the observed data across all t = 1, . . . ,T ,

borrowing strength across all the observations.

In practice, however, we need to replace the unknown parameters involved in the construction

of the predictor by their estimates. Define M̂T and ŜT by substituting µ̂ and R̃h for their

theoretical counterparts in formulae (2.16) and (2.17) respectively. We stress here the fact

that we use the estimator R̃h obtained by the inverse Fourier transformation (2.11) of the

estimated spectral density operators {F̂ω}ω∈[−π,π]. We do so, because the full covariance

structure induced by R̃h for all h ∈Z is guaranteed to be positive-definite and its estimation

error is asymptotically controlled, see Corollary 2.3.3 in the following section. Both these facts

are essential for proper prediction.

Now replace MT , ST , σ2 by M̂T , ŜT and σ̂2, respectively, in formulae (2.18) and (2.19). The

resulting predictors are denoted by

Π̂(XT ,UT ) = M̂T + ŜTH
∗
T (HT ŜTH

∗
T +σ2IN (T )

1
)−1(UT −HT M̂T ) (2.20)

and

Π̂(Xs ,UT ) = PsΠ̂(XT ,UT ). (2.21)

In order to construct confidence bands later in this subsection we need to impose distribu-

tional assumptions, specifically we work under the Gaussian assumption:

(A2) The functional time series {X t }t as well as the measurement errors {εt j }t j are Gaussian

processes.

Thanks to the Gaussian assumption (A2), the predictors of XT and Xs given by formulae (2.18)

and (2.19) are in fact given by conditional expectations. Furthermore, we can calculate the

exact conditional distribution of XT given UT by the formula

XT |UT ∼ NH ⊗T (MXT |UT ,SXT |UT ) (2.22)

where

MXT |UT =MT +STH
∗
T (HTSTH

∗
T +σ2IN (T )

1
)−1(UT −HTMT ), (2.23)

SXT |UT =ST −STH
∗
T (HTSTH

∗
T +σ2IN (T )

1
)−1HTST . (2.24)

From (2.22) we can access the conditional distribution of Xs for fixed s = 1, . . . ,T , by writing

Xs |UT ∼ NH (MXs |UT ,SXs |UT ) (2.25)

where

MXs |UT = PsMXT |UT , SXs |UT = PsSXT |UT P∗
s . (2.26)
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2.2.3 Confidence bands for functional data

To construct a band for Xs with pointwise coverge, we construct a confidence interval for Xs(x)

at each x ∈ [0,1] — as we will see, the endpoints of these intervals are continuous functions

of x, and so automatically define a confidence band. In practice, one constructs bands for

a dense collection of locations in [0,1] and interpolates. Given the conditional distribution

Xs(x)|UT ∼ N (MXs |UT (x),SXs |UT (x, x)), the (1−α)-confidence interval for fixed x ∈ [0,1] is

constructed as

MXs |UT (x)±Φ−1(1−α/2)
√
SXs |UT (x, x) (2.27)

whereΦ−1(1−α/2) is the (1−α/2)-quantile of the standard normal distribution.

In practice, when we do not know the true dynamics of the functional time series, we have to

use the estimates of µX (·) and Rh(·, ·). We define M̂XT |UT ,ŜXT |UT ,M̂Xs |UT and ŜXs |UT by replac-

ing MT and ST with M̂T and ŜT in the formulae (2.23), (2.24), (2.26) respectively. Therefore

the asymptotic confidence interval for Xs(x) is obtain by rewriting (2.27) using the empirical

counterparts

M̂Xs |UT (x)±Φ−1(1−α/2)
√
ŜXs |UT (x, x). (2.28)

For the construction of the simultaneous band we use the method introduced by Degras

(2011). Fix s = 1, . . . ,T . In the previous section we derived the conditional distribution of Xs

given UT in formula (2.25). Define the conditional correlation kernel

ρXs |UT (x, y) =


SXs |UT (x,y)p
SXs |UT (x,x)SXs |UT (y,y)

, SXs |UT (x, x) > 0, SXs |UT (y, y) > 0,

0, otherwise.
(2.29)

Then, the collection of intervals{
MXs |UT (x)± zα,ρ

√
SXT |UT (x, x) : x ∈ [0,1]

}
, (2.30)

forms a (continuous) confidence band with simultaneous coverage probability (1−α) over

x ∈ [0,1]. Here zα,ρ is the (1−α)-quantile of the law of supx∈[0,1] |Z (x)| where {Z (x), x ∈ [0,1]}

is a zero mean Gaussian process with covariance kernel ρXT |UT . The definition of a quantile

specifically requires that P(supx∈[0,1] |Z (x)| ≤ zα,ρ) = 1−α. Degras (2011) explains how to

calculate this quantile numerically.

In practice, we replace the population level quantities in (2.30) by their estimated counterparts

and define the asymptotic simultaneous confidence band as{
M̂Xs |UT (x)± zα,ρ̂

√
ŜXT |UT (x, x) : x ∈ [0,1]

}
, (2.31)

where M̂Xs |UT (x) and ŜXT |UT (x, x) are as above and the quantile zα,ρ̂ is calculated for the

correlation structure ρ̂Xs |UT defined as the empirical counterpart to (2.29).
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Note that Φ−1(1−α/2) < zα,ρ for any correlation kernel ρ (Degras, 2011). Therefore, as ex-

pected, the pointwise confidence bands are enveloped by the simultaneous band. Once

again, in practice, one evaluates the band limits defining (2.31) on a dense grid of [0,1] and

interpolates.

2.2.4 Forecasting

A natural next step to consider, and indeed one of the main reasons why one may be interested

in recovering the functional time-series dynamics, is that of forecasting. In this section, we

comment on how the forecasting problem naturally fits into the functional data recovery

framework introduced above.

Assume that we are given sparse data {Ut j : 1 ≤ j ≤ Nt ,1 ≤ t ≤ T } and we wish to forecast the

functional datum XT+r for r ∈ N as well as to quantify the uncertainty of the forecast. We

define the random element XT+r = [X1, . . . , XT , XT+1, . . . , XT+r ] ∈ H T+r . If the forecasts for

the intermediate data XT+1, . . . , XT+r−1 are not of interest, we may delete these elements and

naturally alter the explained method below. Nevertheless, we opt to explain the approach for

forecasting up to the time T + r simultaneously.

By the same notation as above, we extend formulae (2.16) and (2.17) for t = 1, . . . ,T + r and

obtain the law of XT+r , i.e. the joint law of X1, . . . , XT+r and we can calculate their conditional

distribution given the observed data UT . In particular, by taking s = T + r in the equations

(2.19), (2.27), and (2.30) we obtain the forecast, the pointwise confidence band, and the

simultaneous confidence band respectively for the functional datum XT+r . In practice, we

substitute the unknown population level quantities by their empirical estimators. Therefore,

by taking s = T + r in the equations (2.21), (2.28), and (2.31) we obtain the forecast, the

(asymptotic) pointwise confidence band, and the (asymptotic) simultaneous confidence band

for XT+r .

2.3 Asymptotic results

2.3.1 On the choice of mixing conditions

In Sections 2.3.2 and 2.3.3 we develop asymptotic theory for our methodology under two

different sets of assumptions.

Firstly, in Section 2.3.2 we prove the asymptotic behaviour of the estimators under Brillinger-

type cumulant mixing conditions. The corresponding Theorems 2.3.1 and 2.3.2 are in a sense

canonical, in that their proofs rely on generalisations of the techniques by Yao et al. (2005a).

Nevertheless, the yielded convergence rates for one dimensional smoothing and surface

smoothing are OP(1/(
p

T Bµ)) and OP(1/(
p

T B 2
R )), respectively, which are not optimal.

The optimal rates for one dimensional smoothing and surface smoothing are known to be
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OP(
√

logT /(T Bµ)) and OP(
√

logT /(T B 2
R )) respectively. Recovering such rates using local-

regression methods for time-series data relies heavily on the employed measure of weak

dependence, namely strong mixing conditions, (Hansen, 2008; Liebscher, 1996; Masry, 1996),

(Fan and Yao, 2008, Thm 6.5), geometric strong mixing conditions (Bosq, 2012, Thm. 2.2 and

Cor. 2.2), and ρ-mixing conditions (Peligrad, 1992). In Section 2.3.3 and Theorems 2.3.4, 2.3.5

we benefit from the techniques developed by Hansen (2008) to obtain the optimal rates under

strong mixing.

Since these two sets of rates rest on qualitatively different conditions, we have chosen to

include both results in this section.

2.3.2 Asymptotic results under cumulant mixing conditions

In order to establish the consistency and the convergence rate of the estimators introduced in

Section 2.1, we will make use of the following further assumptions on the model (2.1).

(B1) The number of measurements N X
t in time t are independent random variables with law

N X
t ∼ N where N X ≥ 0, E

[
N X

]<∞ and P(N X > 1) > 0.

(B2) The measurement locations xt j , j = 1, . . . , N X
t , t = 1, . . . ,T are independent random vari-

ables generated from the density g X (·) and are independent of the number of measure-

ments (N X
t )t=1,...,T . The density g X (·) is assumed to be twice continuously differentiable

and strictly positive on [0,1].

We allow the event {N X
t = 0} to potentially have positive probability. This corresponds to the

situation where no measurements are available at time t , for example when we additionally

have missing data at random. We also need to impose smoothness conditions on the unknown

functional parameters

(B3) The common mean function, µX (·), is twice continuously differentiable on [0,1].

(B4) The lag-h autocovariance kernels, R X
h (·, ·), are twice continuously differentiable on [0,1]2

for each h ∈Z. Moreover,

sup
x,y∈[0,1]

∣∣∣∣ ∂2

∂xα1∂yα2
R X

h (x, y)

∣∣∣∣
is uniformly bounded in h for all combinations of α1,α2 ∈N0 where α1 +α2 = 2.

To prove the consistency of the autocovariance kernels and the cross-covariance kernels esti-

mators we need to further assume some mixing conditions in the time domain. The smoothing

estimators are essentially moment-based, therefore it is natural to consider cumulant-type

summability conditions. The definition of the cumulants is presented in Subsection 1.3.3
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(B5) On top of the generally assumed second order stationarity, assume that {X t } is more-

over fourth order stationary and denote the 4-th order cumulant kernel of {X t } as

cum(X t1 , X t2 , X t3 , X t4 )(·, ·, ·, ·). Assume the summability in the supremum norm

∞∑
h1,h2,h3=−∞

sup
x1,x2,x3,x4∈[0,1]

∣∣cum(Xh1 , Xh2 , Xh3 , X0)(x1, x2, x3, x4)
∣∣<∞.

The following condition is required for the proof of the convergence rate of the spectral density

kernels estimator.

(B6) Assume ∞∑
h=−∞

|h| sup
x,y∈[0,1]

∣∣R X
h (x, y)

∣∣<∞.

The last two conditions correspond to the conditions C′(0,4) and C′(1,2) in Definition 1.3.2.

Finally, we impose the following assumptions on the decay rate of the bandwidth parameters

and the growing rate of the Bartlett’s span parameter L

(B7) Bµ→ 0, T B 4
µ→∞,

(B8) BR → 0, T B 6
R →∞,

(B9) BV → 0, T B 4
V →∞,

(B10) L →∞, L = o(
p

T B 2
R ),L = o(B−2

R ).

We may now state our asymptotic results on uniform consistency and convergence rates:

Theorem 2.3.1. Under the assumptions (A1), (B1) — (B3) and (B7):

sup
x∈[0,1]

|µ̂X (x)−µX (x)| =OP

(
1p

T Bµ

+B 2
µ

)
. (2.32)

Under the assumptions (B1) — (B5) and (B7) — (B9), for fixed lag h ∈Z:

sup
x,y∈[0,1]

|R̂ X
h (x, y)−R X

h (x, y)| =OP

(
1p

T B 2
R

+B 2
R

)
, (2.33)

σ̂2
X =σ2

X +OP

{
1p
T

(
1

BV
+ 1

B 2
R

)
+B 2

µ+B 2
R

}
. (2.34)

Theorem 2.3.2. Under the assumptions (A1), (B1) — (B5) and (B7) — (B10), the spectral density

is estimated consistently:

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ X
ω (x, y)− f X

ω (x, y)
∣∣= oP(1). (2.35)
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If we further assume condition (B6), we can additionally obtain the convergence rate:

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ X
ω (x, y)− f X

ω (x, y)
∣∣=OP

(
L

1p
T

1

B 2
R

+LB 2
R + 1

L

)
.

As a consequence of Theorem 2.3.2 we obtain the consistency and the convergence rate of the

entire space-time covariance structure (2.11), i.e. rates uniform in both time index and spatial

argument:

Corollary 2.3.3. Under the assumptions (A1), (B1) — (B5) and (B7) — (B10):

sup
h∈Z

sup
x,y∈[0,1]

|R̃ X
h (x, y)−R X

h (x, y)| = oP(1) (2.36)

and assuming further (B6):

sup
h∈Z

sup
x,y∈[0,1]

|R̃ X
h (x, y)−R X

h (x, y)| =OP

(
L

1p
T

1

B 2
R

+LB 2
R + 1

L

)
. (2.37)

2.3.3 Asymptotic results under strong mixing conditions

We begin by listing the assumptions leading to the optimal convergence rates. Besides im-

posing the key assumption of the strong mixing we need to strengthen some of the other

assumptions as well. We require some additional regularity conditions on the smoothing

kernel K (·) which until now was assumed only to be a bounded probability density function.

The condition is formulated for a generic multivariate function k(·). In the proofs of the

theorems in this subsection, we shall plug-in the functions related to K (·), see the assumption

(D5), into k(·).

(C1) The function k :Rd →R is bounded and integrable

|k(u)| ≤ k̄ <∞,
∫
Rd

|k(u)|du <∞,

and for someΛ1 <∞ and L <∞, either k(u) = 0 for |u| > L̃ and∣∣k(u)−k(u′)
∣∣≤Λ1‖u −u′‖, u,u′ ∈R,

or k(·) is differentiable, |(∂/∂u)k(u)| ≤Λ1, and for some ν> 1, |(∂/∂u)k(u)| ≤Λ1‖u‖−ν
for ‖u‖ > L̃.

The following conditions impose more conditions on the functional time series model.

(D1) The functional time series {X t }t∈Z is strictly stationary and strong mixing with mixing
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coefficients αm that satisfy

α(m) ≤ Am−β,

for A <∞ and for some s > 2,

E|X t (x)|s ≤ B1 <∞, x ∈ [0,1]

and moreover

β> 2s −1

s −2
.

(D2) The number of measurement locations Nt in time t are independent identically-distributed

random variables with law Nt ∼ N where N ∈ {0,1, . . . , N max } for some N max ∈N and

such that P(N > 1) > 0.

(D3) The measurement errors {εt j } are independent identically-distributed mean-zero ran-

dom variables satisfying

E|εt j |s <∞.

Moreover, {εt j } are independent of the functional time series {X t (·)}.

(D4) The marginal density of the observation location g X (·) satisfies

0 < B2 ≤ inf
x∈[0,1]

g X (x) ≤ sup
x∈[0,1]

g X (x) ≤ B3 <∞.

For the estimation of the mean function µX (·) the following assumptions are required:

(D5) The smoothing kernel K (·) satisfies
∫ |u|4K (u)du <∞ and the functions u 7→ K (u),u 7→

uK (u),u 7→ u2K (u) satisfy the assumption (C1).

(D6) The bandwidth parameter Bµ satisfies

logT

T θµBµ

= o(1), T →∞,

with

θµ = β−2− (1+β)/(s −1)

β+1− (1+β)/(s −1)
.

(D7) The functions g (·) and g (·)µX (·) are twice continuously differentiable on [0,1].

The rates for the lag-h autocovariance kernel estomator(s) will require the following set of

assumptions:

(D8) The functional time series {X t (·)} is 4-th order stationary satisfies

sup
x∈[0,1]

E |X0(x)|4 <∞.
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(D9) The smoothing kernel K (·) satisfies
Î |uv |4K (u)K (v)du dv < ∞ and the functions

(u, v) 7→ up v q K (u)K (v) satisfy the assumption (C1) for p, q ∈N0,0 ≤ p +q ≤ 2.

(D10) The bandwidth parameter B 2
R satisfies

logT

T θR BR
= o(1), T →∞,

with

θR = β−3− (1+β)/(s −1)

β+1− (1+β)/(s −1)
.

(D11) The functions (x, y) 7→ g (x)g (y) and (x, y) 7→ g (x)g (y)Rh(x, y) are twice continuously

differentiable and

sup
x,y∈[0,1]

∣∣∣∣ ∂2

∂xα1∂yα2
Rh(x, y)

∣∣∣∣
is uniformly bounded in h for all combinations of α1,α2 ∈N0 where α1 +α2 = 2.

The following conditions will be required for the rates concerning spectral density estimation.

(D12) Assume the summability in the supremum norm of the 4-th order cumulant kernel of

{X t },
∞∑

h1,h2,h3=−∞
sup

x1,x2,x3,x4∈[0,1]

∣∣cum(Xh1 , Xh2 , Xh3 , X0)(x1, x2, x3, x4)
∣∣<∞.

(D13) The Bartlett span parameter L satisfies

L = o

(√
logT

T B 2
R

)− s−2
s−1


(D14) The bandwidth parameter B 2

R satisfies

logT

T θF BR
= o(1), T →∞,

with

θF = β(s −2)−4s +4

β(s −2)

and

LB 2
R = o(1).

We can now state the main consistency and convergence results under the strong mixing

conditions.
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Theorem 2.3.4. Under the assumptions (A1), (D1) — (D7),

sup
x∈[0,1]

∣∣µ̂X (x)−µX (x)
∣∣=OP

(√
logT

T Bµ
+B 2

µ

)
.

For fixed h ∈Z, under the assumptions (A1), (D1) — (D11),

sup
x,y∈[0,1]

∣∣R̂h(x, y)−Rh(x, y)
∣∣=OP

(√
logT

T B 2
R

+B 2
R

)
.

Theorem 2.3.5. Under the assumption (A1), (D1) — (D9) and (D11) — (D14),

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ω(x, y)− fω(x, y)
∣∣= oP(1) (2.38)

and assuming further (B6),

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ω(x, y)− fω(x, y)
∣∣=OP

(
L

√
logT

T B 2
R

+LB 2
R + 1

L

)
. (2.39)

2.3.4 Functional data recovery and confidence bands

In this section we turn our attention to developing asymptotic theory for the recovered func-

tional data and the associated confidence bands, in particular, the asymptotic behaviour of

the plug-in estimator (2.21) vis-à-vis its theoretical counterpart (2.19).

First of all, we need to clarify what asymptotic result we can hope to accomplish. Before ven-

turing into functional time series, let us comment on the asymptotic results for independent

identically distributed functional data (Yao et al., 2005a). As the number of sparsely observed

functional data grows to infinity, one can consistently estimate the second-order structure

of the stochastic process (which in this case consists of the zero-lag autocovariance, due to

independence). This is then used in the plug-in prediction of a given functional datum, say

Xs(·), given the sparse measurements on this datum. In the limit, this prediction is as good

as if we knew the true lag zero covariance of the stochastic process (Yao et al., 2005a, Thm 3).

Because the predictor uses the estimate of the lag zero covariance based on all the observed

data, Yao et al. (2005a) call this trait as borrowing strength from the entire sample.

In the time series setting of this thesis, one can expand the concept of borrowing strength

from the entire sample. As the number of sparsely observed functional data (i.e. the time

horizon T ) grows to infinity, one can not only estimate the dynamics of the functional time

series consistently (Theorem 2.3.2 and Corollary 2.3.3), but also further exploit the fact that

neighbouring data are correlated to further improve the recovery. Because of the weak depen-

dence, the influence of the observations decreases as we part away from the time s. Therefore

we fix a span of times 1, . . . ,S where s < S ∈N and we will be interested in the prediction of Xs

given the data in this span. To be precise, we are going to prove that the prediction of Xs from
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the data in the local span and based on the estimated dynamics from complete data is, in the

limit, as good as the prediction based on the true (unknown) dynamics. Therefore, in our case,

we are borrowing strength across the sample in a twofold sense – firstly for the estimation of

the functional time series dynamics, and then for prediction of the functional datum Xs .

The span S can in principle be chosen to be as large as one wishes, but is held fixed with

respect to T . This is justified by the weak dependence assumption. In practice, one must

also entertain numerical considerations and not choose S to be exceedingly large, since the

evaluation of the predictors (2.19) and (2.21) based on longer spans requires the inversion of a

big matrix.

We formulate Theorems 2.3.6 and 2.3.7 under the cumulant mixing conditions required for

Theorems 2.3.1 and 2.3.2. Nevertheless, the conclusions also hold also under the strong mixing

condition regime of Theorems 2.3.4 and 2.3.5 since, as is apparent from the proofs, the only

requirement coming into play is the consistency of the spectral density operator estimators in

the sense of (2.35) or (2.38).

Theorem 2.3.6. Under the assumptions (A1), (B1) — (B5) and (B7) — (B10), for fixed s ∈N, s < S,

sup
x∈[0,1]

∣∣Π̂(Xs(x),US)−Π(Xs(x),US)
∣∣= oP(1), as T →∞.

In the following theorem we verify the asymptotic coverage probability of the pointwise and

simultaneous confidence bands (2.28) and (2.31) under the Gaussian assumption (A2).

Theorem 2.3.7. Under the assumptions (A1), (A2), (B1) — (B5) and (B7) — (B10), for fixed

s ∈N, s ≤ S:

• Asymptotic coverage of the pointwise confidence band for fixed x ∈ [0,1]:

lim
T→∞

P

{∣∣Π̂(Xs(x),US)−Xs(x)
∣∣≤Φ−1 (1−α/2)

√
ŜXT |UT (x, x)

}
= 1−α.

• Asymptotic coverage of the simultaneous confidence band:

lim
T→∞

P

{
∀x ∈ [0,1] :

∣∣Π̂(Xs(x),US)−Xs(x)
∣∣≤ zα,ρ̂

√
ŜXT |UT (x, x)

}
= 1−α.

2.4 Estimation of cross-dependence between two time series

2.4.1 Two sparsely observed functional time series

In this subsection we consider two functional time series: the functional time series {X t (x) :

x ∈ [0,1]}t∈Z in the function space H1 = L2([0,1],R) and the functional time series {Yt (y) :

y ∈ [0,1]}t∈Z in the same the function space H2 = L2([0,1],R). An extension to an L2 space
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2.4. Estimation of cross-dependence between two time series

in a different domain is straightforward but to keep the presentation simple we present the

methodology with H1 =H2 = L2([0,1],R). Both of the time series X and Y are considered to

be observed only sparsely through the observation scheme

Ut j = X t (xt j )+εX
t j , j = 1, . . . , N X

t , t = 1, . . . ,T, (2.40)

Vt j = Yt (Ut j )+εU
t j , j = 1, . . . , N Y

t , t = 1, . . . ,T,

where {xt j }, {Ut j } ⊂ [0,1] are the measurement locations, {N X
t }, {N Y

t } are the measurement

counts, and {εX
t j }, {εY

t j } are independent identically distributed noise processes with mean zero

and variances σ2
X ,σ2

Y . We assume that both sampling regimes are independent. Specifically,

the measurement locations {xt j }, {Ut j }, their counts {N X
t }, {N Y

t }, and the noise processes

{εX
t j }, {εY

t j } are independent, and are moreover independent on the latent functional time series

X and Y .

To start with, we estimate the mean functions µX and µY of {X t (x) : x ∈ [0,1]}t∈Z and {Yt (y) :

y ∈ [0,1]}t∈Z, respectively, by the estimator (2.2). Then, define the “raw” lag-h covariances

between X and Y by formula

G X Y
h,t (xt+h, j , ytk ) = (

Ut+h, j − µ̂X (xt+h, j )
)(

Vt j − µ̂Y (ytk )
)

(2.41)

for |h| < T , t = max(1,1−h), . . . ,min(T,T −h), j = 1, . . . , N X
t+h , k = 1, . . . , N Y

t . The “raw” covari-

ances (2.41) serve as a basis for non-parametric estimation of the lagged covariance kernels

and the cross-spectral density kernels.

Estimation of lagged covariance kernel

Taking the conditional expectation over the “raw” covariances (2.41) reveals that

E
[
G X Y

h,t (xt+h, j , ytk )|xt+h, j , ytk

]
≈ R Z X

h (xt+h, j , ytk ) = cov
(
Xh(xt+h, j ),Y0(ytk )

)
where the approximation “≈” come only from the fact that the “raw” covariances (2.41) are

defined with the estimated value of µ̂X and µ̂Y . Therefore we may estimate the lag-h covari-

ance kernel between X and Y by applying the local-linear surface smoother over the three

dimensional scatter-plot {(xt+h, j , ytk ,G X Y
h,t (xt+h, j , ytk )}. Concretely, for the lag |h| < T we set

R̂ X Y
h (x, y) = ĉ(7)

0 where

(
ĉ(7)

0 , ĉ(7)
1 , ĉ(7)

2

)
= argmin

c (7)
0 ,c (7)

1 ,c (7)
2

max(T,T−h)∑
t=min(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

K

(
xt+h, j −x

B̃R

)
K

(
ytk − y

B̃R

)
×

{
G X

h,t (xt+h, j , ytk )− c(7)
0 − c(7)

1 (xt+h, j −x)− c(7)
2 (ytk − y)

}2

Unlike for the estimation of the lag-0 autocovariance kernel R X
0 by the smoother (2.4), we do

not need to discard the diagonal “raw” covariances because of the independence of the noise
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processes {εX
t j }, {εY

t j }.

Estimation of cross-spectral density kernel

The “raw” covariances (2.41) can also serve for the estimation of the cross-spectral density

kernels between the functional time series X and Y . We estimate the spectral density kernel

at frequency ω ∈ [−π,π] by the local-linear surface-smoother applied to the “raw” covariances

multiplied by complex exponentials, setting

f̂ω(x, y) = L̃

2π
ĉ(8)

0 ∈C (2.42)

where ĉ(8)
0 is obtained by minimizing the following weighted sum of squares

(ĉ(8)
0 , ĉ(8)

1 , ĉ(6)
2 ) = argmin

(c (8)
0 ,c (8)

1 ,c (8)
2 )∈C3

L̃∑
h=−L̃

1

T −|h|
min(T,T−h)∑

t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

∣∣G X Y
h,t (xt+h, j , ytk )e− ihω−

− c(8)
0 − c(8)

1 (xtt+h, j −x)− c(8)
2 (ytk − y)

∣∣2Wh
1

B̃ 2
R

K

( xtt+h, j −x

B̃R

)
K

(
ytk − y

B̃R

)
. (2.43)

Again due to the independence of the noise processes {εX
t j }, {εY

t j }, we do not need to remove the

diagonal in the smoother (2.10). Consequently, the scaling constant 1/(T −|h|) in the formula

(2.43) is also simplified as opposed to (2.10).

Proposition 2.4.1. Assume that the conditions (B1) — (B3) hold for both X and Y , the condition

(B4) with R X Y
h instead of R X

h ,

∞∑
h1,h2,h3=−∞

sup
x1,x2,y1,y2∈[0,1]

∣∣Cum(Xh1 , Xh2 ,Yh3 ,Y0)(x1, x2, y1, y2)
∣∣<∞, (B5:XY)

and that the bandwidths satisfy (B7), (B8), and (B10). Then

sup
x,y∈[0,1]

|R̂ X Y
h (x, y)−R X Y

h (x, y)| =OP

(
1p

T B 2
R

+B 2
R

)
,

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ X
ω (x, y)− f X

ω (x, y)
∣∣= oP(1),

and assuming further (B6) with R X Y
h ,

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ X
ω (x, y)− f X

ω (x, y)
∣∣=OP

(
L̃

1p
T

1

B̃ 2
R

+ L̃B 2
R + 1

L̃

)
.

Proof. The proof of this proposition is analogous to the proof of Theorems 2.3.1 and 2.3.2 and

is therefore omitted.
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2.4.2 One sparsely observed functional time series and a univariate time series

Consider the functional time series {X t (x) : x ∈ [0,1]}t∈Z observed sparsely through the obser-

vation regime (2.40) and the univariate time series Z = {Zt }t∈Z ∈R.

We define the “raw” covariances between {X t } and {Zt } as

G Z X
h,t (xt j ) =

(
Zt+h −Z

)(
Ut j − µ̂X (xt j )

)
(2.44)

for |h| < T , t = min(1,1−h), . . . ,max(T,T −h), j = 1, . . . , N X
t+h , and where Z = (1/T )

∑T
t=1 Zt is

the classic univariate empirical mean. The “raw” covariances (2.44) serve again as a basis for

non-parametric estimation, this time however we use local-liner line smoothers.

Estimation of lagged covariance kernels

Firstly, we start with the estimation the lag-h covariance kernel R Z X
h (x) = cov(Zt , X0(x)) for

x ∈ [0,1]. This quantity is then estimated by local-linear line smoother defined by R̂ Z (i ) X
h (x) =

ĉ(9)
0 where

(
ĉ(9)

0 , ĉ(9)
1

)
= argmin

c (9)
0 ,c (9)

1

max(T,T−h)∑
t=min(1,1−h)

Nt+h∑
j=1

K

(
xt j −x

B̃R

){
G Z X

h,t (xt j )− c(9)
0 − c(9)

1 (xt j −x)
}2

(2.45)

where BC > 0 is a bandwidth parameter. When dealing with a multivariate time series Z as

opposed to a univariate one, the smoother (2.45) is repeatedly applied for the all coordinates

of the multivariate series to estimate the lag-h covariance kernel.

Estimation of cross-spectral density

The cross-spectral density between the univariate time series {Zt } and the sparsely observed

function time series {X t } is estimated by setting

f̂ Z X
ω (x) = L̃

2π
ĉ(10)

0 (∈C) (2.46)

where ĉ(10)
0 is realised as the minimiser of the following weighted sum of squares

(
ĉ(10)

0 , ĉ(10)
1

)
= argmin(

c (10)
0 ,c (10)

1

)∈C2

L̃∑
h=−L̃

min(T,T−h)∑
t=max(1,1−h)

Nt∑
j=1

WhK

(
xt j −x

B̃R

)
×

∣∣∣G Z X
h,t (xt j )e− ihω− c(10)

0 − c(10)
1 (xt j −x)

∣∣∣2
.

Again, when dealing with a multivariate time series {Zt }, we apply (2.46) to each coordinate of

{Zt } to estimate the cross-spectral density between {Zt } and {X t }.

Proposition 2.4.2. Assume that the conditions (B1) — (B3) hold for X , the condition (B4) with
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R Z X
h instead of R X

h ,

∞∑
h1,h2,h3=−∞

sup
x1,x2∈[0,1]

∣∣cum(Xh1 (x1), Xh2 (x2), Zh3 , Z0)
∣∣<∞, (B5:ZX)

and that the bandwidths satisfy (B7) and

B̃R → 0, T B̃ 4
R →∞, (B8:1d)

L̃ →∞, L̃ = o(
p

T B̃R ), L̃ = o(B̃−2
R ). (B10:1d)

Then

sup
x∈[0,1]

|R̂ Z X
h (x)−R Z X

h (x)| =OP

(
1p

T B̃R
+ B̃ 2

R

)
, (2.47)

sup
ω∈[−π,π]

sup
x∈[0,1]

∣∣ f̂ Z X
ω (x)− f Z X

ω (x)
∣∣= oP(1),

and assuming further (B6) with R Z X
h ,

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ Z X
ω (x)− f Z X

ω (x)
∣∣=OP

(
L̃

1p
T

1

B̃R
+ L̃B̃ 2

R + 1

L̃

)
. (2.48)

Proof. The proof of this proposition uses the classical kernel smoothing techniques already

established in the proofs of Theorems 2.3.1 and 2.3.2 or Proposition 2.4.1 except the line

smoother is used in the time domain and the spectral domain, therefore modifying slightly

the convergence rates (2.47) and (2.48).

2.4.3 One sparsely and one fully observed functional time series

Finally, in this subsection we comment on the estimation method of the lagged covariance

kernels and the cross-spectral density kernels between two functional time series, one sparsely

observed and the other fully. Such situation is no exception in praxis, for example of the

meteorological data at Wank mountain presented in Section 4.4 we analysed the interplay

of the sparsely observed functional time series of the atmospheric electricity and the fully

observed functional time series of daily temperature profiles.

The estimation of the cross dependence between the functional time series {X t (x) : x ∈
[0,1]}t∈Z observed sparsely (2.40) and the fully observed functional time series {Yt (y) : y ∈
[0,1]}t∈Z is no different from the analysis of the cross dependence between {X t } and the

univariate time series {Yt (y)} for each value of y ∈ [0,1].

We define the “raw” covariances

G X Y
h,t (xt+h, j , y) = (

Ut+h, j −µX (xt+h, j )
)(

Yt (y)− µ̂Y (y)
)

70
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for |h| < T , t = min(1,1−h), . . . ,max(T,T −h), j = 1, . . . , N X
t+h , and where µY = (1/T )

∑T
t=1 Yt is

the standard empirical functional mean.

Estimation of lagged covariance kernels

For fixed y ∈ [0,1], the lag-h covariance kernel R X Y
h (x, y) = cov(Xh(x),Y0(y)) is estimated by

the local-linear line smoother by R̂ X Y
h (x, y) = ĉ(11)

0 where

(
ĉ(11)

0 , ĉ(11)
1

)
= argmin

c (11)
0 ,c (11)

1

max(T,T−h)∑
t=min(1,1−h)

Nt+h∑
j=1

K

(
xt+h, j −x

B̃R

){
G X Y

h,t (xt+h, j , y)− c(11)
0 − c(11)

1 (xt+h, j −x)
}2

with the bandwidth parameter B̃R > 0.

Estimation of cross-spectral density kernel

The cross-spectral density between the sparsely observed functional time series {X t } and fully

observed functional time series {Yt } is estimated by setting

f̂ X Y
ω (x, y) = L̃

2π
ĉ(12)

0 (∈C)

where ĉ(12)
0 is the minimiser of the following weighted sum of squares

(
ĉ(12)

0 , ĉ(12)
1

)
= argmin(

c (12)
0 ,c (12)

1

)∈C2

L̃∑
h=−L̃

min(T,T−h)∑
t=max(1,1−h)

Nt∑
j=1

WhK

(
xt+h, j −x

B̃R

)
×

∣∣∣G X Y
h,t (xt+h, j , y)e− ihω− c(12)

0 − c(12)
1 (xt+h, j −x)

∣∣∣2
.

Proposition 2.4.3. Assume that the conditions (B1) — (B3) hold for X , the condition (B4) with

R X Y
h instead of R X

h , the condition (B5:XY), and that the bandwidths satisfy (B7), (B10:1d), and

(B10:1d). Then

sup
x,y∈[0,1]

|R̂ X Y
h (x, y)−R X Y

h (x, y)| =OP

(
1p

T B̃R
+ B̃ 2

R

)
,

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ X Y
ω (x, y)− f X Y

ω (x, y)
∣∣= oP(1),

and assuming further (B6) with R X Y
h ,

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣ f̂ X Y
ω (x, y)− f X Y

ω (x, y)
∣∣=OP

(
L̃

1p
T

1

B̃R
+ L̃B̃ 2

R + 1

L̃

)
.

Proof. The proof of this proposition is once again based on the classical kernel smoothing

proof techniques already established in the proofs of Theorems 2.3.1 and 2.3.2 or Proposi-
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tion 2.4.1 and 2.4.2, and is therefore omitted.

2.5 Implementation details

2.5.1 Selection of bandwidths Bµ, BR , and BV

Our estimation methodology involves three bandwidth parameters Bµ,BR ,BV that need to be

selected based on some data-driven criterion. To reduce the computational cost we choose to

perform the selection of the parameters in successive fashion.

The selection of a bandwidth parameter in kernel smoothing has been extensively studied in

literature for the case of locally polynomial regression. The classical selector by Ruppert et al.

(1995) calculates the asymptotic mean square error and plugs-in some estimated quantities.

However, their methodology applies to the independent case which is distinctly different from

the setting of this thesis and hence we opt for a cross-validation selection procedure. The

selection of the smoothing parameters by cross-validation has already been implemented by

Yao et al. (2005a). Here we use a similar approach.

To further reduce the computational requirements we opt for a K-fold cross-validation strategy

instead of the leave-one-curve-out cross-validation originally suggested by Rice and Silverman

(1991). For the K-fold cross-validation, we work with K = 10 partitions, as follows. We randomly

split the functional curves into K partitions and denote the time indices sets as T1, . . . ,TK . For

each k ∈ {1, . . . ,K }, denote µ̂(−k),B 0
µ the estimate of the common mean function µ calculated

by the smoother (2.2) from data without the partition k and using the candidate smoothing

parameter B 0
µ. We select the smoothing parameter Bµ by minimizing the following loss:

Bµ = argmin
B 0
µ

1

K

K∑
k=1

∑
t∈Tk

Nt∑
j=1

{
Ut j − µ̂(−k),B 0

µ(xt j )
}2

. (2.49)

Once the smoothing parameter Bµ is chosen we estimate the function µ̂ from all data and use it

in the second step to select BR and BV for smoothing the covariance kernels. We choose these

smoothing parameters only while smoothing the lag-zero covariance. The reason behind

this is that we expect the same smoothness for higher order lags and the selection of the

parameters on only one covariance kernel reduces the computational cost, which would

otherwise become substantial. We again employ K-fold cross-validation. Denote R̂0
(−k),B 0

R the

estimate of R0 obtained by the smoother (2.4) calculated from the data without the partition k

and using the candidate smoothing parameter B 0
R . The smoothing parameters BR is selected

by minimizing the following loss:

BR = argmin
B 0

R

1

K

K∑
k=1

∑
t∈Tk

Nt∑
i , j=1

{(
Ut i − µ̂(xt i )

)(
Ut j − µ̂(xt j )

)− R̂0
(−k),B 0

R (xt i , xt j )

}2

. (2.50)
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To select the smoothing parameter BV , we denote V̂ (−k),B 0
V the estimate of the diagonal of

R0(·, ·) including the ridge contamination, from the data except the partition k and using

the candidate smoothing parameter B 0
V . The parameter BV is selected by minimizing the

following loss:

BV = argmin
B 0

V

1

K

K∑
k=1

∑
t∈Tk

Nt∑
i=1

{(
Ut i − µ̂(xt i )

)2 − V̂ (xt i )(−k),B 0
V

}2
(2.51)

Once the minimizers BR and BV have been found, we construct the estimate of the lag-

zero covariance kernel R̂0 and the measurement error σ̂2 from the full data. The bandwidth

parameter BR will be used for estimation of the spectral density because we expect the same

degree of spatial smoothness for spectral density kernels over all frequencies.

To numerically solve the optimization problems (2.49), (2.50), and (2.51) we use Matlab’s

implementation of the Bayesian optimisation algorithm (BayesOpt). A review of this algorithm

can be found for example in Mockus (2012).

2.5.2 Selection of Bartlett’s span parameter L

The selection of the parameter L, i.e. the number of lags taken into account when estimat-

ing the dynamics, is a challenging problem in general. Selection rules for the bandwidth

parameter for smoothing in the frequency domain, which is equivalent to Bartlett’s esti-

mate as explained in Subsection 2.1.3, is reviewed in Fan and Yao (2008) for the case of

one-dimensional time-series. The selection of the parameter L, or equivalently the bandwidth

parameter for frequency domain smoothing, has nevertheless not been explored for the case

of functional time-series. Neither Panaretos and Tavakoli (2013b) nor Hörmann et al. (2015a)

provide data-dependent criteria, but instead rely on a prior choices based on asymptotic

considerations.

The selection of the tuning parameter L is better studied in a related problem — the estimation

of the long-run covariance, which is in fact the value of the spectral density at frequency ω= 0.

The long-run covariance can be estimated by the Bartlett’s formula (1.78) for frequency ω= 0.

Data adaptive selection procedures for the tuning parameter L have been suggested in this

context by Rice and Shang (2017) and Horváth et al. (2016).

However, it is unclear how to incorporate the sparse sampling scheme to the above-cited rules.

To address this issue, we run a number of numerical experiments, simulating datasets from a

couple of smooth functional time-series, and estimating the spectral density with a varying

value of the parameter L. By investigating the estimation error, we propose guidelines on

selecting L in the form of a rule of thumb:

L = bT 1/3 (
N̄

)1/4c (2.52)
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where N̄ is the average number of measurements per curve and b·c is the integer part of a given

real number. The selection rule (2.52) was hand-picked for the considered range of variables

T and N max and should not be used for extrapolation, especially not for dense observation

schemes.

2.6 Possible extensions and future directions

2.6.1 Functional data in other Hilbert spaces

The underlying assumption under the functional data considered in this thesis is the proba-

bilistic model of L2([0,1],R)-valued random elements, i.e. the sparse observation are realised

on a latent one-dimensional curve. In the following paragraphs we discuss the extensions to

H -valued random elements.

The first extension worth exploring is to the multivariate functional data. Specifically, surface

valued data are probabilistically modelled as random elements in L2([0,1]2), i.e. we consider

the time series of two dimensional surfaces {X t (x, y) : x, y ∈ [0,1]}t∈Z. It is important to say

that the statistical methods for surfaced-valued time series are not even well developed in the

fully observed case, let alone for sparsely valued data. We make here a few comments on how

the statistical methods could work on sparsely observed surface-valued data sampled by the

protocol

Ut i j = X t (xt i , yt j )+εt i j , i = 1, . . . , Nt , j = 1, . . . , Nt , t = 1, . . . ,T,

where (xt i , yt j ) ⊂ [0,1]2 are random locations, Nt their count at time t (itself a random vari-

able), and {εt i j } is an ensemble of independent identically distributed random noise contami-

nation. The estimators of the first and second order dynamics follows the general recipe: pool

all the data together and smooth the scatter-plots. For example, to estimate the mean surface

µ(x, y) = EX t (x, y) one would want to consider the three dimensional scatter-plot consisting

of triples (xt i , yt j ,Ut i j ) and performing a local linear surface smoother. The estimation of the

second order dynamics would rely on considering the scatter plots of the vectors(
xt+h,i , yt+h, j , xt i ′ , yt j ′ ,

(
Ut+h,i , j − µ̂(xt+h,i , yt+h, j )

)(
Ut i ′ j ′ − µ̂(xt i ′ , yt j ′)

))
and performing a four-dimensional local regression smoother. However, the non-parametric

regression methods are known to be very data-hungry in higher dimensions and this approach,

although working without limitations in theory, is likely to turn out infeasible in practice. Some

assumptions on the special structure might turn out to be useful, such as separability of the

two spacial dimensions, or stationarity and isotropy. The generalisation of the smoothing

methods to use these special structures of covariance kernel retain the same general approach:

pool all the data together and construct an appropriate scatter plot (according to the assumed

special structure or dimensionality of the data) and perform a local polynomial smoother.

74



2.7. Proofs of formal statements

The presented theory cannot, in general, be extended to any abstract separable Hilbert space

H . Indeed, the sparse sampling protocol (2.1) requires the notion of point-wise evaluation.

This mapping could be seen as a projection into a given fixed direction for an abstract Hilbert

space, i.e the data would be sampled as Ut j = 〈X t , g t j 〉+εt j where g t j ∈H for t = 1, . . . ,T and

j = 1, . . . , Nt , and with {εt j } being an additive noise. A non-parametric statistical estimator

would then necessitate a notion of “closeness" of the projection directions {g t j } in the same

way as the point-wise evaluation are close to each other if the evaluation points are close. We

conclude that this sort of generalisation is likely to demand a special structure of the Hilbert

space H in the given application.

2.6.2 Weighted observations

The sparse sampling protocol (2.1) provides a data set composed of the data points {Ut j } each

treated essentially as carrying the same information. It may very well happen, though, that we

have some prior information on how each observation is reliable, say, each observation Ut j is

accompanied by the weight wt j > 0. This weight can be assign by the domain expertise and

knowledge of the sampling mechanism.

The smoothing methods derived in this chapter can be easily adapted to this set-up. For

example, the mean function estimator µ̂X defined in (2.2) can be generalised to:

argmin
c (1)

0 ,c (1)
1

T∑
t=1

Ni∑
j=1

wt j K

(
x −xi j

Bµ

){
Ut j − c(1)

0 − c(1)
1 (x −xt j )

}2
.

The surface smoothers using the “raw" covariances for the estimation of lagged autocovariance

kernels or spectral density kernels require cross-products between a pair observations (after

centring), say Ut j and Ut ′k . In this case, we conjecture that the product of weights wt j wt ′k

should be used in the local polynomial surface smoothers.

A special case of this weighting scheme is to set up the weights wt j = 1/Nt where Nt is the

total number of observation locations at time t = 1, . . . ,T . This weighting scheme stems from

the fact that the more points are sampled at a given curve the less information is carried per

point due within curve correlation. This phenomenon was already observed by Li and Hsing

(2010) who proposed essentially the aforementioned weighting scheme for the mean function

and covariance kernel estimation in the independent identically distributed regime. As a

consequence, the estimators with this weights are robust to hybrid data sets composed of

some curves sampled sparsely and some densely.

2.7 Proofs of formal statements

The proofs of the formal statements presented in this chapter that require longer proofs are

written down in this section.
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2.7.1 Proof of Theorem 2.3.1

We start with the smoother for the common mean function µX (·). Its estimator µ̂X (x), the

minimizer of (2.2), explicitly:

µ̂X (x) = Q0S2 −Q1S1

S0S2 −S2
1

, (2.53)

where

Sr = 1

T

T∑
t=1

Nt∑
j=1

(
xt j −x

Bµ

)r 1

Bµ
K

(
xt j −x

Bµ

)
, r = 0,1,2,

Qr = 1

T

T∑
t=1

Nt∑
j=1

(
xt j −x

Bµ

)r

Ut j
1

Bµ
K

(
xt j −x

Bµ

)
, r = 0,1.

All of the above quantities are functions of x ∈ [0,1] and all of the operations are to be under-

stood in the pointwise sense, and this includes the division operation. In Lemma 2.7.1 and

Lemma 2.7.2 we determine the asymptotic behaviour of Sr and Qr , respectively.

Lemma 2.7.1. Under (A1), (B1), (B2) and (B7), for r = 0,1,2

sup
x∈[0,1]

∣∣Sr −M[Sr ]
∣∣=OP

(
1p

T Bµ

+B 2
µ

)

where M[S0] = E [N ] g (x), M[S1] = 0, M[S2] = E [N ]σ2
K g (x) and σ2

K = ∫
v2K (v)dv.

Proof. We have the following decomposition

E

[
sup

x∈[0,1]

∣∣Sr −M[Sr ]
∣∣]≤ sup

x∈[0,1]

∣∣E [Sr ]−M[Sr ]
∣∣+E[

sup
x∈[0,1]

|E [Sr ]−Sr |
]

.

For the bias term, by using the Taylor expansion to order 2 it is straightforward to show the

formulae for M[Sr ],r = 0,1,2 as well as that E [Sr ] = M[Sr ] +O(B 2
µ) where the remainder of the

Taylor expansion is uniform in x ∈ [0,1]. Hence

sup
x∈[0,1]

∣∣E [Sr ]−M[Sr ]
∣∣=O(B 2

µ). (2.54)

For the stochastic term, it will be useful to employ the Fourier transform. The inverse Furrier

transform of the function u 7→ K (u)ur is defined as ζr (t) = ∫
e− iut K (u)ur du. Therefore we

may write

wt j

(
xt j −x

Bµ

)r

= 1

2πBµ

∫
e iu(xt j−x)/hBµ

(
xt j −x

Bµ

)r

ζr (u)du =

= 1

2π

∫
e i v(xt j−x)(xt j −x)r ζr (vBµ)dv.
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Define

φr (v) = 1

T

T∑
t=1

Nt∑
j=1

e i v xt j (xt j −x)r , (2.55)

and thus we can write

Sr (x) = 1

2π

∫
φr (v)e− i xvζr (vBµ)dv.

Thanks to the independence of {Nt } and {xt j } and stationarity we can bound the variance of

φSr (x)

var(φSr (x)) ≤ 1

T
var

{
N1∑
j=1

e i v x1 j (x1 j−x)r

}
≤ 1

T
E

[
E

[{
N1∑
j=1

e i v x1 j (x1 j −x)r

}2

| N1

]]
≤

≤ 1

T
E

[
E

[{
N1∑
j=1

∣∣e i v x1 j
∣∣2

}{
N1∑
j=1

(x1 j −x)2r

}
| N1

]]
≤ 1

T
E

[
E [N ]E

{
N1∑
j=1

(x1 j −x)2r

}
| N1

]
≤

≤ E [N ]

T
E
[
(x11 −x)2r ]≤ E [N ]

T
.

Thus

E

{
sup

x
|Sr (x)−E [Sr (x)]|

}
≤ 1

2π

∫
E
[∣∣φr (v)−EφSr (v)

∣∣] |ζr (vBµ)|dv ≤

≤ 1

2π

∫ √
var(φr (x))|ζr (vBµ)|dv ≤

∫ |ζr (u)|du

2π

E [N ]p
T Bµ

=O

(
1p

T Bµ

)
. (2.56)

The proof is concluded by combining (2.54) and (2.56), and by the fact that E [|Zn |] = O(an)

implies Zn =OP(an) for a sequences of random variables {Zn} and of constants {an}.

Lemma 2.7.2. Under (A1), (B1) — (B3) and (B7), for r = 0,1

sup
x∈[0,1]

∣∣Qr −M[Qr ]
∣∣=OP

(
1p

T Bµ

+B 2
µ

)

where M[Q0] = E [N ]µX (x)g (x) and M[Q1] = 0.

Proof. The proof of Lemma 2.7.2 follows the same ideas as that of Lemma 2.7.1. We use the

bias variance decomposition and a Taylor expansion to order 2 to derive the analogous results

as in (2.54) as well as the formulae for M[Q0](x) and M[Q1](x). We then define

ϕr (v) = 1

T

T∑
t=1

Nt∑
j=1

e i v xt j (xt j −x)r Ut j (2.57)

in analogy to (2.55). Thus we can write

Qr (x) = 1

2π

∫
ϕr (v)e− i xvζr (vBµ)dv.
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It remains to bound the variance of (2.57). However, the temporal dependence among Ut j

must be now taken into account. First of all remark that for an arbitrary stationary time-series

{Zt } with a summable autocovariance function ρZ (·), one has:

var

(
1

T

T∑
t=1

Zt

)
= 1

T

T−1∑
h=−T+1

ρZ (h)

(
1− |h|

T

)
≤ 1

T

∞∑
h=−∞

|ρZ (h)|. (2.58)

Define Zt = ∑Nt

j=1 e i v xt j (xt j − x)r Ut j which constitutes a real-valued stationary time series.

By conditioning on Nt and xt j , and applying the law of total covariance, we can bound

the autocovariance of {Zt } by |ρZ (h)| ≤ maxx,y |Rh(x, y)| for h 6= 0. For h = 0, the bound is

augmented by σ2 due to the measurement error but this does not change the summability.

The autocovariance function is summable by the assumption (A1) and we conclude that

varϕr (v) =O(1/T ). The proof is completed by repeating the same steps as in (2.56):

E

{
sup

x∈[0,1]
|Sr (x)−E [Sr (x)]|

}
=O

(
1p

T Bµ

)
.

Proof of the first part of Theorem 2.3.1. By combining Lemma 2.7.1, Lemma 2.7.2, the formula

(2.53), and the uniform version of Slutsky’s theorem, we obtain the rate (2.32).

Now we turn our attention to the estimation of the lag-0 covariance and lag-h autocovariance

kernels. We include the proof only for h 6= 0. For h = 0 one has to exclude the diagonal to evade

the measurement errors but the proof is essentially the same. It is possible to explicitly express

the minimizer to (2.8) (cf. Li and Hsing (2010)). The general principles of the explicit formula

deviation are also commented on in Section 2.7.2, which uses similar deviation steps as the

estimator of lagged autocovariance kernels. The explicit formula yields

R̂h(x, y) =
(
A (h)

1 Q(h)
00 −A (h)

2 Q(h)
10 −A (h)

3 Q(h)
01

)(
B(h)

)−1
, (2.59)

where |h| < T and

A (h)
1 = S(h)

20 S(h)
02 −

(
S(h)

11

)2
, A (h)

2 = S(h)
10 S(h)

02 −S(h)
01 S(h)

11 ,

A (h)
3 = S(h)

01 S(h)
20 −S(h)

10 S(h)
11 , B(h) =A (h)

1 S(h)
00 −A (h)

2 S(h)
10 −A (h)

3 S(h)
01 ,

S(h)
pq = 1

T −|h|
max(T,T−h)∑

t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

(
xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
,

Q(h)
pq = 1

T −|h|
max(T,T−h)∑

t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

G X
h,t (xt+h, j , xtk )
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×
(

xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
.

All of the above terms are functions of (x, y) ∈ [0,1]2 and all operations are understood the

pointwise sense, including the pointwise inversion of
(
B(h)

)−1 = (
B(h)(x, y)

)−1
.

We assess the uniform asymptotic behaviour of S(h)
pq and Q(h)

pq in Lemma 2.7.3 and Lemma 2.7.4.

Lemma 2.7.3. Under (A1), (B1), (B2), (B7) and (B8),

E

[
sup

x,y∈[0,1]

∣∣∣S(h)
pq −ES(h)

pq

∣∣∣]≤U
1√

T −|h|
1

B 2
R

(2.60)

sup
x,y∈[0,1]

∣∣∣ES(h)
pq −M[Spq ]

∣∣∣=O
(
B 2

R

)
(2.61)

where the constant U is independent of 0 ≤ p +q ≤ 2, T ∈N, |h| < T , and

M[S(h)
00 ] = ch g (x)g (y), M[S(h)

01 ] = M[S(h)
10 ] = M[S(h)

11 ] = 0,

M[S(h)
20 ] = M[S(h)

02 ] = ch g (x)g (y)σ2
K , σ2

K =
∫

v2K (v)dv,
(2.62)

where ch = (EN )2 for h 6= 0 and c0 = E{N (N−1)}. Furthermore, the convergence (2.61) is uniform

in h.

Proof. We decompose the estimation error:

E

[
sup

x,y∈[0,1]

∣∣∣S(h)
pq −M[S(h)

pq ]

∣∣∣]≤ E
[

sup
x,y∈[0,1]

∣∣∣S(h)
pq −E

[
S(h)

pq

]∣∣∣]+ sup
x,y∈[0,1]

∣∣∣E[
S(h)

pq

]
−M[S(h)

pq ]

∣∣∣ . (2.63)

Considering a Taylor expansion of order 2, it is easy to show that the formulae (2.62) and that

the second term of (2.60) is of order O(B 2
R ) uniformly in h and T .

Taking the analogous steps as in the proof of Lemma 2.7.1 while using the Fourier transform

of the function (u, v) 7→ K (u)K (v)up v q , one can prove that the first term on the right-hand

side of (2.63) are bounded by 1/(T −|h|).

Now assume that the common mean function µX (·) is known for the moment. Thus formally

define

Q̃(h)
pq = 1

T −|h|
max(T,T−h)∑

t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

G̃ X
h,t (xt+h, j , xtk )

×
(

xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
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where

G̃ X
h,t (xt+h, j , xtk ) = (Ut+h, j −µX (xt+h, j ))(Utk −µX (xtk )). (2.64)

We analyse the asymptotics of Q̃(h)
pq in Lemma 2.7.4.

Lemma 2.7.4. Under (A1), (B1) — (B5) and (B8)

E

[
sup

x,y∈[0,1]

∣∣∣Q̃(h)
pq −EQ̃(h)

pq

∣∣∣]≤U
1√

T −|h|
1

B 2
R

, (2.65)

sup
x,y∈[0,1]

∣∣∣EQ̃(h)
pq −M[Q (h)

pq ]

∣∣∣=O
(
B 2

R

)
(2.66)

where the constant U is uniform for 0 ≤ p +q ≤ 2, T ∈N, |h| < T , and

M[Q (h)
00 ] = chRh(x, y)g (x)g (y), M[Q (h)

01 ] = M[Q (h)
10 ] = 0, (2.67)

where ch = (EN )2 for h 6= 0 and c0 = E{N (N −1)}. Moreover, the convergence (2.66) is uniform in

h.

Proof. Again, the bias-variance decomposition yields

E

[
sup

x,y∈[0,1]

∣∣∣Q̃(h)
pq −M[Q (h)

pq ]

∣∣∣]≤ E
[

sup
x,y∈[0,1]

∣∣∣Q̃(h)
pq −E

[
Q̃(h)

pq

]∣∣∣]+ sup
x,y∈[0,1]

∣∣∣E[
Q̃(h)

pq

]
−M[Q (h)

pq ]

∣∣∣
By taking a Taylor expansion of order 2, it is again straightforward to show that the formulae

(2.67) and that the second term of (2.65) is of order O(B 2
R ) uniformly in h and T .

To treat the first term on the right-hand side of (2.65), we define the Fourier transform of the

function (α,β) 7→ K (α)αK (β)β as

ζpq (u, v) =
Ï

e− i(uα+vβ)K (α)αp K (β)βq dαdβ.

Thus we may write

(
xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
=

= 1

(2π)2B 2
R

Ï
exp

{
i

(
xt+h, j −x

BR

)
u

}
exp

{
i

(
xtk − y

BR

)
v

}
ζpq (u, v)du dv =

= 1

(2π)2

Ï
e i(xt+h, j−y)ũe i(xtk−y)ṽζpq (BR ũ,BR ṽ)dũd ṽ

Define

ϕ(h)
pq =ϕ(h)

pq (u, v, x, y) = 1

T −|h|
max(T,T−h)∑

t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

e i(xt+h, j−x)ue i(xtk−y)vG̃ X
h,t (xt+h, j , xtk )
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and write

Q̃(h)
pq = 1

(2π)2

Ï
ϕ(h)

pqζpq (BR u,BR v)du dv.

Analogously to (2.56), it now remains to analyse the variance of ϕ(h)
pq . Define the following

stationary time-series

Z (h)
t =

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

e i(xt+h, j−x)ue i(xtk−y)vG̃ X
h,t (xt+h, j , xtk ).

As in the proof of Lemma 2.7.2 we want to bound the sum of the autocovariance function∑
ξ∈Z |ρZ (h) (ξ)| but the bound must be uniform in h. By conditioning on Nt and xt j , and

applying the law of total covariance, the ξ-lag autocovariance ρZ (h) (ξ) can be bounded by

∣∣ρZ (h) (ξ)
∣∣= ∣∣cov(Zt+ξ, Zt )

∣∣≤
≤ (E [N ])2 sup

x1,x2,x3,x4∈[0,1]

∣∣∣cov
{

(X t+ξ+h(x1)−µX (x1))(X t+ξ(x2)−µX (x2)),

(X t+h(x3)−µX (x3))(X t (x4)−µX (x4))
}∣∣∣=

= (E [N ])2 sup
x1,x2,x3,x4∈[0,1]

∣∣∣cov
{

(Xξ+h(x1)−µX (x1))(Xξ(x2)−µX (x2)),

(Xh(x3)−µX (x3))(X0(x4)−µX (x4))
}∣∣∣ (2.68)

for ξ ∉ {−h,0,h}. For ξ ∈ {−h,0,h}, the bound is augmented by σ2 but this changes nothing as

to the summability with respect to ξ ∈Z.

Using the formula for the 4-th order cumulant of centred random variables (Rosenblatt, 2012,

p. 36), we express the covariance on the right-hand side of (2.68) as

cov
(
(Xξ+h(x1)−µX (x1))(Xξ(x2)−µX (x2)), (Xh(x3)−µX (x1))(X0(x4)−µX (x1))

)
=

= cum
(
Xξ+h(x1)−µX (x1), Xξ(x2)−µX (x2), Xh(x3)−µX (x3), X0(x4)−µX (x4),

)+
+Rξ(x1, x3)Rξ(x2, x4)+Rξ+h(x1, x4)Rξ−h(x2, x3). (2.69)

Taking the absolute value and the supremum, the sum of (2.68) over ξ ∈Z is bounded thanks

to the fact that the cumulant on the right-hand side of (2.69) is summable by (B5) and the

autocovariances are summable by (1.25). Moreover the sum is bounded uniformly in h ∈Z.

Therefore

var
(
Q(h)

pq

)
≤ 1

T −h

∑
ξ∈Z

|ρZ (h) (ξ)| ≤U
1

T −h
,

where the constant U is independent of h. Observing that
Î
ζpq (BR u,BR v)du dv = O(B 2

R )

concludes the proof of the bound (2.65).

In the following lemma we modify the previous result for the raw covariances G X
h,t instead of
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G̃ X
h,t .

Lemma 2.7.5. Under (A1), (B1) — (B5), (B7) and (B8), for h ∈Z and 0 ≤ p +q ≤ 2; p, q ∈N0

Q(h)
pq = M[Qpq ] +OP

(
1p
T

1

B 2
R

+B 2
R

)

uniformly in x, y ∈ [0,1].

Proof. We follow the lines of the discussion at the end of the proof of Yao et al. (2005a, Thm 1).

Consider a generic raw covariance and its counterpart

G X
h,t (x, y) = (

X t+h(x)− µ̂X (x)
)(

X t (y)− µ̂X (y)
)

,

G̃ X
h,t (x, y) = (

X t+h(x)−µX (x)
)(

X t (y)−µX (y)
)

.

They can be related to each other by the expansion:

G X
h,t (x, y) = G̃ X

h,t (x, y)+ (
X t+h(x)−µX (x)

)(
µX (y)− µ̂X (y)

)+
+ (
µX (x)− µ̂X (x)

)(
X t (y)−µX (y)

)+ (
µX (x)− µ̂X (x)

)(
µX (y)− µ̂X (y)

)
.

By (2.32), the difference of G X
h,t (x, y) and G̃ X

h,t (x, y) is of order OP

(
1p
T

1
Bµ

)
which is negligible

with respect to the rate OP

(
1p
T

1
B 2

R

)
from Lemma 2.7.4.

Proof of the second part of Theorem 2.3.1. Combining the results of Lemma 2.7.2 and Lemma 2.7.5,

we obtain the following uniform convergence rates:

A (h)
1 = [

ch g (x)g (y)σ2
K

]2 +OP

(
1p
T

1

B 2
R

+B 2
R

)
,

A (h)
2 =OP

(
1p
T

1

B 2
R

+B 2
R

)
,

A (h)
3 =OP

(
1p
T

1

B 2
R

+B 2
R

)
,

B(h) = [
ch g (x)g (y)

]3 (
σ2

K

)2 +OP

(
1p
T

1

B 2
R

+B 2
R

)
.

The numerator of the ratio (2.59) exhibits the following uniform convergence

A (h)
1 Q(h)

00 −A (h)
2 Q(h)

10 −A (h)
3 Q(h)

01 = [
ch g (x)g (y)

]3 (
σ2

K

)2
Rh(x, y)+OP

(
1p
T

1

B 2
R

+B 2
R

)
(2.70)
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and therefore we have proven the convergence rate for the autocovariance kernel estimator

R̂h(x, y) = Rh(x, y)+OP

(
1p
T

1

B 2
R

+B 2
R

)

uniformly in x, y ∈ [0,1].

Finally we turn to the estimation of the measurement error variance σ2. The minimizer of the

local quadratic smoother (2.5) can be expressed explicitly as

(2.71)

R̄0(x) = (
Ā1Q̄0 − Ā2Q̄1 − Ā3Q̄2

)
B̄−1

where

Ā1 = S̄2S̄4 −
(
S̄3

)2
, Ā2 = S̄1S̄4 − S̄2S̄3, Ā3 = S̄2S̄2 − S̄1S̄3,

B̄ = Ā1S̄0 − Ā2S̄1 − Ā3S̄2,

S̄r = 1

T

T∑
t=1

∑
j 6=k

(
∆(xt j , xtk )

BR

)r 1

B 2
R

K

(
xt j −x

BR

)
K

(
xtk −x

BR

)
,

Q̄r = 1

T

T∑
t=1

∑
j 6=k

G X
0,t (xt j , xtk )

(
∆(xt j , xtk )

BR

)r 1

B 2
R

K

(
xt j −x

BR

)
K

(
xtk −x

BR

)
.

All of the above quantities are understood as functions of x ∈ [0,1] and all operations are

considered pointwise, including the pointwise inversion B̄−1 = (B̄(x))−1.

Lemma 2.7.6. Under (A1), (B1), (B2) and (B7), for r ∈ 0,1,2,3,4

S̄r (x) = M[S̄r ](x)+OP

(
1p

T B 2
V

+B 2
V

)
,

uniformly in x ∈ [0,1] where

M[S̄0] = c0g (x)2, M[S̄1] = M[S̄3] = 0,

M[S̄2] =
1

2
c0g (x)2σ2

K , σ2
K =

∫
v2K (v)dv,

M[S̄4] =
1

8
c0g (x)2

(
µ(K )

4 +3σ2
K

)
, µ(K )

4 =
∫

v4K (v)dv

and c0 = E [N (N −1)].

Proof. The proof of Lemma 2.7.6 follows in the footsteps of that of Lemma 2.7.3, and the

details are omitted.
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Lemma 2.7.7. Under (A1), (B1) — (B5) and (B7) — (B9), for r ∈ 0,1,2

Q̄r (x) = M[Q̄r ](x)+OP

(
1p

T B 2
V

+B 2
V

)
,

uniformly in x ∈ [0,1] where

M[Q̄0] = c0R0(x, x)g (x)2, M[Q̄1] = 0,

M[Q̄2] =
1

2
c0R0(x, x)g (x)2σ2

K , σ2
K =

∫
v2K (v)dv.

Proof. The proof of Lemma 2.7.7 is analogous to the proofs of Lemma 2.7.4 and Lemma 2.7.5.

The following corollary is a direct consequence of Lemma 2.7.6 and Lemma 2.7.7, and the

formula (2.71).

Corollary 2.7.8. Under (B1) — (B5) and (B7) — (B9),

R̄0(x) = R0(x, x)+OP

(
1p

T B 2
V

+B 2
V

)

uniformly in x ∈ [0,1].

Now we turn our attention to the linear smoother on the diagonal (2.6).

Lemma 2.7.9. Under (A1), (B1) — (B5) and (B7) — (B9),

V̂ (x) = R0(x, x)+σ2 +OP

(
1p

T BV
+B 2

V

)
,

uniformly in x ∈ [0,1].

Proof. The proof is similar to the proofs of the above lemmas. An explicit formula for the

minimizer of (2.6) can be found analogously.

Proof of the last part of the Theorem 2.3.1. Combining the results of Lemma 2.7.6, Lemma 2.7.7,

and Lemma 2.7.9 yields the rate (2.34). See also the proof of Li and Hsing (2010, Thm 3.4)

where the proof with the local-linear smoothing of the diagonal is written out in detail.

2.7.2 Proof of Theorem 2.3.2

Firstly we comment that the minimizer to (2.10) and hence the estimator can be expressed

explicitly (2.9) as

f̂ω(x, y) = 1

2π

(
A1Qω

00 −A2Qω
10 −A3Qω

01

)
B−1, (2.72)
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where

A1 = S20S02 −S2
11, A2 = S10S02 −S01S11, A3 = S01S20 −S10S11,

B =A1S00 −A2S10 −A3S01,

Spq = 1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

(
xt+h, j −x

BR

)p (
xtk − y

BR

)q

×

× 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
,

Qω
pq =

L∑
h=−L

Whe− ihω

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

G X
h,t (xt+h, j , xtk )×

×
(

xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
.

All of the above quantities are understood as functions of (x, y) ∈ [0,1]2 and all operations are

considered in a pointwise sense, including the pointwise inversion B−1 = (B(x, y))−1.

To see why the minimizer has the form (2.72) we simplify the notation of the complex minimi-

sation problem (2.10) to the following:

d̂ = min
d0,d1,d2

J∑
j=1

∣∣A j −d0 −d1(x j −x)−d2(y j − y)
∣∣2 v j (2.73)

where A j ∈ C represents the raw covariances multiplied by the complex exponential, and

v j ≥ 0 are the spatial and Barlett’s weights. The sum of squares can be rewritten in the as

min
d0,d1,d2

(A−Xd)†V (A−Xd)

where † denotes the complex conjugate, A = (A1, . . . , A J )> ∈ CJ , d = (d0,d1,d3) ∈ C3,V =
diag(v1, . . . , v J ) ∈RJ×J and

X=


1 x1 −x y1 − y
...

...
...

1 x J −x y J − y

 ∈RJ×3.

Since X and V are real, the real and imaginary parts of the minimisation (2.73) are separated:

d̂ ==
(
argmin

ℜd
(ℜA−Xℜd)>V (ℜA−Xℜd)

)
︸ ︷︷ ︸

ℜd̂

+ i

(
argmin

ℑd
(ℑA−Xℑd)>V (ℑA−Xℑd)

)
.︸ ︷︷ ︸

ℑd̂

The above minimisation problems are solved by classical (weighted) normal equations:

d̂ =ℜd̂+ iℑd̂ = (
X>VX

)−1
X>VℜA+ i

(
X>VX

)−1
X>VℑA = (

X>VX
)−1

X>VA.
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We can calculate the first element of
(
X>VX

)−1
X>VA by Cramér’s rule. After switching back

to the quadruple summation (2.10) we arrive at the formula (2.72).

To investigate the asymptotic behaviour of the estimator (2.9), we need to analyse the asymp-

totics of the terms in the formula (2.72). We now assess the asymptotics of Spq and Qω
pq .

Lemma 2.7.10. Under the assumptions (A1), (B1), (B2), and (B8), for any p, q ∈N0, such that

0 ≤ p +q ≤ 2:

Spq = M[Spq ] +OP

(
1p
T

1

B 2
R

+B 2
R

)
uniformly in x, y ∈ [0,1] and where

M[S00] = g (x)g (y), M[S01] = M[S10] = M[S11] = 0,

M[S20] = M[S02] = g (x)g (y)σ2
K , σ2

K =
∫

v2K (v)dv.

Proof. Denote

S
(pq)

ht j k =
(

xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
,

for h =−L, . . . ,L, t = 1, . . . ,T −h, j = 1, . . . , Nt+h , k = 1, . . . , Nt for j 6= k if h = 0. Because L = o(T )

we may assume (and we do) in the entire proof that L ≤ T /2. Noting that L−1 ∑L
h=−L Wh = 1 we

start with the decomposition∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

S
(pq)

ht j k

−M[Spq ]

∣∣∣∣∣∣∣∣≤

≤

∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

(
S

(pq)
ht j k −M[Spq ]

)∣∣∣∣∣∣∣∣+
∣∣∣∣∣ 1

L

L∑
h=−L

Wh M[Spq ]

(
1− Nh

N̂h

)∣∣∣∣∣≤

≤

∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

(
S

(pq)
ht j k −M[Spq ]

)∣∣∣∣∣∣∣∣+
∣∣∣∣ 1

L
M[Spq ]

(
1− N′

N̂0

)∣∣∣∣+
+

∣∣∣∣∣ 1

L

L∑
h=−L,h 6=0

Wh M[Spq ]

(
1− Nh

(T −|h|)(EN )2

)∣∣∣∣∣+
∣∣∣∣∣ 1

L

L∑
h=−L,h 6=0

Wh M[Spq ]
Nh

T −|h|
(

1

(N̄ )2
− 1

(EN )2

)∣∣∣∣∣
(2.74)

where Nh = ∑max(T,T−h)
t=min(1,1−h) Nt+h Nt for h 6= 0 and N0 = ∑T

t=1 Nt (Nt −1). The second term on

the right-hand side of (2.74) is of order OP(L). The third term is bounded by bounding the

variance Nt ≤ U T for |h| ≤ T /2 where the constant U is independent of T and h but may
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depend on the distribution of N . Thus the third term is of order OP(T −1/2) thanks to∣∣∣∣∣ 1

L

L∑
h=−L,h 6=0

E

[
1− Nh

(T −|h|)(EN )2

]∣∣∣∣∣≤ 1

L

L∑
h=−L,h 6=0

{
var

(
Nh

(T −|h|)(EN )2

)}1/2

=O(T −1/2).

The fourth term on the right hand side of order OP(T −1/2) because N̄ = EN +OP(T −1/2). The

first term on the right-hand side of (2.74) is decomposed as∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

(
S

(pq)
ht j k −M[Spq ]

)∣∣∣∣∣∣∣∣≤
≤ 1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣∣S (pq)
ht j k −ES (pq)

ht j k

∣∣∣+
+ 1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣∣ES (pq)
ht j k −M[Spq ]

∣∣∣ . (2.75)

The second term on the right hand side of (2.75) is of order OP(B 2
R ) because

∣∣∣ES (pq)
ht j k −M[Spq ]

∣∣∣=
OP(B 2

R ) uniformly. The first term on the right hand side of (2.75) is treated using similar steps

as in the proof of Lemma 2.7.3, therefore for a constant U independent of BR ,T and |h| < T /2,

E

 min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

sup
x,y∈[0,1]

∣∣∣S (pq)
ht j k −ES (pq)

ht j k

∣∣∣ |N1, . . . , NT

≤U

√
Nh

B 2
R

.

We conclude that the right hand side of (2.75) is of order OP( 1p
T

1
B 2

R
+B 2

R ) by observing

1

L

L∑
h=−L

√
Nh

N̂h

=OP(T −1/2).

Lemma 2.7.11. Let p, q ∈N0, be such that 0 ≤ p +q ≤ 2. We have the following results.

1. Assuming (A1), (B1) — (B5), (B7), (B8) and (B10), and letting T →∞:

Q̃ω
pq = M[Qω

pq ] +oP (1) , Qω
pq = M[Qω

pq ] +oP (1) .

2. Assuming (B1) — (B8) and (B10), and letting T →∞:

Q̃ω
pq = M[Qω

pq ] +OP

(
L

1p
T

1

B 2
R

+LB 2
R + 1

L

)
, Qω

pq = M[Qω
pq ] +OP

(
L

1p
T

1

B 2
R

+LB 2
R + 1

L

)
.
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All convergences are uniformly in ω ∈ [−π,π] and x, y ∈ [0,1] and

M[Qω
00] = 2πg (x)g (y) fω(x, y), M[Qω

10] = M[Qω
01] = 0.

Proof. Analogously to Lemma 2.7.4, we first assume that µX (·) is known. Hence we define

Q̃ω
pq =

L∑
h=−L

Whe− ihω

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

G̃ X
h,t (xt+h, j , xtk )

×
(

xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
.

Denote M[Q00,h ](x, y) = g (x)g (y)Rh(x, y) and M[Q10,h ](x, y) = M[Qω
01,h ](x, y) = 0. Further denote

Q
(pq)
ht j k = G̃ X

h,t (xt+h, j , xtk )

(
xt+h, j −x

BR

)p (
xtk − y

BR

)q 1

B 2
R

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
h =−L, . . . ,L, t = 1, . . . ,T −h, j = 1, . . . , Nt+h , k = 1, . . . , Nt for j 6= k if h = 0, we can write

∣∣∣Q̃ω
pq −M[Qω

pq ]

∣∣∣≤
∣∣∣∣∣∣∣∣

L∑
h=−L

Whe− ihω

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

Q̃
(pq)
ht j k −

∞∑
h=−∞

M[Qpq,h ]e
− ihω

∣∣∣∣∣∣∣∣≤
≤

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣∣Q̃(pq)
ht j k −M[Qpq,h ]

∣∣∣+ 1

L

L∑
h=−L

|h|
∣∣∣M[Qω

pq,h ]

∣∣∣+ ∑
|h|>L

∣∣M[Qpq,h ]
∣∣

(2.76)

Under the assumption (B5), the second and the third term on the right-hand side of (2.76) con-

verge to zero uniformly in x, y ∈ [0,1] by Kronecker’s lemma. Assuming further the assumption

(B6), these terms are in fact of order O(L−1) uniformly in x, y ∈ [0,1].

The first term on the right-hand side of (2.76) is treated similarly as in the proof of Lemma 2.7.5.

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣∣Q̃(pq)
ht j k −M[Qpq,h ]

∣∣∣≤
≤

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣∣Q̃(pq)
ht j k −EQ̃

(pq)
ht j k

∣∣∣+
+

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

∣∣∣EQ̃(pq)
ht j k −M[Qpq,h ]

∣∣∣ (2.77)
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The second term on the right-hand side of (2.77) is of order O(LB 2
R ) uniformly in x, y ∈ [0,1].

The first term on the right-hand side of (2.77) is treated analogously as in the proof of

Lemma 2.7.5, thus there exists a constant U independent of BR ,T and |h| < T /2 such that

E

 L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

sup
x,y∈[0,1]

∣∣∣Q̃(pq)
ht j k −EQ̃

(pq)
ht j k

∣∣∣ |N1, . . . , Nt

≤U

√
Nh

B 2
R

.

The rates oP(1), and OP(LT −1/2B−2
R ) under the assumption (B6), are concluded by the fact

L∑
h=−L

√
Nh

N̂h

=OP(LT −1/2).

The proof is completed by the same steps as in the proof of Lemma 2.7.5, switching to the OP

notation and noting that the difference between Q̃ω
pq and Qω

pq is asymptotically negligible.

Proof of Theorem 2.3.2. Combining the above derived results in lemmas 2.7.10 and 2.7.11 we

are ready to establish the asymptotic behaviour of the terms that enter the formula (2.72).

A1 =
[
g (x)g (y)σ2

K

]2 +OP

(
1p
T

1

B 2
R

+B 2
R

)
, A2 =OP

(
1p
T

1

B 2
R

+B 2
R

)
,

B = [
g (x)g (y)

]3 (
σ2

K

)2
, A3 =OP

(
1p
T

1

B 2
R

+B 2
R

)
,+OP

(
1p
T

1

B 2
R

+B 2
R

)
,

Q00 = 2πg (x)g (y) fω(x, y)+oP (1) , Q10 = oP (1) ,

Q01 = oP (1)

uniformly in ω ∈ [−π,π] and x, y ∈ [0,1]. Finally, the numerator of (2.72) is

A1Qω
00 −A2Qω

10 −A3Qω
01 = 2π fω(x, y)

[
g (x)g (y)

]3 (
σ2

K

)2 +oP(1)

uniformly in ω ∈ [−π,π] and x, y ∈ [0,1] which completes the proof of consistency. Under the

assumption (B6) we replace oP(1) by OP(L/(
p

T B 2
R )+LB 2

R +1/L).

2.7.3 Proof of Corollary 2.3.3

Proof of Corollary 2.3.3. By Theorem 2.3.2, we have for h ∈Z and x, y ∈ [0,1]:

R̃h(x, y)−Rh(x, y) =
∫ π

−π
{

f̃ω(x, y)− fω(x, y)
}

e ihωdω,

sup
h∈Z

sup
x,y∈[0,1]

∣∣R̃h(x, y)−Rh(x, y)
∣∣≤ 2π sup

ω∈[−π,π]
sup

x,y∈[0,1]

∣∣ f̃ω(x, y)− fω(x, y)
∣∣= oP(1).

Assuming further (B6), proving the statement (2.37) is analogous to the previous line.
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2.7.4 Proof of Theorem 2.3.4

Proof of Theorem 2.3.4 . We begin with the estimation of the mean function µX (·). We are

going to make use of Hansen (2008, Thm 10). Define the two-dimensional time-series {Ũi , X̃i }i

composed of the sparse observations and their observation locations according to the obser-

vation scheme (2.1) (
Ũ1,Ũ2, . . .

)= (
U1,1, . . . ,U1,N1 ,U2,1, . . . ,U2,N2 ,U3,1, . . .

)
,(

X̃1, X̃2, . . .
)= (

x1,1, . . . , x1,N1 , x2,1, . . . , x2,N2 , x3,1, . . .
)

.

Under the assumptions (D1) — (D7), the time-series {Ũi , X̃i }i is strictly stationary and strongly

mixing, with mixing coefficients α̃(m) ≤ Ãm−β, and satisfies the conditions (2) — (7) of Hansen

(2008). In particular:

• the condition of (3) Hansen (2008)

E|Ũ1|s ≤ 2s (
E|X1(x11)|s +E|ε1,1|s

)<∞,

• the condition (6) of Hansen (2008)

sup
x∈[0,1]

E
[|Ũ1|s |X̃ = x

]
g (x) ≤ B1B3 <∞,

• the condition (7) of Hansen (2008)

sup
x,x ′∈[0,1]

E
[|Ũ1Ũ j ||X̃1 = x, X̃ j = x ′]g (x)g (x ′) ≤

≤
{

sup
h∈Z

sup
x,x ′∈[0,1]

[
E
∣∣Xh(x)X0(x ′)

∣∣]+2 sup
x∈[0,1]

[
E|X0(x)|E|ε1,1|

]+σ2

}
g (x)g (x ′) <∞.

The conditions (10) — (13) of Hansen (2008) are also satisfied taking q = ∞ and cn = 1.

Therefore all conditions of Hansen (2008, Thm 10) are satisfied. Noting that the length n = n(T )

of the time-series {Ũi , X̃i }i is asymptotically of the same order as T of the functional time

series {X t (·)}, formally n = n(T ) ³ T, T →∞, yields

sup
x∈[0,1]

∣∣µ̂X (x)−µX (x)
∣∣=OP

(√
logT

T Bµ
+B 2

µ

)
.

Next we turn to the estimation of the lag-h autocovariance kernels Rh(·, ·). Fix h ∈ Z. For

simplicity consider h 6= 0. The proof for h = 0 is essentially the same, only the diagonal “raw”

covariances must be removed. For the moment assume that the mean function µX (·) is known

and we shall work with the “raw” covariances G̃ X
h,t (xt+h, j , xtk ) as defined in (2.64). Similarly as

in the first part of this proof, define now the three dimensional time-series {Ũi , X̃i }i composed

90



2.7. Proofs of formal statements

of the “raw” covariances and their locations(
Ũ1,Ũ2, . . .

)= (
G̃h,1(x1+h,1, x1,1), . . . ,G̃h,1(x1+h,N1+h , x1,Nt ),

G̃2,1(x2+h,1, x2,1), . . .
)
,

(
X̃1, X̃2, . . .

)= ([
x1+h,1

x1,1

]
, . . . ,

[
x1+h,Nt+h

x1,Nt

]
,

[
x2+h,1

x2,1

]
, . . .

)
.

We are again going to make us of Hansen (2008, Thm 10). Under the assumptions (D1) —

(D11) it is easy to verify (analogously as in the first part of this proof) that the time series

{Ũi , X̃i }i satisfies the conditions (2) — (7) of Hansen (2008). The conditions (10) — (13) also

follow directly from our assumptions. It remains to repeat the discussion as in the proof of

Lemma 2.7.5 to conclude that the difference between G̃ X
h,t (xt+h, j , xtk ) and G X

h,t (xt+h, j , xtk ) is

asymptotically negligible with respect to the rate bellow.

Therefore by Hansen (2008, Thm 10), for fixed h ∈Z,

sup
x,y∈[0,1]

∣∣R̂h(x, y)−Rh(x, y)
∣∣=OP

(√
logT

T B 2
R

+B 2
R

)
.

2.7.5 Proof of Theorem 2.3.5

The proof of Theorem 2.3.5 is more involved. Rather than make direct use of, we shall need to

modify the proof techniques of Hansen (2008) in order to construct our proof. We express the

spectral density kernel estimator (2.9) in a similar way as in the proof of Theorem 2.3.2.

f̂ω(x, y) = 1

2π

(
A1Qω

00 −A2Qω
10 −A3Qω

01

)
B−1, (2.78)

where

A1 = S20S02 −S2
11, A2 = S10S02 −S01S11, A3 = S01S20 −S10S11,

B =A1S00 −A2S10 −A3S01,

Spq = 1

L

L∑
h=−L

WhNh

N̂h

S(h)
pq ,

S(h)
pq = 1

NhB 2
R

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

(
xt+h, j −x

BR

)p (
xtk − y

BR

)q

×

×K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
,
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Qω
pq =

L∑
h=−L

Whe− ihωNh

N̂h

Q(h)
pq ,

Q(h)
pq = 1

NhB 2
R

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

G̃ X
h,t (xt+h, j , xtk )×

×
(

xt+h, j −x

BR

)p (
xtk − y

BR

)q

K

(
xt+h, j −x

BR

)
K

(
xtk − y

BR

)
.

All of the above quantities are understood as functions of (x, y) ∈ [0,1]2 and all operations are

considered in a pointwise sense, including the pointwise inversion B−1 = (B(x, y))−1.

Similarly as in the proof of Theorem 2.3.4 define for h ∈Z,(
Ũ h,r

1 ,Ũ h,r
2 , . . .

)
=

({
G̃h,1(x1+h,1, x1,1)

}r
, . . . ,

{
G̃h,1(x1+h,N1+h , x1,Nt )

}r
,
{
G̃2,1(x2+h,1, x2,1)

}r
, . . .

)
,(

X̃ h
1 , X̃ h

2 , . . .
)
=

([
x1+h,1

x1,1

]
, . . . ,

[
x1+h,Nt+h

x1,Nt

]
,

[
x2+h,1

x2,1

]
, . . .

)
.

Let k(·) :R2 →R be a function satisfying the assumption (C1) and denote for r = 0,1 and h ∈Z
define

Ψ̂h,r (x, y) = 1

NhB 2
R

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j 6=k if h=0

{
G̃ X

h,t (xt+h, j , xtk )
}r

k

(
xt+h, j −x

BR
,

xtk − y

BR

)
(2.79)

= 1

NhB 2
R

Nh∑
i=1

Ũ h,r
i k

(
X̃ h

i − (x, y)

BR

)
(2.80)

= 1

NhB 2
R

Nh∑
i=1

Z h,r
i (x, y) (2.81)

where we are denoting

Z h,r
i (x, y) = Ũi k

((
X̃ h,r

i − (x, y)
)

/BR

)
. (2.82)

Lemma 2.7.12. Under the assumptions (A1), (D1) — (D11),

var(Ψ̂h,r (x, y)|Nh) ≤ Θ

NhB 2
R

for Nh > 0 and where the constantΘ is uniform in h ∈Z, x, y ∈ [0,1], r = 0,1.

Proof. Note that the sequence {Z h,r
i (x, y)}i is a stationary scalar time-series and denote its

autocovariance function as ρZ h,r
i (x,y)(ξ) for lag ξ. Therefore we have the bound (2.58). Condi-

tioning on Nh yields

var

(
1

Nh

Nh∑
i=1

Z h,r
i (x, y)|Nh

)
≤ 1

Nh

∞∑
ξ=−∞

∣∣∣ρZ h,r
i (x,y)(ξ)

∣∣∣ . (2.83)

92



2.7. Proofs of formal statements

The sum on the right hand side of (2.83) can be bounded by

∞∑
ξ=−∞

∣∣∣ρZ h,r
i (x,y)(ξ)

∣∣∣≤ (
N max)2

∞∑
ξ=−∞

sup
x1,x2,x3,x4∈[0,1]

∣∣∣∣∣cum
(
Xξ+h(x1), Xξ(x2), Xh(x3), X0(x4)

)+
+Rξ(x1, x2)Rξ(x3, x4)+Rξ+h(x1, x4)Rξ−h(x2, x3)

∣∣∣∣∣. (2.84)

The bound (2.84) is uniform in h and constitutes the constantΘ in Lemma 2.7.12.

The key tool for our proof is an exponential-type inequality for strongly mixing random

sequences. This result was given by Liebscher (1996, Thm 2.1) and Rio (1995, Thm 5).

Lemma 2.7.13 (Liebscher/Rio). Let Zi be a stationary mean-zero real-valued process such that

|Zi | ≤ b, with strong mixing coefficients αm . Denote σ2
m = E(∑m

i=1 Zi
)2. Then for each positive

integer m ≤ n and ε> 0 such that m < εb/4

P

(∣∣∣∣∣ n∑
i=1

Zi

∣∣∣∣∣> ε
)
≤ 4exp

− ε2

64 nσ2
m

m + 8
3εmb

+4
n

m
αm .

Lemma 2.7.14. Under the assumptions (A1), (D1) — (D9) and (D11) — (D14)

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣Qω
pq −M[Qω

pq ]

∣∣∣= oP(1), (2.85)

and assuming further assumption (B6),

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣Qω
pq −M[Qω

pq ]

∣∣∣=OP

(
L

√
logT

T B 2
R

+B 2
R + 1

L

)
(2.86)

where

M[Qω
00] = 2πg (x)g (y) fω(x, y), M[Qω

10] = M[Qω
01] = 0.

Proof. Denote

M[Q00,h ](x, y) = g (x)g (y)Rh(x, y),

M[Q10,h ](x, y) = M[Qω
01,h ](x, y) = 0.

Similarly as in the proof of Lemma 2.7.11, decompose

∣∣∣Qω
pq −M[Qω

pq ]

∣∣∣≤ ∣∣∣∣∣ L∑
h=−L

Whe− ihωNh

N̂h
Q(h)

pq −
∞∑

h=−∞
M[Qpq,h ]e

− ihω

∣∣∣∣∣≤ L∑
h=−L

Wh

∣∣∣Q(h)
pq

∣∣∣ ∣∣∣∣Nh

N̂h
−1

∣∣∣∣+
+

L∑
h=−L

Wh

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣+ L∑
h=−L

Wh

∣∣∣EQ(h)
pq −M[Qpq,h ]

∣∣∣+ 1

L

L∑
h=−L

|h| ∣∣M[Qpq,h ]
∣∣+ ∑

|h|≥L

∣∣M[Qpq,h ]
∣∣ .

(2.87)
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Under the assumption (D12), the last two terms on the right-hand side of (2.87) converge

to zero uniformly in x, y ∈ [0,1] by Kronecker’s lemma. Assuming further the assumption

(B6), these terms are in fact of order O(L−1) uniformly in x, y ∈ [0,1]. The first term on the

right-hand side of (2.87) is of order OP(LT −1/2) uniformly in x, y ∈ [0,1]. The bias term, third

term on the right-hand side of (2.87), is of order OP(LB 2
R ) which is shown exactly as in the

proof of Lemma 2.7.4.

It remains to treat the second term on the right-hand side of (2.87), for which we start with the

observation

sup
ω∈[−π,π]

sup
x,y∈[0,1]

L∑
h=−L

Wh

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣≤ L∑
h=−L

sup
x,y∈[0,1]

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣ . (2.88)

Denote aT = (
logT /(T B 2

R )
)−1/2

. To show the order OP(LaT ) of the right-hand side of (2.88) we

investigate the probabilities for some M > 0

P

(
L∑

h=−L
sup

x,y∈[0,1]

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣> MLaT

)
≤

L∑
h=−L

P

(
sup

x,y∈[0,1]

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣> MLaT

2L+1

)
≤

≤
L∑

h=−L
P

(
sup

x,y∈[0,1]

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣> 1

3
M aT

)
(2.89)

We bound the probabilities on the right-hand side of (2.89) using the proof techniques pre-

sented in Hansen (2008, Thm 2). For the simplification of the notation and the proof we shall

assume that the numbers of observation locations are deterministic and constant,

N1 = ·· · = NT = N max ≡ N ≥ 2. (2.90)

Without this assumption, all bounds must be conditioned on these counts and the uncon-

ditional statements follow from the fact that (1/T )Nh = (EN )2 +OP(T −1/2) for h 6= 0 and

(1/T )N0 = (E{N (N −1)})+OP(T −1/2) where the convergences are uniform in |h| < T /3. Under

the technical assumption (2.90), Nh = (T −|h|)N 2 for h 6= 0 and N0 = T N (N −1).

From the assumption (D13) we may take T to be sufficiently large so that

L ≤ 1

2

√
logT

T B 2
R

− s−2
s−1

. (2.91)

Our proof follows essentially the same steps Hansen (2008, Thm 2), the only difference is that

we need to keep track of the uniformity in h and adjust the convergence rate for the growing L.

Using the notation (2.79), (2.80), and (2.81) rewrite Q(h)
pq as

Q(h)
pq (x̃) = 1

NhB 2
R

Nh∑
i=1

Ũ h,1
i k

(
X̃ h

i − x̃

BR

)
= 1

NhB 2
R

Nh∑
i=1

Z̃ h,1
i (x̃)
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where k(u, v) = up v q K (u)K (v).

The proof consists of three steps. Firstly we replace the values of Ũ h,r
i with the truncated

process Ũ h,r
i 1[|Ũ h,r

i |≤τT ] where τT = a−1/(s−1)
T . Secondly, we replace the supremum over x̃ ≡

(x, y) ∈ [0,1] with a maximisation over a finite Ng -point grid. And finally, with the help of the

exponential inequality from Lemma 2.7.13 we bound the remainder.

Define

Rh,r (x̃) = Ψ̂h,r (x̃)− 1

NhB 2
R

Nh∑
i=1

Z h,r
i (x̃)1[Ũi≤τT ].

Following the same steps as in the proof of Hansen (2008, Thm 2), we bound∣∣∣E[
Rh,r (x̃)

]∣∣∣=OP

(
τ−(s−1)

T

)
=OP(aT )

uniformly in |h| < T /3.

Thus replacing Ũi with Ũi 1[|Ũi |≤τT ] yields only an error of order OP(aT ) and we therefore

assume for the rest of the proof that Ũi ≤ τT .

The second step of the proof introduces a discretization of the square [0,1]2 which can be

covered by a regular grid of Ng = 2B−2
R a−2

T points such that for each (x, y) ∈ [0,1]2, the closest

grid point x̃ j ≡ (x j , y j ) is at a distance of at most BR aT distance. Denote this discretization as

A j ⊂ [0,1]2, j = 1, . . . , Ng .

Thanks to the assumption (D9), for all x̃1, x̃2 ∈ [0,1]2 satisfying ‖x̃1 − x̃2‖ ≤ δ≤ L̃, we have the

bound

|k(x̃1)−k(x̃2)| ≤ δk∗(x̃1) (2.92)

where k∗ : R2 → R is a bounded integrable function. Indeed, if k(·) satisfies the compact

support condition of (C1) and is Lipschitz then k∗(u) =Λ11[‖u‖≤2L̃]. If on the other hand k(u)

satisfies the differentiability condition of (C1), then we may put k∗(u) =Λ11[‖u‖≤2L̃]+‖u−L̃‖−η.

The inequality (2.92) implies that if aT ≤ L̃ then for x̃ ∈ A j we have ‖x̃ − x̃ j‖/BR ≤ aT and, for

T large enough such that aT ≤ L̃,∣∣∣∣∣k
(

x̃ − X̃ h
i

BR

)
−k

(
x̃ j − X̃ h

i

BR

)∣∣∣∣∣≤ aT k∗
(

x̃ j −Xi

BR

)
.

Define

Ψ̃h,r (x̃) = 1

NhB 2
R

Nh∑
i=1

Ũ h,r
i k∗

(
x̃ − X̃ h

i

BR

)
,

that is, a modification of Ψ̂h,r where k(·) is replaced by k∗(·). Note that by the assumptions

(D4) and (D8), E
∣∣Ψ̃h,r (x̃)

∣∣ is bounded uniformly in h ∈Z and r = 0,1. Following the steps in
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the proof of Hansen (2008, Thm 2), we conclude that

sup
x̃∈A j

∣∣∣Ψ̂h,r (x̃)−EΨ̂h,r (x̃)
∣∣∣≤ ∣∣∣Ψ̂h,r (x̃ j )−EΨ̂h,r (x̃ j )

∣∣∣+ ∣∣∣Ψ̃h,r (x̃ j )−EΨ̃h,r (x̃ j )
∣∣∣+2aT M ,

for M > E|Ψ̃h,r (x̃)|, and

P

(
sup

x̃∈[0,1]2

∣∣∣Ψ̂h,r (x)−EΨ̂h,r (x)
∣∣∣> 3M aT

)
≤

≤ Ng max
j=1,...,Ng

P
(∣∣∣|Ψ̂h,r (x̃ j )−EΨ̂h,r (x̃ j )|

∣∣∣> M aT

)
+ (2.93)

+Ng max
j=1,...,Ng

P
(∣∣∣|Ψ̃h,r (x̃ j )−EΨ̃h,r (x̃ j )|

∣∣∣> M aT

)
(2.94)

The terms (2.93) and (2.94) are bounded likewise because the only difference between them is

the presence of k(·) and k∗(·). Next we show how to bound (2.93).

By the definition (2.82) of Z h,r
i (x̃) we notice that |Z h,r

i (x̃)| ≤ τT K̄ ≡ bT because |Ũ h,r
i | ≤ τT and∣∣k((x̃ − X̃ h

i )/BR )
∣∣≤ k̄ where k̄ is the upper bound of the bounded function k(·). Therefore, by

Lemma 2.7.12, for m sufficiently large we have, uniformly in |h| < m/3,

sup
x̃∈[0,1]2

E

(
m∑

i=1
Z h,r

i (x̃)

)2

≤ΘmB 2
R .

Put m = (aT τT )−1 and we conclude that m < T and m < εbT /4 for ε = M aT T B 2
R for T suffi-

ciently large. Therefore by Lemma 2.7.13 for any x̃ ∈ [0,1]

P
(∣∣∣Ψ̂h,r (x̃)−EΨ̂h,r (x̃)

∣∣∣> M aT

)
=P

(∣∣∣∣∣Nh∑
i=1

Z h,r
i (x̃)

∣∣∣∣∣> M aT NhB 2
R

)
≤

≤ 4exp

(
− M 2a2

T T 2B 2
R

64ΘNhB 2
R +6k̄MT B 2

R

)
+4

Nh

m
αm ≤

≤ 4exp

(
− M 2 logT

64(N max )2Θ+6k̄M

)
+4

(
N max)2 T Ã(m −|h|)−βm−1 ≤

≤ 4T −M/
(
64(N max )2+k̄

)
+4

(
N max)2 ÃT

(
1

2
m

)−β
m−1 ≤

≤ 4T −M/
(
64(N max )2+k̄

)
+4(2β)

(
N max)2 ÃTa1+β

T τ
1+β
T

where the second inequality comes from the fact that the time-series {Z h,r
i (x̃)} is strong mixing

with coefficients αm ≤ Ã(m −|h|)−β for m ≥ |h|, the third inequality is due to (2.91), and the

final one by taking M >Θ. Since Ng ≤ 2B−2
R a−2

T we have from the above inequality and (2.93)

and (2.94) that

P

(
sup

x̃∈[0,1]2

∣∣∣Ψ̂h,r (x̃)−EΨ̂h,r (x̃)
∣∣∣> 3M aT

)
≤O

(
C1,T

)+O
(
C2,T

)
(2.95)
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where

C1,T = B−2
R a−2

T T −M/(64+6k̄)

C2,T = B−2
R Ta−1+β

T τ
1+β
T .

Returning to the inequalities (2.88) and (2.89), we conclude that

P

(
L∑

h=−L
sup

x,y∈[0,1]

∣∣∣Q(h)
pq −EQ(h)

pq

∣∣∣> MLaT

)
≤ L

[
O(C1,T )+O(C2,T )

]
(2.96)

Assumption (D10) implies that (logT )B−2
R = o(T θ) and therefore also B−2

R = o
(
T θ

)
and aT =

((logT )B−2
R T −1)1/2 = o(T −(1−θ)/2). For M sufficiently large and by the assumptions (D13) and

(D14)

LC1,n = o
(
T θF+(1−θF )−M/

(
64(N max )2+6k̄

)+(1−θF )(s−2)/(s−1)/2
)
= o(1),

LC2,n = o
(
T θF+1−(1−θF )[1+β−2−(1+β)/(s−1)−(s−2)/(s−1)]/2

)
= o(1).

Thus (2.96) is of order o(1) and we conclude, together with the rates of the other terms of

(2.87), the rates (2.85) and (2.86).

Lemma 2.7.15. Under the assumptions (A1), (D1) — (D9) and (D11) — (D14),

sup
x,y∈[0,1]

∣∣Spq −M[Spq ]
∣∣=OP

(√
logT

T B 2
R

+B 2
R

)
. (2.97)

Proof. We decompose the estimation error as follows:

∣∣Spq −M[Spq ]
∣∣= ∣∣∣∣∣ 1

L

∑
|h|<L

Wh

(
Nh

N̂h
S(h)

pq −M[Spq ]

)∣∣∣∣∣≤
≤ 1

L

∑
|h|<L

Wh

∣∣∣∣(Nh

N̂h
−1

)
S(h)

pq

∣∣∣∣+ 1

L

∑
|h|<L

Wh

∣∣∣S(h)
pq −ES(h)

pq

∣∣∣+ 1

L

∑
|h|<L

Wh

∣∣∣ES(h)
pq −M[Spq ]

∣∣∣ (2.98)

The first term on the right hand side of (2.98) is of order O(T −1/2), uniformly in x, y ∈ [0,1],

because (1/T )Nh = ch +OP(T −1/2) and (1/T )N̂h = ch +OP(T −1/2) uniformly in |h| ≤ L.

The third term on the right hand side of (2.98) is of order O(B 2
R ), uniformly in x, y ∈ [0,1]. This

is shown identically as in the proof of Lemma 2.7.3.

The second term on the right hand side of order

Spq = ESpq +OP

(√
logT

T B 2
R

)
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Chapter 2. Sparsely observed functional time series

uniformly in x, y ∈ [0,1] and |h| < L. This is shown analogously as the proof of Lemma 2.7.14.

The difference is that the normalising factor 1/L improves the rate to (logT /(T B 2
R ))1/2 as

opposed to L(logT /(T B 2
R ))1/2 as in Lemma 2.7.14.

Proof of Theorem 2.3.5. We start with assuming that the mean function µX (·) is known. Com-

bining the results of Lemmas 2.7.14 and 2.7.15, and the formula (2.78) provides the rate (2.38),

and the rate (2.39) if (B6) is assumed.

The proof is completed by the discussion that the difference between the “raw” covariances

with known µX (·) versus estimated

hatmuX (·) is negligible.

2.7.6 Proof of Theorem 2.3.6

The following lemma ensures the convergence of M̂Xs |US and ŜXs |US to their population level

counterparts (2.26). We investigate the convergence without the Gaussianity assumption.

Lemma 2.7.16. Under the assumptions (A1), (B1) — (B5) and (B7) — (B10),

sup
x∈[0,1]

∣∣M̂Xs |US (x)−MXs |US (x)
∣∣= oP(1) as T →∞,

sup
x,y∈[0,1]

∣∣ŜXs |US (x, y)−SXs |US (x, y)
∣∣= oP(1) as T →∞.

Proof. We start with M̂Xs |US . Decompose the difference as

∣∣M̂Xs |US −MXs |US

∣∣≤ ∣∣µ̂X (x)−µX (x)
∣∣︸ ︷︷ ︸

J1

+

+
∣∣∣∣[PsŜSH

∗
S

{(
HSŜSH

∗
S + σ̂2IN (T )

1

)−1 −
(
HSSSH

∗
S +σ2IN (T )

1

)−1
}(
US −HSM̂S

)]
(x)

∣∣∣∣︸ ︷︷ ︸
J2

+

+
∣∣∣∣{(

PsŜSH
∗
S −PsSSH

∗
S

)(
HSSSH

∗
S +σ2IN (T )

1

)−1 (
US −HSM̂S

)}
(x)

∣∣∣∣︸ ︷︷ ︸
J3

. (2.99)

The first term J1 on the right-hand side of (2.99) tends to zero, uniformly in x, as T →∞ by

Theorem 2.3.1. The second term J2 and the third term J3 can be rewritten as

J2 =
∣∣∣∣∣
[

PsŜSH
∗
S

{(
HSŜSH

∗
S + σ̂2IN (T )

1

)−1 −
(
HSSSH

∗
S +σ2IN (T )

1

)−1
}(
US −HSM̂S

)]
(x)

∣∣∣∣∣=
= ∣∣ĉov(Xs(x),US)∗

(
var(US)−1 − v̂ar(US)−1)(US −HSM̂S

)∣∣
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J3 =
∣∣∣∣{(

PsŜSH
∗
S −PsSSH

∗
S

)(
HSSSH

∗
S +σ2IN (T )

1

)−1 (
US −HSM̂S

)}
(x)

∣∣∣∣=
= ∣∣{ĉov(Xs(x),US)−cov(Xs(x),US)

}∗ (
var(US)−1)(US −HSM̂S

)∣∣
where cov(Xs(x),US) is a random vector in RN (S)

1 whose elements are {Rhk (x, xtk , jk )}NS

k=1 for

some lags hk and locations xtk , jk and var(US) is a random matrix inRN (S)
1 ×N (S)

1 whose elements

are of the form {Rtk′−tk (xtk , jk , xtk′ , jk′ )}
N (S)

1

k,k ′=1. The terms ĉov(Xs(x),US) and v̂ar(US)−1 are defined

using the estimated autocovariance kernels.

To treat the term J2 note that v̂ar(US)−1−var(US)−1 → 0 as T →∞ by Corollary 2.3.3. The term(
US −HSM̂S

)
is bounded as T →∞ thanks to the convergence µ̂→µ. The term ĉov(Xs(x),US)

is bounded uniformly in x due to its convergence to cov(Xs(x),US), uniformly in x, by Corol-

lary 2.3.3. The term J3 is treated similarly. ĉov(Xs(x),US)−cov(Xs(x),US) → 0, uniformly in x,

by Corollary 2.3.3. The formula for the variance ŜXs |US (x, y) can be written as

ŜXs |US (x, y) = R̂0(x, y)− ĉov(Xs(x),US)∗v̂ar(US)−1ĉov(Xs(y),US).

Its convergence, uniform in (x, y) ∈ [0,1]2, is treated similarly as above by Corollary 2.3.3.

Proof of Theorem 2.3.6. The first statement of Lemma 2.7.16 is the statement of Theorem 2.3.6.

2.7.7 Proof of Theorem 2.3.7

Proof of Theorem 2.3.7 . We start with the pointwise confidence band. Fix x ∈ [0,1]. From (A2)

and the conditional distribution

Xs(x)−MXs |US (x)√
SXs |US (x, x)

∼ N (0,1).

Therefore

P
{∣∣Xs(x)−MXs |US (x)

∣∣≤Φ−1 (1−α/2)
√
SXs |US (x, x)

}
= 1−α.

By Lemma 2.7.16 and Slutsky theorem,

Xs(x)−M̂Xs |US (x)√
ŜXs |US (x, x)

d→ N (0,1)

and thus

P

{∣∣Xs(x)−M̂Xs |US (x)
∣∣≤Φ−1 (1−α/2)

√
ŜXs |US (x, x)

}
→ 1−α.

Now we turn our attention to the simultaneous confidence band. By the definition of the
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conditional distribution,

Xs −MXs |US ∼ N (0,SXs |US ).

By the definition of the simultaneous confidence bands (Degras, 2011), which was reviewed in

Section 2.2,

P
{
∀x ∈ [0,1] :

∣∣Xs(x)−MXs |US (x)
∣∣≤ zα,ρ

√
SXs |US (x, x)

}
= 1−α.

Define the correlation kernel ρXs |UT (x, y) as in (2.29). Assume for simplicity of the proof that

ρXs |UT (x, x) > 0 for all x ∈ [0,1]. Then

Xs(·)−MXs |US (·)√
SXs |US (·, ·) ∼ N

(
0,ρXs |UT

)
where the square root and the division is understood pointwise. Denote Wρ the law of

supx∈[0,1] |Zρ| where Zρ ∼ N (0,ρ). Then

sup
x∈[0,1]

∣∣∣∣∣ Xs(x)−MXs |US (x)√
SXs |US (x, x)

∣∣∣∣∣∼WρXs |UT

By Lemma 2.7.16,

sup
x∈[0,1]

∣∣∣∣∣∣∣
Xs(x)−M̂Xs |US (x)√

ŜXs |US (x, x)

∣∣∣∣∣∣∣ d→WρXs |UT
.

Note also that if ρn → ρ uniformly then N (0,ρn) → N (0,ρ) weakly, Wρn → Wρ weakly and

therefore zα,ρn → zα,ρ . Therefore:

P

 sup
x∈[0,1]

∣∣∣∣∣∣∣
Xs(x)−M̂Xs |US (x)√

ŜXs |US (x, x)

∣∣∣∣∣∣∣≤ zα,ρ̂

=P

 sup
x∈[0,1]

∣∣∣∣∣∣∣
Xs(x)−M̂Xs |US (x)√

ŜXs |US (x, x)

∣∣∣∣∣∣∣
zα,ρ

zα,ρ̂
≤ zα,ρ

→ 1−α,

as T →∞.
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3 Lagged functional regression with
sparse noisy observations

The analysis of a regression link between two time series has been widely studied having its

origins in the work by Kolmogoroff (1941) and Wiener (1950). Generally speaking, the lagged

regression model of two discrete-time stationary time series {X t }t∈Z and {Zt }t∈Z with values in

some vector spaces H1 and H2 is given by the equation

Zt = a + ∑
k∈Z

Bk X t−k +et , t ∈Z, (3.1)

where a ∈H2 is a constant, called the intercept, {et }t∈Z is an H2-valued sequence of distur-

bances, and Bk : H1 →H2, k ∈Z is a sequence of linear mappings, called the filter coefficients.

This linear coupling would be the typical dependence model, for instance, if {(X t , Zt )}t∈Z
were a jointly Gaussian stationary process in H1 ×H2, and is also known as a time-invariant

linearly filtered time series model. The estimation problem is then to estimate the unknown

transformations {Bk }k∈Z given the realisation of a finite stretch of the joint series {(X t , Zt )}t∈Z
(a problem also known as system identification, particularly in signal processing).

The problem is well understood in the case where H1 and H2 are Euclidean spaces of possibly

different dimensions (the dimension 1 relates to the scalar time series scenario) (Brillinger,

1983; Priestley, 1981a,b; Shumway and Stoffer, 2000). The generalisation to the setting with

infinite dimensional spaces H1 and H2 is not straightforward, in particular the infinite

dimensionality of the input time series {X t } is problematic and leads to an ill-posed inverse

problem, more in Subsection 1.1.4. The lagged regression problem when H1 and H2 are

infinite dimensional Hilbert spaces, corresponding to the situation of functional data, has

been presented only recently (Hörmann et al., 2015b; Pham and Panaretos, 2018) and we

review their approaches in Sections 3.1.

In section 3.2 we present the main result of this chapter, the set-up with the regressors time

series with values in H1 = L2([0,1],R) but which is sparsely observed. The response time series

can be either a sparsely observed functional time series with values in H2 = L2([0,1],R), or a

univariate time series with values in H2 =R. We show how to estimate the filter coefficients

from sparse data and how to forecast the response process from the sparse observations.
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Chapter 3. Lagged functional regression with sparse noisy observations

Section 3.3 extends the methodology to the models with multiple input regressors time series

that can be either fully observed or sparsely observed functional time series.

The main results of this chapter are based on Rubín and Panaretos (2020a) while extending

some results further.

3.1 Spectral analysis of the functional lagged regression model

3.1.1 Frequency response function and estimation equations

We consider the functional lagged regression equation (3.1) where {X t } is a stationary func-

tional time series with finite second moments and with values in H1. Moreover it is assumed

to satisfy the weak dependence condition (A1) introduced in Subsection 2.1.1 and therefore,

by Proposition 1.3.5, it admits the spectral density operator given by

F X
ω = 1

2π

∑
h∈Z

RX
h e− ihω, ω ∈ [−π,π].

The mappings Bk : H1 →H2, k ∈Z are considered to be Hilbert-Schmidt operators satisfying

the summability condition ∑
k∈Z

‖Bk‖L2(H1,H2) <∞. (3.2)

Thanks to the inequality ‖Bk‖L (H1,H2) ≤ ‖Bk‖L2(H1,H2), the filter {Bk }k with its frequency

response function given by Bω =∑
k∈ZBk e− ihω satisfies the assumptions of Proposition 1.3.15,

and the H2-valued functional time series {Zt }t is stationary.

Moreover, the spectral density of {Zt } and the cross-spectral density between {Zt } and {X t } are

given by

F Z
ω =BωF X

ω B∗
ω, ω ∈ [−π,π],

F Z X
ω =BωF X

ω , ω ∈ [−π,π]. (3.3)

It is the equation (3.3) that constitutes the foundation of the estimation of the filter coefficients.

Heuristically, one would want to solve (3.3) and invert F X
ω for each ω ∈ [−π,π]. However, this

inversion is not well defined in the case of the infinite dimensional H1. Indeed, the spectral

density operator F X
ω is trace-class, hence its spectral decomposition is of the form

F X
ω =

∞∑
j=1

λ j (ω)ϕ j (ω)⊗ϕ j (ω)

where the harmonic eigenvalues λ j (ω) → 0 as j →∞. Therefore it is obvious that (F X
ω )−1

cannot be well defined as a bounded linear operator.
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3.1. Spectral analysis of the functional lagged regression model

Nevertheless, one can give a rigorous solution to (3.3) by writing it as

Bω( f ) =
∞∑

j=1

1

λ j (ω)

〈
f ,ϕ j (ω)

〉
H1

F Z X
ω

(
ϕ j (ω)

)
, f ∈H1, ω ∈ [−π,π]. (3.4)

This fact, however, does not change the intrinsic ill-posedness of the inverse problem (3.3)

and regularisation is required when plugging in the estimated values of F X
ω and F Z X

ω .

3.1.2 Regularised estimation of frequency response function

To start with the presentation of the regularised inversion of (3.3), assume that we posses esti-

mates of the spectral density operators {F̂ X
ω }ω∈[−π,π] and the cross-spectral density operators

{F̂ Z X
ω }ω∈[−π,π]. In the case of fully observed functional data, such estimators can be obtained

by the means reviewed in Subsection 1.3.9. The case of sparsely observed functional data is

developed in detail in Section 3.2.

Being a self-adjoint trace class operator, F̂ X
ω admits the spectral representation

F̂ X
ω =

∞∑
j=1

λ̂ωj ϕ̂
ω
j ⊗ ϕ̂ωj , ω ∈ [−π,π],

which can be viewed as the empirical version of the decomposition (1.36). The difficulty in

inverting F̂ X
ω can be seen from the fact that

∑
j λ̂

ω
j = Tr{F̂ X

ω } <∞, implying that λ̂ωj decays at

least as fast as j−(1+δ), δ> 0. It is the small values of λ̂ωj that cause problems and there are two

classical strategies to overcome the issue: Tikhonov regularisation and the spectral truncation.

Spectral truncation regularisation

Hörmann et al. (2015b) suggested to replace the inverse of F̂ X
ω is replaced by

Kω∑
j=1

1

λ̂ωj

ϕ̂ωj ⊗ ϕ̂ωj , ω ∈ [−π,π],

where Kω ∈N,ω ∈ [−π,π], is the spectral truncation parameter that needs to grow to infinity

sufficiently slowly to allow for the consistency. It may or may not depend on the frequency ω ∈
[−π,π]. We opt to implement the spectral truncation by relying on the eigenvalue thresholding

approach (Hörmann et al., 2015b) where we implement the eigenvalue threshold selection by

cross-validation (more in Section 4.2).

The estimator of the spectral transfer function becomes

B̂tr unc
ω =

Kω∑
j=1

1

λ̂ωj

〈
ϕ̂ωj , ·

〉
F̂ Z X
ω ϕ̂ωj , ω ∈ [−π,π]. (3.5)
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Tikhonov regularisation

Pham and Panaretos (2018) proposed to replace the inverse of F̂ X
ω by

(
F̂ X
ω +ρ I

)−1 =
∞∑

j=1

1

λ̂ωj +ρ
ϕ̂ωj ⊗ ϕ̂ωj , ω ∈ [−π,π],

where I is the identity operator on H and the Tikhonov regularisation parameter ρ > 0 tends

to zero as T → ∞ slowly enough to allow for consistency. Even though the parameter ρ

may, in general, depend on ω we carry out further analysis with the frequency independent

parameter. We do so because in the implementation (more in Section 4.2) we select the tuning

parameter ρ using the cross-validation where it is feasible to optimize over a single (frequency

independent) tuning parameter.

The estimator of the spectral transfer function becomes

B̂T i kh
ω = F̂ Z X

ω

(
F̂ X
ω +ρ I

)−1 =
∞∑

j=1

1

λ̂ωj +ρ
〈
ϕ̂ωj , ·

〉
F̂ Z X
ω ϕ̂ωj , ω ∈ [−π,π]. (3.6)

Estimation of filter coefficients

Once the estimators of the spectral transfer operator B̂ω have been constructed by either of

the above regularisation techniques, the filter coefficients are estimated by

B̂ tr unc
k = 1

2π

∫ π

−π
B̂tr unc
ω e iωk dω, k ∈Z, (3.7)

B̂ T i kh
k = 1

2π

∫ π

−π
B̂T i kh
ω e iωk dω, k ∈Z. (3.8)

3.2 Lagged functional regression with sparsely observed regressors

3.2.1 Estimation in sparsely observed regime

Consider the functional time series of regressors {X t (x) : x ∈ [0,1]}t∈Z as a time series of

continuous curves in the Hilbert space H1 = L2([0,1],R) which is observed only sparsely by

the observation scheme introduced in Subsection 2.1.1 for times t = 1, . . . ,T where T ∈N. The

response time series {Zt }t∈Z is considered to be a functional time series, observed sparsely or

fully functionally, or univariate time series. In any of the set-ups, the cross-spectral density

operator {F Z X
ω }ω∈[−π,π] can be estimated by the one of the estimators established in Section 2.4,

while the spectral density operators {F X
ω }ω∈[−π,π] are estimated by the tools developed in

Section 2.1.

Once the estimators {F̂ X
ω }ω∈[−π,π] and {F̂ Z X

ω }ω∈[−π,π] are constructed, we may produce the

estimate of the frequency response function Bω by either the Tikhonov regularisation or the
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3.2. Lagged functional regression with sparsely observed regressors

spectral truncation regularisation (Subsection 3.1.2). For either of the regularisation tech-

niques, denote the estimated filter coefficients B̂k , be it in the set-up of functional response

(H2 = L2([0,1],R)) in which case the filter coefficients are operators in L (L2([0,1],R)), or in

the set-up of univariate response (H2 =Rd ) in which case the filter coefficients are operators

in L (L2([0,1],R),R) or equivalently the functionals on L2([0,1],R).

3.2.2 Forecasting the response process

Having the estimators of the filter coefficients {B̂k }k∈Z we may wish to predict the values of

the response process {Zt } from the sparsely observed functional time series of regressors

{X t (x) : x ∈ [0,1]}t∈Z. The objectives of the prediction may include various set-ups:

• Both the sparsely observed regressor functional time series {X t } and the response time

series {Zt } are available at times t = 1, . . . ,T . Once we estimate the spectral and the

cross-spectral density operators {F̂ X
ω } and {F̂ Z X

ω } and construct the estimates of the

filter coefficients {B̂k }k∈Z, we may wish to test the goodness of fit and construct the

predictions of Ẑ1, . . . , ẐT produced only from the sparse measurements on {X t } and

compare them with the true Z1, . . . , ZT .

• The response time series {Zt } is observed up to time S ∈ N while the measurements

realised on the sparsely observed regressors time series {X t } continue up to time T > S.

In this case, we may want to forecast the time series {Zt } beyond the observation horizon

S and predict the values ZS+1, . . . , ZS from the estimated filter coefficients {B̂k } and the

regressors {X t } observed sparsely beyond the horizon S.

Assume that we have constructed the estimates of the spectral density operators {F X
ω } and

{F Z X
ω }, and the filter coefficients {B̂k }. We have access to the sparse measurements

Ut j = X t (xt j )+εX
t j , j = 1, . . . , N X

t , t = 1, . . . ,T, (3.9)

and we wish to construct the prediction of Z1, . . . , ZT . In the following we show how to actually

construct the best linear unbiased predictors of Zt , t = 1, . . . given all the observed data {Ut j }.

A key observation that simplifies the forecasting is the fact that we may predict the latent

functional data first, and then plug them into the filter coefficients. The following proposition

summarises this assertion formally.

Proposition 3.2.1. The best linear unbiased predictor of Zs given U, denoted as Π(Zs |U), is

equivalent to constructing the best linear unbiased predictors of X t givenU, denoted asΠ(X t |U),

for all t ∈Z and then applying the filter coefficients {Bk }k∈Z to these predictions:

Π (Zs |U) =
∑

k∈Z
BkΠ (Xs−k |U) , s ∈Z.

Proof. The proof follows directly from the formula for the best linear unbiased predictors and
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the theory reviewed in Subsection 2.2.1.

Π (Zs |UT ) = cov(Zs ,UT ) (var(UT ))−1UT

= cov

( ∑
k∈Z

Bk Xs−k +es ,UT

)
(var(UT ))−1UT

= ∑
k∈Z

Bk cov(Xs−k ,UT ) (var(UT ))−1UT

= ∑
k∈Z

BkΠ (Xs−k |UT ) .

The predictorsΠ(Xs |U) for t =−M +1, . . . ,T +M can be constructed by the methods given in

Section 2.2 with the estimated dynamics of the process X manifested by the spectral density

kernels estimator { f̂ X
ω (·, ·)}ω∈[−π,π] and the estimated measurement error term σ̂2

X .

In summary, the forecasting algorithm consists of the following steps:

1. From the measurementsU realised on the regressor time series {X t } estimate the spectral

density {F̂ X
ω }ω∈[−π,π] and the measurement error variance σ̂2. Using the formula (2.11),

integrate the estimated spectral density to obtain the complete space time covariance

{R̂X
h }h∈Z of the regressor time series {X t }.

2. From the measurements U and the observed response times series (be it Z1, . . . , ZS or

Z1, . . . , ZT ), estimate the cross-spectral density {F̂ Z X
ω }ω∈[−π,π]. Using either truncation

regularisation (3.5) or Tikhonov regularisation (3.6), estimate the spectral transfer func-

tion {Bω}ω∈[−π,π]. By means of formula (3.7) or (3.8), depending on the regularisation

scheme, integrate the spectral transfer function to obtain the filter coefficients {B̂k }k∈Z.

3. Choose M such that the estimated filter coefficients B̂k are negligible for |k| > M and

construct the prediction of the latent functional data Π̂(X−M+1|U), . . . ,Π̂(XT+M |U).

4. For each t = 1, . . . ,T , construct the forecasts

Π̂(Zt |U) =
M∑

k=−M
B̂kΠ̂(X t−k |U).

3.2.3 Asymptotic results

In this subsection we list the conditions for the consistent filter coefficients estimation ob-

tained via Tikhonov regularisation (3.8) and via truncation regularisation (3.7) and prove the

said consistency in the two set-ups:

(i) The regressors functional time series {X t (x) : x ∈ [0,1]}t∈Z is sparsely observed and the

response time series Z ≡ {Zt }t∈Z is univariate.
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3.2. Lagged functional regression with sparsely observed regressors

(ii) Both the regressors time series {X t (x) : x ∈ [0,1]}t∈Z and the response time series {Zt (z) :

z ∈ [0,1]}t∈Z are sparsely observed functional time series.

The conditions for the consistent estimation of the spectral and cross-spectral density opera-

tors are given in Chapter 2, therefore we proceed now with the conditions specific for the filter

coefficient estimation by the two considered regularisation techniques.

First, the following condition is required for the regression model (3.1) to be identifiable,

regardless of the regularisation method used.

(E) For all ω ∈ [−π,π] the operators F X
ω : H1 →H1 satisfy ker

(
F X
ω

)= 0.

To ensure the consistency of the filter coefficients estimator by the Tikhonov method we only

need to guarantee that the regularisation parameter vanishes slowly relative to the smoothing

bandwidths. Denote BR the bandwidth for the smoother estimator F̂ X
ω and B̃R the bandwidth

for the smoother estimator F̂ Z X
ω .

(F:i) The Tikhonov regularisation parameter satisfies

1

ρ
L

1p
T

1

B̃R
→ 0, as T →∞,

1

ρ2 L
1p
T

1

B 2
R

→ 0, as T →∞.

(F:ii) The Tikhonov regularisation parameter satisfies

1

ρ
L

1p
T

1

B̃ 2
R

→ 0, as T →∞,

1

ρ2 L
1p
T

1

B 2
R

→ 0, as T →∞.

The following theorem establishes the consistency of the Tikhonov filter coefficient estimators.

Theorem 3.2.2. Let the regressor time series {X t (x) : x ∈ [0,1]}t∈Z be a functional time series in

H1 = L2([0,1],R) satisfying (A1), (B1) — (B10) (listed in Chapter 2) and (E). Moreover:

(i) The univariate response time series {Zt }, i.e. H2 =R, satisfies the conditions (B1) — (B4),

(B6) with R Z X
h , (B5:ZX), and the parameters B̃R , L̃ and ρ satisfy the rates (B8:1d), (B10:1d),

(F:i).

(ii) The sparsely observed functional response time series {Zt (·)}, i.e. H2 = L2([0,1],R),

satisfies the conditions (B1) — (B4), B5:XY, (B6) with R Z X
h , and the parameters B̃R , L̃ and

ρ satisfy the rates (B8), (B10), (F:ii).
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Chapter 3. Lagged functional regression with sparse noisy observations

Then the filter coefficient estimators (3.8) constructed by means of Tikhonov regularisation are

consistent

sup
k∈Z

∥∥∥B̂ T i kh
k −Bk

∥∥∥
L2(H1,H2)

= oP(1) as T →∞.

Note that for the case of univariate response H2 =R, the norm ‖ · ‖L2(H1,H2) reduces to the

operator norm ‖ ·‖L (H1,R).

Proof. Thanks to the fact that

sup
k∈Z

∥∥∥B̂ T i kh
k −Bk

∥∥∥
L2(H1,H2)

≤ 1

2π

∫ π

−π

∥∥B̂ω−Bω

∥∥
L2(H1,H2) dω

the proof reduces to establishing the convergence rate of the frequency response operator B̂ω.

For the Tikhonov regularisation parameter ρ = ρ(T ) > 0 define

B̃ω =F Z X
ω

(
F X
ω +ρ I

)−1
, ω ∈ [−π,π].

Further, split the desired difference into three terms:

∥∥B̂ω−Bω

∥∥
L2(H1,H2) ≤

∥∥B̂ω−B̃ω

∥∥
L2(H1,H2) +

∥∥B̃ω−Bω

∥∥
L2(H1,H2) ≤

≤
∥∥∥(

F Z X
ω −F̂ Z X

ω

)(
F X
ω +ρ I

)−1
∥∥∥

L2(H1,H2)︸ ︷︷ ︸
S1

+
∥∥∥F̂ Z X

ω

[(
F X
ω +ρ I

)−1 − (
F̂ X
ω +ρ I

)−1
]∥∥∥

L2(H1,H2)︸ ︷︷ ︸
S2

+

+∥∥B̃ω−Bω

∥∥
L2(H1,H2)︸ ︷︷ ︸

S3

.

We bound each of the terms S1, S2, and S3 and show the convergence of the bound to zero

uniformly in ω ∈ [−π,π]. We start with bounding S1.

S1 ≤
∥∥F Z X

ω −F̂ Z X
ω

∥∥
L2(H1,H2)

∥∥∥(
F X
ω +ρ I

)−1
∥∥∥

L (H1,H2)
≤ ∥∥F Z X

ω −F̂ Z X
ω

∥∥
L2(H1,H2)

1

ρ
(3.10)

Now, bounding S2:

S2 =
∥∥∥F̂ Z X

ω

[(
F X
ω +ρ I

)−1 (
F̂ X
ω −F X

ω

)(
F̂ X
ω +ρ I

)−1
]∥∥∥

L2(H1,H2)
≤

≤ ∥∥F̂ Z X
ω

∥∥
L (H1,H2)

1

ρ

∥∥F̂ X
ω −F X

ω

∥∥
L2(H1,H2)

1

ρ
(3.11)

The right-hand sides of (3.10) tend to zero uniformly in ω ∈ [−π,π] as T → ∞ thanks to

assumption (F:i) and Proposition 2.4.2, or (F:ii) and Proposition 2.4.1, for the univariate or

functional response respectively. The right-hand side of (3.11) tend to zero uniformly in

ω ∈ [−π,π] as T →∞ thanks to assumption (F:i) (or (F:ii)) and Theorem 2.3.2. Remember also

that the results of Proposition 2.4.1 and 2.4.2, and Theorem 2.3.2 are stated in the supremum
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3.2. Lagged functional regression with sparsely observed regressors

norm over the (cross)-spectral density kernels which implies the convergence in the Hilbert-

Schmidt norm.

It remains to handle the deterministic term S3. Since the spectral density operator F X
ω is

self-adjoint and trace-class, it admits the series decomposition

F X
ω =

∞∑
j=1

λωj ϕ
ω
j ⊗ϕωj =

∞∑
j=1

λωj

〈
ϕωj , ·

〉
ϕωj

where {λωj } j∈N and {ϕωj } j∈N are the harmonic (dynamic) eigenvalues and the harmonic (dy-

namic) eigenfunctions at frequency ω ∈ [−π,π] (Panaretos and Tavakoli, 2013a; Hörmann

et al., 2015a). From the relations (3.3) and (3.4) we obtain the following series expansions

F Z X
ω =

∞∑
j=1

λωj

〈
ϕωj , ·

〉
Bωϕ

ω
j ,

F Z X
ω

(
F X
ω

)−1 =
∞∑

j=1

〈
ϕωj , ·

〉
Bωϕ

ω
j ,

F Z X
ω

(
F X
ω +ρ I

)−1 =
∞∑

j=1

λωj

λωj +ρ
〈
ϕωj , ·

〉
Bωϕ

ω
j ,

Combining the above expansions yields

S 2
3 = ∥∥B̃ω−Bω

∥∥2
L2(H1,H2) ≤

∞∑
j=1

∥∥∥∥∥
(

λωj

λωj +ρ
−1

)〈
ϕωj , ·

〉
Bωϕ

ω
j

∥∥∥∥∥
2

≤

≤
∞∑

j=1

(
λωj

λωj +ρ
−1

)2 ∥∥∥Bωϕ
ω
j

∥∥∥2 =
∞∑

j=1

(
ρ

λωj +ρ

)2 ∥∥∥Bωϕ
ω
j

∥∥∥2
. (3.12)

Since
∑∞

j=1

∥∥∥Bωϕ
ω
j

∥∥∥2 = ‖Bω‖2
L2(H1,H2) <∞ and ρ/(λωj +ρ) → 0 as ρ↘ 0 for each j ∈N, the

right-hand side of (3.12) tends to zero, completing the proof.

We now turn to the truncation estimator (3.7) of the filter coefficients, whose consistency

requires more technical assumptions. We use the result by Hörmann et al. (2015b, Thm

1) relies on having consistent estimators of the spectral density and cross-spectral density

operators with a known rate of convergence, on a condition on the eigenvalue spacing, and on

an assumption that the spectral truncation parameter Kω grows sufficiently slowly. In what

follows, we review their conditions and adapt them to the setting when the spectral density

kernels and the cross-spectral density are estimated by the kernel smoothing methods from

sparse noisy observations.

Recall the eigendecomposition of the spectral frequency operator

F X
ω =

∞∑
j=1

λωj ϕ
ω
j ⊗ϕωj =

∞∑
j=1

λωj

〈
ϕωj , ·

〉
ϕωj
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Chapter 3. Lagged functional regression with sparse noisy observations

with its harmonic eigenvalues and harmonic eigenfunction are denoted {λωk }∞k=1 and {ϕωk }∞k=1
respectively. Define

Λω1 =λω1 −λω2 ,

Λωk = min
{
λωk −λωk+1,λωk−1 −λωk

}
, k ≥ 2.

The following condition guarantees that the eigenspaces belonging to each of the eigenvalues

{λωm}∞m=1 are one-dimensional, hence the eigenfunctions {ϕωm}∞m=1 can be identified (up to

multiplication by a complex number with modulus 1).

(G1) For all k ≥ 1 we assume infω∈[−π,π]Λ
ω
k > 0.

Furthermore we need to assume that the truncation parameter Kω grows to infinity as T →∞
but does so sufficiently slowly.

(G2) Set r = 1 if {Zt } is a univariate time series and r = 2 if it is a sparsely observed functional

and

Kω = min{K (i ),1 ≤ i ≤ 4},

K (1) = max

{
k ≥ 1 : inf

ω∈[−π,π]
λ̂k ≥ 2LT −1/2B−2

R

}
,

K (2) = max

{
k ≥ 1 : LT −1/2B̃−r

R

∫ π

−π
W K
λ (ω)dω≤ 1

}
,

K (3) = max

{
k ≥ 1 :

∫ π

−π

(
W k
λ (ω)

)2
dω≤ L−1/2T 1/4BR

}
,

K (4) = max

{
k ≥ 1 :

∫ π

−π

(
W k
Λ (ω)

)2
dω≤ L−1/2T 1/4BR

}
where

W k
λ (ω) =

(
k∑

m=1

1[
λ̂ωm

]2

)1/2

, W k
Λ (ω) =

(
k∑

m=1

1[
Λ̂ωm

]2

)1/2

and {Λ̂ωm} are the empirical counterparts of {Λωm} with the estimates {λ̂ωj } plugged-in.

Under the above stated assumptions, the filter coefficient estimator (3.7) obtained by means

of truncation regularisation is consistent.

Theorem 3.2.3. Let the regressor time series {X t (x) : x ∈ [0,1]}t∈Z be a functional time series in

H1 = L2([0,1],R) satisfying (A1), (B1) — (B10) (listed in Chapter 2), (E) and (G1). Moreover:

(i) The univariate response time series {Zt }, i.e. H2 = R, satisfies the conditions (B1) —

(B4), (B6) with R Z X
h , (B5:ZX), and the parameters B̃R , L̃ and Kω satisfy the rates (B8:1d),

(B10:1d), (G2).
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3.3. Lagged regression with multiple inputs

(ii) The sparsely observed functional response time series {Zt (·)}, i.e. H2 = L2([0,1],R),

satisfies the conditions (B1) — (B4), B5:XY, (B6) with R Z X
h , and the parameters B̃R , L̃ and

Kω satisfy the rates (B8), (B10), (G2).

Then the filter coefficient estimators (3.8) constructed by means of Tikhonov regularisation are

consistent

sup
k∈Z

∥∥B̂ tr unc
k −Bk

∥∥
L2(H1,H2) = op (1) as T →∞.

Proof. The proof of this theorem is an application of the result by Hörmann et al. (2015b,

Thm 1). Their theorem requires that the spectral density operators {F X
ω }ω∈[−π,π] are estimated

with a certain rate, say (ψX
T )∞T=1, and the cross-density operators {F Z X

ω }ω∈[−π,π] with another

rate, say (ψZ X
T )∞T=1. For T ∈Nwe putψX

T = LT −1/2B−2
R andψZ X

T = LT −1/2B̃−r
R by Theorem 2.3.2

and Proposition 2.4.1 (or Proposition 2.4.2) respectively. Note that the convergence rates for

the spectral density kernels { f X
ω }ω∈[−π,π] and the cross-spectral density kernels { f Z X

ω }ω∈[−π,π]

are in the supremum norm which is stronger than the operator norm of the assumptions of

Hörmann et al. (2015b, Thm 1).

We can now replicate all the steps of the proof of Hörmann et al. (2015b, Thm 1) and see that

they only require the above stated rates and the assumptions (E), (G1), and (G2).

It is worth noting that the results by Hörmann et al. (2015b, Thm 1) are derived under the

assumption of Lp -m-approximability as opposed to cumulant mixing conditions considered

in this chapter. Nevertheless, they use the assumption of Lp -m-approximability only to

prove the rate of convergence of the spectral density and cross-spectral density estimators in

(Hörmann et al., 2015b, Lemma 1). Once these rates are established, the proof of (Hörmann

et al., 2015b, Thm 1) does not use Lp -m-approximability. Therefore our proof of Theorem 3.2.3

is indeed its simple adaptation which takes as inputs the convergence rates ψX
T = LT −1/2B−2

R

and ψZ X
T = LT −1/2B̃−r

R proved under the cumulant mixing conditions.

3.3 Lagged regression with multiple inputs

3.3.1 Joint regression model and its spectral analysis

It may very well happen that we want to analyse the relationship between multiple time

series, including functional time series observed either sparsely or fully, multivariate time

series or univariate time series. To keep the notation simple we focus our presentation on the

setting of a scalar response and two functional time series regressors, one of which is observed

sparsely and the other fully. This setting corresponds to the model (E+T) of the data analysis

in Section 4.4. The generalisation to a higher number of functional time series, observed

sparsely or fully, is a straightforward extension of the bellow presented equations. the further

incorporation of multivariate or scalar time series is uncomplicated because the regularisation

of the spectral density inversion is no longer required.
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Chapter 3. Lagged functional regression with sparse noisy observations

Consider the model with two functional time series regressors {X (1)
t (·)}t∈Z and {X (2)

t (·)}t∈Z. To

simplify the notation we assume the both functional time series to take values in the same

Hilbert space H = L2([0,1],R). The lagged regression with a scalar response {Zt }t∈Z becomes:

Zt = a + ∑
k∈Z

B (1)
k X (1)

t−k +
∑

k∈Z
B (2)

k X (2)
t−k +et

where a ∈R is the intercept, {B (1)
k }k∈Z and {B (1)

k }k∈Z are two sequences of linear mappings from

H to R, and {et } is a sequence of zero mean independent identically distributed real random

variables. Denote {b(1)
k }k∈Z and {b(1)

k }k∈Z the filter functions corresponding to the functionals

{B (1)
k } and {B (1)

k } by the Riesz representation theorem. We assume that the first functional time

series, {X (1)
t }, is sparsely observed, that is we have access to only the observations generated by

U (1)
t j = X (1)

t (xt j )+εt j , j = 1, . . . , Nt , t = 1, . . . ,T,

where Nt is a number of observation locations {xt j } at time t = 1, . . . ,T . The second functional

time series is fully observed, therefore we have access to X (2)
1 , . . . , X (2)

T . The mean functions of

{X (1)
t } and {X (2)

t } are denoted as µ(1)(·) and µ(2)(·) respectively.

Denote R�
h and R�

h the (cross-)covariance kernel and (cross-)covariance operator where � is

substituted by a single functional time series or a pair theoreof, as the case may be. Likewise

denote the (cross-)spectral density kernel and operator as f �ω and F�
ω respectively.

Assuming

∑
h∈Z

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[

R X (1)

h R X (1) X (2)

h

R X (2) X (1)

h R X (2)

h

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∞ <∞,

∑
h∈Z

∥∥∥∥∥
[

RX (1)

h RX (1) X (2)

h

RX (2) X (1)

h RX (2)

h

]∥∥∥∥∥
1

<∞

and
∑

k∈Z
∣∣∣∣∣∣∣∣∣b(1)

k

∣∣∣∣∣∣∣∣∣∞ <∞,
∑

k∈Z
∣∣∣∣∣∣∣∣∣b(2)

k

∣∣∣∣∣∣∣∣∣∞ <∞,
∑

k∈Z ‖B (1)
k ‖H <∞,

∑
k∈Z ‖B (2)

k ‖H <∞ implies

that the (cross)-spectral density kernels and operators { f X (1)

ω }ω, { f X (2)

ω }ω, { f X (1) X (2)

ω }ω, { f Z X (1)

ω }ω,

{ f Z X (2)

ω }ω, {F X (1)

ω }ω, {F X (2)

ω }ω, {F X (1) X (2)

ω }ω, {F Z X (1)

ω }ω, {F Z X (2)

ω }ω are well defined.

The joint frequency response operator

Bω =
[
B(1)
ω B(2)

ω

]
= ∑

k∈Z

[
B (1)

k B (2)
k

]
e− ikω, ω ∈ [−π,π],

satisfies the relation

[
F Z X (1)

ω F Z X (2)

ω

]
=

[
B(1)
ω B(2)

ω

][
F X (1)

ω F X (1) X (2)

ω

F X (2) X (1)

ω F X (2)

ω

]
, ω ∈ [−π,π]. (3.13)

The filter coefficients can be recovered by the formulae

B (1)
k = 1

2π

∫ π

−π
B(1)
ω e ikωdω, B (2)

k = 1

2π

∫ π

−π
B(2)
ω e ikωdω, k ∈Z.
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3.3.2 Nonparametric estimation

The mean function of the sparsely observed {X (1)
t } can be estimated by the local linear

smoother (Rubín and Panaretos, 2020b) while the mean function of the fully observed {X (2)
t } is

estimated by the classical empirical pointwise mean. We denote these estimates µ̂(1)(·) and

µ̂(2)(·) respectively.

The estimation of the spectral density operator {F X (1)

ω }ω∈[−π,π] and the cross-spectral density

{F Z X (1)

ω }ω∈[−π,π] from the sparse observations is explained in Chapter 2, and the estimation of

the spectral density operator {F X (2)

ω }ω∈[−π,π] and the cross-spectral density {F Z X (2)

ω }ω∈[−π,π] in

the case of fully functional observations are presented in Chapter 1.

Once we have estimated all the above (cross-)spectral densities, we wish to recover the filter

coefficients from the equation (3.13). The inversion of the joint spectral density of {X (1)
t } and

{X (2)
t } is ill-conditioned due to the reasons explained in Section 3.1, where we overcame this

issue by two regularisation techniques: spectral truncation and Tikhonov regularisation. Here

we do the same while allowing each of the regressor time series to have a different degree of

regularisation. This is important because, generally speaking, the estimation from sparse data

will require more regularisation.

Denote the spectral decompositions of the spectral density operators by

F̂ X (1)

ω =
∞∑

i=1
λ̂ωi ϕ̂

ω
i ⊗ ϕ̂ωi , ω ∈ [−π,π],

F̂ X (2)

ω =
∞∑

i=1
η̂ωi ψ̂

ω
i ⊗ ψ̂ω

i , ω ∈ [−π,π],

and express the cross-spectral basis with respect to the bases induced in the spectral decom-

positions above

F̂ X (1) X (2)

ω =
∞∑

i=1

∞∑
j=1

γ̂ωi j ψ̂
ω
j ⊗ ϕ̂ωi , ω ∈ [−π,π],

where {λ̂ωi }∞i=1 and {η̂ωi }∞i are the harmonic eigenvalues of F X (1)

ω and F X (2)

ω respectively, for

given ω ∈ [−π,π]. The sequences of functions {ϕ̂ω}∞i and {ψ̂ω}∞i are orthonormal bases of

H and are called the harmonic eigenfunctions of F X (1)

ω and F X (2)

ω respectively. The complex

numbers {γ̂ωi j }∞i , j=1 are the basis coefficients of F̂ X (1) X (2)

ω with respect to {ϕ̂ωi ⊗ ψ̂ω
j }∞i , j=1, a basis

of the space of Hilbert-Schmidt operators on H .

Truncation regularisation

Select two (possibly different) truncation parameters K (1)
ω ∈N and K (2)

ω ∈N that may depend on

ω ∈ [−π,π]. The idea of the truncation regularisation is to replace the empirical joint spectral
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density operator on the right hand side of the empirical version of (3.13) by ∑K (1)
ω

i=1 λ̂
ω
i ϕ̂

ω
i ⊗ ϕ̂ωi

∑K (1)
ω

i=1

∑K (2)
ω

j=1 γ̂
ω
i j ψ̂

ω
j ⊗ ϕ̂ωi∑K (2)

ω

i=1

∑K (1)
ω

j=1 γ̂
ω
j i ϕ̂

ω
j ⊗ ψ̂ω

i

∑K (2)
ω

i=1 η̂
ω
i ψ̂

ω
i ⊗ ψ̂ω

i

 . (3.14)

Alternatively, the operator in the form (3.14) can be expressed with respect to the reduced

basis of H ×H composed of {[ϕ̂ω1 ,0], . . . , [ϕ̂ω
K (1)
ω

,0], [0,ψ̂ω
1 ], . . . , [0,ψ̂ω

K (2)
ω

]} where 0 is the zero

element of H . Denote M ∈C(K (1)
ω +K (2)

ω )×(K (1)
ω +K (2)

ω ) the complex matrix given by the inverse of the

following matrix, assuming it is invertible,

M =



λ̂ω1 0 0 γ̂11 · · · γ̂1,K (2)
ω

0
. . . 0

...
. . .

...

0 0 λ̂ω
K (1)
ω

γ̂K (1)
ω ,1 · · · γ̂K (1)

ω ,K (2)
ω

γ̂11 · · · γ̂K (1)
ω ,1 η̂ω1 0 0

...
. . .

... 0
. . . 0

γ̂1,K (2)
ω

· · · γ̂K (1)
ω ,K (2)

ω
0 0 η̂ω

K (2)
ω



−1

.

Denote the elements of M according to the blocks using the following scheme

M =



m(1)
11 · · · m(1)

1,K (1)
ω

m(12)
11 · · · m(12)

1,K (2)
ω

...
. . .

...
...

. . .
...

m(1)
K (1)
ω ,1

· · · m(1)
K (1)
ω ,K (1)

ω

m(12)
K (1)
ω ,1

· · · m(12)
K (1)
ω ,K (2)

ω

m(21)
11 · · · m(21)

1,K (1)
ω

m(2)
11 · · · m(2)

1,K (2)
ω

...
. . .

...
...

. . .
...

m(21)
K (2)
ω ,1

· · · m(21)
K (2)
ω ,K (1)

ω

m(2)
K (2)
ω ,1

· · · m(2)
K (2)
ω ,K (2)

ω


.

Then, the frequency response operators can be recovered by

B̂(1)
ω =

K (1)
ω∑

i=1

K (1)
ω∑

j=1
m(1)

i j

〈
ϕ̂ωj , ·

〉
F Z X (1)

ω

(
ϕ̂ωi

)+K (2)
ω∑

i=1

K (1)
ω∑

j=1
m(21)

i j

〈
ϕ̂ωj , ·

〉
F Z X (2)

ω

(
ψ̂ω

i

)
,

B̂(2)
ω =

K (1)
ω∑

i=1

K (2)
ω∑

j=1
m(12)

i j

〈
ψ̂ω

j , ·
〉

F Z X (1)

ω

(
ϕ̂ωi

)+K (2)
ω∑

i=1

K (2)
ω∑

j=1
m(2)

i j

〈
ψ̂ω

j , ·
〉

F Z X (2)

ω

(
ψ̂ω

i

)
.

Tikhonov regularisation

We consider again two possibly different regularisation parameters ρ(1) > 0 and ρ(2) > 0.

The empirical joint spectral density operator on the right hand side of the empirical version of
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(3.13) is replaced by [
F̂ X (1)

ω +ρ(1) I F̂ X (1) X (2)

ω

F̂ X (2) X (1)

ω F̂ X (2)

ω +ρ(2) I

]
and the joint frequency response operator is estimated as

[
B̂(1)
ω B̂(2)

ω

]
=

[
F̂ Z X (1)

ω F̂ Z X (2)

ω

][
F̂ X (1)

ω +ρ(1) I F̂ X (1) X (2)

ω

F̂ X (2) X (1)

ω F̂ X (2)

ω +ρ(2) I

]−1

.

3.3.3 Forecasting the response process through multiple regressors

Once the estimates of the frequency response functions have been constructed, the filter

coefficients are estimated by integrating back into the temporal domain

B̂ (1)
k = 1

2π

∫ π

−π
B̂(1)
ω e iωk , k ∈Z,

B̂ (2)
k = 1

2π

∫ π

−π
B̂(2)
ω e iωk , k ∈Z.

In this section we extend the forecasting algorithm introduced in Subsection 3.2.2. We assume

here again that the response time series is observed only at times 1, . . . ,S where S < T and we

wish to predict ZS+1, . . . , ZT .

1. Denote the ensemble of the measurements Ut j , t = 1, . . . ,T, j = 1, . . . , Nt as U(1) realised

on the regressor time series {X (1)
t }. From the measurements U(1), the fully observed

functional observations X (2)
1 , . . . , X (2)

T , and the response time series Z1, . . . , ZT (or only

Z1, . . . , ZS for 1 < S < T ), construct the estimates of the model: the mean functions

µ̂(1), µ̂(2) the spectral density operators {F̂ X (1)

ω }ω∈[−π,π], {F̂ X (2)

ω }ω∈[−π,π], and the cross-

spectral density operators {F̂ X (1) X (2)

ω }ω∈[−π,π], {F̂ Z X (1)

ω }ω∈[−π,π], {F̂ Z X (2)

ω }ω∈[−π,π]. Using ei-

ther the truncation regularisation or the Tikhonov regularisation, estimate the spectral

transfer functions {B̂(1)
ω }ω∈[−π,π] and {B̂(2)

ω }ω∈[−π,π] and the filter coefficients {B̂ (1)
k }k∈Z

and {B̂ (2)
k }k∈Z.

2. Denoting the sparse measurements U(1), predict the latent values of X (1)
−M+1, . . . , X (1)

T+M

using the method recalled in Section 2.2. Denote these predictions as

Π̂(X (1)
−M+1|U(1)), . . . ,Π̂(X (1)

T+M |U(1)).

The constant M is determined in such a way that the filter coefficients B̂ (1)
k and B̂ (2)

k are

negligible for |k| > M .

3. Pad the fully observed functional time series {X (2)
t } by the mean function µ̂(2), i.e. set

X t = µ̂(2) for t < 1 or t > T . This approach was suggested in functional lagged prediction

for fully functional regressor (Hörmann et al., 2015b) where the mean-zero functional

115



Chapter 3. Lagged functional regression with sparse noisy observations

regressor time series is padded by zeros.

4. For each s = S +1, . . . ,T , construct the forecast

Ẑs = Z̄ +
M∑

k=−M
B̂ (1)

k

(
Π̂(Xs−k |U(1))− µ̂(1))+ M∑

k=−M
B̂ (2)

k

(
Xs−k − µ̂(2))

where Z̄ is the sample mean of the response process.

3.3.4 Final comments on models combining multiple inputs

The framework of functional lagged regression introduced in this chapter is firstly explained

on the set-up consisting of a sparsely observed functional time series viewed as the regressor

and a univariate time series or sparsely observed functional time series response. Later, we

discussed an extension of the lagged regression model to the set-up with multiple regressors

inputs in Section 3.3. Concretely, we considered as a case study the model incorporating two

functional time series as regressors: one of which is observed sparsely with measurement error,

the other as fully functional observations. We discuss how to adapt the Tikhonov regularisation

and the spectral truncation techniques to allow for a different degree of regularisation for

each regressor, and how to forecast the response process having the estimates of the filter

coefficient.

The further extension to an arbitrary number and type of regression inputs is straightforward.

Indeed, one can consider a regression model with univariate/multivariate or functional re-

sponse whose dependence is modelled via the lagged regression model blending together

univariate/multivariate time series regressors and/or a number of functional time series re-

gressors, some may be observed sparsely with measurement noise contamination, some may

be observed fully functionally.

The estimation and the prediction routine consist then of the following steps.

1. Estimate all the spectral densities, be it operators or matrices, and all the cross-spectral

densities among the regressors time series. Chapter 2 and Subsection 1.3.9 list the

estimators for all the required (cross-)spectral densities.

2. Estimate all the cross-spectral densities between the response time series and each of

the regressors time series.

3. Estimate the frequency response function by inverting the generalisation of the equation

(3.13). The components corresponding to the functional time series need to be regu-

larised by the Tikhonov regularisation or the spectral truncation. The regularisation by

a possibly different magnitude is explained in Subsection 3.3.2. The univariate and the

multivariate regressors time series do not need to be regularised as long as the sample

size is large enough. Integrate the estimated frequency response function to obtain the

estimates of the filter coefficients.
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4. Recover the latent functional data for those functional time series regressors that are

observed sparsely using the tools developed in Section 2.2. Pad to the left and the right

all the fully observed functional time series and the univariate/multivariate time series

by their respective empirical means.

5. Plug-in the fully observed functional time series regressors, univariate/multivariate

regressors, and the predicted latent functional time series regressors into the estimated

filter coefficients to construct the forecasts of the response process.

3.4 Code availability

The estimation, prediction, and regression methods presented in Chapter 2 and 3 for sparsely

observed functional time series are implemented in MATLAB and the code is available on

https://github.com/tomasrubin/sparse-functional-lagged-regression.
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4 Empirical results and applications

This chapter provides with empirical demonstrations for the sparsely observed functional time

series toolbox. It includes two simulation studies: the simulation study in Section 4.1 assesses

the spectral density estimation and the functional data recovery predictor (Chapter 2), and

the dependence of their performance on the sparse observation scheme design parameters,

and the simulation study in Section 4.2 compares the spectral truncation and the Tikhonov

regularisation techniques for lagged regression model estimation (Chapter 3).

The non-parametric inference for sparsely observed functional time series is further illustrated

on three data applications: the fair-weather atmospheric electricity data measured at Tashkent,

Uzbekistan, presented in Section 4.3 depicts the spectral density estimation and the functional

data recovery; the visibility data recorded at Wank mountain, Germany, reported in Section 4.4

compares the spectral truncation and the Tikhonov regularisation techniques for lagged

regression model estimation on a real data example; and Section 4.5 represents a functional

lagged regression model with a sparsely observed functional time series response.

4.1 Simulation study: estimation of spectral density operators

4.1.1 Simulation set-up

In this subsection, we present a simulation study in order to prove the finite-sample perfor-

mance of the spectral density operator estimator presented in Chapter 2. To this aim, we

simulate realisations of functional linear processes (Subsection 1.3.8), namely the functional

autoregressive process and the functional moving average process. Specifically, we consider:

• Functional autoregressive process

The (Gaussian) functional autoregressive process {X t } of order 1 with values in the

Hilbert space H = L2([0,1]) is defined by the iteration

(X t+1 −µ) =A (X t −µ)+Et (4.1)
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where the mean function µ(x) = 4sin(1.5πx) and the autoregression operator A associ-

ated with the kernel Ac (x, y) = κc exp
(−(x +2y)2

)
where the scaling constant κc is cho-

sen so that ‖Ac‖ = c . We vary c to control the degree of temporal dependence and let c ∈
{0.7,0.9}. The stochastic innovation noise {Et }t is a sequence consisting of independent

identically distributed random elements with the covariance operator S defined as the

integral operator with kernel S(x, y) = 1.4sin(2πx)sin(2πy)+0.6cos(2πx)cos(2πy). In

the simulation results we denote the resulting two processes as FAR(1)0.7 and FAR(1)0.9

for c = 0.7 and c = 0.9 respectively.

By Proposition 1.3.17 and Theorem 1.3.18, there exists a unique Gaussian stationary

solution to the equation (4.1) and its spectral density operator is given by the formula

(1.63).

• Functional moving average process The (Gaussian) functional moving average process

of order q is given by the formula

X t =µ+Et +B1Et−1 +B2Et−2 +·· ·+Bq Et−q

where µ and Et−q are as above, B j , j = 1, . . . , q are bounded linear operators on H .

Specifically we consider the orders q ∈ {4,8} and define the moving average opera-

tors B1, . . . ,B8 as integral operators with kernels B1(x, y) = B5(x, y) = 5exp(−(x2 + y2)),

B2(x, y) = B6(x, y) = 5exp(−((1− x)2 + y2)), B3(x, y) = B7(x, y) = 5exp(−(x2 + (1− y)2)),

and B4(x, y) = B8(x, y) = 5exp(−((1−x)2+ (1− y)2)). We denote these functional moving

average processes as FMA(4) and FMA(8) for q = 4,8 respectively.

We simulate the considered processes over the temporal periods of varying length, specifically

T ∈ {150,300,450,600,900,1200}. The sparse observations are then obtained by the following

process. We set a maximum number of locations to be sampled N max ∈ {5,10,20,30,40}. For

each t = 1, . . . ,T , a random integer Nt is independently drawn from the uniform distribution

on 0,1, . . . , N max . Next, for each t = 1, . . . ,T , we independently draw Nt random locations

xt j , j = 1, . . . , Nt from the uniform distribution on [0,1]. At each location, an independent

identically distributed Gaussian measurement error εt j ∼ N (0,σ2) is added and the ensemble

Yt j = X t (xt j )+εt j , j = 1, . . . , Nt , t = 1, . . . ,T is used as the dataset for the estimation procedure.

Therefore the observation protocol satisfies the assumptions (B1) and (B2).

The measurement error variance is chosen in the way that the ratio Tr(R0)/σ2, which we

interpret as a basic signal-to-noise ratio metric, is 20. The same signal-to-noise ratio was

used in the simulation study by Yao et al. (2005a). Further simulation results of ours not

reported here indicate that moderate variations of the signal-to-noise ratio do not change the

conclusions of this simulation study.
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4.1.2 Spectral density operator estimation error dependence on sample size

In this subsection we quantify the estimation error of the spectral density estimator (2.9) in

our simulation setting. In particular, we want to explore the dependence of the estimation

error on the length T of the time series and the number N max impacting the average number

of measurements per curve.

For each of the considered process and for each pair of the sample size parameters T ∈
{150,300,450,600,900,1200} and N max ∈ {5,10,20,30,40} we simulated 100 independent reali-

sations. We have run the estimation procedure introduced in Subsections 2.1.2 and 2.1.3. The

tuning parameters were selected in accordance with the discussion in Section 2.5.

We measure the quality of the spectral density estimation by the relative mean square error

defined as

RMSE =
∫ π
−π

∫ 1
0

∫ 1
0 | f̂ω(x, y)− fω(x, y)|2 dx dy dω∫ π

−π
∫ 1

0

∫ 1
0 | fω(x, y)|2 dx dy dω

(4.2)

where f̂ω(·, ·) and fω(·, ·) are respectively the estimated and the true spectral density kernels

at the frequency ω ∈ (−π,π). Table 4.1 presents the results for the considered functional

autoregressive and functional moving average processes.

Concerning the results of Table 4.1, one can raise an interesting design question:

Provided one has a fixed budget for the total number of measurements to be

made, should opt to record fewer spatial measurements over a longer time in-

terval (lengthy but sparsely observed time series), or rather record dense spatial

measurements over a shorter time period (short but densely observed time series)?

In order to answer this question we define a simple linear model to assess the dependence of

the relative mean square error on the considered sample size parameters T and N max . For

each of the considered processes we fit the linear model

log(RMSE(N max ,T )) =β0 +β1 log(N max )+β2 log(T )+e (4.3)

where RMSE (N max ,T ) is the average relative mean square error for the considered parameters

T and N max , (β0,β1,β2) are the regression parameters, and e is a homoskedastic model error.

We consider the logarithmic model (4.3) because we expect multiplicative effect of sample size

parameters on the estimation error. This hypothesis was confirmed by fitting various models

with different transformations and the logarithmic model (4.3) provided with the best fit.

The least square estimates of (4.3) are presented in Table 4.2. The coefficient β̂2 is larger than

β̂1 in absolute value for all four considered processes, therefore the relative increase of the

time-length T has a stronger effect in reducing the relative mean square error of the estimated

spectral density than the same relative increase in the number of points per curve. The appar-

ent conclusion is that, in order to estimate the spectral density of a smooth functional time
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Table 4.1 – Average relative mean square errors (defined in (4.2)) of the spectral density estima-
tors for the above defined functional autoregressive and functional moving average processes
(FAR(1)0.7,FAR(1)0.9,FMA(4),FMA(8)) and varying sample sizes. The numbers in parentheses
are the standard deviations of the relative mean square error. Each cell of the table (each error
and its standard deviation) is the result of 100 independent simulations. The Bartlett’s span
parameter L was selected by the rule (2.52)

T \N max 5 10 20 30 40

FAR(1)0.7

150 0.359 (0.082) 0.289 (0.070) 0.232 (0.069) 0.211 (0.064) 0.213 (0.066)
300 0.257 (0.067) 0.195 (0.048) 0.154 (0.044) 0.142 (0.042) 0.138 (0.042)
450 0.212 (0.041) 0.155 (0.037) 0.123 (0.032) 0.114 (0.031) 0.111 (0.030)
600 0.187 (0.047) 0.129 (0.029) 0.108 (0.024) 0.100 (0.026) 0.090 (0.025)
900 0.147 (0.031) 0.107 (0.022) 0.084 (0.019) 0.075 (0.018) 0.069 (0.020)

1200 0.125 (0.022) 0.094 (0.019) 0.073 (0.018) 0.063 (0.015) 0.060 (0.015)

FAR(1)0.9

150 0.564 (0.097) 0.466 (0.112) 0.460 (0.117) 0.454 (0.149) 0.399 (0.135)
300 0.433 (0.075) 0.372 (0.102) 0.334 (0.101) 0.272 (0.098) 0.291 (0.113)
450 0.374 (0.074) 0.324 (0.078) 0.283 (0.092) 0.239 (0.081) 0.216 (0.077)
600 0.305 (0.068) 0.272 (0.062) 0.216 (0.074) 0.216 (0.083) 0.192 (0.073)
900 0.282 (0.054) 0.227 (0.068) 0.179 (0.061) 0.165 (0.072) 0.146 (0.061)

1200 0.241 (0.061) 0.194 (0.058) 0.152 (0.059) 0.137 (0.059) 0.125 (0.059)

FMA(4)
150 0.312 (0.060) 0.225 (0.063) 0.184 (0.060) 0.170 (0.049) 0.165 (0.050)
300 0.206 (0.040) 0.157 (0.042) 0.124 (0.028) 0.115 (0.030) 0.110 (0.033)
450 0.167 (0.033) 0.126 (0.034) 0.097 (0.022) 0.092 (0.027) 0.081 (0.021)
600 0.137 (0.027) 0.107 (0.027) 0.083 (0.017) 0.077 (0.023) 0.071 (0.017)
900 0.115 (0.020) 0.082 (0.015) 0.067 (0.016) 0.061 (0.015) 0.056 (0.016)

1200 0.096 (0.019) 0.072 (0.015) 0.056 (0.013) 0.050 (0.012) 0.047 (0.012)

FMA(8)
150 0.352 (0.071) 0.263 (0.064) 0.213 (0.064) 0.188 (0.074) 0.178 (0.069)
300 0.253 (0.055) 0.170 (0.043) 0.143 (0.050) 0.129 (0.053) 0.127 (0.053)
450 0.176 (0.048) 0.148 (0.049) 0.114 (0.044) 0.091 (0.031) 0.086 (0.043)
600 0.159 (0.041) 0.123 (0.039) 0.093 (0.036) 0.080 (0.031) 0.081 (0.036)
900 0.128 (0.030) 0.098 (0.030) 0.074 (0.029) 0.062 (0.023) 0.060 (0.026)

1200 0.101 (0.026) 0.071 (0.023) 0.055 (0.020) 0.049 (0.017) 0.051 (0.018)

Table 4.2 – The estimated regression parameters β̂0, β̂1, β̂2 of the model (4.3) for all considered
functional autoregressive and functional moving average processes.

β̂0 β̂1 β̂2

FAR(1)0.7 2.12 -0.32 -0.56
FAR(1)0.9 2.25 -0.24 -0.49
FMA(4) 1.98 -0.32 -0.57
FMA(8) 2.37 -0.34 -0.61
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Figure 4.1 – The dependence of spectral density estimation relative mean square error (red
points with labels of the magnitude of this error) on the sample size parameters T and N max .
The blue plane is the estimated regression surface in model (4.3).

series, the better strategy is to invest in longer time-horizon T rather than denser sampling

regime. Figure 4.1 displays the relative mean square errors (4.2) dependence on the sample

size parameters together with the regression surface fitted by the model (4.3).

4.1.3 Recovery of functional data from sparse observations

In this section, we examine the performance of the functional recovery procedure proposed

in Section 2.2. We compare the recovery performance of our dynamic predictor (2.21), in

the following denoted as the dynamic recovery, with its static version that relies only on the

lag-zero covariance and hence does not exploit the temporal dependence, essentially following

the method by Yao et al. (2005a). In the following, we call this predictor the static recovery.

This static recovery is in fact the predictor (2.21) with the Bartlett’s span parameter L set to 1.

We simulate 100 independent realisations for each of the considered functional moving av-

erage processes FMA(4), FMA(8), and the considered functional autoregressive processes

FAR(1)0.7, FAR(1)0.9, see their definitions in Section 4.1.2, and each combination of the sam-

ple size parameters T ∈ {150,300,450,600,900,1200} and N max ∈ {5,10,20,30,40}.
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For each dataset we run the estimation procedure from Sections 2.1.2 and 2.1.3. The tuning pa-

rameters Bµ, BR , and BV are selected by K -fold cross-validation as explained in Subsection 2.5.

The parameter L is selected again by the rule (2.52).

We define the functional recovery (either dynamic or static) relative mean square error as

RMSE = 1

T

T∑
t=1

∫ 1
0

(
Π̂(X t |UT )(x)−X t (x)

)2
dx

Tr{R0}
(4.4)

where Π̂(X t |UT ) is the recovered functional curve at t = 1, . . . ,T , either dynamically or statically,

and X t is the true (unobserved) functional datum.

The key factor contributing to the quality of the functional recovery is the estimate σ̂2 of the

additive measurement error variance parameterσ2. A very small value of the estimated σ̂2 can

lead to an ill-conditioned matrix needed to be inverted in (2.20), thus resulting in a defective

recovery of the functional data. Because this circumstance affects the relative mean square

error metric, we opt to calculate the median of the relative mean square errors as a better

indicator of the typical recovery error instead.

We calculate the relative gain as

Rel ati ve g ai n =
(

RMSE(st ati c)

RMSE(d ynami c)
−1

)
∗100% (4.5)

where RMSE(st ati c) is the median relative mean square error of the static recovery and

RMSE(d ynami c) is the median mean square error of the dynamic recovery.

Table 4.3 summarizes the relative gains of dynamic recovery over the static recovery. Unsur-

prisingly, the relative gain is strikingly large for sparser designs. This can be explained by the

fact that in sparse designs there is not sufficient information to interpolate the functional

curves themselves, and the observed data in neighbouring curves are crucial for the recovery

of the curves. That being said, it is observed that even when the number of points sampled

per curve are as many as 40, the improvement remains substantial, demonstrating that the

new methodology should be preferred over methods designed for the independent identically

distributed case when dependence is present.

4.2 Simulation study: regularisation techniques comparison for lagged

regression

4.2.1 Simulation set-up

In this simulation study we assess the performance of the methods of Chapter 3 on the basis

of two criteria: the estimation error of the filter coefficients estimator (3.8), and the prediction

error of the forecasts of the response process (Section 3.2.2). We also compare the performance

124



4.2. Simulation study: regularisation techniques comparison for lagged regression

Table 4.3 – Relative gain (4.5) between median relative mean square error of the dynamic
recovery and median relative mean square error of the static recovery. Positive percentage sig-
nifies that dynamic recovery has smaller error. Simulations from the functional autoregressive
and functional moving average processes, FAR(1)0.7,FAR(1)0.9,FMA(4),FMA(8). Each cell of
the table is the result of 100 independent simulations

T \N max 5 10 20 30 40

FA
R

(1
) 0

.7
150 51 % 39 % 14 % 16 % 4 %
300 43 % 29 % 21 % 6 % 4 %
450 39 % 28 % 18 % 7 % 4 %
600 36 % 30 % 12 % 7 % 5 %
900 37 % 27 % 15 % 8 % 5 %

1200 35 % 28 % 17 % 8 % 3 %

FA
R

(1
) 0

.9

150 73 % 47 % 46 % 34 % 23 %
300 70 % 43 % 37 % 30 % 15 %
450 66 % 45 % 32 % 16 % 18 %
600 59 % 45 % 25 % 22 % 18 %
900 60 % 43 % 29 % 18 % 15 %

1200 59 % 44 % 29 % 24 % 16 %

F
M

A
(4

)

150 67 % 38 % 38 % 23 % 30 %
300 53 % 39 % 33 % 31 % 26 %
450 52 % 45 % 38 % 30 % 24 %
600 45 % 41 % 32 % 26 % 24 %
900 54 % 41 % 37 % 30 % 22 %

1200 54 % 45 % 34 % 26 % 21 %

F
M

A
(8

)

150 55 % 36 % 34 % 34 % 26 %
300 49 % 45 % 30 % 28 % 18 %
450 51 % 37 % 31 % 22 % 20 %
600 55 % 45 % 35 % 19 % 19 %
900 56 % 47 % 34 % 26 % 22 %

1200 54 % 44 % 31 % 24 % 24 %

of the two regularisation techniques, and demonstrate that neither dominates the other. To

illustrate this, we introduce two different filter coefficient functions, see (4.9) and (4.10), for

which one of the techniques is expected to perform better than the other, and vice versa.

We simulate the functional regressor series {X t }t∈Z as either the functional autoregressive

process of order 1 and the functional moving average process of order 4:

We simulate realisations of the functional autoregressive process of order 1 and the functional

moving average process of order 4 defined in the following two settings:

ã(FAR(1)) The process {X t }t∈Z is a functional autoregressive process of order 1 (Bosq, 2000) defined

by the iteration

X t+1 =A X t +Et , t ∈Z. (4.6)
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The operator A is assumed to be a Hilbert-Schmidt operator and we define its kernel

as A(x, y) = κsin(x − y), x, y ∈ [0,1], where κ> 0 is chosen such that ‖A ‖L(H ) = 0.7 and

‖ ·‖L(H ) is the operator norm in the space of linear operators on H .

Moreover, the sequence {Et }t∈Z is defined to be a collection of independent identically

distributed zero-mean Gaussian random variables in H = L2([0,1]) with the covariance

kernel K (x, y) given by

K (x, y) = sin(2πx)sin(2πy)+0.6cos(2πx)cos(2πy)+0.3sin(4πx)sin(4πy)+
+0.1cos(4πx)cos(4πy)+0.1sin(6πx)sin(6πy)+0.1cos(6πx)cos(6πy)+

+0.05sin(8πx)sin(8πy)+0.05cos(8πx)cos(8πy)+0.05sin(10πx)sin(10πy)+
+0.05cos(10πx)cos(10πy), x, y ∈ [0,1]. (4.7)

ã(FMA(4)) The process {X t }t∈Z is considered to be the functional moving average process of order

4 defined by

X t = Et +M1Et−1 +M2Et−2 +M3Et−3 +M4Et−4, t ∈Z. (4.8)

The operators M1, . . . ,M4 are assumed to be Hilbert-Schmidt and given by their kernels

M1(x, y) = κ1 sin(x+y), M2(x, y) = κ2 sin(1−x+y), M3(x, y) = κ3 sin(1+x−y), M4(x, y) =
κ4 sin(2−x − y), for x, y ∈ [0,1], respectively. The constants κ1 > 0, . . . ,κ4 > 0 are chosen

so that ‖M1‖L(H ) = 0.8,‖M2‖L(H ) = 0.6,‖M3‖L(H ) = 0.4,‖M4‖L(H ) = 0.2 respectively.

The functional autoregressive process ã(FAR(1)), defined uniquely by the equation (4.6), and

the functional moving average process ã(FMA(4)) are stationary and Gaussian (Bosq, 2000).

Each of the above defined functional processes is simulated with a varying time length T ∈
{300,600,900,1200}. The sparse observations (2.1) are generated by fixing the maximal number

of observations per curve N max ∈ {10,20,40,60}. For each curve, an integer valued random

variable is drawn with uniform distribution on {0, . . . , N max } corresponding to the number

of spatial locations where the X t is observed (with measurement error, to be defined). The

measurement locations xt j are sampled as uniform random variables on [0,1]. At each xt j

location, the measurement error is added as a realisation of a centred Gaussian random

variable with variance σ2 > 0. The variance σ2 > 0 is chosen so the signal-to-noise ratio is

Tr(RX
0 )/σ2 = 20.

For the lagged regression model (3.1) we assess the setting with a sparsely observed functional

time series predictor (H1 = L2([0,1],R)) and a scalar response (H2 =R). We consider regres-

sion models where only certain filter coefficients Bk are nonzero functions. In particular, the

nonzero filter coefficients are considered to be either of the two following options

(A) βA(x) = cos(4πx), x ∈ [0,1] (4.9)

(B) βB (x) = sin(2πx), x ∈ [0,1] (4.10)
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4.2. Simulation study: regularisation techniques comparison for lagged regression

Figure 4.2 – Top row: The covariance kernel of the stochastic innovation K (4.7), the autore-
gressive kernel A (4.6), the filter coefficients βA (4.9) and βB (4.10) respectively. Bottom row:
The kernels of the moving average process M1, . . . , M4 (4.8).

The considered kernels and filter functions are visualised on Figure 4.2.

We consider 3 lagged regression schemata with a varying set of nonzero filter coefficients.

(reg1) The filter coefficients B0,B1 are set to either βA or βB .

(reg2) The filter coefficients B0,B3 are set to either βA or βB .

(reg3) The filter coefficients B0,B1,B2,B3,B4,B5 are nonzero but with decaying magnitude.

They are set to either

(B0,B1,B2,B3,B4,B5) = (
βA ,0.9βA ,0.7βA ,0.5βA ,0.3βA ,0.1βA

)
or

(B0,B1,B2,B3,B4,B5) = (
βB ,0.9βB ,0.7βB ,0.5βB ,0.3βB ,0.1βB

)
.

The variance of the measurement error {et }t∈Z is set to be τ2 = 0.001.

For each combination of the settings, i.e. each of the 2 linear processes of {X t }t∈Z, each of 4

length parameters T ∈ {300,600,900,1200}, each of 4 sampling density parameters N max ∈
{10,20,40,60}, each of 3 regression schemata, and 2 shapes of the filter coefficients, we run 90

independent runs. Moreover, we consider also the regime of complete functional observations
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in the setting of Hörmann et al. (2015b) in order to compare how much information is lost due

to sparse sampling.

4.2.2 Estimation procedure

The proposed methodology requires the selection of the tuning parameters. We implemented

the choice of the bandwidths BR and BC for the estimation of {F X
ω }ω∈[−π,π] and σ2 by means

of K -fold cross validation, as explained in detail in Rubín and Panaretos (2020b). The Bartlett

span parameter for the estimation of the spectral density is set to L = b2T 1/3c.

In order to select the regularisation parameters for either of the two proposed regularsation

methods we resort to holdout cross-validation. We split the response time series Z1, . . . , ZT

into the training set Z1, . . . , ZS and the test set ZS+1, . . . , ZT . The split is set to be 80:20 in favour

of the training set, i.e. S = 0.8T . The cross-spectral density {F Z X
ω }ω∈[−π,π] is estimated from

the data in the training set Z1, . . . , ZS and the bandwidth parameter BC is selected by K -fold

cross-validation within the training set.

The truncation estimator (3.5) is constructed by means of eigenvalue thresholding (Hörmann

et al., 2015b). Specifically, we set Kω(υ) = argmaxm≥1

{
λ̂ωm > υ} where υ> 0 is a parameter to

be chosen by holdout cross-validation in the following way. Having estimated {F X
ω }ω∈[−π,π]

and σ2 from the sparsely observed regressor time series {X t }T
t=1, and the cross-spectral density

{F Z X
ω }ω∈[−π,π] from {X t }T

t=1 and the training partition of the response Z1, . . . , ZS , the frequency

response function is estimated by the formula (3.5) using a candidate value of Kω(υ). The

forecasts ẐS+1, . . . , ẐT are produced by the methodology outlined in Section 3.2.2. Comparing

the forecasts with the true values of ZS+1, . . . , ZT yields a mean square forecast error on the

holdout partition which we minimse with respect to υ. The Tikhonov estimator (3.6) involves

the selection of the parameter ρ. In the same way as for the truncation regularisation, we

chose ρ by holdout cross-validation based on the mean square forecast error on ZS+1, . . . , ZT .

In the case of complete functional observations we again use holdout cross-validation for the

selection of the eigenvalue thresholding parameter as well as the Tikhonov parameter.

4.2.3 Evaluation criteria

We assess the estimation error of the filter coefficients by the mean square error criterion:

δB = ∑
k∈Z

∥∥B̂k −Bk
∥∥2

(4.11)

Next we want to assess the forecasting performance of the proposed methodology. Because

the entire sample was used for fitting the model dynamics, we simulate an independent

copy of the regressor time series, denoted as {X copy
t }T

t=1, and the response process {Z copy
t }T

t=1.

Using the estimates of the model dynamics from the original data, we produce the predictions
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Figure 4.3 – The median mean square error δB of the filter coefficient estimates (4.11) for the
truncation regularsation (“trunc”) and Tikhonov regularsation method (“Tikh”), displayed as a
function of the time series length T ∈ {300,600,900,1200} and the the maximum number of
the observation locations N max ∈ {10,20,40,60, inf} where “inf” stands for the fully observed
functional data. The top and the bottom row show the results for the filter coefficients of the
shape A, defined in (4.9), and the shape B, defined in (4.10), respectively.

{Ẑ copy
t }T

t=1 from the sparsely observed {X copy
t }T

t=1 and compare with the true values {Z copy
t }T

t=1.

The prediction relative mean square error is then defined

δpr ed = 1

T

T∑
t=S

(
Ẑ copy

t −Z copy
t

)2

var(Z0)
. (4.12)

Moreover, we include the prediction error of the oracle estimator that assumes that both the

dynamics of the regressor time series {X t }t∈Z and the filter coefficients {Bk }k∈Z are known.

The oracle estimator completes the steps 3 and 4 of the algorithm of Section 3.2.2 where

the estimates {R̂ X
h (·, ·)}h∈Z and {B̂tr unc

k }k∈Z (or {B̂T i kh
k }k∈Z) are replaced by the true values of

{R X
h (·, ·)}h∈Z and {Bk }k∈Z.

4.2.4 Results of numerical experiments

Due to the large number of simulation settings considered, we display the results in an

aggregated form. Figures 4.3 and 4.5 present the results for the filter coefficient estimation

and the prediction performance as a function of the sample size parameters T and N max .

The results are aggregated over both types of simulated dynamics of {X t }t , i.e. the functional

autoregressive process ã(FAR(1)) and the functional moving average process ã(FMA(4)), and

over all three regression schemes (reg1), (reg2), and (reg3). Figures 4.4 and 4.6, on the other

hand, present the results for different the simulated dynamics of the process and the different

considered regression schemes separately, aggregated over all time series length parameters

T ∈ {300,600,900,1200} and all sparse observation regimes N max ∈ {10,20,40,60}.
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Figure 4.4 – The median mean square error δB of the filter coefficient estimates (4.11) for the
truncation regularsation (“trunc”) and Tikhonov regularsation method (“Tikh”) with respect
to the simulated dynamics of {X t }t and the regression scheme. The results are aggregated
over all sparse observation setups T ∈ {300,600,900,1200} and N max ∈ {10,20,40,60}. The left
and the right figures show the results for the filter coefficients of the shapes (4.9) and (4.10)
respectively.
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Figure 4.5 – The median mean square prediction error δpr ed (4.12) for the truncation regulari-
sation (“trunc”), Tikhonov regularisation method (“Tikh”), and the oracle estimator, displayed
as a function of the time series length T ∈ {300,600,900,1200} and the the maximum number
of the observation locations N max ∈ {10,20,40,60, inf} where “inf” stands for the fully observed
functional data. The top and the bottom row show the results for the filter coefficients of the
shapes (4.9) and (4.10) respectively.
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Figure 4.6 – The median mean square prediction error δpr ed (4.12) for the truncation regu-
larisation (“trunc”), Tikhonov regularisation method (“Tikh”), and the oracle estimator with
respect to the simulated dynamics of {X t }t and the regression scheme. The results are aggre-
gated over all sparse observation setups T ∈ {300,600,900,1200} and N max ∈ {10,20,40,60}.
The left and the right figures show the results for the filter coefficients of the shapes (4.9) and
(4.10) respectively.

An inspection of Figures 4.3 and 4.5 reveals that there is no clear winner between the truncation

and the Tikhonov methods. The numerical experiments with the shape (A) defined by (4.9)

show that the Tikhonov method dominates the truncation method in all considered settings

for the estimation of the filter coefficients. The simulations with the shape (B) defined by

(4.10) yield the opposite behaviour: the truncation regularisation prevails. We attribute this

dichotomy to the following reasons:

• The shape (B) corresponds to the leading eigenfunction of the covariance kernel (4.7).

Even though the functional regression is performed in the spectral domain, the fre-

quency response function Bω is still well aligned with the first eigenfunction of F X
ω

and therefore it is enough to cut off after the first eigenvalue, thus favouring truncation

regularisation. See Figure 4.7 to visualise the alignment in the spectral domain.

• The shape (A) corresponds to the fourth eigenfunction of the covariance kernel (4.7).

Moreover the fourth eigenvalue is tied with the fifth and the sixth one. This structure is

preserved also in the spectral domain, c.f. Figure 4.7. Since the Tikhonov regularisation

does not discard the eigenspace corresponding to any of these eigenvalues, it achieves

lower estimation error in this non-aligned case. Moreover, the Tikhonov regularisation

enjoys the advantage of being stable to spectral eigenvalue ties (Hall and Horowitz, 2007;

Pham and Panaretos, 2018).

• Note that the shape (A) is generally more difficult to estimate than shape (B). This is not

surprising because the signal in the fourth (or higher) eigenfunction is much weaker

than in the first one.

There is no notable difference in the difficulty of estimation between the two simulated

dynamics of the regressor time series {X t }t , i.e. the functional autoregressive process ã(FAR(1))

and the functional moving average process ã(FMA(4)). The considered regression schemes do
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Figure 4.7 – Left: The six leading eigenvalues λω1 , . . . ,λω6 of the spectral density operator F X
ω

as a function of the frequency ω ∈ [−π,π]. Center: The norm percentage of the frequency
response function Bω for the shape (A), the simulated process (FAR(1)), and the regression
scheme (reg1) explained by the eigenspaces corresponding to the six leading eigenvalues as a
function of the frequency ω ∈ [−π,π]. Right: The same as the central plot but for the shape
(B).

not reveal any surprises: the longer the lagged dependence is, the more difficult estimation

becomes. Therefore the (reg3) scheme produces the largest errors while (reg1) produces the

lowest.

The prediction error of the response process δpr ed , which is presented in Figures 4.5 and 4.6,

follows the same conclusions as the estimation of the filter coefficients. The shape (A) is more

challenging to predict and the Tikhonov regularisation is seen to be preferable not only for

estimation, but for prediction too. The shape (B) is easier to predict using the truncation

regularisation. The predictions by either of the two techniques, feature twice to thrice greater

prediction error δpr ed than the oracle estimator, i.e. the prediction assuming the model of the

data to be known and the uncertainty coming only from sparse noisy sampling regime.

4.3 Data analysis: fair weather electricity in Tashkent, Uzbekistan

The atmosphere is weakly conductive due to the ionization of molecules and this conductivity

can be continuously measured by a variable called atmospheric electricity (Tammet, 2009).

The ionization is the outcome of complex physical-chemical processes that are subject to the

current weather conditions. Since unfair weather conditions affect and alter these processes

(Israelsson and Tammet, 2001), climatologists are interested in analysing the atmospheric

electricity variable only under fair weather conditions (the definition of fair weather is given in

this section). The analyses under fair weather conditions are of particular interest because the
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Figure 4.8 – Overview of the fair-weather atmospheric electricity time series measured in
Tashkent, Uzbekistan. All fair-weather hourly measurements (blue line) accompanied by
monthly means (brown crosses, brown dotted line) and yearly means (yellow crosses, yellow
solid line).

fair-weather electricity variable is a valuable source of information in global climate research

(Tammet, 2009) as well as with regards to air pollution (Israelsson and Tammet, 2001).

Tammet (2009) published an open-access database of atmospheric electricity time series

accompanied by some meteorological variables. Most of the data come from weather stations

across the former Soviet Union states and their data quality is assessed as high (Tammet, 2009).

In this example, we analyse the time series of one weather station, namely that measured at

the station near Tashkent, Uzbekistan. The atmospheric electricity was recorded between

the years 1989 and 1993 in the form of hourly averages. Besides the atmospheric electricity,

a number of other meteorological variables were measured, of which we use two: the wind

speed and the cloudiness.

The definition of the fair-weather criteria is not simple and can often be relatively subjective

(Xu et al., 2013). Inspired by criteria in climatology research (Xu et al., 2013; Israelsson and

Tammet, 2001), we define the weather conditions as fair if the particular hourly measurement

satisfies all of the following conditions:

• the wind speed is less than 20km/h,

• the sky is clear (the total cloudiness variable is equal to 0),

• the atmospheric electricity E satisfies 0 < E < 250V /m.

Because of the above stated fair-weather criteria (and some genuinely missing data in the

database), the resulting fair-weather electricity time series is, in fact, unevenly sampled time

series. Nevertheless, we assume there exists an underlying continuous truth, corresponding

to the atmospheric electricity if the weather was fair. The latent process of fair-weather
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Figure 4.9 – Example of atmospheric electricity profiles over 4 consecutive days. The fair-
weather atmospheric electricity measurements are highlighted as red points. The unfair-
weather measurements (blue crosses) are not used for the analysis. Some hourly measure-
ments are genuinely missing in the data (e.g. 9 AM on day 8) and we treat them as missing
completely at random.

atmospheric electricity is considered smooth and its values are observed only under the fair-

weather conditions, possibly with a deviation from the truth (noise). Based on the above

discussed natural mechanisms, we justify the assumption that the censoring protocol is

independent of the underlying fair-weather atmospheric electricity process.

The underlying fair-weather atmospheric electricity process is a scalar continuous time series.

Previous research (Hörmann and Kokoszka, 2010; Hörmann et al., 2015a, 2018; Aue et al., 2015)

has demonstrated the usefulness of segmenting a continuous scalar time series into segments

of an obvious periodicity, usually days, and thus constructing a functional time series. A key

benefit of this practice is the separation of intra-day variability and the temporal dependence

across the days while preserving a fully non-parametric model.

We use the same approach in our analysis as well. We segment the (latent) continuous

time series into days and consider each day as an unobserved (latent) functional datum

defined on [0,24]. We place the hourly observations in the middle of the hour interval, i.e.

0.5,1.5,2.5, . . . ,23.5. Because of the above fair-weather criteria, the constructed fair-weather

atmospheric electricity time series falls into the sparsely observed functional time series

framework defined in Subsection 2.1.1.

Figure 4.8 presents an overview of the considered fair-weather atmospheric electricity time se-

ries accompanied by monthly and yearly means. Figure 4.9 provides a zoomed-in perspective

into a stretch of data in 4 consecutive days.

In summary, the fair-weather atmospheric electricity functional time series has the following

features:

• the data are recorded over 5 years, therefore the time horizon of the functional time

series is T = 1826 (days),
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Figure 4.10 – Left: The periodicity identification plot with L = 1000. The labels at first 4
peaks convert the frequency into the corresponding periodicity. Right: Zoom-in into low
frequencies.

• there are 1118 days (61 %) have at least 1 fair-weather measurement,

• there are 251 gaps in time series (we define a gap as a stretch of days where there is no

measurement within these days) with the average length of 2.8 days,

• there are 12997 fair-weather measurements in total, i.e. 7.1 on average per day, or 11.6

on average per day among the days with at least one measurement.

The statistical question raised is the following. Benefiting from the separation of intra-day

variability and temporal dependence across the days, can we fit an interpretable model of the

process dynamics? Additionally, we aim to recover the latent functional data, fill in the gaps in

the data, remove the noise, and construct confidence bands.

We analyse the fair-weather atmospheric electricity data by the means of Chapter 2. After

removing the intra-day dependence by subtracting the estimate µ̂(·) we inspect the periodicity

identification chart introduced in Section 2.1.4. Specifically, we construct the said chart with

L = 1000 and plot the trace of the estimated spectral density operator against frequencies

ω ∈ (0,π). We identify the peaks of this plot as suggesting the presence of periodicities in the

corresponding frequencies.

The largest peak in Fig. 4.10 clearly corresponds to yearly periodicity together with a half-year

harmonic. The peak is not exactly at 365 days because of the combination of the following

factors: discretisation of the frequency grid, numerical rounding, and most likely the slight

smoothing by L = 1000.

A yearly periodicity is discovered, we opt to model it deterministically, as is usual in (scalar)

time series. Thus we propose the model

Yt j =µ(xt j )+ st +X t (xt j )+εt j (4.13)

where Yt j are the observed measurements at locations xt j , µ(·) is the intra-day mean, st is

yearly seasonality adjustment, and the “residual” process X t (·) is a zero-mean stationary

weakly-dependent functional time series. The assumptions of an additive relation of µ(·) and

st as well as the stationarity of X t (·) were justified by exploratory analysis.
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Figure 4.11 – Left: The estimated intra-day mean µ̂(·). Right: the estimated yearly seasonality
adjustment ŝt

We fit the model (4.13) in the following order. First, we estimate µ(·) by a local-linear smoother.

We expect the mean function to be periodic and assume µ(0) = µ(24). Thus we modify the

estimator (2.2) to measure the distance between x and xt j as if the endpoints of the interval

[0,24] were connected. Having estimated µ̂(·), we estimate the yearly periodic seasonality

adjustment st again by a local-linear smoother, again by assuming continuity between first day

and last day of the year. The smoothing parameter was chosen by leave-one-year-out cross-

validation. Figure 4.11 presents the estimates µ̂(·) and ŝt . We observe that the intraday mean

exhibits two peaks at around 4 a.m. and 3 p.m. The yearly seasonality is almost sinusoidal

with low values in the spring and summer and high values in the autumn and winter.

Once the first-order structure given by µ(·) and st is estimated, we calculate the raw covari-

ance (2.3) by subtracting both µ̂(x) and ŝt . The lag-0 covariance kernel R0(·, ·) is estimated

by (2.4). For the estimation of the components of (2.7), namely V̂ (·) and R̄0(·), we use the

same periodicity adjustment as for µ̂(·) because we expect the marginal variance (with and

without the ridge contamination) to be continuous across midnight. For illustration and

interpretation purposes we estimate also the lag-1 autocovariance R1(·, ·) by (2.8). Figure 4.12

shows the surface plots of these estimates. An interesting element of the estimated lag-0

covariance kernel is the peak at afternoon hours signifying higher marginal variance of the

fair-weather atmospheric electricity in the afternoon hours. The estimated lag-0 correlation

kernel demonstrates that the observations measured close to each other are highly correlated

and the correlation diminishes as the distance grows. The estimated lag-1 autocovariance and

autocorrelation kernels show that the correlation between two consecutive days is positive.

The lag-1 autocorrelation kernel features a lifted-up surface up to correlation 1 in the east-

ern corner of the surface plot. This is expected since the late hours of one day are strongly

correlated with early morning hours of the following day.

In order to estimate the spectral density consistently, we need to select a moderate value of

Bartlett’s span parameter L. Plugging in the size of the dataset into the formula (2.52) we set

L = 19. Figure 4.13 presents a few views on the estimated spectral density kernels.

Once the spectral density is estimated, we apply the functional recovery method of Section

2.2 and estimate the unobserved functional data. The method produces estimates of intra-

day profiles of fair-weather atmospheric electricity that can be interpreted as the predicted
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Figure 4.14 – Fair-weather atmospheric electricity hourly measurements (red points) over 4
consecutive days; functional recovery of the latent smooth fair-weather atmospheric electricity
process (blue); 95%-simultaneous confidence bands for the functional data of the said latent
process (yellow).

atmospheric electricity if the weather was fair at given time, without the modelled noise.

As a by-product, the method fills in the gaps in the data (the stretches of days without any

measurement). Another output is the construction of confidence bands (under the Gaussianity

assumption). Figure 4.14 presents 4 consecutive days with estimated (noiseless) fair-weather

atmospheric electricity together with 95%-simultaneous confidence bands. It is important to

note that these bands are supposed to cover the assumed smooth underlying functional data,

not the observed data produced by adding measurement errors to the smooth underlying

process.

The approach used in this case study follows from the aforementioned meteorological method-

ology suggesting to discard the atmospheric electricity measurements if the fair-weather

conditions are not met. One could ask if there is a way to incorporate the unfair-weather atmo-

spheric electricity measurements, perhaps by defining the weights to each observation related

to the magnitude in which the fair-weather conditions are broken. Such set-up would then

rely on weighted smoothers introduced in Subsection 2.6.2. However, such analysis is wrong.

The atmospheric electricity measurements do not become less reliable as the fair-weather

conditions are not met, it is a bias due to different ionisation and radiation processes that is in-

troduced. The incorporation of unfair-weather measurements is a question on meteorological

research and is out of scope of this thesis.

4.4 Data analysis: visibility data in Wank, Germany

In this section we illustrate the proposed methodology on measurements recorded (Tammet,

2009) at the scientific observatory located at mount Wank located in southern Germany.

We remark that this analysis should be seen primarily as an example of the type of data

that fall in our framework, rather than a complete data analysis, since there are presumably

further important covariates that otherwise should be included. The considered period is

January 1, 1977 – December 31, 1979 consisting of T = 1095 days. In particular, we analyse the

interdependence of three time series:
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• Atmospheric electricity. The ionisation processes in the atmosphere causes the air to

be conductive and the conductivity can be measured in terms of electric potential

difference per distance, expressed in volts per meter (V /m). The atmospheric elec-

tricity is an important indicator for climate research (Tammet, 2009) and air pollution

(Israelsson and Tammet, 2001). However, the atmospheric electricity can be reliably

measured only under fair-weather conditions, otherwise the atmospheric ionisation

processes are changed and a different quantity is recorded. The standard meteorological

methodologies (Xu et al., 2013; Israelsson and Tammet, 2001) suggest to discard the

observations under unfair conditions and analyse only those observations recorded

under fair weather. Given these guidelines, we take into account only those hourly

observations of atmospheric electricity where the wind speed was below 20km/h and

the atmospheric electricity E itself satisfies 0 < E < 250V /m. The meteorological com-

munity also advocate discarding the data based on cloud coverage (Xu et al., 2013;

Israelsson and Tammet, 2001), but, unfortunately, the mount Wank dataset (Tammet,

2009) does not contain cloud coverage information.

Based on the above criteria, we eventually retain an unevenly sampled scalar time series

which we consequently decatenate into individual days. This technique is useful (Aue

et al., 2015; Hörmann et al., 2015a; Hörmann and Kokoszka, 2010; Hörmann et al., 2018)

in separating the intra-day variability and the temporal dependence across days. Thus

we arrive at a sparsely observed functional time series, where the latent functional data

are interpreted as the “atmospheric electricity had the weather been fair”.

In what follows, we denote the fair weather electricity time series as {X (E)
t }T

t=1. The time

series features total of 18326 measurements or 16.7 measurement per day on average.

• Temperature. The temperature was recorded hourly at Wank over the considered period.

First, we remove the yearly periodicity in the data, then divide the time domain into

individual days, and finally convert the hourly observations into functional data using

the cubic B-splines with knots at the hourly measurements. The produced fully observed

functional time series is denoted as {X (τ)
t }T

t=1. The time series includes 21 missing days

which we treat as missing completely at random.

• Recorded visibility. The reported visibility (in kilometres) was recorded hourly at a range

of locations. We define the scalar response time series {Zt }T
t=1 as the average visibility

on the given day. The time series includes 42 missing values which we treat as missing

completely at random.

Since the goal of our analysis is to illustrate the lagged regression methodology and compare

the Tikhonov and the truncation regularisation, we split the response time series into two

parts, the training component Z1, . . . , Z822 and the test component Z823, . . . , Z1095 consisting of

roughly 75% and 25% of the observations respectively. We fit three models on the entire time

span of {X (E)
t }T

t=1 and/or {X (τ)
t }T

t=1 and the training set {Zt }822
t=1:

• Atmospheric electricity model (E). In this model we use the sparsely observed functional
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time series {X (E)
t }T

t=1 as the regressor time series for the response {Zt }T
t=1 exploiting the

methodology outlined in Chapter 3.

• Temperature model (T). This model handles the fully observed functional time series

{X (τ)
t }T

t=1 as the regressor for the response {Zt }T
t=1 using the methodology developed by

Hörmann et al. (2015b).

• Joint model (E+T). Finally this model includes the information from both the sparsely

observed functional time series {X (E)
t }T

t=1 and the fully observed functional time series

{X (τ)
t }T

t=1 to predict the response process {Zt }T
t=1 outlined by the equation

Zt = a + ∑
k∈Z

B(E)
k X (E)

t−k +
∑

k∈Z
B(τ)

k X (τ)
t−k +et (4.14)

which extends the model (3.1) and corresponds to the model discussed in Section 3.3.

Figure 4.15 displays a schematic visualisation of the prediction for a specific day.

We estimated the filter coefficients in all three models. Figure 4.16 displays the estimated filter

coefficients in the joint model (E+T). The filter coefficients estimates in the marginal models

(E) and (T) (not presented here) are very similar to the corresponding filters estimated in (E+T)

thanks to the fact that the time series {X (E)
t }T

t=1 and {X (τ)
t }T

t=1 are essentially uncorrelated.

A first look at Figure 4.16 reveals that truncation-based estimates (depicted via their Riesz-

representers) feature more spikes. This, combined with a worse prediction performance

commented upon later, suggests that the Tikhonov regularisation provides a better fit. There-

fore we comment only on the interpretation of the filter coefficients estimated by the Tikhonov

regularisation. The filter coefficient B(E)
0 is negative, especially in the morning hours, sug-

gesting an obvious interpretation: high atmospheric electricity (which is linked to pollution

(Israelsson and Tammet, 2001)) implies a reduction of visibility. The filter coefficients B(τ)
k

corresponding to the temperature time series reveal an opposite effect. The filters B(τ)
0 and

B(τ)
−1 are positive, therefore high temperatures on the same day and the next day predict a

higher visibility today. We recall that our model is not causal, therefore the filter coefficient

B(τ)
−1 indeed predicts an effect backwards in time.

Table 4.4 – The mean square prediction error (MSE) and R2 coefficients of determination of
each of the model with either truncation or Tikhonov regularisation based estimation of the
filter coefficients. Both the MSE’s and the R2 coefficients were determined on the test partition
of the response {Zt }1095

t=823

Model Truncation Tikhonov
MSE R2 MSE R2

(E) 541 0.14 481 0.23
(T) 407 0.35 379 0.39

(E+T) 392 0.37 335 0.46

140



4.4. Data analysis: visibility data in Wank, Germany

0 8 16 24

-100

0

100

200

ob
se

rv
ed

 a
tm

os
ph

er
ic

el
ec

tr
ic

ity
 E

 (
V

/m
) 

(c
ro

ss
es

);
es

tim
at

ed
 fu

nc
tio

na
l T

S
m

ea
n 

ce
nt

re
d 

(s
ol

id
 li

ne
) t=845

0 8 16 24

-100

0

100

200
t=846

0 8 16 24

-100

0

100

200
t=847

0 8 16 24

-100

0

100

200
t=848

0 8 16 24

-100

0

100

200
t=849

0 8 16 24

-100

0

100

200
t=850

0 8 16 24

-100

0

100

200
t=851

2.5      -3.5       6.9     -19.6      0.2      -1.1       0.0   

-6.3    -22.6    -28.2    -13.1    -19.6     -4.1      1.1
= = = = = = =

= = = = = = =

41.3

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

in
n
e
r

p
ro

d
u
ct

0 8 16 24

-1

-0.5

0

0.5

1

B(E)-3

0 8 16 24

-1

-0.5

0

0.5

1

B(E)-2

0 8 16 24

-1

-0.5

0

0.5

1

B(E)-1

0 8 16 24

-1

-0.5

0

0.5

1

B(E)0

0 8 16 24

-1

-0.5

0

0.5

1

B(E)1

0 8 16 24

-1

-0.5

0

0.5

1

B(E)2

0 8 16 24

-1

-0.5

0

0.5

1

es
tim

at
ed

 fi
lte

r 
co

ef
fic

ie
nt

s
fo

r 
at

m
os

hp
er

ic
 e

le
ct

ric
ity

B(E)3

0 8 16 24

-10

0

10

in
tr

ad
ay

 te
m

pe
ra

tu
re

 T
 (

°C
)

m
ea

n 
ce

nt
re

d
ye

ar
ly

 p
er

io
di

ci
ty

 r
em

ov
ed

t=845

0 8 16 24

-10

0

10

t=846

0 8 16 24

-10

0

10

t=847

0 8 16 24

-10

0

10

t=848

0 8 16 24

-10

0

10

t=849

0 8 16 24

-10

0

10

t=850

0 8 16 24

-10

0

10

t=851

0 8 16 24
-4

-2

0

2

4
B( )-3

0 8 16 24
-4

-2

0

2

4
B( )-2

0 8 16 24
-4

-2

0

2

4
B( )-1

0 8 16 24
-4

-2

0

2

4
B( )0

0 8 16 24
-4

-2

0

2

4
B( )1

0 8 16 24
-4

-2

0

2

4
B( )2

0 8 16 24
-4

-2

0

2

4

es
tim

at
ed

 fi
lte

r 
co

ef
fic

ie
nt

s
fo

r 
te

m
pe

ra
tu

re

B( )3

Figure 4.15 – A schema demonstrating prediction of the response time series at time t = 848 in
the joint model (E+T). Recall that because the response {Zt } is scalar, the filter coefficients B(E)

k

and B(τ)
k are functionals and thus can be viewed as inner products with fixed functions which

are visualised here. Top part of the figure: the contribution of the atmospheric electricity,
bottom part: the contribution of the temperature.
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Figure 4.16 – The estimated filter coefficients for lags k ∈ {−3,−2,−1,0,1,2,3} for the joint
model (E+T). Solid line: the estimates by Tikhonov regularisation, dashed line: the estimates
by truncation regularisation, dotted line: the reference line for zero. Top row: the filter
coefficients B(E)

k for the atmospheric electricity, bottom row: the filter coefficients B(τ)
k for

the temperature time series

The results in Table 4.4 represent the prediction performance of the considered models. We

calculate the mean square error (MSE) on the test partition {Zt }1095
t=823 and calculate the R2

coefficient of determination. The table reveals that the Tikhonov regularisation delivers a

better prediction performance for all considered models.

4.4.1 Discussion of the regularisation methods

Chapter 3 presented the methodology for the functional lagged regression problem where

the regressor time series is observed sparsely and with noise contamination. We have shown

how to estimate the (cross)-spectral density using surface smoothers. The estimation of the

spectral transfer function and consequently the filter coefficients using the estimated (cross)-

spectral density are ill-posed problems and therefore require regularisation. We considered

two regularisation strategies, namely spectral truncation and Tikhonov regularisation, and

compared them on a simulation study and the analysis of a data set. In the following we

summarise some observations on the differences, strengths, and weaknesses of the two

approaches.

The simulation study presented in Section 4.2 illustrates that neither of the two regularisation

method can dominate the other. In one of the considered scenarios the spectral transfer

function Bω is well-aligned with the leading eigenfunction of the spectral density operator

F X
ω thus being estimated better by means of truncation. In the other considered setting, Bω is

explained by the fourth, the fifth and the sixth leading eigenvalue of F X
ω , which are moreover
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nearly tied, resulting in a more challenging estimation task where the stability of Tikhonov

regularisation to ties leads to better results than truncation.

The data analysis illustration given in Section 4.4 analysed the dependence of visibility on

atmospheric electricity and temperature. The comparative analysis of the the two regulari-

sation methods revealed that the estimates obtained by the Tikhonov regularisation feature

better predictive performance. Moreover we found that the filter coefficients estimated by the

Tikhonov regularisation were easier to interpret. At least in this application setting, the spectral

transfer function Bω does not seem to be well-aligned with the spectral density operator F X
ω .

We conclude that both of the regularisation techniques should belong to the statistician’s

repertoire as neither can dominate the other. However, if we were to choose only one to

broadly recommend, this would be the Tikhonov approach, as it seems more robust to “spectral

misalignment" and eigenvalue ties, and its theoretical treatment requires fewer assumptions.

4.5 Data analysis: US Treasury yield curve and macroeconomics

The example in this section constitutes a case study analysing the dependence of the US Trea-

sury yield curve on macroeconomic variables. Aim at statistical description of the dependence,

we consider the lagged regression model introduced in Chapter 3. The US Treasury yield curve

is treated as a sparsely observed functional time series response while the considered macroe-

conomic variables constitute a multivariate time series predictor. Our non-parametric analysis

confirms previous findings established under parametric assumptions, namely a strong im-

pact of the federal funds rate on the short end of the yield curve and a moderate effect of the

annual inflation on the longer end of the yield curve.

The considered data, the US Treasury yield curve between the years 1985 and 2000 and the

macroeconomic variables, are visualised in Figures 4.17 and 4.18.

4.5.1 Introduction: on yield curve modelling

The yield curve is a collection of yields corresponding to traded debt contracts indexed by vary-

ing maturity length, ranging from 1 month to 30 years, whose construction is well explained

by Filipovic (2009). As an important indicator of the financial sector health, the yield curve is

watched closely by traders and investors alike in order to gain understanding about the condi-

tions in financial markets and to discover investment opportunities, and by economists whose

analyses provide conclusions about the economic conditions of the national and global econ-

omy. Therefore the statistical understanding of the yield curve dynamics is important. The

statistical analysis of yield curves is traditionally split into two perspectives: the no-arbitrage

approach and the econometric descriptive modelling.

The no-arbitrage approach aims to perfectly describe the market data by precisely fitting the

term structure in such way that no arbitrage can exist. This fact is quintessential for derivatives
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Figure 4.17 – The surface on both the left and the right plots displays the evolution of the
US Treasury yield curve between the years 1985 and 2000, interpolating the observed yields
linearly. Left: the black curves highlight the temporal evolution of the yields at the observed
maturities τ ∈ {1/12,6/12,1,2,3,5,7,10,30} (years). Right: the black curves constitute the
linearly interpolated yields at any given time point, thus plotting the individual yield curves.
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Figure 4.18 – The three macroeconomic time series considered in our analysis. Blue: Annual
change in industrial production [%]. Red: Annual inflation rate [%]. Yellow: US federal funds
target rate [%].
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pricing formulae that are ultimately based on the same no-arbitrage assumption. Notable

contributions in no-arbitrage yield curve modelling include Vašíček (1977); Hull and White

(1990); Heath et al. (1992); Cox et al. (2005).

The econometric perspective of yield curve analysis, which we are going to adopt in this case

study, aims at a statistical description of the temporal yield curve evolution. Duffee (2002)

argued that while the no-arbitrage models admit a good intra-curve fit, they do not depict

well the temporal development of the yield curve and such description is necessary for the

modelling of the link with the macroeconomy. In their seminal work, Diebold and Li (2006)

extended the Nelson-Siegel factor model (Nelson and Siegel, 1987) to model the yield curve

dynamics. Their state-space framework admits three latent factors, interpreted as level, slope,

and curvature, and turned out to be useful for the yield curve forecasting in a single market as

well as in the interaction analysis among numerous markets (Diebold et al., 2008). Moreover,

the framework showed the interaction between the US macroeconomic variables and the US

Treasury yield curve (Diebold et al., 2006), notably that a positive increase of the federal funds

rate, the target rate set by the US Federal Reserve, almost immediately pushes up the slope

factor of the yield curve, and a positive increase of the annual inflation influences largely the

long-run level of the yield curve. Similar findings have been also demonstrated by Rudebusch

and Svensson (1999); Kozicki and Tinsley (2001).

Following the parametric model of Diebold and Li (2006) and its aforementioned variants,

the yield curves dynamics have been further explored by the non-parametric functional

time series apparatus in the few following articles. Hays et al. (2012) estimated the yield

curves dynamics by functional dynamic factor framework where the factor loading curves are

estimated non-parametrically using smoothness penalisation, with emphasis oon the factor

loading curves interpretation and yield curve forecasting. Kowal et al. (2017) approached the

yield curve modelling. fitting functional autoregressive process by the means of Bayesian

hierarchical Gaussian models. They derived a Gibbs sampler for inference and forecasting,

and conducted an extensive comparative study of yield curve forecasting methods. Finally,

Sen and Klüppelberg (2019) estimated the lag-0 covariance operator of the yield curve by

the local-polynomial smoothers, estimated the functional principal components scores by

the PACE methodology (Yao et al., 2005a) and fitted a vector autoregression to the principal

component scores.

In our analysis, we consider the novel spectral domain tools for the functional time series

modelling established in this thesis. We consider the US Treasury yield curve as sparsely

observed functional time series and estimate the cross-dependence between this data set and

the US macroeconomic variables using the local-polynomial smoother techniques developed

in Chapter 2. We model the dependence between the yield curve and the macroeconomic

variables by the means of the functional lagged regression (Chapter 3) and estimated the

filter-based regression coefficients. The results of our analysis confirm the findings of Diebold

and Li (2006) obtained under parametric assumptions. This fact provides with additional

supporting argument in favour of the Nelson-Siegel parametric family and might allow for the
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use of the aforementioned parametric models with greater confidence.

4.5.2 Nonparametric estimation and economic implications

We assume the existence of the yields running across the considered interval of maturities

[0,30] and denote this curve as Zt at time t . The collection of this latent curves, {Zt }t is

treated as a sparsely observed functional time series. Concretely, Zt (τ),τ ∈ [0,30] is considered

as a random element in L2([0,30];R). Moreover we assume that the sample paths of Zt are

continuous and smooth, and that the functional time series {Zt } is stationary, weak-dependent,

and with finite second moments. The yield curves are modelled by the observation equation

(2.1), that is we assume

yt (τ j ) = Zt (τ j )+εt j , j = 1, . . . , N , t = 1, . . . ,T,

where yt (τ j ), j = 1, . . . , N , are the quoted marked-data yields at month t , the independent

identically distributed zero-mean additive perturbations εt j constitute the deviation of ob-

served yield from the smooth latent curves Zt , and T = 192 is the number of months in our

considered interval ranging from 1985 until 2000.

Denote the vector of the macroeconomic variables at time t by X t ∈ R3 and assume that it

is a stationary weak-dependent vector time series with finite second moments, and that it

admits the spectral density matrix FX
ω ∈C3×3 forω ∈ [−π,π]. In order to study the impact of the

macroeconomic variables {X t } on the yield curve evolution, we consider a lagged regression

model

Zt = a + ∑
k∈Z

Bk X t−k +et , t ∈Z,

where a ∈ L2([0,30];R) is the intercept, Bk are linear operators from R3 to L2([0,30];R), and

{et } is the model error consisting of independent identically distributed random elements in

L2([0,30];R) that are independent of the vector time series {X t }. The primary object of interest

of our analysis are the filter coefficients Bk as they model the link between the economy and

the yield curves. The rest of this case study is devoted to their estimation.

Starting with the spectral analysis of the macroeconomic variables {X t } time series, we estimate

the spectral density matrices by the Bartlett’s formula

F̂X
ω = 1

2π

L∑
h=−L

WhR̂X
h e− ihω, ω ∈ [−π,π]

where Wh = (1− |h|)/L for |h| < L, and zero otherwise, are the Bartlett’s weights and R̂X
h is

the standard empirical lag-h autocovariance matrix for |h| < L. We set the Bartlett’s span

parameter L = dp192e = 14. Figure 4.19 visualises the estimated spectral density matrices.

The estimated shape of the spectral densities is typical for autoregressive processes with the

autoregressive parameter being close to one. This observation might be the first indication
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Figure 4.19 – A visualisation of the estimated spectral density matrices {F̂X
ω } corresponding to

the macroeconomic variable time series {X t }. Top and center rows: The real and the imaginary
parts of the empirical spectral density matrix F̂X

ω evaluated at six different frequencies. Bottom:
The marginal spectral densities of the individual macroeconomic variables which coincide
with the diagonal elements of the spectral density matrices {F̂X

ω }. The dotted vertical lines
denote the frequencies visualised above.

that the parametric model of Diebold et al. (2006), in particular the autoregressive model for

the temporal evolution, seems to be provide an appropriate statistical fit.

Secondly, we estimate the mean yield curve defined as µZ (τ) = E [Zt (τ)] , τ ∈ [0,30] by the

local linear smoother (2.2) with the following modification. Because of the fact that the

observed maturities τ1, . . . ,τJ are concentrated rather on the left-hand side of the interval

[0,30], we redefine the maturities τ̃ j = ( j −1)/(J −1)∗30 for j = 1, . . . , J . The numbers τ̃1, . . . , τ̃J

constitute an equidistant partition of [0,30], therefore a local linear line smoother on the

scatter-plot (τ̃ j , yt (τ j )), j = 1, . . . , J , t = 1, . . . ,T is expected to perform better. Figure 4.20 shows

the estimated mean yield curve µZ .

Thirdly, we estimate the cross-spectral density {F Z X
ω } of the functional time series {Zt } and

the vector time series {X t } by the local liner line smoother by the methods of Subsection (2.4.2)
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Figure 4.20 – The estimated mean yield curve {Zt } (the black line) obtained by the local-linear
line smoother. The data clouds of individual colours constitute the jittered yields at given
maturity.

where we use the same transformation for the maturities in order to have an equidistant

partition of [0,30]. The Bartlett’s span parameter is again set by L = dp192e = 14. Figure 4.21

visualises the estimated cross-spectral density operators {F̂ Z X
ω }.

Finally, the inversion of the relation

F Z X
ω =B(ω)FX

ω , ω ∈ [−π,π],

where {B(ω)}ω∈[−π,π] is the frequency response function between {Zt } and {X t }, yields the

estimator

B̂(ω) = F̂ Z X
ω

(
F̂X
ω

)−1
, ω ∈ [−π,π].

Because the regressor space R3 is finite dimensional and FX
ω is positive definite, the inversion

of F̂X
ω is well-posed and the regularisation is not required. Integration of B̂(ω) back into the

temporal domain reveals the estimates of the filter coefficients

B̂k = 1

2π

∫ π

−π
B̂(ω)e ikωdω, k ∈Z.

Figure 4.22 shows the estimates of the filter coefficients B̂k for k =−3,−2, . . . ,3. The interpreta-

tion of the estimated filter coefficients is the following:

• The changes of the macroeconomic variables have only imminent impact on the yield

curve, the impact is not delayed.

• The industrial production index (IP) has minimal impact on the yield curves, neverthe-

less a positive increase of the industrial production seems to increase the yield curve at

the shortest of maturities by a tiny bit.

• The annual inflation (INF) seems to affect the yield curve more. Concretely, an increase

of the inflation results into the increase of the yield curve at higher maturities but hardly

affects the short maturities.

• The federal funds rate (FFR) is linked with the yield curve the strongest among the
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Figure 4.21 – The estimated cross-spectral density {F̂ Z X
ω } between the yield curves time

series {X t } and the economic variables time series {Zt }. For fixed ω ∈ [−π,π], the operator
F̂ Z X
ω :R3 → L2([0,30];C) can be visualised component wise for each macroeconomic variable

separately; the figure displays the surfaces (ω, x) 7→ F̂ Z X
ω v ∈ C where we plug in v = (1,0,0),

v = (0,1,0), and v = (0,0,1) in order to visualise the cross-spectral density between the yield
curves and the industrial production (first column), inflation rate (second column), and the
federal funds rate (third column) respectively.
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Figure 4.22 – The estimated filter coefficients B̂k for k =−3,−2, . . . ,3. For fixed lag k ∈Z, the
operator B̂k :R3 → L2([0,30];R) can be visualised as a collection of three functions by plotting
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production (IP), inflation rate (INF), and the federal funds rate (FFR) respectively on the yield
curves.
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considered macroeconomic variables. The linkage is the most profound at the short

maturities, in particular the filter coefficient function reaches a value close to one at

short maturities, signifying that the short end of the market driven yield curve follows

closely the federal funds rate. The impact of the federal funds rate is nevertheless

significant also for the longer maturities.

Our conclusions reflect the same findings as Diebold et al. (2006) who studied the macroeco-

nomic interactions with the yield curve using a parametric model, modelling the yield curve

using the Nelson-Siegel parametric family (Nelson and Siegel, 1987; Diebold and Li, 2006) and

assuming a vector autoregressive model of the temporal evolution.

Having estimated the filter coefficients {B̂k }k∈Z allows us to make predictions of the yield curve

based on the macroeconomic variables by the formula

Ẑt (τ) = µ̂Z (τ)+ ∑
k∈Z

B̂k
(
X t−k − µ̂X

)
, t = 1, . . . ,T, (4.15)

where µ̂X = (1/T )
∑T

t=1 X t ∈ R3 is the classical empirical mean of the vector time series {X t }.

Moreover, we impute the data outside of our observation window by the mean value X t := µ̂X

for t < 1 or t > T . This imputation has however a minimal effect as the estimated coefficients

B̂k are close to zero for k 6= 0. By the formula (4.15) we predict the yield curves given the

macroeconomic variables {X t } and compare the prediction with the observed yield for observ-

able maturities. The R2 coefficient of determination of such model evaluation yields a quite

high value of 0.78.

4.5.3 Code availability

The MATLAB code supporting the results of this case study is available as a repository on

https://github.com/tomasrubin/us-yield-curve-macroeconomics.
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5 Spectral simulation of functional time
series

Any methodological development in functional time series will be accompanied by a finite sam-

ple performance assessment of the novel method, given the complexity of the data involved.

Such simulations require the generation of functional time series with prescribed model

dynamics. Despite many new methods being generally applicable to time series (whether

linear or not), their assessments is carried out predominately on simulated data coming from

functional autoregressive moving average (FARMA) processes, typically only functional au-

toregressive (FAR) processes, because their simulation is straightforward in the time-domain

by applying the autoregressive equation sequentially on white noise (or a moving average

of white noise). In order to assess the applicability of a method beyond linear processes,

however, one should aim to cover as broad as possible a range of possible functional time

series dynamics (including non-linear dynamics). This is especially true for methods that

are not specific to linear processes but whose assumptions, theory, and implementation are

more generally valid. Indeed, many functional time series methods (Hörmann et al., 2015a,b;

Zhang, 2016; Tavakoli and Panaretos, 2016) rely on the eigendecomposition of spectral density

operators (the harmonic/dynamic principal components) and present performance trade-offs

that are best captured by their spectral structure. It is thus beneficial to be able to simulate

functional time series specified by means of their spectral density structure.

The objective of this chapter is to develop a general-purpose simulation method that is able

to efficiently simulate stationary functional time series not restricted to the linear class. The

approach is to use the spectral specification of such a time series, by means of its spectral

density operator. The general method, presented in Section 5.1, hinges on a discretisation

and dimension reduction of the functional Cramér representation (Panaretos and Tavakoli,

2013a). It simulates an ensemble of independent complex random elements whose covariance

operators match the designated spectral density operators, and transposes this ensemble

into the time-domain by the means of the (inverse) fast Fourier transform (Cooley and Tukey,

1965). We show that this strategy is particularly effective when the series is defined by means

of the eigendecomposition of its spectral density operator or by filtering a white noise, but

consider various other specification scenarios, too.
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Our functional time series simulation method in the spectral domain is inspired in part by

the methods for scalar and multivariate time series simulation. The original idea of simulat-

ing a signal in the spectral domain and converting it to the time-domain by the inverse fast

Fourier transform seems to be due to Thompson (1973). This approach was further explored

by Percival (1993) who reviewed some variants of the algorithm and addressed some practical

implementation questions, and Davies and Harte (1987) used the method for simulation of

fractionally integrated noise processes. Furthermore, the simulation of multivariate time

series with given spectral density matrices is due to Chambers (1995). However, pushing the

general ideas forward to functional time series is not a matter of simple generalisation of the

multivariate time series simulation methods. The intrinsic infinite dimensionality of func-

tional data calls for the approximate generation of infinite dimensional objects approximated

in finite dimension, which requires optimally reducing dimension (which we implement

either via the Karhunen-Loéve or the Cramér-Karhunen-Loève representation (Panaretos

and Tavakoli, 2013a)) and/or judicious discretisation (pixelisation) of the spatial domain (the

argument of each function). An additional side effect of this, in contrast to the multivariate

case, is that one must pay particular attention that the simulation algorithms scale well as the

discretisation resolution refines and the dimension parameter grows, and these need to be

incorporated in the time complexity assessments.

Our spectral domain simulation method constitutes a general approach, is able to simulate

arbitrary functional time series that are specified in the frequency domain, with additional

computational speed-ups that can be realised when assuming a special structure of the spec-

tral density operators. In particular, simulation of the important FARFIMA(p,d , q) processes

can be much faster in the spectral domain than in the time-domain, while the spectral domain

simulation of FARMA(p, q) processes is competitive with time-domain methods.

The results in this chapter are based on Rubín and Panaretos (2020c).

5.1 Simulation of functional time series with given spectrum

We will present a functional time series simulation method in the spectral domain. We focus

our presentation on functional time series with values in H = L2([0,1],R) whose trajectories

are continuous and whose spectral density operators are integral operators with continuous

kernels, but note that our discussion equally applies to other function spaces constituting

separable Hilbert spaces.

The objective of the simulation is to generate a Gaussian sample X1, . . . , XT for some T ∈N
given the spectral density operator {F X

ω }ω∈[−π,π]. Without loss of generality, we assume that T

is even and we furthermore define the canonical frequencies

ωk =
(2πk)/T, k = 1, . . . ,T /2,

(2π(k −T ))/T, k = T /2+1, . . . ,T.
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5.1. Simulation of functional time series with given spectrum

At a high level, our spectral domain simulation method mimics the discrete approximation of

the Cramér representation (1.35), which boils down to performing the following two steps.

1. Generate an ensemble of independent complex mean-zero Gaussian random elements

Z ′
k , k = 1, . . . ,T /2,T such that

E
[

Z ′
k ⊗Z ′

k

]=F X
ωk

, k = 1, . . . ,T /2,T, (5.1)

and, for k = 1, . . . ,T /2−1, generate independent copies Z ′′
k thereof. Define

Zk =


p

2Z ′
k k = T /2,T,

Z ′
k + i Z ′′

k k = 1, . . . ,T /2−1,

Z ′
T−k − i Z ′′

T−k k = T /2+1, . . . ,T /2−1.

(5.2)

2. By the inverse fast Fourier transform algorithm calculate

X t =
(π

T

)1/2 T∑
k=1

Zk e i tωk , t = 1, . . . ,T. (5.3)

The formula (5.2) ensures that the sample of {Zk } is symmetric and thus inverse Fourier

transform constitutes a real-valued functional time series, as will be proved later in

Theorem 5.1.1.

While the application of the inverse fast Fourier transform in Step 2 of the algorithm is com-

putationally fast, the generation of the complex random elements {Z ′
k } in Step 1, whose

covariance operators may in general have no structure in common, is not a trivial matter, and

is discussed in the next three subsections, for three different specifications of the operator

F X
ωk

. In Subsection 5.1.1, these random elements are generated by their Karhunen-Loève

expansions, therefore essentially enacting the Cramér-Karhunen-Loève representation (1.37).

On the other hand, the filtering specification discussed in Subsection 5.1.2 leverages the

special structure of the filtered white noise spectral density operators to generate the random

elements {Zk } efficiently. This approach is further tailored to simulation of FARFIMA processes

in Subsection 5.1.3.

Before moving on to the specifics, though, we establish that the sample generated by formula

(5.3) will indeed follow the correct dependence structure:

Theorem 5.1.1. Assume either of the two following conditions:

(i) The condition (1.22) holds and thus the spectral density operator {F X
ω }ω∈[−π,π] exists in

the sense of Proposition 1.3.5.

(ii) The weak spectral density operator F X
ω ∈ L1([−π,π],L1(H C)) is continuous with respect

to the norm ‖ ·‖1 on (−π,0)∩ (0,π), and we additionally set F X
0 = 0.
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Chapter 5. Spectral simulation of functional time series

Then, the functional time series sample X = {X t }T
t=1 generated by (5.3) is a real-valued stationary

Gaussian time series of zero mean, and asymptotically admits {Fω} as its weak spectral density

operator when T →∞.

Proof. The Gaussianity, stationarity, and mean-zero properties of X1, . . . , XT are clear thanks

to linearity.

First we show that the functional time series defined by (5.3) is real-valued. For k = 1, . . . ,T /2−1

we have that

Zk e i tωk +ZT−k e i tωT−k = Zk e i tωk +Zk e− i tωk = 2ℜ{Zk e i tωk } ∈R.

For k = T /2 or k = T , the spectral density operator F X
ωk

is real, thus Zk is real-valued, and

e i tω ∈ {−1,1} for ω ∈ {π,2π}. Therefore (5.3) defines a real-valued functional time series.

Let us calculate the lag-h autocovariance operators of (5.3) for h ∈N.

E [X t+h ⊗X t ] = π

T
E

[(
T∑

k=1
Zk e i(t+h)ωk

)
⊗

(
T∑

l=1
Zl e i tωl

)]

= π

T

T∑
k=1

T∑
l=1
E [Zk ⊗Zl ]e i(t+h)ωk e− i tωl (5.4)

We shall calculate the term E [Zk ⊗Zl ] on the right-hand side of (5.4). Firstly, E [Zk ⊗Zk ] = 2F X
ωk

for k ∈ {T /2,T }, and E [Zk ⊗Zl ] = 0 for k ∈ {T /2,T } and l 6= k.

Secondly, fix k ∈ {1, . . . ,T /2}. Then

E [Zk ⊗Zk ] = E[
Z ′

k ⊗Z ′
k + i Z ′′

k ⊗Z ′
k − i Z ′

k ⊗Z ′′
k +Z ′′

k ⊗Z ′′
k

]= 2F X
ωk

,

E [Zk ⊗ZT−k ] = E[
Z ′

k ⊗Z ′
k + i Z ′′

k ⊗Z ′
k + i Z ′

k ⊗Z ′′
k −Z ′′

k ⊗Z ′′
k

]=
= E[

Z ′
k ⊗Z ′

k −Z ′′
k ⊗Z ′′

k

]= 0.

Furthermore, for l ∉ {k,T −k}, we have E [Zk ⊗Zl ] = 0 from the independence of Zk ’s.

We continue with the calculations on (5.4) as

E [X t+h ⊗X t ] = 2π

T

T∑
k=1

F X
ωk

e ihωk . (5.5)

The right-hand side of (5.5) constitutes the Riemann sum of the integral (1.31). The conver-

gence of the Riemann sums (5.5), as T →∞, towards (1.31) is justified by the assumptions (i)

or (ii).

Due to the periodicity of Fourier transform, the values X1 and XT will tend to be similar
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5.1. Simulation of functional time series with given spectrum

which might be an undesirable trait, depending on the application. To overcome this artefact,

Mitchell and McPherson (1981); Percival (1993) propose to simulate a sample of length T̃ = kT

for some integer k ≥ 2 and sub-sample a functional time series of length T .

5.1.1 Simulation under spectral eigendecomposition specification

Perhaps the most direct means to generate (approximate versions of) the random elements

{Z ′
k } considered in Step 1 of the algorithm introduced at the beginning of Section 5.1 is by

means of a finite rank approximation to the spectral density operator at the corresponding

frequencies, appearing in the definition (see equation (5.1)). For a given rank, the optimal

such approximation is obtained by truncating the eigenexpansion (1.36) at that value, thus

using a finite number of the harmonic eigenfunctions and corresponding eigenvalues to

approximately generate {Z ′
k }.

Concretely, denoting {λn(ω)}∞n=1 and {ϕn(ω)}∞n=1 the harmonic eigenvalues and the harmonic

eigenfunctions of the spectral density operator F X
ω at the frequency ω ∈ [−π,π], we may

generate exact versions of Z ′
k by setting

Z ′
k =

∞∑
n=1

√
λn(ωk )ϕn(ωk )ξ(k)

n (5.6)

where {ξ(k)
n } is an ensemble of i.i.d. standard Gaussian real-valued random variables. The

random elements defined by (5.6) clearly satisfy the requirement (5.1). In practice one has to

truncate the series in (5.6) at a finite level, say N . This truncation is optimal in terms of preserv-

ing the second order structure of the functional time series (Proposition 1.3.11) and requires

only a low number of inexpensive operations. If we are to evaluate the functional time series

X on a spatial grid of [0,1] at resolution M ∈N, the simulation requires O(N MT +MT logT )

operations, provided we have direct access to the decomposition (1.36). The O(MT logT )

comes from the inverse discrete Fourier transform (5.3).

When the decomposition (1.36) is not directly available, as for example is the case for the

FARMA(p, q) process with non-trivial autoregressive part, the evaluation of the spectral density

operator (1.63) requires inversion of a bounded linear operator different at each frequency ω.

Unless a special structure of the autoregressive operator is assumed (e.g. as in Example 5.2.2),

the evaluation of this inversion is expensive. One could discretise the operator on a grid of

[0,1]2 and invert the resulting matrix, but this will become slow for dense grids, especially

considering to do it for each frequency ωk , k = 1, . . . ,T /2,T . Moreover, to obtain the harmonic

eigenvalues and eigenfunctions (1.36) one would need to perform the eigendecomposition

at each frequency ωk which is also slow for large matrices. These operations, if performed

on a spatial grid of resolution M ×M , require O(M 3) operations, bringing the overall cost to

O(M 3T +MT logT ). This can be reduced by calling a truncated eigendecomposition algorithm

instead, e.g. the truncated singular value decomposition (SVD) algorithm, and evaluating only

N < M eigenfunctions. This yields computational gains when N ¿ M , namely reducing the
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Chapter 5. Spectral simulation of functional time series

complexity of the said operations from O(M 3) to O(N M 2), and the overall cost to O(N M 2T +
MT logT ).

Though the simulation cost is high when the decomposition (1.36) is not directly available,

the approach still constitutes a general method to simulate a functional time series with

arbitrary spectrum. Example 5.2.1 illustrates a functional time series whose dynamics are

defined through its Cramér-Karhunen-Loève expansion where we show that simulation is

possible even when we do not leverage our knowledge of this expansion, but rather calculate

it numerically.

Finally, it is worth remarking that even though the functions {ϕn(ω)}∞n=1 appearing in (5.6) are

orthonormal for each ω ∈ [−π,π], orthonormality is not required for the correct simulation

of {Z ′
k } by (5.6). In other words, a practitioner can specify a spectral density operator by a

sum similar to (1.36) without insisting on using orthonormal functions, and still achieve rapid

simulation in the spectral domain.

5.1.2 Simulation under filtering specification

The second implementation of Step 1 of the abstract algorithm introduced at the beginning of

Section 5.1 leverages the set-up where a white noise with covariance operator S is plugged

into a filter with given frequency response functionΘ(ω) in which case the spectral density

operator is given directly by the formula

F X
ω = 1

2π
Θ(ω)S Θ(ω)∗, ω ∈ [−π,π], (5.7)

where S is a non-negative definite self-adjoint trace class operator andΘ : [−π,π] →L (H C),

i.e. Θ(ω) is a bounded linear operator on H C for each ω ∈ [−π,π]. We only require that∫ π

−π
‖Θ(ω)‖2

L (H C) dω<∞

and Θ(ω)g = Θ(2π−ω)(g ) for ω ∈ [0,π] and g ∈ H C, which implies that {X } is a station-

ary mean-zero functional time series admitting the weak spectral density operator F X ∈
L1([−π,π],L1(H C)).

The operator S , being a non-negative definite self-adjoint trace class operator, admits the

decomposition

S =
∞∑

n=1
ηnen ⊗en (5.8)

where {ηn} are the eigenvalues and {en} are the eigenfunctions of S .

We may simulate real random elements {Yk }, corresponding the sequence of independent

156



5.1. Simulation of functional time series with given spectrum

identically distributed random variables with the covariance operator S , by setting

Yk =
∞∑

n=1

p
ηnen ξ̃

(k)
n (5.9)

with an ensemble {ξ̃(k)
n } of i.i.d. standard Gaussian random variables. In practice, the sum (5.9)

is truncated at some N ∈N.

If the decomposition (5.8) is unknown, it can be numerically calculated by discretisation of the

kernel corresponding to the operator S on the grid of [0,1]2, say constituting an M×M matrix,

and numerically calculating its eigendecomposition, in which case we may select N = M

eigenvalues and eigenvectors. The advantage of this approach over numerical evaluation of

the spectral density operators at each ω, performing the numerical eigendecomposition of

each spectral density operator, and applying the Cramér–Karhunen–Loève-based simulation

algorithm presented in Subsection 5.1.1 is that the filtered white noise approach requires only

one runtime of this expensive step.

Having defined the random elements {Yk } by (5.9), we define the elements {Z ′
k } in the notation

of the algorithm presented at the beginning of Section 5.1 by putting

Z ′
k = 1p

2π
Θ(ωk )Yk , k = 1, . . . ,T /2,T. (5.10)

Such {Z ′
k } obviously satisfy (5.1).

If the decomposition (5.8) is unknown and we opt to numerically evaluate it on a grid of

size M , the total computational complexity turns out to be O(M 3 +M 2T +MT logT ) where

O(M 2T ) comes from the matrix application (5.10) and O(MT logT ) from the inverse fast

Fourier transform (5.3).

5.1.3 Simulation under linear time domain specification

One of the typical functional time series dynamics specifications is a linear process in the time

domain. In this subsection we consider the flexible class of the FARFIMA(p,d , q) processes,

one of the most general classes of such linear processes, and show how to generate their

trajectories by spectral domain simulation methods.

The FARFIMA(p,d , q) processes, thanks to being defined as a linear filter of white noise, admit

the spectral density operators of the form (5.7). However, the application of the simulation

algorithm presented in Subsection 5.1.2 requires the frequency response functionΘ(ω) to be

readily available, which is not always the case: the FARFIMA(p,d , q) (or FARMA(p, q)) process

with a non-degenerate autoregressive part admit the frequency response function given by

the formula prompting operator inversion:

Θ(ω) =A(e− iω)−1B(e− iω), ω ∈ [−π,π]. (5.11)
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Chapter 5. Spectral simulation of functional time series

Therefore a naive implementation would require inversion of the linear bounded operator

A(e− iω) for each frequency ω. It may very well happen that A(e− iω) has special structure,

e.g. as is the case for the FARFIMA(1,d,0) process considered in Example 5.2.2, in which case

the inversion evaluation is rapid. In the general case, however, the inversion on a spatial do-

main discretisation would require O(M 3) operations where M is the discretisation resolution.

Fortunately, there are two ways to avoid this computational cost:

• A fully spectral approach which consists in the efficient evaluation of (5.10). The dis-

cretization of this formula for the FARFIMA(p,d , q) process involves evaluation of

Z ′
k = [2sin(ω/2)]−d

p
2π

A(e− iωk )−1B(e− iωk )Yk (5.12)

where the matrices A(e− iωk ) and B(e− iωk ) are the discretized operators A(e− iωk ) and

B(e− iωk ) respectively. The numerical evaluation of (5.12) requires solving the matrix

equation

A(e− iωk )Z ′
k = [2sin(ω/2)]−d

p
2π

B(e− iωk )Yk ,

thus resulting in O(M 2) complexity, as opposed to the O(M 3) complexity of matrix

inversion.

• A hybrid simulation approach, where we simulate the FARFIMA(p,d , q) processes by

simulating the corresponding FARFIMA(0,d , q) process in the spectral domain and then

applying the autoregressive recursion in the time-domain. Concretely, we:

1. Choose a burn-in length T̃ À p, and simulate a FARFIMA(0,d , q) process with

degenerate autoregressive part, denoted as X ′
1, . . . , X ′

T+T̃
, by the means of the tools

in Subsection 5.1.2. Such a functional time series admits the spectral density

operator

F X ′
ω = [2sin(ω/2)]−2d

2π
B(e− iω)S B(e iω)∗

whose corresponding frequency response functionΘ(ω) = [2sin(ω/2)]−dB(e− iω)

can be evaluated fast.

2. Set X1, . . . , Xp = 0 and run the recursion

X t =A1X t−1 +·· ·+Ap X t−p +X ′
t , t = p +1, . . . ,T + T̃ .

3. Discard the first T̃ values of X1, . . . , XT+T̃ and keep only the last T elements.

Both the fully spectral and the hybrid implementations involve the numerical eigendecom-

position of the noise covariance operator S , incurring an O(M 3) computation cost, the

applications of matrices on vectors or solving linear equations, yielding O(M 2T ) operations,

and the inverse fast Fourier transform at each point of the discretisation with the O(MT logT )
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complexity. Thus the total computational complexity is O(M 3 +M 2T +MT logT ). Neverthe-

less, even though the application of a matrix on a vector has the same complexity as solving a

linear system of equations, the constant hidden in the “O" is different and the hybrid simula-

tion method is faster than the fully spectral approach, which requires the solution of linear

systems at each frequency, as the simulation study in Example 5.2.3 demonstrates.

5.2 Examples and numerical experiments

This section presents three examples of functional time series specified according in various

ways where the spectral density operator may be directly or indirectly defined, depending

on the scenario. The examples are accompanied by a small simulation study assessing the

simulation speed and the simulation accuracy by comparing the lagged autocovariance opera-

tors of the simulated processes with the ground truth. The purpose of the simulation study is

to illustrate the performance of the method in terms of speed and accuracy, and draw some

qualitative conclusions about the choice of methods and parameters, rather than to provide

with an extensive quantitative comparison.

A parallel objective is to provide code that is accessible (Section 5.4), simple to run, and easy

to tailor for custom-defined spectral density operators used in functional time series research.

5.2.1 Specification by spectral eigendecomposition

Consider the spectral density operator defined by its eigendecomposition

F X
ω =

∞∑
n=1

λn(ω)ϕn(ω)⊗ϕn(ω), ω ∈ [−π,π], (5.13)

λn(ω) = 1

(1−0.9cos(ω))π2n2 , ω ∈ [−π,π],

(
ϕn(ω)

)
(x) =


p

2sin(n(πδω/π(x)), x ∈ [0,1], ω ∈ [0,π],
p

2sin(n(πδ−ω/π(x))), x ∈ [0,1], ω ∈ (π,2π],

where

δa(·) = x −a mod 1

is the periodic shift by a ∈ R with “mod" denoting the modulo operation, the remainder

after the division. Under such definition, which guarantees that δa(x) ∈ [0,1], the harmonic

eigenfunctions at distinct frequencies are phase-shifted versions of each other. It turns out

that the spectral density operator given by the sum (5.13) can be expressed in closed analytical

form, as an integral operator with kernel

f X
ω (x, y) =

 1
(1−0.9cos(ω)) KBB (δω/π(x),δω/π(x)), ω ∈ [0,π],

1
(1−0.9cos(ω)) KBB (δ−ω/π(x),δ−ω/π(x)), ω ∈ (π,2π].

(5.14)
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Figure 5.1 – Sample trajectories X1(·) of the process defined in Example 5.2.1 with varying
number of harmonic principal components N chosen in the truncation of (5.6). Simulated
with T = 100 and the grid resolution M = 1001.

where KBB (·, ·) is the covariance kernel of Brownian bridge (Deheuvels and Martynov, 2003)

defined as

KBB (x, y) = min(x, y)−x y, x, y ∈ [0,1].

Figure 5.1 illustrates the simulated trajectories of X1 with varying number of the harmonic

principal components N used in the truncation of the sum (5.6) when simulating by the means

presented in Subsection 5.1.1.

In order to assess the simulation accuracy we opt to: simulate I = 1000 independent real-

isations {X (1)
t }T

t=1, . . . , {X (I )
t }T

t=1 of the process {X t }t∈Z; evaluate its empirical autocovariance

operators R̂X
h,[i ] for each i = 1, . . . , I and some lags h; and define the average empirical autoco-

variance operator RX
h = 1

I

∑I
i=1 R̂X

h,[i ]. We then compare this with the true covariance operator

RX
h by calculating

r el .er r or (h) =

∥∥∥RX
h −RX

h

∥∥∥
1∥∥RX

0

∥∥
1

, for some lags h. (5.15)

The true autocovariance operators RX
h were calculated by numerically integrating (1.31).

Figure 5.2 the manner of error decay as N →∞ and the number of harmonic components

N = 100 seems to be satisfactory. The relative simulation errors for N > 100 seem to be domi-

nated by the random component of (5.15) rather than the simulation error itself. We note that

the kernel of the spectral density operator (5.14) is non-differentiable near the spatial diagonal,

and consequently features a relatively slow (quadratic) decay of its eigenvalues. It thus repre-
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Figure 5.2 – The simulation accuracy (5.15) and computation speed of the process defined
in Example 5.2.1. Left: The simulation accuracy for lag-h autocovariance operator with
varying number of harmonic principal components used N ∈ {1,2,3,5,10,20,50,100,200,1000}
visualised as a function of the lag h ∈ {0,1,2,3,5,10,20,30,40,60,80,100}. The sample size
parameters are set T = 1000 and M = 1001. Right: The simulation speed as a function of N
with fixed T = 1000 and M = 1001. The dots represent the results of our experiments for N ∈ {}
while the solid line linearly interpolates those.
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Figure 5.3 – The simulation speed of the process defined in Example 5.2.1. Left: The depen-
dence on varying the time horizon T ∈ {400,800,1600,3200,6400} while setting the spatial
resolution M = 101. Both the simulation using the known Cramér-Karhunen-Loève expansion
(CKL) and the method calculating this decomposition by the SVD algorithm use N = 101
eigenfunctions. Right: The dependence on varying M ∈ {101,201,501,701,1001} while setting
T = 1000. The simulation using the known Cramér-Karhunen-Loève expansion (CKL) uses 100
eigenfunctions while the numerical SVD (N ) decomposition finds N ∈ {5,10,50,100} leading
eigenfunctions (the lines mostly overlap each other) or all of them N = M for SVD (FULL). The
CKL method has the running time below 0.1 minutes (6 seconds) even for M = 1001.
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sents one of the more challenging cases one might wish to simulate from in an FDA context:

functional data analyses typically feature smooth curves and differentiable corresponding

operators, including spectral density operators, admitting a faster quicker eigenvalue requiring

N ¿ 100 eigenfunctions to capture a substantial amount of their variation.

Figure 5.3 presents the simulation speed results with varying sample size parameters: the

time horizon T and the spatial resolution M . We compared the simulation using the known

Cramér-Karhunen-Loève decomposition (5.13) with the method finding this decomposition

numerically starting from the kernel (5.14). Such method finds the harmonic eigendecom-

position using the (truncated) SVD algorithm applied to discretization of (5.14). Figure 5.3

shows that such routine can become very costly for higher spatial resolutions M , but if no

other method is available, the method still constitutes an general approach how to simulate

process with any dynamics structure defined through weak spectral density operators.

5.2.2 Long-range dependent FARFIMA(p,d , q) process

The next example is sourced from the work of Li et al. (2019) and Shang (2020) on long-range

dependent functional time series. They consider the FARFIMA(1,0.2,0) process defined by

(1.71) with the autoregressive operator A1 and the innovation covariance operator S defined

as integral operators with respective kernels

A1(x, y) = 0.34exp
{
(x2 + y2)/2

}
, x, y ∈ [0,1], (5.16)

S(x, y) = min(x, y), x, y ∈ [0,1], (5.17)

depicted in Figure 5.7. Recall that S(x, y) = min(x, y) is the covariance kernel of the standard

Brownian motion on [0,1]. Because d = 0.2 > 0, the process exhibits long-range dependence

(Li et al., 2019).

The constant 0.34 in (5.16) ensures that condition (1.62) is satisfied, and thus the process is

stationary and admits a weak spectral density operator (Theorem 1.3.20) given by

F X
ω = [2sin(ω/2)]−2d

2π

(
I−A1e− iω)−1

S
(
I−A ∗

1 e iω)−1
, ω ∈ [−π,π]. (5.18)

In fact, the operator A1 is of rank 1 and can be written as A1 = 0.34g ⊗ g with g (x) = exp(x2/2)

for x ∈ [0,1]. This fact hugely simplifies the evaluation of (5.18) because the inversion of the

autoregressive part can be written by the Sherman–Morrison formula as

(
I−A1e− iω)−1 = I+ 0.34e− iω

1−0.34e− iω‖g‖2
L2([0,1],R)

g ⊗ g , ω ∈ [−π,π], (5.19)

thus allowing for fast evaluation. Further computation gains, though less considerable, are

made by using the Mercer decomposition of the Brownian motion covariance kernel (De-
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heuvels and Martynov, 2003)

S(x, y) =
∞∑

n=1

1

[(n −0.5)π]2

p
2sin{(n −0.5)πx}

p
2sin

{
(n −0.5)πy

}
, x, y ∈ [0,1], (5.20)

instead of numerical evaluation on a grid followed by an SVD decomposition.

In what follows, we consider the following implementations the spectral and time-domain,

and hybrid simulation methods:

• SPECTRAL (BM): This method uses the known Mercer decomposition of the Brownian

motion (BM) kernel (5.20) and simulates the process in the spectral domain using the

method of Subsection 5.1.2 with the help of the Sherman-Morrison formula (5.19).

• HYBRID (BM): This method again uses the known Mercer decomposition of the Brownian

motion (BM) kernel (5.20) and simulates the FARFIMA(0,d ,0) process and then applies

the autoregressive recustion in the time-domain as explained in Subsection 5.1.3, thus

constituting a HYBRID simulation method combining spectral and time-domain.

• SPECTRAL (SVD), HYBRID (SVD): These method correspond to SPECTRAL (BM) and HY-

BRID (BM) but the Mercer decomposition of the Brownian motion kernel is calculated

numerically using the SVD algorithm.

• TEMPORAL: We use the original code by Li et al. (2019) available in the on-line supple-

ment of their article and treat is as the benchmark for comparison with our spectral

simulation methods. They simulate the realisations of the process by discretising the

space domain [0,1] and evaluating the integral operator A1 as a sum on this grid. More-

over, they perform the fractional integration (1.71) by analytically calculating the filter

coefficients in the time-domain and thus expressing the process as FMA(∞), the func-

tional moving average process of infinite order. Details on the FMA(∞) representation

can be found in Li et al. (2019); Hosking (1981). The computational complexity of this

method is O(M 2T 2).

In order to assess the simulation accuracy we opt to simulate I = 100 independent realisations,

and compare the mean empirical autocovariance operators (5.15) with the true autocovariance

operator for varying T ∈ {400,800,1600,3200,6400} and M ∈ {101,201,501,1001}. We simulate

the process with varying parameter T , the time horizon of the simulation, as well as varying

spatial resolution M , based on a regular grid {xm = (m−1)/(M−1)}M
m=1 ⊂ [0,1]. The simulation

accuracy error, reported in Figure 5.9 (in Appendix 5.5), is negligible for all the simulation

methods and (5.15) is dominated rather by the random component.

Figures 5.4 summarise how fast the different simulation methods were. We then see that

the simulation by the TEMPORAL method used by Li et al. (2019) scales badly in T , while

the other methods are linear in T , performing significantly better. On the other hand, the
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Figure 5.4 – The dependence of the simulation speed for the long-range dependent
FARFIMA(1,0.2,0) process defined in Example 5.2.2 on the simulation parameters. Left: The
simulation speed for varying time horizon T ∈ {400,800,1600,3200,6400} with the spatial
resolution is set M = 101. Right: The dependence of the simulation speed on the grid size
M ∈ {101,201,501,1001,} with T = 800.

SPECTRAL (BM), HYBRID (BM), and TEMPORAL methods taking advantage of the innovation error

covariance eigendecomposition have complexity dominated by O(M 2T ) and scale similarly.

The SPECTRAL (SVD) and HYBRID (SVD) methods require a further O(M 3) operations for the

SVD algorithm and this contribution becomes visible for M ∈ {501,1001}.

5.2.3 FARMA(p, q) process with smooth parameters

In this example we consider the FARMA(4,3) process (1.61) with the autoregressive operators

A1, . . . ,A4, the moving average operators B1, . . . ,B3, and the innovation covariance operator

S defined as integral operators with kernels

A1(x, y) = 0.3sin(x − y), B1(x, y) = x + y,

A2(x, y) = 0.3cos(x − y), B2(x, y) = x,

A3(x, y) = 0.3sin(2x), B3(x, y) = y,

A4(x, y) = 0.3cos(y),

and

S(x, y) = sin(2πx)sin(2πy)+0.6cos(2πx)cos(2πy)+
+0.3sin(4πx)sin(4πy)+0.1cos(4πx)cos(4πy)+0.1sin(6πx)sin(6πy)+

+0.1cos(6πx)cos(6πy)+0.05sin(8πx)sin(8πy)+0.05cos(8πx)cos(8πy)+
+0.05sin(10πx)sin(10πy)+0.05cos(10πx)cos(10πy), x, y ∈ [0,1]. (5.21)
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Figure 5.5 – The dependence of the simulation speed for the FARMA(4,3) process defined in
Example 5.2.3 on the simulation parameters. Left: The simulation speed for varying time
horizon T ∈ {400,800,1600,3200,6400} with the spatial resolution is set M = 101. Right: The
dependence of the simulation speed on the grid size M ∈ {101,201,501,1001} with T = 800.

These are depicted in Appendix 5.5, Figure 5.8. The constant 0.3 guarantees stationarity of

the process, hence it admits the spectral density (1.63). Figure 5.10, included in Appendix 5.5,

confirms that all the simulation methods approximate well the simulated process as the

relative simulation error metric is affected more by the stochastic component. Figure 5.5

presents the simulation speed comparison between the spectral domain methods and the

time-domain autoregressive recursion approach (TEMPORAL). The four considered spectral

domain methods are:

• SPECTRAL (LR): This method uses the eigendecomposition (5.21) of the innovation noise

covariance kernel. The simulation is conducted fully in the spectral domain as explained

in Subsection 5.1.3.

• HYBRID (LR): This method uses the eigendecomposition (5.21) of the innovation noise

covariance kernel, simulates the corresponding moving average process in the spec-

tral domain and applies the autoregressive part in the time-domain as explained in

Subsection 5.1.3.

• SPECTRAL (SVD), HYBRID (SVD): As above, but the eigendecomposition of S(x, y) is

calculated numerically by the SVD algorithm.

Even though the time complexity, which is dominated by the term O(M 2T ), of the spectral

domain simulation method matches the time complexity of the TEMPORAL domain approach

with O(M 2T ) complexity, the results presented in Figure 5.5 show that the simulation of

the FARMA(p, q) process in the spectral domain, requiring solving matrix equation at each

frequency, as well as the hybrid simulation are slower than the TEMPORAL approach.
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The low-rank definition of (5.21) does not yield any computational speed-up compared to

infinite rank covariance kernels (such as the Brownian motion kernel in Example 5.2.2). The

purpose of such a definition is to allow for easy modification of the code if one wishes to

specify the process via its harmonic eigenfunctions.

5.3 General recommendations for simulations

Our methodology provides a general purpose toolbox for simulating stationary (Gaussian)

functional time series, leveraging their spectral representation. The high-level skeleton out-

lined at the beginning of Section 5.1 essentially reduces the problem to simulating a finite

ensemble of independent random elements, and then applying the inverse fast Fourier trans-

form. The generation of this i.i.d. ensemble depends on how one chooses to carry out dis-

cretisation and/or dimension reduction. We have demonstrated how knowledge of additional

structure can significantly speed up the computations.

Some take-away messages and recommendations are as follows.

• Simulation of functional time series specified through their spectral density opera-

tor. To date, this problem had not been addressed, presumably because the assessment

of the functional time series methods has traditionally been done based on simulation

of functional linear processes. Key methods pertaining to regression and prediction,

however, present performance tradeoffs that depend on the frequency domain proper-

ties, rather than the time domain properties of the time series (Hörmann et al., 2015a,b,

2018; Zhang, 2016; Tavakoli and Panaretos, 2016; Pham and Panaretos, 2018) or the

results of this thesis (Chapters 2 and 3). One then wishes to simulate from a spectrally

specified functional time series. More generally, our method can in principle be applied

to any stationary model, linear or nonlinear, going well beyond the classical families of

functional FARMA(p, q) or FARFIMA(p,d , q) processes, provided the process admits a

weak spectral density operator.

The method is fast and produces accurate results when the process is spectrally specified,

courtesy of the Cramér-Karhunen-Loève expansion (Subsection 5.1.1) which is provably

the optimal way to carry out dimension reduction. Excellent performance can also

be expected when the dynamics of a functional time series are specified by means

of white noise filtering (Subsection 5.1.2). For a general specification, the spectral

domain simulation method of Subsection 5.1.1 still provides means how to simulate

arbitrary functional time series. If the Cramér-Karhunen-Loève expansion is unknown,

or a filtering representation is not available, the spectral density evaluation and the

numeric eigendecomposition might require more time-consuming operations. Still, the

approach constitutes the only general purpose recipe, where no previous method was

available.

• Simulation of FARFIMA(p,d , q) processes. The advantages of the spectral approach
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compared to time domain methods become quote considerable when dealing with pro-

cesses that have an infinite order moving average representation, while having a simple

formulation in the spectral domain. An important example being the FARFIMA(p,d , q)

processes with d > 0 (long memory process) or d < 0 (anti-persistent) as the fractional

integration is straightforward in the spectral domain while it produces an infinite order

dependence in the time-domain. Example 5.2.2 showed how to efficiently and effort-

lessly simulate a long-range dependent FARFIMA process. Therefore we conclude that

the simulation of FARFIMA(p,d , q) processes with d 6= 0 is more accessible and easy to

implement in the spectral domain.

• Simulation of FARMA(p, q) processes. If one does specifically want to simulate a

FARMA(p, q) processes, simulation in the time-domain is straightforward and fast.

Still, our spectral domain simulation method matches the time complexity of the time

domain methods in these cases. The constant hidden in “O", however, seems to be

higher for the spectral domain methods, as Example 5.2.3 confirms. One advantage

that the simulation in the spectral domain attains over the time-domain, though, is

that we do not need to worry about the burn-in to reach the stationary distribution. We

tentatively conclude that if a practitioner wishes to simulate a FARMA(p, q) process,

then both the time-domain and the spectral simulation domain methods are equally

applicable, though the time-domain simulation seems to be more straightforward to

implement.

Overall the presented methods provide a useful toolbox of simulation methods in the spectral

domain which are fast and accurate, and allow for simulation of standard as well as unusual or

“custom defined" stationary time series defined through their weak spectral density operators.

We hope that the accompanying code can be helpful for carrying out numerical experiments

in future functional time series methodological research.

5.4 Code availability and R package specsimfts

To facilitate the implementation of the spectral domain simulation methods, we have created

an R package specsimfts available on GitHub at https://github.com/tomasrubin/specsimfts.

The package includes the implementations of all the presented methods as well as the exam-

ples considered in Section 5.2 as demos that are easy to use and modify.

5.5 Supplementary figures for examples 5.2.2 and 5.2.3

Figure 5.6 displays the trajectories of the FARFIMA(1, 0.2, 0) process simualted in Example

5.2.2 while Figures 5.7 and 5.8 depict the kernels of the integral operators used in Examples

5.2.2 and 5.2.3. Figures 5.9 and 5.10 illustrate the results on simulation accuracy discussed in

Examples 5.2.2 and 5.2.3.
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Figure 5.6 – Sample trajectories X1(·) of the long-range dependent FARFIMA(1,0.2,0) process
defined in Example 5.2.2 with varying number of N chosen in the truncation of (5.9). Simulated
with T = 100 and the grid resolution M = 1001.
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Figure 5.7 – The kernels of the autoregressive operator and the innovation covariance operator
for the FARFIMA(1,0.2,0) process scrutinized in Example 5.2.2.
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Figure 5.8 – The kernels of the autoregressive operators, moving average operators, and the
innovation covariance operator for the FARMA(4,3) process scrutinized in Example 5.2.3.
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Figure 5.9 – The dependence of the simulation accuracy (relative error defined in (5.15)) for
the long-range dependent FARFIMA(1,0.2,0) process defined in Example 5.2.2 on simulation
parameters Top: The dependence of the lag-0 covariance operator simulation accuracy on
time horizon T ∈ {400,800,1600,3200,6400}, while the spatial resolution is set M = 101. Center:
the dependence of the lag-0 covariance operator simulation accuracy on the grid size M ∈
{101,201,501,1001}, while the the time horizon is set T = 800. Bottom: the dependence of the
lag-h covariance operator simulation accuracy on h ∈ {0,1,2,3,5,10,20,30,40,60,80,100}, with
T = 800 and M = 101.
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Figure 5.10 – The dependence of the simulation accuracy (relative error defined in (5.15))
for the FARMA(4,3) process defined in Example 5.2.3 on simulation parameters Top: The
dependence of the lag-0 covariance operator simulation accuracy on time horizon T ∈
{400,800,1600,3200,6400}, while the spatial resolution is set M = 101. Center: the dependence
of the lag-0 covariance operator simulation accuracy on the grid size M ∈ {101,201,501,1001},
while the the time horizon is set T = 800. Bottom: the dependence of the lag-h covariance
operator simulation accuracy on h ∈ {0,1,2,3,5,10,20,30,40,60,80,100}, with T = 800 and
M = 101.
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6 Conclusions and future work

The presented thesis introduces a toolbox of methods for the estimation, prediction, and

regression tasks for the sparsely observed functional time series. The key component turned

out to be the smoother-based spectral density estimator allowing for consistent estimation

of the entire second order dependence structure of the data, providing with helpful insights

into the dependence or periodicity, and allowing prediction of the latent functional time

series. The cross-spectral density estimator together with either the spectral truncation or the

Tikhonov regularisation led to the estimation of the filter coefficients in the lagged regression

dependence model among multiple functional time series. In this concluding chapter we

outline a several future research questions that came from the results derived in this thesis.

The leading assumption of our functional time series set-up is the stationarity in the time

variable t . The assessment of this assumption’s validity is done either by visually checking the

data evolution or by conducting rigorous statistical tests. The later approach has been well

developed in the domain of fully observed functional time series in the works by Horváth et al.

(2014); van Delft et al. (2017); Aue and van Delft (2020) who introduced various stationarity

test. The key assumption for the construction of confidence bands within our functional

recovery approach presented in Section 2.2 relies heavily on the Gaussianity assumption. This

assumption can be tested for fully observed functional time series by the method of Górecki

et al. (2018). It would be interesting to see how these test can be adjusted to sparsely observed

functional time series data but this extension is beyond the scope of this thesis.

The principal design assumption overhanging the considered sparsely observed functional

time series data comes down to the sampling protocol (2.1). The assumption of this scheme,

although quintessential in sparsely observed literature (Yao et al., 2005a; Rice and Wu, 2001;

James et al., 2000; Kowal et al., 2017), might turn out to be too strong and unrealistic in some

applications. The example of the Argo profiling float data (Kuusela and Stein, 2018; Yarger et al.,

2020), where the seawater temperature and salinity are measured by the buoy-like devices,

comes to mind. The buoys provide sparsely scattered measurements in space and time but

their locations are certainly not independent: the buoy at certain time cannot be far away from

where it was yesterday. Moreover, their movement is subject ocean currents that may in fact
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depend on the underlying temperature and salinity fields. It would be an interesting question

to see how to incorporate the dependent sampling regime into the non-parametric estimation

framework and how to non-parametrically predict the entire salinity and temperature fields

across space and time, as the interpolation task is the primary objective of Kuusela and Stein

(2018).

Moreover, the Argo float data mentioned in the previous paragraph hints to other possible

generalisation directions. The Argo buoys do not float on the ocean surface, they dive in depth

to probe the subsurface ocean properties, constructing a truly four dimensional data set (three

dimension in space, and time). Even though the functional data analysis perspective has

been pioneered for the Argo data (Yarger et al., 2020), their approach considers the ocean as a

field of one dimensional strings (functions) in depth and interpolates using the spatial and

spatio-temporal statistics techniques. On the other hand, one could wonder if considering

the Argo data as a truly surface-valued (or higher dimensional) time series could be useful. Of

course, a truly non-parametric approach might not turn to be feasible, and some assumptions

such as separability of the spatial variable and the temporal one could help. Furthermore, the

data come actually from the globe, i.e. a sphere and not a flat surface. Nevertheless, before

venturing into the domain of sparsely observed sphere or manifold valued functional data,

one should consider starting from the probabilistic and statistical analysis of fully observed

design as spectral analysis of such random objects is still not well developed. The ideas in this

paragraph are developed in more details in Section 2.6.

Another possible extension of the methods presented in this thesis is to abandon the fully non-

parametric realm and consider some structure for the sparsely observed functional time series.

In particular, the functional autoregressive process of order 1 defined in (1.60) is a popular

modelling tool (Besse et al., 2000). The non-parametric estimation of the autoregressive

operator, the key parameter for the modelling and forecasting, relies on the inversion of the

functional version of the Yule-Walker equation (Bosq, 2000)

R̂X
1 =A R̂X

0

where R̂X
1 and R̂X

0 are the empiric lag-1 and lag-0 autocovariance operators, and A is the un-

known autoregressive operator. In the sparse setting, one could directly employ the smoother-

based estimators R̂X
1 and R̂X

0 constructed in Chapter 2 instead of the classical empiric auto-

covariance operators in the fully functional case and immediately obtain, after regularisation

of the ill-posed inversion (Bosq, 2000), the estimator of A . Having estimated the parameters

of the sparsely observed autoregressive process, the latent functional data can be recovered by

the Kalman filter and Rauch-Tung-Striebel smoother (Durbin and Koopman, 2012).

Finally we note that the novel derivation of the spectral density operators for the FARMA(p, q)

and FARFIMA(p,d , q) processes (Subsection 1.3.8) could serve as a basis for model estimation

in the spectral domain. The concept of Whittle likelihood is known in the univariate (Whittle,

1954) and the multivariate (Whittle, 1963) time series analysis to provide with computationally
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quick approximation of the Gaussian likelihood function for time series parametric models.

The objective for the the functional time series model with operator-valued parameters is

clear: can one generalise Whittle likelihood to infinite dimensional function spaces? Such

model fitting would require regularisation, most likely the one demanding smoothness and

penalizing roughness of the operator-valued parameters as these objects are naturally infinite

dimensional, and the penalized Whittle likelihood approach (Pawitan and O’sullivan, 1994) is

likely to be a necessity.
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