
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Advances in the Soil-Structure Interaction Analysis 
-- from Surface Footings to Thermoactive Deep 
Foundations

Cristiano GARBELLINI

Thèse n° 8240

2021

Présentée le 9 mars 2021

Prof. D. Lignos, président du jury
Prof. L. Laloui, directeur de thèse
Prof. P. J. Bourne-Webb, rapporteur
Prof. D. Adam, rapporteur
Dr M. Fernández Ruiz, rapporteur

Faculté de l’environnement naturel, architectural et construit
Laboratoire de mécanique des sols - Chaire gaz naturel Petrosvibri
Programme doctoral en mécanique 



c©2020 – ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
all rights reserved.



A mia madre, per essere un esempio di intraprendenza
A mio padre, per essere un esempio di umiltà

A mio fratello e mia sorella, per essere dei punti di riferimento
A Martina, per esssere la mia compagna di vita





Abstract

Mutual interactions between soil and foundation play a fundamental role in the overall
behaviour of constructions. Therefore, it is not surprising that soil-structure interaction
has been the subject of numerous research works. This doctoral thesis is a theoretical
contribution in this field.

Despite the available knowledge, the fact that specific studies on the behaviour of
foundation structural elements and soil masses progressed independently constrained the
understanding of the governing mechanisms, especially close to failure. This constitutes a
serious limitation to the development of a consistent performance-based design strategy.

The first part of this dissertation presents an attempt in this direction. The limit
state of surface footings subjected to centred and vertical loads is investigated considering
simultaneously the structural failure and the soil bearing capacity. The relevance of the
employed theoretical methods with respect to the real materials is critically reviewed. A
simplified procedure for quantifying soil-structure interaction effects is presented. Despite
the analysis deals with surface footings, the concepts can easily be extended to other
conditions and geotechnical works.

The second part of the thesis focuses on the behaviour of thermoactive deep foun-
dations. They are an innovative and environmentally friendly technology that couples
the role of ground heat exchanger to that of structural support. An extensive numerical
parametric analysis defines the main effects of the presence of a flexible raft cast directly
on the ground. The potential benefits of considering reinforced concrete non-linear be-
haviour are discussed, and guidelines are provided for the performance-based design of
energy piles.

Keywords: plasticity; limit analysis; bearing capacity; shear strength; energy piles;
thermo-mechanical behaviour; group effects; finite elements; performance-based design.
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Résumé

Les interactions entre sol et fondation jouent un rôle fondamental dans le comportement
des structures. Par conséquent, il n’est pas surprenant que l’interaction sol-structure a
fait l’objet de nombreux travaux de recherche. Cette thèse doctorale est une contribution
théorique dans ce domaine.

Malgré les connaissances disponibles, le fait que des études spécifiques sur le compor-
tement des éléments structuraux des fondations et du sol ont progressé de manière indé-
pendante a limité la compréhension des mécanismes d’interaction, en particulier proche
de la rupture. Cela constitue une limite sérieuse au développement d’une méthodologie
de dimensionnement cohérente basée sur la performance.

La première partie de cette thèse fais un effort dans cette direction. L’état limite des
semelles soumises à des charges centrées et verticales est étudié en considérant simulta-
nément la rupture structurale et la capacité portante du sol. La pertinence des méthodes
théoriques utilisées par rapport au matériaux réels fait l’objet d’un examen critique. Une
procédure simplifiée pour quantifier les effets de l’interaction sol-structure est présentée.
Bien que l’analyse porte sur les semelles superficielles, les concepts peuvent facilement
être étendus à d’autres conditions et ouvrages géotechniques.

La deuxième partie de la thèse porte sur le comportement des fondations profondes
thermoactives. Il s’agit d’une technologie innovante et durable qui associe le rôle d’échan-
geur de chaleur à celui de support structurel. Une analyse paramétrique numérique
approfondie définit les principaux effets de la présence d’un radier flexible s’appuyant
directement au sol. Les avantages potentiels de la prise en compte du comportement
non-linéaire du béton armé sont discutés. Finalement, des lignes directrices sont fournies
pour la conception des pieux énergétiques.

Mots clé : plasticité ; analyse limite ; capacité portante ; résistance à l’effort tranchant ;
pieux énergétiques ; comportement thermo-mécanique ; effets de groupe ; éléments finis ;
dimensionnement basé sur la performance.
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What is new is the inter-relation of concepts, the ca-
pacity to create new types of calculation, and the uni-
fication of the bases for judgement.

Andrew N. Schofield and Charles P. Wroth,
Critical State Soil Mechanics Introduction

Problem Statement

The analysis of soil-structure interacting systems dates back to the birth of soil mechanics
itself, attributable to the early studies on fortifications carried out by French engineers in
the 19th and 20th centuries [11, 61, 261, 283]. Since then, the behaviour of foundations
has been the object of extensive theoretical and experimental research.

Conventional foundations play the role of structural support, reducing high concen-
trated stresses coming from the superstructure to admissible levels for the soil. Recently,
the role of ground heat exchanger has been incorporated into foundation elements, leading
to an innovative and environmentally friendly technology known as energy foundations
or thermoactive foundations.

In this thesis, the behaviour of conventional surface footings and thermoactive deep
foundations is considered. The former is the subject of the first part, whereas the latter
of the second part. The fil rouge which links the two parts is the attempt to integrate the
knowledge coming from the soil and structural mechanics under a unified framework, in
order to investigate soil-structure interactions in a more rational, and possibly realistic,
way.

The first part of the thesis is dedicated the limit state analysis of isolated surface
footings subjected to centred and vertical load. The failure mechanism of a rigid footing
resting on a dense soil is known as general shear failure [384] and is analogous to the
indentation of a flat rigid punch or die into a mild-steel solid [134, 298]. Most of the
available research on the bearing capacity of soils is based on the aforementioned hy-
pothesis of rigid foundation [25, 49, 71, 118, 217, 232, 359, 384, 396]. Actual footings are
reinforced concrete members without transverse reinforcement, and the governing failure
modes are generally identified with the help of the Kani’s diagram [163]. The latter is
a function of the geometry of the structure and the boundary conditions [41, 252, 280,
409]. Therefore, it can be stated that the actual performance of footings is affected by
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2 Introduction

soil-structure interaction. Despite this fact, little effort has been made to quantify its
significance [72, 281], or to develop a simplified yet consistent methodology to address
similar problems.

The second part of the dissertation focuses on the thermo-mechanical behaviour of
energy piles. The coupled role of structural support and geothermal heat exchanger led
the design of piles to unprecedented challenges with respect to thermal loads [22, 187,
222, 315, 335]. Experimental research investigated the response of single energy piles [17,
18, 21, 168, 188, 189, 248, 377, 399, 402] and small groups of energy piles [81, 238,
322], and highlighted that measurable thermally induced mechanical effects are present.
Subsequent theoretical research focused on the numerical reproduction of the measured
data [81, 168, 190, 273, 317, 322, 379], and the extension of simplified analysis tools for
conventional piles to address thermal loads [5, 154, 320, 321, 325]. A key aspect in the
design is the structural effect of thermal loads. The available knowledge, and the resulting
official design guidelines [46, 124, 350], do not adequately consider the displacement-
based nature of such a load and the reinforced concrete ductility capacity. This led to
the apparent inconsistency with respect to the design of reinforced concrete structural
elements which undergo seasonal temperature variations of the same magnitude, for
which in general only serviceability limit states are concerned. The impossibility to carry
out full-scale parametric analyses, and the practical difficulties in performing laboratory
testing limit the ability to define general trends. Therefore, the conceptual design process
is somehow restricted by such a lack of theoretical knowledge. In this regard, the effect of
a flexible raft cast directly on the ground on the overall behaviour of energy foundations
was not investigated before, except for the two extreme cases of perfectly flexible and
rigid cap.

Structure of the Thesis and Scientific Contributions

This doctoral dissertation is a compilation of two state-of-the-art chapters written in the
form of journal articles, a submitted article, and three published articles. The document
is completed by a general introduction and conclusion. It has not been found practical
to maintain neither a uniform notation, nor a uniform sign convention throughout the
thesis owing to the difference between soil and structural mechanics. The symbols used
are clearly stated for each chapter and summarised at the end of the document (page 233).

Chapter 1 In order to investigate soil-structure interactions in surface footings at the
ultimate limit state, this chapter presents a state-of-the-art of limit theorems ac-
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cording to the theory of plasticity. First, the basic principles for the uniqueness
of the solution are briefly discussed. Then, theorems for associated coaxial, non-
associated coaxial and non-coaxial materials are introduced. Attention is devoted
to the limit theorems for frictional interfaces and the assumption of perfect plas-
ticity. Finally, the applicability to real soils and structures is critically examined.

Chapter 2 An attempt is made to categorise the available knowledge about the bearing
capacity of rigid surface footings under centred and vertical load. The results
are examined with the help of the limit theorems and discussed with respect to
experimental data. Two new analytical expressions for the computation of the
bearing capacity of rigid and perfectly rough surface footings resting on general
soils are presented.

Chapter 3 In this chapter, corresponding to a journal article submitted for the special
issue of Computers and Geotechnics dedicated to the memory of Prof. Gyan N.
Pande, the knowledge gained in the first two chapters is exploited to address the
first objective of the thesis. The foundation collapse load is evaluated considering
simultaneously the soil bearing capacity and the structural governing failure modes.

Chapter 4 This chapter corresponds to the published journal article [114]. In order to
assess the effect of a flexible raft cast directly on the ground and to draw general
trends with respect to the number of energy piles, an extensive parametric numer-
ical analysis, as often done previously to study conventional piled rafts [30, 54, 55,
59, 68, 74, 186, 193, 210, 272, 284, 308, 326, 382], was carried out. The results are
presented graphically through dimensionless parameters.

Chapter 5 This chapter presents the published journal article [113], which addresses the
last objective of the thesis. The first part introduces simple expressions and a few
closed-form solutions which may be used to define bounds of possible thermally
induced axial stresses. The second part investigates the performance of energy
piles subjected to traction forces considering reinforced concrete post-cracking be-
haviour. For this purpose, a new finite element code was developed.

Chapter 6 This chapter, corresponding to the published journal article [316], proposes
a performance-based design approach for energy piles. The outcomes of chapters 4
and 5, and those of the first two authors of the paper, are integrated in a single
framework to provide useful design guidelines.
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Surface Footings
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Essentially, all models are wrong, but some are useful.
However, the approximate nature of the model must
always be borne in mind.

George E. P. Box, Empirical Model-Building and
Response Surfaces

1
Limit State Analysis: State-of-the-Art

Geotechnical problems can be grouped under two categories: (i) serviceabil-
ity limit state and (ii) ultimate limit state. The former deals with functionality,
comfort and aspect, whereas the latter is concerned with safety. The theory of

limit analysis addresses the direct determination of the collapse load, thereby assessing
the degree of safety of an engineering application, without carrying out a step-by-step
analysis. Despite several scientific contributions and surveys on the subject exist, soil
masses and structures are usually treated separately. However, geotechnical applications
are often concerned with problems of soil-structure interaction. In this contribution, the
limit theorems of limit analysis are reviewed. Key aspects for soils, reinforced concrete
members and interfaces are discussed. The suitability of limit analysis for soil-structure
interaction problems is investigated. Finally, it is shown that extended limit theorems can
be efficiently applied to get useful bounds to the actual collapse load of any soil-structure
interacting system.

1.1 Introduction

In continuum mechanics, the mechanical state of solids is defined by elastic-plastic stress-
strain relationships. The first part describes the reversible behaviour, whereas the second
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8 Chapter 1. Limit State Analysis

part describes the irreversible behaviour.
Despite the theory of plasticity has its roots in the mechanics of soils [61, 304], the

fundamental principles and first achievements were made in the mechanics of metals [134,
135, 147, 195, 240, 241, 297, 309, 328, 387]. Early attempts to transfer this knowledge
to soil mechanics are due to Drucker, Prager, Shield and Jenike [86, 97, 159, 342, 343,
346]. The actual relevance of key features used for metals such as normality and perfect
plasticity were critically reviewed by a number of authors [84, 87, 95, 136–138]. The
critical state concept [313, 338] acted as a further input in the development of elastic-
plastic theories for soils. To Drucker [88] and Chen [48] is due the first application of the
theory of plasticity to reinforced concrete and concrete blocks, respectively.

When plastic strains spread over a sufficient region, a slight increase in the applied
load is generally sufficient to produce plastic strains of a magnitude which would, in an
actual structure, be regarded as amounting to collapse[146]. Such a mechanical state is
termed state of impending collapse, or simply limit state. According to this definition, the
load carrying capacity is the extreme loading that a body, or assemblage of bodies, can
sustain without ceasing to be useful for the purpose for which it was conceived [96]. The
corresponding load is termed limit load, collapse load, or failure load. Limit analysis is
the branch of the theory of plasticity which deals with the determination of the ultimate
limit state of solids.

Geotechnical limit state analysis was developed long before the theory of plasticity,
mainly to solve lateral earth thrust problems [11, 36, 61, 283, 304, 306, 307]. It was
then extended in a general fashion by Terzaghi [384]. Valuable contributions were given,
among others, by [39, 49, 52, 86, 87, 97, 230, 232, 332, 366, 367]. A survey of geotechnical
limit state design may be found in [227].

In structural engineering, limit state analysis and design was first introduced by
Kazinczy [166] and Kist [167]. Developments in this field were made by a number of
authors [4, 88, 90, 91, 96, 98, 125, 146, 147, 279, 291, 294, 310, 380, 390, 391].

In the subsequent decades, much effort has been put into laboratory testing, generali-
sation of stress-strain relationships [76, 194, 339], and the development of computational
techniques [413].

Owing to the widespread of publications, a number of surveys has been proposed
over the years in order to collect the fundamental principles and achievements. Among
others, some key overviews focusing on metal plasticity may be found in [27, 51, 93, 117,
147, 162, 209, 219, 260, 290, 293, 295]; others concerned with geomaterials may be get
from [49, 52, 53, 65, 339, 358, 407]; whereas those interested in structural concrete may
be read in [44, 50, 106, 213, 253, 257, 266]. Despite this great effort, for engineers dealing
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with soil-structure interaction problems, the key aspects remain separate. This might
make hard the first contact with the theory of limit analysis, especially if a knowledge of
the underlying assumptions is required. This paper aims at giving a concise survey on
the fundamentals of the theory of plasticity, its extension to soils and structural concrete,
and a few hints for problems of soil-structure interaction.

In the following, the Einstein summation convention is adopted and compression is
taken as positive.

1.2 Stress-Strain Relationships

Elastic-plastic theories can be grouped under two categories [147, 290]: (i) total strain
theories and (ii) incremental strain theories. Equations pertaining to the former were first
developed by Nadai [259] and Hencky [135], who assumed that the total plastic strain
is proportional to the deviatoric stress components. In general, these equations do not
satisfy the continuity condition between elastic and plastic stress-strain equations [131],
and can lead to a modification of plastic strains during unloading [147]. Therefore, they
are not suited for a consistent mathematical description of elastic-plastic materials. On
the other hand, incremental strain theories relate the increment of plastic strain (or strain
rate) to the stress components. This great insight is due to de Saint-Venant [328], who
associated the principal axes of the plastic strain increment (and not the total strain) to
the principal axes of stresses. This coincidence is known as coaxiality.

Assuming purely incompressible plastic flow, the equations were developed for the
Tresca yield criterion [387] and plane strains by de Saint-Venant [328], and for the general
case by Lévy [195]. Later, they were reformulated by Mises [240] for the homonymous
yield condition. The Saint-Venant-Lévy-Mises equations, which describe the behaviour
of a rigid-perfectly plastic solid, may be expressed in the formε̇ij = ε̇pij = λ̇sij if f(sij) = 0

ε̇ij = 0 if f(sij) < 0
(1.1)

where ε̇ij is the strain rate tensor, superscript p stands for plastic, λ̇ is the plastic
multiplier, sij is the deviation of the Cauchy’s stress tensor σij (sij = σij − 1

3σijδij , with
δij denoting the Kronecker delta), and f is the yield function.

The first elastic-plastic constitutive law as we understand it today is probably the
Prandtl-Reuss theory [297, 309], which was described by Truesdell as follows [388]

The Prandtl-Reuss theory may be described as postulating that in an incompressible
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body subject to infinitesimal strain the stress is the sum of that given by the classical
linear elasticity plus that given by the classical theory of viscous fluids, except that
the viscosity instead of being a material constant is a certain function of the stress
deviator—the nature of this function being specified by the yield condition, which
for an isotropic material is a single scalar equation connecting the stress invariants.

Prandtl-Reuss equations writeε̇ij = ε̇eij + ε̇pij = 1+ν
E σ̇ij − ν

E σ̇ijδij + λ̇sij if f(sij) = 0

ε̇ij = ε̇eij = 1+ν
E σ̇ij − ν

E σ̇ijδij if f(sij) < 0
(1.2)

where superscript e stands for elastic, σ̇ij denotes the Cauchy’s stress rate tensor, and E
and ν are the Young’s modulus and Poisson’s coefficient, respectively. Given that these
theories where developed in the context of metal plasticity, the adoption of a plastic
strain rate parallel to the deviatoric stress is a straightforward consequence of the incom-
pressibility condition and the invariance of the yield stress in shear upon confinement.

Mises [241] introduced the the concept of plastic potential and suggested the following
mathematical expression

ε̇pij = λ̇
∂f(σij)

∂σij
(1.3)

According to (1.3), for any smooth yield surface the direction of ε̇ij is uniquely defined
by the stress state σij and is normal to the yield surface. Mises flow rule is also known
as normality condition or associated flow rule. On the other hand, if the yield function
has vertices, the orientation of ε̇ij at these locations is not defined and lies inside a cone
constructed from the normals on each side of singularity [83, 86]. Koiter [172] and Prager
[292] proposed a general form of the Mises flow rule for non-smooth yield surfaces. This
law is a linear combination of the Mises flow rule for each function describing the load
surface:

ε̇ij = λ̇k
∂fk(σij)

∂σij
(1.4)

The aforementioned concepts constitute the basis of the theory of plasticity for asso-
ciated coaxial materials, upon which the theorems of the limit analysis are founded.

1.2.1 Common Yield Surfaces for Engenireeng Applications

Two pressure independent and two pressure dependent yield criteria are generally em-
ployed in engineering applications. The former are the Tresca [387] and the Mises [240]
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yield surfaces, whereas the latter are the Mohr-Coulomb (Coulomb law of friction [61]
defined in the Mohr stress space [242]) and the Drucker-Prager [97] yield surfaces.

A generalised Mohr-Coulomb law may be written as [384]:

f = σI − σIII − (σI + σIII) sinφ− 2c cosφ = 0 (1.5)

where c is the apparent cohesion, φ is the shear strength angle, and σI and σIII are the
major principal and minor principal normal stresses, respectively. The Drucker-Prager
yield criterion writes

f = αI1 +
√
J2 − k = 0 (1.6)

where α and k are positive material parameters, I1 is the first invariant of the stress
tensor:

I1 =
1

3
σii,

and J2 denotes the second invariant of the stress deviation:

J2 =
1

2
sijsij

Note that the Mohr-Coulomb law reduces to the Tresca maximum shear stress crite-
rion when φ = 0, whereas the Drucker-Prager load function becomes equal to the Mises
yield condition for α = 0. In the three-dimensional space of principal stresses, Tresca
yield surface is a right regular hexagon cylinder, Mises yield surface is a right circular
cylinder, Mohr-Coulomb yield function is a right hexagon cone with apex in the ten-
sile octant [343], and Drucker-Prager yield criterion is represented by a right circular
cone with apex in the tensile octant. Each surface has its axis equally inclined to the
coordinate axes.

1.2.2 Irreversibility Condition

The irreversibility condition is the direct consequence of the permanent character of
plastic strains. It states that work done in producing plastic deformations cannot be
regained [150, 293]. This means that the work of the stresses on the change of plastic
strains is positive whenever a change of plastic strains occurs (zero only if ε̇pij = 0)

σij ε̇
p
ij ≥ 0 (1.7)
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For a work-hardening or perfectly plastic material, if the yield surface is convex, asso-
ciativity ensures the respect of this principle. Convexity is also a sufficient condition to
avoid absurd transitions from loading to unloading processes, and vice versa [150].

1.2.3 Principle of Maximum Plastic Work

This principle was stated by Mises [241] as a variational principle, and Hill [141] demon-
strated that it corresponds to a maximum. The principle is based on the assumption of
Mises flow rule (normality condition), convexity of the yield surface, and negligible elastic
strain rates. It states that among all admissible stress states σ∗ij (which lie within or on
the yield surface), the actual state σij (the one on the yield surface producing plastic
strains) maximises the plastic work done in a given plastic strain increment. Mathemat-
ically it writes

(σij − σ∗ij)ε̇pij ≥ 0 (1.8)

Other than to rigid-plastic materials, at the instant of impending plastic flow this
principle applies equally to elastic-perfectly plastic materials. This because any strain
increment from that state is plastic only [96, 98].

1.2.4 Drucker’s Stability Postulate

Drucker’s stability postulate was advanced in order to derive normality and convexity
for elastic-plastic materials from a more fundamental perspective [83, 92]. The postulate
may be stated as follows [407]

Consider an element initially in some state of stress, to which by an external agency
an additional set of stresses is slowly applied and slowly removed. Then, during
the application of the added stresses and in a cycle of application and removal of
the added stresses, the work done by the external agency is non-negative, zero only
when purely elastic changes take place.

The postulate leads to the following relations

(σij − σ∗ij)ε̇pij ≥ 0

σ̇ij ε̇
p
ij ≥ 0

(1.9)

It is noteworthy that Drucker’s stability postulate includes both the irreversibility con-
dition and the principle of maximum plastic work. Convexity of the yield function and
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normality are shown to be sufficient conditions to satisfy Drucker’s postulate. (Bodies
showing negative hardening, i.e. softening, are unstable in Drucker’s sense.)

1.2.5 Uniqueness of Solution

The following concepts are all based either on the principle of maximum plastic work
or on the Drucker’s stability postulate. Therefore, convexity of the yield surface and
normality are sufficient conditions for their validity.

Melan [224] and Greenberg [121] demonstrated that when an elastic-perfectly plastic
material is subjected to known rates of body forces, surface tractions and velocities, the
solution of stress rates is unique. Melan [225] and Prager [293] extended this theorem to
work-hardening elastic plastic materials. The generalisation to singular yield surfaces is
due to Koiter [172], both for work-hardening and perfectly plastic materials.

Strain rates are uniquely defined by stress rates in work-hardening materials. This
conclusion may not be drawn for perfectly plastic solids, given that plastic strains can
occur under constant stresses. However, the instantaneous mode of deformation may be
defined by regarding the perfectly plastic material as a limiting case of a work-hardening
material [142, 171].

The uniqueness of stress rates and strain rates ensures that a step-by-step analysis
converges toward a unique solution. However, the aim of the limit analysis is precisely
to avoid such a computation. Such a goal can be achieved by assuming a monotonic
and proportional loading. Suppose that the system of load at collapse is defined by a
unique load multiplier q. This means that for a given set of applied forces Q, the load
configuration at collapse is given by

Qc = Qfix ∪ qQvar (1.10)

where Qfix ⊂ Q is the subset of forces that are kept constant, whereas Qvar = Q − Qfix

is the subset of forces that are increased until the limit state. Evidently Qfix ∩Qvar = ∅.
A theorem due to Hill [146] states that in a rigid-plastic (perfectly plastic or strain-

hardening) material, the state of stress is uniquely defined in a certain part of the plastic
region under given boundary conditions. This zone constitutes either part of the plastic
region or the entire plastic region and covers the whole material that can deform under
the given boundary conditions. However, the instantaneous mode of deformation in the
zone may not be uniquely defined. Hill [142] indicated that, when more than one mode is
compatible with the boundary conditions, the physically possible mode is singled out by
the compatibility between the stress rate distribution and the rate of hardening with the
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given surface tractions rate (a limiting process is required in case of perfect plasticity).
A method for isolating the domain which is occupied by the complete set of deformation
modes was suggested by Bishop [13]. This remarkable achievement is of interest also for
elastic-perfectly plastic materials, because when the loads are increased monotonically,
they approach asymptotically the plastic-rigid yield point loads [146]. This meets exactly
the domain of validity of the limit analysis defined by the unique load multiplier.

Note that problems of plane strain and axial symmetry are of particular interest
because, as pointed out by Prager [293] and Hill [146], the fully plastic stress distribu-
tion is statically determinate if the boundary conditions involve only stresses and not
displacements.

A more comprehensive discussion on uniqueness may be found in [89, 140, 142–145,
245]. In the following, convexity of the yield surface is implicitly assumed.

1.3 Limit Analysis for Associated Coaxial Materials

The theory of limit analysis aims at establishing rigorous techniques for bounding the
limit load. Theorems for this purpose were derived by Hill [146] for work-hardening
rigid-plastic and rigid-perfectly plastic associated materials, and by Drucker et al. for
Prandtl-Reuss materials [96] and general elastic-perfectly plastic associated materials
[98]. Hill defined as limit the load intensity at which deformation first occurs, whereas
Drucker et al. defined it as the intensity at which deformation could first take place
under constant load, state termed incipient plastic flow. Bounds for the limit load can
be obtained through the following theorems:

Theorem 1 (Lower bound). If a safe statically admissible state of stress, i.e. satisfying
the equilibrium equations and stress boundary conditions and which nowhere violates the
yield criterion, can be found at each stage of loading, collapse will not occur under the
given loading schedule.

Theorem 2 (Upper bound). Collapse must occur if for any compatible flow pattern,
considered as plastic only, the rate at which the external forces do work on the body
equals or exceeds the rate of internal dissipation.

Theorem 2 can be expressed mathematically as∫
S
tivi dS +

∫
V
γivi dV ≥

∫
V
σij ε̇

p
ij dV +

∫
[S]
ti[v]i d[S] (1.11)
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where the left hand side represents the rate of external work of surface tractions ti over
velocities vi at boundary S, and body forces γi over velocities vi in region V . The right
hand side denotes the rate of work done by the stresses σij over plastic strain rates ε̇pij
and dissipated in region V , and tractions ti over velocity jumps [v]i along the velocity
discontinuity surface [S]. When the rate at which external forces do work equals the rate
of internal dissipation, (1.11) is often termed energy balance equation. From theorems 1
and 2, the next corollary follows

Corollary 1 (Complete solution). A statically admissible state of stress, together with
one or more kinematically admissible modes of deformation, corresponds to the actual
limit load (under the given assumptions). In fact, if Ql and Qu are lower and upper
bounds, respectively, the exact collapse load Qc satisfies

Ql ≤ Qc ≤ Qu

A fundamental assumption lies behind theorems 1 and 2, namely that geometry
changes on equilibrium conditions are disregarded (small displacements and strains).
Actually, the hypothesis of small deformations does not preclude the application of the
limit analysis method to situations where equilibrium conditions are modified, provided
that they are taken into account, i.e. the limit analysis theorems are applied on the mod-
ified geometry. Of course, each result pertains to a given configuration. This approach
was suggested by Onat and Haythornthwaite [270], who satisfactorily applied the limit
analysis method to a simple supported plate subjected to finite deflections considering
membrane forces.

Proofs of the lower and upper bound theorems require normality and elastic strain
rates to be zero. In a rigid-plastic material, the strain rates are evidently fully plastic.
For an elastic-ideally plastic material, Drucker et al. [96, 98] showed that once the
surface tractions have reached the intensity necessary for impending plastic flow, the
incipient plastic flow takes place under constant stresses (due to the first hypothesis
of small deformations, because generally stresses do not remain constant under finite
strains, even if the hardening is zero). Under these circumstances, the elastic strain rates
vanish.

The interpretation based on a linear elastic-perfectly plastic material is often preferred
for its physical meaning. However, a rigid-plastic material is commonly assumed, because
it simplifies the construction of admissible stress fields and failure mechanisms. The
method of Bishop [12] for constructing a fully plastic stress field into the rigid region, and
the method of Cox et al. [63] for constructing a stress field which is not fully plastic into



16 Chapter 1. Limit State Analysis

the rigid region (developed for weightless materials and extended to ponderable solids
by Martin [217] and Smith [364]) are common techniques employed in soil mechanics
problems. Owing to the fact that real materials exhibit at least a small elastic range,
it might seems necessary to assume perfect plasticity. Nevertheless, such an assumption
in soil mechanics could be as rude as imposing an indefinitely large elastic stiffness.
Therefore, no matter which interpretation is preferred, the relevant condition for a reliable
application of the limit analysis method is that, at the instant of incipient collapse, the
elastic strain rates must be negligible compared to the plastic strain rates.

It is noteworthy that stress or velocity discontinuities are permissible and are generally
convenient for computational purposes [97].

Interestingly, as remarked by Koiter [171] and Radenkovic [300], the postulate of
maximum plastic work is a sufficient condition, but not necessary, for the proofs of the
lower and upper bound theorems. Nevertheless, without further considerations, the limit
theorems are strictly applicable only to coaxial materials with an associated flow rule.

1.4 Limit Analysis for Non-Associated Materials

1.4.1 Non-Associated Coaxial Materials

The first limit theorems for materials with non-associated flow rule are due to Radenkovic
[299, 300]:

Theorem 3 (Lower bound for non-associated coaxial materials). If there exists an equi-
librium stress distribution σij which satisfies the stress boundary conditions and is such
that throughout the body g(σij) ≤ 0, where g is a convex function satisfying the normality
condition and completely inscribed into the yield surface f(σij) = 0, then the body will
not collapse.∗

Theorem 3 is actually an application of theorem 1 to the problem under consideration,
but where the non-associated material has been replaced by a fictitious weaker material
with associated flow rule. If the weaker material will not collapse, condition ensured by
theorem 1, the stronger material will not collapse as well.

Theorem 4 (Upper bound for non-associated coaxial materials). Assume two identical
bodies made of two materials characterised by the same yield criterion. Assume also that
one material follows an associated flow rule, whereas the other not. Then, the actual limit
∗This formulation is due to Palmer [276], who gave the same lower bound theorem as Radenkovic,

probably independently, a few years later.
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load for the associated material cannot be lower than the actual limit load for the non-
associated material. It follows that an upper bound solution for the associated material
is also an upper bound for the non-associated material.

Theorem 4 is also an application of theorem 1. Assume that the actual limit load for
a non-associated material is known. Its corresponding state of stress will be admissible
for an associated material with the same yield condition. Given that limit theorems
have been proven true for associated materials, theorem 1 implies that this load is a
lower bound to the collapse load for the material satisfying the normality condition.
Hence, the collapse load of a non-associated material cannot be higher than the collapse
load of the equivalent associated material. The other way around dos not hold, because
theorem 1 dos not apply to non-associated flow rules. Moreover, this would lead to the
conclusion that the flow rule would have no effect on the value of the limit load in any
problem, which is obviously not the case. The same theorems were discussed also by
Sacchi and Save [327] in a more general manner. It is clear that with theorems 3 and
4, the true limit load cannot be reached by a procedure of subsequent approximations,
which would appear justified by the fact that uniqueness is not ensured. Nevertheless,
these theorems allow to bracket the collapse load between two fixed bounds.

Further insight on the influence of non-associativity is due to Davis [65]. In a non-
associated coaxial material obeying to the Mohr-Coulomb yield criterion, the unit rate
of plastic work ḊV in a continuous deforming region V , is given by

ḊV = (ε̇1 − ε̇3)
[σ1 + σ3

2
(sinφ− sinψ) + c cosφ

]
(1.12)

where ε̇1, ε̇3, σ1, and σ3 are principal strain rates and stresses. It is found that in a
statically determinate plane strain or axially symmetry problem, the velocity character-
istics do not coincide with the stress characteristics. This implies that the state of stress
at velocity discontinuities is given by a point in the Mohr’s diagram which lies on the
largest circle tangent to the Mohr-Coulomb line, τ = c+ σn tanφ, but not on the latter.
Nevertheless, the shear stress τ∗ and the normal stress σ∗n acting at velocity discontinuity
lines are related by the following similar relation (see also Figure 1.1)

τ∗ = c∗ + σ∗n tanφ∗ (1.13)

where
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c∗ = ηc (1.14a)

tanφ∗ = η tanφ (1.14b)

η =
cosφ cosψ

1− sinφ sinψ
(1.14c)

The rate of plastic work per unit length on a velocity discontinuity line, ḊL, is

ḊL = [v]t(τ
∗ − σ∗n tanψ)

= [v]t[c
∗ + σ∗n(tanφ∗ − tanψ)]

=
[v]t

1− sinφ sinψ

[
c cosφ cosψ +

σ∗n
cosψ

(sinφ− sinψ)
] (1.15)

where [v]t is the tangential velocity jump across the discontinuity. By means of equations
(1.12) and (1.15), Davis pointed out that the rate of plastic work is independent on the
stress distribution only when ψ = φ (in this case c∗ = c and φ∗ = φ). Therefore, it would
seem that the limit theorems 1 and 2 are not applicable when ψ < φ†.

O

CB

σn

τ

A

φ

φ∗
[v]i

ti

φ

ψ φ∗
ψ

D

Figure 1.1 – Tractions ti, and velocity jumps [v]i, for coaxial and non-coaxial non-associated
flow rules, [82]. Velocity jump vectors are located at A for coaxial associated and non-coaxial non-
associated materials, and along the arc AC for coaxial non-associated materials. The particular
case of de Josseling de Jong non-coaxial non-associated flow rule [73, 160] allows for two locations,
A and D.

In the particular case of translational failure mechanisms (Figure 1.2), upper bound
theorems for non-associated materials were given by Drescher and Detournay [82], both

†The case ψ > φ is unrealistic and can be disregarded [65].
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for coaxial and non-coaxial behaviour. A translational failure mechanism is a rupture
figure made of rigid bodies delimited by straight lines of constant velocity discontinu-
ity. In such a situation, internal energy dissipation occurs only along these lines. On
the latter, the state of stress is given by (1.13). Owing to the fact that a multi-block
failure mechanism can be regarded as an assemblage of rigid bodies of infinite strength
surrounded by plastic layers, and that plastic flow can occur only when (1.13) is satisfied
on the latter, one may choose a fictitious dilatancy angle ψ = φ∗ in the energy balance
equation, so that the rate of internal work is independent of the state of stress. Because
the plastic material is now associated, the energy balance equation can be used to obtain
an upper bound to the collapse load. The fact that it constitutes an upper bound to
the actual dilating behaviour is ensured by theorem 4 and the fact that ψ < φ∗. The
following upper bound theorem was formulated by Drescher and Detournay:

Theorem 5 (Upper bound for non-associated coaxial materials). An upper bound to the
actual collapse load of a non-associated coaxial material can be obtained from a transla-
tional failure mechanism and the energy balance equation, provided that the rate of inter-
nal work and the velocity field are taken as for the flow rule associated to the “modified”
yield condition f∗(σij). However, the failure mechanism must be admissible (also) for
the non-associated flow rule; this is satisfied if the mechanism is statically determinate.

ti
t∗i

t∗i

t∗i

γi

γi

Figure 1.2 – Multi-block failure mechanism.

It is noteworthy that in statically determinate systems, and in absence of inertia
forces, the principle of virtual velocities expresses static equilibrium, and that the energy
balance equation is an application of such a principle. Therefore, the collapse load
computed through the energy balance equation and through the equilibrium of forces
must be the same, provided that the inclination of forces is derived from the relation
between τ∗ and σ∗n at the velocity discontinuity lines. It follows from the above that
the collapse load obtained with the limit equilibrium method and a multi-block rupture
figure is a rigorous upper bound.
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Given that the equilibrium of forces is made at the blocks level, it is not known
whether the state of stress is admissible or not. It is important to note that it is not
possible to use theorem 3 by selecting g(σij) = f∗(σij), because g(σij) must satisfy
the normality condition with respect to the actual plastic strain increment, which is
evidently not the case because φ∗ 6= ψ. To see this, it suffices to consider the case of
plastic distortion at constant volume, i.e. ψ = 0. In the Mohr’s diagram g(σij) must be
a horizontal line, but (1.14) gives tanφ∗ = sinφ, which is not horizontal, except for the
trivial case φ = 0.

It is noteworthy to consider the implications of the determination of soil shear strength
properties in relation to the conventional shear box [65]. The imposed plane of failure
must, for most of its surface, be a velocity discontinuity. Hence, the cohesion and shear
strength angle obtained from the conventional interpretation of the test are c∗ and φ∗.

1.4.2 Non-Associated Non-Coaxial Materials

Based on translational failure mechanisms, Drescher and Detournay [82] derived the
following theorem:

Theorem 6 (Upper bound for non-associated non-coaxial materials). For flow rules
and non-coaxiality that lead to a velocity jump located on the Mohr-Coulomb line (point
A in Figure 1.1), the dilatancy angle ψ has no effect on the limit load determined from a
translational failure mechanism. Indeed, the angle ψ affects only the hodograph; the yield
condition that governs the equilibrium of forces remains the same.

Theorem 6 states that for any value of ψ ∈ [0;φ], the upper bound computed for
a given geometry of the failure mechanism is the same. This is due to the fact that
the state of stress at velocity discontinuities is always given by the Mohr-Coulomb line,
τ = c + σn tanφ. If the dilatancy angle has no effect, theorem 1 and corollary 1 are
applicable and the solution is unique, because the limit load is the same as for ψ = φ.

It is interesting to note that some continuous deforming zones, as radial shear regions,
can be regarded as an infinite number of rigid blocks [49]. This makes the outcomes of
Drescher and Detournay extremely powerful (see for instance the excellent correlation
between limit analysis solutions of Michalowski and Shi [237], and finite element results
of [123] for incompressible soils).

In case of non-associated materials the irreversibility condition must be checked [82].
However, for translational failure mechanisms, 0 ≤ ψ ≤ φ ensures the respect of this
condition.
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Proof. Assume a translational failure mechanism, so that coaxial and non-coaxial flow
rules can be represented in the Mohr diagram (Figure 1.1). Let [v]i be the vector of veloc-
ity jumps and ti the vector of corresponding tractions. Given that 0 ≤ ψ ≤ φ, it follows
from the geometrical construction that 0 < ∠([v]i, ti) ≤ π/2. Therefore, irrespective of
coaxiality, the following relation holds for any possible value of ψ

ti[v]i ≥ 0

The particular case of de Josseling de Jong flow rule [73, 160] (point D in Figure 1.1)
was also discussed by Drescher and Detournay [82].

1.4.3 Frictional Interfaces

The limit theorems are valid for frictional interfaces if there is no slip or if the frictional
forces are known [97], because they can be treated as surface tractions. The issue is that
in general their distribution is not known. A useful set of limit theorems due to Drucker
[85] may be summarised as follows

Theorem 7 (Lower bound for frictional interfaces). The limit load for an assemblage
of bodies with frictional interfaces is bounded below by the limit load for the same bodies
with zero friction on the interfaces.

Theorem 8 (Upper bound for frictional interfaces). The limit load for an assemblage of
bodies with frictional interfaces is bounded above by the limit load for no relative motion
at the interfaces and also by the limit load for the same assemblage cemented at the
interfaces by a cohesionless soil.

A less conservative upper bound theorem for frictional interfaces were given later by
the same author [87]:

Theorem 9 (Upper bound for frictional interfaces). Failure should be assumed to occur
if for a pattern of deformation the work done by the applied forces exceeds the allowable
dissipation. The allowable dissipation is to be computed from any equilibrium distribution
of normal stresses on the assumed surfaces of sliding.

If theorems 7 and 8 give close solutions, or even the same result, the problem may
be considered solved. If not, techniques are required to refine the bracketing of the limit
load.

Mroz, Drescher, Collins, and Justo [56–58, 161, 246] showed that rigorous upper
bound solutions can be obtained by adopting a velocity field which is constant along the



22 Chapter 1. Limit State Analysis

contact surface and inclined at the angle of friction δ to the normal to the interface. In
the computation of the rate of work due to friction Ḋδ, the velocity can be taken out of
the integral because is constant. Because the interface shear strength is fully mobilised,
Ḋδ can be expressed in terms of the resultant force acting on the interface Ti =

∫
L ti dl,

where ti is the vector of surface tractions acting on the interface, and the angle between
it and the velocity jump at the interface, θ = ∠([v]i, Ti)

Ḋδ =

∫
L

[v]iti dl = [v]i

∫
L
ti dl = [v]iTi = ‖[v]i‖ ‖Ti‖ cos θ (1.16)

where ‖.‖ is the 2-norm operator (note that with ‖.‖ the Einstein’s summation convention
does not apply). The direction of [v]i implies that either θ = 0 or θ = π/2. This
is equivalent to replace the interface by an infinitely thin layer of associated coaxial
material obeying to a cohesionless Mohr-Coulomb law with shear strength angle δ. This
approach can actually be seen as an application of theorem 8 and the fact that limit
theorems are applicable to inhomogeneous materials [86].

A different approach was employed by Chen [49], who computed the energy dissi-
pation due to friction as the product between the frictional force ‖Ti‖ sin δ, and the
tangential component of the relative velocity at the interface [v]t, assumed constant.
This is equivalent to model the interface as a layer of non-associated non-coaxial mate-
rial with ψ = 0 and for which the yield stress is given by τ = σn tan δ. Due to theorem
6, the same solution would be obtained by selecting ψ = δ.

Therefore, for translational failure mechanisms the two methods of considering inter-
faces are equivalent [82]. It is interesting to note that the approach of Chen is a direct
application of theorem 9. In fact, if the relative velocity is constant, Ḋδ is independent
of the normal stress distribution, but depends only on its resultant through the relation
‖Ti‖ sin δ = N tan δ, where N =

∫
L σn dl can be expressed in terms of the applied loads

by equilibrium considerations.

1.5 Methods for Computing the Limit Load

The way of determining the collapse load is generally categorised in one of the three
following methods:

1. Limit analysis method

2. Limit equilibrium method

3. Method of characteristics
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The first method is nothing but the rigorous application of the limit theorems of the
theory of plasticity. The second method is based on the assumption of a rigid-perfectly
plastic material and expresses equilibrium between applied forces and resisting forces
mobilised along failure surfaces. Obviously, it requires that the system is statically de-
termined, otherwise further assumptions must be made. It was highlighted above that
in case of translational failure mechanisms this approach yields rigorous upper bound
solutions. The third method establishes a set of partial differential equations. These
equations expresses either equilibrium and yield condition [174, 175], or the kinematics
of the failure mechanism [342]. The former gives a network of stress characteristics defin-
ing the shear strength mobilisation. Given that the stress field obtained is generally not
extended throughout the entire solid, the solution is not a rigorous lower bound. The
latter gives the network of velocity characteristics and the application of equation (1.11)
provides a rigorous upper bound. The system of equations is definite only in plane strain
conditions. In axial symmetry conditions the set of equations is not always definite, e.g.
the problem of indentation of a circular rigid punch requires the additional hypothesis of
Haar and Karmán [126] concerning the intermediate principal stress σθ.

Under the light of the limit analysis, the second and the third method are actually
techniques employed to obtain either a lower or an upper bound to the actual collapse
load. It is noteworthy that when the method of characteristics is used, the geometry of the
plastic region containing the deforming zone arises naturally and there are good chances
that the solution is the correct one. For instance, the partial stress fields obtained by
Sokolovskii [366, 367] for the bearing capacity of smooth surface footings, and the solution
of Lundgren and Mortensen [201] for rough footings have been proven to be exact [217].

1.6 Limit Analysis for Real Soils

The theory of plasticity requires convexity and normality to be generally valid [83, 92, 95,
141, 293]. The first condition is not at issue given that it is observable also experimentally.
The second condition is more delicate, because the predicted dilation is usually larger
than what found in experiments. Besides the intrinsic simplification of the theory with
respect to reality, the discrepancy is also due to the fundamental differences between
plastic and frictional systems, and soils are frictional systems at a certain extent [95].
The lack of normality and frictional interfaces can be handled with the theorems for
non-associated materials described previously.

It is customary to assume the concept of perfect plasticity arbitrarily valid. However,
soils often undergo isotropic consolidation. An idealisation of soils as work-hardening
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elastic-plastic bodies was proposed by Drucker [95]. Notwithstanding, a perfectly plastic
state may be reached at collapse [87, 95], which depends on the loading path. Therefore,
it is fundamental to understand what is the limit state under investigation, i.e. general
shear failure or excessive volumetric deformation, and how it will be reached. The former
is typical of dense soils, whereas the latter of loose materials [384]. Strength parameters
should be determined based on the most probable loading path. It is noteworthy that
real soils might exhibit post-peak softening, which means that failure surfaces may be
characterised by different degrees of shear strength mobilisation. Ideal plasticity is a
simple but effective way to tackle this issue.

Another approach would be to take advantage of the fact that soils tend to a critical
state [338], which can be described by perfect plasticity. This was discussed by Jenike,
Shield, and Mroz [158, 159, 246]. Basically, during plastic flow at constant volume,
the state of the material will be close to the critical state line, which can be described
by a cohesionless Mohr-Coulomb yield condition. Given that velocity vectors are not
perpendicular to the critical state line, the flow rule is non-associated. Therefore, use
has to be made of the theorems for non-associated materials. Useful bounds may also be
determined through the following inequality [65]:

Qt
c

φ=φcv
ψ=0

≤ Qr,cv
c < Qr,p

c ≤ Qt
c

φ=φp
ψ=ψp

≤ Qt
c

φ=φp
ψ=φp

(1.17)

where Qc denotes the collapse load, and superscripts are as follows: t correct theoretical
value for the ideal material, r actual value for the real soil, cv constant volume, and p
peak.

Soil strength is strongly affected by the presence of water. When the soil is saturated
and there is no water flow, or seepage forces can be neglected, undrained and drained
situations must be distinguished. The former implies the utilisation of undrained strength
parameters cu and φu, and bulk density γ; whereas the latter requires drained values c′

and φ′, and submerged weight γ′. When steady seepage exists in the soil mass, a seepage
analysis is required and limit analysis must be performed in terms of effective stresses.
The limit theorems can also be applied to partially saturated soil masses. Suction may be
conveniently considered as an increase of the apparent cohesion, i.e. a shift of the Mohr-
Coulomb line, with the upper bound theorem, whereas it may be considered either as an
increase of the isotropic stress tensor, i.e. a shift of the Mohr circle, or as an increase
in apparent cohesion, when applying the lower bound theorem. When the soil mass
is characterised by inhomogeneous water conditions, different shear strength properties
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may be allocated to each region.
The limit analysis is apt to be of great use to deal with inhomogeneity of soil masses

[86], anisotropy [49], and inability to take tensile stresses [86, 97].
Limitations on the validity of a simple idealisation are to be expected along with dis-

agreement in detail with experimental, and even more with real, data [84]. Nevertheless,
the limit state is a matter of definition and the corresponding yield surface should be
determined by the most significant features of the problem to be solved. In a problem
of ultimate limit state, the crucial information is the value of the collapse load, whereas
the detailed knowledge on the local value of plastic strains is generally of little concern.

1.7 Limit Analysis for Structures

In soil engineering applications, the structural component is generally made of steel, re-
inforced concrete or a mix of the latter. Typical examples are walls, footings, rafts, piles
and tunnel linings. It is noteworthy that, although the above discussion was based on
continuum mechanics, all theorems and concepts are equally applicable to structural me-
chanics through generalised stresses and strains, i.e. axial force-axial displacement rate,
bending moment-rotation rate [51, 72, 94, 291]. The main difference between structural
elements and solids is that ductility capacity is not ensured by the material itself, but
is strongly related to the connections between members, their slenderness, and loading
conditions (instability problems, shear brittle failure).

1.7.1 Steel

Mild-steel does not deserve further details, given that the theory of plasticity was de-
veloped for this material. On the other hand, recent high strength steels might require
further considerations owing to their reduced capacity of plastic deformation. The appli-
cability of the limit theorems to steel structures is generally constrained by the ductility
capacity of connections (i.e. welded connections) and potential instabilities. For this
reason, connections and regions of load introduction are often equipped with stiffeners.

1.7.2 Reinforced Concrete

Reinforced concrete structures are probably the most common type of structures in
geotechnical applications. Despite concrete by itself cannot be considered a plastic mate-
rial, reinforced concrete members can sustain considerable plastic deformations if proper
reinforcement is provided. It is commonly admitted that concrete takes compressive
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stresses, whereas reinforcement takes tensile stresses [88, 106, 257]. The behaviour of
concrete in compression is characterised by a post-peak softening, which increases with
concrete compressive strength. This is managed by the adoption of perfect plasticity [88,
101, 257, 349]. Reinforcement is usually mild-steel. A lower bound theorem specific for
reinforced concrete structures was given by Drucker [88]

Theorem 10 (Lower bound for reinforced concrete). If an equilibrium distribution of
stresses can be found in the concrete and the steel which is nowhere tensile in the concrete
and is everywhere at or below yield, the structure will not collapse or will just be at the
point of collapse.

The application of theorem 10 with all the specific rules for concrete is known as
the theory of stress fields. This theory has its roots in the works of Ritter [312] and
Mörsch [243], when the theory of plasticity was still unknown, and gained maturity in
the 1970s and 1980s at the institutes of technology in Zurich and Copenhagen [253]. At
the same time, a complementary approach was under development in Germany, the strut-
and-tie method. The latter is based on the equilibrium of forces, and basically consists in
deriving a fictitious truss structure inside the concrete member which nowhere violates
the yield limit and is in equilibrium with the external loads. These two approaches are
complementary [253, 257].

Vecchio and Collins [394] showed that uniformly cracked concrete can efficiently be
treated as a new material with its own stress-strain characteristics. The constitutive
relation, and in particular the compressive strength, is mainly governed by the orientation
of the cracks, their opening, and their penetration within the compressive stress field. To
Schlaich [337] is due a general approach for the design of reinforced concrete members.
According to this method, the structure is subdivided into regions where the Euler-
Bernoulli hypothesis of plane sections is satisfied and regions where it is not (geometric
discontinuities and introduction of concentrated loads). The former are treated with the
classical beam theory, whereas the latter are analysed more in detail through the theory
of stress fields or the strut-and-tie method.

In a similar fashion to Saint-Venant-Lévy-Mises and Prandtl-Reuss relationships,
rigid plastic and elastic-plastic stress fields formulations were devised. Their advantages
and drawbacks were discussed in [173].

If slender members are subjected to shear forces, a fundamental distinction must
be made, namely members with and members without transverse reinforcement. For
members pertaining to the latter category, the theory of plasticity cannot always be
applied, because failure might occurs by quick development of a critical crack [43, 256,
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354, 393, 409]. A general theory able to handle one way shear and punching shear is
the critical shear crack theory [42, 107, 251, 252, 280, 356]. This aspect is qualitatively
depicted in Figure 1.3 for one way shear members without transverse reinforcement. The
diagram shows that shear strength is mainly governed by the shear span ratio α (α = a/d,
where a is the shear span and d is the effective depth). This diagram shows that stress
fields (SF), rigid-plastic or elastic-plastic, can be used to compute deep (α < α1) and very
slender (α > α3) beams, because failure occurs by yielding of the flexural reinforcement
and crushing of the concrete. In moderate deep beams (α1 ≤ α ≤ α2) the presence
of cracks reduce the concrete compressive strength, and thus the modified stress fields
(MSF) theory must be adopted. Finally, for slender members the shear capacity is
mainly governed by shear transfer actions across a critical shear crack (CSC). Analogous
considerations can be drawn for punching shear [353]. This aspect is of paramount
importance in geotechnical applications, because footings and rafts are generally designed
without transverse reinforcement.

α

VR

Vpl

1

α1 α2 α3

SF MSF CSC SF

Kani’s valley

bending failure

squat
members

slender
members

Figure 1.3 – Shear capacity of one way shear members without transverse reinforcement. Ratio
between shear resistance VR and plastic shear resistance Vpl (corresponding to the yielding of
the flexural reinforcement and the crushing of concrete) as a function of the shear span ratio α.
Depending on the slenderness of the member, shear capacity can be computed with stress fields
(SF), modified stress fields (MSF), or critical shear crack theory (CSC). [107].

The design of new reinforced concrete structures is nowadays generally based on the
method of stress fields.
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1.8 Limit Analysis Considering Soil-Structure Interaction

The application of limit analysis considering soil-structure interaction means that the
strength of both soil and structure is taken into account. Owing to the fact that these
two components do not behave independently, the correct assessment of the collapse load
must consider their mutual interaction. This means that an admissible stress field in the
structure must be extended throughout the soil and vice versa, and combined failure
mechanisms must be considered. Such solutions are not common due to the number of
parameters involved. A few solutions were proposed for surface strip footings [72, 111,
281], and for cut-and-cover tunnels [33, 281].

These type of analyses are of particular interest if the collapse load of an existing
structure is sought, because often a combined failure mechanism characterises the tran-
sition from a rupture figure involving only the soil mass and another affecting only the
structure. Limit theorems for non-associated materials and frictional interfaces may be
useful to take into account some aspects peculiar to soil-structure interacting systems.

1.9 Numerical Limit Analysis

Lysmer [205] introduced a technique for computing rigorous lower bounds based on the
finite elements method and linear programming. Since then, a number of improvements
have been proposed for the lower bound [16, 203, 207, 360], and for upper bound [16,
204, 208, 361, 362]. Other approaches, such as the discontinuity layout optimisation for
the determination of the optimal failure mechanism have also gain popularity [365].

It is noteworthy to cite, among others, the following softwares for the limit analysis:
OptumCE [271], a finite element software able to perform both lower and upper bound
limit analyses of geotechnical applications, and reinforced concrete panels and slabs;
LimitState [196], a discontinuity layout software for the upper bound limit analysis of
soil masses and reinforced concrete slabs; and jconc [106], a finite element software for the
automatic generation of elastic plastic stress fields within reinforced concrete members.

Jconc uses a classical displacement-based finite elements formulation. Therefore, the
solution is not a rigorous lower bound, both because equilibrium is satisfied in average
over the finite elements, and because the bi-linear behaviour of the reinforcement involves
strain rates that are not fully plastic, which is a necessary condition for the proof of
the lower bound theorem. Nevertheless, the solution can be extremely useful in real
applications [254], where any theoretical hypothesis is actually never met.
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1.10 Concluding remarks

The theorems of the limit analysis have been reviewed. The fundamental principles of
the theory of plasticity have been presented and the conditions for uniqueness have been
highlighted. Extended limit theorems for non-associated materials and frictional inter-
faces have been exposed and their usefulness for real soils has been remarked. Particular
attention has been devoted to the assumption of perfect plasticity. Limit theorems for
reinforced concrete and soil-structure interacting systems have also been discussed. Some
of the main conclusions that can be drawn from this research are as follows:

• The limit theorems and the uniqueness of the solution can be proven generally true
only for convex yield surfaces and associated coaxial materials.

• The collapse load of non-associated materials can be bounded between fixed limits
corresponding to associated materials.

• In the case of translational failure mechanisms, an upper bound for non-associated
materials can be computed with a fictitious modified yield condition.

• The definition of the yield criterion for soils might not be independent on the
application under investigation (simplified criteria are path dependent).

• Extended limit theorems and translational failure mechanisms can be conveniently
used to analyse soil-structure interacting systems.

It is the author opinion that a rigorous approach to the problem of limit loads is
essential for a comprehensive understanding of the phenomenon. The derivation of the
limit theorems by itself is the result of a rigorous mathematical treatment of the problem.
However, it is also clear that a number of hypotheses and simplifications must be made
for engineering applications, which lead inevitably to approximate results. The extent of
such simplifications is strongly related to the problem under investigation.
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In order to be useful, the knowledge of theory must be
combined with a thorough knowledge of the physical
properties of real soils and the difference between the
behaviour of soils in the laboratory and in the field.

Karl Terzaghi, Theoretical Soil Mechanics

2
Bearing Capacity of Surface Footings

under Centred and Vertical Load:
State-of-the-Art

The evaluation of the bearing capacity of surface footings is a classical problem
in applied soil mechanics and is of paramount importance in design practice.
Therefore, many solutions have been advanced during the years. Despite the

number of works dedicated to the subject, a comprehensive and direct comparison of the
available solutions and the implications of their underlying assumptions are somehow
missing. As a consequence, it is not clear whether new and more refined theoretical
results are either needed or susceptible to provide real improvements for the design. In
this study, an attempt is made to fill this gap. A collection of solutions categorised
by footing type, soil constitutive model, and computation technique is presented. The
underlying assumptions and the subsequent limitations are discussed. It is shown that
advanced numerical techniques are of practical relevance only if key aspects pertaining
to real soils such as flow rule, and influence of loading and strain conditions on shear
strength parameters, that cannot be considered directly by simplified limit analyses, are
taken into account.

31
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2.1 Introduction

The analysis of collapse load is a key aspect in the design process of foundations. The
theory of general shear failure for shallow footings on dense soils has been developed by
Terzaghi [384] and Meyerhof [232], and generalised in the known form by Brinch Hansen
[25]. In the case of surface footings, the resistance is given by the apparent cohesion and
the mass of soil displaced that opposes to the indentation of the footing.

Over the years, many solutions have been proposed based on the limit state theories,
i.e. limit equilibrium method, method of stress characteristics, and limit analysis method,
or based on step-by-step analyses. Alongside, a number of reviews have been published
[7, 23, 230, 231, 274, 341, 351, 397, 408]. Due to length restrictions, these surveys are
generally limited to a few selected solutions. Moreover, the main underlying assumptions
and their consequences on the results, and the connection with experimental data and
real soils are not always clarified.

In this research, an effort is made to clarify the aforementioned aspects for surface
footings subjected to a centred and vertical load. Most of the theoretical aspects and
the main conclusions can, however, be extended to shallow footings under combined
loads. The second and third sections are devoted to the theoretical derivation of bearing
capacity coefficients for strip and finite length footings, respectively. Attention is given
to the effect of footing roughness. Numerical values are presented in tabulated form, so
that they can be easily used by other researchers. Analytical expressions are reported
with their precision or range of applicability. Two new formulae for the bearing capacity
of surface strip footings on general Mohr-Coulomb soils are derived. In the third section,
the relevance of the theoretical solutions are critically analysed with respect to real soils,
i.e. the presence of water, the flow rule, and the influence of strain conditions on the
shear strength parameters. Finally, concluding remarks are summarised.

2.2 Plane Strain Problem

Rectangular footings with aspect ratio L/B ≥ 5 can be analysed in the framework of
plane strains.

2.2.1 Weightless Mohr-Coulomb Material — c–φ soil

To the author’s knowledge, Prandtl [298] derived the first field of stress characteristics
for the uniform indentation pressure pf on a weightless rigid material defined by a per-
fectly plastic Mohr-Coulomb yield criterion (cohesion c and shear strength angle φ). His
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solution (right of Figure 2.1) comprises a central wedge beneath the load in the Rankine
plastic state, two lateral wedges in the Rankine plastic state, and two logarithmic spiral
sectors with a family of straight stress characteristics radiating from the edge of the load
and a family of logarithmic spiral stress characteristics. In terms of bearing capacity
factor Nc = pf/c, the solution writes

Nc = cotφ
(
eπ tanφNφ − 1

)
(2.1)

Qu

Figure 2.1 – Failure mechanism for smooth (left) and rough (right) footings on a weightless
Mohr-Coulomb soil.

Nφ = tan2
(
π
4 + φ

2

)
is the flow value [384]. When φ = 0, the Mohr-Coulomb criterion

reduces to the Tresca yield condition∗, and the Prandtl solution is

Nc = lim
φ→0+

cotφ
(
eπ tanφNφ − 1

)
= 2 + π (2.2)

The kinematic admissibility of Prandtl solution for Tresca materials was shown by Prager
and Hodge [296].

Hencky [134] suggested an alternative partial plastic stress field for a Tresca material,
which gives the same solution as (2.2). This solution involves two wedges beneath the
base instead of one as proposed by Prandtl. Hill [148] showed that Hencky solution
applies to the indentation of a flat rigid and smooth die, and that an admissible velocity
field can be associated to the stress characteristics. This failure mechanism is known as
Hill type failure mechanism.

Shield [342] extended the Hill mechanism to the case of a general weightless Mohr-
Coulomb material (φ > 0) and showed that an admissible velocity field can be associated
to both the Prandtl and Hill type partial stress fields. The solution for this extended
Hill failure mechanism is still given by equation (2.1). Actually, it is not surprising that
Prandtl and Hill type solutions are the same for weightless materials. The rigid region
outside the deforming zone can be stressed either elastically or plastically. Therefore, the
∗Tresca yield criterion coincides with the Mises yield criterion in plane strains because σII = 0.5(σI +

σIII) for an incompressible plastic flow [195].
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plastic stress field of the Hencky solution can be extended in order to recover the Prandtl
plastic region. It can then be stated that there are two limiting deformation modes
associated to a unique plastic stress field. In fact, a theorem due to Hill [146] states that
in a rigid-plastic associated material, the state of stress is uniquely defined in a certain
part of the plastic region under given boundary conditions. This zone forms part (or
sometimes all) of the plastic region and covers the whole material that can deform under
the given boundary conditions. However, the instantaneous mode of deformation may
not be uniquely defined. The extension of the deforming region, which defines the volume
of matter displaced, does not play a role because the moving material is weightless.

It is noteworthy that for a footing resting on a general weightless Mohr-Coulomb
material, the contact pressure at failure is not constant, but increases from the edge
to the centre of the footing. The value of pf given by (2.1) corresponds to the average
pressure. This was shown by Meyerhof [232], who derived the same bearing capacity
factor by expressing the equilibrium of resultant forces acting on the central wedge†.

Bishop [12] extended Prandtl and Hencky partial stress fields into the rigid body of a
Tresca material, whereas Shield [345] extended Prandtl partial stress field in an admissible
manner for φ < 75◦. Given that an admissible velocity field can be associated to both
solutions, it may be concluded that (2.1) is the exact solution for the maximum average
indentation pressure on a weightless rigid-perfectly plastic associated Mohr-Coulomb
material (provided that φ < 75◦). Chen [49] explicitly showed the coincidence with
upper bound solutions for both rupture figures. The exact values of Nc are summarised
in Table 2.1.

It is noteworthy that the roughness of the footing does not have any influence on the
bearing capacity. The proof requires the use of a set of theorems obtained by Drucker
[85]. These show that the collapse load of an indenter is bounded from below by the limit
load with zero friction at the interface, and from above by the limit load corresponding
to the kinematic boundary condition of no relative slip at the interface. Given that Hill
(frictionless interface) and Prandtl (no relative motion) complete solutions coincide, the
solution is independent of interface friction.

Shield [343] obtained a rigorous lower bound to the uniform strip load, or average
indentation pressure, through the superposition of simple homogeneous stress fields. The
bearing capacity factor is

†Terzaghi [384] already suggested that Prandtl solution expresses the average contact pressure. The
same was suggested by Shield [343, 347].
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Nc =
N

3
2
φ

2

(
4 + sinφ+ sin2 φ+ (1 + sinφ)

√
4 + sin2 φ

)
+ 2
√
Nφ (2.3)

The difference between (2.3) and the exact solution increases with increasing φ, Nc,lower(φ =

0) = 5.00 and Nc,lower(φ = π/4) = 66.9.

Table 2.1 – Exact bearing capacity factor (Nc = pf/c) for footings on a weightless material,
[298].

φ [deg] 0 5 10 15 20 25 30 35 40 45

Nc 5.14 6.49 8.34 11.0 14.8 20.7 30.1 46.1 75.3 134

2.2.2 Ponderable Tresca Material — c–γ soil

The earliest theoretical methods for the computation of the bearing capacity of surface
strip footings on ponderable materials defined by the Tresca yield condition, as reported
by Wilson [404], are the method of Hogentogler and Terzaghi [151] (Nc = 4.0), the
circular-arc method of Fellenius [105] (Nc = 5.52) which assumes completely circular
failure surfaces, the circle method of Krey [177] (Nc = 6.05) which supposes a combina-
tion of circular and planar failure surfaces, and the modified Krey’s method (Nc = 5.41)
which optimises the location of the critical failure surface. Ritter [311] was, to the au-
thor’s knowledge, the first to compute the bearing capacity of shallow footings on general
soils, i.e. considering the contribution of the soil self-weight, and assuming the overbur-
den soil as a uniform pressure. For surface footings on a Tresca material, his solution
writes

Nc = lim
φ→0+

cotφ(N2
φ − 1) = 4 (2.4)

Palmer [277] modified Prandtl’s solution to take into account the soil self-weight, which
contribution vanishes for φ = 0 and Nc is given by (2.2). These techniques do not specify
anything about the footing roughness.

Later Terzaghi [384], starting from his failure mechanism for perfectly rough strip
footings on general soils, proposed the following relation

Nc = lim
φ→0+

cotφ

(
e( 3

2
π−φ) tanφ

2 cos2
(
π
4 + φ

2

) − 1

)
=

3

2
π + 1 = 5.71 (2.5)
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For smooth footings he adopted the Prandtl failure mechanism.

All the above results, except the solutions of Palmer and Terzaghi for smooth inter-
faces, cannot be correct because Salençon [331] demonstrated that the bearing capacity
of a Tresca material is independent of its self-weight. This can actually be inferred di-
rectly from the previous section and the application of the upper bound theorem of the
limit analysis, which shows that the rate of work done by the weight is zero [49], both
for the Prandtl and the Hill failure mechanisms. Therefore, given that the lower bound
solution for the weightless soil is admissible for the ponderable soil [115], and that it
coincides with the upper bound solution for the ponderable material, (2.2) is the exact
solution and is independent of the soil self-weight, and also of the base roughness. The
invariance of Nc with respect to footing roughness was suggested also by Meyerhof [232],
and confirmed experimentally by Skempton [359].

2.2.3 Ponderable Cohesionless Mohr-Coulomb Material — φ–γ soil

The set of partial differential equations satisfying equilibrium and Mohr-Coulomb yield
condition for a ponderable material were derived by Kötter [174]. The resolution is
complicated, because the characteristics are allowed to be curved everywhere (Figure 2.2).
No closed form solutions are known.

Qu

Figure 2.2 – Failure mechanism for smooth (left) and rough (right) footings on a Mohr-Coulomb
soil.

Ritter [311] defined a failure mechanism made of a wedge below the footing in Rankine
plastic state and a less well defined state outside this region made of curved rupture
surfaces, which cut the ground level at an angle π/4 − φ/2. He integrated the major
principal stresses, computed with Kötter’s equations, along a major principal plane which
encompasses the base. Given that he did not consider properly the curvature of the slip
lines and that they are not well defined everywhere, the direction of the major principal
plane is probably wrong. Moreover, it is not clear whether the solution corresponds to
the case of a smooth or a rough footing. Ritter wrote that the loading causes the soil to
be laterally displaced. This statement in conjunction with the assumption that the base



2.2. Plane Strain Problem 37

is a principal plane, suggests that the interface should be considered smooth. On the
other hand, the rupture surfaces starting at the footing edges are supposed to meet at
the axis of symmetry, creating a wedge under the base which could also be interpreted
with a downward movement, thus corresponding to a rough base. These aspects might
explain the difference with respect to the exact solution (see below), and why there is
not a unique trend. Tables 2.2 and 2.8 show that the values of Nγ provided by Ritter
are higher than those for rough footings for φ ≤ 15◦, between smooth and rough for
20◦ ≤ φ ≤ 25◦ and lower that those for smooth footings for φ ≥ 30◦. The formula
derived by Ritter is

Nγ =
2pf
γB

=

√
Nφ

2

(
N2
φ − 1

)
(2.6)

where γ is the soil self-weight, and B the breadth of the footing.

Smooth footing

Limit equilibrium method
Terzaghi [384] gave the first comprehensive description of the punching failure mecha-

nism of footings. His approach for rough footings, based on the limit equilibrium method,
is still one of the most used by practitioners. However, he did not furnish explicit results
for smooth interfaces. He just said that the same procedure used for rough footings can
be applied, but to a mechanism in which the trapped wedge makes an angle ψ = π/4+φ/2

with the base, instead of ψ = φ. Meyerhof [229] pointed out that the bearing capacity
calculated in this way is grater than that of a rough base, which seems reasonable be-
cause the extent of the failure mechanism is greater, and the factor Nγ is related to the
mass of soil displaced. This outcome contradicts the limit theorems for frictional inter-
faces [85], according to which the limit load of an assemblage of bodies with frictional
interfaces is bounded below by the limit load for the same bodies with zero friction, and
the experimental evidences of Meyerhof [232], which showed that Nγ,smooth ≈ 0.5Nγ,rough

(relation proposed later by the same author [228], in which Nγ,rough can be approximated
by (2.15)). After the solution of Meyerhof [232] for perfectly rough footings, which as-
sumes ψ = π/4 +φ/2, several authors adopted the same geometry for the trapped wedge
(see below), and obtained results comparable to those of Terzaghi for ψ = φ. Therefore,
the suggestion of Terzaghi cannot be correct for smooth footings.

Method of stress characteristics
Caquot and Kérisel [37] obtained values of the bearing capacity factor Nγ by assimi-
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lating the problem of bearing capacity to that of passive earth pressure, for which they
derived the partial field of stress characteristics‡ (Table 2.2). Other authors [15, 66, 120,
130, 133, 181, 191] (Table 2.2) adopted the procedure developed by Sokolovskii [366,
367] for the construction of the stress characteristics field, which matches that proposed
earlier by Lundgren and Mortensen [201].

It is noteworthy that the values of Nγ given by Larkin [191] have somehow been
multiplied by two [133]. It seems that he computed Nγ with the maximum, rather than
the average, contact pressure. Therefore, the values reported in Table 2.2 are half of
those given in [191]. A similar issue appears to the values attributed to Sokolovskii
[366] reported by some authors [49, 211, 389]. These values are twice those reported by
Grahm and Stuart [120], and Martin [216]. The latter, from whom the values in Table 2.2
attributed to Sokolovskii are taken, gave a probable explanation to this mistake.

Poulos [287] suggested the following expression to approximate the numerical results
obtained by Davis and Booker [66]

Nγ = 0.0663e9.3φ (2.7)

where φ is expressed in radians. Han et al. [130] proposed the following analytical
formula

Nγ = βNγ,max

β =

4∑
i=0

ai tani φ
(2.8)

Nγ,max is the bearing capacity factor computed with the geometry of the failure mecha-
nism for a weightless soil. In case of smooth footings the geometry is given by the Hill
type failure mechanism proposed by Shield [342], and the expression was given by Chen
[49]

‡The writer is not aware whether the tabulated values of Nγ were already present in the first edition
of the book published in 1949 [39].
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Nγ,max =

√
Nφ

4

(
e

3π
2

tanφ
√
Nφ − 1

)

+
3 sinφ

1 + 8 sin2 φ

[(√
Nφ −

cotφ

3

)
e

3π
2

tanφ +
cotφ

3

√
Nφ + 1

]
(2.9)

The coefficients ai are: a0 = 0.281, a1 = 0.715, a2 = −0.747, a3 = 0.345, and a4 =

−0.0654.

Limit analysis method

Bearing capacity factors obtained through the upper bound theorem of the limit
analysis are summarised in Table 2.3. Chen [49] and Michalowski [233] assumed a Hill
type failure mechanism. However, the latter did not consider the radial shear zone
as a continuous deforming region, but subdivided it into triangular blocks where the
base inclination was left as an optimisation parameter. In this way, the region is not
constrained by a logarithmic spiral failure line. His solution can be estimated with

Nγ = e5.1 tanφ tanφ (2.10)

Kumar [180] bounded the radial shear zone by a logarithmic spiral, but he did not
impose the focus at the footing edge. It is interesting to note that values of Michalowski
[233] and Kumar [180] are very close, suggesting that the actual failure surface obtained
by Michalowski is close to a logarithmic spiral.

Numerical upper bounds (Table 2.3) computed with the finite elements method were
obtained using linear programming [184, 363, 389], non-linear programming [149], and
second-order cone programming [208]. Lower bounds (Table 2.4) were obtained using
linear programming [183, 363, 389], non-linear programming [149], and second-order
cone programming [207]. Hjiaj et al. [149] bracketed the exact solution very closely, and
proposed the following analytical expression to approximate the average between lower
and upper bounds

Nγ = βNγ,rough

β =

5∑
i=0

ai tani φ
(2.11)
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where Nγ,rough is given by (2.26), and a0 = 0.9232, a1 = −2.4101, a2 = 6.4821, a3 =

−9.4059, a4 = 6.991 and a5 = −2.0675. The coefficient β tends the value 0.5 as the
friction angle approaches 45◦.

Smith [364] and Martin [215, 217] extended the incomplete stress field obtained with
the method of characteristics, thus obtaining rigorous lower bound solutions, for any value
of footing roughness. Martin [215, 217] showed that the velocity characteristics, which
coincide with the stress characteristics for an associated material, define an admissible
deforming mode and provide upper bounds coincident with the lower bounds§. The exact
results for smooth surface footings on cohesionless soils are given in Table 2.5.

It is noteworthy that all the solutions derived with the method of stress characteristics
are in very close agreement with the exact solution. It may be concluded therefore that
the differences are only due to numerical reasons.

§For smooth and perfectly rough shallow footings, the exact solution may be obtained through the
free software ABC [215].
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Table 2.5 – Exact bearing capacity factor (Nγ = 2pf/(γB)) for smooth footings, [217].

φ [deg] 5 10 15 20 25 30 35 40 45

Nγ 0.084 0.281 0.699 1.58 3.46 7.65 17.6 43.2 118

Rough footing

For practical applications, the base of reinforced concrete footings can always be taken
as perfectly rough, i.e. δ = φ [232].

Limit equilibrium method
Table 2.7 summarises the values of the bearing capacity factor Nγ obtained with

the limit equilibrium method. Palmer [277] proposed probably the first formula for the
contribution of soil weight with a clear idea of an imposed trapped wedge beneath the
base. This formula was called modified Prandtl formula and for cohesionless soils reduces
to

Nγ =
√
Nφ

(
eπ tanφNφ − 1

)
(2.12)

Terzaghi [384] assumed a Prandtl type failure mechanism with trapped wedge un-
derneath the base of angle ψ = φ. He then optimised the position of the focus of the
logarithmic spiral curve, and obtained the following bearing capacity factor

Nγ =
tanφ

2

(
Kpγ

cos2 φ
− 1

)
(2.13)

where Kpγ is the coefficient of passive earth pressure. As noted by Bowles [23], Terzaghi
never explained in detail how he obtained the Kpγ used to compute the bearing capacity
factor Nγ . He gave, however, a small scale curve of φ versus Nγ for 0◦ ≤ φ ≤ 39◦ and
three specific values at φ = 0◦, 34◦ and 48◦. Actually, Terzaghi just mentioned that Kpγ

can be computed graphically. Bowles, using a curve fitting method, provided values of
Nγ for 0◦ ≤ φ ≤ 50◦. Later, Kumbhojkar [185] presented explicit analytical expressions
for calculating Nγ according to Terzaghi’s mechanism. The differences with respect
to the results presented by Terzaghi are presumably due to the inherent limitations of
the graphical procedure. Also Dewaikar and Mohapatro [77] computed Nγ based on
Terzaghi’s mechanism, but employing Kötter’s equations. In Table 2.6 all these values
and the corresponding back-computed Kpγ are given.

Some years later, Meyerhof published his bearing capacity theory [232], according to
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Table 2.6 – Bearing capacity factor (Nγ = 2pf/(γB)) for perfectly rough footings according to
Terzaghi’s failure mechanism.

φ [deg]

Terzaghi Kumbhojkar Dewaikar and Mohapatro
(1943)a (1993) (2003)

Nγ Kpγ Nγ Kpγ Nγ Kpγ

5 0.5 12.2 0.144 4.26 – –
10 1.2 14.7 0.559 7.12 – –
15 2.5 18.6 1.52 11.5 – –
20 5.0 25.0 3.64 18.5 – –
25 9.7 35.0 8.34 30.2 8.36 30.3
30 19.7 52.0 16.2 42.8 21.4 56.4
35 42.4 82.0 45.4 87.7 53.8 104
40 100 141 115 161 141 198
45 298 298 325 326 407 408

a After [23].

which the failure mechanism is characterised by a trapped wedge of angle ψ = π/4+φ/2,
two logarithmic spiral sectors and two Rankine plastic regions. In that paper the optimum
values of Nγ were given graphically. However, they were tabulated in the proceedings of
the second ICSMFE [226]. A few years later, Meyerhof [229] suggested to optimise the
geometry of the elastic trapped wedge, which led to ψopt ≈ 1.2φ. Later, Terzaghi himself
adopted this solution [385]. In that study, Meyerhof conducted the first theoretical
analysis on the influence of footing roughness on the ultimate bearing capacity. Interface
friction was taken into account assuming that the central elastic wedge increases from
zero for a smooth base to the footing breadth for δ = φ. Considering that the bearing
capacity of a smooth footing can be roughly taken as half of that of a perfectly rough
footing, Meyerhof proposed the following expression

Nγ =
(
n+

1− n2

2

)
Nγ, rough

n =
tan δ

tanφ
(2.14)

Bwedge = nB

Later, Meyerhof [228] suggested to approximate the optimum bearing capacity (ψ = ψopt)
with the following analytical expression

Nγ = (Nq − 1) tan(1.4φ) (2.15)
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A formula very close to (2.15) was given by Spangler and Handy [369] (taken from [23]):

Nγ = 1.1(Nq − 1) tan(1.3φ) (2.16)

Janbu [156] applied the generalised procedure of slices to derive bearing capacity of
shallow footings under centred vertical or inclined load. He assumed a failure mechanism
given by the geometry of Prandtl’s solution. The bearing capacity factor he obtained is

Nγ =
Nh

2
(Nq − 1) (2.17)

where

Nh =
e(π

4
−φ

2
) tanφ

cos
(
π
4 + φ

2

)
Zhu et al. [410] used the method of triangular slices, which is within the limit equilib-

rium method, to compute the bearing capacity factor. In this method, the passive failure
region is not bounded by a logarithmic spiral surface, but it is divided into a number
of triangular slices and the critical base inclination of each slice is determined based on
the principle of optimality. They considered three cases: (1) ψ = φ, (2) ψ = π/4 + φ/2,
and (3) ψ = ψopt. The results of case 1 are lower than those of Terzaghi [384], whereas
those of cases 2 and 3 are slightly higher compared to those of Meyerhof [229, 232]. They
proposed the following analytical expressions

Nγ =


(2Nq + 1) tan1.35 φ case 1

(2Nq + 1) tan(1.07φ) case 2

(2Nq + 1) tan1.45 φ case 3

(2.18)

Silvestri [352] proposed a limit equilibrium analysis based on a Prandtl type failure
mechanism (Table 2.7). He considered the possibility of non-associated flow rules based
on the outcomes of Davis [65], and Drescher and Detournay [82] (cf. section 2.4.2).
Silvestri optimised the angle of the trapped wedge and that of the logarithmic spiral
sector. He obtained ψopt ≈ 22◦ + 0.8φ.

Method of stress characteristics
The results presented in this section are summarised in Table 2.8. A general procedure

to construct the field of stress characteristics was given by Lundgren and Mortensen [201].
The partial stress field obtained involves a trapped non-plastic curved wedge beneath
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the base, which extent increases with increasing interface friction angle δ. For surface
footings on cohesionless materials, this wedge never spans over the entire base and a
family of stress characteristics becomes tangential to the base. The solution of Lundgren
and Mortensen pointed out that the existence of a trapped wedge arises “naturally”
when constructing the network of slip lines complying with the symmetry conditions
with respect to the footing centre line. As already mentioned, some authors imposed
a predefined geometry of the trapped wedge, and then constructed the field of stress
characteristics. This approach has two consequences. First, from a theoretical point of
view, it leads necessarily to wrong solutions [217, 364], because the problem has been
modified in a new one, i.e. a wedged indenter with interface friction angle δ = φ. Second,
a theorem due to Drucker [85] states that the collapse load of a footing is bounded above
by the limit load for no relative motion at the interface, thus higher bearing capacity
factors have to be expected. In Table 2.8, it can be noticed that the assumption of a
predefined triangular trapped wedge yields higher results.

Brinch Hansen [25] proposed the analytical expression (2.19) for the factor Nγ
¶ based

on the idea that the actual factor should lie between a lower bound obtained through
the procedure of Lundgren and Mortensen and an upper bound given by the values of
Meyerhof [232]. The reason for this could be attributed to the erroneous statement made
by Brinch Hansen that the rupture figure of Lundgren and Mortensen is not kinematically
admissible, presumably motivated by the idea that the trapped wedge should spans over
the entire base. However, Larkin [192] demonstrated that the mechanism is kinematically
admissible and Martin [217] showed that the procedure of Lundgren and Mortensen leads
to the exact solution.

Nγ = 1.8(Nq − 1) tanφ (2.19)

Later, in a lecture given in Japan in 1968 (reprinted in [26]), Brinch Hansen proposed
a revised formula intended to match the results obtained with the rupture figure of
Lundgren and Mortensen, which is

Nγ = 1.5(Nq − 1) tanφ (2.20)

Based on the rupture figure of Lundgren and Mortensen, Hansen and Christensen
[133] gave the values of Nγ in graphical form for any value of interface roughness (0 ≤
δ ≤ φ).
¶This is actually a better approximation of a formula proposed by Brinch Hansen in 1955, which was

based on the unique value of Nγ given by Lundgren and Mortensen [201]: Nγ = Nq − 1.
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Bolton and Lau [15] adopted ψ = π/4 + φ/2, whereas Graham and Stuart [120] used
ψ = φ. Caquot and Kérisel applied their theory of lateral earth thrust against retaining
walls adapted to the geometry of surface footings. They considered both the case with
imposed trapped wedge defined by ψ = π/4+φ/2 [38], and the case with perfectly rough
base [37]. Vesic [397] suggested a formula that approximates on the safe side the results
of Caquot and Kérisel [38] (not exceeding 10 % for 15◦ < φ < 45◦ and not exceeding 5 %

for 20◦ < φ < 40◦)

Nγ = 2(Nq + 1) tanφ (2.21)

Graham and Stuart [120], in addition to the case of an imposed trapped wedge,
studied the cases of constant and variable δ at the soil-footing interface, from δ = 0 at
the centreline to δ = φ at the corner. Their solution for perfectly rough bases appears
erroneous, because the resulting trapped wedge is quite different from the solution of
Lundgren and Mortensen and the resulting values of the bearing capacity factor are
undoubtedly too high, Nγ = 63.3 for φ = 35◦ compared to 34.5 of the exact solution
[217].

Although a variation of δ along the base is probably a real phenomenon, with a higher
value at the corner due to a lower level of confinement, the adoption of such a variable
δ is questionable. First of all, a variation from 0 to φ seems unrealistic. Second, they
justify its variation by some condition of stress distribution across the centreline of the
footing (plane of symmetry). However, this means that the angle δ that they used is
not the interface shear strength angle, but rather the mobilised shearing angle, which
increases from zero at the footing centre to δ at the edge of the trapped wedge (see [181,
215, 364] for a detailed description). Therefore, the solution obtained with the method
of characteristics is necessarily wrong, because the method is based on the combination
of equilibrium equations and yield condition, and if the angle is not the interface shear
strength angle, the equations are actually not describing the point of yield. Martin [217]
also concluded that their solution is wrong.

Salençon [333] obtained values of Nγ for perfectly rough footings with the method of
characteristics that are in close agreement with the exact solution. Kumar [179] obtained
slightly higher results. This could be explained by the fact that, when employing the
method of characteristics, it is numerically convenient to consider the Nγ problem as a
limiting case of the bearing capacity of shallow footings on cohesionless soils [15, 66, 120,
191, 215, 217]:
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Nγ = lim
γB
q
→∞

2pf
γB

(2.22)

where q is the uniform overburden pressure. Martin [215, 217] showed that a γB/q ratio
of 109 is large enough for a 4-digit precision. The results obtained by Kumar [179] have
values of γB/q that range from 1.3 for φ = 5◦ to 143 for φ = 50◦. This explains also why
the precision of his results increases with increasing φ (Table 2.8).

Solutions obtained by Davis and Booker [66] for perfectly rough bases were approxi-
mated by Poulos [287] with

Nγ = 0.1045e9.6φ (2.23)

Kumar [181] obtained Nγ for any value of interface roughness. The latter results for
δ = φ are better compared to those obtained previously [179]. This could be attributed
to the higher values of the parameter γB/q, which was seen to vary between 102 and
105, compared to 1.3 and 143 used earlier, and likely to an increased refinement of the
finite difference mesh.

The values of the bearing capacity factor given by Han et al. [130] for δ = φ, obtained
as explained previously, match the exact solution (Table 2.8). The proposed analytical
expression takes the same form as (2.8), but now Nγ,max = Nγ,max,rough = 2Nγ,max,smooth

(Nγ,max,smooth is given by (2.9)), a0 = 0.142, a1 = 1.065, a2 = −1.047, a3 = 0.441, and
a4 = −0.0719. The variation of the ratio RNγ = Nγ,smooth/Nγ,rough, which is very close
to that obtained by Hjiaj et al. [149] (see below), decreases with increasing φ, and for
φ = 45◦ is 0.5. It is noteworthy that 0.6 ≥ RNγ ≥ 0.5 for 15◦ ≤ φ ≤ 45◦.
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Limit analysis method
Chen [49] obtained upper bounds for any value of δ based on the minimum between

optimised Hill and Prandtl type failure mechanisms. Energy dissipation due to friction
was computed as the product between the friction force and the tangential component
of the relative velocity at the interface. For the case of optimum Prandtl type failure
mechanism, he suggested ψopt = 15◦+φ within 5 % and proposed the following expression,
which is within 6 % for 20◦ ≤ φ ≤ 40◦ and within 8 % for 15◦ ≤ φ ≤ 45◦

Nγ = 2(Nq + 1) tan
(π

4
+
φ

5

)
tanφ (2.24)

Kumar [180] idealised the interface as an infinitely thin layer of associated material
defined by a cohesionless Mohr-Coulomb criterion with shear strength angle δ. Drescher
and Detournay [82] showed that for translational failure mechanisms both approaches to
consider interface friction are rigorous upper bounds and, moreover, are equivalent. The
mechanisms used by Chen can be considered translational because he showed that the
dissipation in the radial shear regions can be computed as the limit of an infinite number
of rigid blocks. Figure 2.3 shows that in both approaches base friction has the same
impact on the bearing capacity coefficient. The slight increase of the gap between the
two solutions is attributable to a better optimisation of the geometry in the mechanism
suggested by Kumar [180].

0.00 0.25 0.50 0.75 1.00

δ/φ

100

101

102

103

N
γ

φ = 45◦

φ = 30◦

φ = 15◦

Chen (1975)

Kumar (2004)

Figure 2.3 – Comparison of bearing capacity factor Nγ with respect to interface friction δ/φ
for surface strip footings on cohesionless soils obtained by Chen [49] and Kumar [180].

Michalowski [233] obtained better upper bound solutions for perfectly rough footings
assuming a multi-block Prandtl type failure mechanism, which does not constraints the
radial shear zone to a logarithmic spiral curve. His results can be estimated with (2.25)



2.2. Plane Strain Problem 53

within 1 % for φ from 25◦ to 50◦.

Nγ = e0.66+5.11 tanφ tanφ (2.25)

Michalowski gave also results for non-associated materials through relations (2.53) and
(2.54). Soubra [368] adopted a multi-block failure mechanism close to that of Michalowski
[233], except for the fact that the external triangles are not assumed isosceles a priori.
However, the results are slightly higher with respect to those of Michalowski. The dif-
ference is probably due to the number of blocks adopted. Wang et al. [403] computed
upper bounds for perfectly rough strip footings with a multi-block Prandtl type failure
mechanism not only based on triangular blocks, but also quadrilateral. They obtained
higher values compared to those of Michalowski [233].

It is noteworthy that according to Chen [49] and Kumar [180], the value of δ/φ needed
to mobilize the full friction decreases continuously with increasing φ. On the other hand,
the stress characteristics solution [181, 217, 364] showed that for a given value of φ, Nγ

continuously increases with δ. For instance, for φ = 30◦, according to Chen [49] and
Kumar [180] the bearing capacity does not increases for δ ≥ 0.5φ. This is actually due to
the fact that for the assumed Prandtl type failure mechanism, the trapped wedge spans
over the entire footing and is not a function of δ. Therefore, when this mechanism is
governing over the Hill type failure mechanism, the bearing capacity is fixed. On the
other hand, in the slip lines solution, the width and geometry of the trapped wedge
depends upon δ.

Numerical upper bounds computed with the finite elements method were obtained for
perfectly rough footings using linear programming [363, 389], non-linear programming
[149], second-order cone programming [202, 208], and for any value of base roughness
using linear programming [184]. Lower bounds for perfectly rough footings were obtained
using linear programming [363, 389], non-linear programming [149], second-order cone
programming [202, 207], and for any value of base roughness using linear programming
[183]. The bracketing of the exact solution obtained by Hjiaj et al. [149] is quite close, and
they proposed the following analytical expression to estimate the exact Nγ for perfectly
rough footings, evaluated as the mean value between their lower and upper bounds

Nγ = e
1
6

(π+3π2 tanφ) tan
2
5
π φ (2.26)

The supposedly rigorous lower bounds of Hjiaj et al. for φ < 15◦ lie slightly above
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the exact values [218]. The difference is in the third digit, thus this could be due to
numerical approximations and round off errors. It is interesting to note that the trapped
wedge compute by Hjiaj et al., both with the lower and upper bound, is bounded by
a curved line which becomes tangential to the base, as obtained with the method of
characteristics. The better upper bounds obtained by Hjiaj et al. with respect to Kumar
[184] for perfectly rough bases shown in Table 2.9 indicate the superiority of carrying out
non-linear optimisation.

Assuming no relative slip, and eventually also the geometry of the trapped wedge, is
theoretically not justified [217], if not by the need to obtain absolute upper bounds to
any problem of indentation, which might be a useful information.

Martin demonstrated that the partial field of stress characteristics, for any value of
base roughness, can be extended throughout the rigid body in an admissible manner and
that the solutions coincide with the upper bounds obtained with the associated velocity
characteristics [215, 217]. He gave results for the specific cases δ/φ = 1/2, 2/3 and 1 in
tabulated form [218]. The same year, Smith [364] independently obtained rigorous lower
bound solutions which match the exact values. He gave tabulated results for δ/φ = 1/2

and 1. Smith proposed the following formula for perfectly rough footings, which is within
1 % over the range 20◦ to 50◦. The error reaches 3 % at 15◦ and 55◦.

Nγ = 1.75
(
e(0.75π+φ) tanφNφ − 1

)
tanφ (2.27)

Salgado [202] proposed a simpler equation to fit the exact values obtained by Martin,
which basically is just a little improvement of Meyerhof’s equation (2.15):

Nγ = (Nq − 1) tan(1.32φ) (2.28)

Loukidis and Salgado [199] performed classical incremental finite element analyses
with the code SNAC, modelling the soil as a homogeneous isotropic linear elastic-perfectly
plastic material. They investigated also the effect of the flow rule. For an associated ma-
terial, they computed bearing capacity factors for φ = 30◦, 35◦, 40◦ and 45◦, and obtained
Nγ = 15.2, 35.5, 87.7 and 240, which match very well the exact solution (Table 2.11). The
fact that the results are constantly higher might be explained with the no-slip constraint
imposed at the footing interface. They approximated the results with the expression

Nγ = (Nq − 1) tan(1.34φ) (2.29)

Figure 2.4 shows that the range of proposed bearing capacity factors Nγ is quite wide,
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and that the majority of them overestimate the exact solution. It is noteworthy that the
solution provided by Meyerhof [229] with ψopt match very well the exact solution.

Table 2.11 – Exact bearing capacity factor (Nγ = 2pf/(γB)) for perfectly rough footings, [218].

φ [deg] 5 10 15 20 25 30 35 40 45

Nγ 0.113 0.433 1.18 2.84 6.49 14.8 34.5 85.6 234

5 10 15 20 25 30 35 40 45

φ [deg]

10−1

100

101

102

N
γ

Computed values

Estimated by curve fitting

Terzaghi (1943)

Meyerhof (1955)

(Nq − 1) tan(1.4φ)

Exact solution

Figure 2.4 – Bearing capacity factor Nγ for perfectly rough surface footings on cohesionless
soils. The grey region, named Computed values, defines the range of all values derived from
a mechanical analysis (except Ritter results), whereas the green domain, named Estimated by
curve fitting, defines the region of all analytical formulae derived by curve fitting.

Real footings are not perfectly rough, but it could be expected that 0.5 ≤ δ/φ ≤ 1.
The ratio RNγ between the bearing capacity factor for partly rough footings Nγ(δ/φ < 1)

and perfectly rough footings Nγ(δ/φ = 1) is shown in Figure 2.5. According to the exact
solution, the reduction of the bearing capacity does not exceeds 10 % for δ/φ = 2/3 and
20 % for δ/φ = 1/2. Solutions proposed by other authors, defined by the filled area in
the figure, show a slightly higher variability. Therefore, the assertion of Meyerhof [232]
that in practice the base can always be taken as perfectly rough is verified.

2.2.4 Ponderable Mohr-Coulomb Material — c–φ–γ soil

General soils in drained conditions are usually better characterised by a Mohr-Coulomb
yield criterion with cohesion and shear strength angle. The optimum geometry of the
failure mechanism is thus function of the shear strength angle, the cohesion, the footing
width and the soil self-weight [384]. Introducing the dimensionless soil weight parameter
G = 0.5γB/c [62], the normalised bearing capacity writes
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5 10 15 20 25 30 35 40 45

φ [deg]

0.0

0.2

0.4

0.6

0.8

1.0
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N
γ

δ/φ = 1/2

δ/φ = 2/3

Exact Range
δ/φ = 1/2

δ/φ = 2/3

Figure 2.5 – Ratio RNγ = Nγ(δ/φ)/Nγ(δ/φ = 1) versus shear strength angle φ. The filled
areas define the range of values presented, namely those given by [49, 181, 183, 218, 229].

pf
c

= Nc +GNγ (2.30)

The nature of the problem is such that the self-weight cannot weaken the material
against the indentation pressure. This means that Nc(γ) + GNγ(γ) ≥ Nc(γ = 0), and
therefore (2.1) is a lower bound to the average strip pressure on a general ponderable
soil, regardless of base roughness.

Given that the bearing capacity factors Nc and Nγ depend upon the geometry of the
failure mechanism, and that the latter is affected by φ and G, they cannot be expressed
as a function of φ alone. However, Terzaghi [384] suggested to apply the principle of
superposition on a predefined geometry of the failure mechanism, and to compute each
component on the assumption that the surface of sliding corresponds to the conditions
for that particular component, i.e. Nc(γ = 0, φ) and Nγ(c = 0, φ). The same was
assumed by Meyerhof [232], but with a different geometry of the failure mechanism,
and by many others. Later, Meyerhof [229] proposed to optimise the geometry of the
failure mechanism for each component computed separately. This approach was adopted
by Terzaghi himself [385], and is common in design practice. It is noteworthy that the
bearing capacity factors are computed according to two different sliding surfaces.

The main advantages of the superposition method are that the bearing capacity
coefficients can be expressed as a function of φ alone, and that the sum of the minima is
lower then the consistent minimum. This because G affects Nγ more than Nc, and Nγ has
its lowest value for limG→∞Nγ , i.e. for a cohesionless soil [233, 384, 385] (cf.Figure 2.7).

From a theoretical perspective, however, it is interesting to know the solution cor-
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responding to a consistent failure mechanism. This is the only possibility for a reliable
comparisons between theory and experimental data‖. In the following, such coefficients
are presented.

Smooth Footing

Solutions based on the method of stress characteristics generally adopt the approach
of Sokolovskii [366, 367], where the soil is considered cohesionless but subjected to a
hydrostatic pressure c cotφ∗∗. Charts covering a wide range of soil parameters based
on this method were given by Ko and Scott [169] (Table 2.12). Cox [62] also obtained
the partial stress field with the method of characteristics and provided values of the
normalised bearing capacity pf/c . The same year, Spencer [370] applied the perturbation
method. The results of Cox and Spencer are reported in Table 2.13, where it can be seen
that they match very well, although the values of Spencer are slightly higher for increasing
φ. Considering that the values of Ko and Scott were read from graphical representation,
it can be concluded that they are nearly the same as those provided by Cox.

Table 2.12 – Normalised bearing capacity (pf/c) for smooth footings, [169]. The results were
read from graphical representation.

φ [deg] G

1 2 4 10

5 6.5 6.5 7.1 7.8
10 9.2 9.2 10.8 14.2
15 12.1 13.2 16.5 23.1
20 17.8 19.3 26.7 38.6
25 26.9 29.0 41.4 70.4
30 42.2 45.2 75.3 133
35 69.2 96.9 148 258
40 143 196 301 565
45 295 455 723 –

Larkin [192] provided upper bound solutions based on the velocity field derived with
the method of characteristics, but only for φ = 40◦ (Table 2.14). The results of Cox, and
of Ko and Scott for the given precision, are almost identical to the upper bound solution
‖It should be said that such a comparison is complicated by the intrinsic difficulty to evaluate the

appropriate physical properties and the fact that soil shear strength parameters are affected by the
testing technique.
∗∗Note that this is not an application of the Caquot rule of equivalent states [36], because the hydro-

static stress c cotφ is not simply added to the solution of a cohesionless soil, but enters in the formulation
of the problem. For a comprehensive description on the applicability of the rule of corresponding states,
see [234].
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Table 2.13 – Normalised bearing capacity (pf/c) for smooth footings. (i) [62]; (ii) [370].

φ [deg]

G

0.01 0.1 1 10

(i) (i) (ii) (i) (ii) (i)

0 5.14 5.14 5.14 5.14 5.14 5.14
10 8.35 8.42 8.42 9.02 9.07 13.6
20 14.9 15.2 15.2 17.9 18.3 37.8
30 30.3 31.6 31.7 42.9 45.3 127
40 76.1 83.0 83.5 139 157 574

given by Larkin. The differences are likely due to round off errors. Their solution is
exact, because Martin [217] showed that the solution obtained with the method of stress
characteristics is complete (cf. Table 2.15).

Table 2.14 – Normalised bearing capacity (pf/c) for smooth footings, [192].

φ [deg] G

0.1 0.2 0.4 1 2 4 10

40 83.3 90.4 104 139 193 293 573

Table 2.15 – Exact normalised bearing capacity (pf/c) for smooth footings, [215].

φ [deg] G

0.01 0.1 0.2 0.4 1 2 4 10

5 6.49 6.51 6.54 6.59 6.73 6.95 7.36 8.45
10 8.35 8.42 8.49 8.63 9.02 9.63 12.8 13.6
15 11.0 11.1 11.3 11.6 12.5 13.8 16.1 22.2
20 14.9 15.2 15.5 16.1 17.9 20.5 25.3 37.8
25 20.8 21.4 22.1 23.4 26.9 32.2 41.7 67.2
30 30.3 31.6 33.0 35.7 42.9 53.7 73.3 127
35 46.5 49.4 52.5 58.2 73.6 96.8 139 257
40 76.1 83.1 90.3 104 139 193 293 573
45 136 155 173 207 299 438 699 1447

Chen [49] gave upper bound solutions based on a Hill type failure mechanism. He
provided graphical results and also the objective function of the normalised bearing
capacity pf/c. It is the writer opinion that the formula provided by Chen for the coefficient
Nc is not correct. In fact, it is found that limφ→0+ pf/c 6= 2 + π, which is known to be
the exact solution (limφ→0+ Nγ = 0 and thus the error must be in Nc). Moreover, in a
few cases, for small values of φ the bearing capacity is slightly higher that that computed
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with a Prandtl type failure mechanism, which violates Drucker’s frictional limit theorems
[85]. In the following, the results attributed to Chen for the Hill type failure mechanism
(Table 2.16) are based on a formulation of Nc derived by the author (Appendix A). The
results of Chen for either φ ≤ 20◦ or G ≤ 0.2 are in good agreement with the exact
solutions.

Table 2.16 – Normalised bearing capacity (pf/c) for smooth footings, [49].

φ [deg] G

0.01 0.1 0.2 0.4 1 2 4 10

5 6.49 6.51 6.54 6.59 6.73 6.97 7.41 8.64
10 8.35 8.42 8.49 8.63 9.04 9.71 10.9 14.3
15 11.0 11.1 11.3 11.6 12.5 14.0 16.8 24.5
20 14.9 15.2 15.5 16.2 18.1 21.2 26.9 43.4
25 20.8 21.4 22.1 23.5 27.4 33.7 45.8 80.8
30 30.3 31.6 33.1 36.0 44.3 57.6 83.4 159
35 46.5 49.5 52.7 59.1 77.5 107 165 337
40 76.1 83.3 91.2 106 151 222 364 786
45 136 156 176 217 336 531 919 2078

Han et al. [130] adopted the formulation of the problem already employed by Zhu
et al. [411], and then they solved it with the method of stress characteristics. This
approach is based on that of Sokolovskii (cohesionless soil but subjected everywhere to a
hydrostatic pressure c cotφ), and the assumption that Nc and Nq, where Nq = eπ tanφNφ

is the bearing capacity factor due to the overburden pressure obtained by Reissner [305]
for a weightless material, are not affected by the soil self-weight, so that the relation
Nc = (Nq − 1) cotφ holds. The ultimate mean pressure may then be written as

p̄f = λNq +
1

2
Nγ (2.31)

where p̄f = (pf+c cotφ)/γB is the normalised bearing capacity, and λ = (q+c cotφ)/γB

is the surcharge ratio (q = 0 for surface footings and thus λ = 0.5 cotφ/G). According
to (2.31), Nγ is affected by φ and λ, and thus by G. However, this approach cannot be
considered consistent with one failure mechanism, given that Nc is assumed constant.
Nevertheless, the approach can be justified by the fact that λ affects more Nγ than Nc

or Nq, as mentioned above. Han et al. gave tabulated results as a function of φ and λ,
and proposed the following analytical expression

Nγ = Nγ,min +
Nγ,max −Nγ,min

1 +
(
A0
λ

)p (2.32)
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where Nγ,min is the factor for a cohesionless soil (λ = 0) and is given by (2.8), Nγ,max is
the factor for a cohesionless soil computed assuming the failure mechanism of a weightless
material and is given by (2.9), p = 0.75, and A0 is

A0 =
3∑
i=0

βi tani φ (2.33)

with βi = 0.188, 0.102, 0.101 and 0.222.

Rough footing

Larkin [192] computed upper bounds for perfectly rough footings by associating the
velocity characteristics to the stress characteristics derived by Lundgren and Mortensen
[201], and equating the rate of internal energy dissipated by such velocity fields to the
rate of external work done by the footing pressure (Table 2.17). He noticed that for
φ = 40◦, G = 18.76 is the upper limit for which the condition of no relative slip at the
interface is met. Motivated by the idea that the trapped wedge should span over the
entire base, he concluded that the correct stress and velocity characteristics were not
known for G > 18.76. This conclusion is incorrect. The transition from a condition
of no relative slip at the interface depends upon the geometry (plane strains or axial
symmetry), the shear strength angle, and the dimensionless parameter F = 2G tanφ [66,
215, 217, 364]. For instance, for φ = 30◦, the threshold is G = 9.509.

Table 2.17 – Normalised bearing capacity (pf/c) for perfectly rough footings, [192].

φ [deg] G

0.1 0.2 0.4 1 2 4 10

40 90.5 104 127 192 292 484 1020

Chen [49] computed upper bounds of the bearing capacity for any value of interface
roughness, based on the governing mechanism between the Hill and the Prandtl type
rupture figures. For perfectly rough footings (Table 2.18), the Prandtl type is always
governing. The ratio Rpf/c = pf(δ/φ)

c /pf(δ/φ=1)
c is shown in Figure 2.6. Evidently, the

effect of footing roughness reduces with reducing G, because interface friction does not
have any influence on the bearing capacity of Tresca materials. For φ ≥ 30◦, δ/φ = 1/2

is sufficient to mobilise the Prandtl type failure mechanism. The lower limit of Rpf/c
is given by a cohesionless soil (cf. Figure 2.5). Based on the results for cohesionless
soils, it can be inferred that the results of Chen underestimate Rpf/c for φ < 25◦ and
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overestimate it for φ ≥ 30◦. The reason is the relatively constrained geometry of the
rupture figures, whereas the exact solution obtained through the method of the stress
characteristics allows for a continuous transition between the two extreme mechanisms.

Table 2.18 – Normalised bearing capacity (pf/c) for perfectly rough footings, [49].

φ [deg] G

0.01 0.1 0.2 0.4 1 2 4 10

5 6.49 6.54 6.59 6.68 6.97 7.42 8.29 10.7
10 8.36 8.49 8.63 8.91 9.72 11.0 13.5 20.6
15 11.0 11.3 11.6 12.3 14.1 16.9 22.6 39.1
20 14.9 15.5 16.2 17.5 21.5 27.3 39.2 74.6
25 20.9 22.1 23.5 26.2 34.0 46.6 71.6 146
30 30.4 33.1 36.0 41.7 58.2 85.2 139 299
35 46.8 52.7 59.2 71.7 108 169 290 651
40 76.9 91.2 107 137 226 373 667 1547
45 138 177 218 299 541 942 1743 4146
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Figure 2.6 – Ratio Rpf/c = pf(δ/φ)
c /pf(δ/φ=1)

c versus G according to the Hill and Prandtl type
failure mechanisms computed by Chen [49].

Michalowski [233] gave the bearing capacity according to one consistent multi-block
Prandtl type failure mechanism only for φ = 15◦ and 35◦ (Table 2.19). The results of
Chen for G = 0.1 are nearly the same, and it can be inferred that also for G = 0.25

and 0.5 they are in good agreement, even tough discrepancies increase. This is obvious
because for G→ 0, i.e. weightless soil, the exact solution is given by the geometry of the
Prandtl failure mechanism, therefore the multi-block failure mechanism converges toward
the continuous rupture figure delimited by a logarithmic spiral with focus at the footing



64 Chapter 2. Bearing Capacity of Surface Footings

corner. On the other hand, for increasing G, it is known that the the exact deforming
region is delimited by curved lines, and therefore the multi-block solution, with higher
degree of freedom in its geometry, yields better results.

Table 2.19 – Normalised bearing capacity (pf/c) for perfectly rough (δ = φ) footings, [233].

φ [deg] G

0.1 0.25 0.5

15 11.3 11.8 12.5
35 52.6 61.4 75.3

Zhu et al. [411] adopted a trapped wedge with ψ = π/4+φ/2 and solved the problem
with the so called slip field method, which is within the limit equilibrium method, based
on the considerations expressed above concerning Nc and Nq. Han et al. [130] used the
same problem formulation (equation (2.31)) but solve it with the stress characteristics
for perfectly rough footings. Both gave results as function of φ and λ. The assumption of
a triangular wedge underneath the whole base is the reason for higher bearing capacities
computed by Zhu et al (cf. Table 2.20).

The analytical expression derived by Han et al. takes the same form as (2.32), Nγ,min

is given by (2.8) with the coefficients βi for rough footings given in the corresponding
section, Nγ,max is twice the value given by (2.9), p = 0.75, and A0 is given by (2.33) with
coefficients βi = 0.354, 0.042, 0.648 and 0.220.

As shown by Martin [217], the exact bearing capacity is given by the field of stress
characteristics constructed according to Lundgren and Mortensen [201], and can be ob-
tained through ABC [215]. This explains why the solutions given by Larkin [192] match
the exact solution†† (the differences are negligible and can be attributed to numerical
reasons).

Figure 2.7 shows the ratio of the normalised bearing capacity pf/c computed accord-
ing to the method of superposition with the exact bearing capacity factors and the exact
solution based on one consistent failure mechanism. The results show that for the consid-
ered range of φ and G, this ratio varies between 0.74 and 0.99. For the common domain
15◦ ≤ φ ≤ 30◦ and 0.1 ≤ G ≤ 1, the ratio lies between 0.85 and 0.99. An underestimate
of around 10 % to 15 % is the usual admitted value.

††The results given for φ = 40◦ and G ≥ 18.76, on the other hand, do not match the exact solution,
because Larkin adopted the velocity field corresponding to G = 18.76 in order to satisfy the condition
of no relative slip at the interface.
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Table 2.20 – Normalised bearing capacity (pf/c) for perfectly rough footings, [130, 411].

φ [deg] λ

0.01 0.1 1 10 100

5 G 572 57.2 5.72 0.572 0.057
Zhu 224 29.4 9.00 6.76 6.52
Han – 18.78 8.64 6.76 6.52

10 G 284 28.4 2.84 0.284 0.028
Zhu 326 41.2 12.0 8.74 8.39
Han – 28.2 11.5 8.74 8.39

15 G 187 18.7 1.87 0.187 0.019
Zhu 483 60.1 16.5 11.6 11.0
Han – 43.1 15.8 11.6 11.0

20 G 137 13.7 1.37 0.137 0.014
Zhu 743 90.5 23.3 15.8 14.9
Han – 67.6 22.3 15.7 14.9

25 G 107 10.7 1.07 0.107 0.011
Zhu 1191 142 34.4 22.2 20.9
Han – 110 32.9 22.2 20.9

30 G 86.6 8.66 0.866 0.087 0.009
Zhu 2013 236 53.3 32.7 30.4
Han – 186 50.8 32.6 30.4

35 G 71.4 7.14 0.714 0.071 0.007
Zhu 3637 419 88.0 50.8 46.6
Han – 336 83.7 50.7 46.6

40 G 59.6 5.96 0.596 0.060 0.006
Zhu 7159 810 158.0 84.7 76.3
Han – 659 150 84.5 76.3

45 G 50.0 5.00 0.500 0.050 0.005
Zhu 15 820 1757 317 155 136
Han – 1444 298 154 136
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Table 2.21 – Exact normalised bearing capacity (pf/c) for perfectly rough footings, [217].

φ [deg] G

0.01 0.1 0.2 0.4 1 2 4 10

5 6.49 6.54 6.59 6.68 6.95 7.36 8.08 9.84
10 8.36 8.49 8.63 8.89 9.62 10.7 12.6 17.1
15 11.0 11.3 11.6 12.2 13.8 16.1 20.1 30.3
20 14.9 15.5 16.1 17.3 20.5 25.2 33.5 55.1
25 20.9 22.1 23.4 25.8 32.1 41.6 58.5 104
30 30.4 33.0 35.7 40.6 53.6 73.1 109 208
35 46.8 52.4 58.2 68.6 96.7 139 218 441
40 77.0 90.2 103 128 193 292 480 1020
45 138 173 207 269 438 699 1199 2649
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Figure 2.7 – Ratio between normalised bearing capacity pf/c computed with the method of
superposition of the exact bearing capacity factors and exact solution based on one consistent
failure mechanism.
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Derivation of Anlytical Expressions for Perfectly Rough Footings

In the previous sections, it was shown that an analytical expression exists for the bearing
capacity of purely cohesive soils and that some approximating functions were derived for
cohesionless soils. To the author’s knowledge, no attempts have been made in the same
direction for general soils. In the following, two such expressions are derived, one (model
function 1) covering a wide range of the domain [φ,G], but which is rather complex to
manage, and one simpler (model function 2) covering only the most common values of
[φ,G].

Theoretically, weightless soils correspond to G → 0, whereas cohesionless soils to
G → ∞. Practically, these bounds can be set to 0.1 and 10, respectively. The shear
strength angle can reasonably vary from 5◦ to 45◦. These bounds fix the domain for
the model function 1. For a number of practical situations involving general soils, G is
comprised between 0.1 and 1 [49], and φ falls in the range 10◦ to 40◦. Model function
2 is based on these last bounds. A data set of exact solutions of the normalised bearing
capacity pf/c were obtained with ABC. The step interval for φ was set to 1◦, whereas
for G an increment of 0.1 for 0.1 ≤ G ≤ 1 and of 0.5 for 1 < G ≤ 10 was selected. This
corresponds to 1148 values for model function 1 and to 310 values for model function 2.

Both model functions are obtained through linear least squares minimisation with
TableCurve 3D [381]. The objectives of the model functions are to fit well the data points
in a general sense, i.e have high degree of freedom adjusted coefficient of determination
(R2

DOF,adj) and low fit standard error (S), and to provide a good local estimate of data
points, i.e. low residual errors (ε). Moreover, the hypothesis of normally distributed
residuals errors assumed by the least squares minimisation method is checked with a
quantile-quantile plot (Q-Q plot).

Model function 1

The first model function covers the domain 5◦ ≤ φ ≤ 45◦; 0.1 ≤ G ≤ 10. In order to
meet the aforementioned goals, a Chebyshev series of order 7 was selected, which may
be written as follows

p̂f
c

=

7∑
j=0

0∑
m=j

ckTm(x̃)Tj−m(ỹ) (2.34)

where ·̂ is the estimated value, ck is the k-th estimated coefficient (cf. Table 2.22) with
k = (j+1)(j+2)

2 −m− 1, x̃ is x = tanφ scaled to the interval [−1; 1]
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x̃ =
x− 0.5(xmin + xmax)

0.5(xmax − xmin)
, (2.35)

ỹ is y = G scaled likewise, and Tm(α) is the m-th Chebyshev polynomial of the first kind

Tm(α) = cos(m · arccosα) (2.36)

defined also by the following recursive relation

T0(α) = 1 (2.37)

T1(α) = α (2.38)

Tm+1 = 2αTm(α)− Tm−1(α) (2.39)

Table 2.22 – Chebyshev coefficients ck for the model function 1.

k 0 1 2 3 4 5
ck 376.778 586.531 307.895 308.945 495.495 -6.225

k 6 7 8 9 10 11
ck 119.581 270.744 -8.990 2.471 35.943 107.841

k 12 13 14 15 16 17
ck -3.874 3.723 -1.190 8.725 33.135 -1.224

k 18 19 20 21 22 23
ck 1.718 -1.880 0.649 1.749 8.105 -0.281

k 24 25 26 27 28 29
ck 0.522 -0.869 0.933 -0.269 0.233 1.633

k 30 31 32 33 34 35
ck -0.060 0.133 -0.314 0.525 -0.530 0.134

Model function 1 satisfies the objectives, because R2
DOF,adj = 0.99999921, S = 0.310,

εmax = 1.5 %, and εmin = −5.82 % excluding the outlier p̂f/c(φ = 5◦, G = 10) for which
ε = −12.33 %. The graphical representation of the fitted model function 1 is shown in
Figure 2.8. To conclude the evaluation of model function 1, the Q-Q plot is shown in
Figure 2.9. This plot clearly shows that the point φ = 5◦, G = 10 is an outlier, and that
the assumption of normally distributed errors is satisfied. Better models can be obtained
with series of higher degree. For instance, a Chebyshev polynomial of order 10 ensures a
residual |ε| < 1 % over the entire domain.
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Figure 2.8 – Exact normalised bearing capacity (points) and fitted model function 1 (grey
surface).
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Figure 2.9 – Q-Q plot for model function 1.
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Model function 2
The second model function is fitted over the domain 10◦ ≤ φ ≤ 40◦; 0.1 ≤ G ≤ 1.

As mentioned above, this function should be easily manageable, i.e. it should be easily
computed with a hand calculator. For this purpose, a rational polynomial function was
chosen, which has the following form

p̂f
c

=
a+ bx+ cx2 + dx3 + ey + fy2

1 + gx+ hy + iy2 + jy3
(2.40)

where x = tanφ and y = G as before, but not scaled. Coefficients a to j are given
in Table 2.23. The fitted model function 2 and the Q-Q plot are shown in Figure 2.10
and 2.11, respectively. This model satisfies R2

DOF,adj = 0.99994395, S = 0.282, εmax =

3.14 % and εmin = −2.63 %.

Table 2.23 – Coefficients for the model function 2.

a 4.241
b 22.816
c -32.943
d 77.236
e -5.360
f 3.160
g -0.510
h -0.798
i 0.697
j -0.247
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Figure 2.10 – Exact normalised bearing capacity (points) and fitted model function 2 (grey
surface).
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Figure 2.11 – Q-Q plot for model function 2.
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2.3 Three-Dimensional Problem

The three-dimensional problem cannot be solved with the method of characteristics be-
cause there are more unknown than equations. The axially symmetric plastic field of
circular footings, however, becomes statically determinate when the hypothesis proposed
by Haar and von Kármán [126] is assumed. This hypothesis stipulates that during plastic
deformation, the circumferential principal stress is equal to one of the other two principal
stresses acting in the meridional plane. For the problem under consideration, the hoop
stress is taken equal to the algebraically smaller of the other two (σθ = σII). The ob-
tained equations are hyperbolic, and were examined by Hencky [134] for the Tresca yield
condition and by Cox et al. [63] for the Mohr-Coulomnb yield condition. It is noteworthy
that under axial symmetry conditions the Mises yield criterion does not match that of
Tresca, and the equations are not hyperbolic.

In the following, results are presented by means of bearing capacity factors as well
as shape factors s = N ′/N , where N ′ and N are the bearing capacity factors for the
finite length and the strip footing, respectively. For reasons of consistency, shape factors
are given only when authors have given them explicitly, or when they provided both
solutions for strip and finite length footings.

In this section only theoretical results are presented. Shape factors calibrated on
experimental results are given in section 2.4.3. It will be seen that the adoption of the
Tresca yield criterion for saturated undrained clays is largely supported by experimental
evidences. On the other hand, the use of the Mohr-Coulomb criterion for drained soils
is much more sensitive to strain conditions (i.e. loading path).

2.3.1 Weightless Mohr-Coulomb Material — c–φ soil

Shield [343] showed that (2.3) is a lower bound for the average indentation pressure of
any convex area. The bound also applies to any uniformly loaded convex area as distinct
from an area loaded by a rigid punch. Unlike the plane strain problem, footing roughness
increase the bearing capacity of a weightless material [232].

Smooth footing

Circular footing
In case of circular footings B stands for the diameter. Cox et al. [63] extended

the partial stress field of stress characteristics in an admissible manner and showed that
the coincident velocity characteristics define an admissible velocity field. The results
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are shown in Table 2.24. To the author knowledge, this is the first time that for the
punch indentation problem, the stress field is extended throughout the body in a non-
fully plastic way. It should be said that Cox et al. used a strange substitution for
the cohesion where they included the effect of atmospheric pressure, but despite this
apparent misunderstanding of the principle of effective stress, the solution is valid [15].
The precision of the numerical solutions is very accurate and matches the values obtained
with ABC [215].

Bolton and Lau [15] obtained solutions based on the partial field of stress character-
istics (Table 2.24).

Erickson and Drescher [103] computed bearing capacity of circular footings with
the finite differences software FLAC, adopting an incremental elasto-plastic constitu-
tive model. The soil was modelled as a homogeneous isotropic linear elastic-perfectly
plastic Mohr-Coulomb material. Associated and non-associated flow rules were assumed,
but here only results pertaining to the former case are presented. The latter highlights,
as it is well-known, that the bearing capacity of non-standard materials is lower. Ta-
ble 2.24 shows that finite element results are lower than exact ones [215]‡‡. Kumar et al.
[182] computed rigorous lower bounds with finite elements and linear programming. It
is worth saying that usually incremental elasto-plastic constitutive models use a smooth
plastic potential in combination with the Mohr-Coulomb yield condition for numerical
reasons. Therefore, the flow rule is not truly associated. However, the difference can in
general be considered negligible.

Rough footing

Circular footing
The solutions for circular rough footings are given in Table 2.25. Bolton and Lau [15]

wrongly envisaged that roughness has no effect on the bearing capacity of circular footings
on weightless soils, as in the case of strip footings. Salençon and Matar [333] provided
shape factors in graphical form based on stress characteristics results. These factors apply
to the bearing capacity coefficient Nc given by the Prandtl solution (equation (2.1)). The
complete solution for perfectly rough bases was obtained by Martin [215].

In order to account for perfectly rough footings, Erickson and Drescher [103] imposed
a condition of no relative slip at the interface, except for the outermost node below
the footing for numerical reasons. This is probably one reason that explains why they

‡‡Sometimes the theoretical exactness of the axially symmetric solution is questioned due to the
heuristic hypothesis of Haar and von Kármán, and because in some situations the solution involves
crossing β characteristics.
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Table 2.24 – Bearing capacity factor (Nc = pf/c) for circular smooth footings on a weightless
Mohr-Coulomb material.

φ [deg] Cox et al. Bolt. and Lau Eric. and Dr. Martin Kum. & Kha.
(1961) (1993)a (2002) (2004) (2011)

0 5.69 – – 5.69 5.61
5 7.44 7.43 – 7.43 7.31
10 9.98 10.2 – 9.99 9.78
15 13.9 13.8 – 13.9 13.5
20 20.1 20.1 19.5 20.1 19.4
25 30.5 30.5 – 30.5 29.1
30 49.3 49.4 – 49.3 47.1
35 85.8 85.7 84 85.9b 81.5
40 164 166 161 165b 154
45 – 358 320 359b 325

a Computed as Nc = (Nq − 1) cotφ.
b Involves crossing β characteristics [215].

obtained higher bearing capacity factors compared to the stress characteristics solutions.
Kumar et al. [182] computed rigorous lower bounds.

Table 2.25 – Bearing capacity factor (N ′c = pf/c) for perfectly rough circular footings on a
weightless Mohr-Coulomb material.

φ [deg] Salen. & Matar Erick. and Dr. Martin Kum. & Kha.
(1982)a (2002) (2004) (2011)

0 6.17 – 6.05 6.01
5 7.79 – 8.06 8.00
10 10.8 – 11.09 11.0
15 15.4 – 15.8 15.7
20 23.7 22.3 23.7 23.2
25 37.3 – 37.3b 36.2
30 60.2 – 62.7b 61.5
35 115 108 114b 112
40 226 186 228b 224
45 536 380 520b 502

a Obtained by multiplying sc from graph times equation (2.1).
b Involves crossing β characteristics [215].

Square and rectangular footings

Michalowski [235] considered an advanced multi-block Prandtl type failure mechanism
for perfectly rough rectangular footings. Similarly to [348], the least upper bound for
square footings occurs for a mechanism with no symmetry with respect to diagonal
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Table 2.26 – Shape factor (sc = N ′c/Nc) for perfectly rough rectangular footings on a weightless
Mohr-Coulomb material, [235].

φ [deg] B/L

1/10 1/5 1/3 1/2 2/3 1

0 1.01 1.07 1.10 1.18 1.20 1.28
5 1.04 1.08 1.14 1.19 1.25 1.34
10 1.06 1.12 1.09 1.28 1.38 1.52
15 1.09 1.17 1.28 1.42 1.54 1.77
20 1.14 1.25 1.41 1.61 1.77 2.15
25 1.18 1.36 1.57 1.85 2.11 2.67
30 1.27 1.52 1.83 2.23 2.62 3.46
35 1.40 1.78 2.26 2.86 3.47 4.32
40 1.62 2.20 2.97 3.90 4.83 6.65
45 2.03 2.99 4.23 5.80 7.38 10.5

planes. The shape factors, which modify the exact solution given by (2.1), are reported
in Table 2.26.

Zhu and Michalowski [412] employed the finite element software ABAQUS and mod-
elled the soil as a linear elastic-perfectly plastic Mohr-Coulomb medium. They imposed
a vertical displacement to model the effect of a perfectly rough base. This is equiva-
lent to impose a condition of no relative slip at the interface. The shape factors were
obtained with respect to Nc computed by plane strain finite element analysis, and it
was shown that it matches very well the Prandtl solution (equation (2.1)). A close-form
approximation was given, which writes

sc = 1 + (1.8 tan2 φ+ 0.1)

√
B

L
(2.41)

The discrepancy between the shape factors obtained by Zhu and Michalowski [412],
and by Michalowski [235] increases with increasing values of φ and B/L, for which the
results of the latter are considerably higher. This is due to the limitation of assuming only
plane deformation modes that are perpendicular to the footing edges, and the constraint
imposed by the kinematic admissibility on failure mechanisms defined by rigid bodies.

2.3.2 Ponderable Tresca Material — c–γ soil

In a similar fashion to the plane strain problem, the bearing capacity of a Tresca material
is invariant with respect to the self-weight also in the general case [115]. Therefore, the
solutions for a weightless Mohr-Coulomb material with φ = 0 presented above apply to
the present situation.
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Table 2.27 – Shape factor (sc = N ′c/Nc) for perfectly rough rectangular footings on a weightless
Mohr-Coulomb material, [412].

φ [deg] B/L

1/5 1/3 1/2 3/2 1

0 1.02 1.04 1.05 1.06 1.06
5 1.04 1.06 1.08 1.09 1.11
10 1.06 1.09 1.12 1.14 1.16
15 1.08 1.13 1.18 1.21 1.24
20 1.12 1.19 1.25 1.30 1.35
25 1.18 1.27 1.36 1.43 1.51
30 1.25 1.39 1.52 1.63 1.73
35 1.35 1.54 1.73 1.87 2.02
40 1.49 1.76 2.03 2.25 2.46

Shield [348] obtained the value N ′c = 5 as a rigorous lower bound for any convex area
of indentation by a flat rigid indenter.

Smooth footing

Circular footing
Hencky [134] obtained the solution of the stress characteristics in cylindrical coordi-

nates for a circular smooth footing. He computed the bearing capacity factor N ′c = 5.64.
Ishlinsky [155] applied a graphical method to obtain the field of stress characteristics and
obtained the value 5.68. Shield [344] demonstrated that the partial stress field obtained
by Hencky can be extended throughout the body without violating the yield condition
and that an admissible velocity field can be associated to it. He obtained N ′c = 5.69.
The slightly differences with respect to the exact solution are attributable to a slight
imprecision in the evaluation of the mean contact pressure, which is not uniform at
failure.

Meyerhof [232] obtained the value 3π/2+1 = 5.71 with the limit equilibrium method.
He explained that the non uniform contact pressure at failure and the increase of strength
with respect to strip footings is due to the hoop stresses σθ, which act normal to radial
planes.

Gourvenec et al. [119] performed finite element simulations using the software ABA-
QUS and an incremental elasto-plastic formulation. The soil was modelled as a ho-
mogeneous isotropic linear elastic-perfectly plastic Tresca solid obeying the normality
condition. For a smooth circular footing they computed N ′c = 5.58, which is slightly
lower than the exact solution.
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Square and rectangular footings

For square footings, Shield and Drucker [348] obtained the upper bounds N ′c = 5.80

with a simple Hill type velocity field and N ′c = 5.71 based on a more sophisticated Hill
type failure mechanism (cf. Appendix B). Interestingly, the latter value corresponds to a
geometry that is not symmetric with respect to the diagonals of the footing. This aspect
has been discussed by Garnier [115], who showed that a symmetric failure mechanism
composed of plane strain modes leading to the same result could actually develop. Gour-
venec et al. [119] performed finite element analyses and obtained diagonal symmetric
displacement fields in which the movements are not planar along each side. In particular
it was shown that there are also displacements parallel to the diagonal and that there is
a continuous transition between the displacements along each side of the footing. Shield
and Drucker suggested the following analytical expressions for rectangular footings

N ′c =

5.24 + 0.47BL if B/L ≥ 0.53

5.14 + 0.66BL if B/L < 0.53
(2.42)
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Figure 2.12 – Upper bound of the bearing capacity factor N ′c for smooth rectangular footings
resting on a Tresca material, [348].

Michalowski and Dawson [236] proposed a bearing capacity factor for square smooth
footings N ′c = 5.43, based on finite difference analyses using FLAC and assuming the
soil a homogeneous isotropic linear elastic-perfectly plastic associated material obeying
to a Tresca yield condition. The finite element computations of Gourvenec et al. [119]
provided Nc = 5.56. Both displacement fields indicate fourfold symmetry, conversely to
the solution obtained by Shield and Drucker [348].
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Rough footing

Circular footing
Meyerhof [232] obtained π + 3 = 6.14 with the limit equilibrium method. Eason and

Shield [99] obtained the complete solution N ′c = 6.05. Salgado et al. [334] computed
rigorous lower and upper bounds with the finite element method and obtained N ′c = 5.86

and N ′c = 6.23, respectively. The solution of Gourvenec et al. [119] is N ′c = 5.96, slightly
under-predicting the complete solution.

Square and rectangular footings
Meyerhof [232] considered a footing divided into three zones. A central one of length

L−2B and two square ends. The central portion behaves as a strip footing, and the ends
can be computed by assuming that the bearing capacity of a square area is the same as
that of a circular one. The shape factor writes

sc = 1 +

(
N ′c,circ
Nc

− 1

)
B

L
(2.43)

which actually applies to both rough and smooth footings, depending on the value of
N ′c,circ. This expression can be simplified to

sc = 1 + 0.15
B

L
(2.44)

According to (2.44), the bearing capacity of a square footing is 15 % higher than that of
a strip footing.

The failure solution of Shield and Drucker [348] (upper bound) can be easily adapted
to account for base roughness (Appendix B). Given that the Tresca yield criterion is
supposed to model saturated undrained clays, a Coulomb law of friction for the interface
with adhesion only, i.e δ = 0, is believed to be more representative. The minimum value
of N ′c is found by optimisation for given values of relative adhesion β = a/c and aspect
ratio B/L. For square footings and perfect adherence, i.e. β = 1, Nc = 6.70, value
obtained also by Garnier [115], who did not consider intermediate values of roughness.

Chen [49] obtained the upper bound for square footings 6.71 assuming a symmetric
Prandtl type failure mechanism. Garnier [115] was able to obtain a better upper bound
modifying the Hill type failure mechanism of Shield and Drucker [348] into a Prandtl
type failure mechanism. For square footings he obtained N ′c = 6.4 (the same solution was
obtained independently by Gourvenec et al. [119], 6.41). Michalowski [235] developed
an advanced Prandtl type failure mechanism for general soils, which gave for square
footings on a Tresca soil N ′c = 6.56. Salgado et al.[334] rigorous lower and upper bounds
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are shown in Table 2.29. They proposed a closed form of the shape factor based on curve
fitting, which is slightly lower than that proposed by Meyerhof [232] and Skempton [359]
(cf., equation (2.56)):

sc = 1 + 0.12
B

L
(2.45)

Table 2.28 – Bearing capacity factor (N ′c = pf/c) for perfectly rough rectangular footings
computed with the upper bound limit analysis, [235].

B/L 1/10 1/5 1/3 1/2 2/3 1

N ′c 5.19 5.49 5.64 6.06 6.19 6.56

Table 2.29 – Bearing capacity factor (N ′c = pf/c) for perfectly rough rectangular footings
(L:lower, U:upper), [334].

B/L 1/5 1/4 1/3 1/2 1

L 5.17 5.20 5.26 5.36 5.52
U 5.78 5.82 5.89 6.02 6.22

Owing to the independence on the self-weight, the solution of Zhu and Michalowski
[412] (Table 2.27) for φ = 0 is applicable to the present situation. For a square footing,
they obtained N ′c = 5.45. The finite element results of Gourvenec et al. [119] (Table 2.30)
gave a bearing capacity factor for a perfectly rough/adherent square footing N ′c = 5.91.
Given that the finite element result for a strip footing was higher than the exact solution,
a correction factor was applied to scale the coefficients for rectangular footings. The
shape factors are therefore referred to Nc = 5.14. Table 2.30 shows also finite element
simulations with a Mises yield criterion based on the plane strain shear strength, and the
upper bound solutions based on the Prandtl type failure mechanism derived from that of
Shield and Drucker [348]. These solutions are always governing with respect to the Hill
type mechanism of Shield and Drucker accounting for perfect adherence (equation (B.2)
with β = 1), as expected. Gourvenec et al. [119] derived a quadratic expression for the
shape factor.

sc = 1 + 0.21
B

L
− 0.07

(B
L

)2
(2.46)

Equation (2.46) can actually be considered identical to (2.56).
The exact solution for the average indentation pressure of any convex area on a Tresca

material can be bracketed between 5 and 6.23 (the upper bound is reduced to 5.71 for
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Table 2.30 – Bearing capacity factor (N ′c = pf/c) for perfectly rough rectangular footings (FE:
finite element analyses, U: upper bound based on the Prandtl type failure mechanism derived
from that of Shield and Drucker [348]), [119].

B/L 1/10 1/5 1/3 1/2 2/3 1

FE 5.26 5.36 5.47 5.61 5.72 5.91
FEa 5.38 5.44 5.51 5.60 5.68 5.74
U 5.30 5.44 5.62 5.83 6.03 6.41

a Mises yield criterion.

smooth footings). Lower bound solutions of Salgado et al. [334] for rough rectangular
footings suggest that N ′c is constantly increasing for increasing B/L. Therefore, consider-
ing that the effect of roughness disappears for strip footings, 2+π may be taken as lower
bound for the average indentation pressure of any rigid convex indenter. Interestingly,
the exact solution for any uniformly loaded convex area as distinguished from an area
loaded by a rigid punch, can be bracketed between 5 and 5.14 [348].

Based on the above results, it can be concluded that early assumptions of the equality
between the bearing capacity of square and circular footings, and a linear relation with
respect to the aspect ratio B/L, give very accurate results.

2.3.3 Ponderable Cohesionless Mohr-Coulomb Material — φ–γ soil

The solution of Shield [343] for weightless materials, equation (2.3), is also a lower bound
for the average indentation pressure on ponderable soils. Owing to its validity for smooth
interfaces, it is a lower bound for any degree of base roughness.

Smooth footing

Circular footing
Several authors obtained solutions through the method of stress characteristics [15,

40, 75, 191]. Martin [217] demonstrated that such solutions actually correspond to the
complete solution and obtained numerical values with the software ABC. The discrepan-
cies among these solutions (Table 2.31) are therefore attributable to numerical precision.
The same table shows that the bearing capacity is lower than that of a strip footing for
φ < 35◦, and higher for φ ≥ 35◦. The shape factors sγ attributed to Bolton and Lau
[15], and Martin [215] were computed with respect to their solutions for strip footings.
Larkin [191] gave them explicitly, but they are unusually low compare to the other so-
lutions based on the method of stress characteristics, which cannot be explained simply
by numerical reasons. It was highlighted in the section dedicated to the plane strain
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problem, that Nγ given by Larkin was twice the actual computed value. On the other
hand, it seems from the graphs for φ = 30◦ provided in the same reference, that N ′γ was
computed correctly with respect to the average pressure. Therefore, the shape factors
given by Larkin are half of the values he actually obtained. This correction is adopted
for the values shown in Table 2.31. It can be seen that the corrected solution is similar
to the others obtained with the same technique, as expected.

Erickson and Drescher [103] computed the bearing capacity of circular footings as
explained previously. Rigorous lower bounds provided Kumar et al.[182] are also given.

Rough footing

Circular footing

Meyerhof [232] used the friction circle method because he estimated that the failure
surface on radial planes is approximately circular. He made computations for φ = 30◦ and
45◦ and obtained sγ ≈ 0.5 with respect to Nγ given in the same reference. Nevertheless,
he was not confident about this value and suggested to use an empirical factor instead.

Other researchers employed the method of stress characteristics [15, 40, 75, 333]
(Table 2.32). The higher values of Bolton and Lau are due to the imposed trapped
wedge below the footing (ψ = π/4 + φ/2). The shape factors given in Table 2.32 were
computed with respect to the bearing capacity coefficientsNγ given in the same references
and can be found in the above section dedicated to the plane strain problem. Table 2.32
shows that the value of φ for which sγ = 1 decreases from about 34◦ to about 28◦ when
the base is perfectly rough.

Incremental finite difference and finite element solutions obtained by Erickson and
Drescher [103] and Loukidis and Salgado [199], respectively, are also shown in Table 2.32.
It is recalled that both imposed a condition of no relative slip at the interface. Loukidis
and Salgado calibrated an analytical expression based on their results for 30◦ ≤ φ ≤ 45◦

sγ = 1 + (0.26Nφ − 0.73) (2.47)

Lyamin et al. [202] obtained shape factors for perfectly rough circular and rectangular
footings with the finite element method and limit analysis. They computed shape factors
as a weighted average that accounts for the different convergence rates of the upper
bound and the lower bound solutions. These factors, given in Table 2.32, are supposed
to multiply the exact solution for strip footings (Table 2.11). Lyamin et al. derived a
simple closed form expression for 25◦ ≤ φ ≤ 45◦
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sγ = (1 + 0.002φ)sγ,sq (2.48)

where φ is expressed in degrees, and sγ,sq is the shape factor for square footings, approx-
imated by (2.51) with B/L = 1.

The rigorous lower bound obtained by Kumar et al. [182] for perfectly rough footings
is also shown in Table 2.32.

Excluding the results of Bolton and Lau with predefined trapped wedge beneath the
footing, Table 2.32 shows that the values of the shape factor sγ obtained with different
techniques fall in a narrow range. Therefore, it seems reasonable to apply them to the
exact values of Nγ , which can be approximated by one of the expressions presented
previously, e.g. (2.15), or read from Table 2.11.

Square and rectangular footings
Meyerhof [231] gave without explanation the following shape factor, which multiplies

the bearing capacity coefficient of equation (2.15):

sγ = 1 + 0.1Nφ
B

L
(φ > 10◦) (2.49)

Michalowski [235] considered an advanced multi-block Prandtl type failure mecha-
nism for perfectly rough rectangular footings. Similarly to Shield and Drucker [348], the
least upper bound estimate of load on square footings occurs for mechanisms with no
symmetry with respect to diagonal planes. However, Zhu and Michalowski [412] demon-
strated by means of finite element simulations that the displacement field has actually
diagonal symmetry and it is not plane in the regions adjacent to the four sides of the
footing. Therefore, enforcing plane deformations in the regions of the failure mechanism
in the upper bound limit analysis of three-dimensional systems appears to ba a substan-
tial limitation that leads to curious results and could also be a principal source of an
overestimation of the collapse load. This mechanism does not approach the optimised
multi-block solution for strip footings obtained earlier by the same author [233]. This is
due to the fact that in the three-dimensional analysis the kinematic constraints leave a
fewer independent parameters with respect to which the mechanism can be optimised.
For reasons of consistency, Michalowski calculated shape factors based on the values of
Nγ obtained through the three-dimensional rupture figure with B/L = 0.04. In this
way, they consistently express the effect of moving from a condition of plane strain to
a condition for square footings. If it is assumed that the same degree of overestimation
applies to any aspect ratio B/L, the actual bearing capacity factors N ′γ of Michalowski
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for rectangular footings should be obtained by multiplying the shape factors (Table 2.33)
times the optimised factors Nγ for plane strain conditions, which can be approximated
by (2.25). The results show that sγ > 1 for φ ≥ 20◦. For all values of φ, it is found that
sγ is a linear function of B/L.

Table 2.33 – Shape factor (sγ = N ′γ/Nγ) for perfectly rough rectangular footings, [235]. It
applies to the bearing capacity coefficient (Nγ = 2pf/(γB)) given in [233], approximate by (2.25).

φ [deg] B/L

1/10 1/5 1/3 1/2 2/3 1

10 0.998 0.977 0.950 0.888 0.838 0.707
15 0.998 0.996 0.991 0.982 0.970 0.947
20 1.01 1.04 1.07 1.10 1.14 1.19
25 1.03 1.08 1.16 1.24 1.30 1.48
30 1.07 1.17 1.32 1.46 1.55 1.89
35 1.11 1.31 1.52 1.75 1.98 2.48
40 1.14 1.35 1.71 2.02 2.43 3.25
45 1.20 1.64 2.18 2.83 3.24 4.26

Zhu and Michalowski [412] obtained shape factors sγ with the finite element method
as mentioned previously (Table 2.34). The shape factors were computed with respect
to Nγ given by equation (2.25). These shape factors are smaller than those computed
previously by Michalowski [235] with the upper bound limit analysis. The value of φ for
which sγ ≥ 1 is between 30◦ and 35◦, depending on the aspect ratio B/L. The highest
value reached by sγ is 1.17 at φ = 40◦ and B/L ≥ 2/3. They proposed the following
analytical expression

sγ =

1 + (0.6 tan2 φ− 0.25)BL if φ ≤ 30◦

1 + (1.3 tan2 φ− 0.5)
(
L
B

) 3
2
e−L/B if φ > 30◦

(2.50)

To justify sγ > 1 for large values of φ, they observed the volume of soil, per unit area
of the base, displaced by the square and the strip footing. It appears from numerical
simulations that for small dilatancy angles, i.e. small shear strength angles for associated
soils, the volume displaced by a square footing is smaller than that of a strip footing,
whereas for large dilatancy angles is the opposite.

The shape factors obtained by Lyamin et al. [202] (Table 2.35), based upon a weighted
average of lower and upper bounds to take into account the different convergence rates,
are derived with respect to the exact bearing capacity coefficients Nγ given by Martin
[218] (Table 2.11). They found that sγ is a linear function of B/L, and that the value of φ
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Table 2.34 – Shape factor (sγ = N ′γ/Nγ) for perfectly rough rectangular footings, [412]. It
applies to the bearing capacity coefficient Nγ = 2pf/(γB) given in [233], approximate by (2.25).

φ [deg] B/L

1/5 1/3 1/2 2/3 1

10 0.94 0.92 0.89 0.86 0.79
15 0.95 0.93 0.90 0.87 0.80
20 0.97 0.95 0.91 0.88 0.81
25 0.98 0.97 0.94 0.91 0.85
30 1.00 1.01 1.00 0.99 0.93
35 1.01 1.03 1.05 1.06 1.02
40 1.07 1.10 1.16 1.17 1.17

that would lead to sγ = 1 for all values of B/L is slightly greater than 30◦, in agreement
with Zhu and Michalowski [412]. Lyamin et al. derived the following analytical expression
for 25◦ ≤ φ ≤ 45◦

sγ = 1 + (0.033φ− 1)
B

L
(2.51)

with φ expressed in degrees.

Table 2.35 – Shape factor (sγ = N ′γ/Nγ) for perfectly rough rectangular footings, [202]. It
applies to the exact bearing capacity coefficient Nγ given in [218], approximate by (2.15).

φ [deg] B/L

1/4 1/3 1/2 5/6 1

25 0.98 0.97 0.95 0.91 0.90
30 1.02 1.02 1.01 0.99 0.98
35 1.04 1.07 1.10 1.12 1.12
40 1.07 1.10 1.17 1.26 1.32
45 1.10 1.18 1.26 1.54 1.56

2.3.4 Ponderable Mohr-Coulomb Material — c–φ–γ soil

A few solutions exist for the bearing capacity factors and shape factors considering a
general Mohr-Coulomb soil. The reason is that it is difficult to provide charts or tabu-
lated values owing to the number of parameters involved, and because the conservative
superposition approach is preferred in design practice.
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Smooth footing

Circular footing
Cox [62] extended the solution obtained previously [63] to the case of ponderable soils

(Table 2.36). Cox neither specifically completed the partial stress field, nor derived the
velocity field. However, he suggested that there is no apparent reason for which the same
techniques employed to derive the complete solution in the case of an imponderable soil
should not also be capable of application in the present case. The values obtained with
ABC match the results of Cox et al. to the given precision (crossing β characteristics
were observed for φ = 40◦, G = 0.01 and 0.1). It is therefore possible to obtain shape
factors based on the exact values of pf/c for smooth strip footings. It can be seen that
for a given value of G, scγ increases with increasing φ, which agrees with all theoretical
shape factors for cohesionless soils presented previously.

Table 2.36 – Normalised bearing capacity (pf/c) for smooth circular footings [62], and shape
factor (scγ) computed with respect to the exact solution.

φ [deg]

G

0.01 0.1 1 10

pf/c scγ pf/c scγ pf/c scγ pf/c scγ

10 9.99 1.20 10.0 1.19 10.4 1.15 13.8 1.01
20 20.1 1.35 20.3 1.34 22.4 1.25 38.8 1.03
30 49.4 1.63 50.5 1.60 60.6 1.41 141 1.11
40 165 2.17 173 2.08 237 1.71 754 1.32

Rough Footing

Circular footing
Erickson and Drescher [103] obtained a few solutions with the finite difference method

for a general soil (Table 2.37). They provided results for a circular footing of 12 m in
diameter, and two sets of soil properties: 1) c = 0.1 kPa, ρ = 1500 kg/m3, and 2)
c = 100 kPa, ρ = 2500 kg/m3, corresponding to G = 900 and 1.5, respectively.

Solutions computed with ABC are summarised in Table 2.38. The evolution of the
shape factors is similar to that for smooth footings (Table 2.36), but the values are higher.
It is found that for 0.01 ≤ G ≤ 10 and 10◦ ≤ φ ≤ 40◦, the shape factor is always greater
than 1.

It is known that the sum of the minima (superposition approach) is lower than the
consistent minimum for strip footings, and Bolton and Lau [15] demonstrated that this
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Table 2.37 – Normalised bearing capacity (pf/c) for perfectly rough circular footings, [103].

φ [deg] G

1.5 900

20 27.6 2710
35 193 43 300
40 366 128 000
45 1281 432 100

Table 2.38 – Normalised bearing capacity (pf/c) for perfectly rough circular footings, [215], and
shape factor (scγ) computed with respect to the exact solution for strip footings.

φ [deg]

G

0.01 0.1 1 10

pf/c scγ pf/c scγ pf/c scγ pf/c scγ

10 11.1 1.33 11.2 1.32 11.9 1.24 17.5 1.02
20 23.7 1.59 24.2 1.56 28.2 1.37 58.4 1.06
30 63.0a 2.07 65.4a 1.98 86.8a 1.62 254 1.22
40 231a 2.99 248a 2.75 400a 2.07 1626 1.59

a Involves crossing β characteristics [215].

statement holds also for circular footings. If the ratio between the solution obtained by
superposition and that obtained by a consistent system is similar for both circular and
strip footings, the general shape factors scγ obtained from the superposition approach
should be in good agreement with those computed with the consistent approach. For
G = 1, this ratio (superposition/consistent) for circular and strip footings is respectively,
0.80 and 0.86 for φ = 20◦, and 0.75 and 0.84 for φ = 30◦. The higher ratio for strip
footings means that shape factors obtained from the superposition approach are lower.
For the selected shear strength angles, 1.28 and 1.44 are obtained, compared to 1.37 and
1.62 of the consistent solution (Table 2.38). This means an underestimation in the range
of 11 %.

Square and rectangular footings
The consistent upper bound solution of Michalowski [235] based on a Prandtl type

mechanism for B/L = 0.5 is shown in Table 2.39. As explained by Michalowski himself,
and already reported previously, owing to the difficulty of building a kinematic admis-
sible failure mechanism in three dimensions, the best upper bound for this mechanism
when B/L → 0 dos not converge toward the optimised multi-block solution for strip
footings [233] (Table 2.19). Therefore, for consistency reasons the shape factors should
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be computed with respect to the three-dimensional failure mechanism with a sufficient
low value of B/L (however such results were given by Michalowski only for cohesionless
soils).

Table 2.39 – Normalised bearing capacity (pf/c) for perfectly rough rectangular footings (B/L =
0.5), [235].

φ [deg]

G

0.1 0.25 0.5

15 16.1 17.2 17.9
35 157 177 214

2.4 Real Soils

2.4.1 Presence of Water

The objective of this section is not to give a comprehensive description of the variation of
bearing capacity with water conditions, but rather to draw the general guidelines to take
into account the presence of water in simple homogeneous steady state conditions. The
failure region is supposed to be fully dry, fully saturated or subjected to a homogeneous
state of suction.

The dry state does not deserve any comment, given that water is absent. The fully
saturated problem is solved by distinguishing between undrained and drained conditions,
and by applying the Terzaghi’s principle of effective stresses. Details regarding the in-
fluence of water table depth by assuming fully dry and fully saturated strata may be
found in [6, 178, 229]. An unsaturated soil subjected to a homogenous state of suc-
tion is characterised by a homogeneous and isotropic state of stress s, and the analysis
must be carried out in terms of effective stresses. Following the procedure proposed by
Sokolovskii [366, 367], s must be added to the fictitious uniform state of stress c cotφ.
This leads to the interpretation of suction as an increase of apparent cohesion s tanφ,
which is particularly convenient for the applicationof the upper bound theorem of the
limit analysis:

pf
c+ s tanφ

= Nc +GNγ (2.52)

It is noteworthy that heterogeneous soils with a linearly increasing apparent cohesion
with depth, can be handled relatively easily [67, 215, 330].
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2.4.2 Non-Associated Materials

Real soils usually exhibit non-associated plastic flow. If the critical state defines the ulti-
mate state, plastic distortion takes even place at constant volume and thus the dilatancy
angle is ν = 0. However, for soils with internal shear strength angle the plastic strain is
not constant along the slip planes, and therefore the mean dilatancy angle at the instant
of incipient plastic flow is 0 < ν < φ.

The lower bound theorem of the limit analysis leads to the conclusion that the collapse
load of a non-standard material cannot exceed that of a standard material with the same
yield condition [299, 300]. Davis [65] showed that in isotropic coaxial perfectly plastic
non-associated Mohr-Coulomb materials, shear stresses and normal stresses acting on
velocity discontinuity lines, i.e. velocity characteristics, are related by the following
relation

τ∗ = c∗ + σ∗n tanφ∗ (2.53)

where

c∗ = ηc (2.54a)

tanφ∗ = η tanφ (2.54b)

η =
cosφ cos ν

1− sinφ sin ν
(2.54c)

Drescher and Detournay [82] demonstrated that for translational failure mechanisms,
rigorous upper bound solutions can be obtained by adopting the modified yield crite-
rion τ∗ = c∗ + σ∗n tanφ∗ and normality condition. This agrees with the conclusion of
Radenkovic, because φ∗ ≤ φ. It is noteworthy that the limit equilibrium method pro-
vides rigorous upper bounds for statically determined translational failure mechanisms.

It is important to highlight that the modified yield criterion cannot be used to obtain
lower bound solutions, because it does not satisfy the normality condition with respect
to the direction of the actual plastic strain increment.

The substitution of the non-standard material with an equivalent standard-one seems
promising for bearing capacity solutions in plane strain conditions, where multi-block
failure mechanisms allow high degree of freedom of the rupture figure. On the other
hand, translational failure mechanisms impose considerable constraints to the kinematics
of failure mechanisms in the general case [103].
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Numerical analysis revealed that the bearing capacity decreases with decreasing dila-
tancy angle, and that such decrease is higher for higher values of the difference φ−ν [103,
110, 122, 199, 233, 395]. This means that for a given relative dilatancy angle ν/φ = cst.,
the ratio of the bearing capacity of the non-associated material to that of the associated
material decreases with increasing φ.

Based on elastic-perfectly plastic finite element analyses, Loukidis and Salgado [199]
proposed a modified expression for Nq

Nq = eF (φ,ν)π tanφNφ

F (φ, ν) = 1− tanφ tan2.5[0.8(φ− ν)]
(2.55)

which can be used in (2.29) to approximate Nγ .

2.4.3 Experimental Results

The correct determination of the bearing capacity coefficients and the shape factors is
a complex task, in particular for Nγ . The estimation of the shearing strength angle is
extremely difficult, because it is function of the initial void ratio, the variation of the
void ratio upon loading, the actual normal stress acting on the failure planes (non-linear
intrinsic line), and the strain conditions (plane strain, axial symmetry, and intermediate
situations). These aspects and the non-associated behaviour complicate the comparison
between experimental results and theoretical prediction. Moreover, failure takes place for
a given settlement, so that in reality there is always the contribution of the overburden
pressure and shear strength. Therefore, a direct measure of Nγ for surface footings is not
possible.

Model footings are generally worked in order to obtained perfectly rough bases.
Therefore, in the following perfectly rough/adherent interfaces are assumed.

Tresca Yield Criterion

Tresca criterion seems appropriate to model dense saturated soils under undrained con-
ditions, such as overconsolidated saturated clays. The key features are the invariance of
the average bearing pressure with respect to footing width and soil self-weight, and the
increase of it with increasing B/L. The bearing capacity factors Nc obtained with this
model are supported by experimental evidences [118, 232, 357, 359]. In particular, the
increased bearing capacity of a circular footing with respect to a strip is evident.
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Based on the experimental data of Golder and Skempton [118, 357] and unpublished
results, Terzaghi [384] suggested to multiply the theoretical bearing capacity factor of
strip footings, equation (2.1), by sc = 1.3, both for circular and square footings. Later
sc was modified to 1.2 [385], leading to Nc = 6.17. This value is very close to the exact
theoretical one 6.05 [99].

Skempton [359] proposed for circular footings Nc = 6, and for rectangles the formula

sc = 1 + 0.2
B

L
(2.56)

which is essentially equal to (2.44).

It is noteworthy that the shear strength under triaxial conditions is lower than that
under plane strains [119]. Randolph [301] suggested that the bearing capacity for three-
dimensional conditions should be expressed in terms of an average of the shear strengths
under triaxial compression su,TC, triaxial extension su,TE, and simple shear su,SS. As
remarked by Gourvenec et al. [119], this hypothesis breaks down for gradually more
slender footings. A more appropriate value might be

s̄u = su,SS + (su,TC + su,TE − 2su,SS)
B

3L
(2.57)

which gives s̄u = su,SS for strip footings, and s̄u = (su,TC + su,TE + su,SS)/3 for square
(or circular) footings.

It can be stated that theoretical results qualitatively and quantitatively agree with
experimental data. Results obtained by Gourvenec et al. [119] for the Mises yield
condition suggest that the intermediate principal stress has little influence on the bearing
capacity of homogeneous isotropic soils, definitely negligible for practical applications.

Mohr-Coulomb Yield Criterion

The bearing capacity of strip footings resting on dense sands is well estimated by the
general shear failure theory and the Mohr-Coulomb criterion [71, 118, 232].

Measured tip resistance of deep foundations, for which the contribution of the soil
self-weight becomes small compared to the confinement, showed that Nq increases with
increasing B/L for a given width [70, 232]. Therefore, reasonable inferences can be drawn
on the evolution of Nγ with respect to the footing shape.

Based on the results of Golder [118] and other unpublished data, Terzaghi [384, 385]
proposed the value sγ = 0.6 for circular footings, calibrated on his bearing capacity
factor Nγ (Table 2.6). For square shapes, Terzaghi [384] suggested the value sγ = 0.8
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in combination with his bearing capacity factor. This outcome was based on the most
unfavourable test results. It is worth saying that Golder concluded that, despite the
scatter of the results and including in his arguments also other data [105, 170, 223],
for a given width the bearing capacity is not affected by the ratio B/L. However, it
is noteworthy that Golder did not deduce the contribution of Nq that inevitably takes
place, so that the invariance could also be attributed to the combination of scatter and
balance between the increase of Nq and the reduction of Nγ . Other than the fact that
the shape factor proposed by Terzaghi is based on the most unfavourable data, the value
of sγ is directly affected by his theory of bearing capacity for strip footings, and the
definition of the shear strength angle used in the experiments.

Later, Terzaghi reduced the shape factor from sγ = 0.8 to sγ = 0.4, without giving any
information about the tests employed in the calibration [385]. This reduction is actually
greater then one-half, as it could appear at first glance, because the new shape factor
were applied to the values of Nγ derived by Meyerhof [229], and approximated by (2.15),
which are lower than those given previously by Terzaghi. This is likely due to the fact
that such coefficient was intended to be used in daily design, and more unfavourable data
were found.

Other experimental results support the thesis that, for a given width, the bearing
capacity of surface footings on sand decreases with increasing B/L [70, 71, 132, 226, 231,
232], and is minimum for a circular area, for which the value sγ = 0.6 seems appropriate.
For a square footing, Meyerhof [226] found approximatively sγ = 0.7.

Hansen [25] gave the expression below, meant to be used along with equation (2.19)
or (2.20). He did not furnish any explanation about its derivation.

sγ = 1−
(

0.1 +
tan6 φ

2

)B
L

(2.58)

According to (2.58), sγ decreases with increasing φ other than B/L.

Alternatively to (2.49), Meyerhof [231] suggested to estimate the shape factor by
interpolating between the bearing capacity coefficient for strips and circles in direct
proportion to the shape ratio B/L. If the value sγ,circ = 0.6 is assumed [132, 384, 385],
the formula is as that given by de Beer [71]:

sγ = 1− 0.4
B

L
(2.59)

Another empirical formula was given by de Beer [71], which assumed sγ(B/L = 1) =

0.6 and imposed sγ(B/L = 1/6) = 1.476sγ(B/L = 1) after experimental data:
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sγ =
1 + 0.2B/L

1 +B/L
(2.60)

Without imposing sγ(B/L = 1) = 0.6 and assuming a linear relation, De Beer obtained
the following expression

sγ = 1− 0.36
B

L
(2.61)

which is essentially equal to equation (2.59).

Despite the difficulties highlighted above in the measure of the bearing capacity factor
Nγ , it seems evident that for a given cohesionless soil and footing breadth, the bearing
capacity decreases with increasing B/L. The physical reason for this is threefold: (1) the
intermediate principal stress is higher in plane strain than in nearly triaxial conditions,
which increases the confinement [202, 231]; (2) the shear strength angle is higher in
plane strain than in nearly triaxial conditions [199, 202, 231]; and (3) for small dilatancy
angles the volume displaced by a rectangular footing is lower than that displaced by a
strip footing [412].

Reasons (2) and (3) are not taken into account in the derivation of theoretical shape
factors, because in the Mohr-Coulomb yield criterion the shear strength angle is not
affected by strain conditions, i.e. plane strains or axial symmetry, and they are generally
based on the associated flow rule. On the other hand, empirical shape factors consider
all these aspects. Therefore, (2) and (3) seem to be fundamental factors which explain
the apparent inconsistency between experimental and theoretical results.

Meyerhof [231] proposed to adopt a shear strength angle that considers the transition
from a nearly triaxial condition for square footings to a condition of plane strains for
strip ones:

φr =
(

1.1− 0.1
B

L

)
φt (2.62)

where φr is the shear strength angle of a rectangular footing, and φt is the shear strength
angle in triaxial condition (axial symmetry). Relation (2.62) implies φs = 1.1φt, with φs
denoting the shear strength angle for a strip footing.

Theoretical shape factors that do not take due account for all the processes are
ambiguous and may lead to wrong results. Therefore, either empirical shape factors are
adopted, which consider all the involved physical phenomena but are subjected to the
number and quality of tests, or the bearing capacity factor N ′γ is evaluated by taking due
account of the probable value of φ and ν.
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In the case of a real general cohesive-frictional soils, the increase or decrease of scγ is
likely controlled by G.

2.5 Concluding Remarks

A review of the solutions for the bearing capacity of surface footings under vertical load
has been presented. It is seen from the above that the problem of bearing capacity has
been studying for many years and a number of solutions have been derived. Theoretical
bearing capacity factors have been presented in tabulated form and categorised by the
type of footing and the soil constitutive model. The theoretical approach and the main
assumptions of each solution have also been given. This will help future researchers
in the comparison and evaluation of theoretical as well as experimental results. Two
new analytical expressions for the normalised bearing capacity of perfectly rough strip
footings on general Mohr-Coulomb soils have been derived. The pertinence of theoretical
solutions with respect to real soils and experimental data have been discussed. The main
conclusions are summarised below:

• The solution obtained through the method of stress characteristics for strip footings
correspond to the complete solution according to the theory of plasticity. For
circular footings, an hypothesis is needed about the circumferential principal stress
and the solution might involve crossing β characteristics. Its rigorousness and
completeness might therefore be questionable.

• Imposing a predefined trapped wedge beneath the base leads to higher bearing
capacities, in agreement with the limit theorems for frictional interfaces.

• Theoretical and experimental results support the hypothesis that in practice foot-
ings can be taken as perfectly rough.

• Experimental and theoretical results are in good agreement for both undrained soils
and Tresca yield condition, and drained soils and Mohr-Coulomb yield condition
when shear strength parameters are estimated based on realistic loading paths and
strain conditions at the instant of collapse. Theoretical shape factors derived from
the Tresca yield criterion seem suitable. By contrast, the theoretical derivation
of shape factors for Mohr-Coulomb soils that do not take due account for all the
physical processes such as the flow rule and the method used to measure φ, may
lead to wrong results on the unsafe side.
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• Despite the theoretical interest in deriving complete solutions for footings of finite
length, relevant improvement in the derivation of bearing capacity factors cannot
be expected without a proper consideration of the real behaviour of soils. This is
true also for shallow footings and general loading conditions.

This research highlighted that theoretical and numerical methods are able to de-
scribe qualitatively and quantitatively the bearing capacity of surface footings, and that
techniques to take into account the key aspects of real soils are available. Notwithstand-
ing, reliable estimates of the computed bearing capacity can only be achieved through a
proper understanding of the involved physical processes and real field conditions. This
last conclusion applies to any application of soil mechanics.
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Limit-state analysis of soil-structure interacting systems is a classical problem
in theoretical and applied soil mechanics. Usually, the capacities of both com-
ponents are evaluated separately. However, it is well known that soil-structure

interaction plays a major role in the actual performance of such systems. Despite the
complexity of a rigorous mathematical treatment of the problem, the limit theorems of
the theory of plasticity and appropriate consideration of the failure modes of the struc-
tural element allow to address soil-structure interaction in a simplified manner. This
study shows how the existing solutions for the bearing pressure and footing structural
resistance can be coupled to evaluate the impact of the soil-structure interaction. Fur-
ther, lower and upper bound solutions are developed for foundations that have a slander
cross-section.

3.1 Introduction

Soil-structure interacting systems such as foundations, retaining walls, and cut-and-cover
tunnels constitute classical limit-state problems [383, 384]. The mutual interaction be-
tween these two components is evident. However, they are often treated independently.

Solutions to limit-state problems from the point of view of soil mechanics generally
consider the structural component as a rigid or perfectly flexible body, with a focus on
the constitutive modelling of the interface and the soil [71, 118, 199, 201, 217, 229, 232,
304, 384, 412]. By contrast, the approach of structural mechanics focuses primarily on
the behaviour of structural elements [32, 33, 280, 354, 355].

Evidently, these simplifications are necessary for carrying out laboratory testing to
limit the number of parameters and control the governing failure mechanism. However,
little effort is made in attempting to combine the respective outcomes within a unified
framework.

Recently, rigorous limit-state solutions of soil-structure systems were presented for
surface footings and cut-and-cover tunnels [72, 281]. These solutions considered the
possibility of simultaneous failure within the structure and the soil, showing the great
impact of mutual interactions on the actual performance of such systems.

With the availability of modern commercial software for limit analysis, e.g. [196],
similar solutions can be directly obtained in many cases. However, analytical or semi-
analytical solutions are fundamental to assess the validity of those results and they greatly
simplify parametric analyses, which eventually can be used to obtain closed-form expres-
sions or design charts. Moreover, structural failure modes sometimes fall outside the
applicability of the theory of plasticity, e.g. shear failure of concrete members without
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transverse reinforcement. These modes cannot be captured by the aforementioned soft-
ware for limit analysis. Missing one of such failure modes might lead to catastrophic
consequences.

In this study, surface footings under centred vertical load were examined as a reference
case. An attempt was made to define a unified framework for the analysis of the collapse
load considering soil-structure interaction in a simplified manner. For this purpose,
sections two to four review the main concepts of soil bearing capacity, contact pressure
distribution, and shear capacity of concrete members without transverse reinforcement.
The fifth section is dedicated to the soil-structure interaction. It is shown that the
knowledge of the three above-mentioned aspects can be combined in a useful way to
obtain both quantitative and qualitative outcomes on the overall performance of the
foundation. New lower and upper bound solutions for combined failure were derived and
extended to the three-dimensional case.

It is believed that, apart from establishing a unified approach toward a more rational
limit-state analysis for soil-structure interacting systems, this study might help in soil
and structural mechanics education.

3.2 Bearing Capacity of Soils

The maximum load, eventually expressed as average pressure, that a mass of soil can sus-
tain without producing uncontrolled settlements or without causing catastrophic damages
to the superstructure is termed bearing capacity. This definition follows the interpreta-
tion of the collapse load given by Hill [146] and Drucker et al. [96] in the framework of
the theory of plasticity.

From a theoretical point of view, the bearing capacity of a footing is found by solving
the problem of indentation in an elastic-plastic body. The physical properties of the
structure in relation to those of the soil define whether the indenter, i.e. the footing, can
be considered rigid or not. In many situations it can be considered rigid, and when the soil
is dense enough, the type of failure is known as general shear failure [384], and the collapse
mechanism for strip footings is as depicted in Figure 3.1 [201]. The plastically deformed
soil is pushed outward and upward. Depending on the base roughness, footing breadth,
and soil properties, a trapped elastic wedge might move downward as an extension of the
footing [66, 67, 201].

In the case of surface foundations, the resistance of the soil is due to its apparent
cohesion and the weight of displaced soil. In terms of average contact pressure pu =

Qu/B, we can employ the classical Terzaghi’s form [384]:
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smooth rough

B

Qu

pu

Figure 3.1 – Failure mechanism of smooth and rough strip footings resting on a dense and
compact soil.

pu
c

= Nc +GNγ (3.1)

where c is the apparent cohesion; G = 0.5γB/c is the dimensionless soil weight parame-
ter [62], with γ denoting the soil self-weight and B denoting the footing breadth; and Nc

and Nγ are the bearing capacity coefficients, which depend on the geometry of the failure
mechanism. If the superposition approach introduced by Terzaghi [384] is adopted, i.e.
the contribution of apparent cohesion and soil self-weight are computed independently,
these coefficients are a function of the shear strength angle φ only.

For rigid strip footings (and circular, if the hypothesis of Haar and Kármán is adopted
for the hoop normal principal stress σθ [126]) subjected to a centred vertical load and
resting on a perfectly rigid plastic isotropic homogeneous (possibly with apparent cohe-
sion linearly increasing with depth) coaxial associated half-space obeying the Tresca or
Mohr-Coulomb yield criterion, Martin [215, 217] demonstrated that the solution obtained
through the method of stress characteristics [201] corresponds to the complete solution
according to the theory of plasticity.

When the bearing capacity factors are computed separately, the exact value of Nc is
given by the Prandtl solution [298]:

Nc = cotφ
(
eπ tanφNφ − 1

)
(3.2)

where Nφ = tan2(π/4 + φ/2) is the flow value [384]. The exact value of Nγ can be
obtained through the free software ABC [215], extracted from [218], or estimated with
good accuracy by an older relation proposed by Meyerhof [228]:
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Nγ = (eπ tanφNφ − 1) tan(1.4φ) (3.3)

The general exact solution pu/c can be obtained with ABC and estimated with the
following analytical expression for 0.1 ≤ G ≤ 10 and 5◦ ≤ φ ≤ 45◦:

pu
c

=
7∑
j=0

0∑
m=j

ckTm(x̃)Tj−m(ỹ) (3.4)

or, for the narrower domain 0.1 ≤ G ≤ 1 and 10◦ ≤ φ ≤ 40◦, with the following simpler
formula:

pu
c

=
a+ bx+ cx2 + dx3 + ey + fy2

1 + gx+ hy + iy2 + jy3
(3.5)

Refer to subsection 2.2.4 (Derivation of Analytical Expressions for Perfectly Rough Foot-
ings) for a detailed explanation of the 2 equations just mentioned.

Solutions for rectangular footings were obtained empirically [71, 232, 359, 384], with
the limit equilibrium or limit analysis method [202, 232, 235, 334, 343, 348], and through
incremental elastic-plastic constitutive laws [119, 236, 412]. They are generally expressed
through shape factors that multiply the solution for strip footings. Experiments showed
that, for a given footing breadth, the bearing capacity pu increases with an increasing as-
pect ratio B/L for saturated undrained clays [357, 359], and decreases with an increasing
aspect ratio for dry sands [70, 71, 132, 226, 232].

3.3 Contact Pressure

The contact pressure distribution under a surface footing subjected to a centred vertical
load is mainly a function of the footing rigidity, soil stiffness, and soil shear strength
properties. A qualitative representation of pressure distribution for strip foundations is
shown in Figure 4.2. For comparison, the distribution over an elastic half-space is also
drawn.

In a purely cohesive soil, the contact pressure at failure is uniform under strip foot-
ings and increases slightly toward the footing centre under circular and rectangular foot-
ings [134, 232, 344].

In a cohesionless soil, the shear strength at the footing edge is zero (unconfined
soil element) and increases toward the footing centre. Therefore, the ultimate contact
pressure follows a similar trend. The shape varies between triangular, parabolic, and
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Figure 3.2 – Qualitative contact pressure distribution under isolated surface strip footings.
Solid lines represent the distribution at failure, whereas dashed lines correspond to a state prior
to collapse.

ellipsoidal depending on the soil characteristics, and footing roughness and breadth [198,
232, 336, 364, 383, 384]. Note that, according to [229], the maximum contact pressure
for partly rough footings is not at the footing centre. The same was proposed by [183]
for any value of base roughness. However, these conclusions seem less realistic because
the confinement increases toward the footing centre.

In a general cohesive frictional soil, the final distribution is a combination of the
former. Whether it is closer to that of a purely cohesive or a cohesionless soil, it will
depend on the parameters G and φ.

3.4 Shear Capacity of Concrete Members without Trans-
verse Reinforcement

One-way shear resistance of concrete members without transverse reinforcement is af-
fected by load distribution and slenderness. This is usually displayed with the help of
the so-called Kani’s valley [163], where the shear capacity is plotted against the shear
span ratio α = a/d (a: shear span, d: effective depth; cf. Figure 3.3). This diagram
identifies different regimes of shear carrying actions [107]. The direct strut action governs
deep beams (α < α1 ≈ 1) and the design can be performed with the strut-and-tie or
stress fields methods [212, 337]. In short span beams (α1 < α < α2 ≈ 2.5 − 3), the
development of a critical crack within the compressive strut may limit the shear capac-



3.4. Shear Capacity of Concrete Members 103

ity. The modified stress fields theory [394], which accounts for the reduction of concrete
compressive strength due to the transverse tensile strain, can be used to analyse these
structural elements [107]. The shear resistance of slender beams (α2 < α < α3 ≈ 5− 8)
is affected by both strain and size effects [10, 256]. The critical shear crack theory con-
sistently accounts for both phenomena [42, 107, 252]. For larger values of slenderness
(α > α3), the bending resistance is the governing factor, and the classical Euler-Bernoulli
beam theory can be employed [280, 337].

α = a
d

VR
Vpl

1

α1 α2 α3

SF MSF CSC SF

Figure 3.3 – Relative shear capacity versus shear span ratio. VR is the shear resistance, Vpl
denotes the shear force that causes the yielding of the flexural reinforcement and crushing of the
concrete, a stands for the shear span, and d is the effective depth (maximum effective depth in
a variable depth footing). The design method for each regime is indicated: SF stands for stress
fields, MSF stands for modified stress fields, and CSC stands for critical shear crack theory.

In Figure 3.4, a generic slender footing subjected to centred vertical load and uniform
contact pressure shows the shear transfer mechanisms with the help of a strut-and-tie
model [280]. The total shear capacity is given by the following expression:

VR = Vdir + Vchord + Vc (3.6)

where Vdir is the contribution of the direct strut action, Vchord is the vertical component
of the inclined compression chord, and Vc is the shear force that can be transferred across
the critical shear crack.

It is evident that the contact pressure distribution can have a considerable impact on
the shear resistance, and thus on the overall bearing capacity as well. Experiments carried
out on slender cantilever beams confirmed this point [280]. Note that for constant depth
members, the shear capacity can be as high as 80 % for triangular loading compared to
uniformly distributed loading. For the latter, the inclination of the compression chord
can lead to an increase of the shear force up to 30 % [280, 371].
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Figure 3.4 – Half of a slender footing with flexural reinforcement subjected to centred vertical
load and uniform contact pressure. A strut-and-tie model (strut in dashed line and tie in solid
line) shows the load transfer mechanisms. The critical shear crack is represented in grey. Adapted
from [280].

3.5 Effects of Soil-Structure Interactions

Based on the previous sections, it is clear that soil-structure interaction plays a major
role on the actual performance of foundations. In many practical applications, engineers
cannot exempt themselves from adopting simplifying assumptions. In this regard, a
series of considerations can be drawn that either allow to take directly into account soil-
structure interaction or help make decisions related to a higher level of performance.
These considerations are presented in the following subsections.

3.5.1 Deep Beams

Squat footings pertaining to the category of deep beams can generally be considered
rigid. Flexural cracking is limited and barely penetrates within the compression field.
These types of elements can be analysed without loss of accuracy with a simple strut-
and-tie model by replacing the contact pressure with two equivalent concentrated loads
acting at a quarter of the footing breadth [173, 337] (uniform contact pressure). A proper
consideration of the contact pressure distribution has little influence on the magnitude
of the bearing capacity owing to the small value of the ratio B/d.

In this case, the analysis is straightforward. The inclination of the direct strut with
respect to the horizontal is expressed as follows:
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tan θc = 4
d− 0.5xc
B − b ≈ 4

d− 0.5xc
B

(3.7)

where xc is the depth of the plastically compressed concrete. The force carried by the
strut when the soil bearing capacity is fully mobilised is given by the following expression:

C =
B

2 sin θc
pu (3.8)

3.5.2 Short Span Beams

In footings characterised by a short span beam cross-section, flexural cracks may pen-
etrate within the compression field transversely and reduce the concrete compressive
strength. The theory of plasticity can be applied if a strength reduction factor that
accounts for the transverse tensile strain is introduced [253, 257, 394]:

fce = kcfcp (3.9)

where fce is the effective concrete compressive strength, fcp is the concrete equivalent
plastic strength, and kc is the reduction factor.

The influence of the pressure distribution increases with respect to the previous case
and replacement with two concentrated loads is a very rough approximation. This is
mainly due to the fact that kc evaluated at the location of the resultant strut is not a
representative mean value of the whole compression field.

As an example, the collapse load of a footing subjected to different pressure distribu-
tions was computed with the finite element software jconc [106], which is an automatic
generator of plane stress elastic-plastic stress fields for reinforced concrete members. The
footing had constant depth, breadth B = 150 cm, effective depth d = 45 cm, flexural
reinforcement ratio ρ = 1.12 %, concrete compressive strength fcp = 30 MPa, null con-
crete tensile strength fct = 0, concrete Young’s modulus Ec = 30 GPa, steel yield stress
fy = 500 MPa, and steel Young’s modulus Es = 205 GPa. Three pressure distributions
were considered: (a) uniform, (b) triangular, and (c) external triangular, i.e. the pressure
is zero at the footing centre and increases linearly toward the footing edges. Distribution
(c) is not realistic, but it is useful to appreciate the influence of the strain effect. The
results are shown in Figure 3.5. Taking the collapse load of case (a) as a reference, its
value increased by 48.9 % for case (b) and decreased by 17.9 % for case (c). Considering
that the actual contact pressure distribution when the soil bearing capacity is reached is
between case (a) and (b), its impact is considerable.
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Therefore, the analysis of short span footings by means of strut-and-tie models should
be performed with a refinement of the equivalent concentrated load distribution, which
replaces the contact pressure. Simplified methods such as those proposed in [69, 336]
might be used to redistribute the contact pressure more conveniently. In particular, the
technique suggested in [336] allows to consider lower load levels than the soil bearing
capacity.

Note that the assumption of uniform pressure is not on the safe side for highly cohe-
sive and stiff soils loaded below their bearing capacity, because the contact pressure is
minimum at the footing centre and maximum at the edges.
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contact pressure is minimum at the footing centre and maximum at the edges.207
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(a) Uniform contact pressure: Qu = 8.4MN, kc,min = 0.78.

1.0000E0

(b) Triangular contact pressure: Qu = 12.5MN, kc,min = 1.
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(c) External triangular contact pressure: Qu = 6.9MN, kc,min = 0.55.

Fig. 5: Elastic-plastic stress field (left column) and kc-value distribution (right column) at

collapse for different contact pressure distributions.
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Figure 3.5 – Elastic-plastic stress field (left column) and kc-value distribution (right column)
at collapse for different contact pressure distributions.

3.5.3 Slender Beams

When the shear span ratio of the footing cross-section is between α1 and α2, the foun-
dation fails in shear by development of a critical crack. In this case, the member cannot
be analysed by simply considering an equivalent homogeneous material characterised by
a reduced compressive strength; the shear carrying mechanisms across the critical crack
must be explicitly taken into account.

An experimental study on cantilever beams [280] showed that the load over the region
adir (Figure 3.4), i.e. between the support and the section where the crack intercepts
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the flexural reinforcement, is carried by direct strut action. It was suggested that adir ≈
2.75d+ b/2. Another experimental investigation [43] revealed that this distance can fall
in the range d+ b/2 ≤ adir ≤ 2.6d+ b/2. Thus, the shear force that must be transmitted
through the critical shear crack is expressed as follows (cf. Figure 3.4):

VE,c =

∫ adir

B/2
p(ξ) dξ − Vchord(ξ = adir) (3.10)

According to the critical shear crack theory, the shear capacity across the crack Vc is a
function of the crack opening and roughness. The former is then supposed proportional
to the strain evaluated at a specific critical section times the effective depth, and the
latter can be expressed through the aggregate size. The failure criterion is a hyperbolic
law [252]:

Vc

1[m]d
√
fck

=
1/3

1 + 120 εd/ddg
(SI units: MPa, mm) (3.11)

where fck is the characteristic compressive cylinder strength of concrete; ε denotes the
strain evaluated in the critical section at 0.6d from the outermost compressed fibre,
assuming plane-deformed sections and linear elastic behaviour of concrete in compression
(the tensile strength is neglected); ddg = 16 mm + dg with dg denoting the maximum
aggregate size. The critical section is located at d/2 from the edge of the wall stressing
the footing (ξcs = b/2 + d/2) and adir = 2.75d+ b/2 [280].

Recently, a power-law failure criterion was proposed to improve the accuracy at low
strain [42]:

Vc

1[m]d
√
fck

=
k√

εsd/ddg
(SI units: MPa, mm) (3.12)

where k is a constant that depends on the main mechanical and geometrical parameters
(e.g. k = 0.019 for simply supported beams subjected to point load and k = 0.016 for sim-
ply supported beams subjected to distributed loading, [41]), εs is the strain in the flexural
reinforcement at the location of the critical section, and ddg = min{40 mm, 16 mm + dg}.
In the case of cantilever beams, the critical section is located at a distance d from the
axis of the support (ξcs = d) and it is assumed that adir = d. Owing to the application
of the load on the tension face, adir might be extended [41] (increased dowel action):
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∆adir = 0.2
(B

2
− adir

)
= 0.1B − 0.2d

adir,tot = 0.1B + 0.8d

(3.13)

Equations (3.11) and (3.12), shown graphically in Figure 3.6, are related through the
approximate relation ε ≈ 0.41εs [252].
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Figure 3.6 – Shear failure criteria based on the critical shear crack theory.

Adopting reasonable assumptions and assuming typical reinforcement and partial
safety factors employed in Switzerland [252], the hyperbolic law (3.11) leads to the fol-
lowing design formula:

Vcd
1[m]d

√
fck

=
0.2

1 + 0.0022dMEd
MRd

(SI units: MPa, mm) (3.14)

where MEd and MRd are the design values of the acting bending moment and resisting
bending moment, respectively, at the critical section. Similarly, a closed-form expression
was obtained from the power law (3.12) [41]:

Vcd
1[m]d

=
κ

γc

(
ρfck

ddg
acs

)1/3

(SI units: MPa, mm) (3.15)

where γc denotes the partial safety factor for concrete strength (1.5 according to the
Swiss code [349]), acs = MEd/VEd is the moment-to-shear ratio at the critical section,
and κ is a parameter equivalent to k in (3.12). In the case of cantilever beams, κ takes
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the following form:

κ =
1

1− 0.15
(0.5 + 0.2α1/3

cs ) (3.16)

with αcs = acs/d.

Note that in both code-like equations, the location of the critical section was mainly
calibrated against beams subjected to point or uniformly distributed loading. However,
it was shown that such a location is also representative for triangular loading [280].
Therefore, it is reasonable to assume that it remains representative for general loading
conditions, whereas the actual degree of accuracy remains unknown.

Given that the structural resistance is governed by the shear capacity of the crit-
ical crack Vc, and that the latter and the acting shear force VE,c are affected by the
loading conditions, the actual performance of these foundations is largely influenced by
soil-structure interaction. Despite the theoretical exact contact pressure distribution is
generally difficult to assess, it can be approximated by simple shapes (rectangular, trian-
gular, parabolic, ellipsoidal, and trapezoidal), as mentioned above. Accordingly, acs may
take the expressions given in Table 3.1.

Table 3.1 – Expressions for the computation of acs = MEd/VEd. The value of ξcs is equal to
b/2 + d/2 for the hyperbolic criterion and to d for the power law.

Pressure distribution acs acs/acs,rect

rectangular 1
2 (B/2− ξcs) 1

triangular 1
3 (B/2− ξcs) 0.67

parabolic 3
8 (B/2− ξcs) 0.75

ellipsoidal 4
3π (B/2− ξcs) 0.85

trapezoidal 1
3
2ρp+1
ρp+1 (B/2− ξcs)† 0.67

2ρp+1
ρp+1

† ρp = p(ξ = B/2)/p(ξ = ξcs)

The shear capacity of the critical shear crack relative to the case of uniform contact
pressure Vc/Vc,rect is plotted, according to the closed-form equation (3.15), against the
moment-to-shear slenderness ratio αcs,rect in Figure 3.7. The increase of Vc is maximum
for the triangular distribution, reaching approximately 9 % to 10 %. Note that the actual
increase of the structural bearing capacity VR is enhanced by the reduction of the shear
force VE,c, which has to be transferred across the critical crack, and the increase of the
direct strut action Vdir.

Therefore, the influence of soil-structure interaction can be estimated in a simplified
manner with the help of Table 3.1. The resulting evaluation procedure is as follows:
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• Check the soil average bearing capacity with (3.1)

• Define the pressure distribution

• Check the structural shear capacity Vc:

– Compute VE,c with (3.10)

– Compute acs with Table 3.1

– Compute Vc either with (3.14) or with (3.15). If the former is used, compute
the acting moment at the critical section as MEd = acs

∫ ξcs
B/2 p(ξ) dξ

• Check the direct strut capacity Vdir:

– Compute Vdir =
∫ 0
adir

p(ξ) dξ

– Check the flexural reinforcement and concrete with a strut-and-tie or stress
fields model, according to the theory for deep or short span beams
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Figure 3.7 – Shear capacity of the critical shear crack Vc over the shear capacity of the critical
shear crack for uniform pressure distribution Vc,rect, according to the closed-form equation (3.15),
as a function of the moment-to-shear slenderness ratio αcs,rect = acs,rect/d.

The case of contact pressure distribution increasing toward the footing edge was not
considered in this section. This would be the case of a rigid footing, and highly cohesive
and stiff soil. By contrast, a slender beam cross-section would show a certain degree
of flexibility and the contact pressure would tend to concentrate in the central region.
Moreover, the distribution would become closer to uniformity as the soil bearing capacity
is approached.
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In the case of surface rectangular footings, the above considerations hold only for the
central region (in the length direction). Close to the end zones and for footings with high
values of the aspect ratio B/L, i.e. close to 1, three-dimensional effects on the contact
pressure distribution become more important. In those situations, similar conclusions
can be drawn, though they are not detailed here. In fact, there are no physical reasons
to reject such conclusions. Actual values can be obtained by extending the suggested
contact pressure shapes into three dimensions.

The above conclusions also apply qualitatively to concrete blocks loaded by a column.
The governing structural failure is punching shear, which can be similarly investigated
through the critical shear crack theory [251, 255].

3.5.4 Very Slender Beams

As the structural element becomes more deformable, the impact of the soil-structure
interaction increases. In this section, outcomes obtained through the limit analysis
method [96, 98, 146] for footings with a very slender cross-section (cf. Figure 3.3) are
presented.

In the following, the soil is idealised as a perfectly rigid plastic isotropic homogeneous
coaxial and associated continuum obeying the Tresca or Mohr-Coulomb yield condition.
For simplicity, the terms Tresca/Mohr-Coulomb soil or material are used. The footing is a
perfectly rigid plastic beam satisfying the normality condition in the space of generalised
sectional stresses.

Plane Strain Problem

A combined failure mechanism for strip footings with limited flexural resistance was
proposed by Plumey [281, 282]. The geometry of such rupture figure, symmetric with
respect to the centre line, is shown in Figure 3.8 for a purely cohesive soil (left-hand side)
and for a general cohesive frictional soil (right-hand side). The kinematics is defined by
the angular velocity ω and the corresponding centre of rotation, identified by the angle
θ0 and the distance x0. The indentation of the footing causes the mass of soil between
the ground surface and the failure line to rotate as a rigid body around the centre of
rotation. Internal energy dissipation occurs along the lines of soil velocity discontinuity,
in the footing plastic hinge, and eventually at the soil-footing interface. For purely
cohesive soils, footing roughness is taken into account through an adherent behaviour,
i.e. the interface is idealised as an infinitely thin layer of a Tresca material characterised
by a shear yield strength βc, where 0 ≤ β ≤ 1. For other soils, Coulomb interface friction
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characterised by the interface friction angle δ is assumed. The external power is due to
the collapse load Qu and the soil self-weight.

Qu

purely cohesive

θ0

circular arc

x0
ω

v

cohesive frictional

θ0 θh

logarithmic spiral

ω

v

φ

Figure 3.8 – Combined failure mechanism for plane strain conditions [281]. Velocity disconti-
nuity lines within the soil are either a circular arc or a logarithmic spiral. The plastic hinge is
shown with a grey circle in the middle of the footing.

Upper bounds were obtained by Plumey for Tresca and cohesionless Mohr-Coulomb
soils∗ [281] (Figure 3.10 and 3.11), and by the authors for a general Mohr-Coulomb
soil [111] (Figure 3.12). The curves of the bearing capacity are characterised by an
increasing branch, corresponding to the combined failure, and by a plateau, due to the
general shear failure (rigid footing). Here, in contrast to [111, 281], the plateau for the
Mohr-Coulomb soils (sand and general soils) was taken from the complete solution given
by Martin [217].

Note that the considered interface frictional behaviour for the upper bound solutions
of the combined failure corresponds to a non-associated behaviour. However, the limit
theorems are valid for frictional interfaces if the frictional forces are known, because they
can be treated as surface tractions [97]. Given that the relative velocity at the interface
is constant, the interface energy dissipation depends only on the resultant interface fric-
tion force, which is a function of the resultant contact pressure and independent of its
distribution owing to the symmetry of the problem, i.e. the resultant over half-footing is
necessarily Qu/2.

A lower bound was also derived by Plumey for the case of a Tresca material (Fig-
ure 3.10). The admissible stress field was obtained by applying a contact pressure p,
admissible for the soil, over a reduced contact breadth Bc ≤ B (Figure 3.9) such that
M(p,Bc) ≤ MR. For the Tresca soil, such contact pressure is uniform and equal to
pu = cNc = c(2 + π).
∗The objective function of the combined failure mechanism for a cohesionless Mohr-Coulomb material

was reviewed by the authors in view of a mistake in the derivation of the velocity field for the computation
of the rate of energy dissipated at the soil-footing interface [111].
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A general formula for the lower bound of any pressure distribution can be obtained
by considering half of the footing, the average pressure due to the general shear failure
pu corresponding to a lower bound solution, the relative position of the resultant force of
the actual contact pressure distribution ζ = a/Bc (Figure 3.9), and the contact breadth
ratio ζc = Bc/B. The solution can be expressed as follows:

ζc =

√
2MR

puζ
≤ 1 (3.17a)

Qu = puζcB (3.17b)

The procedure consists in computing pu with (3.1), redistributing it in an admissible
manner, e.g. with one of the simple shapes described in the previous section, and defining
ζ (cf. Table 3.1).

Qu
MR

p

Bc

B
Bc
2

Qu
2

MR

p̄

p̄Bc
2

a

Figure 3.9 – Allowable stress field for combined failure in plane strain conditions [281].

For the Tresca material, considering pu = cNc = c(2 +π), the dimensionless resisting
moment µ = MR/(cB

2), and ζ = 1/4, leads to the result obtained by Plumey:

Qu

cB
=
√

8(2 + π)µ (3.18)

For a frictional soil, pu is a function of the contact breadth (size effect). Introducing
the dimensionless resisting moment η = MR/(γB

3), (3.17a) becomes, for a cohesionless
Mohr-Coulomb material, as follows:

ζc =
( 4η

Nγζ

)1/3
≤ 1 (3.19)

and the dimensionless bearing capacity is given by the following expression:



114 Chapter 3. Soil-Structure Interaction of Surface Footings

0.00 0.25 0.50 0.75 1.00

µ

0

1

2

3

4

5

Q
u

c
B

upper, β = 1

upper, β = 0

lower, ζ = 1/4

Figure 3.10 – Upper and lower bounds to the collapse load of a strip footing resting on a Tresca
material. The normalised bearing capacity is plotted against the dimensionless resisting moment
µ = MR/(cB

2). The plateau corresponds to the well-known value 2 + π.

2Qu

γB2
= ζ2

cNγ (3.20)

The contact pressure distribution for smooth rigid footings is directly obtained with the
method of stress characteristics [191]. It increases linearly from the footing edge to the
centre. It was shown that the solution obtained in this way is complete [217]. Thus, a
triangular distribution is a rigorous lower bound. Moreover, the triangular distribution
corresponding to the smooth interface is a rigorous lower bound for any value of footing
roughness according to the frictional limit theorems [85]. Improved lower bounds for
rough bases can be obtained by considering the appropriate value of the bearing capacity
factor Nγ . However, the distribution for rough footings cannot be obtained in the same
way, owing to the presence of a non-plastic wedge beneath the base. Several authors
suggested that the pressure distribution at collapse is parabolic [198, 364, 383, 384] or can
be well approximated by a triangular shape [179, 232, 336]. If a triangular distribution is
assumed, the solution for a cohesionless Mohr-Coulomb material is obtained with ζ = 1/6

in (3.19) (Figure 3.11), whereas for a parabolic distribution ζ = 3/16 (1/6 = 0.167 and
3/16 = 0.188).

Shield [343] obtained a rigorous lower bound to the uniform normal strip load for
a weightless general Mohr-Coulomb soil. The corresponding solution for the combined
failure is shown at the bottom row of Figure 3.12. The solution is obtained as in the case
of a Tresca material, but with Nc = Nc(φ). Such solution is an absolute lower bound
because base roughness and soil self-weight increase the soil bearing capacity.
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Figure 3.11 – Upper and lower bounds to the collapse load of a strip footing resting on a
cohesionless Mohr-Coulomb material. Left-hand side: upper bounds; right-hand side: upper and
lower bounds. The normalised bearing capacity is plotted against the dimensionless resisting
moment η = MR/(γB

3). The values of the general shear failure (plateau) are taken from [218].

For a ponderable Mohr-Coulomb material, the pressure at the instant of general
shear failure is non-zero at the footing edge owing to the apparent cohesion, and then
it increases in a linear or parabolic way toward the centre, as explained previously.
Therefore, the computation of ζ requires the explicit knowledge of the contribution of
the apparent cohesion and the soil self-weight to the bearing capacity, i.e. Nc and Nγ .
However, when the principle of superposition is not adopted, such coefficients vary for
each combination of φ and G, and the solution is generally given as the ratio pu/c, or
similarly, without specifying the individual contributions. Nevertheless, a lower bound
solution can be obtained in a simple manner by exploiting the fact that the superposition
approach to the soil general shear failure is conservative, i.e. it leads to a lower bound
to the collapse load corresponding to a consistent failure mechanism [15, 233, 384]

Nc(φ, c, γ = 0) +GNγ(φ, c = 0, γ) ≤ Nc(φ, c, γ) +GNγ(φ, c, γ) (3.21)

The improved lower bound for the combined failure can be obtained by independently
computing ζc for a weightless cohesive frictional material (ζcc) and for a ponderable
cohesionless frictional material (ζcγ), and then taking the minimum. However, ζcc and
ζcγ cannot be simply expressed as a function of the total resisting moment MR, as
before. This would not guarantee an admissible bending moment when the contributions
are summed. To ensure an admissible bending moment, it is assumed that the weightless
and cohesionless soils respectively contribute to the bending moment by Mc and Mγ as
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follows:

Mc = ρmMR

Mγ = (1− ρm)MR
(3.22)

Considering that µ = 2ηG for a general soil, the contact breadth ratio is expressed as
follows:

ζc = min{ζcc, ζcγ}

ζcc =

(
2ρmµ

Ncζ

)1/2

≤ 1

ζcγ =

(
2(1− ρm)µ

GNγζ

)1/3

≤ 1

(3.23)

and the dimensionless ultimate load is given by the following expression:

Qu

cB
= ζcNc + ζ2

cGNγ (3.24)

The optimum is found by solving the following bounded maximisation problem:

max
ρm

Qu

cB

0 ≤ ρm ≤ 1

(3.25)

The problem was transformed in a minimisation problem by multiplying the objective
function times −1. The L-BFGS-B algorithm [31] implemented in SciPy [398] was used
for the resolution. A triangular pressure distribution was considered for the soil-weight
contribution. Some results are shown in Figure 3.12 with grey lines. Note that the
superposition approach, which considers interface friction and soil self-weight, provides
a better lower bound, as expected.
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Figure 3.12 – Upper and lower bounds to the collapse load of a strip footing resting on a
general Mohr-Coulomb material, φ = 30◦. First row: upper bounds; second row: black lines
denote upper bounds whereas grey lines denote lower bounds.
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Three-Dimensional Problem

A combined failure mechanism for footings with finite length subjected to a centred linear
load can be obtained from that of a plane strain situation and considering an admissible
velocity field (compatible and satisfying the normality condition) at the end faces.

The velocity field for a Tresca material is simply obtained by extending the bi-
dimensional failure mechanism over the footing length L and considering the resulting
velocity discontinuity surface at the end faces (Figure 3.13). Hence, internal energy
dissipation within the soil occurs on the cylindrical surface and on the end circular seg-
ments. The resulting objective function is expressed as follows (cf. C for the mathematical
derivation):

Qu

cB
=

2

ζ0
µ+ ζ0Kc1 + ζ2

0Kc2
B

L

Kc1 = 2

(
π − 2θ0

cos2 θ0
+ β tan θ0

)

Kc2 =
4

3

{
π − 2θ0

cos3 θ0
− tan3 θ0

4

[
sin−2(θ0/2)− cos−2(θ0/2) + 4 ln

cos(θ0/2)

sin(θ0/2)

]}
(3.26)

where ζ0 = x0/B. The solution is found through the following bounded optimisation
problem:

min
ζ0,θ0

Qu

cB

ζ0 > 0

0 < θ0 < π

(3.27)

which was solved numerically as before. The results for perfectly adherent footings
(β = 1) are plotted for B/L = 0, 0.5 and 1 in Figure 3.14. To the best of authors’
knowledge, the best upper bound for rectangular rigid footings was obtained by Salgado et
al. [334] with the limit analysis and finite element method. For the considered rectangular
and square shapes, they obtained Nc = 6.02 and 6.22, respectively. For comparison, the
complete solution for a perfectly adherent circular punch was obtained by Eason and
Shield [99] and is Nc = 6.05. The bearing capacity of a Tresca material increases with
increasing aspect ratio B/L owing to the presence of hoop stresses [134, 232]. This is
also observed in the combined failure. Note that this explanation for enhanced bearing



3.5. Effects of Soil-Structure Interactions 119

θ0 θ0

B
2

L

x0

ω

Qu
2

MR

r

ω

l

v(ξ)

ξ

dξ

θ0 θ0

dθ
θ

π − θ0 − θ

Figure 3.13 – Combined failure mechanism in three dimensions for a Tresca material.

capacity leads to the conclusion that it is maximum for circular footings [231, 359]. Thus,
it is likely that Nc = 6.05 is an absolute upper bound to the bearing capacity of any
rectangular indenter.

Rigorous lower bound solutions can be obtained in the same way as for strip footings.
The pressure distribution is not uniform but increases slightly toward the footing centre.
However, given that the bearing pressure increases with B/L, an absolute lower bound
may be obtained assuming a uniform pressure distribution equal to c(2 + π).

The geometry of the end failure surfaces for a Mohr-Coulomb material is more com-
plex because the normality condition imposes an angle φ between the velocity vectors
and the velocity discontinuity surface. Such a surface for a plane strain motion, i.e. a
motion where the velocity vectors are all parallel, was derived by Garnier [115] and is
depicted in Figure 3.15. The kinematics is similar to the previous cases, with velocity
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Figure 3.14 – Upper bounds to the collapse load for perfectly adherent rectangular footings
with finite flexural resistance resting on a Tresca half-space.

vectors parallel to the xy-plane.

The objective function for a cohesionless Mohr-Coulomb soil is expressed as follows
(refer to D for further details regarding its derivation):

2Qu

γB2
=

2

1− tan δ tan θ0

(
2

ζ0
η + 2Kγ1ζ

2
0 +

B

L
Kγ2ζ

3
0

)

Kγ1 = − f1

cos3 θ0
+

tan θ0

6
− tan3 θ0

6 tan2 θh

Kγ2 = − 1

cos4 θ0

∫ θh

θ0

(
e4(θ−θ0) tanφ − sin4 θ0

sin4 θ

)
sinh[(θ − θ0) tanφ] cos θ dθ

(3.28)

where f1 was derived by Chen [49]:

f1 =
1

3(1 + 9 tan2 φ)

[
(3 tanφ cos θh + sin θh)e3(θh−θ0) tanφ − 3 tanφ cosφ− sin θ0

]
(3.29)

Given that θh and θ0 are related through the implicit equation sin θh exp[(θh−θ0) tanφ]−
sin θ0 = 0 [281], the optimisation problem is expressed as follows:
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Figure 3.15 – Combined failure mechanism in three dimensions for a Mohr-Coulomb material.
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min
ζ0,θ0

2Qu

γB2

ζ0 > 00 < θ0 < π if δ = 0

0 < θ0 < tan−1(1/ tan δ) otherwise

(3.30)

In (3.28), the integral was numerically evaluated with the scipy.integrate.quad func-
tion of SciPy and the optimisation was carried out as in the previous case.

Results for perfectly rough interfaces (δ = φ), φ = 15◦ and 35◦ are given in Fig-
ure 3.16. The bearing capacity for rectangular rigid footings is computed by multiplying
the exact solution for strip footings [218] with the analytical expression of the shape
factor derived by Lyamin et al. [202], which is based on a weighted average of lower and
upper bounds, and thus it is supposed to provide reasonable estimates of the exact solu-
tion. Note that the bearing capacity increases with increasing B/L for φ = 35◦, whereas
the situation is reversed for φ = 15◦. This seems inconsistent with respect to the exper-
imental results previously mentioned, according to which the bearing capacity decreases
with decreasing L. The reason for this is twofold. First, the shear strength angle for con-
ditions other than plane strains is lower [231]. Second, finite element simulations showed
that, for small values of φ, the mass of displaced soil reduces with increasing B/L [412].
This causes a reduction of the bearing capacity. The same was observed for higher values
of the shear strength angle and dilatancy angles lower than φ, which is generally the case
for real soils.

To obtain a lower bound, the same approach of the plane strain problem can be
adopted but with extension of the shape of the contact pressure distribution to three
dimensions. In particular, the pressure must be zero over the entire perimeter of the
footing. This actually produces a movement of the resultant pressure closer to the footing
centre.

In the case of general Mohr-Coulomb soils, the contribution of the cohesion to the
internal energy dissipation must be added to the previous solution. The objective function
can be expressed as follows (cf. E):
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Figure 3.16 – Upper bounds to the collapse load for perfectly rough (δ = φ) rectangular footings
with finite flexural resistance resting on a cohesionless Mohr-Coulomb half-space.
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with the following optimisation problem:

min
ζ0,θ0

Qu

cB

ζ0 > 00 < θ0 < π if δ = 0

0 < θ0 < tan−1(1/ tan δ) otherwise

(3.32)

Results for perfectly rough interfaces, obtained in a similar way to the previous ones
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for G = 0.1 and 0.5, φ = 15◦ and 35◦, and B/L = 0 and 0.5, are plotted in Figure 3.17. A
few rigorous upper bound solutions are available for the bearing capacity of finite length
footings resting on general soils. The reason for this is that an optimum solution exists for
any combination of the parameters G, φ, and B/L, which complicates to derive useful and
simple analytical expressions or charts. Moreover, practitioners prefer the superposition
approach owing to its conservative character. The solutions for rigid footings retained
here correspond to the upper bounds obtained by Michalowski [235], who considered an
advanced multi-block Prandtl-type failure mechanism. Note that, for the selected values
of G, the bearing capacity increases with increasing B/L, similar to the case of a Tresca
material. This is due to the fact that, as a rough estimate, a weightless material can be
assumed for G < 0.1, whereas a cohesionless material can be assumed for G > 10 [49].
Therefore, the situation is closer to a weightless material.

An absolute lower bound corresponding to a weightless soil and a smooth footing
can be obtained with the admissible uniform contact pressure obtained by Shield [343].
Improved solutions require to take into account the soil self-weight and eventually the
base roughness. The superposition approach can be adopted, as in the case of strip
footings.
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3.6 Concluding Remarks

A general framework for the analysis of the bearing capacity of surface footings under cen-
tred vertical load considering soil-structure interaction was presented. The importance of
considering both components, i.e. the ground and the structure, for a correct evaluation
of the overall foundation performance was emphasised. Two new analytical expressions
for the bearing capacity of rigid strip footings resting on a general Mohr-Coulomb soil
were given. A simple procedure based on the knowledge of an approximate contact pres-
sure distribution combined with the knowledge of the governing footing failure mode was
shown to be a powerful tool for consistent foundation analysis and design.

Detailed analysis of the bearing capacity problem of a surface footing with a very
slender cross-section was carried out to show how the limit analysis method can be
applied to general three-dimensional soil-structure systems.

Some of the main conclusions that can be drawn from this study are as follows:

• The influence of soil-structure interaction increases with structural slenderness.

• The evaluation of the footing performance assuming a uniform contact pressure
distribution, regardless of the soil properties, is only justified for deep beam foot-
ings.

• Previous studies coincide on the fact that the contact pressure distribution at the
instant of general shear failure is closely approximated by one of the following simple
shapes: uniform, triangular, ellipsoidal, and trapezoidal. This can be conveniently
exploited to take into account the soil-structure interaction in a simplified manner.

The concepts and techniques presented in this paper can be extended to shallow
footings subjected to general loading conditions and to other soil-structure systems, such
as retaining walls.
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Over the last twenty years, the importance of environmentally friendly tech-
nologies in the field of construction has grown considerably. In this regard,
energy piles are an innovative technology that combines the structural role of

piles with that of a ground heat exchanger, through the inclusion of pipes carrying a
heat exchanger fluid. Although it is common practice to cast the raft of a piled foun-
dation directly on the ground, most of the available studies on energy piles have not
been concerned with the implications that this entails. In this study, attempts have been
made to fill this gap through a series of three-dimensional finite element simulations.
This paper describes three dimensionless parameters, namely the raft to single isolated
pile displacement ratio, the normalised differential displacement and the normalised ther-
mally induced axial stress, which can be used to evaluate the overall performance of the
foundation. The influence of the main mechanical parameters on the aforementioned
dimensionless parameters is shown in graphical form and comparisons with conventional
foundations are made.

4.1 Introduction

Deep foundations can be divided into two main classes: pile groups and piled rafts. In
pile groups, the cap is not in contact with the ground and the entire load is transmitted to
the piles. In piled rafts, the capping slab is in contact with the soil and part of the load is
transferred directly to the ground by contact pressure. Over the last few decades, a new
major classification has been introduced with energy piles. This innovative technology
combines the mechanical supporting role of piles with that of a ground heat exchanger,
leading to unprecedented thermally induced actions on piles and soil behaviour.

During the last century, many researchers focused their efforts on the behaviour of
pile groups and piled rafts. This has lead to a variety of analytical and numerical meth-
ods for the computation of displacements and internal efforts. Among the most recog-
nisable are the method of equivalent sub-grade reaction modules [384], the interaction
factor method for pile groups [35, 285] and piled rafts [54, 68], the axisymmetric layer
model for pile groups [302], the combined axisymmetric layer and load transfer model
for pile groups [258], the equivalent pier method [289, 303], the equivalent capped pile
method [152], the boundary element method for pile groups [8, 29] and pile rafts [30],
the finite difference method [59] and the finite element method [164, 262, 272]. More
recently, the increasing importance of environmentally friendly technologies has lead to
an extension of the aforementioned methods to energy foundations. This concerns, in
particular, the interaction factor method for energy pile groups [321], the equivalent pier
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method for energy pile groups [320] and the application of the finite element method [81,
322].

To date, no exhaustive parametric analysis on the influence of the raft stiffness over a
group of energy piles has been presented. This lack of knowledge might be a constraint in
extrapolating and extending results for energy pile groups to real piled raft foundations,
especially during the early design stages. In this study, the finite element method has
been employed to solve the three-dimensional (3D) thermo-elastic problem of piled rafts
with regular grids of piles activated thermally. The major outcomes of an extensive
series of numerical simulations are presented in graphical form through dimensionless
parameters. The impact of the main mechanical parameters is discussed in comparison
with conventional foundations. Finally, key points are summarised.

4.2 Numerical Modelling

In this section, the parametric analysis is presented and the mathematical model is briefly
introduced. Details concerning the finite element model are also given.

4.2.1 Parametric analysis

An extensive parametric analysis (610 simulations) on piled rafts with regular grids of
energy piles (Figure 4.1a) was performed. In each simulation, all piles were subjected
to a temperature variation ∆T = 10 ◦C. Neither mechanical load nor gravity field were
considered because the aim of this research was to investigate the impact of thermal loads
only. This is justified by the fact that linear elasticity was adopted (further details and
justification of this assumption are given in sections 4.2.2 and 4.2.3). Thermo-mechanical
time-dependent analyses were performed for a period of five months (further details follow
in sections 4.2.2 and 4.2.3). The diameter of piles was set equal to d = 1 m. Two main
configurations were investigated: semi-floating piles and end-bearing piles. For both,
analyses were carried out at a constant spacing to pile diameter ratio s/d = 5, constant
soil Poisson’s coefficient νs = 0.3, two pile length to diameter ratios (slenderness) l/d (25

and 50), two pile Young’s modulus to soil shear modulus ratios K = Ep/Gs (102 and
104), three values of soil to pile thermal expansion coefficient ratio X = αs/αp (0, 1 and
2), five raft thickness to pile diameter ratios tr/d (0.25, 0.5, 1, 2 and 4) and five grids of
energy piles np (12, 22, 32, 42 and 52; in some cases also 62). Parametric analyses on s/d,
νs and l/d were carried out only for the case K = 3× 103, X = 0, tr/d = 1 and np = 42.
It was assumed that similar tendencies might be extended to all configurations.
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The behaviour of pile rafts was analysed in terms of: the raft to pile group dis-
placement ratio Rr = w̄r/w̄g, where w̄r is the raft mean displacement and w̄g is the
mean displacement of the pile group in the piled raft configuration; pile group to sin-
gle pile displacement ratio Rs = w̄g/ws, where ws is the head displacement of an iso-
lated free-standing pile equivalent to those in the piled-raft system (i.e. same ∆T , l/d,
K, etc.); raft to isolated pile displacement ratio R = RrRs; raft differential displace-
ments ratios ∆w1:0/w̄r and ∆w1:0.5/w̄r, where ∆w1:0 and ∆w1:0.5 are the differential
displacements between normalised coordinate (ξ) 1 and 0, and between 1 and 0.5, re-
spectively (see Figure 4.1b) and normalised thermally induced axial stress within the
piles ς = σ/(Epαp∆T ), with σ the axial stress in the considered pile due to temperature
variation. Values of w̄r were obtained through the mean of the nodal displacements of
the top surface of the raft. Here ∆wξ was calculated by finding the difference between
the corresponding nodal displacements and σ was computed at the integration points
along the central line of the piles.

Parameter R summarises all interactions that occur through the soil and the capping
slab, ∆wξ gives a rough estimate of the flatness of the deformed raft and ς is the fraction
of the actual stress with respect to the case of a fully blocked pile. Variables K and tr/d
provide information about the bending stiffness of the raft B (B ∝ Ert

3
r ∝ K(tr/d)3,

where Er designates the Young’s modulus of the raft).
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Figure 4.1 – Schematic view of a typical piled raft configuration and definition of the normalised
reference system.

4.2.2 Mathematical Formulation

In the following, compressive stresses, contracting strains and downward displacements
are considered to be positive.
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Weak thermo-mechanical coupling was assumed. This means that the temperature
field has an effect on the state of stress, but not the other way around (also known as one
way coupling). Analyses were performed in transient conditions, i.e. time dependent.
This aspect plays a role even in the framework of thermo-elasticity, because it is not
guaranteed that at the end of the heating period steady state conditions are reached.
Therefore, the extent of the mass of soil affected by piles temperature variation could be
lower with respect to that computed with a time independent analysis. As a consequence,
a steady state calculation might lead to an overestimate of the impact of thermal loads.

No hydro-mechanical coupling was considered here. The thermal properties of soil
(cf., Table 4.1), namely the thermal conductivity and the heat capacity, are typical of
saturated sandy or silty soils. In the former case, the behaviour is characterised by a
drained response, so that a hydraulic coupling is not necessary. For the latter case, a
drained response is in general meaningful only for long term analyses. Nevertheless,
field experiments [238, 322] and previous numerical simulations [81] showed that induced
excess pore water pressure upon thermal piles activation is negligible.

Table 4.1 – Material properties used in the finite element model. The word variable refers
to those parameters that were varied to obtain specific values for the parametric analysis (see
section 4.2.1).

Concrete Soil

Solid skeleton density ρ [kg m−3] 2778 2650
Porosity n [-] 0.1 0.42
Young’s modulus E [GPa] 30 variable
Poisson’s coefficient ν [-] 0.2 variable
Thermal expansion coefficient α [◦C−1] 10−5 variable
Thermal conductivity λ [W m−1 K−1] 1.628 1.628
Heat capacity cp [J Kg−1 K−1] 837 837

It was assumed that displacements and deformations could be satisfactorily described
by linear kinematics under quasi-static conditions. In addition to linear geometry, mate-
rial linearity was also assumed. These hypotheses may not be completely true, but can be
applied successfully to the analysis of pile foundations by choosing appropriate soil and
concrete elastic parameters [289] and because, under normal working conditions, thermal
loads are not expected to induce plastic deformations at the pile–soil interface [81, 322].
The hypothesis of material linearity, especially in relation to piles interface behaviour,
might deserves further considerations. In fact, the interface can be expected to be al-
ready in a plastic state after the application of gravity loads. In this case, when the pile
is thermally activated, thermally induced stresses modify the shear stress distribution
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along the interface and, depending on their sign, they lead to an elastic unloading or to
a plastic loading. Therefore, the response of the soil–pile interface would be not linear
and, moreover, the symmetry between cooling and heating would be lost. Nevertheless,
considering the extent of practical temperature variations, the non symmetric behaviour
between heating and cooling happens only during the first thermal cycle (eventually firsts
two or three cycles) [22, 78, 189]. After this process of stabilisation, piles head mean dis-
placement remain rather constant, suggesting that the behaviour is reversible. According
to that, an appropriate choice of elastic parameters would be sufficient to estimates main
thermally induced effects. Certainly there are specific situations where this may not be
applicable, as probably would be the case of loose sands, where cyclic compaction might
takes longer time. The proposed analysis does not claim to be exhaustive and able to
capture all the underlying phenomena, but its purpose is rather to furnish a basic un-
derstanding of the response of piled raft foundations with energy piles, to which further
analyses might relate. Since the behaviour of piled raft foundations with thermo–active
piles was not studied before (at least with an extensive parametric analysis), it is authors
opinion that the knowledge of the impact of elastic parameters is fundamental in order
to better understand plasticity effects later on.

Finally, it was assumed that all properties are constant with respect to temperature
variation.

In the absence of a gravity field, equilibrium under quasi-static conditions can be
expressed as

∇ · σij = 0 (4.1)

where ∇· denotes the divergence operator and σij is the Cauchy’s total stress tensor.
Linear thermo-elasticity implies that

σij = Dijkl

(
εkl + α∆Tδij

)
(4.2)

where Dijkl is the elasticity tensor and εkl is the small strain tensors, which in homoge-
neous and isotropic linear thermo-elasticity can be written as follows:

εij =
1

E

[
(1 + ν)σij − νσkkδij

]
− α∆Tδij (4.3)

where E denotes the Young’s modulus, ν is the Poisson’s coefficient, δij indicates the
Kronecker delta, α is the linear thermal expansion coefficient and ∆T is the applied
temperature variation.
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Under transient conditions, the energy conservation principle states that

ρcp
∂T

∂t
−∇ · (λ∇T ) = 0 (4.4)

where ρ denotes the bulk density, cp indicates the specific heat, t is the time, λ designates
the thermal conductivity and ∇ is the gradient operator. When steady-state conditions
are reached, the first term of equation (4.4) vanishes and the problem is governed by the
Laplace’s equation.

4.2.3 Finite Elements Model

A 3D finite element model was developed with Comsol Multiphysics [60] (cf., Figure 4.3).
The dimensions of the soil mass were adjusted for each configuration as follows: the height
was 5l, whereas length and width were computed as 200d+(

√
np−1)s. Such dimensions

ensure negligible boundary effects.
Piles and raft were made from the same concrete, considered to be a homogeneous

and isotropic material and a purely conductive domain. The soil was also modelled with
a homogenous and isotropic material and was assumed to be a purely conductive domain
with equivalent thermo-physical properties. The values of thermal properties, namely
thermal conductivity and heat capacity, agree with those adopted in previous numerical
and experimental studies [321, 322, 375]. Material properties are reported in Table 4.1.

Vertical rollers were applied to external sides of the soil mass and pinned supports at
its base, whereas zero mechanical load was prescribed at the ground and raft top surfaces.
Perfect contact was considered between concrete structural elements and soil. In absence
of gravity field and mechanical loads, when the raft is pushed upward upon piles heating,
tensile stresses might appear at the soil-raft interface. Such stresses actually reproduce
the reduction of contact pressure between the raft and the soil underneath, and the
increase of axial load in the piles (cf., Figure 4.2). For practical ranges of temperature
variation, as the one considered here, it is unlike that piles heating induce a loss of
contact. The temperature was kept constant (∆T = 0 ◦C) at the bottom and external
soil planes. Adiabatic conditions (no heat flux) were imposed on the top soil plane and on
the external boundaries of the raft. A uniform thermal load ∆T = 10 ◦C was applied on
the lateral surface of each pile. This is justified by the fact that the temperature profile
is almost uniform along the length of the pile [21, 80, 238, 322] and axisymmetric over
the cross-section, provided that pipes are arranged symmetrically around the reinforcing
cage [21]. Finally, two planes of symmetry were imposed to model only one-quarter of
the foundation (cf., Figure 4.3).
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Figure 4.2 – Modification of raft-soil contact pressure (q) upon piles heating.

Figure 4.3 – Zoom of the finite element model for the 52 configuration. (Source: [60]).

Piles were meshed with triangular prisms, the raft and the soil beneath it with bricks
and the surrounding soil with tetrahedrons. The finite element mesh was denser in
the region of interest and coarser outside. Depending on the pile configuration np, the
number of degrees of freedom varied between about 900 000 and 1 600 000.

4.3 Numerical Results

Graphical solutions are summarised in this section. Owing to the huge amount of data,
only typical or selected results are presented. In this respect, comments regarding un-
published outcomes are given as well to provide a transparent and comprehensive report.
An interpretation of the results is also given here, which should help to clarify the major
aspects of the complex interaction phenomena that occur in a piled raft foundation when
the piles are thermally activated.

4.3.1 Typical Results of Raft Mean Displacements

Results of raft mean displacement ratio R with respect to the normalised raft thickness
tr/d, dimensionless pile axial stiffness K, number of piles np, pile slenderness l/d, soil
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Poisson’s coefficient νs and pile spacing ratio s/d are given in this section.

Effect of Normalised Raft Thickness

The evolution ofRr, Rs andR with respect to the dimensionless raft thickness is presented
in Figure 4.4 for the case np = 42.

For K = 104, all three coefficients are practically constant. Here Rr does not show
any influence of X or the pile load bearing behaviour, whereas Rs and R exhibit an
increase with X, but only for floating piles. When K is reduced to 102, Rr increases
until tr/d = 2 and then remains constant. Such an increase is reduced as X grows and is
practically negligible for X = 2. Rr grows and approaches the value of one because the
bending stiffness of the raft increases. Conversely, Rs shows a decreasing branch in the
first portion, until a nearly constant value is reached. This value increases with X and
for end-bearing piles. Rs decreases because the connecting cap partially restrains the
displacements of central piles, whereas it enhances those of other piles. As the fraction
of “retaining” piles (corner, external and some intermediate in big configurations) is
dominant, the overall piles’ head mean displacement is reduced. Opposite trends of Rr

and Rsmake R roughly stable also for K = 102. This means that the stiffness of the raft
has a negligible effect on R.

This is in agreement with the behaviour of conventional piled raft foundations. In fact,
it is known that the average displacement of a raft foundation is relatively independent
of the raft thickness [54, 153] and that up to the yielding point, the overall stiffness of
the foundation is mainly given by the pile group [54, 68].

The assumption of a constant R introduces an error, which is more marked for K =

102 and X = 2, but it remains below 10 % and it has no effect on further considerations.
Therefore, any additional statement can be made with respect to a particular value of R,
such as the mean or the maximum. In this study, the latter option has been considered.
A similar conclusion can be inferred from all other pile configurations, with higher values
of R for slender piles, validating the invariance of R with respect to tr/d.

Effect of Normalised Pile Axial Stiffness

The effect of K on R for all floating pile configurations is given here (cf., Figure 4.5).
For clarity, only results for the case X = 0 are presented. Nevertheless, the qualitative
impact of end-bearing piles and higher values of X can be inferred from section 4.3.1.

The mean displacement ratio is higher for slender piles. The scatter decreases with
increasing K and seems to converge towards 1, regardless of np and l/d. It can be
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stated that limK→∞ = 1, which makes sense because a null soil stiffness is equivalent
to the absence of soil. Therefore, there would not be any interaction, neither through
the soil nor through the slab, because all piles would be subjected to the same imposed
deformation αp∆T . It is worth mentioning that it cannot be stated whether the trend
is linear or not, because only two points for each case are available.

It appears evident that a soil with a thermal expansion coefficient higher than the one
of piles can push against the raft and that such an effect is related to the soil stiffness.
In agreement with Figure 4.4, 4.5 and 4.6, when K = 102 the effect of soil thermal
expansion properties is greater compared with the case of K = 104. In fact, for a soft
soil and X > 1, reinforced concrete structural elements act as “boundary conditions” for
the heated soil mass, preventing or restricting its displacements.
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Figure 4.5 – Raft to single isolated pile displacement ratio R with respect to pile normalised
stiffness K for all floating pile configurations; X = 0; l/d = 25 and 50; s/d = 5; and νs = 0.3.

Effect of Number of Piles

The results concerning the influence of np on R are given in this section (cf., Figure 4.6).
Only l/d = 25 is considered (graphs of l/d = 50 show analogous trends).

For both values of K, the rate of increase of R is reduced with an increasing number
of piles. In the case of stiff soils (K = 102), at np = 25 stabilisation is still not reached
for all values of X, even though for X = 0 the increment between np = 16 and np = 25

is very small. R is higher for larger values of X and for end-bearing piles. However,
the discrepancy between floating and end-bearing piles decreases with X and is almost
negligible when X = 2.

When K = 104, R is nearly constant and equal to 1 for end-bearing piles, for which it
does not show any dependence on X. On the other hand, there is an increase for floating
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piles with a similar trend to the case of K = 102, but with a reduction in magnitude.
This is probably attributable to two factors: (i) the soil is too soft to push/drag the
foundation, but (ii) the soil stiffness is nevertheless sufficient to modify the position of
the null point (point along the pile length that does not experience any thermally induced
displacement) for floating piles. In end-bearing piles, the null point is necessarily at the
base.

It is fair to say that after a certain number of piles, the increase of R is negligible,
as happens for free-standing energy pile groups [321] and conventional deep foundations
under mechanical load [55, 285].

It is worth noting that R starts from a value lower than 1. This is the main difference
with respect to an analysis in which the presence of the slab is neglected. In a free
energy pile group, the average pile head displacement ratio (Rs) is always greater than
one [321] (also shown in Figure 4.4). Here R < 1 indicates that the effect of mechanical
interactions among piles is not sufficient to balance the increase of piles load due to the
raft unloading. In fact, when piles expand, the contact pressure between the raft and the
soil decreases. By equilibrium, the same amount of total load must be introduced in the
piles (cf., Figure 4.2) .(Note that in the case of active cooling the situation is reversed, i.e.
the increase in contact pressure counteracts the settlement due to pile contraction). Here
R is lower than one also for X = 2, because temperature variation diminishes quickly
with radial distance from the piles and the soil pushes the raft only over a small portion,
which is not sufficient to reach the displacement of a free isolated energy pile. On the
other hand, when the number of piles increases the amount of interactions increases as
well and this is enhanced for X > 1.

In the presence of a stiff medium with a high thermal expansion coefficient, the overall
behaviour of a given piled raft foundation is mainly governed by soil deformation.

Effect of Slenderness, Poisson’s Coefficient and Spacing Ratio

As mentioned in section 4.2.1, the influence of slenderness, Poisson’s coefficient and
spacing ratio is investigated only for the particular case of a piled raft with a square grid
of 16 floating piles and a normalised pile stiffness K = 3×103. Results of this parametric
analysis are reported in Figure 4.7. These findings might be extended in a qualitative
way to end-bearing piles and other values of K on the basis of previous results.

The coefficient R increases with increasing slenderness, as might also be deduced from
Figure 4.5. The same happens to the average displacement ratio of free pile groups un-
der mechanical [285] or thermal [321] loads. Similarly, the ratio between the settlement
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of a pile cap unit under uniform vertical load and the settlement of the corresponding
free-standing pile increases with increasing slenderness [30, 68, 286]. Low values of l/d
can make R lower than 1. It is worth recalling that pile slenderness was varied by chang-
ing the length and keeping the diameter constant. Therefore, mechanical interactions
among piles through the soil can develop over a greater height. It is worth considering
what happens if the slenderness is increased by reducing the diameter. In this case, the
interaction height is constant, but it can be shown that the actual strain induced in a
receiver pile is higher. Consider a small portion of the pile ∆x subjected to a variation
of interface shear stress ∆τ . The induced axial strain ∆ε is

∆ε =
∆σ

Ep
=

1

Ep

∆τ ∆x dπ

d2 π
4

∝ 1

d
(4.5)

From equation (4.5) it can be deduced that increasing l/d by reducing d has the same
effect and a similar trend of R can be expected.

The raft mean displacement ratio increases with decreasing νs. A comparable trend is
observed in free energy pile groups [321] and in conventional piled rafts [286], but greater
in magnitude. This means that the influence of the raft decreases with decreasing νs.

Increasing s/d has the obvious effect of reducing interactions among piles [30, 68,
321], and hence also R.

All three graphs show a nearly linear trend.
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Figure 4.7 – Raft to single isolated pile displacement ratio R for floating piles; np = 42,
K = 3000; X = 0; tr/d = 1; l/d = 10, 25, 50 and 75; νs = 0.1, 0.3 and 0.45; and s/d = 3, 5 and
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4.3.2 Typical Results of Raft Differential Displacements

Some results of differential displacements between the centre and the edge and between
the centre and the corner of the raft are given in this section. Similarly, a few uplift
profiles along the normalised coordinate are also presented.

Differential Displacements Between the Centre and the Edge and Between
the Centre and the Corner of the Raft

Differential displacements normalised by the mean displacement (w̄r) are plotted in Fig-
ure 4.8 for the 42 configuration.

For both values of K, normalised differential displacements between the centre and
the corner are higher compared with those between the centre and the edge and there is
only a subtle difference between floating and end-bearing piles. In general, normalised
differential displacements reduce rather quickly with tr/d thanks to the fact that the
bending stiffness of the raft grows with t3r .

The drop in differential displacements for K = 104 is extremely fast. The differential
displacements are lower than 10 % when tr/d ≥ 1 and vanish for tr/d ≥ 2. Negative
values, even if very small, are observed for tr/d from 1 to 2 when X = 2. In those
configurations, the situation is such that the external and corner zones of the raft, which
can be assimilated to cantilever structural elements, are pushed a little bit higher. As
the soil is too soft to be the driving force, the reason has been attributed to the “corru-
gated” deformed shape of the raft induced by the piles. The restrained piles head radial
deformation (a phenomenon explained below) might also play a role.

When K = 102, the reduction is slower and for X = 0 a fraction of differential
displacement still persists with tr/d = 4. There is a clear distinction between results for
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X = 0 and X = 1 or 2.
Similar trends but slightly lower values are found for l/d = 50. For other pile–grid

configurations the same conclusions hold. Configurations with a pile exactly at ξ = 1,
namely np = 32 and 52, produce higher results. In general, normalised differential
displacements tend to reduce as the raft become more compact.
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Figure 4.8 – Normalised raft differential displacement ∆w1:0.5/w̄r and ∆w1:0/w̄r with respect
to tr/d for np = 42; floating and end-bearing piles; l/d = 25; νs = 0.3; s/d = 5; X = 0, 1 and 2;
and K = 102 and 104.

Displacement Profile Along the Normalised Coordinate

The discrete normalised differential displacements shown in section 4.3.2 can provide
useful information. However, their interpretation in the case of piled-raft foundations is
not always straightforward, since the raft does not deform in a simple hollow shape. For
this reason, the full profile of raft displacement along the normalised coordinate is shown
in Figure 4.9 for a few cases. Displacements increase with growing X and their rate of
increase is higher for K = 102. At ξ = 0.5, the change in direction of the normalised
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coordinate is reflected by a kink in the uplift profile. Actual values of raft heave do not
show a remarkable difference between configurations 42 and 52, for the corresponding
values of K. When tr/d = 4, the raft is almost flat and in the case of X = 2 it shows a
barely visible higher displacement at the corner.

The trend is analogous to piled rafts under uniform mechanical loads [55]. In light
of the reasons already explained in section 4.3.1, displacements increase with np and
X more significantly for stiff soils. A careful reader probably noticed that in the 52

configuration, for which ξ between 0.5 and 1 passes exactly above some piles, the heave
profile sometimes has an arched shape between two consecutive piles and not a bowl
shape, as might be expected. When K = 102, this happens only for X = 2 and the
reason is the pushing of the soil against the raft. When K = 104, as stated previously,
the soil is too soft to raise the raft. The explanation, in this case, is that the soil cannot
counter the radial expansion of the piles, whereas it is completely restrained at the head
owing to the in-plane stiffness of the raft. Therefore, in the upper part of the heated
piles, there is a gradient of radial deformations that induces a curvature over the piles’
cross-section. The curvature is then partly transmitted to the raft.

It is worth mentioning that in real applications, the first part of energy piles is insu-
lated and, thus, the phenomenon of induced curvature highlighted above is less important.

4.3.3 Typical Results of Thermal Stresses Induced in the Piles

When piles are heated, their internal stress state is modified. In the following, represen-
tative outcomes of such an alteration are described. Results are presented in terms of
the normalised stress ς. The effects of the normalised raft thickness tr/d, dimensionless
pile axial stiffness K, number of piles np, Poisson’s coefficient νs and spacing ratio s/d
are investigated.

Effect of Position and Normalised Raft Thickness

The normalised stress profile along the pile length for central, external and corner piles for
the 52 configuration is shown in Figure 4.10. Highest thermal stresses are experienced by
corner piles and lowest by central piles, that is, they decrease with normalised coordinate
ξ, in a similar manner to conventional deep foundations [30, 128, 285]. The reason in
the case of energy piles is the same, i.e. interactions reduce interface shear stresses in
receiver piles. This situation changes close to the pile head in a couple of cases. The
case tr/d = 4 maximises thermal efforts in central piles, whereas it minimises them in
corner piles. The equalisation of raft displacements with raft stiffness restrains the uplift
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of central piles and enhances that of corner piles.
Stresses decrease with increasing X. When X = 2, central piles might be subjected

to tensile thermal stresses. The influence of normalised raft thickness is almost negligible
for X = 0, whereas it is noticeable for X = 1 and 2, especially for central piles. The
scatter of stress profile increases with increasing X. As stated previously, when K = 102

the soil is stiff enough to significantly affect the state of the foundation. Central piles
are more susceptible to the variation of X because they receive the highest amount of
interactions, both through the soil and the cap. This is reflected in the shape and value
of ς, which can even become negative. However, in a real case the global effect of ς < 0

is actually only a reduction of the total compression force (the situation might be more
sensitive during cooling phases).

Trends of stress profiles shown in Figure 4.10 are similar for other pile–grid configu-
rations.
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Figure 4.10 – Distribution of normalised thermally induced axial stress in a central, external
and corner floating pile in the 52 configuration; l/d = 25; K = 102; νs = 0.3; s/d = 5; X = 0, 1
and 2; and tr/d = 0.25, 0.5, 1, 2 and 4.

Effect of Normalised Pile Axial Stiffness

Normalised piles axial stiffness has a significant impact on thermally induced stresses.
Figure 4.11 highlights the drop in the maximum axial stress along a central, external
and corner pile for the case np = 42. The same order of magnitude is obviously observed
for the entire stress profile. When K increases from 102 to 3× 103, ςmax decreases more
than 90 %. For K > 3× 103, the stress decreases very slowly, approaching zero.

The quick drop of thermally induced axial stresses with increasing K shown in Fig-
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ure 4.11 reiterates the strong relation between thermally induced effects and soil stiffness.
In soft soil, energy piles are freer to deform and therefore only limited efforts appear. Con-
sidering that K = 102 is a very low value, it can be expected that generally ςmax ≤ 0.6.
This value may be higher in a situation where only a fraction of piles is thermally acti-
vated or for non square pile–grid configurations. The above statements hold for all piles
positions (central, external and corner), as shown by Figure 4.11.

Other pile–grid configurations exhibit the same quick drop of thermally induced axial
stresses.
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Figure 4.11 – Maximum normalised thermal stress in a central, external and corner floating
pile with respect to normalised pile axial stiffness for the 42 configuration; l/d = 25; νs = 0.3;
s/d = 5; X = 0; tr/d = 1; and K = 102, 3 · 103 and 104.

Effect of the Number of Piles

In this section, a central pile is taken as an example to show how the number of piles
affects thermally induced stresses. Results are presented in graphical form in Figure 4.12,
where it can be seen that an increase in the number of piles leads to reduced thermal
stresses. The decrease of ςmax with increasing number of piles is due to the interactions
among piles, which induce interface shear stresses in the opposite direction with respect
to those caused by the thermal expansion.

For K = 102 and l/d = 50, the decrease varies between about 30 % when X = 0 and
40 % to 60 % when X = 2, whereas for l/d = 25 it can reach drops of more than 70 % at
25 piles. For a small number of piles, ςmax can reach values close to one and the effect of
X is irrelevant. The reduction in stiff soils is significant.

In the case of soft soils (K = 104), the stress is already low for a single pile, so that
the decrease is less pronounced. For both floating and end-bearing piles, the reduction
of ςmax for central piles is about 95 % for nine piles, irrespective of slenderness or X.

Figure 4.12 confirms the increase of axial stresses with increasing slenderness, de-
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creasing normalised stiffness, decreasing soil to pile thermal expansion coefficient ratio,
and for end–bearing piles, as pointed out in Figure 4.10, 4.11 and 4.13.

External and corner piles experience a reduction of ςmax as well, but this is lower
in magnitude because they are subjected to fewer interactions. Corner piles show lower
rates of reduction and they reach a steady state faster.

Effect of Slenderness, Poisson’s Coefficient and Spacing Ratio

A more detailed parametric analysis of pile slenderness, Poisson’s coefficient and spacing
ratio was conducted for the floating piled raft of the 42 configuration with K = 3× 103,
tr/d = 1 and X = 0. Outcomes regarding maximum normalised stress along the main
pile types are shown in Figure 4.13. Stresses within piles increase moving from ξ = 1

to 0. The maximum normalised stress increases with increasing l/d, νs and s/d. The
impact of slenderness is the most pronounced, whereas Poisson’s coefficient shows the
lowest influence. All other pile–grid configurations confirm the increase of ςmax with
slenderness.

The increase of ςmax with slenderness is more pronounced for corner piles, where it
can triplicate from l/d = 10 to 75. For the same range, a central pile shows an increase
of 100 %. However, values of ςmax remain lower than 0.2 because K = 3 × 103. The
low values of thermally induced stresses for K ≥ 3 × 103 was already highlighted in
section 4.3.3 with reference to Figure 4.11. It is worth recalling that pile slenderness
was varied by changing the length and keeping the diameter constant. Nevertheless, the
same trend would be observed if the situation was reversed. In fact, suppose a situation
in which two bars of the same length, but different diameters (d1 > d2) are subjected
to the same shear stresses over their lateral surface. To make things even more simple,
admit a uniform shear stress distribution and no load at one end of the bars. The axial
stress ratio between the more and less slender rod at a distance x from the free end is

σ2

σ1
=
τd2πx

d2
2
π
4

d2
1
π
4

τd1πx
=
d1

d2
> 1 (4.6)

Even if the problem of a heat exchanger pile in a piled raft foundation is more complex
than the above example, equation (4.6) shows that reference to the slenderness variation,
without knowing details, is justified.

The impact of Poisson’s coefficient is limited, causing an increase of ςmax less than 4 %

for the range 0.1 to 0.45. This is in agreement with the decrease of R with increasing νs
shown in Figure 4.7. The same happens in a conventional piled raft subjected to uniform
vertical load [68].
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The reduction of interactions among piles with increasing spacing ratio is well shown
in the last row of Figure 4.13. Increasing s/d from 3 to 8 leads to a increase in ςmax of
about 8 %.

Trends of R and ςmax are similar for l/d, whereas they are opposite for νs and s/d
(cf., Figure 4.7 and 4.13).
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Figure 4.12 – Evolution of the maximum normalised thermal stress with respect to the number
of piles for a central pile; νs = 0.3; s/d = 5; tr/d = 1; l/d = 25 and 50; K = 102 and 104; and
X = 0, 1 and 2.

4.4 Concluding Remarks

A thermo-elastic analysis has been presented for the general behaviour of piled raft foun-
dations with regular grids of energy piles. The influence of major parameters involved in
the design stages of practical applications have been numerically investigated. Attempts
have been made to capture all mechanical interactions that occur among thermally acti-
vated piles in a unique general picture. Some of the main conclusions that can be drawn
are as follows.

• The ratio between raft mean displacement and equivalent isolated free-standing
pile displacement, R, is a convenient parameter to estimate the global effect of all
interactions. The results show that it can be assumed constant with respect to
the bending stiffness of the raft. The value of R is mainly governed by np, K and
X, whereas the pile resisting mode, i.e. floating or end-bearing, is of slightly less
concern. It has been shown that R can be lower than one in configurations with a
few piles. Here R might be roughly bounded between 0.5 and 3.
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• Thermally induced differential displacements are strongly related to K and the raft
bending stiffness. The value of X enhances differential displacements in stiff soils.
The results highlight that for Ec = 30 G Pa and tr/d = 4, differential displacements
are negligible.

• The level of stress has been investigated for the piles through the normalised ther-
mally induced axial stress ς. It has been shown that ςmax is mainly affected by
K and then by np and l/d. The influence of pile position is analogous to conven-
tional foundations, where corner and central piles are the most and less loaded,
respectively. From these results, values of ςmax close to one might be expected for
compact foundations with slender piles in stiff soils, which might result in concrete
cracking under active cooling.

• An important outcome of this research is the analogy between conventional piled
rafts subjected to vertical load and piled rafts with energy piles. This suggests that
an overall good performance of the foundation can be achieved through a unique
design strategy.

The general performance can be assessed through a few parameters, namely R,
∆wξ/w̄r and ςmax. The outcomes of this research might be used directly for a rough
estimate during early design stages, whereas they can be refined afterwards to take into
account the mechanical load distribution and the potentially induced plasticity at the
soil–pile interface.

Lastly, it seems that in the field a concern remain related to the potential tensile
stresses induced in the piles. It appears that a proper consideration of the nature of
thermal loads, i.e. imposed displacements, and the consequent response of a reinforced
concrete member, could avoid unnecessary additional reinforcement. For this reason,
the local (structural) performance of energy piles considering the non-linear behaviour
of reinforced concrete is under way. This aspect will be a complement to the already
available research that considers the non-linear behaviour of the soil–pile interface and
could be a basis for a more rational performance based design approach.
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This study is concerned with the problem of energy piles subjected to constant
axial load and temperature variation uniform over the cross-section. In the first
part of this article, equations for the analysis of energy piles based on elastic

theory and the load-transfer approach are described. Closed form solutions are derived for
a few simple cases. It is observed that temperature variation effects can be conveniently
expressed by a factor of thermally imposed strain. In the second part of the article, a
study on the effect of the non-linearity of reinforced concrete on the performance of energy
piles under tension is described. A newly developed finite element model that is within
the framework of the load–transfer approach is employed to simulate the response of a pile
subjected to thermomechanical loads in isolated as well as in piled raft foundations. The
results suggest that the performance of the structure is strongly affected by concrete post-
cracking behaviour. Nevertheless, piles can accommodate thermally imposed strains if
the ductility capacity is provided. The outcomes of this study may be combined with the
knowledge of non-linear behaviour of soil–pile interfaces for a more rational performance-
based design approach toward energy piles.

5.1 Introduction

Thermally activated structures, also known as energy geostructures, are reinforced con-
crete geotechnical structures that incorporate tubes carrying a heat exchanger fluid.
They constitute an environmentally friendly technology that exploits the relatively con-
stant temperature of the ground for heating and/or cooling purposes, thereby reducing
the environmental footprint of construction [2, 22, 24, 129, 165, 187, 197, 275, 340].
Piled foundations have been demonstrated to be among the most suitable and effective
applications of such technology [17].

Over the past twenty years, the research and the necessity of design provisions have
increased considerably. Field experiments [5, 21, 81, 188–190, 238, 247–249, 322, 377,
400, 401] and laboratory tests [221, 264, 265, 317, 372, 373, 399] have demonstrated the
measurability of thermally induced effects and the occurrence of mechanical and ther-
mal interactions in group configurations. Impelled by the foregoing observations, several
methods for estimating thermally induced displacements and stresses have been proposed:
(a) techniques based on linear elasticity, such as the interaction factor method [318, 321],
equivalent pier method [320], layer model [324], application of Mindlin’s equations [324],
and finite element method [9, 114, 322]; (b) methods that account for the non-linear be-
haviour of the soil–pile interface, including the modified interaction factor method [325],
load-transfer approach [1, 168, 239, 278, 374, 378], and modelling by the finite differ-
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ence [374, 375] and finite element [20, 80, 81, 190, 263, 269, 273, 317] techniques.

All the above-mentioned applications and present design guidelines [46, 124, 350]
consider the pile as a linear elastic body. However, it is established that the performance
of a reinforced concrete member is strongly affected by the post-cracking behaviour. This
limitation compromises the establishment of an exhaustive performance-based design
approach toward energy piles [314].

In this study, an attempt has been made to fill this gap. A major source of concern
is related to the potential tensile stresses induced in compressed piles upon cooling or
the increase in similar stresses in piles subjected to traction forces. The load–transfer
approach [64] is adopted for evaluating the performance of energy piles both in isolated
and in piled raft foundations. In the following, load–transfer equations are derived step-
by-step and original closed form solutions are given for simplified situations. These may
be applied as extreme cases. Thereafter, the material models adopted for reinforced con-
crete, soil–pile interface, and group effects are described. Then, a finite element code,
which is specifically developed for this study, is described. Subsequently, the numeri-
cal results are discussed, and the impact of the non-linearity of reinforced concrete is
highlighted. Finally, concluding remarks are summarised.

In the following discussion, upward displacements, tensile strains, and tensile stresses
are considered to be positive.

5.2 General Framework

Piles are slender structural elements (L/D > 10) that can be analysed trough the Euler–
Bernoulli beam theory. Here, it is also assumed that piles are subjected only to vertical
loads, temperature variation is uniform over the cross-section, and the magnitude of
the temperature variation does not cause any modification of the materials’ mechanical
and physical properties. Given that instability is prevented by the surrounding soil, the
theory of bars can be applied to compute the internal state of piles.

When a body experiences a temperature variation, it contracts or expands according
to the sign and magnitude of the temperature change. It is obvious that if the body
can deform freely, no stress is induced. Meanwhile, if the body is partially restrained,
an internal state of stress develops. This implies that the actual deformation of a linear
elastic body subjected to a temperature variation is [386]

∆L

L
=
σ

E
+ α∆T (5.1)
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where ∆L is the length variation, L is the initial length of the element, σ is the normal
stress in the bar, E represents its Young’s modulus, α stands for the linear thermal expan-
sion coefficient and ∆T is the temperature variation. Equation (5.1) may be conveniently
expressed as follows

∆Limp

L
=

∆L

L
− α∆T (5.2)

where (∆Limp/L) is the strain that is associated with a modification of the state of
stress and therefore, with the material model. Because in this form equation (5.2) does
not explicitly refer to any type of constitutive law, it can be used to consider material
non-linearity.

5.3 Linear Elastic Thermal Stress Analysis of Bar Systems

5.3.1 Single Bar Systems

In this section, solutions for individual bars with various boundary conditions are pre-
sented (Figure 5.1).

Free and Clamped Bar

To date, analytical solutions for single piles subjected to thermal loads have been pre-
sented only for the two extreme situations of homogeneous free and clamped bar (Fig-
ure 5.1a and 5.1b). The solution for the former is

∆L = α∆TL

ε = α∆T

σ = 0

(5.3)

whereas the solution for the latter is

∆L = 0

εimp = −α∆T

σ = −Eα∆T

(5.4)
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Figure 5.1 – Single bars with different boundary conditions: (a) free bar; (b) clamped bar; (c)
bar partially restrained by head and base springs; (d) bar partially restrained by head, base, and
shaft springs. Nodal displacements are indicated by x and spring stiffness by k.

Bar Partially Restrained by Head and Base Springs

Figure 5.1c represents a bar partially restrained by head and base springs. The solution
is obtained by solving the linear system of equations that expresses the equilibrium of
forces at nodes for the two unknown nodal displacements

{
(kh + k)xh − kxb − EAα∆T = 0

−kxh + (k + kb) + EAα∆T = 0
(5.5)

which yields

xh =
EAα∆Tkb

(k + kh)(k + kb)− k2

xb =
−EAα∆Tkh

(k + kh)(k + kb)− k2

(5.6)

where xh and xb are the head and base nodal displacements; kh and kb are the head and
base spring stiffness; and k represents the bar axial stiffness (EA/L). Considering that
the axial force is constant along the bar, the thermally induced stress may be computed
as follows
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σ =
−khxh
A

=
kbxb
A

= −Eα∆T
khkb

k2 − (k + kh)(k + kb)
= −Eα∆Tη

(5.7)

where the newly introduced parameter η is called factor of imposed thermal strain. The
position of the null point (the point of the bar that does not experience any displacement)
from the base can be computed by imposing the condition of constant strain inside the
bar −xb/lNP = xh/(L− lNP). This yields

lNP =
L

1 + kb/kh
(5.8)

It is noteworthy that whereas the head and base displacements depend both on the
stiffness of the springs and that of the bar, the relative position of the null point is a
function of only the relative stiffness of the springs.

Bar Partially Restrained by Head, Base, and Shaft Springs

When the bar is partially restrained also by intermediate springs, the situation is similar
to that depicted in Figure 5.1d. The bar is divided into n elements and into n + 1

unknown nodal displacements xi, for i ∈ [0;n]. Note that the subscript 0 designates the
head and n the base.

For the general case of a bar subjected to an axial load at its head (F ) and to an
arbitrary temperature variation along its length, and whose properties may vary with
depth, the nodes equilibrium results in the following linear system of equations



k0 + ks0 −k0
−k0 k0 + k1 + ks1 −k1

−k1
. . . . . .
. . . −kn−1

−kn−1 kn−1 + ksn




x0

x1
...
xn



+


−E0A0α0∆T0 − F

E0A0α0∆T0 − E1A1α1∆T1

...
En−1An−1αn−1∆Tn−1

 = 0 (5.9)
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where the first term is the stiffness matrix (K), second term represents the nodal dis-
placement vector (x), and last term is the force vector (f). In (5.9), ki is the axial
stiffness of bar element i, and ksi is the stiffness of spring at node i (Figure 5.1d).

There is a direct analogy between the problem presented in this section and the load–
transfer approach for piles, according to which the mass of soil is replaced by independent
and uni-directional springs. Therefore, (5.9) can be used to solve the problem of a single
pile subjected to a force and to a thermal load. Moreover, (5.9) is the equation form
of the finite element method based on the displacement formulation [413] and can be
adapted conveniently in order to include material non-linearity and cyclic loading.

5.3.2 Capped Bars Systems

In this section, solutions for bars partially restrained by a common rigid cap and with
various boundary conditions are presented (Figure 5.2). The rigid cap is assumed to
move only vertically and without rotation.

L

(a)

I = ∞
x

(b)

I = ∞
kc

x

(c)

xn

I = ∞
kc

x0

(d)

xi

xi+1

xn

I = ∞
kc

x0

Figure 5.2 – Bars partially restrained by a common rigid cap (second moment of area I =∞)
and with different boundary conditions: (a) system of two identical pinned bars; (b) system of n
pinned bars; (c) system of n bars resting on base springs; (d) system of n bars partially restrained
by base and shaft springs. Nodal displacements are indicated by x and spring stiffness by k.

Pinned Bars Partially Restrained by a Common Rigid Cap

A simple system of two bars of equal length connected by a rigid cap is shown in Fig-
ure5.2a. The total displacement owing to the superposition of the free thermal deforma-
tion and the thermal stresses induced through the cap is
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
∆L1 =

(
α1∆T1 +

σ1

E1

)
L

∆L2 =

(
α2∆T2 +

σ2

E2

)
L

(5.10)

Kinematic compatibility requires that ∆L1 = ∆L2, and equilibrium implies that σ1A1 +

σ2A2 = 0. Therefore, the solution is

σ1 = −E1α1∆T1

1− α2∆T2
α1∆T1

1 + A1E1
A2E2

= −E1α1∆T1η1 (5.11)

This solution can be extended to n bars of variable length and a vertical spring with
stiffness kc attached to the cap (Figure 5.2b). Because the cap is assumed to be perfectly
rigid, the only unknown is the vertical displacement of the cap. Thus, a unique spring
is sufficient to represent the effect of surface springs under the cap. In the absence of
mechanical loads, equilibrium yields

x

(n−1∑
i=0

ki + kc

)
−
n−1∑
i=0

EiAiαi∆Ti = 0

x =

∑n−1
i=0 EiAiαi∆Ti∑n−1
i=0 ki + kc

(5.12)

Once the displacement is known, the thermal stress in bar j can be conveniently computed
as follows:

σj = Ej(εj − αj∆Tj)

= −Ejαj∆Tj
(

1−
∑n−1

i=0 EiAiαi∆Ti

αj∆TjLj(
∑n−1

i=0 ki + kc)

)
= −Ejαj∆Tjηj

(5.13)

In the above equation, εj = x/Lj is the observed strain of bar j. Equation (5.13)
highlights that shorter bars are the most sensitive to mechanical interactions through a
rigid cap.
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Bars Partially Restrained by a Common Rigid Cap and Base Springs

Following the nomenclature of nodes shown in Figure 5.2c, the resulting stiffness matrix
is arrowhead, and the linear system of equations is as follows:


∑n−1
i=0 ki + kc −k0 . . . −kn−1
−k0 k0 + kb1
...

. . .
−kn−1 kn−1 + kb,n−1



x0

x1
...
xn



+


−∑n−1

i=0 EiAiαi∆Ti

E0A0α0∆T0
...

En−1An−1αn−1∆Tn−1

 = 0 (5.14)

The out-of-diagonal terms of K represent the interactions through the cap.

Bars Partially Restrained by Common Rigid Cap, Base and Shaft Springs

Figure 5.2d shows a structure composed of bars partially restrained by base springs,
shaft springs, and a common rigid cap attached to a spring. The overall linear system of
equations is obtained by assembling those of single bars partially restrained by base and
shaft springs. Note that here, the head springs of single bars are not considered owing
to the connection with the cap. The nodal displacement vector and force vector for a
structure with m bars are given as

xT = (xo, x̄
(0), . . . , x̄(j), . . . , x̄(m−1))

fT =

(m−1∑
i=0

f
(i)
0 − F, f̄ (0), . . . , f̄ (j), . . . , f̄ (m−1)

) (5.15)

where x0 is the cap displacement, and x̄(j) is the vector of nodal displacements of bar j
( j ∈ [0,m− 1]) except the first node, which matches the cap. Similarly, the first term of
f is the sum of forces acting on the cap, f (i)

0 is the first component of the force vector of
bar i, f̄ (j) is the force vector of bar j except its first term, and F is the external force
applied on the cap. The stiffness matrix acquires the form given in (5.16), where k(j)

ab is
the term of row a and column b of the stiffness matrix of bar j, and nj is its number of



162 Chapter 5. Thermal Stress Analysis of Energy Piles


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(j)
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k
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. . . . . .

. . . k
(j)
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njnj



(5.16)

degrees of freedom (i.e. number of nodes).
The linear system of equations Kx+ f = 0 obtained from (5.16) and (5.15) can be

used to calculate the axial response of a piled raft subjected to a vertical mechanical load
and whose piles experience arbitrary temperature variations. This is true provided that
group effects are considered. As in the case of single bars, this approach can be adapted
for a numerical procedure to handle non-linear behaviour and cyclic loading.

5.4 Material Models

In this study, only foundations subjected to traction forces and cooling are considered as
the worst-case scenario. This implies that a monotonic law for the structural component
is valid. Meanwhile, after the application of a traction force, cooling induces interface
unloading in the upper part of the pile (downward movement). This indicates that cyclic
behaviour is fundamental to soil–pile interface response.

5.4.1 Reinforced Concrete Tie Model

The structural response of the pile is modelled with the tension chord model for structural
concrete [214]. This model assumes a simplified constitutive behaviour for the tensile
response of the concrete, reinforcement, and bond between them (Figure 5.3). The
response of the concrete is linear elastic until it attains its effective tensile strength
(fct). Then, the stress decreases to zero owing to the abrupt formation of a crack. The
behaviour of the reinforcement follows a bi-linear elastic-plastic model. The yield stress
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(fsy) divides the elastic branch from the elastic-plastic one. The ultimate stress (fsu)
defines the maximum stress that the steel can sustain. The bond shear–slip relationship
(τ − δ) is rigid plastic. The bond stress is τb0 when the reinforcement is in the elastic
domain and decreases to τb1 = τb0/2 as soon as the reinforcement yields. It is estimated
to be equal to τb0 ≈ 2fct [250]. In this model, cracks are assumed to be equally spaced
by srm.

εct

fct

εc

σc
(a)

εsy εsu

fsy
fsu

εs

σs
(b)

δ(εs = εsy)

τb1

τb0

δ

τb

(c)

Figure 5.3 – Constitutive models: (a) and (b) stress–strain diagrams for concrete and rein-
forcement; (c) bond shear–slip relationship.

A typical distribution of stresses and strains based on these assumptions is depicted in
Figure 5.4. The speciality of this model is that an analytical relationship that considers
structural member effects can be established between the reinforcement mean strain
(εsm) and the sectional axial force (N), as shown in Figure 5.5. The response follows
a linear reversible path up to the force that causes the concrete to crack (Nr). At that
point, the member enters the crack development stage, which here is assumed to be
satisfactorily represented by a plateau both for imposed loads and displacements. This
is validated by the variability of the concrete tensile strength. This is followed by the
stabilised crack stage until the yield strength of reinforcement (Ny) is attained. This
phase is characterised by the axial stiffness of the reinforcement. Thereafter, plastic
strains develop within the reinforcement until the ultimate stress (Nu) is attained. The
overall response is stiffer compared to that of the reinforcement alone, owing to the
stiffening effect of the uncracked concrete (tension stiffening). This causes the member
response to be shifted toward the left by ∆εTS (Figure 5.5). Tension stiffening vanishes
for sustained traction loads.

To ensure a ductile behaviour of the member, the reinforcement must be capable of
sustaining the cracking force (Nr). This condition is essential also in the case of imposed
displacements. This is because concrete tensile strength is not homogeneous, and all the
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εsm
εsy

σc
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Figure 5.4 – Simple chord element and stress and strain profiles between two cracks. Adapted
from [214].

cracks do not form simultaneously. Consequently, if this condition is not satisfied, the
member is unable to recover Nr, and strains localise at the crack location after the first
crack. The second condition for ductility is that steel plastic strains must penetrate the
uncracked concrete (lp > 0). Otherwise, they concentrate at the crack locations. The
former condition is achieved by providing a minimum reinforcement ratio, ρ = As/A

(where As is the reinforcement area and A is the gross cross-sectional area) at least equal
to

ρmin ≈
fct
fsy

(5.17)

The second condition requires fsu > fsy (this is satisfied by typical reinforcements used
in Europe and North America).
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Figure 5.5 – Axial force versus reinforcement mean strain for a reinforced concrete tie according
to the tension chord model. (Graph constructed from properties of Table 5.1).

5.4.2 Load–Transfer Model for Soil–Pile Interface

Although this model is a substantial simplification, it has been demonstrated to yield
good results for practical applications [168, 176, 378].

For this study, the empirical three-linear constitutive model proposed by [109] and
adapted for cyclic loading using the Masing rule [168, 378] is selected (Figure 5.6a).
The model is defined by the elastic stiffness (k̄s), yield shaft friction (ty), ultimate shaft
friction (tu), and post-yield stiffness ratio (β). The displacement (z) is the soil–pile
relative motion. The base reaction model (Figure 5.6b) is analogous, but the stress is the
base contact pressure (q) and displacement (z) refers to the tip displacement. Moreover,
a tension cut-off is imposed (no tensile stresses allowed between the base and the soil).

Whereas the load–transfer approach is generally used for bearing piles, the lifting-up
behaviour is considered in this study. However, because the main difference lies in the
ultimate resistance rather than on the mechanical phenomena of load transfer [289], this
method can be applied also to pulled piles, provided that the strength parameters are
appropriately selected.

5.4.3 Group Effects

Energy piles are typically located in a group configuration with a raft directly cast on
the ground. Thus, the response of a pile is also affected by other parameters such as
the piles location within the group. A highly noteworthy approach to handling group
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Figure 5.6 – Three-linear cyclic load–transfer constitutive model: (a) shaft reaction and (b)
base reaction with tension cut-off.

effects within the load–transfer method for piled rafts was recently presented [59]. The
main concept underlying this approach is that when interactions occur, the displacement
required to induce a specified relative displacement at the soil–pile interface increases.
Therefore, although the formulation of individual piles connected through the cap can be
maintained, the stiffness of the springs must be reduced according to the pile spacing and
position (corner, external, middle, and inner). The reduction increases from the corner
to the inner piles, so that the corner piles will carry a higher load. A stiffness reduction
factor applies also to the base and raft reactions. It is noteworthy that similar reduction
coefficients were calibrated with respect to mechanical loads rather than temperature
variations. Nevertheless, it has been demonstrated [114, 321, 322] that interactions
among piles subjected to thermal load follow a similar trend. Therefore, the proposed
coefficients are adopted here without any constraint.

The greatest benefit of combining the load–transfer approach with truss (or beam)
elements is the ability to compute foundations with many piles in a short time, and to
have sectional forces and strains directly available. Therefore, it constitutes a valuable
tool for practical applications.

5.5 Finite Elements Model

A finite element code, ThermoBar, is implemented in the framework of the load–transfer
approach using the programming language Python [392].
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Displacements are described by linear kinematics under quasi-static conditions. The
raft is considered as a rigid body, whereas the piles are meshed with constant strain–
displacement-based truss elements. Springs are considered based on their contribution
to the main diagonal of the stiffness matrix and to the equilibrium of nodes. Because
the springs are concentrated at nodes, their properties are obtained from those of the
load–transfer curves by integration: over the lateral surface for shaft springs, and over
the cross-sectional area for base and head springs. Similarly, the properties of the cap
sub-grade reaction are computed by integration over the effective raft–soil contact area.
Subsequently, head spring (or cap spring) can be activated to account for the construction
stages. Piles can be subjected to any combination and history of axial head load and
temperature variations. In the case of piled rafts, the load is applied directly on the raft.
The solver uses a modified Newton–Raphson procedure with total secant stiffness for the
applied force and a direct integration scheme for the temperature variation. Convergence
for the applied force is verified based on the following equilibrium criterion:

‖f + fe + fs‖ ≤ tol (5.18)

where the operator ‖·‖ denotes the two-norm, f stands for the nodal force vector of the
applied loads, fe is the vector of nodal forces owing to elements reaction, fs is the vector
of spring reactions on the nodes, and tol is the tolerance, selected equal to 0.1 kN.

5.6 Performance of Single Energy Piles

A pile with diameter D = 0.5 m and slenderness L/D = 20 is considered. The properties
of reinforced concrete are listed in Table 5.1. Two types of soil are defined: Soil 1 is
characterised by k̄s = 10 MPa/m, ty = 35 kPa, tu = 2ty, and β = 0.2, whereas Soil 2
is assumed to be stiffer and to follow a linear elastic–perfectly plastic relationship for
which the strength is higher than the mobilised stress (i.e. the soil–pile interface remains
elastic). This soil is defined by k̄s = 100 MPa/m, ty = tu = 120 kPa, and β = 1. Because
only the traction force and cooling are considered, no base spring is defined. To simplify
the interpretation of results, shaft spring properties are considered constant with depth.
Although this hypothesis may not be completely realistic, it does not compromise the
validity of outcomes with regard to the structural performance of the pile. The latter is
first subjected to a traction force (F ) applied at its head and then to a severe cooling
of ∆T = −22 ◦C. Two configurations are considered (F = 0.75Ny and F = 1.1Ny).
The results obtained through linear elastic modelling of the pile are also provided for
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comparison. The head spring is activated only for the temperature variation, and its
stiffness is kh = 390 MN/m. This value is obtained assuming the same stiffness used
by [168] for the analysis of an energy pile at the Swiss Federal Institute of Technology,
in Lausanne. The pile is meshed with 100 elements.

Table 5.1 – Mechanical properties of concrete and reinforcement.

Concrete fct [MPa] 2.7
εct [%] 0.009
Ec [MPa] 30 000
τb0 [MPa] 5.4
τb1 [MPa] 2.7

Reinforcement ρ [%] 1.04
fsy [MPa] 435
fsu [MPa] 522
εsy [%] 0.212
εsu [%] 1.06
Es [MPa] 205 000

Tension chord member Nr [kN] 562
Ny [kN] 886
Nu [kN] 1060
∆εTS [%] 0.047
εsmu [%] 0.574

The profiles of the mechanical and thermally imposed axial strain, factor of imposed
strain, and normalised thermally induced axial force (Nth/Nblc, where Nblc is the thermal
axial force in a fully blocked and uncracked equivalent pile) with respect to the relative
depth are presented in Figure 5.7 for F = 0.75Ny and in Figure 5.8 for F = 1.1Ny.

For F = 0.75Ny and Soil 1, the applied force induces cracking over the top 15 % of the
pile length. The interface between the cracked and uncracked parts is clearly marked by
a discontinuity in the strain diagram. The temperature variation causes a 5 % increase in
the crack length. The factor of imposed strain highlights that the imposed displacement
concentrates in the cracked zone close to the cracked–uncracked interface. This is owing
to the considerable difference in axial stiffness between these two regions of the pile. The
factor η attains a maximum value of four. Nevertheless, the increase in axial force is
moderate because of stiffness reduction upon cracking. In particular, the plateau in the
crack development stage does not cause any increase in axial stress. When the pile is
considered elastic, the factor of imposed strain is considerably marginal. Moreover, the
induced thermal force is higher by a factor of up to 1.5. The profile of η considering a
complete loss of tension-stiffening is also shown. In this case, the peak value increases
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because the “length” of the plateau of the crack development phase increases.

For the same applied load on the stiffer soil (Soil 2), similar qualitative conclusions
hold. However, this is not true with regard to the quantitative aspects. The cracked
length reduces to 9 % when subjected to mechanical load. Concurrently, upon temper-
ature variation, the cracked length increases to 30 %. The double-step shape of the
diagram illustrates that a portion of the pile is still in the crack development stage. This
differs from the former case, where there is a direct transition to the stabilised crack
stage. This can be associated with the increased capability of the soil to prevent pile
displacements. Therefore, the pulling effect of the uncracked zone on the cracked zone
is reduced. The maximum value of the factor of imposed thermal strain is practically
identical, whereas the thermally induced axial force is considerably higher with respect
to the previous scenario. The discrepancy between the forces computed with a linear
elastic and a non-linear pile also increases substantially (by up to 7.5 times).

In the case of the higher force (F = 1.1Ny), the key aspects highlighted above are
observable, namely, the localisation of η in the bottom part of the cracked zone, higher
increase in cracked length upon cooling for the stiffer soil, and higher thermally induced
axial stress computed with a linear elastic analysis of the pile. The cracked length owing
to the applied force is apparently higher compared to the previous case because the force
is higher. However, an important difference is the plasticity induced in the reinforcement
(F > Ny = Asfsy). In the mechanical strain diagram (εmec), three regions can be
observed along the pile, characterised by as many values of stiffness. This causes two
phenomena of localisation of η: one as before close to the uncracked–cracked interface,
and one in the steel post yield region. The values of η are higher in the first case because
there, the formation of new cracks is followed by a domain of zero stiffness. Meanwhile,
in the second situation, the stiffness is reduced but not cancelled. The magnitude of
thermally induced axial forces are comparable to those with F = 0.75Ny. However,
the values computed with a linear elastic pile increases to 2.1 and 10.6 times of those
computed with the tension chord model. It is noteworthy that even though the actual
intensity of thermally induced axial stresses is relatively low, the impact of considering
the tension chord model rather than a linear elastic behaviour is considerable. This
difference increases with the applied mechanical load and soil stiffness.

Figures 5.7 and 5.8 highlight that the actual behaviour of reinforced concrete con-
siderably impacts the performance of energy piles and its influence can be comparable
to that of the soil–pile interface. This is the point where considering the temperature
variation an imposed displacement, as it is actually, rather than an imposed force makes
the difference. When ductility capacity is ensured, namely when the structure can ac-
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commodate the imposed displacement field, the axial force cannot be higher than the
structural resistance, because the induced force is simply derived from the constitutive
model. Therefore, the member is likely to remain safe under common ranges of temper-
ature variation, no matter the level of the applied mechanical load.

It is of paramount importance to realise that the latter statement concerns only piles
subjected to a constant external axial load throughout the period of imposed thermal
load. The situation is more sensitive if an additional external axial load is expected,
because the thermal load reduces the remaining available resistance. Moreover, it is well
known that the bending resistance of a concrete cross-section is strongly affected by the
level of axial load. Therefore, thermal load may not be neglected if a variation of axial
load or transverse forces are expected.

5.7 Performance of Energy Piled Rafts

In order to understand the implications of group effects on the performance of energy piles
in tension, the example depicted in Figure 5.9 is considered. This structure is inspired by
the famous Villa Méditerranée of Marseilles (FR) [14]. Here, a theoretical variant that
uses geothermal energy through thermoactive piles is examined. It is noteworthy that
whereas the context is used only to illustrate a feasible application, the values used in the
analysis originate from the case of single pile in order to directly compare the outcomes.
The building is characterised by a big cantilever, which causes an overturning bending
moment at the base. In order to ensure equilibrium, a traction force must be transmit-
ted to the foundation. That force is transferred to the piles by means of a rigid cap.
The compact piled rigid raft is a regular grid of equally spaced piles with spacing ratio
s/D = 3. The piles dimensions and mechanical properties are identical to those of the
pile of previous section. Soil 1 is adopted for the shaft springs properties. The computed
reduction factors for the corner, external, and inner piles are 0.233, 0.198, and 0.180,
respectively. The reduction in stiffness is significant and highlights that strong interac-
tions are likely for such close-spaced piles. A cap spring with stiffness kc = 43.1 MN/m

(corresponding to a uniform module of sub-grade reaction of 2.33 MN/m3) is considered
for the cooling phase of the piles. It is assumed that the stiffness of the cap spring is
already weighed. The piled raft is subjected to a traction force F = 0.75Nynp, where np
is the number of piles. Subsequently, each pile is cooled uniformly by ∆T = −22 ◦C.

The diagram of the mechanical and thermally imposed strains is illustrated in Fig-
ure 5.10. The results of The coefficient of imposed thermal strain (η), normalised internal
axial force owing to the applied external load (Nmec/F̄ ; F̄ is the total force divided by
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the number of piles), and normalised thermally induced internal axial force (Nth/Nblc)
are provided in Figure 5.11.

The strain induced by the applied external force exhibits a similar trend for each
pile and is also analogous to the case of the single pile. As the load distribution is not
uniform among the piles, the mechanical strain increases from the internal to the corner
piles. The cracked lengths for the internal, external, and corner piles are 13 %, 14 % and
18 %, respectively. The temperature variation increases the cracked length only in the
external and corner piles, but not in the internal pile.

The profile of η is similar to that of the single pile for the external and corner piles.
However, the inner pile does not exhibit the peak close to the uncracked–cracked interface,
although the value of η is significantly higher in the cracked part. This outcome, which
need not be generalised, is a result of the fact that the cracked length in the central pile
is not increased by the temperature variation. When the pile is considered linear elastic,
η is exceptionally low as it generally is. The stepped shape of this diagram is owing only
to the precision retained for the computation of strains, which are very low in this case.

The axial force owing to the application of F is presented in the central column of
Figure 5.11. As expected for a configuration with a rigid cap, the axial load distribution
is such that a corner pile carries a higher load than an external pile, which in turn carries
a higher load than the inner pile. The profile of Nmec/F̄ computed using a linear elastic
pile is nearly identical. This is because the mechanism of load distribution is governed
by the overall axial stiffness of the interface–pile system. Because the cracked length of
the piles differs by a maximum of 5 %, the relative stiffness among the piles is practically
unaffected by the structural component, i.e. non-linear or linear elastic pile. This implies
that in this case, the load distribution is governed by the interaction effects through the
soil mass and that any load redistribution between piles owing to a variation in stiffness
(plasticity) is mainly because of the soil–pile interfaces non-linear behaviour.

Meanwhile, the thermally induced axial force is more sensitive to the variation in the
structural stiffness. This highlights the imposed displacement nature of this type of load.
For the linear elastic pile, an increase in the values of Nth/Nblc from the inner to the
corner pile is likely [114]. When the non-linear behaviour of the pile is also considered,
over the first 25 %, the thermally induced axial force in the inner pile is higher compared
to that of the external pile and attains the value of the corner pile at the head. This is
explained by the fact that whereas the cooling does not increase the cracked length of the
inner pile, it does so for the corner and external piles. Thereby, no part of an imposed
displacement is absorbed by the branch of zero structural stiffness (crack development
stage), and the increase in the internal force is larger for the inner pile. Compared to
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the isolated pile presented previously, the magnitude of Nth decreases by a factor of
approximately 10.

It is established that the behaviour of a piled raft with close spaced piles is mainly
governed by interactions through the soil and to a lesser extent by interactions through
the cap. This is verified in the present analysis. The actual performance of each pile is
also affected by the non-linear response of the reinforced concrete non-negligibly. This is
highlighted by the strain and factor of imposed thermal strain diagrams. It is important
to emphasise that the performance of a structure is defined by the extent of plastic
strains and its ductility capacity, rather than by the internal state of stress, which may
be similar for a linear and a non-linear analysis. Here, it is demonstrated that the internal
state of strain may be significantly different from that obtained through a linear elastic
model of the pile. Nevertheless, thermally induced strains are absorbed by the structure
because the ductility capacity is ensured. This outcome is however subjected to the same
constraint highlighted in the last paragraph of the previous section.

5.8 Concluding Remarks

A general framework for the thermal stress analysis of energy piles subjected to axial
load is presented. The linear system of equations and a few closed form solutions are
provided for simple bar systems, which can be directly used as limiting cases. This
may be effective during early design stages. Thereafter, the derivation of the system of
equations for realistic foundations are presented, so that they can be conveniently used
by engineers.

This study combines the non-linear behaviour of reinforced concrete with the load–
transfer approach to investigate the performance of piles thermally activated under ten-
sion. A finite element model capable of handling arbitrary thermomechanical load config-
urations is developed. It is used to analyse the response of a pile subjected to a traction
force and then to a severe cooling, both in isolated and piled rigid raft foundations. The
results illustrate that reinforced concrete post-cracking behaviour can significantly im-
pact the response of energy piles, which could be comparable to the soil–pile interface
behaviour. Therefore, reinforced concrete non-linearity should be considered for a cor-
rect assessment of piles performance. It is highlighted that, for this purpose, temperature
variation has to be considered in an imposed displacement framework. It is observed that
the magnitude of the imposed thermal strain can be higher than |α∆T |. Nevertheless,
if the ductile behaviour of the structural members is ensured, such strains are simply
accommodated by the piles. However, imposed thermal loads may have an impact if
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variable external loads or transverse forces are expected. Moreover, serviceability limit
state may require more attention since the opening of cracks could be an important
aspect.

Recommendations pertaining to the design are provided in order to ensure superior
energy pile performance at the ultimate limit state. This study is within the recent
framework of performance-based design of energy geostructures, which is aimed at a
higher resilience.
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and sum of the two εTOT; factor of imposed thermal strain η; and dimensionless thermal force
Nth/Nblc for isolated pile; tension chord model (TC) and linear elastic pile (LE); traction force
F = 0.75Ny and then cooling ∆T = −22 ◦C; both soil 1 and soil 2.
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Over the past two decades, a substantial amount of research has investigated
the effects of thermal loads associated with the geothermal operation of energy
piles on their mechanical response. Based on this research, consensus about

the need for considering the effects of thermal loads on the geotechnical and structural
design of energy piles has been achieved. However, the understanding of the influence of
thermal loads on the mechanical response of energy piles has prevented the determination
of when the effects of these loads should be considered in performance-based design,
e.g. only when addressing the deformation (at serviceability limit states) or also the
failure (at ultimate limit states) of such foundations. Looking at this challenge, this
paper presents an investigation of the role of thermal loads in the mechanical response of
energy piles to provide a theoretically based approach for the geotechnical and structural
performance-based design of such foundations. The main conclusion that can be drawn
from this study and the discussed ductility-based design approach is that thermal loads
cause negligible effects at ultimate limit states from both a geotechnical and a structural
perspective, while they cause significant effects that should be considered at serviceability
limit states.

6.1 Introduction

The utilisation of energy piles has increased considerably over the past twenty years.
Consequently, a substantial amount of research has addressed the mechanical response
of such foundations subjected to thermal and mechanical loads due to their coupled
geothermal and structural support functions, respectively. This research has been moti-
vated by the fundamentally different natures and effects of thermal and mechanical loads
on the mechanical response of energy piles.

Thermal loads can be idealised as imposed deformations. These loads cause expansion
and contraction of the energy piles and the surrounding ground. Energy piles expand
upon heating and contract upon cooling [189, 220]. In contrast, soils can expand or
contract upon heating, while they contract upon cooling [34, 45]. In most cases, a portion
of the thermally induced deformation of energy piles is restrained by the surroundings
and causes thermally induced stress in such foundations [19, 323]. The significance of the
observed thermally induced strain and stress depends on the end-restraint conditions [47,
376] and the ratio between the thermal expansion coefficient of the ground and that of
the energy piles [20, 322]. Both of these aspects also affect the vertical displacement
and stress variations within energy piles [317]. Energy piles subjected to thermal loads
generally displace in opposite directions from the so-called null point of the vertical
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displacement1 and mobilise shear stress at the pile shaft to ensure equilibrium from the
so-called null point of the shear stress [324] The locations of the referenced null points are
generally different [324] and can change throughout loading [80, 239, 317]. The stress,
strain and displacement variations characterising energy piles can markedly vary because
of the influence of group effects associated with thermal loads [319, 329]. These effects
are responsible for a greater group deformation than that of a single isolated pile under
the same average load [318, 321].

Mechanical loads can be idealised as prescribed forces. These loads typically cause
stress and strain variations that decrease along the depth of the energy piles and the
surrounding ground [3, 21]. In most cases, the evolutions with depth of the variations
caused by mechanical loads are more uniform than those caused by thermal loads and
are associated with displacement variations in a unique direction [324]. The end-restraint
conditions also govern, in this context, the significance of the stress, strain and displace-
ment variations, together with group effects caused by mechanical loads [267, 285].

The phenomena caused by thermal loads involve effects that are coupled with those
of mechanical loads and that can be comparable to or even more significant than the
effects of mechanical loads. Thus, they should be considered in the geotechnical and
structural design of energy piles.

In principle, European Norms, often called the Eurocodes [100] are available to
address the performance-based design of structures such as energy piles. In practice,
these norms currently lack recognised rules that suitably consider in the design pro-
cess the effects of thermal loads associated with geothermal operation. One guide in
Switzerland [350] one standard in the United Kingdom [124] and one recommendation in
France [46] have been proposed to guide the geotechnical and structural design of energy
piles. Despite their importance for practitioners, these documents are characterised by
drawbacks. The Swiss code [350] neglects aspects whose relevance for design has been
noted in recent years (e.g., thermally induced group effects). In addition to suffering from
this drawback, the United Kingdom standard [124] is applicable to only a limited number
of design situations because it is characterised by prescriptive and not performance-based
features. It also involves the excessive oversizing of energy piles because it is based on
worst-case scenario considerations. The French recommendations [46] may, in principle,
be considered a suitable reference for the design of energy piles because they adopt a
performance-based design approach drawing from the Eurocodes. However, they suffer
from three main limitations. First, they do not include a comprehensive framework for
the design process of energy piles and focus only on the verification of such foundations.
Second, they rely on the arguable proposition of establishing ultimate and serviceability
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limit state verifications of energy piles by combining the results of analyses while con-
sidering the quasi-permanent serviceability limit state load combination. Third, they
account for the influence of thermal loads in a way that is not conservative because they
employ a partial factor for thermal actions that underestimates the related effect with
reference to current experimental evidence.

In addition to the previous references, studies on the performance-based design of
energy piles have been reported, for instance, by Xiao et al. [405] Jelušič and Žlender [157]
and Habert et al. [127] Despite these studies, a comprehensive performance based design
framework for energy piles is not yet available.

Based on the above, vast knowledge is available to address the mechanical response
of energy piles, and there is a consensus about the need for considering both thermal
and mechanical loads in the design of such foundations. However, two critical questions
appear to remain unresolved in this scope:

• Do the effects of thermal loads only govern the deformation of energy piles, or may
they also cause the failure of such foundations?

• Should the effects of thermal loads be considered in the design of energy piles only
when addressing serviceability limit states or also ultimate limit states, and in what
manner should these effects be considered?

This study addresses the previous questions and the associated scientific and engi-
neering challenges by providing a theoretical analysis of (i) the influence of thermal loads
on the mechanical response of energy piles and (ii) the role of these loads in the geotech-
nical and structural design of such foundations. As a result of the analysis presented in
this work, a performance-based design approach for energy piles is proposed.

6.2 Performance-Based design of Energy Piles

6.2.1 Rationale

In this study, the performance-based design of single energy piles is carried out in the
framework of the Eurocodes. The design is only developed at ultimate limit states.
This approach assumes that if no ultimate limit state is exceeded with an appropriate
design methodology proposed herein, such a result is unlikely to arise in general as far
as such methodology is employed. When design guidance is missing from the Eurocodes,
propositions are made to resolve this gap. The influence of both mechanical and thermal
actions is considered.
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It is worth noting that the design of energy piles should also address the response of
the piles in a group and consider both ultimate and serviceability limit states. However,
given that these aspects are not essential for the purpose of this work, they are not
addressed in the following for sake of brevity.

6.2.2 Design Case Studies and Material Parameters

The design of single non-displacement energy piles of typical slenderness ratios L/D =

20, 30, 40 and 50, where L is the pile length, and pile diameters D = 0.5 m, 0.75 m and
1 m, is performed. Energy piles made of reinforced concrete subjected to compressive
axial mechanical loads and thermal loads are considered. The energy piles are assumed
to be embedded in a sand deposit for which detailed material properties are available [139,
206, 268] (cf., Table 6.1). The reinforced concrete used for the energy piles is assumed
to be characterised by (i) uncracked cross-sections, (ii) linear stress–strain relationships
and (iii) mean values of the modulus of elasticity, as stated in the Eurocodes [101]

Two conditions are considered for the energy piles: (i) piles free to move at their head
and (ii) piles restrained at their head because of the presence of a slab. Conditions (i) and
(ii) conservatively analyse the pile vertical displacement and vertical stress, respectively.
The slab stiffness Kh is calculated according to Poulos and Davis [288].

In the analyses, it is assumed that (i) the shear strength parameters of the soil are
insensitive to temperature variations, (ii) the potential degradation phenomena caused by
the cyclic influence of the thermal loads do not affect the pile–soil interface parameters,
and (iii) the deformation parameters of the soil are insensitive to temperature variations.
Assumptions (i) and (ii) are corroborated by experimental evidence [79, 406] and are also
explicated in the French recommendations [46]. Assumption (iii) disregards experimental
evidence that may characterise situations in practice [104] based on the argument that
these effects are negligible at ultimate limit states.

In all situations, the design mechanical load applied to the energy piles is characterised
by a 70 % permanent portion and a 30 % variable portion, as is often done in practice in
the absence of more detailed information.

6.2.3 Typical Design Problems

Two typical design problems exist for piles and are considered in this study:

1. Constant applied mechanical load and varying pile length – A pile length may be
defined for each pile of a foundation to sustain an applied design mechanical load.
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Table 6.1 – Material properties used for the analyses in this study.

Pile parameters Soil parameters Soil-pile interaction parameters

Young’s modulus,
EEP [MPa]

31 000a Shear modulus,
Gsoil [MPa]

8.46b Slope of elastic
branch of Frank
and Zhao’s load-
displacement
relationship [109]
for the pile shaft,
Ks [MPa/m]

19.48c

15.82d

Poisson’s ratio, νEP 0.25 Poisson’s ratio,
νsoil

0.30 Slope of elastic
branch of Frank
and Zhao’s load-
displacement
relationship [109]
for the pile base,
Kb [MPa/m]

116.87c

94.92d

Bulk density, ρEP
[kg/m3]

2450 Bulk density, ρsoil
[kg/m3]

2005 Average shaft re-
sistance for a sin-
gle isolated pile, qs
[kPa]

9.59c

19.19d

Linear thermal ex-
pansion coefficient,
αEP [1/◦C]

10−5 Rheological coeffi-
cient, αr

1/3 Base resistance for
a single isolated
pile, qb [kPa]

3409c

6818d

a This mean Young’s modulus refers to the minimum concrete class C25/30 that must be
considered for an environmental exposition XC2 following the Eurocodes. Reinforcement
steel B500B is employed in all cases.

b The shear modulus varies with the depth according to the pressure-dependent law proposed
by Maehr and Herle [206].

c Referring to a diameter D = 0.5 m and a slenderness L/D = 20.
d Referring to a diameter D = 1 m and a slenderness L/D = 20.
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However, the considered length may be increased to a more meaningful length. As
a result, the actual pile design load capacity will be higher than the needed value.

2. Varying applied mechanical load and constant pile length – A design mechanical
load may be considered for all piles of a foundation based on the maximum load
applied to one or more piles. However, not all the piles of the foundation need
to effectively sustain this load. As a result, the actual length of the pile will be
increased compared to the necessary value.

6.2.4 Design Method

Two aspects must be considered in any case to ensure an adequate structural performance
of the energy piles and are proposed in this work:

1. A design compressive strength of the reinforced concrete section (e.g., for no mo-
ments applied) at least equal to the design load capacity of the pile must be ensured.
When this approach is not employed, the design loads sustained from a geotech-
nical perspective may induce or exceed an ultimate limit state from a structural
perspective. In contrast, the proposed approach guarantees a potential ductile col-
lapse mechanism related to the excess of ultimate limit states from a geotechnical
perspective first.

2. A minimum steel reinforcement area of the reinforced concrete section must be
chosen. When this approach is not employed, the requirements of durability and
deformation (e.g., cracking) of the materials constituting the designed structures
may not be satisfied. In contrast, this approach guarantees durability and ductility.

The design of the energy piles should be carried out with reference to the worst-
case scenario given by different design approaches proposed by the Eurocodes [102].
Given that this study aims at providing a general approach applicable to common design
cases, only “Design approach 1 – Combination 1” is considered in the following. Design
approach 1 – Combination 1 often represents the governing design condition in common
cases. Moreover, while various approaches can be employed to estimate the design axial
load capacity of the piles, the following formulation is considered in this study:

Qud = Qsd +Qbd = Kσ′v tan δAs + σ′vbNqdqAb (6.1)

where Qsd is the design value of the pile shaft capacity, estimated using the frictional
expression presented by Coulomb [61]; Qbd is the design value of the pile base capacity,
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estimated according to the approach proposed by Hansen [26] by neglecting the terms
involving the bearing capacity factors Nc and Nγ and assuming a shape factor sq = 1;
K̄ is the average value of the relevant coefficient of lateral earth pressure; σ̄′v is the
average value of the in situ vertical effective stress; δ′ is the pile-soil interface angle of
shear strength; As is the pile shaft area; σ′vb is the vertical effective stress at the level of
the pile base; Nq is a bearing capacity factor; dq is a factor that accounts for the pile
depth; and Ab is the pile base area. When input into the formulations, the angles of
shear strength of the soil and the pile-soil interface are assumed to be under constant
volume conditions. It is noteworthy that the shaft capacity is strongly affected by the
method of pile installation, for example through the variation of the coefficient of lateral
earth pressure. The base capacity is also influenced by the construction process and it is
well recognised that this term does not increase after a certain depth, typically termed
“critical depth”. Therefore, application of Eq. (6.1) to practical cases deserves a careful
choice of the parameters.

Eq. (6.1) yields suitable estimates of the load capacity of piles in a soil deposit when
fully drained conditions govern the behaviour of the pile [108]. However, Eq. (6.1) may
not be applied for situations governed by a (fully or partially) undrained response of the
soil or for energy piles in rock.

6.2.5 Analysis Method

Various methods of analysis can be employed to address the mechanical response of energy
piles, including the finite element method [116, 190], the load-transfer method [47, 168,
278, 320, 374] and approaches based on charts [244, 318, 321]. In this work, the analysis
of energy piles is addressed through the load-transfer method and the use of Thermo-Pile
software [168]. Accordingly, a linear thermo-elastic behaviour (weak thermo-mechanical
coupling) of the energy pile is assumed, whereas the springs modelling the soil obey to a
three-linear model. The three-linear model is described by a linear elastic part until the
yield stress is reached, thereafter the stiffness decreases and the stress grows until the
soil shear strength is reached. Upon the achievement of the shear strength, the stress
remains constant. A symmetric behaviour is considered for the pile-soil interface with
respect to the sign of the shear stress and displacement, while this is not done for the
pile toe. That is, while the load-transfer relationship employed for describing the pile-soil
interface accounts for both loading and unloading, the relationship employed for the pile
base only accounts for loading.
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6.2.6 Verification Method

Two aspects must be considered to verify the structural and geotechnical performance of
energy piles and are accounted for in this work:

1. The vertical stress variations caused by mechanical and thermal loads must be
considered with respect to the entire length of the energy piles, and the most
stressed section must be verified.

2. The vertical displacement variations caused by mechanical and thermal loads must
be considered with respect to the head of the energy piles.

6.2.7 Combination of Actions at Ultimate Limit States

In the context of performance-based design, no limit state must be exceeded in all rel-
evant design situations when the design values for actions or the effects of actions and
resistances are introduced in the analysis models [100]. When persistent and transient
design situations at ultimate limit states are considered with respect to the influence of
only permanent and variable loads, the design effects of actions read as [100]

Ed =
∑
j≥1

γGjGkj + γQ1Qk1 +
∑
i≥1

γQiψ0iQki ≤ Rd (6.2)

where Ed is the design value of an action or action effect, γj,i are the partial factors of
the (j-th and i-th, respectively) actions or action effects, Gkj represents the permanent
loads, Qk1 is the dominant variable load, ψ0iQki are the accompanying variable loads, ψi
are combination factors, and Rd is the design value of the resistance. The symbol “+”
may be read as “combined with”, and the symbol “

∑
” implies “the combined effect of”.

6.2.8 Partial Factors for Thermal Loads Applied to Energy Piles

Thermal loads applied to energy piles can be considered variable, indirect, free and static
actions. This classification draws from the one currently considered in the Eurocodes for
thermal actions applied to buildings and bridges.

Thermal loads cause significant temperature variations within energy piles, which
can be defined with reference to the heat inputs involved in the building energy design,
the operation time and the thermal properties of the piles and ground. The resulting
characteristic temperature variations are nominal values, ∆Tk.

To account for the burdensome influence of thermal actions applied to energy piles,
the following partial factors for the combination, frequent and quasi-permanent values
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should be considered, respectively: ψ0 = 0.60, ψ1 = 0.50 and ψ2 = 0.50. The proposed
values of ψ0 and ψ1 coincide with those reported in the Eurocodes for buildings. They
can be considered suitable for energy piles due to the similar probability of occurrence
characterising thermal actions applied to buildings and energy piles. The same values
have been previously suggested by Burlon et al [28]. The proposed value of ψ2 differs
from that reported in the Eurocodes for buildings (i.e., ψ2 = 0) but coincides with that
for bridges. This value has been defined by considering that the average of variables can
represent the accompanying values of variable actions [100]. Therefore, factor ψ2 may
be calculated as the ratio between the average temperature variation and the maximum
(or minimum) temperature variation observed throughout successive seasonal thermal
cycles applied to energy piles. By considering such an approach and referring to the data
reported by Loveridge et al. [200], which represent one of the few long-term monitoring
examples currently available for energy piles, a value of ψ2 = 0.50 is obtained for heating
and cooling. This value approximates the ratio between the average value of a sine wave
over half of a cycle and the maximum (or minimum) of this function over the same
cycle, i.e., 2/π = 0.64, which may be alternatively employed to describe the influence of
thermal loads and estimate ψ2. The proposed value of factor ψ2 differs from the value
of ψ2 = 0.20 previously suggested by Burlon et al. [28] and more recently by Habert et
al [127].

In the following, a performance-based design is developed by considering, for sim-
plicity, only persistent and transient design situations. One permanent mechanical load
and one variable mechanical load applied to the energy piles are considered, in addition
to a thermal load (for the heating and cooling seasons). Two design load combinations
for energy pile heating and one combination for cooling are derived from the considered
loads.

When considering the effects of thermal loads in the combination of actions, the char-
acteristic temperature variation ∆Tk, instead of the effect of this temperature variation
Qk(∆Tk), is used. This approach is generally valid, irrespective of whether analyses ac-
counting for a reversible or irreversible mechanical behaviour of the soil are performed
(the hypothesis of superposition between the actions and their effects is not made).
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6.3 Unlikelihood of Thermal Loads Exceeding Geotechnical
Ultimate Limit States

6.3.1 Theoretical Considerations

The design of energy piles against geotechnical ultimate limit states must be addressed
with reference to displacement and equilibrium considerations. Displacement considera-
tions involve limiting differential displacements occurring among the piles to ensure that
superstructures (e.g., redundant) are not affected by unacceptable stress variations that
may be associated with failure or collapse mechanisms. Equilibrium considerations in-
volve comparing the design values of the load acting on the pile and the load supported
by the pile (i.e., load capacity) to ensure that no failure or collapse mechanisms in the
ground are achieved.

In this context, the worst foreseeable condition for the geotechnical performance of
energy piles involves foundations with fully mobilised shaft and base capacities caused by
a cooling thermal load and a (compressive) mechanical load. In this theoretical condition
where the shaft and base capacities are fully mobilised and soil behaviour can be assumed
as perfectly plastic, the null point of an energy pile subjected to cooling thermal loading
is located at or towards the toe depending on whether a slab is present at the head,
respectively. Therefore, the maximum possible head settlements of energy piles caused
by thermal loading, in addition to those caused by mechanical loading, occur. This
phenomenon has the potential to exceed a geotechnical ultimate limit state. A possible
criterion to identify that a geotechnical ultimate limit state is exceeded corresponds to a
pile toe settlement of 10 % of the pile diameter [102].

Piles with fully mobilised capacities subjected to a heating thermal load are of no
concern because such a load causes no head settlement. In this theoretical condition
where the shaft and base capacities are fully mobilised and soil behaviour can be assumed
as perfectly plastic, the null point of an energy pile subjected to heating thermal loading
is necessarily located at the head irrespective of whether a slab is present or not at the
head. This is the only way to ensure equilibrium. Otherwise, any other location of
the null point would cause an increase of the compression force within the pile in the
zone above the null point (upward movement), which could not be balanced because a
downward movement of the part below the null point would be produced freely (perfect
plasticity). The application of a heating thermal load in all other cases induces an upward
head displacement of the energy piles. However, the considered phenomenon represents a
serviceability limit state problem and is not considered in the following design at ultimate
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limit states.

Typical characteristic values of temperature variation associated with cooling ther-
mal loads applied to energy piles can be considered to range between ∆Tk = −5◦

and −10◦. At worst, a value of ∆Tk = −15◦ may be considered in warm climates.
The design temperature variations resulting from the previous characteristic values are
∆Td = γQ∆Tk = −7.5◦, −15◦ and −22◦ (γQ = 1.5, considering the partial factor pro-
posed by the Eurocodes for variable actions).

The results reported in the following expand on the effects of cooling thermal loads
and mechanical loads on the geotechnical performance of energy piles.

6.3.2 Energy Pile Response for a Constant Applied Mechanical Load
and Varying Pile Length

Tables 6.2 and 6.3 summarise, for energy piles subjected to combined mechanical and
cooling thermal loads, the proportions of vertical head displacement induced by mechani-
cal loading wm

d and cooling thermal loading wth
d , as well as the total displacement wm + th

d

caused by these loadings. Piles free to move at their head with L/D = 20 and 50 are
considered for D = 0.5 m (cf., Table 6.2) and D = 1 m (cf., Table 6.3). In all cases, a
design mechanical load Pd corresponding to the design load capacity for L/D = 20, i.e.,
Qud(L/D = 20), and design temperature variations ∆Td = γQ∆Tk = −7.5◦ and −22◦

are considered.

The design settlement induced by the combined action of mechanical loading and
cooling can be considered small in all cases and incapable of causing excessive differential
displacements. Therefore, no geotechnical ultimate limit states are involved.

For the same applied mechanical load and pile diameter, increasing the pile slen-
derness ratio results in lower head settlements of the energy piles. The reason for this
phenomenon is because, for an increase in the pile slenderness, the bearing load that the
piles can sustain (and are subjected to) is greater. This result corroborates the ratio-
nale of designs considering longer piles to ensure greater safety against the actions of
mechanical loads.

For the same applied thermal load and pile diameter, increasing the pile slenderness
ratio results in greater head settlements of the energy piles. The reason for this phe-
nomenon is because, although equal thermal loads cause the same thermally induced
strains under free expansion conditions, irrespective of the pile length, these loads cause
greater vertical displacements for longer piles. This result is in contrast with the belief
that longer piles ensure greater safety against the action of thermal loads.
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For the same pile slenderness ratio and a greater pile diameter, more significant
head settlements of the energy piles are caused by mechanical loads, while lower head
settlements are caused by thermal loads. The reason for these phenomena is because,
for greater values of the pile diameter, the loads that the piles can sustain are greater.
Therefore, if the aim is to limit the vertical displacement of the energy piles caused by
thermal loads, longer pile lengths should be avoided, while greater pile diameters should
be employed.

Table 6.2 – Normalised vertical head displacements for energy piles of D = 0.5 m that are free
at their head and subjected to cooling, with a constant applied mechanical load and varying pile
length.

D [m] L/D Pd/Qud ∆T [◦C] wm
d /D [%] wth

d /D [%] wm+th
d /D [%]

0.5
20 1 -7.5 1.28 0.15 1.43

-22.5 1.28 0.45 1.73

50 Pu/Qud(L/D = 20)
-7.5 0.09 0.21 0.30
-22.5 0.09 0.69 0.78

Table 6.3 – Normalised vertical head displacements for energy piles of D = 1 m that are free
at their head and subjected to cooling, with a constant applied mechanical load and varying pile
length.

D [m] L/D Pd/Qud ∆T [◦C] wm
d /D [%] wth

d /D [%] wm+th
d /D [%]

1
20 1 -7.5 1.60 0.15 1.75

-22.5 1.60 0.45 2.05

50 Pu/Qud(L/D = 20)
-7.5 0.15 0.19 0.34
-22.5 0.15 0.65 0.80

6.3.3 Energy Pile Response for Varying Applied Mechanical Loads and
Constant Pile Length

Tables 6.4 and 6.5 summarise the vertical head displacements wm
d , wth

d and wm+th
d for

energy piles free to move at their head with D = 0.5 m and 1 m, respectively, L/D = 20
and 50. The combined action of Pd = Qud and 0.2Qud, ∆Td = −7.5◦ and −22.5◦ is
considered.

The settlement induced by the combined action of mechanical loading and cooling
can again be considered small. Hence, no geotechnical ultimate limit states are involved.

For the same pile diameter and pile slenderness ratio, decreasing the applied me-
chanical load results in lower head settlements of the energy piles. At the same time,
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decreasing the applied mechanical load results in lower energy pile head settlements for
the same subsequently applied temperature variation. The reason for these phenomena is
because, for lower values of the applied mechanical load, the load range for which the soil
behaviour remains elastic widens. Therefore, as the stiffness of the materials associated
with elastic conditions is greater compared to that associated with plastic conditions,
lower vertical displacements occur for less notable loads, while higher stresses are to be
expected.

Table 6.4 – Normalised vertical head displacements for energy piles of D = 0.5 m that are free
at their head and subjected to cooling, with a varying applied mechanical load and constant pile
length.

D [m] L/D Pd/Qud ∆T [◦C] wm
d /D [%] wth

d /D [%] wm+th
d /D [%]

0.5

20
1 -7.5 1.28 0.15 1.43

-22.5 1.28 0.45 1.73

0.2 -7.5 0.04 0.10 0.14
-22.5 0.04 0.30 0.34

50
1 -7.5 0.09 0.21 0.30

-22.5 0.09 0.69 0.78

0.2 -7.5 0.02 0.16 0.18
-22.5 0.02 0.53 0.55

Table 6.5 – Normalised vertical head displacements for energy piles of D = 1 m that are free
at their head and subjected to cooling, with a varying applied mechanical load and constant pile
length.

D [m] L/D Pd/Qud ∆T [◦C] wm
d /D [%] wth

d /D [%] wm+th
d /D [%]

1

20
1 -7.5 1.60 0.15 1.75

-22.5 1.60 0.45 2.05

0.2 -7.5 0.05 0.10 0.15
-22.5 0.05 0.30 0.35

50
1 -7.5 0.15 0.19 0.34

-22.5 0.15 0.65 0.80

0.2 -7.5 0.03 0.14 0.16
-22.5 0.03 0.49 0.51

6.3.4 Summary

Based on the previous results, cooling thermal loads are unlikely to involve energy pile
settlements capable of generating a collapse mechanism. Therefore, from the perspective
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of displacement considerations, the effects of thermal loads can be considered negligible
for the sake of geotechnical verifications at ultimate limit states. Group effects caused
by the interactions among piles may increase these displacements. However, these effects
should only be considered at serviceability limit states due to the magnitude of the
phenomena involved.

From the perspective of equilibrium considerations, the following remark about the
possibility of dealing with effects caused by thermal loads that exceed geotechnical ul-
timate limit states must be considered. In principle, full mobilisation of the capacity
of energy piles may be caused by thermal loads and mechanical loads. In practice, the
null point of the shear stress always ensures equilibrium with respect to the influence
of thermal loads. In fact, for any magnitude of thermal load applied to energy piles,
the reactions provided by the soil below and above the null point of the shear stress
compensate for each other and prevent the formation of a collapse mechanism. Energy
pile equilibrium will thus always be ensured, with zero thermally induced displacements
occurring in correspondence with the null point of the vertical displacement that will
prevent the formation of a collapse mechanism.

Based on the above, thermal loads cannot cause a geotechnical collapse mechanism
for energy piles; i.e., they cannot involve geotechnical ultimate limit states. Therefore,
the effects of thermal loads can be neglected in the design of energy piles at ultimate
limit states from a geotechnical perspective.

6.4 Unlikelihood of Thermal Loads Involving Structural Ul-
timate Limit State

6.4.1 Theoretical Considerations

The design of energy piles against structural ultimate limit states must be addressed
with reference to equilibrium considerations. Equilibrium considerations involve com-
paring the design values of the acting load on the pile and the load supported by the
considered pile cross-section (or portion) to ensure that no failure mechanisms in the
structure are achieved. In this context, the worst foreseeable conditions for the struc-
tural performance of energy piles involves foundations with partially mobilised shaft and
base capacities caused by either a significant cooling thermal load and a low (compres-
sive) mechanical load or by a significant heating thermal load and a high (compressive)
mechanical load. In these conditions, stresses are generated by the applied loads (with
an increasing magnitude for the greater restraint characterising energy piles), with the
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potential to exceed a structural ultimate limit state. Typical characteristic values of the
temperature variation associated with the heating thermal loads applied to energy piles
range between ∆Tk = 10◦ and 20◦. At worst, a value of ∆Tk = 30◦ may occur in cool
climates. The design temperature variations resulting from these characteristic values
are ∆Td = γQ∆Tk = 15◦, 30◦ and 45◦. The results reported in the following expand
on the effects of heating and cooling thermal loads as well as mechanical loads on the
structural performance of energy piles.

6.4.2 Energy Pile Response for a Constant Applied Mechanical Load
and Varying Pile Length

Energy Pile Heating

Figure 6.1 presents the normalised axial load NEd/NRd characterising the most stressed
section of energy piles free to move at their head for varying values of L/D. Piles with
D = 0.5 m, 0.75 m and 1 m are considered under the combined action of Pd ≡ Qud(L/D =

20) and ∆Td = γQ∆Tk = 15◦, 30◦ and 45◦ or ∆Td = γQψ01∆Tk = 13.5◦, 27◦ and 40.5◦,
depending on the load combination. The design acting load NEd is generally caused by
both mechanical and thermal loads. The design resisting load NRd corresponds to the
compression axial resisting load when no moments are applied.

The combined action of the mechanical and heating thermal loads involves normalised
axial loads of up to NEd/NRd = 0.4. In other words, no structural ultimate limit states
are involved due to the combined action of mechanical and heating thermal loads.

The effect of thermal loads increases as the pile slenderness and pile diameter increase.
Increasing the concrete class for values of L/D that may be associated with applied design
mechanical loads greater than the axial resisting compressive load ensures greater safety
against structural ultimate limit states.

Fig. 2 shows the normalised axial load, NEd/NRd, experienced by energy piles re-
strained at their head for a varying slab stiffness relative to the soil, KhD/Gsoil(z = 0),
where Gsoil is the soil shear modulus. Piles of L/D = 50 with D = 0.5 m, 0.75 m and
1 m are considered under the previous mechanical and heating thermal loads.

The combined action of mechanical and heating thermal loads does not involve struc-
tural ultimate limit states. However, a more burdensome effect of thermal loads compared
to situations where the energy piles are free to move at their head is caused when a re-
straint is provided by a slab (i.e., NEd/NRd = 0.5 instead of 0.4 at worst). This effect
becomes significant for relative stiffness values of approximately KhD/Gsoil(z = 0) = 10

as well as for increasing values of the pile diameter.
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Fig. 1. Normalised axial loads for energy piles that are free at their head and subjected to heating, with a constant applied mechanical load and varying pile length.

subjected to heating thermal loading is necessarily located at
the head irrespective of whether a slab is present or not at the
head. This is the only way to ensure equilibrium. Otherwise,
any other location of the null point would cause an increase
of the compression force within the pile in the zone above the
null point (upward movement), which could not be balanced
because a downward movement of the part below the null point
would be produced freely (perfect plasticity). The application of
a heating thermal load in all other cases induces an upward
head displacement of the energy piles. However, the considered
phenomenon represents a serviceability limit state problem and
is not considered in the following design at ultimate limit states.

Typical characteristic values of temperature variation asso-
ciated with cooling thermal loads applied to energy piles can
be considered to range between ∆Tk = −5 and −10 ◦C. At
worst, a value of ∆Tk = −15 ◦C may be considered in warm
climates. The design temperature variations resulting from the
previous characteristic values are ∆Td = γQ∆Tk = −7.5, −15
and −22.5 ◦C (γQ = 1.5, considering the partial factor proposed
by the Eurocodes for variable actions).

The results reported in the following expand on the effects of
cooling thermal loads and mechanical loads on the geotechnical
performance of energy piles.

3.2. Energy pile response for a constant applied mechanical load and
varying pile length

Tables 2 and 3 summarise, for energy piles subjected to com-
bined mechanical and cooling thermal loads, the proportions of
vertical head displacement induced by mechanical loading wm

d
and cooling thermal loading wth

d , as well as the total displacement
wm+th

d caused by these loadings. Piles free to move at their head
with L/D = 20 and 50 are considered for D = 0.5 m (cf., Table 2)
and D = 1 m (cf., Table 3). In all cases, a design mechanical
load Pd corresponding to the design load capacity for L/D = 20,
i.e., Qu,d(L/D = 20), and design temperature variations ∆Td =

γQ∆Tk = −7.5 and −22.5 ◦C are considered.
The design settlement induced by the combined action of me-

chanical loading and cooling can be considered small in all cases
and incapable of causing excessive differential displacements.
Therefore, no geotechnical ultimate limit states are involved.

Figure 6.1 – Normalised axial loads for energy piles that are free at their head and subjected
to heating, with a constant applied mechanical load and varying pile length.
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Fig. 2. Normalised axial loads for energy piles restrained at their head and subjected to heating, with a constant applied mechanical load and varying pile length.

For the same applied mechanical load and pile diameter, in-
creasing the pile slenderness ratio results in lower head settle-
ments of the energy piles. The reason for this phenomenon is
because, for an increase in the pile slenderness, the bearing load
that the piles can sustain (and are subjected to) is greater. This
result corroborates the rationale of designs considering longer
piles to ensure greater safety against the actions of mechanical
loads.

For the same applied thermal load and pile diameter, increas-
ing the pile slenderness ratio results in greater head settlements
of the energy piles. The reason for this phenomenon is because,
although equal thermal loads cause the same thermally induced
strains under free expansion conditions, irrespective of the pile
length, these loads cause greater vertical displacements for longer
piles. This result is in contrast with the belief that longer piles
ensure greater safety against the action of thermal loads.

For the same pile slenderness ratio and a greater pile diameter,
more significant head settlements of the energy piles are caused
by mechanical loads, while lower head settlements are caused by
thermal loads. The reason for these phenomena is because, for
greater values of the pile diameter, the loads that the piles can
sustain are greater. Therefore, if the aim is to limit the vertical dis-
placement of the energy piles caused by thermal loads, longer pile
lengths should be avoided, while greater pile diameters should be
employed.

3.3. Energy pile response for varying applied mechanical loads and
constant pile length

Tables 4 and 5 summarise the vertical head displacements
wm

d , w
th
d and wm+th

d for energy piles free to move at their head
with D = 0.5 and 1 m, respectively, and L/D = 20 and 50. The
combined action of Pd = Qu,d and 0.2Qu,d and ∆Td = −7.5 and
−22.5 ◦C is considered.

The settlement induced by the combined action of mechanical
loading and cooling can again be considered small. Hence, no
geotechnical ultimate limit states are involved.

For the same pile diameter and pile slenderness ratio, decreas-
ing the applied mechanical load results in lower head settlements
of the energy piles. At the same time, decreasing the applied
mechanical load results in lower energy pile head settlements for
the same subsequently applied temperature variation. The reason
for these phenomena is because, for lower values of the applied
mechanical load, the load range for which the soil behaviour
remains elastic widens. Therefore, as the stiffness of the materials
associated with elastic conditions is greater compared to that
associated with plastic conditions, lower vertical displacements
occur for less notable loads, while higher stresses are to be
expected.

Figure 6.2 – Normalised axial loads for energy piles restrained at their head and subjected to
heating, with a constant applied mechanical load and varying pile length.
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Energy Pile Cooling

Figure 6.3 presents the normalised axial load N∗Ed/N
∗
Rd characterising the most stressed

section of energy piles free to move at their head for varying values of L/D. Piles
with D = 0.5 m, 0.75 m and 1 m are considered under the combined action of Pd ≡
Qud(L/D = 20) and ∆Td = γQ∆Tk = −7.5◦, −15◦ and −22.5◦. The design acting load
N∗Ed is generally caused by both mechanical and thermal loads. The design resisting load
N∗Rd corresponds to the distance between the actual design load caused by the thermal
load (applied after the mechanical load) and the traction resisting load of the reinforced
concrete cross-section when no moments are applied.

Cooling thermal loads cause a more pronounced variation of the axial load compared
to heating thermal loads. The combined action of mechanical and cooling thermal loads
involves variations of N∗Ed that can exceed N∗Rd. In other words, structural ultimate
limit states can be exceeded due to mechanical and cooling thermal loads. This situation
requires the design of a proper minimum reinforcement based on mechanical considera-
tions.

Figure 6.4 shows the normalised axial load N∗Ed/N
∗
Rd experienced by energy piles

restrained at their head for a varying slab stiffness relative to the soilKslabD/Gsoil(z = 0).
Piles of L/D = 50 with D = 0.5 m, 0.75 m and 1 m under the previous mechanical and
cooling thermal loads are considered.

For the case of extremely rigid slabs, normalised axial loads of up to N∗Ed/N
∗
Rd = 2

can be observed. Therefore, structural ultimate limit states can again be exceeded.

It is noteworthy that relying on the concrete tensile strength is questionable. There-
fore, one can safely neglect the concrete tensile strength and design the reinforcement to
sustain the entire design traction load.

6.4.3 Energy Pile Response for Varying Mechanical Loads and a Con-
stant Pile Length

Energy Pile Heating

Figure 6.5 presents the normalised axial load NEd/NRd characterising the most stressed
section of energy piles free to move at their head for varying values of Pd/Qud. Piles of
L/D = 20 and 50 with D = 0.5 m, 0.75 m and 1 m are considered under the combined
action of varying values of Pd/Qud and ∆Td = γQ∆Tk = 15◦, 30◦ and 45◦ or ∆Td =

γQψ01∆Tk = 13.5◦, 27◦ and 40.5◦, depending on the load combination.

In all cases, no structural ultimate limit states are caused by mechanical and heating
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Fig. 3. Normalised axial loads for energy piles that are free at their head and subjected to cooling, with a constant applied mechanical load and varying pile length.

3.4. Summary

Based on the previous results, cooling thermal loads are un-
likely to involve energy pile settlements capable of generating
a collapse mechanism. Therefore, from the perspective of dis-
placement considerations, the effects of thermal loads can be
considered negligible for the sake of geotechnical verifications
at ultimate limit states. Group effects caused by the interactions
among piles may increase these displacements. However, these
effects should only be considered at serviceability limit states due
to the magnitude of the phenomena involved.

From the perspective of equilibrium considerations, the fol-
lowing remark about the possibility of dealing with effects caused
by thermal loads that exceed geotechnical ultimate limit states
must be considered. In principle, full mobilisation of the capacity
of energy piles may be caused by thermal loads and mechanical
loads. In practice, the null point of the shear stress always ensures
equilibrium with respect to the influence of thermal loads. In fact,
for any magnitude of thermal load applied to energy piles, the re-
actions provided by the soil below and above the null point of the
shear stress compensate for each other and prevent the formation
of a collapse mechanism. Energy pile equilibrium will thus always
be ensured, with zero thermally induced displacements occurring
in correspondence with the null point of the vertical displacement
that will prevent the formation of a collapse mechanism.

Based on the above, thermal loads cannot cause a geotechnical
collapse mechanism for energy piles; i.e., they cannot involve

geotechnical ultimate limit states. Therefore, the effects of ther-
mal loads can be neglected in the design of energy piles at
ultimate limit states from a geotechnical perspective.

4. Unlikelihood of thermal loads involving structural ultimate
limit states

4.1. Theoretical considerations

The design of energy piles against structural ultimate limit
states must be addressed with reference to equilibrium consider-
ations. Equilibrium considerations involve comparing the design
values of the acting load on the pile and the load supported by
the considered pile cross-section (or portion) to ensure that no
failure mechanisms in the structure are achieved.

In this context, the worst foreseeable conditions for the struc-
tural performance of energy piles involves foundations with par-
tially mobilised shaft and base capacities caused by either a
significant cooling thermal load and a low (compressive) me-
chanical load or by a significant heating thermal load and a high
(compressive) mechanical load. In these conditions, stresses are
generated by the applied loads (with an increasing magnitude
for the greater restraint characterising energy piles), with the
potential to exceed a structural ultimate limit state.

Typical characteristic values of the temperature variation as-
sociated with the heating thermal loads applied to energy piles
range between ∆Tk = 10 and 20 ◦C. At worst, a value of

Figure 6.3 – Normalised axial loads for energy piles that are free at their head and subjected
to cooling, with a constant applied mechanical load and varying pile length.
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Fig. 4. Normalised axial loads for energy piles restrained at their head and subjected to cooling, with a constant applied mechanical load and varying pile length.

∆Tk = 30 ◦C may occur in cool climates. The design temperature
variations resulting from these characteristic values are ∆Td =

γQ∆Tk = 15, 30 and 45 ◦C. The results reported in the following
expand on the effects of heating and cooling thermal loads as
well as mechanical loads on the structural performance of energy
piles.

4.2. Energy pile response for a constant applied mechanical load and
varying pile length

4.2.1. Energy pile heating
Fig. 1 presents the normalised axial load NE,d/NR,d characteris-

ing the most stressed section of energy piles free to move at their
head for varying values of L/D. Piles with D = 0.5, 0.75 and 1 m
are considered under the combined action of Pd ≡ Qu,d(L/D = 20)
and ∆Td = γQ∆Tk = 15, 30 and 45 ◦C or ∆Td = γQψ0,1∆Tk =

13.5, 27 and 40.5 ◦C, depending on the load combination. The
design acting load NE,d is generally caused by both mechanical
and thermal loads. The design resisting load NR,d corresponds
to the compression axial resisting load when no moments are
applied.

The combined action of the mechanical and heating thermal
loads involves normalised axial loads of up to NE,d/NR,d = 0.4. In
other words, no structural ultimate limit states are involved due
to the combined action of mechanical and heating thermal loads.

The effect of thermal loads increases as the pile slenderness
and pile diameter increase. Increasing the concrete class for val-
ues of L/D that may be associated with applied design mechanical
loads greater than the axial resisting compressive load ensures
greater safety against structural ultimate limit states.

Fig. 2 shows the normalised axial load, NE,d/NR,d, experienced
by energy piles restrained at their head for a varying slab stiffness
relative to the soil, KhD/Gsoil(z = 0), where Gsoil is the soil shear
modulus. Piles of L/D = 50 with D = 0.5, 0.75 and 1 m are
considered under the previous mechanical and heating thermal
loads.

The combined action of mechanical and heating thermal loads
does not involve structural ultimate limit states. However, a more
burdensome effect of thermal loads compared to situations where
the energy piles are free to move at their head is caused when a
restraint is provided by a slab (i.e., NE,d/NR,d = 0.5 instead of
0.4 at worst). This effect becomes significant for relative stiffness
values of approximately KhD/Gsoil(z = 0) = 10 as well as for
increasing values of the pile diameter.

4.2.2. Energy pile cooling
Fig. 3 presents the normalised axial load N∗

E,d/N
∗

R,d characteris-
ing the most stressed section of energy piles free to move at their
head for varying values of L/D. Piles with D = 0.5, 0.75 and 1 m
are considered under the combined action of Pd ≡ Qu,d(L/D = 20)
and ∆Td = γQ∆Tk = −7.5,−15 and −22.5 ◦C. The design

Figure 6.4 – Normalised axial loads for energy piles restrained at their head and subjected to
cooling, with a constant applied mechanical load and varying pile length.
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thermal loads. Lower design mechanical loads ensure greater safety against the occur-
rence of a structural ultimate limit state potentially caused by thermal loads. However,
there is a greater impact of the design thermal loads on the variation of the axial load
within the energy piles.

Figure 6.6 shows the normalised axial load NEd/NRd experienced by energy piles
restrained at their head for a varying slab stiffness relative to the soil, KslabD/Gsoil(z =

0). Piles of L/D = 50 with D = 0.5 m, 0.75 m and 1 m are considered under the previous
mechanical and heating thermal loads. The combined action of the mechanical and
heating thermal loads does not involve structural ultimate limit states.
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Fig. 5. Normalised axial loads for energy piles that are free at their head and subjected to heating, with a varying applied mechanical load and constant pile length.

acting load N∗

E,d is generally caused by both mechanical and
thermal loads. The design resisting load N∗

R,d corresponds to the
distance between the actual design load caused by the thermal
load (applied after the mechanical load) and the traction resisting
load of the reinforced concrete cross-section when no moments
are applied.

Cooling thermal loads cause a more pronounced variation of
the axial load compared to heating thermal loads. The combined
action of mechanical and cooling thermal loads involves vari-
ations of N∗

E,d that can exceed N∗

R,d. In other words, structural
ultimate limit states can be exceeded due to mechanical and cool-
ing thermal loads. This situation requires the design of a proper
minimum reinforcement based on mechanical considerations.

Fig. 4 shows the normalised axial load N∗

E,d/N
∗

R,d experienced
by energy piles restrained at their head for a varying slab stiffness
relative to the soil KslabD/Gsoil(z = 0). Piles of L/D = 50 with
D = 0.5, 0.75 and 1 m under the previous mechanical and cooling
thermal loads are considered.

For the case of extremely rigid slabs, normalised axial loads
of up to N∗

E,d/N
∗

R,d = 2 can be observed. Therefore, structural
ultimate limit states can again be exceeded.

It is noteworthy that relying on the concrete tensile strength is
questionable. Therefore, one can safely neglect the concrete ten-
sile strength and design the reinforcement to sustain the entire
design traction load.

4.3. Energy pile response for varying applied mechanical loads and
a constant pile length

4.3.1. Energy pile heating
Fig. 5 presents the normalised axial load NE,d/NR,d characteris-

ing the most stressed section of energy piles free to move at their
head for varying values of Pd/Qu,d. Piles of L/D = 20 and 50 with
D = 0.5, 0.75 and 1 m are considered under the combined action
of varying values of Pd/Qu,d and∆Td = γQ∆Tk = 15, 30 and 45 ◦C
or ∆Td = γQψ0,1∆Tk = 13.5, 27 and 40.5 ◦C, depending on the
load combination.

In all cases, no structural ultimate limit states are caused by
mechanical and heating thermal loads. Lower design mechanical
loads ensure greater safety against the occurrence of a structural
ultimate limit state potentially caused by thermal loads. However,
there is a greater impact of the design thermal loads on the
variation of the axial load within the energy piles.

Fig. 6 shows the normalised axial load NE,d/NR,d experienced
by energy piles restrained at their head for a varying slab stiffness
relative to the soil, KslabD/Gsoil(z = 0). Piles of L/D = 50 with
D = 0.5, 0.75 and 1 m are considered under the previous me-
chanical and heating thermal loads. The combined action of the
mechanical and heating thermal loads does not involve structural
ultimate limit states.

4.3.2. Energy pile cooling
Fig. 7 presents the normalised axial load, N∗

E,d/N
∗

R,d, character-
ising the most stressed section of energy piles free to move at

Figure 6.5 – Normalised axial loads for energy piles that are free at their head and subjected
to heating, with a varying applied mechanical load and constant pile length.
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Fig. 6. Normalised axial loads for energy piles of L/D = 50 that are restrained at their head and subjected to heating, with a varying applied mechanical load and
constant pile length.

their head for varying values of Pd/Qu,d. Piles of L/D = 20 and 50
with D = 0.5, 0.75 and 1 m are considered under the combined
action of Pd ≡ Qu,d(L/D = 20) and ∆Td = γQ∆Tk = −7.5,−15
and −22.5 ◦C. Fig. 8 shows the evolution of N∗

E,d/N
∗

R,d for energy
piles restrained at their head for varying KslabD/Gsoil(z = 0). Piles
of L/D = 50 with D = 0.5, 0.75 and 1 m are considered under the
combined action of the previous mechanical and cooling thermal
loads.

The effect of mechanical and cooling thermal loads can in-
volve normalised axial loads of up to N∗

E,d/N
∗

R,d = 2.3. In other
words, structural ultimate limit states can be exceeded due to
mechanical and cooling thermal loads.

4.4. Summary

Based on the previous results, heating thermal loads applied in
conjunction with mechanical loads are unlikely to overcome the
design compressive strength characterising the cross-sections of
energy piles; i.e., they are unlikely to exceed structural ultimate
limit states. This result is achieved through the consideration of
the design approach related to the design compressive strength
characterising the cross-sections of energy piles that has been
proposed in this work. In contrast, at least in principle, cooling
thermal loads applied in conjunction with mechanical loads may

overcome the design tensile strength characterising the cross-
sections of energy piles; i.e., they may exceed structural ultimate
limit states. In practice, the following considerations prove that
the above can be avoided if appropriate design rules are adopted.

The actual behaviour of reinforced concrete is non-linear and
characterised by the appearance of cracks beyond specific strain
levels. If the minimum reinforcement is able to sustain the crack-
ing force, the member does not fail upon the formation of the
first crack (brittle behaviour) and the appearance of cracks leads
to stress redistribution and a decrease in the stiffness of the struc-
ture. The considered stiffness involves lower values of stress com-
pared to those associated with a stiffness related to uncracked
cross-sections and linear stress–strain relationships. Therefore,
although the Eurocodes33 state to consider linear stress–strain
relationships and uncracked cross-sections in performance-based
design, lower stresses can be expected after the strain levels
associated with cracking are achieved.

As soon as a due account of the non-linear stress–strain rela-
tionship characterising reinforced concrete is made, a ductility-
oriented design approach becomes essential. The reason for this
is that, when a displacement is imposed to a redundant structural
member, equilibrium is ensured as far as ductility capacity is
sufficient. Therefore, thermally imposed tensile strains can be
accommodated by the structure and the induced stress is sim-
ply derived from the constitutive model. To ensure an adequate

Figure 6.6 – Normalised axial loads for energy piles of L/D = 50 that are restrained at their
head and subjected to heating, with a varying applied mechanical load and constant pile length.
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Energy Pile Cooling

Figure 6.7 presents the normalised axial load, N∗Ed/N
∗
Rd, characterising the most stressed

section of energy piles free to move at their head for varying values of Pd/Qud. Piles of
L/D = 20 and 50 with D = 0.5 m, 0.75 m and 1 m are considered under the combined
action of Pd ≡ Qud(L/D = 20) and ∆Td = γQ∆Tk = −7.5◦, −15◦ and −22.5◦. Figure 6.8
shows the evolution of N∗Ed/N

∗
Rd for energy piles restrained at their head for varying

KslabD/Gsoil(z = 0). Piles of L/D = 50 with D = 0.5 m, 0.75 m and 1 m are considered
under the combined action of the previous mechanical and cooling thermal loads.

The effect of mechanical and cooling thermal loads can involve normalised axial loads
of up to N∗Ed/N

∗
Rd = 2.3. In other words, structural ultimate limit states can be exceeded

due to mechanical and cooling thermal loads.12 A.F. Rotta Loria, M. Bocco, C. Garbellini et al. / Geomechanics for Energy and the Environment 21 (2020) 100153

Fig. 7. Normalised axial loads for energy piles that are free at their head and subjected to cooling, with a varying applied mechanical load and constant pile length.

ductility capacity of the reinforced concrete members, (i) the
resisting axial force of the cross-sections needs to be greater
than the axial force needed to crack them due to potential strain
localisation effects, (ii) the reinforcement has to be characterised
by a large deformation capacity, and (iii) the ratio ft/fy has to
respect a lower bound (where ft and fy are the tensile strength
and yield strength of the reinforcement steel). Condition (i) is
achieved by ensuring a minimum reinforcement ratio that can be
expressed as

ρr = ρr,min >
fct
fy

(3)

where fct and fy are appropriate values of the tensile strength
of concrete and steel yield strength (a conservative value of
fct is the mean value of the axial tensile strength of concrete,
fctm). Condition (ii) is related to the magnitude of the action ef-
fects. Condition (iii) is generally met because standards prescribe
minimum values of the ratio ft/fy.

Once a ductility-oriented design approach is ensured, the key
aspect eventually relies on understanding the level of defor-
mation associated with a given load. This final aspect allows
considering unsatisfactory verifications, such as those previously
encountered, to be satisfactory.

Based on the above, the following aspects can be highlighted
for energy piles:

1. The current predictions of the Eurocodes for the minimum
reinforcement areas of bored piles do not always satisfy
inequality (3). Therefore, the quoted predictions should be

avoided, and the proposed formulation for the minimum
area of longitudinal reinforcement should be employed for
energy piles.

2. The proposed minimum reinforcement area ensures suffi-
cient ductility. Although concrete cracking causes a vari-
ation of axial stiffness along the piles that might involve
phenomena of strain localisation, the strain caused by ther-
mal loads remains within the cracked development stage
for practical temperature variations. This result is quali-
tatively shown in Fig. 9 with reference to the relation-
ship between the design traction axial load Nd and the
normalised axial displacement ∆w/L characterising a re-
inforced concrete energy pile member that has minimum
reinforcement. This relationship is compared with that of
the same member characterised by the simultaneous oc-
currence of cracks (i.e., coinciding with the response of a
single mean cross-section), as well as with the relationship
of the reinforcement steel alone.

3. By comparing the imposed strain levels caused by thermal
loads with the deformation capacity of an appropriately
designed cross-section, it can be realised that structural ul-
timate limit states will never be exceeded by the influence
of these loads, irrespective of whether strain localisation is
developed or not. Cracking may occur in concrete because
of the action of cooling thermal loads. However, a sufficient
ductility capacity is ensured by the proposed design ap-
proach, and structural ultimate limit states cannot occur.
Concrete cracking is an ordinary phenomenon that needs
to be controlled.

Figure 6.7 – Normalised axial loads for energy piles that are free at their head and subjected
to cooling, with a varying applied mechanical load and constant pile length.
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Fig. 8. Normalised axial loads for energy piles of L/D = 50 that are restrained at their head and subjected to cooling, with a varying applied mechanical load and
constant pile length.

Based on the above, thermal loads cannot involve the struc-
tural failure of energy piles; i.e., they cannot exceed structural
ultimate limit states. Therefore, the effects of thermal loads can
be neglected in the design of energy piles at ultimate limit states
from a structural perspective. This statement agrees with the
Eurocodes,33 in which it is specified that ‘‘thermal effects should
be considered for ultimate limit states only where they are sig-
nificant (e.g., fatigue conditions, [. . . ] second order effects [. . . ]).
In other cases, they need not be considered, provided that the
ductility and rotation capacity of the elements are sufficient’’.

5. Concluding remarks

This paper presents an investigation on the role of thermal
loads in the mechanical response of energy piles and the related
geotechnical and structural performance-based design, and pro-
poses a performance-based design approach for such foundations.
The following conclusions can be drawn from the results of this
work:

• Thermal loads involve effects that are unlikely to cause the
failure of energy piles and only characterise in a significant
way the deformation of such foundations.

• The above holds as long as the design approach proposed
for energy piles in this paper is considered. This approach

requires the provision of (i) a design compressive strength
of the cross-sections of energy piles at least equal to the
pile design load capacity and (ii) a minimum longitudinal
reinforcement ensuring ductility.

• Accordingly, the effects of thermal loads can be neglected
in the performance-based design of energy piles at ultimate
limit states, while they should be considered at serviceabil-
ity limit states.

• At serviceability limit states, the following aspects
should be addressed: (i) single and group vertical displace-
ment (e.g., differential and average) limitation; (ii) deflec-
tion and angular distortion control; (iii) compressive stress
limitation; (iv) tensile stress limitation; and (v) crack con-
trol.
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Figure 6.8 – Normalised axial loads for energy piles of L/D = 50 that are restrained at their
head and subjected to cooling, with a varying applied mechanical load and constant pile length.
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6.4.4 Summary

Based on the previous results, heating thermal loads applied in conjunction with me-
chanical loads are unlikely to overcome the design compressive strength characterising
the cross-sections of energy piles; i.e., they are unlikely to exceed structural ultimate limit
states. This result is achieved through the consideration of the design approach related
to the design compressive strength characterising the cross-sections of energy piles that
has been proposed in this work. In contrast, at least in principle, cooling thermal loads
applied in conjunction with mechanical loads may overcome the design tensile strength
characterising the cross-sections of energy piles; i.e., they may exceed structural ultimate
limit states. In practice, the following considerations prove that the above can be avoided
if appropriate design rules are adopted.

The actual behaviour of reinforced concrete is non-linear and characterised by the
appearance of cracks beyond specific strain levels. If the minimum reinforcement is able
to sustain the cracking force, the member does not fail upon the formation of the first
crack (brittle behaviour) and the appearance of cracks leads to stress redistribution and
a decrease in the stiffness of the structure. The considered stiffness involves lower values
of stress compared to those associated with a stiffness related to uncracked cross-sections
and linear stress–strain relationships. Therefore, although the Eurocodes [101] state to
consider linear stress–strain relationships and uncracked cross-sections in performance-
based design, lower stresses can be expected after the strain levels associated with crack-
ing are achieved.

As soon as a due account of the non-linear stress-strain relationship characterising
reinforced concrete is made, a ductility oriented design approach becomes essential. The
reason for this is that, when a displacement is imposed to a redundant structural member,
equilibrium is ensured as far as ductility capacity is sufficient. Therefore, thermally
imposed tensile strains can be accommodated by the structure and the induced stress is
simply derived from the constitutive model. To ensure an adequate ductility capacity of
the reinforced concrete members, (i) the resisting axial force of the cross-sections needs to
be greater than the axial force needed to crack them due to potential strain localisation
effects, (ii) the reinforcement has to be characterised by a large deformation capacity, and
(iii) the ratio ft/fy has to respect a lower bound (where ft and fy are the tensile strength
and yield strength of the reinforcement steel). Condition (i) is achieved by ensuring a
minimum reinforcement ratio that can be expressed as

ρr = ρr,min >
fct
fy

(6.3)



6.4. Structural ULS 205

where fct and fy are appropriate values of the tensile strength of concrete and steel
yield strength (a conservative value of fct is the mean value of the axial tensile strength of
concrete, fctm). Condition (ii) is related to the magnitude of the action effects. Condition
(iii) is generally met because standards prescribe minimum values of the ratio ft/fy.

Once a ductility-oriented design approach is ensured, the key aspect eventually relies
on understanding the level of deformation associated with a given load. This final aspect
allows considering unsatisfactory verifications, such as those previously encountered, to
be satisfactory.

Based on the above, the following aspects can be highlighted for energy piles:

1. The current predictions of the Eurocodes for the minimum reinforcement areas
of bored piles do not always satisfy inequality (3). Therefore, the quoted predic-
tions should be avoided, and the proposed formulation for the minimum area of
longitudinal reinforcement should be employed for energy piles.

2. The proposed minimum reinforcement area ensures sufficient ductility. Although
concrete cracking causes a variation of axial stiffness along the piles that might
involve phenomena of strain localisation, the strain caused by thermal loads re-
mains within the cracked development stage for practical temperature variations.
This result is qualitatively shown in Figure 6.9 with reference to the relationship
between the design traction axial load Nd and the normalised axial displacement
∆w/L characterising a reinforced concrete energy pile member that has minimum
reinforcement. This relationship is compared with that of the same member charac-
terised by the simultaneous occurrence of cracks (i.e., coinciding with the response
of a single mean cross-section), as well as with the relationship of the reinforcement
steel alone.

3. By comparing the imposed strain levels caused by thermal loads with the defor-
mation capacity of an appropriately designed cross-section, it can be realised that
structural ultimate limit states will never be exceeded by the influence of these
loads, irrespective of whether strain localisation is developed or not. Cracking may
occur in concrete because of the action of cooling thermal loads. However, a suffi-
cient ductility capacity is ensured by the proposed design approach, and structural
ultimate limit states cannot occur. Concrete cracking is an ordinary phenomenon
that needs to be controlled.

Based on the above, thermal loads cannot involve the structural failure of energy
piles; i.e., they cannot exceed structural ultimate limit states. Therefore, the effects of
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thermal loads can be neglected in the design of energy piles at ultimate limit states from
a structural perspective. This statement agrees with the Eurocodes [101], in which it is
specified that “thermal effects should be considered for ultimate limit states only where
they are significant (e.g., fatigue conditions and second order effects). In other cases,
they need not be considered, provided that the ductility and rotation capacity of the
elements are sufficient”.
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Fig. 9. Relationships between axial cross-sectional load and normalised axial displacement for energy piles made of reinforced concrete.
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6.5 Concluding Remarks

This paper presents an investigation on the role of thermal loads in the mechanical
response of energy piles and the related geotechnical and structural performance-based
design, and proposes a performance-based design approach for such foundations. The
following conclusions can be drawn from the results of this work:

• Thermal loads involve effects that are unlikely to cause the failure of energy piles
and only characterise in a significant way the deformation of such foundations.

• The above holds as long as the design approach proposed for energy piles in this
paper is considered. This approach requires the provision of (i) a design compressive
strength of the cross-sections of energy piles at least equal to the pile design load
capacity and (ii) a minimum longitudinal reinforcement ensuring ductility.

• Accordingly, the effects of thermal loads can be neglected in the performance-based
design of energy piles at ultimate limit states, while they should be considered at
serviceability limit states.

• At serviceability limit states, the following aspects should be addressed: (i) sin-
gle and group vertical displacement (e.g., differential and average) limitation; (ii)
deflection and angular distortion control; (iii) compressive stress limitation; (iv)
tensile stress limitation; and (v) crack control.
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Conclusions and Perspectives

This thesis provides a theoretical contribution to the understanding of soil-structure
interactions in the field of surface footings and thermoactive deep foundations. It consists
of two main parts: (i) the analysis of the bearing capacity of surface footings subjected to
centred and vertical load in the framework of the theory of plasticity; (ii) the evaluation of
the performance of thermoactive deep foundations considering soil-pile-raft interactions
and material non-linearity.

Before this work, a significant amount of research was available to address the bearing
capacity of soils loaded by rigid footings, the shear capacity of foundations, and the
thermo-mechanical performance of single energy piles and energy pile groups. However,
some aspects worthy of further study were identified:

1. Little effort was made to combine the soil mechanics and structural mechanics
outcomes on the bearing capacity of surface footings.

2. Little knowledge was present to address the effect of a raft cast directly on the
ground on the overall behaviour of thermoactive deep foundations. Therefore, it
was not sure whether a unique optimal design strategy could be adopted for both
mechanical and thermal loads, and at what extent the outcomes for energy pile
groups with a free head or with a rigid cap were meaningful.

3. The structural performance of energy piles was not properly addressed in a dis-
placement based framework, and the ductility capacity of reinforced concrete was
not taken into account, leading to inappropriate provisions for the ultimate limit
state design of such foundations.

Surface Footings

In an attempt to consistently catalogue the large amount of available research on the
bearing capacity of soils, a comprehensive review of the limit analysis theorems was

209
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carried out in chapter 1. Attention was given to the assumption of perfect plasticity,
and to the extended limit theorems for non-associated materials and frictional interfaces.
The relevance of such theorems for real soils and structures was also discussed.

Most of the available knowledge on the bearing capacity of surface footings subjected
to centred vertical load was summarised in chapter 2 and critically judged within the
framework of the limit analysis. Interface roughness, three-dimensional conditions, and
comparison with experimental results were carefully considered. In addition, two new
analytical expressions for the bearing capacity of perfectly rough surface strip footings
resting on a general Mohr-Coulomb material were derived.

In the third chapter, corresponding to a journal article submitted for a special issue of
Computers and Geotechnics, an attempt was made to provide insights on the relevance of
soil-structure interactions on the collapse load of surface footings. A simplified procedure
for the estimation of such effects was proposed and new upper and lower bound solutions
were established for the combined failure of footings with a very slender cross-section.

The main conclusions for the first part are:

• Owing to the path dependency of common yield criteria employed in soil mechanics
limit analysis, the definition of the strength parameters might be dependent on the
application under investigation.

• Extended limit theorems and translational failure mechanisms can be conveniently
used to assess the collapse load of soil-structure interacting systems.

• Theoretical and experimental results support the hypothesis that in practice foot-
ings can be taken as perfectly rough.

• Theoretically estimated and experimentally measured bearing capacities are in
good agreement both for undrained soils and Tresca yield criterion, and drained
soils and Mohr-Coulomb yield criterion when shear strength parameters are es-
timated based on realistic loading paths and strain conditions at the instant of
collapse. Theoretical shape factors derived from the Tresca load function seem
suitable. By contrast, theoretical shape factors based on the Mohr-Coulomb crite-
rion that do not account properly for all the physical processes such as the flow rule
and the strain conditions in the measure of φ, may lead to over-estimated bearing
capacities.

• The classification of surface footings by means of the Kani’s diagram highlighted
that the effect of soil-structure interaction increases with increasing footing cross-
section slenderness.
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• The evaluation of footings collapse load assuming a uniform contact pressure distri-
bution, regardless of the soil properties, is only justified for deep beams. Generally,
such a hypothesis leads to a conservative structural design.

• Previous studies agree on the fact that the contact pressure distribution at the
instant of general shear failure is closely approximated by one of the following
simple shapes: rectangular, triangular, ellipsoidal, and trapezoidal. This can be
conveniently exploited to take into account soil-structure interaction in a simplified
yet rational manner.

Thermoactive Deep Foundations

The fourth chapter, corresponding to the published journal paper [114], presented an
extensive three-dimensional thermo-elastic parametric analysis of piled rafts with energy
piles. The investigated variables included normalised raft thickness (and thus indirectly
raft bending stiffness), normalised piles axial stiffness, soil-to-pile thermal expansion
coefficient ratio, piles spacing ratio, piles slenderness, piles bearing mode, normalised
thermally induced piles axial stress, and normalised thermally induced average and dif-
ferential raft displacements.

Chapter 5, corresponding to the published journal paper [113], presented an analysis
of thermally induced stresses and strains in energy piles. The first part focused on
the derivation of simple mathematical expressions for the computation of axial thermal
stresses in conditions other than the free or clamped bar. A few closed form expressions
that account for head and base partial restraint, and interactions through a rigid cap
were presented. The second part was dedicated to the assessment of the reinforced
concrete post-cracking behaviour on the performance of thermoactive piles subjected to
traction forces. For this purpose, a finite element code that is within the framework
of the load-transfer approach and which includes the tension-chord model for structural
concrete was developed. An extension of the tension-chord model for members subjected
to uniformly distributed axial load, that was not published in the journal paper, was
added as appendix to this chapter.

Finally, the sixth chapter, corresponding to the published journal article [316], pre-
sented an investigation on the role of thermal loads in the mechanical response of energy
piles and the related geotechnical and structural performance-based design, and proposed
a performance-based design approach for such foundations.

The main conclusions are listed below:
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• The ratio between raft mean displacement and equivalent isolated free-standing
pile displacement R, due to piles thermal activation, is a convenient parameter to
estimate the global effect of all interactions. The results showed that it can be
assumed constant with respect to the bending stiffness of the raft. The value of
R is mainly governed by the number of piles np, pile-soil relative stiffness K and
soil-to-pile thermal expansion coefficient ratio X, whereas the pile resisting mode,
i.e. floating or end-bearing, is of slightly less concern. It was shown that R can
be lower than one in configurations with a few piles. Here R might be roughly
bounded between 0.5 and 3.

• Thermally induced differential displacements are strongly related to K and the
raft bending stiffness. The value of X enhances differential displacements in stiff
soils. The results highlighted that for Ec = 30 G Pa and tr/d = 4, differential
displacements are negligible.

• The level of stress within energy piles in piled raft foundations was investigated
through the normalised thermally induced axial stress ς. It was shown that ςmax is
mainly affected by K, and at a less extent by the pile configuration np and slender-
ness L/D. The influence of pile position is analogous to conventional foundations,
where corner and central piles are the most and less loaded, respectively. From
these results, values of ςmax close to one might be expected for compact founda-
tions with slender piles in stiff soils, which might result in concrete cracking under
active cooling.

• An important outcome of this research is the analogy between conventional piled
rafts subjected to vertical load and piled rafts with energy piles. This suggests that
an overall good performance of the foundation can be achieved through a unique
design strategy.

• Reinforced concrete post-cracking behaviour can significantly impact the response
of energy piles, which could be comparable to the effect soil-pile interface behaviour.

• It was observed that the magnitude of the imposed tensile thermal strain can
be higher than |α∆T |. Nevertheless, if the ductile behaviour of the structural
member is ensured, such strains are accommodated by the pile. However, thermal
loads may have an impact if variable axial loads, bending moments or transverse
forces are expected. Moreover, the serviceability limit state may require additional
considerations owing to the cracks opening.
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• Thermal loads involve effects that are unlikely to cause the geotechnical or struc-
tural failure of energy piles and only characterise in a moderate way the deformation
of such foundations. This holds as long as the proposed approach is considered,
which requires the provision of (i) a design compressive strength of the cross-section
of energy piles at least equal to the geotechnical pile design load capacity, and (ii)
a minimum longitudinal reinforcement ensuring ductility.

• Accordingly, the effects of thermal loads can be neglected in the performance-based
design of energy piles at ultimate limit states, whereas they should be considered
at serviceability limit states.

• At serviceability limit states, the following aspects should be addressed: (i) single
and group vertical displacement (e.g. differential and average) limitation; (ii) de-
flection and angular distortion control; (iii) compressive stress limitation; and (iv)
tensile stress limitation (crack control).

Perspectives

This doctoral thesis aimed at providing some insights in the soil-structure interaction
analysis of foundations through a theoretical approach. This purpose was motivated by
the belief that the large amount of available knowledge coming from soil and structural
mechanics is suffering from a lack of integration within a unified framework. For this
reason, the considerable advances achieved in the last decades in these two fields seem
hard to implement in applied soil mechanics. Some possible ideas for future research are
listed hereafter:

• Theoretical work

– Advanced constitutive and mechanical models are available for both the soil
and the structural element behaviour. Their coupling constitutes an oppor-
tunity to better understand the complex interaction mechanisms between the
soil and the structure, both under working and collapse conditions. Refined
finite elements models would enable a better understanding of the influence
of strain conditions and other phenomena on these failures.

– The use of finite elements in the limit analysis offers an unprecedented ca-
pability of bracketing the theoretical collapse load of a number of interesting
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problems. Their use allows a simpler and more general investigation of poten-
tial failure mechanisms and the consideration of particular conditions, such as
tension cut-off and non-linear yield criteria.

– Simplified procedures and code-like formulations would facilitate the tech-
transfer between academia and practice.

• Experimental work

– Laboratory testing on structural members are usually performed at real scale,
whereas this is not the case for soils. Failure mechanisms in soil masses are of-
ten investigated at reduced scale, e.g. centrifuge tests, or by replacing the soil
with another material, e.g. Schneebeli cylinders. This introduces a number of
differences between the real and the tested materials and makes very hard to
study combined failure mechanisms. This is especially the case if structural
failure is characterised by size effects, such as the shear failure of slender con-
crete members without shear reinforcement. The knowledge of soil-structure
interacting systems at failure would benefit from tests executed at real scale.

– Additional experimental programs with detailed measurements that account
for soil-structure interaction are needed to better understand the actual be-
haviour and to validate theoretical results. Newly available measuring tech-
niques could play a fundamental role in the definition of the actual kinematics
of the failure mechanisms. In this regard, the use of optical fibres and digital
image correlation would allow to obtain valuable informations concerning the
development of the structural and soil collapse.

– Equip the reinforcement of energy piles with optical fibres would enable to
estimate the actual crack development and the steel strain. This would allow
to validate the theory of thermoactive piles presented in this research.



A
Hill Type Failure for a General

Mohr-Coulomb Material

The Hill type failure mechanism adopted by Chen [49] is shown in Figure A.1. The
bearing capacity factor Nc he obtained for smooth footings writes as in equation (A.1).
For the same rupture figure and rough interfaces, this coefficient is simply multiplied by
an amplification factor, which does not modify the subsequent considerations because it
approaches 1 as φ goes to 0 (δ ≤ φ and it was also shown previously that the bearing
capacity of a strip footing on a Tresca material is not affected by interface friction).

Nc =
sin ξ cosφ+ sin ζ |cos(ξ − ζ − φ)|

sin
(
ζ + ξ) sin(ζ − φ)

+
α sin ζ

(
e2(π−η−ξ) tanφ − 1

)
sin(ζ + ξ) sinφ sin(ζ − φ)

+
α sin ζ sin η e2(π−η−ξ) tanφ

cos(η + φ) sin(ζ + ξ) sin(ζ − φ)

(A.1)

where
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α =

sin(ζ + ξ − 2φ) if ζ + ξ − π
2 − φ > 0

sin(ζ + ξ) otherwise
(A.2)

Knowing that the optimum angles for limφ→0+ Nc are ζopt = ξopt = ηopt = π/4, one may
substitute these values in (A.1) and compute the limit:

lim
φ→0+

(
2 sin

(
π
4

)
sin
(
π
2 ) sin

(
π
4 − φ

) +
sin
(
π
4

)(
eπ tanφ − 1

)
sinφ sin

(
π
4 − φ

) +
2 sin

(
π
4

)
eπ tanφ

cos
(
π
4 + φ

)
sin
(
π
4 − φ

))
= 2 + π + 2

√
2

(A.3)

The solution of (A.3) is clearly not the one expected. The incorrectness of (A.1) may
also be proved by computing the optimum angles for φ→ 0. In this case it is found that
such values are not equal to π/4, other than Nc 6= 2 + π, which is not possible.

Chen showed that the optimum angles satisfy

ηopt =
π

4
− φ

2

ζopt =
π

2
+ φ− ξopt

(A.4)

Therefore, the optimal geometry of the failure mechanism implies that π/2− ξ = ζ − φ,
which means that v0 = v1 (cf. Figure A.1), and therefore the relative velocity v01 between
the wedge abc and the log-spiral sector bcd is 0. Energy dissipation occurs along failure
lines ac, cd, de (and eventually the interface ab), and within the radial shear region bcd.
Considering only half of the mechanism due to symmetry:

Ḋc, ac = cv1
B

2
sin ξ

Ḋc, de = cv1e
2θ tanφB

2
sin ζ

Ḋc, cd + Ḋc, bcd = 2Ḋc, cd = cv1
B

2

sin ζ

sinφ

(
e2θ tanφ − 1

)
(A.5)

where θ = π − ξ − η = 3π/4− φ/2− ξ is the angle of the logarithmic spiral sector. The
total dissipation is
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Ḋc = cv1
B

2

[
sin ξ + sin ζ

(
e2θ tanφ +

e2θ tanφ − 1

sinφ

)]
(A.6)

The external power due to footing pressure is given by

Pp = pf
B

2
v1 sin(ζ − φ) (A.7)

Finally, the bearing capacity factor writes

Nc =
2

c

Ḋc

Bv1 sin(ζ − φ)
=

sin ξ

sin(ζ − φ)
+

sin ζ

sin(ζ − φ)

(
e2θ tanφ +

e2θ tanφ − 1

sinφ

)
(A.8)

Once again, one may substitute the known optimum values and compute the limit to
show that (A.8) is correct

lim
φ→0+

Nc

∣∣∣
ζ=ξ=π/4

= 1 + 1(1 + π) = 2 + π (A.9)

A numerical optimisation performed with the simplex algorithm available in Python [392]
and imposing φ = 0.001, showed that 2 + π is actually a global minimum for (A.8) over
the domain 0 < ζ, ξ < π/2, and that ζopt = ξopt = π/4.
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a b

c
d

e

v1
v01

v0

v2

vf

ζ ξ
η η

φ φ

φ
φ

(a) Half of the Hill type failure mechanism.

vf

v1

v0

v01

v2

φ

π
2
− ξ ζ − φ

(b) Odograph.

Figure A.1 – Kinematics of the Hill type failure mechanism.



B
Shield and Drucker Failure Considering

Adhesion

The geometry of the Hill type failure mechanism developed by Shield and Drucker [348]
for rectangular footings on a (isotropic homogeneous associated perfectly plastic) Tresca
material is shown in Figure B.1. The kinematics is defined by regions of plane strain
motion.

The contributions to the internal energy dissipation are additive, thus the rate of
energy dissipated at the interface by adherence Ḋa can be added to the solution for
smooth footings. By introducing the normalised adhesion as a fraction of the apparent
cohesion β = a/c, Ḋa writes

Ḋa = cvβ(Sxmp cot θ1 + Scbmp cot θ2)

= cvβ

(
1

2

B

2
d cot θ1 +

1

2

[
L

2
+
(L

2
− d
)]B

2
cot θ2

) (B.1)

where S stands for surface area. Considering the double symmetry, the principle of
virtual velocities implies
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(a) Plane view of one quarter of the fail-
ure mechanism.
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(c) Vertical section through cb.

Figure B.1 – Geometry and velocity field of the failure mechanism.
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N ′c = N ′c,smooth +
4Ḋa

cvBL

= 2(α2 + θ2) + cotα2 + cot θ2(1 + β)

+ ξ
B

L

(√
1 + 4ξ2 sin2 θ1 (α1 + θ1 + cotα1 + cot θ1)

+

√
1 +

sin2 θ2

4ξ2
(α2 + θ2 + cotα2 + cot θ2)

+ α1 + θ1 − 3(α2 + θ2)− 2(cotα2 + cot θ2) + β(cot θ1 − cot θ2)

)
(B.2)

with ξ = d/B. The minimum value of N ′c is found by optimisation of the parameters α1,
θ1, α2, θ2 and ξ for given values of β and B/L.





C
3D Combined Failure for a Tresca Material

The external power resulting from the applied load, the rate of internal energy dissipation
due to the plastic hinge, the interface adherence, and the lateral cylindrical surfaces are
simply obtained by multiplying the expressions for the plane strain problem [281] times
the footing length L. The expression of interface dissipation is based on the assumption,
verified a posteriori, that min{r cos θ0;B/2} = r cos θ0.

The rate of energy dissipation within the soil due to plastic shearing at the end faces
is given by the following expression (cf. Figure 3.13):

Dc2 = 4

∫ θ=π−2θ0

θ=0

∫ ξ=r

ξ=l
dDc2 (C.1)

where l = r sin θ0/ sin(θ0 + θ) (thick black line in Figure 3.13) and dDc2 = cvdA =

cωξ2 dξ dθ with dA denoting the differential of the lateral end surface area (dark grey
rectangle in Figure 3.13). Dissipation Dc2 is expressed as follows:

Dc2 =
4

3
cωr3

(
π − 2θ0 − sin3 θ0

∫ θ=π−2θ0

θ=0
sin−3(θ0 + θ) dθ

)
(C.2)

introducing MR = µcB2, r = ζ0B/ cos θ0, and knowing that the following expression is
fulfilled
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∫ θ=π−2θ0

θ=0
sin−3(θ0 + θ) dθ =

1

4

[
sin−2(θ0/2)− cos−2(θ0/2)

]
+ ln

cos(θ0/2)

sin θ0/2
(C.3)

the objective function (3.26) is obtained.



D
3D Combined Failure for a Cohesionless

Mohr-Coulomb Material

As in the case of a Tresca soil, the solution is obtained by multiplying the expressions
for the plane strain problem [281] times L, and by adding the contribution of the end
regions. For a cohesionless Mohr-Coulomb material, the latter participates in the external
power of the gravity field Pγ . Considering only one quarter of the failure mechanism, the
exercise consists in computing the rate of work done by the gravity force in the region
z ≥ L/2 (cf. Figure 3.15). Considering the bounds of the integration variables:

θ0 ≤ θ ≤ θh
l(θ) ≤ ξ ≤ r(θ)
0 ≤ χ ≤ z(ξ, θ)

(D.1)

where

l(θ) = r0 sin θ0/ sin θ

r(θ) = r0e
(θ−θ0) tanφ

z(ξ, θ) = ξ sinh[(θ − θ0) tanφ]

(D.2)
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Pγ is expressed as follows:

Pγ
4

=

∫ θ=θh

θ=θ0

∫ ξ=r

ξ=l

∫ χ=z

χ=0
dPγ

=
1

4
ωγr4

0

∫ θh

θ0

(
e4(θ−θ0) tanφ − sin4 θ0

sin4 θ

)
sinh[(θ − θ0) tanφ] cos θ dθ

(D.3)

where the differential of the rate of gravitational work is dPγ = γωξ2 cos θ dχ dξ dθ.
Finally, the objective function (3.28) is obtained by considering that r0 = ζ0B/ cos θ0

and MR = ηγB3.



E
3D Combined Failure for a General

Mohr-Coulomb Material

The upper bound solution for the combined three-dimensional failure mechanism and a
general Mohr-Coulomb soil is obtained from the plane strain solution [111] and the three-
dimensional solution for the cohesionless soil (Appendix D). The former is extended over
the entire footing length, the formulation of the gravitational power for the end regions
of the latter remains the same, and the contribution of the apparent cohesion to the
internal energy dissipation Dc on the end faces is added.

Given that velocity vectors make an angle φ with the discontinuity surface, the differ-
ential of energy dissipation is dDc = cωr cosφ dA, where the differential of surface area
in cylindrical coordinates is expressed as follows:
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dA =

√
1 +

(∂z
∂ξ

)2
+

1

ξ2

(∂z
∂θ

)2
ξ dξ dθ

∂z

∂ξ
= sinh[(θ − θ0) tanφ]

∂z

∂θ
= ξ cosh[(θ − θ0) tanφ] tanφ

(E.1)

Considering the integration variables θ and ξ as in equation (D.1), the contribution of
the cohesion is given by the following expression:

Dc

4
= cω cosφ

∫ θ=θh

θ=θ0

∫ ξ=r

ξ=l

√
cosh2[(θ − θ0) tanφ]

(
1 + tan2 φ

)
ξ2 dξ dθ

= cω
r3

0

3

∫ θ=θh

θ=θ0

(
e3(θ−θ0) tanφ − sin3 θ0

sin3 θ

)
cosh[(θ − θ0) tanφ] dθ

(E.2)

Finally, by applying the principle of virtual velocities, rearranging the terms, and
considering that r0 = ζ0B/ cos θ0, MR = µcB2, and G = 0.5γB/c, equation (3.31) is
recovered.



F
Tension-Chord Model for Structural

Concrete Subjected to Distributed Axial
Load

A modified tension-chord model is proposed for reinforced concrete members in the sta-
bilised crack stage and subjected to uniformly distributed axial load q (Figure F.1). The
assumptions of the original tension-chord model remain unchanged, but here it is as-
sumed that the steel is in the elastic domain. The extension into the plastic range is
straightforward.

The axial force profile N is linear owing to the constant axial load q. Following
the sign convention defined in Figure F.1, the difference in axial load between two cracks
spaced by srm is ∆N = −qsrm. Contrary to the original model, the reverse of bond stress
dos not happen at mid-distance between the two cracks. The position of this section,
necessary for the computation of the mean steel strain εs, can be obtained by expressing
the equilibrium at this location:

σsrAs − τb0φπl∗ = (σsr + ∆σsr)As − τb0φπ(srm − l∗) (F.1)

Considering that ∆σsr = ∆N/As, one obtains
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srm = λsrm0

N N + ∆N

q

N N + ∆N

l∗ srm − l∗

τb0

τb0

σsr,min
σs,min

σsr,max

∆σsr

εsr,min
εs,min

εsr,max

Figure F.1 – Simple chord element subjected to uniform axial load distribution, bond stress,
steel axial stress, and steel axial strain distributions.

l∗ =
λsrm0

2

(
1 +

q

τb0φπ

)
(F.2)

The chord element elongation is given by
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∆l =

∫ srm−l∗

−l∗
εs(x) dx

= (εsr,max + εs,min)
l∗

2
+ (εs,min + εsr,min)

srm − l∗
2

=
∆σsr
2Es

l∗ +

(
σsr,max −∆σsr + σsr,max −

4τb0l
∗

φ

)
srm
2Es

=
σsr,max

Es
srm −

2τb0
φEs

l∗srm −
∆σsr
2Es

(srm − l∗)

(F.3)

Finally, the mean steel axial strain writes

εsm =
∆l

srm
=
σsr,max

Es
−
[

2τb0
φEs

l∗ +
∆σsr
2Es

(
1− l∗

srm

)]
︸ ︷︷ ︸

∆εs

(F.4)

Introducing (F.2) into (F.4), and assuming τb0 = 2fct, the following expression is ob-
tained

∆εs =
λ(1− ρ)fct

2ρEs︸ ︷︷ ︸
∆εTS

+
λ(1− ρ)q

2ρφπEs

(
1− q

4fctφπ

)
︸ ︷︷ ︸

∆εq

(F.5)

It is noteworthy that expression (F.5) is not obtained if the original tension-chord
model and a variable axial load are considered. Indeed, the chord element elongation
would be

∆l =

∫ srm/2

−srm/2
εs(x) dx

=

∫ srm/2

−srm/2

(
N(x)

EsAs
−∆εTS

)
dx

=
srm
2Es

(2σsr,max −∆σsr)−∆εTSsrm

(F.6)

and the mean steel strain

εsm =
σsr,max

Es
−∆εTS −

λ(1− ρ)q

2ρφπEs
(F.7)
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By comparing equation (F.7) to equations (F.4) and (F.5), it can be seen that the
original tension-chord model yields a stiffer response, i.e. a smaller mean steel axial
strain owing to a higher value of ∆εq. The reason for this is that in the original model
the mean steel strain εs was not expressed for a differential length dx, but for the finite
length srm. This implies that the integral form in the second equality of equation (F.6)
is not correct, because the integrand is not a local quantity.



List of Symbols

Chapter 1

[S] Discontinuity surface

[v]i Velocity jump vector

α Material parameter of the Drcuker-Prager yield criterion

δ Interface friction angle

δij Kronecker delta

˙εij Strain rate tensor

λ̇ Plastic multiplier

σ̇ij Cauchy’s stress rate tensor

η ratio tanφ∗/ tanφ, or c∗/c

ν Poisson’s coefficient

φ Shear strength angle

φ∗ Shear strength angle on velocity discontinuity lines

ψ Dilatancy angle

σ∗n Normal stress on velocity discontinuity lines

σn Normal stress

σij Cauchy’s stress tensor

τ Shear stress
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τ∗ Shear stress on velocity discontinuity lines

θ Angle between [v]i and Ti

c Apparent cohesion

c∗ Apparent cohesion on velocity discontinuity lines

E Young’s modulus

f Yield function

k Material parameter of the Drucker-Prager yield criterion

Q Applied forces

q Load multiplier

Qc Collapse load

Qfix Fixed applied forces

Ql Lower bound to the collapse load

Qu Upper bound to the collapse load

Qvar Forces that are increased until collapse

S Boundary of domain V

sij Deviator of Cauchy’s stress tensor

Ti Surface tractions resultant vector

ti Surface tractions vector

V Region

vi Velocity vector

Chapter 2

p̄f Normalised average contact pressure at failure

β Parameter

δ Interface friction angle
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η ratio tanφ∗/ tanφ, or c∗/c

γ Soil self-weight

λ Surcharge ratio

ε Residual error

ν Dilatancy angle

φ Shear strength angle for rectangular footings

φ Shear strength angle

φ∗ Shear strength angle on velocity discontinuity lines

φs Shear strength angle for strip footings

φt Shear strength angle in triaxial conditions

ψ Angle defining the elastic trapped wedge beneath the footing

σ∗n Normal stress on velocity discontinuity lines

τ∗ Shear stress on velocity discontinuity lines

a Parameter

B Footing breadth

c Apparent cohesion

c∗ Apparent cohesion on velocity discontinuity lines

ck Estimated coefficient k

G Dimensionless soil weight parameter 0.5γB/c

Kpγ Coefficient of passive earth pressure

L Footing length

N ′ Bearing capacity factor for finite length footings

Nγ Bearing capacity factor due to soil self-weight

Nφ Flow value
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Nc Bearing capacity factor due to cohesion

Nq Bearing capacity factor due to overburden pressure

pf Average contact pressure at failure

q Overburden pressure

R2
DOF,adj Degree of freedom adjusted coefficient of determination

Ri Ratio of parameter i

S Fit standard error

s Suction

sγ Shape factor N ′γ/Nγ

sc Shape factor N ′c/Nc

su Undrained shear strength

Tm m-th Chebyshev polynomial of the first kind

Chapter 3

α Shear span ratio a/d

αcs Shear span ratio at the control section

β Relative interface adhesion adh/c

χ Coordinate

δ Interface friction angle

ε Strain at control depth

η Dimensionless resisting moment MR/(γB
3)

γ Soil self-weight

γc Partial safety factor for concrete strength

κ Coefficient of the power-law failure criterion

µ Dimensionless resisting moment MR/(cB
2)
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ω Angular velocity

φ Shear strength angle

ρ Reinforcement ratio

ρm Mc/MR

θ0, θh Angles defining the geometry of the failure mechanism

θc Strut inclination

ξ Coordinate

ζ Relative distance of half contact pressure resultant a/Bc

ζcc ζc for weightless soil

ζc Contact breadth ratio Bc/B

ζcγ ζc for cohesionless soil

a Shear span (for specimens subjected to point loads is the distance between the
axis of the load and the axis of the support)

acs M/V at the control section

adir Distance of direct support region

B Footing breadth

Bc Contact breadth

c Apparent cohesion

d Effective depth

ddg dg + 16 mm

dg Maximum aggregate size

Ec Concrete Young’s modulus

Es Reinforcement Young’s modulus

fce Effective concrete compressive strength
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fck Characteristic compressive cylinder strength of concrete

fcp Concrete equivalent plastic compressive strength

fct Concrete tensile strength

fy Reinforcement yield stress

G Dimensionless soil weight parameter 0.5γB/c

kc Concrete compressive strength reduction factor

Ki i-th coefficient describing the geometry and kinematics of the failure mechanism

L Footing length

M Bending moment

Mγ Bending moment caused by cohesionless soil

Mc Bending moment caused by weightless soil

MR Resisting moment

Nγ Bearing capacity factor due to soil self-weight

Nc Bearing capacity factor due to cohesion

p Contact pressure

pu Average collapse contact pressure Qu/B

Qu Collapse load

r, r0, rh Radii defining the geometry of the failure mechanism

V Shear force

v Velocity

Vchord Shear force carried by inclination of compression chord

Vc Shear force carried by concrete

Vdir Shear force carried by direct strut action

VE,c Shear force acting at the tip of the critical shear crack
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VR Shear resistance

x Coordinate

x0 Distance of the centre of rotation

xc Depth of plastically compressed concrete

y Coordinate

z Coordinate

Chapter 4

αp Pile linear thermal expansion coefficient

αs Soil linear thermal expansion coefficient

∆T Temperature variation

∆wa:b Displacement difference between ξ = a and ξ = b

δij Kronecker delta

εij Small strain tensor

λ Thermal conductivity

∇· Divergence operator

∇ Gradient operator

νs Soil Poisson’s coefficient

ρ Bulk density

σ Pile axial stress

σij Cauchy’s stress tensor

ς σ/(Epαp∆T ), normalised pile axial stress

ξ raft normalised coordinate

B Raft bending stiffness

cp Heat capacity
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d Pile diameter

Dijkl Tensor of elastic constants

Ep Pile Young’s modulus

Er Raft Young’s modulus

Gs Soil shear modulus

K Ep/Gs, pile to soil relative stiffness

l Pile length

l/d Pile slenderness coefficient

n Porosity

np Number of piles

R RrRs, raft to single pile displacement ratio

Rr w̄r/w̄g, raft to pile group displacement ratio

Rs w̄g/ws, pile group to single pile displacement ratio

s Pile spacing

s/d Pile spacing ratio

tr Raft thickness

w̄g Mean displacement of pile group in the piled raft foundation

w̄r Raft mean displacement

ws Head displacement of isolated pile

X αs/αp, soil to pile thermal expansion coefficient ratio

Chapter 5

α Coefficient of linear thermal expansion

∆L Pile length variation

∆Limp Imposed pile length variation
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∆T Temperature variation

η Coefficient of thermal imposed strain (−εth, imp/α∆T )

σ Axial stress

ε Axial strain

εth, imp Thermal imposed axial strain

A Cross-sectional area

E Young’s modulus

f Applied nodal forces

fe Nodal forces due to elements deformation

fs Nodal forces due to springs reaction

k Truss element axial stiffness

kb Base spring stiffness

kc Cap spring stiffness

kh Head spring stiffness

ks Spring stiffness

L Pile length

lNP Distance of the null point from the pile base

x nodal displacement

xb Base node displacement

xh Head node displacement

Chapter 6

αEP Energy pile linear thermal expansion coefficient

αr Rheological coefficient

σ̄′v Average value of vertical effective stress
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K̄ Average lateral earth pressure coefficient

∆Td Design value of temperature variation

∆Tk Characteristic value of temperature variation

δ′ Pile-soil interface effective friction angle

ε Axial strain

γG Partial load factor for permanent loads

γQ Partial load factor for variable loads

νEP Energy pile Poisson’s coefficient

νsoil Soil Poisson’s coefficient

ψi Combination factors. 0: rare action; 1: frequent action; 2: quasi-permanent
action

ρEP Energy pile bulk density

ρmin Minimum reinforcement ratio to avoid axial brittle failure

ρr Reinforcement ratio

ρsoil Soil bulk density

σ′vb Vertical effective stress at the pile base level

Ab Pile base area

D Pile diameter

dq Depth factor for bearing capacity factor Nq

Ed Design value of actions effect

EEP Energy pile Young’s modulus

fctm Average concrete tensile strength

fct Concrete tensile strength

ft Reinforcement tensile strength
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fy Reinforcement yield stress

Gk Characteristic value of permanent load

Gsoil Soil shear modulus

Kb Stifness of the elastic branch of Frank and Zhao load-transfer curve for pile base

Kh Spring stiffness simulating pile head restraint due to slab

Ks Stiffness of the elastic branch of Frank and Zhao load-transfer curve for pile shaft

L Pile length

N∗Ed Design internal axial force due to compressive mechanical load and cooling

N∗Rd Design tensile axial resistance

Nc Bearing capacity factor due to cohesion

NEd Design internal axial force due to compressive mechanical load and heating

Nq Bearing capacity factor due to overburden pressure

NRd Design compressive axial resistance

Pd Applied load

Qbd Design value of pile base capacity

qb Base resistance for an isolated pile

Qk1 Characteristic value of dominant variable load

Qk Characteristic value of variable load

Qsd Design value of pile shaft capacity

qs Average shaft resistance for an isolated pile

Qud Load capacity Qsd +Qbd

Rd Design value of resistance

sq Shape factor for bearing capacity factor Nq

wm
d Design head displacement due to mechanical load
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wth
d Design head displacement due to thermal load

z Coordinate
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