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Abstract

Brain functionality relies on the neuronal-glial-vascular (NGV) ensemble for energy
support. However, the details of the complex biological mechanisms involved in these
processes and the microscopic interactions between these three components are not yet
fully understood. Astrocytes, an essential component of the NGV ensemble, extend
ramified processes to the vasculature and to neuronal synapses to provide neuronal
energy support, homeostatic control, and multi-directional signaling with the vasculature,
neurons, and neighboring astrocytes. As key links between the components of the NGV
circuitry, the astrocytes are essential for drug delivery in the brain and are involved
in the progression of neurodegenerative diseases. Therefore, comprehensive models of
the neuronal-glial-vascular (NGV) ensemble are essential for understanding the role of
astrocytes in the formation and function of the complex networks within the brain and
its pathological conditions. A complete computational model of this ensemble has not

yet been developed.

This thesis presents the first model of a data-driven digital reconstruction of the neuronal-
glial-vascular (NGV) ensemble at a micrometer anatomical resolution. Combining the
sparse literature data and the few available detailed biological reconstructions, I have
computationally generated the structural architecture of a neocortical NGV circuit
that forms a functional column of the juvenile rat neocortex and consists of neurons,
protoplasmic astrocytes, and the microvasculature, including their pairwise connectivities.
This data-driven approach allows for incremental refinement as more experimental data
become available, new biophysical models get published, and new questions arise. The
NGV circuit is validated against a plethora of literature sources to ensure its biological
fidelity: it successfully reproduces the spatial organization of the astrocytes, their
morphological characteristics as well as their volume occupancy, and the overlap with

their neighbors.

The power of the computational model of NGV lies in its ability to serve as a framework

for addressing long-standing questions that cannot be experimentally investigated due to



viii

the complexity of the microscopic systems and the limitations of current techniques to
observe all components simultaneously. In this thesis, I have performed experiments to
investigate why astrocytes acquire their particular shapes, the organizational principles
of NGV that lead to the observed biological network architectures, and the effect of
astrocytic density on endfoot organization. The circuit’s structural analysis showed that
astrocytes optimize their positions and spacing from each other to provide the vasculature
with a uniform coverage for trophic support and signaling. By increasing the density of
astrocytes in NGV circuits, I discovered a limit in astrocyte’s ability to make perivascular
projections because of the vascular spatial occupancy, which constrains the extent of
astrocyte morphology. Thus, their role in linking vasculature to neurons constrains their
organization via the proportional relationship of density and microdomain shrinkage due

to contact spacing.

By addressing these questions, I demonstrated how this model can serve as an exploratory

tool that provides a window into the complexity of the NGV architecture.



Abstract

Le cerveau repose sur le systéme neuronal-glial-vasculaire (NGV) afin d’assurer son apport
énergétique. Malgré cela, le détail des mécanismes biologiques complexes impliqués dans
ces processus ainsi que les interactions microscopiques liant ces trois composants sont

encore mal compris de nos jours.

Les astrocytes, composant essentiel de 'ensemble NGV, étendent des protubérances
ramifiées au systéme vasculaire ainsi qu’aux synapses neuronales afin de fournir un
soutien énergétique aux neurones. Ils permettent aussi un controle homéostatique
ainsi qu’une transmission multidirectionnelle avec le systéme vasculaire, les neurones
et les astrocytes voisins. En tant que liens clé entre les différents composants du
circuit NGV, les astrocytes ont un role particuliérement important pour I’administration
de médicaments dans le cerveau et sont impliqués dans la progression des maladies
neurodégénératives. Par conséquent, des modéles complets de ’ensemble neuronal-
glial-vasculaire (NGV) sont essentiels afin de comprendre le role des astrocytes dans la
formation et le fonctionnement des réseaux complexes de cellules composant le cerveau
ainsi que ses conditions pathologiques. Cependant, a ce jour, aucun modéle complet de
cet ensemble n’a été développé. Cette these présente le premier modéle de reconstruction
numérique de l’ensemble neuronal-glial-vasculaire (NGV) basé sur des données a une

résolution anatomique micrométrique.

En combinant les données de la littérature et les rares reconstructions biologiques
détaillées disponibles, j’al pu générer un modéle numérique de l'architecture structurelle
b
d’un circuit néocortical NGV. Ce circuit synthétique reproduit une colonne fonctionnelle
du néocortex du rat juvénile et se compose de neurones, d’astrocytes protoplasmiques,
d’une micro-vascularisation ainsi que de leurs connections respectives. Il est & noter qu’un
des avantages de cette approche axée sur les données, est qu’elle permet un aflinement
)
progressif du modéle & mesure que de nouvelles données expérimentales deviennent
disponibles, que de nouveaux modéles biophysiques sont publiés et que de nouvelles

questions se posent. Afin d’assurer la fidélité biologique du circuit NGV produit, celui-ci a



été confronté et comparé a de nombreuses sources littéraires. Il reproduit notamment avec
fidélité les caractéristiques essentielles des astrocytes : leur organisation spatiale, leurs
caractéristiques morphologiques, leur occupation volumique ainsi que le chevauchement
entre astrocytes voisins. Une des forces de ce modéle numérique réside aussi en sa capacité
a servir de cadre pour répondre a des questions plus larges, parfois anciennes, qui ne
peuvent pas étre étudiées expérimentalement notamment en raison de la complexité des
systémes microscopiques, la difficulté pour les techniques biologiques actuelles & observer

tous les composants et leurs interactions simultanément.

Dans cette thése, j’ai aussi réalisé plusieurs études dont le but est de chercher & com-
prendre quels sont les mécanismes qui poussent les astrocytes a acquérir leurs formes
particuliéres, & comprendre les principes organisationnels du systéme NGV menant aux
architectures de réseaux biologiques observées et a estimer 'effet de la densité astrocytaire
sur 'organisation des "endfeet" liens entre les astrocytes et le systéme vasculaire. En
répondant & ces questions, je montre ainsi en quoi ce modéle peut étre utiliser comme un

puissant outil d’exploration, offrant une vue sur la complexité de I'architecture NGV.
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Introduction

“Nature uses only the longest threads to weave her patterns, so
each small piece of her fabric reveals the organization of the entire

tapestry.”

— Richard P. Feynman

As these lines are being read our brain engages neurons and glia to perform information
processing, which eventually increases the neuronal metabolic energy demand leading
to local increases and decreases in the diameter of the proximal vessels (Gordon et al.,
2007) to balance out demand. The complex structural organization of the two dominant
cell classes in the brain, neurons and glia, allows us to think and go on with our daily

routines is known as the neuronal-glial-vascular (NGV) system.

Neurons, the principal subjects of neuroscientific research, are electrically excitable
cells composed of the soma, dendrites, and axons (Fig. 1.1A). Dendrites collect both
excitatory and inhibitory signals, which are integrated into the axon hillock. When the
membrane potential exceeds a certain threshold, an action potential is created, which is
electro-chemically transmitted across the neuron’s axon to other neurons via synapses.
Neuronal synapses are typically formed between the postsynaptic dendritic spines and the
presynaptic axonal boutons. They are classified into excitatory and inhibitory synapses
depending on the effect of the neurotransmitter that is released. The most common
excitatory and inhibitory neurotransmitters are glutamate and y-aminobutyric acid
(GABA) respectively.



2 Introduction

Perisynaptic
Processes

Perivascular
Processes

Astrocytic Endfeet

Figure 1.1 Overview of the neuronal-glial-vascular architecture system. (a) Astrocytes contact and
wrap around synapses and project their perivascular processes to the surface of the vasculature, where
they form endfeet. (b) Astrocytes form anatomically exclusive domains with minimal overlap with
their neighbors. (c) In-silico or digital morphologies are tree structures that connect to a central soma
geometry.

At the time of their discovery, glia were thought to be merely the “glue” of the brain, a
belief that inspired their naming by pathologist Rudolf Virchow (Virchow, 1859). Yet, over
the past decade research has challenged earlier dogma and shown the nature of glia to be
as intricate as that of their well-studied neighbors, the neurons. Astrocytes are classified
into two main categories, fibrous and protoplasmic, according to their morphological
phenotype and anatomical location. This classification is usually attributed to Ramoén
y Cajal, however the distinction had already been observed by neuroanatomists that
preceded him, such as Andriezen (1893) and Kolliker (1896). Fibrous astrocytes extend
straight processes, and they are mainly located in the white matter, while protoplasmic
astrocytes possess spongiform phenotypes and are mainly located in the gray matter. In
the CNS, there are three types of glia: astrocytes, oligodendrocytes, and microglia. This
work focuses on the gray matter and the most well studied and functionally important

glial type: the protoplasmic astrocyte.

Protoplasmic astrocytes radially extend between five and ten primary processes (Cali
et al., 2019; Damoiseaux and Greicius, 2009; Di Benedetto et al., 2016; Moye et al.,
2019; Tsai et al., 2009; Wilhelmsson et al., 2006), which ramify progressively into finer
and finer branches, uniformly occupying their entire spatial extent (Bushong et al.,
2002, 2004; Ogata and Kosaka, 2002), which can reach an edge-to-edge distance up to
60 um (Medvedev et al., 2014; Ogata and Kosaka, 2002). This spongiform morphology

forms anatomically exclusive regions with neighboring astrocytes, covering the entire



neuropil in a tiling organization that is known as microdomains (Bushong et al., 2002,
2004)(Fig. 1.1B), with six to fifteen neighbors each (Xu et al., 2010). They form a thin
overlapping interface in their periphery where they adhere to their neighbors, establishing
sub-cellular highways via process-to-process gap junction channel connections (CX43,
CX30) (Rohlmann and Wolff, 1996; Wolff et al., 1998). Neighboring microdomains form
a minimally overlapping interface of interdigitating processes that cover approximately
5% of the neighboring astrocytic territories and has been observed across brain regions
and species (Bushong et al., 2002, 2004; Halassa et al., 2007a; Hara et al., 2017; Khakh
and Sofroniew, 2015; Nimmerjahn et al., 2004; Sofroniew and Vinters, 2010). Fine
astrocytic leaflet-like processes, known as perisynaptic processes (PAPs), wrap around the
presynaptic and postsynaptic nerve terminals of synapses forming tripartite units (Araque
et al., 1999; Halassa et al., 2007a) and it has been reported that one rodent astrocyte is
in contact with as many as 100,000 synapses (Bushong et al., 2002). One to five thick
processes project to capillaries, arterioles and venules, apposing firmly on their adluminal
surface (Abbott et al., 2006; Schmechel and Rakic, 1979), forming rosette-like structures
(Kacem et al., 1998), which cover more than 60% of the vasculature surface (Korogod
et al., 2015). Astrocytic endfeet, pericytes, the endothelial tube, and its basement
membrane are the main components of the blood-brain-barrier (BBB) composition. The
BBB combined with astrocytes and neurons is known as the neurovascular unit (Serlin
et al., 2015; Woolsey et al., 1996).

At the synapse level, protoplasmic astrocytes maintain synaptic fidelity by preventing
neurotransmitter accumulation and spillover. Glutamate or GABA, after being released
from the presynaptic terminal, they are quickly cleared from the interstitial space
(Schousboe et al., 2013) by PAPs, which convert them into the non-neuroactive glutamine
(Sonnewald and Kondziella, 2003; Waagepetersen et al., 2005) and then shuttle them
back to the presynaptic terminal where they are transformed into glutamate (glutamine
synthetase pathway; Van den Heuvel et al. (2004)) in glutamatergic neurons or further
metabolized into GABA (glutamate decarboxylase pathway; Martin and Rimvall (1993))
in GABAergic neurons. Disruption or abnormal function of this mechanism has been
reported in a number of disorders, including epilepsy (Petroff et al., 2002), amyotrophic
lateral sclerosis (Rothstein et al., 1992, 1995) and Alzheimer’s disease (Hynd et al., 2004;
Tannenberg et al., 2004). Astrocytes also regulate the excess K* released by neuronal
activity, a process known as K* buffering, which is achieved via two main mechanisms:
K* uptake and K* spatial buffering (Amédée et al., 1997). K* uptake is achieved by
temporary uptake of K* by adjacent astrocytes, accompanied by the influx of anions (e.g.

C17) and/or the efflux of cations (e.g. Na*) to preserve electroneutrality, and subsequent
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release of K* back into the extracellular space (Henn et al., 1972; Hertz, 1965). K*
spatial buffering is the distribution of K* to far regions with low K* concentration via the
astrocytic syncytium (Orkand et al., 1966), which has the tendency to remain isopotential
due to the gap junctional coupling of tiling microdomains (Ma et al., 2016). Disruption in
the normal K* clearance mechanisms has been linked with disorders such as Alzheimer’s
disease (Olabarria et al., 2010), Rett syndrome (Turovsky et al., 2015) and Huntigton’s
disease (Tong et al., 2014).

Unlike neurons, astrocytes are not electrically excitable cells. They exhibit a different
form of excitability, which relies on the dynamics of the free cytosolic calcium (Cornell-Bell
et al., 1990). For instance, at glutamatergic synapses, the release of glutamate from the
pre-synaptic terminal activates G-protein-coupled receptors in the astrocytic membrane
(Panatier et al., 2011; Wang et al., 2006). This activates phospholipase C (PLC) and
the generation of inositol triphosphate (IP3), which induces Ca?* mobilization from ER
stores by binding to IP3R receptors (Golovina and Blaustein, 2000; Sheppard et al.,
1997). IP3 may inter-cellularly transport to neighboring astrocytes via gap junctions,
and activate IP3Rs and Ca?* release, which may regenerate IP3 (Ullah et al., 2006) and
continue the cycle. Increases of astrocytic Ca?* concentration have been found to trigger
glutamate release to the extracellular space (Bezzi et al., 1998; Parpura et al., 1994).
In general, astrocytic secretion of gliotransmitters (amino acids, peptides and ATP) is
achieved by exocytosis (Bergersen et al., 2012; Bezzi et al., 2004; Jorgacevski et al., 2017),
diffusion through connexin hemichannels and pannexins (Bergersen et al., 2012; Stout
et al., 2002) and a wide variety of transporters (Verkhratsky and Zorec, 2020). With all
this sophisticated signalling machinery at their disposal, involvement of astrocytes in
synaptic plasticity is inescapable (Allen and Barres, 2005; Lopez-Hidalgo and Schummers,
2014).

Signaling at the tripartite synapse and throughout the syncytium are not the only
signaling systems that astrocytes mediate. ICWs can propagate through the perivascular
process to the endfoot compartment in which Ca?* may generate arachidonic acid
(AA) from phospholipase Ay (PLA3) (Farooqui et al., 1997). AA may subsequently be
converted to epoxyeicosatrienoic acids (EETs) and prostagladins (PGs), which along
with the release of K* contribute to vasodilation (Mishra et al., 2011). AA may also
diffuse into smooth muscle cells or pericytes and be converted to 20-HETE to induce
vasoconstriction (Imig et al., 1996). Increased local metabolic demand due to neuronal
activity results in local blood flow increase (Bonvento et al., 2002). Glucose crosses the
BBB and into the astrocytic endfeet via glucose transporters (GLUTs; Leino et al. (1997))



and is rapidly distributed throughout the astrocytic syncytium (Beckmann et al., 2019;
Parpura et al., 2012). Glucose may either be stored as glycogen for future metabolic
demands (Brown, 2004; Brown and Ransom, 2015) or be converted to lactate, which
is then shuttled into neurons via monocarboxylate transporters (MCTs; Halestrap and
PRICE (1999)). Neurons then convert it to pyruvate and subsequently to ATP in the
mitochondria (Magistretti and Allaman, 2015; Magistretti et al., 1999). This energy
provision model is known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH;
Pellerin and Magistretti (1994)). Due to the critical role of the BBB and the neurovascular
unit in brain, disruption or disintegration of the neurovascular structural integrity, such as
changes in vasculature coverage and BBB disintegration, have been linked with disorders
such as major depressive disorder (Najjar et al., 2013; Rajkowska et al., 2013; Rial et al.,
2016) and Alzheimer’s disease (Zlokovic, 2011).

These are some of the key physiological mechanisms of NGV function, driven by the
anatomical organization of the NGV system. There are numerous studies on the multi-
directional signaling among neurons, astrocytes, and the vasculature; however, the NGV
interactions are still poorly understood. Brain homeostasis, NGV synaptic modulation and
plasticity, energy provision and on-demand support, and high-level information processing
requires a detailed understanding of the structural NGV foundations that is currently
missing. Studying each mechanism by dissociating structural and functional components
provide only a restricted view of the pathology in question. Neurodegenerative disorders
arise from the interaction of multiple pathophysiological mechanisms on the network level,
rather than isolated processes in a specific locale (Braak and Braak, 1997). However,
large-scale analysis of connectivity is difficult to do, limited by the resolution of the
equipment and the quality of the experiment (Sharma et al., 2009). Thus, computational
models of brain anatomy and physiology may assist in the detailed understanding of
the structural and functional foundations that give rise to the observed healthy and

pathological epiphenomena.

Computational neuroscience has made astounding progress since the creation of the first
data-driven biological neuronal model in the 1950s by Hodgkin and Huxley (Hodgkin
A. L. and Huxley A. F., 1952) and the subsequent introduction of multi-compartmental
modeling of digitally-reconstructed neuronal morphologies. A digital reconstruction of a
morphology is a 3D trace, made with computer-microscope interfaces or from skeletoniza-
tion of image stacks (Donohue and Ascoli, 2011; Halavi et al., 2012). The branching
morphology is represented as a sequence of segments (truncated cones) that capture the

X, Y, Z coordinates, cross-sectional diameter, and connectivity links. Biologically realis-
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tic morphologies allow for compartmental biophysical models, capturing the non-linear
dynamics arising from the distribution of ion channels throughout their compartments.
The branching structure of neuronal morphologies is believed to play an important role
in the computational tasks of the neuronal networks (Cuntz et al., 2007; van Elburg
and van Ooyen, 2010). Similarly, the branching topology and geometry of astrocytic
morphologies are important for driving the propagation of calcium-induced waves that
have been found to contribute to information processing (Araque et al., 2014; Cornell-Bell
et al., 1990; Hamilton and Attwell, 2010; Volterra and Meldolesi, 2005). However, the
densely ramified nature of protoplasmic astrocytes leads to digital reconstructions that
are but a fraction of the complete morphology, with the most commonly used marker,
GFAP, revealing only the main cell skeleton (Kulkarni et al., 2015). Electron microscopy
(3DEM), on the other hand, can provide the ultrastructure required for capturing the

nanoscopic astrocytic processes but at the cost of low throughput (Cali et al., 2019).

In this thesis, I present a large-scale algorithmic approach with which I generated for the
first time the structural architecture of the NGV components in the gray matter of the
P14 rat neocortex: 88541 neurons, 14648 protoplasmic and the cerebral microvascula-
ture, including their pairwise connectivities for the P14 rat neocortex at a micrometer
anatomical resolution. I used sparse data that is distributed across numerous studies to
build a digital reconstruction (see table 2.1 for a summary of model parameters) that is
consistent with a vast body of literature and therefore allows reasonable predictions of
numbers and locations of astrocytes and astrocytic processes supporting different neurons,
spatial domains of astrocytes and their overlapping regions, as well as the number of
locations of end-feet connecting to the vasculature by each astrocyte and together. The
digital reconstruction of the NGV ensemble provides a resource and foundation for
understanding the anatomical principles and geometric constraints for interpretations of

their functional role in supporting brain function.

In the first chapter, the NGV circuit building algorithms are presented. The NGV circuit
was generated by first populating an existing neuronal circuit (Markram et al., 2015) with
the cerebral microvasculature and astrocytic somata, the position and dimensions of which
were determined with a novel algorithm that reproduced spatial density and dispersion,
avoiding collisions with other somata or the vasculature. The placement model used
cortical cell densities from Appaix et al. (2012), nearest neighbor distribution profiles from
Lopez-Hidalgo et al. (2016) and soma dimensions distribution was fit from a collection
of radii measurements of various studies (Bagheri et al., 2013; Bindocci et al., 2017;
Bushong et al., 2004; Cali et al., 2019; Lee et al., 2016; Puschmann et al., 2014). Next,
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the cortical space was partitioned into tiling polygons, which represented the astrocytic
microdomains, providing an overlapping coverage of the neuropil equal to 5% of each
domains volume (Bushong et al., 2002, 2004). Using the microdomains as the reachable
space for each astrocyte, I developed methods to create connections to the vasculature
(endfeet) and neuronal synapses. The surface geometry of the endfeet connections was
then reconstructed by growing 2D meshes on the vasculature’s surface. Following the
astrocytic morphology synthesis, which is addressed in chapter 2, the syncytial (glial-glial)
connectivity was established from the neighboring astrocytes’ touches. NGV connectivity
model was fit on data of linear density of astrocytic endfeet per vasculature pm (McCaslin
et al., 2011), number of endfeet per astrocyte (Cali et al., 2019; Moye et al., 2019) and
synapse fraction subsets from Witcher et al. (2007). Endfeet reconstruction target area
and thickness distributions were fit on data from Cali et al. (2019) and Wang et al.
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(2020). The NGV circuit was validated against numerous literature sources to ensure
its biological fidelity. Validation was performed on cell density, dispersion and soma
dimensions, microdomain volumes, number of perivascular and perisynaptic branches,
soma to soma distance distributions between neurons and astrocytes, endfeet surface

area, thickness distribution, and path distance to the vasculature.

In the second chapter, I addressed the issue of the small number of astrocytic recon-
structions by developing a novel morphology synthesis algorithm, which combined the
branching topology (Kanari et al., 2018) from experimental reconstructions (Cali et al.,
2019) with an adaptation of the space colonization algorithm from the work of Runions
et al. (2005) on trees. The new algorithm used neuronal synapses as attraction seeds
to compute branching directions and all the circuit building’s geometrical constraints.
Topological and geometric properties were extracted from experimentally reconstructed
astrocyte morphologies and subsequently encoded into persistence barcodes. Each bar-
code contained the start and end path distance of the branch from the neuronal soma,
taking into account the branches’ topology in the tree. The first step in the synthesis
process was the generation of the trees’ starting orientations, based on the microdomain
orientation and equidistribution of processes. The tip of each section was influenced by
three factors: targeting, history, and closest synapse influence. Branching of a growing
section was determined from the persistence barcode, which was selected randomly for
each tree from the pool of available barcodes, and the branching directions were computed
from the attraction of synaptic point cloud, repulsion from closest morphology points in
combination to the type of the process. Perivascular processes were additionally attracted
by the endfoot target, which dominated their growth until they reached their targets.
Finally, radii were distributed on the skeleton trees, encoding the branches’ segment
volumes, accompanied by a second number, the perimeters, which independently quanti-
fied the respective segment surface area (non-conical approximation). The topological
synthesis was validated for its ability to synthesize accurate astrocyte morphologies from

a single barcode and from a pool of barcodes embedded in the circuit context.

In the last chapter, I explored the predictive power of the NGV circuit by investigating
the compositional and organizational principles that govern the underlying biological
complexity. First, I analyzed the co-localization of astrocytic somata, large vessels,
capillaries, and endfeet targets on the vasculature’s surface in search of the dominating
element in the endfeet organization. Then, I extracted the total lengths, surface areas,
and volumes of the segments of neurons, astrocytes, and the vasculature to explore

the composition of geometrical features in the neocortical space and their relationship.



Focusing around the central player of the NGV, the astrocyte, I extracted statistics
surrounding its incident connectivities, opening a window to the NGV network organiza-
tion. Finally, the NGV model exploration was extended to the generation of multiple
circuits of increasing densities to investigate the astrocyte numbers effect on the endfeet

connectivity and the microdomain packing.

The NGV framework provides the infrastructure to build NGV circuits, the parameters
of which may represent different animals, ages, experiments, and pathologies. Thus, it
provides a resource for investigating the interactions between neurons, astrocytes, and
the vasculature, as a whole, without isolating its functional components and interfaces.
A large-scale anatomical reconstruction of such a complex organization has not been
possible before; however, it is essential to understand how our brain works in health and
disease. Most importantly, the NGV framework enables the simulation of the physiology
throughout an entire region, embedded in its actual cortical space with a biologically
realistic spatial architecture, and offers the possibility to shed light on unknown questions

about the microscopic interactions in the brain.






Building the NGV network

architecture

2.1 Digital microvascular network skeleton and sur-

face meshing

A digital reconstruction of a rat cerebral vasculature dataset was produced by Reichold
et al. (2009). Cylindrical blocks of the rat’s somatosensory cortex vasculature were
scanned using synchrotron-based X-ray tomographic imaging at the TOMCAT beamline
(Swiss Light Source). High energy beams (20KeV) irradiated the tissue with a resolution
of (700 nm), resulting in grayscale image stacks, which were segmented into binary images
and subsequently converted into midlines (skeleton) using custom software for artifact

removal and skeletonization.

The dataset consists of point samples linked together with edges (Fig. 2.1A). Each point is
acquired with a diameter which represents the width of the cross section. Two consecutive
points constitute a segment in the morphology (Fig. 2.1B), and consecutive segments
form a morphological section (Fig. 2.1B). There are two representations of the skeleton
dataset that are encountered: The point representation, in which a node is a single
point in the morphology and an edge links two points, and the section representation, in
which an entire section is clustered into a node and the edges linking sections together.
Depending on the nature of the algorithm one or the other representation may be

favorable for efficiency or memory consumption. Geometric discontinuities due to the
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A B C D

Samples Segments Sections

Skeleton
Outline

Figure 2.1 Vasculature meshing (A) The vasculature dataset consists of points with a diameter linked by
edges. (B) Two consecutive points linked by an edge are defined as a segment. (C) A chain of consecutive
points between two forking points is defined as a section. (D) Generated surface mesh with overlaid
triangles. (E-F) Original vasculature dataset mesh.

reconstruction process that resulted in small gaps in the skeleton were connected based

on the closest distance between components (see supplementary 6.3).

In the NGV framework, I distinguish between two types of datasets: the vasculature
skeleton and the surface mesh. Although the majority of the steps in the circuit
building pipeline used the skeleton of the cerebral microvasculature, the endfeet surface
reconstruction required a more detailed representation of the surface geometry. Thus,
starting from the skeletonized dataset we generated a triangular discretization of the
surface geometry with variable resolution. The surface mesh is generated based on implicit

structures (Fig. 2.1D), known as meta-objects (Oeltze and Preim, 2004), allowing for
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the creation of highly-detailed meshes of vasculature datasets (Fig. 2.1E,F) (Abdellah
et al., 2020).

2.2 Voxelized virtual brain atlas with 3D density pro-
files
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Figure 2.2 The creation of a brain atlas virtual circuit for the NGV requires the co-localization of seven
microcircuits (A) and the microvascular dataset (B). The bounding box for the NGV circuit is the
co-occupied space for both neuronal and vascular datasets (C,D). (E) 1D astrocyte frequency profile.
(F) Rectangular grid with astrocyte counts, interpolated from the frequency profile

To create an NGV circuit, the extend of its spatial embedding, i.e. its bounding region,
must be determined. An atlas is a voxelized region equipped with circuit building essential
information, such as brain region annotations, densities, cell types etc. (Ero et al., 2018).
I manually constructed a virtual 3D atlas for the NGV, due to differing coordinate

systems of the vasculature and the neuronal mesocircuit datasets. The microvasculature
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dataset was defined in a coordinate system where the z coordinate corresponded to the
cortical depth of 1453 um. The neuronal mesocircuit (Markram et al., 2015), which
was comprised of seven microcircuits (Fig. 2.2A) hexagonally tiled, extended down to
deep cortical layer 6 at 2082 pm across the y axis. Performing translation and rotation
transformations I aligned the vasculature dataset to match the neuronal coordinate
system, ensuring overlapping medial axes across y (Fig. 2.2C) and aligned the tops of
both datasets at the pia. Due to the difference in height (vascular 1453 pm vs. neuronal
2082 um), layer 6 was omitted from the NGV circuits, because there was no vasculature
wiring covering that region. The spatial intersection of the aligned datasets (Fig. 2.2D)
resulted to a bounding region of 954 pm X 853 pm X 1453 pm, which was used throughout

the framework.

The voxelized atlas was constructed as a grid spanning the bounding region, in which
the voxel y dimension (depth) was chosen to reflect the discretization resolution of the
input frequency profile, which was 5pum. A cell frequency profile is an 1D histogram
of the number of astrocytes per mm? binned across the cortical depth (Appaix et al.,
2012). Not having bin dimensions available for the lateral dimensions, x and z voxel size
was arbitrarily selected to be 10 pm. The astrocytic frequencies were mapped to the 3D
voxelized grid, by assigning a constant frequency on the xz plane and the profile values
to the voxels in the y-direction (Fig. 2.2F).

2.3 Context aware placement of somata

An unordered set of positions (point pattern) p = {p1, p2, ..., pn} can be modelled as
a realisation of the Gibbs spatial point process P with a general probability density
function (Dereudre, 2019; Ruelle, 1999):

f®)= k() h(p) = exp (<U(p)) 2.1

where h (p) is the unnormalized density, U denotes the energy or potential of the point set
interactions, and Z is a normalizing constant. Astrocytic somata in the neuropil exhibit a
non-uniform laminar organization which can be modeled via a first order intensity A(p;),
which expresses the number of somata per unit of volume. Their contact spacing behavior
on the other hand can be modeled as a second order pairwise repulsion interaction

r(||p,~ - pj||) for every i # j. Thus,
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wm:ZLMM+ZMM—MM (2.2)

i=1 J#

In order to simplify the combinatorial nature of the pairwise interaction we will instead
switch to a repulsive influence exclusively from the nearest neighbor. Furthermore, a

simple 1/r repulsion will be used:
> o=l ~r [l - ) =7 e

assembling all the above the unnormalized Gibbs density of the spatial point process for

astrocytic somata point patterns has the form:

e (p) = exp ) (ﬁ(pi) - " ) (2.4)
i=1

minjz |[pi = pj|

We can now add further constraints on the soma generation by creating hybrid unnormal-
ized densities. A constraint can be thought as a conditioning event ‘A which is expressed
by the indicator function h; = 1{p € A}. Conditioning events include out of the bounding
box restriction and overlapping with other geometrical elements, such as astrocytic or

neuronal somata and the vasculature.

The resulting hybrid unnormalized density:

k
h(p) = he(p) | | h:(p) (2.5)
i=1

For the overlap is not sufficient to check if the placement of a new point collides with
another geometric entity. An astrocytic soma has volume, thus we can interpret it as a
sphere of a certain radius. When a placement trial is taking place, the radius is sampled
from a truncated normal biological distribution and then the check for the overlap is
performed.
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In order to simulate the generation of a point pattern we need to form the Papangelou
conditional intensity, which is the ratio of the density function with a new position u

and without it:

ey 2 L@UD) AU
PR f (p) h (p)

It is evident that the normalizing constant is not included in this formulation.
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Figure 2.3 Placement steps: Green circles represent valid soma placement trials, red the invalid and
gray the accepted ones from the previous step. Similarly, green and red lines represent valid and invalid
nearest distance evaluations respectively. The continuous gray line represents the geometry of a vessel,
which crosses the grid and influences placement. (A) The astrocytic density is converted into astrocyte
counts, which are reduced when a soma is placed into the respective voxel group. (B) A placement trial
is rejected if it takes place into a maxed-out voxel, or if it collides with other geometrical entities. (C)
Placement finishes when either all the voxels have been filled or there is no available space to put more
somata.

The placement algorithm starts by clustering the voxels intro groups G; of equal intensity

d; and the total count of the cells in each group Ng, is estimated:

NG, = Nyeg; X Vyoxel X di (2.7)
Each time a soma is placed the respective voxel count is reduced by one (Fig. 2.3A-B).
For each placement trial, a position is chosen uniformly from the non-occupied voxels
and a radius is sampled from a normal distribution with mean u = 5.6 and standard
deviation o = 0.7, extracted from literature data. If there is no collision of the trial sphere
with the vasculature skeleton, neuronal somata or already placed astrocytic somata,
the energy functional is evaluated and the trial is accepted or rejected according to the
Metropolis-Hastings algorithm. If not accepted, a new position / radius combination is

generated and the procedure repeats until all voxels have reached their total numbers.
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The algorithm finishes when all cell counts have been filled or there is no available space
left (Fig. 2.3C).

2.4 Generation of microdomain organization

Although astrocytes are a vastly heterogeneous population derived from embryonic(Ge
et al., 2012; Magavi et al., 2012) and postnatal progenitors (Gressens et al., 1992; Levison
and Goldman, 1993) (Clavreul et al., 2019), their final morphological types mainly depend
on the interactions with the surrounding environment and especially with their astrocytic
neighbors. They evenly space with each other via a repulsion process known as contact
spacing (Distler et al., 1991), and do not seem to macroscopically interact with neuronal
structures (Chang Ling and Stone, 1991; Tout et al., 1993). Formation of microdomains

leads to a non-uniform nearest neighbor distance distribution (Lanjakornsiripan et al.,
2018; Lopez-Hidalgo et al., 2016).

Microdomains were generated as a geometrical abstraction of the available bounding
space of an astrocyte. In biology, the domain arises from the extent of the morphology
(Bushong et al., 2002; Distler et al., 1991), while in the in-silico model the bounding
domain was generated first, and the morphology was afterward grown in its available

space.

Given a set of points {p;}*, (generators) that belongs to a closed set Q € RY the Voronoi
volume V; that corresponds to the generator p; is defined by (Du et al., 1999):

V; = {p €Q:di(p,pi)) <dj(p,pj),VJj# i} (2.8)

where d; is a distance metric. In the conventional Voronoi diagram the euclidean distance
is used, however variations and generalizations have been made (Dobrin, 2005), therefore

it is important that we choose the appropriate model that is required by our problem.

The Voronoi regions {Vi}le constitute a tessellation of Q if V; ¢ Q for i = 1,...,k,
VinV; =g fori# j, and Ul’.‘zl V; = Q. A bisector b is defined as the equidistant boundary
between two generators p; and p;:

b(pi,pj) ={p:di(p,p) =d;(p.p;), Vj #i} (2.9)
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In order to account for the specific nature of our problem, a way for each generator point
to influence its neighborhood is required due to the fact that astrocytic volumes exhibit
variability. Thus, instead of point generators we introduce spherical ones {si}f‘=1 = (pi,ri)
where the squared distance from a point p to s; and the respective Voronoi (Laguerre)

area L(s;) will be:

si(x) =||x —p,~||2 — rl-2 L(s;) = {x csi(x) <sj(x), Vj # i} (2.10)

(a) (b)

Figure 2.4 (a) Power distances dpoy and d/,

how for the circles s; = (p;, ;). (b) An example power diagram
for seven generator circles

which can be interpreted as the squared length of the tangent on the sphere s; with radius
r; given through the Pythagorean theorem (Figure 2.4 (a)). By extension it is evident
that if the pairwise powers are equated the bisector between two generator spheres s;
and s;, b(s;,s;) is always a hyperplane. An interesting aspect of the power diagram
(Aurenhammer, 1987; Toth, 1977) that was described above, is that two sphere generators
that intersect lead to a bisector that goes through their intersecting points (Fig. 2.4
(b)). Astrocytic domains behave in a similar manner by competing for extending their

spatial coverage but pushed back by the influence of neighboring astrocytes.

In my framework, the Laguerre tessellation of the microdomains is computed using the
Voro++ library (Rycroft, 2009) on the positions and radii of the astrocytic somata,
generated during the cell placement step (see section 2.3). The microdomains data
structure consists of three datasets: points, triangles and neighbors. Querying the data
structure allows for the extraction of the surface mesh of a domain (points, triangles)

and its neighbors as calculated from the tessellation algorithm.
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To mimic the overlapping nature of the microdomains the polygons of the resulting
tessellation were uniformly scaled and the overlap was calculated using Monte Carlo
integration. For P14 rats this overlap is approximately 5% of the domain volume (Ogata
and Kosaka, 2002). The rest of the sections will refer to the overlapping microdomains,

whenever they are mentioned.

2.5 NGV Connectivity

Three types of connectivities are reconstructed via the NGV circuit building pipeline:
gliovascular connections (astrocyte-vasculature endfoot), the neuroglial connections
(astrocyte-neuron tripartite synapse) and glial connections (astrocyte-astrocyte gap
junctions). The generated microdomains were used to specify the accessible space for
each astrocyte, allowing queries for the geometrical elements withing their boundaries.
To optimize the spatial search queries of the point clouds, R-Tree (Beckmann et al., 1990)

spatial data structures were built for the neuronal synapses and the vasculature skeleton.

Gliovascular

A B C

Figure 2.5 Algorithmic overview of gliovascular connectivity. (A-B) Potential targets are distributed on
the vascular skeleton. (B-C) The targets included in the astrocyte microdomain are grouped by their
section id. (D-E) If the number of endfeet is smaller that the number of components, the closest vertex
from the closest components is assigned to them. (F) Otherwise, after assigning the closest vertex from
each component, the algorithm iterates over each group finding a vertex that maximizes its distance to
the closest selected target.
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A set of points P = { p1, p2, ..., pn } was distributed on the skeleton of the vasculature (Fig.
2.5A,B), according to a linear frequency of 0.17 pm~! (McCaslin et al., 2011), representing
potential endfeet locations. For each astrocyte, a spatial query was performed using the
microdomain boundary to find the potential points included in the respective domain.
The selection of the actual endfeet targets from the potential point cloud of endfeet
locations is realised via the reachout algorithm, which draws a number for the endfeet
number N, ~ N (tte, 02), where (u,,o,) are input parameters. The reachout algorithm
first generated Ng groups, clustering the points by the vasculature section (for vasculature
morphology definitions see section 2.1) they belong to , creating one group per section
(Fig. 2.5C). The groups are then sorted by distance of the soma x; to the closest point
in each group. If N, < Ng, then the closest point in the closest components are assigned
as endfeet targets (Fig. 2.5D). Otherwise, the points are selected one at a time from
each group, starting from the closest point of the closest group. When one point has
been selected from each group, the algorithm iterates again over the groups selecting
the points that maximize the distance to the already selected nearest neighbor (Fig.
2.5E,F). In the end, from the lines that connect the soma to the selected endfeet target
locations, the intersection with the surface of the vasculature is calculated, generating

the respective endfoot target on the surface of the vasculature.

Based on literature data, each astrocyte was assigned a number of endfeet, ranging from
1 to 5 (Moye et al., 2019). The optimization choices of the reachout algorithm were based
on observations on experimental astrocyte reconstructions: endfeet processes minimize
their distance to the vascular site (Kacem et al., 1998), maximize the distance to nearby
endfeet sites and target different branches (Cali et al., 2019).

Neuroglial

The centroids of the synaptic connections were calculated by averaging the presynaptic
and postsynaptic terminal locations for each synapse present in the neuronal circuit
(Markram et al., 2015) (Fig. 2.6A). For each astrocyte, a spatial query was performed
using the microdomain boundary to find the subset of the synapse centroids included
in the respective domain (Fig. 2.6B). From these, a 60% random subset was selected
to match the experimental observations (Reichenbach et al., 2010) (Fig. 2.6C). The
synapse points were used as attractors for the astrocyte morphogenesis algorithms (see
section , Fig. 2.6D).
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A B C

Figure 2.6 Algorithmic overview of the computation of neuroglial connectivity. (A-B) First the synapse
centroids included in each astrocytic microdomain are found. (C) A 60% is selected. (D) The morphology
grows, using the synapses as attraction points. (E) For each synapse the closest segment is annotated.

Following the generation of the astrocyte morphologies, the neuroglial connectivity is
updated by finding for each centroid in the synaptic cloud the closest morphological
segment in the morphology (Fig. 2.6E).

Glialglial

The gap junctions between neighboring astrocytes were determined as touches between
neighboring colliding morphologies of the grown astrocytes, using the process of touch-
detection as presented in Markram et al. (2015)). For this step, the full-grown astrocyte

morphology was required.

2.6 Endfeet surface reconstruction

Astrocytes extend processes that abut on the vascular surface, wrapping around it,
forming specialized anatomical structures known as endfeet (Kacem et al., 1998; Oberheim
et al., 2009). These diffusion-limited compartments (Nuriya and Yasui, 2013) provide a
vasculature coverage that ranges from 60-99% depending on the fixation method (Korogod
et al., 2015; Mathiisen et al., 2010). Furthermore, in experiments detaching endfeet
from the vessel wall using laser ablation, neighboring astrocytic endfeet recovered the
available area (Kubotera et al., 2019) without overlapping. Thus, in order to model the

astrocytic endfoot geometry based on the sparse studies on their structure, I created an
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algorithm that grows in parallel astrocytic endfeet on the vascular surface, growing into

their available space without overlapping.
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Figure 2.7 Endfeet areas growth algorithm. (A) The endfeet target points on the surface of the vasculature
are determined from the gliovascular connectivity. They play the role of the starting seeds for the
growing algorithm. (B) Waves propagate isotropically, following the geodesics of the vascular surface,
until they either reach an already occupied area or exceed a maximum growing radius (C). (D) The
converged areas are then shrank to match the area distribution from the experimental profile.
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The surface geometry of the endfeet wrapping around the vasculature was generated
from the positions on the surface of the vasculature (endfeet target sites; Fig. 2.7A),
which have previously been assigned in the gliovascular connectivity step. From each
endfoot target site, the endfeet area is grown isotropically covering the vessel surface
(Fig. 2.7B) until it collides with another endfeet area, or until it reaches a maximum
radius (Fig. 2.7C). The growth is considered competitive because all the endfeet are
growing simultaneously restricting the area they are grown into from neighboring endfeet.
After the simulation has converged I pruned the overshoot surfaces (Fig. 2.7D) so that
they match the experimental distribution of endfeet areas which is approximately 200
pm? (Cali et al., 2019).
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Figure 2.8 Example of endfeet area reconstruction. (A-C) Simulation steps of growing areas and closeup
(D) of their convergence.
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The growth of an endfoot was modelled as a contour or wave that starts on the endfoot
target point and expands following the surface geodesics. More specifically, such a growth
“colors” the vertices of the mesh that belong to the endfoot as it grows. The contour

evolution was simulated via the solution #(x) to the eikonal equation:

Vst (x)| = ﬁ Vx e S cR?

$(x) =0, Vx € aS (2.11)

which is first-order partial differential equation, where S is the vasculature surface, a 2D
smooth and closed manifold in R3, Vg is the gradient in the tangent plane to the manifold,
t(x) is the distance or travel time from the source and f(x) is the speed of travel. Thus,
t(x) provides the time that an interface (contour) will need to reach x from the initial
location dS. We are particularly interested in the simplified form where f(x) =1 and

equation 2.11 is converted to the signed distance function from the boundary 95S.

In our use case, in which we want to model the growth of an endfoot on the vasculature
manifold, the boundary dS corresponds to the endfoot target x,. Thus, the eikonal
equation gives the travel times from the endfoot target to any point on S along the
geodesics of its surface. Generalizing this to multiple endfeet targets, would require to

calculate the travel times from each surface point to each endfoot target.

To approximate the solution of 2.11 on triangulation St of the surface S, which is
comprised of nodes x;, I implemented the fast marching method for triangulated surfaces
(Fu et al., 2011). Each node is assigned a value T; that corresponds to its travel time,
which are initially set to +inf except for the endfoot’s one which is 0. Using the one-ring
neighbors for each node, the approximated solution of the travel 7; at node x; is calculated
from as the minimum of shortest path distances calculated from all the triangles in
then neighborhood.For a triangle (vi,ve,vs), if vi and vy are upwind of vs, there is a
characteristic line of the gradient Vgr(x) that passes from v and crosses the base of the

triangle €19 = vo — vy at x4. Thus, the travel time at T3 is given by:

T3 = TA + T/l’g
T3=T1+A(To —Th) + ||e13 — Ae12]] (2.12)
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which is derived from the fact that the approximation is linear, thus T) = 71 + AT
and Ty 3 = f|l€1sll = ||€13]l, because we have set the speed function to 1. To represent
the gradient characteristic, A should minimize T3 and must be in the range [0, 1]. See

supplementary section 6.2 for the derivation of the solution.

In order to introduce the notion of multiple endfeet growing in parallel, each node x;
on St was assigned an endfoot group G;. Thus, upon initialization all endfoot nodes
are assigned 7; = 0 and G; =i, where i = (0,1,2, ..., Nengreer). A priority queue was
implemented that allowed to update first the nodes with the smallest travel time at each
iteration, simulating the propagation of wavefronts. As nodes were updated with the
shortest travel time to the nearest endfoot nodes, the group label of that endfoot was
assigned to them and if the node had already a group assigned, the update stopped. This
allowed the propagation of the “endfoot waves” on Sy competitively as they were allows
to propagate to nodes that were not already captured from a neighbor. The algorithm

finished when there were no more vertices in the priority queue to update.
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Figure 2.9 Diagram of the are transformation from the simulation area distribution to the target one
extracted from the literature via the inverse CDF transform.

The endfeet meshes were reconstructed from the nodes in each group G;. Due to the
fact that the areas of the endfeet covered almost entirely the vasculature surface, a
pruning procedure was introduced in order to match a target area distribution, extracted
from the literature. Thus, given a target cumulative distribution Fj;, and the empirical
distribution from the simulation FS,-m, overshoot endfeet areas A; were transformed into

the respective target ones A’ via the cumulative inverse transform:
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A7 = Fyb (Fan(49) (2.13)

To match the new pruned areas, the geometry of the endfoot meshes was pruned using
the travel times that were calculated in the previous step. For each triangle in the endfoot
mesh the average travel time was calculated from its vertices and the triangles with
the highest travel times were removed one by one until the target area was reached. In
other words, the meshes shrunk, starting from the periphery until the target area was

approximately reached.

2.7 Programming environment and framework

The NGV circuit building framework was written in Python3 following a component-based
design. A component is defined as a standalone processing step with strictly-defined
inputs and outputs. The execution of a component may depend on the output files of
more than one other component. This relationship between components results in an
acyclic graph of dependencies (DAG), which is managed by the Snakemake workflow
engine (Koster and Rahmann, 2012). There are a total of thirteen processing steps as
shown in Figure 7, and three main data categories in the framework: external inputs,
cell-related data, connectivity-related data. External inputs are separated into input
datasets and configuration parameters. Input datasets, such as the region of interest,
astrocytic densities, the vasculature, etc., represent all the data that is used by the
NGV framework. Configuration parameters include algorithm constants and NGV profile
density distributions, which configures how the framework consumes the external datasets
and how the algorithms are set. Different species, ages, and pathologies each have distinct
profiles that need to be parameterized first in order to generate a representative NGV
circuit. NGV cells and connectivities are stored in the SONATA network specification
(Dai et al., 2020), as nodes and edges in HDF5 binary files. Blue Brain’s libSONATA
library provides support for the reading and writing of HDF5 node and edge datasets.

Each network entity collection, such as neurons and glia, is stored as a node population.
Each cell in the node population is identified by an identifier (index). Node populations
include attributes related to their spatial embedding (soma position, soma radius, orien-
tation, layer, etc.), their morpho-electrical characteristics (morphological type, electrical
type, etc.), and other information which emerges from the circuit building, such as
the morphology filepath. Astrocytes, which are stored as glia with an ASTROCYTE

morphological type, map to an additional dataset: the microdomains.
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Figure 2.10 The main input datasets to the ngv frameworks are the brain atlas intensity and region of
interest, the vasculature skeleton and surface mesh, the neuronal population from the neuronal circuit
building pipeline and the astrocyte reconstructions required for synthesis. Each step also requires
parameters for its algorithms that comprise the parameter profile. The data outputs from the framework
are split into 3 categories: node populations and their properties (e.g. microdomains for astrocytes),
edge populations or connectivities and their properties (e.g. endfeet areas for gliovascular connectivity)
and synthesized morphologies.

Connectivity between two node populations is registered as an edge population. The NGV
architecture is established by four edge populations: synaptic, neuroglial, gliovascular,
and glial-glial. Synaptic connectivity was produced during the neuronal circuit building
pipeline and is an input for the NGV building along with the neuronal node population.

Neuroglial, gliovascular and glial-glial connectivities represent the connections between
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neurons and astrocytes, astrocytes and the vasculature and astrocytes and their neighbors
respectively. The gliovascular edge population also stores an endfoot identifier, which
provides access to the endfeetome data structure containing the mesh of the endfeet that

have been grown on the surface of the vasculature.

2.8 Results

2.8.1 NGV circuit
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Input data Type Values Units Range References
General
Vasculature morphology file - - - Reichold et al. (2009)
Neuronal circuit circuit - - - Markram et al. (2015)
Cell Placement
Astrocyte density profile binned histogram from file  astrocytes/mm? Appaix et al. (2012)
Bushong et al. (2004)
Bagheri et al. (2013)
Soma radius distribution normal g 2‘367 pm 0.1 <x<20 Pllsehm?ji : Zi ggig
Bindocci et al. (2017)
Cali et al. (2019)dat
Nearest neighbor distance number 30 nm - Lépcz—ﬁiﬁiii){ iz i} ggiz%
Microdomains
Bushong et al. (2002, 2004)
Overlap Number 5 % - Ogata and Kosaka (2002)
Wilhelmsson et al. (2006)
Connectivities
Linear density number 0.17 pm~! - McCaslin et al. (2011)
Number of endfeet normal Z_ ::21 1<x<5 I\E)?Z :E Zi gg}gg
Synapses subset fraction number 60 % - Ventu\;\:xlt(ildm}grjlls gggg
Endfeet surface
reconstruction
Target area distribution normal g_ :: 11%% pm? 0 < x < 1000 ngg i ji gg;g%
Thickness distribution normal ‘5_::%917 pm 0.01 <x <20 Cali et al. (2019)
Morphology Synthesis
Reconstructed morphologies morphology file Cali et al. (2019)
Perisynaptic targeting number 0.01 - - -
Perivascular targeting number 0.07 - - -
Perisynaptic randomness number 0.3 - - -
Perivascular randomness number 0.25 - - -
Segment length normal ‘5_ :: %B 01 - -
Endfoot attraction function - - 0<x<1 see supplementary 6.1
Kill distance factor number 15.0
Influence distance factor number 30.0 - -

Table 2.1 NGV model parameters and input data.
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The bounding region extended to 954 pm X 1453 pm X 853 pm, which corresponded to a
total volume of approximately 1.18 mm?. The NGV circuit consisted of a total of 14648
astrocytes and 88541 neurons, which formed 9.2 million neuroglial, 30172 gliovascular
and 3.5 million glialglial connections. The vasculature had a total length of 1.37m, total

surface area of 23.82mm? and a total volume of 0.04mm?®, occupying approximately

3.5% of the bounding regions volume. A summary of the model parameters can be found
in table 2.1.

Corical Dept (um)

Neuronal (downscaled)
Appaixetal., 2012
mmm simulation Result

15000 10000 00
Astracyte densty (astrotes / cuble mm)

Figure 2.11 Illustrations of the somata distribution in the NGV circuit. (A) Illustration of vasculature
mesh (red) and astrocytic somata (turquoise). (B) Evenly distributed astrocytic somata, unaffected by
vasculature geometry. (C) Neuronal somata convex hulls (blue) restrict astrocytes (green) from being
placed according to their densities and distancing. (D) Cortical depth histograms of neurons (black),
expected (pale red) and resulting astrocyte numbers (red).

The astrocytic somata were distributed avoiding collisions with the geometry of the
vasculature (Fig. 2.11A ), delimited by the bounding box. Due to the low volume
occupancy of the microvascular network, the placement of the somata was unobstructed.
In addition, the differing diameters of pial and penetrating arteries and veins didn’t
affect the even distribution of the somata and no prominent clustering was observed
(Fig. 2.11B). However, the consideration of neuronal somata introduced areas where it

was impossible to place astrocytic somata (Fig. 2.11D), introducing spatial biases in the
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distribution of the astrocytes (Fig. 2.11D). Therefore, instead of placing the astrocytes
before the neurons, the astrocytes were placed first and neurons second. The rationale

behind this choice is twofold: the high neuron to astrocyte ratios (Herculano-Houzel,

2014) and the strict tiling organization of astrocytes (Bushong et al., 2002).

Figure 2.12 Illustrations of the microdomains in the NGV circuit. (A) Cross section of the microdomain
tessellation geometry without other entities. (B) Overlay of microdomain edges with astrocytic somata
(turquoise) and vasculature (red). (C) Example of microdomain neighborhood, populated with random
trees

The generation of the microdomains tiles the entire bounding region (Fig. 2.12A), creating
the polygonal boundaries for each astrocyte. Due to the existence of the boundary, an
outer layer of boundary microdomains was created, intersecting with the walls. Given
that these microdomains were not reflecting biological structures, they were omitted
from the analyses. The rest intersected with the vascular wiring (Fig. 2.12B) and
neuronal synapses, compartmentalizing them. Each microdomain was surrounded by
a neighborhood of domains (Fig. 2.12B), which shared polygonal faces (tessellation

bisectors). A limitation of such a modelling approach is that the average size of the



2.8 Results 31

domains is inversely proportional to the average density of astrocytes. While this works
well within the biological ranges of astrocytic densities, more complex use cases involving
empty regions of cells, would require the creation of “ghost” somata so that the correct
size domains are generated. Otherwise, the domains would extend until a neighbor is

found on the other side of the empty region.

A {

Figure 2.13 Tllustrations of the connectivity in the NGV circuit. (A) Astrocytic somata (turquoise),
vasculature (red) and biased random walks (green) connecting the somata to the surface targets on the
vasculature. (B) Connectivity to potential targets distributed on the vasculature and on a single artery
(C). (D) Glial-glial connections (green) between an astrocyte and all its neighbors. (E) Synapses (red)
that are contained into a single microdomain, surrounded by its neighbors.

In order to demonstrate the gliovascular connections, biased random walks grew from the
soma towards the targets, which can be seen in figure 2.13A. Connections to potential
targets within their domains was illustrated in figure 2.13B for the whole circuit and for
a single artery (Fig. 2.13C). Glial-glial connectivity required the full morphologies to
establish the touch space between the processes of neighboring astrocytes (Fig. 2.13D).
Synapse-astrocytes connections on the other hand were calculated from the microdomain
extents (Fig. 2.13E), and after the full morphologies were grown, the specific segment

annotation to the closest synapse was made.
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Figure 2.14 Ilustrations of the circuit with the grown morphologies. (A) Overview of the astrocytic
circuit. (B) A group of five astrocytes with their endfeet. (C) Closeup of a single astrocytic morphology
and its endfoot on the surface of the vasculature.

The 14648 astrocytic morphologies were grown independently of each other and in parallel,
distributed into 36 cores (Fig. 2.14A). Due to the microdomain boundaries partitioning
the space, each astrocyte had a spatial boundary to grow into without requiring real-time
feedback concerning the growing of its neighbors. In this model the growing processes did
not avoid geometrical elements in space, because of the costly spatial intersection queries
which skyrocketed the computation time of synthesis. New, more optimized approaches
are required to introduce collision detection while growing trees. Therefore, astrocytic

processes were intersecting with the vasculature morphology in my model (Fig. 2.14C).

The NGV circuit build produced approximately 860GB of data, of which 25GB corre-

sponded to the astrocyte related datasets and the rest to the neuronal ones (Markram
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et al., 2015). The framework required approximately 18 hours to complete on 36 cpu cores.
Taking into account that morphology synthesis was the slowest step in the framework,

using more cores would significantly reduce the running time.

2.8.2 Network validation
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Figure 2.15 (A) Astrocyte density histogram (orange) compared to the input density profile (gray). (B)
Average circuit density (orange) compared to reported values (gray) for different animal ages. (C) NGV
circuit somata radii histogram. (D) Comparison of average soma radius with reported values (gray)

To ensure biological fidelity, I validated that input constraints could be reproduced
for each step in the circuit building process, and compared structural measurements
with respective ones extracted from the literature and experimental data. Astrocytes
were placed according to the densities reported in (Appaix et al. (2012); Fig. 2.15A),
measuring an average density of 12241 mm™ ranging from 9367 mm™ to 21479 mm™3,
which in a total number of 14648 astrocytes. The y-coordinates of the generated somata
positions were binned and the density histogram was calculated as the number of cells

in each bin divided by the respective bin volume. The model accurately reproduced



34 Building the NGV network architecture

the density distribution of the input profile (Fig. 2.15A), corresponding to juvenile rat
brain slices. Other studies presented similar numbers: (10700 + 1750) mm™ in Olude
et al. (2015) in african giant rats and (10800 + 400) mm™~3 (Schreiner et al., 2014) in mice.
Astrocytic density increases from (2666 + 133) mm™ in neonates (Emsley and Macklis,
2006), to (15696 + 860) mm~ (Grosche et al., 2013) and (18000 + 2000) mm~ (Leahy
et al., 2013) in adults. Densities in old rodents have been found to slightly increase
(18350 + 1141) mm~3 (Nimmerjahn et al., 2004) compared to adult animals. Therefore,
our model produced astrocyte numbers within the range encountered in literature (Fig.
2.15B), reflecting experimental numbers found in juvenile rodents. In addition, switching
the density profile it is possible to reproduce different density profiles, or scale the existing
ones (see section 4.2). The soma dimensions were sampled from the normal distribution
which was created from averaging radii collected from various literature sources (Bagheri
et al., 2013; Bindocci et al., 2017; Lee et al., 2016; Puschmann et al., 2014). The resulting
distribution of the astrocytic somata had a mean u, = 5.5 and a standard deviation
o, =0.7 (Fig. 2.15B). An improved quantification of the astrocytic radii is required for
juvenile rats, because of the largely different values that are encountered in the literature

that do not seem to agree with each other.
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Figure 2.16 Spatial analysis of the point patterns corresponding to astrocytic somata. (A) Pair correlation
function. (B) Ripley’s K-function. (C) Distance distribution from each astrocytic soma to its closest
neighbor, compared to the input profile (orange) from Lopez-Hidalgo et al. 2016.

Next, I validated the spatial association of the somata to verify whether they were

evenly distributed. The simulation of contact spacing is essential for the formation of
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microdomains (Tout et al., 1993). I validated the repulsion model using three measures:
pair correlation function (PCF), Ripley’s K-function (Dixon, 2014) and nearest neighbor
distribution. The PCF expresses the probability of finding one point a given distance
from another point. Using the repulsive model, I found that the highest probability
to find a soma at a distance around another soma was at 30pm (Fig. 2.16A). In
contrast, when the placement was ran without repulsion the respective PCF exhibited
a small peak around 5pm, the average radius of the astrocytic somata, rising from the
algorithm’s restriction for somata overlapping. Ripley’s K-function is a similar spatial
analysis method that uses a cumulative cover to describe the clustering or dispersion
of a spatial point pattern. A random point sample is represented as a diagonal line,
whereas clustered patterns move the line above the diagonal and disperse patterns move
it below. Therefore, it was verified that astrocyte somata exhibit a disperse organization,
while the non-repulsive placement demonstrated and almost diagonal trend, except from
a small disperse deviation at very small distances because of the soma sizes. Finally,
the nearest neighbor distribution explicitly quantified the distance of each soma to its
closest neighbor, matching the input distribution at 30 pm. Thus, all three measures
verified that astrocytes were accurately spaced with respect to the target nearest neighbor
distribution. Due to the fact that the repulsion functional can take any form, repulsive
behavior is not the only possibility with this placement model. For example the spring
and Lenard-Jones potentials have been successfully tested as well. In addition, more
complex potentials that allow for repulsion and/or attraction to more than one types of

elements (e.g. astrocytes and vasculature) can naturally extend the current model.

The average microdomain volume was 81 725 pm?, ranging from 11 697 pm? to 266 599 pm?,
whereas the overlapping microdomains were measured at an average of 86 106 pm?, rang-
ing from 12324 um? to 280890 pm3. The overlapping distribution exhibited a small shift
to the right, because of the higher domain volumes 2.17A., for juvenile animals the volume
distribution of the domains compared to a tight tessellation was negligibly different. In
literature studies, ages seem to be a determining factor in the size of the microdomains.
Studies using adult animals report volumes from 16 400 pm? to 31 000 pm? (Bagheri et al.,
2013; Grosche et al., 2013; Mishima and Hirase, 2010; Scofield et al., 2016; Wilhelmsson
et al., 2006). On the other hand, juvenile rodents microdomain volumes have been
observed to range between 65900 pm? and 86 700 pm? (Bushong et al., 2002; Ogata and
Kosaka, 2002). The NGV model produced domain volumes that corresponded to juvenile
astrocytic densities, capturing the magnitude of the respective studies. In the work of
Lanjakornsiripan et al. (2018) specialized techniques were used to explore the astrocytic

morphology, identifying a volume distribution ranging from 40 000 pm? to 180 000 pm?.
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Figure 2.17 NGV microdomains analysis and validation. (A) Volume distribution of the regular (gray)
and overlapping (orange) tessellations. (B) Comparison of NGV microdomain volumes (orange) with
literature sources. (C) Per layer microdomain volume distributions and their repsective box plots (red).
(D) Scaling relationship between average microdomain volume and average astrocyte density.

The most notable result of their quantification was that layer I astrocytes exhibited
significantly lower volume than the rest of the layers. The NGV circuit reproduced this
observation, which resulted from the significantly higher densities in layer I (Fig. 2.17C).
As a matter of fact the average size of the domains decreases as the average astrocyte
density increases (Fig. 2.17D; see also section 4.2 for the effect of the density change to
structural architecture). In my model the average microdomain volume V scaled down
with average density d as follows: V = —0.34 + %. This result provides an invaluable
insight: the contact-spacing organization of astrocytes in biology induces constraints of
purely geometric nature. This allows for the abstraction of astrocytes into mathematical

entities, i.e. tessellation regions, verifying my initial assumption that astrocytic domains
can be modelled as such.
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Figure 2.18 Validation of astrocytic processes and association with neurons. (A) Average number of
processes (primary and perisynaptic) per astrocyte for the NGV circuit (salmon) and literature sources
(turquoise). (B) Histogram of the distances for each astrocytic soma to the closest neuronal soma.

In the NGV circuit the number of perivascular processes was constrained for juvenile
rodents at 2+ 1 processes. These numbers are in accordance with literature measurements
(Cali et al., 2019; Moye et al., 2019). Furthermore, the number of primary processes in
the NGV was measured to as 6.5 = 1 processes (Fig. 2.18A). To validate the spatial
relationship between neurons and astrocytes, for each astrocyte the distance to the closest
neuronal soma was calculated (13 £ 5) pm, ranging from 0.7 pm to 30 pm (Fig. 2.18B).
The distribution falls within the range of literature observations, that is from 5pm to

30 um for three types of inhibitory neurons (Refaeli et al., 2020).

The endfeet surface meshes, initially covered 91.1% of the vasculature surface. Studies
using chemical fixation for their tissues reported a 70% — 100% coverage (Kacem et al.,
1998; Korogod et al., 2015; Mathiisen et al., 2010; Simard et al., 2003) of the vasculature
by perivascular endfeet. However, Korogod et al. (2015) showed that chemical fixation
induces swelling of the astrocytic compartment, leading to increased coverage. They
reported that coverage of the vasculature by astrocytic endfeet was (62.9 + 1.5) % using
cryo-fixation, which is more likely to preserve the anatomical structures of the neocortex.
An unconstrained simulation of growing the NGV endfeet surfaces produced a full coverage
of the vasculature, however in order to generate a biologically plausible distribution the
areas were pruned according to the reported endfeet area distribution in Cali et al. (2019).
After the pruning, the resulted endfeet mesh area distribution was (225 + 132) pim?

the range [0,1000] pm? (Fig. 2.19), matching the respective biological values (Cali
et al. (2019); Fig. 2.19B). The total area of the pruned meshes covered a 30% of the
total vasculature (Fig. 2.19C), less than half than the coverage reported by Korogod
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Figure 2.19 Validation of astrocytic endfeet surface meshes and processes. (A) Endfeet surface area
distribution. (B) Cumulative distribution comparison between the resulting surface areas and the target
ones. (C) Coverage percentage of the vasculature surface (turquoise) by the endfeet areas (salmon). (D)
Shortest path length of the endfeet perivascular processes from the surface of the astrocytic soma to
the surface of the vasculature. (E) Comparison of the average path length in the NGV (salmon) to the
values reported by Moye et al., 2019 (turqoise). (F) Relationship between endfeet surface areas and
thicknesses in the NGV circuit (salmon) and in the work of Cali et al., 2020 (turquoise).

et al. (2015). This discrepancy could be due the very few data points from which the
endfeet area distribution was generated (n=7) assuming normality. The shortest path
length from the soma to the surface of the vasculature was measured to be 17.23 pm on
average, ranging from 0.41 pm to 110pum (Fig. 2.19). The average path length is in
agreement with the respective measurement in the work of Moye et al. (2019). However,
the values were exponentially distributed resulting in a tail that increased the standard
deviation of the measurements. Lastly, I validated the relation between the surface area
and thickness of the endfeet geometries and validated that they were in agreement with
the relationship from the study of Cali et al. (2019) (Fig. 2.19).



Morphological synthesis of astrocytes

3.1 Beyond neuronal synthesis

The digital reconstruction of neuronal morphologies has been gradually advancing towards
high-throughput, single-neuron level and whole-brain techniques (Economo et al., 2016;
Ueda et al., 2020). However, a cost-effective, large-scale, fast and highly-detailed approach
is still a challenge to this day, and although there is a plethora of neuronal reconstructions
available (Ascoli et al., 2007), their number is many orders of magnitude smaller than
what is required to populate large scale digital circuits (Egger et al., 2014; Markram
et al., 2015; Oberlaender et al., 2012).

Astrocytes pose an even greater challenge in reconstruction because of their spongiform,
highly-ramified morphologies (Bushong et al., 2002). The most common approaches
utilize markers that partially stain the astrocytic skeleton, such as GFAP or S100b,
which capture the primary, secondary and possibly tertiary branches of the morphology
(Kayasandik et al., 2020; Kulkarni et al., 2015; Lanjakornsiripan et al., 2018; Tavares et al.,
2017), omitting the finer processes. Ultra~structural techniques, such as 3DEM, succeed
in capturing the fine details in astrocytes, but are limited to oligocellular volumes (Cali
et al., 2019; Coggan et al., 2018; Kasthuri et al., 2015). Because of the lack of sufficient
numbers of detailed astrocytic reconstructions, building of large-scale networks of neurons
and glia cells relies heavily on an algorithmic approach. In order to digitally generate
astrocytic morphologies, an appropriate algorithm is required, which is able to generate
unlimited numbers of digital morphologies that are statistically indistinguishable from
their biological counterparts, and also retain the branching pattern that are observed in

the specific morphological cell types.
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In the previous decades, the problem of generating realistic digital cellular morphologies,
has been tackled from many different directions (Ascoli et al., 2001; Burke et al., 1992;
Cuntz et al., 2010; Hillman, 1979; Marinov et al., 2020), focusing into neuronal structures
in particular. Bottom-up approaches emulate growth by simulating the underlying molec-
ular mechanisms, while top-bottom algorithms capture the phenomenological behavior of
structural growth, reducing it to deterministic or generative (Ascoli et al., 2001; Koene
et al., 2009) mathematical models. Biophysically realistic models (Zubler and Douglas,
2008) will not be in the focus of this thesis because of their computational complexity that
renders them unsuitable for the generation of large-scale circuits comprised of millions of
cells.

The first phenomenological modelling approaches were based on Lindenmayer systems
(Lindenmayer, 1968), reproducing the self-similar branching topology of neuronal mor-
phologies (Smith et al., 1996) by recursively repeating a spatial code or seed (Pellionisz,
1989). However, deterministic fractal structures might look neuronal-like but they don’t
capture the morphological characteristics and variability of neurons, which originate
from their genetic morphological phenotype (Jan and Jan, 2010; Tavosanis, 2012) and
interaction with their environment (Landgraf and Evers, 2005; McAllister, 2000; Scott
and Luo, 2001) respectively.

Subsequent generative models introduced the extraction of statistical measures from
biological reconstructions that can be classified into two main categories: geometric and
topological features. Examples of geometric measures are the branch diameter, total
length, opening angles, radial and path distances. Examples of topological features are
branch orders, number of bifurcations and terminations, fractal dimension etc. Statistical
sampling from morphometrical distributions was combined with L-systems (Ascoli and
Krichmar, 2000; Hamilton, 1993; Lien et al., 2003; McCormick and Mulchandani, 1994;
Torben-Nielsen et al., 2008) or stochastically growing the morphology segment by segment
(Eberhard et al., 2006; Kassraian-Fard et al., 2020; Koene et al., 2009; Lindsay et al.,
2007; Wolf et al., 2013) using forward stepping rules.

The feature space of a morphology is not a well-defined entity, given that there are
countless morphometrics that can be extracted, the significance of which depends on
the underlying mechanisms that are sought to be understood. Therefore, generative
models that sample from morphometrics define an ill-posed problem that raises the
question what is the optimal selection of features and their implicit correlations that
need to be implemented to reflect the branching topology of the morphology but not

the intra-class variability (i.e. overfitting), which brings us back to the classification
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problem (Hernandez-Pérez et al., 2019). For this reason a novel algorithm was created
that extracts the topological profiles of morphologies (Kanari et al., 2018) and uses them
to stochastically grow new trees that capture both the statistics and the topology of
the population (Kanari et al., 2020). While topological neuron synthesis has proved
useful for the generation of cortical dendrites, astrocytic morphology exhibits a number
of additional properties that need to be addressed. Astrocytes, more similarly to axons
of neurons, take into account contextual cues during their growth. As a result a synthesis
that is guided by external information is required for the computational generation of

accurate astrocytic morphologies.

Although the generative approach of statistical sampling could reproduce a number of
statistical properties, the morphologies were usually generated in vacuum, without being
aware of physical constraints and cues. A different generative approach, proposed by
Luczak, simulated neuronal growth as a diffusion-limited aggregation, demonstrating the
effect of competition over resources and the spatial distribution of the latter could explain
the space-delimited morphogenesis of dendrites (Luczak, 2006, 2010). In another study,
Cuntz and colleagues generated morphologies, embedded in space, as a combination
of a minimum spanning tree and wiring optimization constraints on a point cloud of
static resources (Cuntz et al., 2010) and showed that co-synthesis can be realized as a
competition over shared resources. Spatially embedded seeds were also present in the work
from Runions and colleagues. Their approach grew trees based on their local proximity
to the attraction seeds, which were subsequently consumed allowing for the exploration
of the space for the rest of the available resources (Runions et al., 2007), instead of using
the points clouds as nodes comprising the tree morphology. Other contextual cues, such
as the influence of a morphology from its own processes (self-avoidance) and external
molecular gradients (Grueber and Sagasti, 2010) that affect the shape of the neuronal
morphology, were phenomenologically modelled as self-referential forces and successfully

explained some characteristics of dendritic morphologies (Memelli et al., 2013).

Astrocytes assume complex stellate morphologies of densely ramified processes, which
are distinguished into perivascular and perisynaptic depending on whether they project
to vessels or not. An example of a reconstructed astrocyte morphology can be seen in
Figure 3.1. The branching of astrocytic processes, unlike dendritic morphologies, exhibit
locally dense regions that depend on the embedding within the brain volume and are
attributed to interactions with adjacent brain structures, such as the vasculature and

the proximal neurons. Studies have identified molecular mechanisms that drive endfeet
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® Soma
® Perivascular Process
® Perisynaptic Process

Figure 3.1 Tllustration of an astrocyte morphology with perivascular (blue) and perisynaptic (red)
processes attached to the soma (black). Experimental morphology data from Cali et al. (2019)

growth (Goldman and Chiu, 1984) and by extension the blood-brain-barrier maturation
(Simard et al., 2003).

During development, complex molecular mechanisms take place that could explain the
complexity of the morphologies of astrocytes. However, the full extent of these processes
is still largely unknown. Radial glial cells (RGCs) are generated from neuroepithelial
cells of the embryonic neural tube, the embryonic precursor of the CNS. They extend
two processes without collateral branches, one to the ventricular wall and the other one
towards the pia. Astrocytes develop from RGCs via two pathways: from glial progenitor
and intermediate progenitor cells (Zarei-Kheirabadi et al., 2019). RGCs attach to the
vasculature early on and they may retain these connections after differentiation to mature
astroglia (Schmechel and Rakic, 1979; Zerlin and Goldman, 1997), which is promoted by
the 2-way mutual induction between astrocytes and the vascular endothelium (Estrada
et al., 1990; Mi et al., 2001). Due to these complex molecular mechanisms that are
involved in the formation of astrocytic morphologies, the shapes of astrocytes are highly

diversified and difficult to formalize and recreate with any of the described models.
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In literature, there is no prior work on the in-silico synthesis of astrocytic morphologies.
The most relevant work is that of Savtchenko et al. (2018), in which nanoscopic segments
were stochastically added to reconstructed astrocytes from 3D EM stacks. However, this
approach added branches to already existing morphologies, using an incremental strategy.
Therefore it cannot be considered as a synthesis technique due to the requirement of an
EM reconstruction as a starting point of the algorithm in order to create a single in-silico

cell. This algorithm cannot be used for the generation of multiple unique morphologies.

In this work I built a new synthesis model, suitable for astrocytes, which combined
the topological synthesis approach of Kanari et al. (2020) with a seed-based approach,
inspired by the space colonization algorithm (Runions et al., 2005, 2007). A few different
components of astrocyte morphologies needed to be addressed, such as the interaction with
neuronal synapses to reproduce perisynaptic processes and the targeting of vasculature
to generate accurate perivascular processes. Synapses extracted from the neuronal
connections of a digitally reconstructed network played the role of an attraction point
cloud, which guided the growth of the perisynaptic processes. Targeting to vasculature

sites was addressed by introducing an attraction force field for the perivascular processes.

3.2 Topological analysis of reconstructed astrocytic mor-
phologies

The first step in synthesizing accurate morphologies of any brain cell is understanding the
properties of the reconstructed population. We start from the traditional morphological
analysis, which consists of the extraction of morphometrics (Ascoli et al., 2008), i.e.
features that correspond to different properties of the geometry and topology of a
cell. A variety of tools have been proposed for the extraction of morphometrics from
neurons (Bozelos et al., 2016; Parekh and Ascoli, 2013; Scorcioni et al., 2008). Due to
the differences in the file format of astrocytes, the tools needed to be adapted to work
for glia cells. For this reason, the tool NeuroM was used for the morphological analysis

of neurons.
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A. Astrocyte reconstruction

B. Persistence barcode C. Persistence diagram
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Figure 3.2 Topological analysis on perivascular (blue) and perisynaptic (red) astrocytic processes. (A)
Two small branches were selected for demonstration purposes from an experimentally reconstructed
astrocyte morphology. (B) Each tree is decomposed into persistent components, which are represented
as a horizontal lines marking the birth and death path distance in microns for which the component
remains alive. The barcode in (B) can also be represented as points in persistence diagram (C), where
birth and death of each component are shown as X and Y coordinates. The diagonal in a persistence
diagram corresponds to points that have equal birth and death times.

A topological analysis of neurons has been proposed by the Topological Morphology
Descriptor (TMD) (Kanari et al., 2018), which encodes both the topological and the
geometric properties of morphologies into a single descriptor, the persistence barcode (Fig.
3.2B). The persistence barcode of a neuron represents each branch within a biological
tree as a pair of numbers which encode the start and end path distance of the branch
from the neuronal soma, taking into account the topology of the branches within the

tree.
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A. Reconstruction of astrocyte morphologies
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Figure 3.3 Morphological comparison of astrocyte reconstructions. A. Examples of single cell reconstruc-
tions of astrocytes (individual cells illustrated in blue, green, red). B. The corresponding barcodes of
the perivascular processes. Basic morphometrics (C-H) of perivascular processes for the three astrocyte
reconstructions illustrated in A.

The algorithm that extracts the TMD of a geometric tree starts by traversing all the

termination nodes, or leaves, of the tree. Initially, the barcode is empty. For each
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termination, the algorithm proceeds recursively along the path towards the root of the
tree, i.e. the soma of the cell, and computes a reference distance, such as path or radial
distance from the soma. At each bifurcation point, a bar is added to the barcode, which
corresponds to the smallest branch between the two, in terms of the reference distance.
Each bar encodes the start and end distance of the respective branch. The process
continues until only one branch remains in the tree that extends from the maximum
distance all the way to the root, this generates the final bar in the barcode which is
the largest one. Since astrocytes have exactly the same tree structure as neurons (they
consist of bifurcations or fork points and terminations and there exists a single reference
root) the same process can equivalently be used for the representation of an astrocyte

with a single topological descriptor (Fig. 3.2).

Equivalently to the persistence barcode, the persistence diagram represents the pairs
of start - end distances in a two dimensional plane (Fig. 3.2C). Each persistence
diagram can also be converted into a persistence image, by generating Gaussian kernels
around each point in the persistence diagram and summing up their contributions into
a discretized (x— coordinate in M bins and y— coordinate in N bins) M X N matrix
pi = (p, p™
corresponds to the location (k,1) of the persistence diagram.

s PMN) . where p* represent the density of points at the pixel that

The topological difference between two persistence images, named the topological distance
of two diagrams or barcodes, is defined as the sum of the absolute difference between the

pixel values in the two images of identical dimensions.

d(Imy, Imsg) = Z Ipy' - p¥

Since the value of each pixel is normalized so that the sum Y<<yo<k<y P'* = 1, the

difference between the pixels can take values between (-1, 1).

Given two populations of astrocytes of sizes Ng, Ng, we can generate two sets of persistence

images:

P1 — {Img,Imq, .. .,ImNR} (3 1)
P2 — {Imo,lml,...,ImNS} .
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We can then define the topological distance between the two population as the average

over all the distance combinations:

1

dT d(Imi,Imj) (32)

Ng X Ns 0<i<Ng,0<j<Ns

The definition of the topological distance between two populations will be used for the

assessment of the quality of synthesized astrocytes in terms of their topological properties.

3.3 Topological synthesis

Apart from the challenges encountered at the description of neuronal morphologies,
astrocytes present some additional obstacles. The extremely limited number of astrocytic
reconstructions with sufficient details renders any statistical analysis a challenge by itself.
In (Kanari et al., 2020), the authors claim that neurons with less than 5 cells are hard to
describe and computationally generate due to lack of sufficient inputs. Yet, we are facing
an impossible problem: to extract meaningful descriptions from only three complete
reconstructions. A morphological analysis of key morphometrics of the three available
reconstructions (Fig. 3.3) reveals the limitations of the most common synthesis techniques
to be applied on astrocytes. The cells present high variance on basic morphometrics,
such as number of sections, branch orders and distribution of path and radial distances.
As a result, the description of these cells with common population measurements would

not be possible as the variance is orders of magnitude higher that the average values.

A synthesis algorithm based on the topological properties of a neuron has been proposed
by Kanari et al. (2020). It has been shown that the persistence barcode of different
neuronal cell types is sufficient to capture the different growth mechanisms that lead
to the distinct shapes of dendrites (Kanari et al., 2020). The topological barcodes of
astrocytes(Fig.3.3B) can capture the key properties of their morphologies. For example,
the number of branches is reflected in the number of bars in the barcode (Fig. 3.3B and
C) and the path and radial distances in the extends of the branches (Fig. 3.3B and F).
Therefore, TMD is a useful descriptor for the complex morphologies of astrocytes. Can
this technique be used to synthesize cells with similar morphological properties to the

population of reconstructed morphologies?

The TMD of astrocytes is used to define the bifurcation and termination probabilities

of each branch during synthesis; the coupling of these probabilities provides a method
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to implicitly reproduce key correlations between morphological features. In addition to
the TMD, we need to extract some morphological features that are not encoded in the
branching topology of the tree such as soma size, trunk orientation, and thickness of

branches.

3.4 Space colonization terminology

A space colonization strategy (Runions et al., 2005, 2007), grows tree structures that are
embedded in space competing for resources, in a similar fashion to the work of Cuntz
(Cuntz et al., 2010). The main difference between these two approaches is that in the
case of the space colonization algorithm the tree grows its points towards the average
of the nearest attraction points (resources), instead of using them as nodes of the tree
itself. Summarizing the space colonization steps: In each iteration, for each node the
attraction points that are closer than an influence distance d; are found. For each node a
new direction is calculated from the average of the unit vectors to its closest points and
a new point is added. Once the points are created, the attraction points that are closer

to the tree nodes than kill distance d; are removed.

The tree growing approach of the space colonization algorithm is conceptually compatible
with the growing of stochastic trees, allowing for a more natural addition to TNS for
encompassing spatial embedding. However, given that the algorithm generates multiple
points and by extension multiple branches at each step, a major restructuring is still

required, so that it is possible to work with segment by segment grown binary trees.

The influence and kill distances, which depend on the segment length L, are defined:

dk = adel- = a/,-L (33)

where, ag, @; are the influence and kill factors respectively. Astrocyte synthesis employs
a variable segment length, therefore the aforementioned factors are the parameters that
will be chosen, while the length distribution is determined from the tree barcodes (see

section 3.6).

The synaptic point cloud for each astrocyte is determined during the neuroglial generation

stage of the NGV circuit building (see section 2.5). Thus, each astrocyte has access to a
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set of attraction points, which will be used as the point cloud for the space colonization

component of astrocyte synthesis.

3.5 Initiation of processes on soma

The first step of growing virtual trees is to calculate the starting point xg on the surface
of the soma, which is represented as a sphere. During cell placement the position x; and
radius ry of each astrocyte is calculated, and endfeet targets are generated during the
gliovascular connectivity step. The microdomain tessellation is also required because it

reflects the extents of each cell. Thus, each microdomain is available as a set of points

and triangles.

Figure 3.4 Examples of domain orientation for varying numbers of perivascular (red) and perisynaptic
(black) processes.

Perivascular initial points are created first because of their dependence on the endfeet
targets, which are already predetermined. An endfoot target x; is assigned to each

perivascular tree, the initial point of which is calculated:

dgerivascular — Xt — Xg (34)
llx: — x|

xgerivascular — dgerivascularrs (35)
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Sampling from the number of primary process distribution, the total number of processes
for the cell is drawn. If the total number is higher than the number of perivascular pro-
cesses, then the number of perisynaptic processes is calculated from their difference. The
goal for estimating the initial points for perisynaptic trees is twofold: evenly distributing
the points so that the trees don’t overlap and influencing their location with respect to
the microdomain anisotropy. The microdomain triangles are barycentrically subdivided
the number of vertices is increased tenfold, creating a dense sampling of points on the
surface of the domain. The vectors from the soma center to the vertices of the triangles,
that are created from the subdivision process on the domain surface, constitute the
orientation vectors V = { v, va, ..., v, },v; € R3, from which the perisynaptic orientations
will be chosen. The set of chosen orientations C is initially populated with the endfeet
orientations from the previous. At each iteration a perisynaptic orientation is estimated

by maximizing the cost function below and is added to C.

v =argmaxJ(v) (3.6)
ve(V-C)
2 0(v,vi)
J() = (1-a)E ot al|’|:” (3.7)
O(v,u) = %arccos (v-u) (3.8)

where @ is the mixing factor and chosen to be 0.05, /,,,4, is the maximum length of the
vectors in V, and 6(v,u) the normalized squared angle function. The selection of the
mixing factor prioritizes equidistribution over length bias, so that orientations are evenly
distributed apart from the longest vectors that influence significantly the orientation
choice. The process continues until all orientations are calculated and each perisynaptic

point are calculated:

Vv

dperisynaptic - (39)
0 vl
xgerisynaptic _ dgerisynapticrs (310)

In figure 3.4, examples of orientations can be seen for varying numbers of perivascular

and perisynaptic processes.
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3.6 Elongation

Elongation is the process responsible from the creation of consecutive points that grow a

tree. A pair of points that is created defines a segment, the length of which is sampled

2

from a normal distribution, L ~ N (ieg, 05,), the mean of which are estimated from the

smallest bars in the input barcode of the trees.
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Figure 3.5 Bar length distributions. (A) Cumulative percentage of persistence bars that are smaller than
segment size. (B) Total length increase in morphology with respect to minimum segment length and the
exact value for segment length of 0.1 pm

In order to estimate the mean segment length, the cumulative percentage of the number
of bars and bar lengths that are smaller than the segment size was plotted (Fig. 3.5A).
Only a small fraction of bars (<10%) were smaller that 0.1 pm, indicating a good choice
for the segment length threshold. The goal of this curation process isn’t the removal of
the smaller bars as it would remove branching points altering the topology, but rather the
scaling of the bars below the threshold. The effect of the bar scaling was investigated in
figure 3.5B, where the total length change of the morphology is plotted with respect to
the chosen threshold and shows a negligible increase in total length which was quantified
as (0.6 +0.1)pm (Fig. 3.5C). A small 0., = 0.001 was chosen to allow for a small amount
of variability.

A segment also assumes a direction D,,, which is a weighted sum of different contributions,
giving rise to the phenomenological behavior of the cell growth. In previous work focusing
on neuronal synthesis (Kanari et al., 2020; Koene et al., 2009) the direction of the segment
is a weighted sum of three unit vectors: the cumulative memory M, a random vector R
and a target vector T. Cumulative memory sums all previous directions, exponentially
decreasing the contributions so that previous directions far in the past are quickly
forgotten. The targeting vector T is calculated during branch splitting and remains

unchanged during elongation.
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Figure 3.6 Section tortuosity is a combination of three contributions in astrocyte synthesis: targeting,
history and influence from the point cloud

In this work, the stochastic interaction with the environment is not captured by a random
contribution, sampled uniformly from the unit sphere, but by the unit direction to the
nearest synaptic seed in the point cloud. Therefore, the segment direction, known as

tortuosity, takes the form (see Fig. 3.6):

Dgeg = 1T + uM + pP T+u+p=1 (3.11)

The interplay between targeting T and randomness p factors determine the degree of
tortuosity of the processes. All parameters take values from the interval [0, 1], therefore
a configuration, for example, of (7, i, p) = (1,0,0) would produce straight processes that
follow the initial branching direction and exhibit no tortuosity. On the other hand, a
configuration (7, u, p) = (0,0, 1) would generate processes the direction of which will be
exclusively dependent on the closest synaptic seed. The history contribution induces
a rigidity effect to the growth of the processes that reflects their intrinsic structural

properties.

Following the calculation of the new direction a new point is created if it doesn’t collide
with the microdomain boundary. If it does collide a termination signal is sent and the
elongation is stopped for the specific process. Otherwise, all the synaptic points that
are closer to the new point than a kill distance dy = a;L are removed from the point
cloud. The astrocyte synthesis algorithm grows the morphology trees in turn, growing
by one segment each tree sequentially before growing the next segment from the same
tree. This ordering of growth ensures that all trees grow simultaneously completing for

the same resources, instead of favoring the growth of the tree that grows first.

3.7 Branching and termination

3.7.1 TMD dependent probabilities

The basic principle for the tree growth can be summarized by the following steps: the tree

has a probability to bifurcate and to terminate associated to the path distance from the
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Synthesized tree

Probability definition

Path distance from soma

Figure 3.7 Topological branching and termination based on TMD probabilities. Example of a tree (on
top) that is synthesized, bifurcations are annotated in red, terminations annotated in blue. On the
bottom the corresponding persistence barcode defines two independent probabilities (to bifurcate in red,
to terminate in blue) that the growth algorithm respects during synthesis.

soma 3.7. During the growth process, the topological barcode, which is extracted from
the reconstructed morphology population, determines these probabilities to terminate or
bifurcate. Similarly to neuronal synthesis, the bifurcation / termination probabilities
depend exponentially on the path distance of the growing tip from the soma 3.7. This
means that when the growing tip approaches the target bifurcation or termination
distances as defined from the barcode, the probability to bifurcate or terminate increases

exponentially until it reaches 1 after the target distance is surpassed.
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3.7.2 Branching of astrocytes

Each growing branch of the astrocyte is assigned one of the following three “growing”

types: major, secondary and endfoot. These types are essential to the growing process,
because they allow different behaviors to be captured. Major sections represent the
primary processes of the astrocytes that initially grow radially outwards and then ramify
into the secondary branches. The first section that is generated from the initiation process
out of the soma (see section 3.5), is always assigned the major type. Let a growing tip x
of a branch with targeting direction d and a growing type, which encounters a splitting
event mandated by the barcode. The aim of the splitting algorithm is to generate the
the targeting directions dj, ds and growing types for the children branches.

The splitting algorithm for perisynaptic processes utilizes two of the three growing types:
major and secondary. The children sections receive a (major, secondary) pair if the
parent is major or a (secondary, secondary) pair otherwise. The procedure uses the mean
segment length py., to determine the kill dy = ay 4., and influence d; = ;g e, distances,
which are ubiquitous in the spatial queries around the growing tip. The repulsion points
Pgr(x) around the tip x are defined as the subset of the morphology points Py; that are
closer to x than the kill distance d;:

Prx)={p|llp-xll<di¥pePy} (3.12)

If Pr(x) is not empty, the repulsion vector is calculated by averaging the unit directions
multiplied with an exponentially decaying contribution that is a function of their respective

lengths:

- L=l
F(x) = 1 Z P=X " (3.13)
PR L= 1P =]

The repulsion contribution has a decay rate % (see figure 3.8), utilizing the kill distance
instead of an extra parameter, which makes a reasonable choice while reducing the

parameter space.

The calculation of the first of the two child unit directions d; depends on the growing type
of the current section. If the current section has major type then di is the normalized

sum of the branch direction d and the repulsion vector 7(x):
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x (pm)

Figure 3.8 Example of repulsion contribution in the distance interval [0, 4] for a kill distance dy = 1.5
um

g = 4= (3.14)
ld = F(x)||

If the parent is a secondary section, first the set P4(x) of attraction points in the tip
proximity are determined as the points in the synaptic point cloud Pg that are closer to

the tip x than the influence distance d;:

Pa(x)={plllp-xl<diVpePs} (3.15)

and the first direction is calculated as the direction to the closest attraction point s.

s =argmin ||s —x — F(x)]| (3.16)
SEPA(X)
j §—x—F(x) (3.17)
1= = :
lls —x —7F(x)ll

The second direction ds is always calculated as the direction to the seed that is at the

largest angle with the first direction di.
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s—x—r(x) -

s =argmin | ————=—— - d; 3.18
sePs(r) \lls —x = F(x)]l (3.18)
L rx) (3.19)

s =x =FO

The splitting algorithm for perivascular trees is an extension of the perisynaptic strategy
with the addition of the attraction mechanics to the endfeet targets. Each tree is assigned
an endfoot target x;, which is initially active. An active target attracts major section
processes of the perivascular tree until the target is reached. A bias is added to the

direction d; of the major processes:

A Xt — X

d; (3.20)

e = x|
J - ad; + (1 - a)d,y
1 - ~ A
lad: + (1 — a)di||

(3.21)

where « is the target proximity factor (see supplementary section 6.1 for the derivation),
which depends on the ratio of the distance from the soma to the endfoot target and the

distance from the growing tip to the endfoot target.

If a growing tip x is in proximity of the endfoot target, then ds is replaced by the direction
to the target d, and that child section is assigned the endfoot growing type which has

the sole responsibility to grow towards the endfoot point.

3.8 Surface area and volume distribution

Due to a high surface-to-volume ratio in astrocytes processes, it is difficult to capture their
membrane geometry using a cylinder representation. For this reason, the volume and
surface of segments are separately encoded in their diameters and perimeters respectively.
The model for generating synthetic diameters for astrocytes is based on the neuronal
algorithm (Kanari et al., 2020). First, distributions of the model parameters are obtained
from a fit to the available reconstructed astrocytes. Then, diameters are generated using
parameters sampled from these distributions. The model parameters include the sibling

ratio (ratio between diameters of daughter branches), diameter power relation (to model
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the relative diameters between parent and daughter branches), taper rates, trunk and
terminal diameters. See for example (Ascoli et al., 2008) for more details one these
parameters. We deviate from the neuronal diameter model by allowing for negative taper
rates, to obtain increasing and decreasing diameters with path distances. Along the
neurites, diameters are bound by the trunk and terminal diameters, sampled for each

neurite, while the other parameters are sampled at each segment or bifurcation.

Regarding the distribution of perimeters on the synthesized astrocytes, we extracted the
diameter-perimeter pair values from the digital reconstructions and fit a linear regression

model:

P,' :ﬁo +ﬁ1Di+6,' (3.22)

where P;, D; are the perimeter and diameter respectively and ¢; the variation or noise in
the data. Thus, following the diametrization process we assigned the perimeters using

the linear predictor function shown above.

3.9 Results

First, I generated a number of clones (see section 3.9.1) from the available astrocyte re-
constructions to ensure that the qualitative features observed in biological reconstructions
can be reproduced by the proposed algorithm. As illustrated in Figure 3.9, the astrocytes
reach the selected targets and present highly branching properties that are similar to
their biological counterparts. Then, a full circuit of astrocytes 3.9.2 was generated and
selected morphologies are presented in Figure 3.12. In both cases, the cloned and the
circuit morphologies, the synthesized astrocytes present highly dense branching that
spans the extents of their processes. Therefore, the proposed algorithm is suitable for the
computational generation of cells that consist of highly branching, a qualitative property

that is essential for reproducing the morphologies of astrocytes.

NGV circuit building generates 10000 astrocytes in approximately 6 hours in one cluster
node with 32 cpus. From these, 5 hours were spent in morphology synthesis and the rest in
the network data generation steps. Synthesis being the most computationally demanding
stage, has been implemented to run in parallel. The current implementation uses only
one node in a high-performance computing cluster, however it could use thousands to
scale for bigger circuits. It is possible with my framework to create thousands of unique

morphologies of astrocytes in a few hours, whereas weeks of work if not months are
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required to reconstruct a single astrocyte and its environment experimentally, an issue
which is apparent by the scarcity of astrocytic morphologies in the literature (Cali et al.,
2019; Holst et al., 2016). In addition, the parallelized implementation of synthesis allows
for the scaling of the circuit to millions of morphologies, limited only by the number of

computing resources.

Another advantage of the NGV framework is that each astrocyte is “optimized” for
the specific space it occupies, taking into account the synapses in its neighborhood,
connections to the vasculature and homotypic neighbors. Even if thousands of astrocytes
were reconstructed, they would only be suitable for the specific location and surrounding
environment they have been extracted from. Experimentally reconstructing an entire
region or brain down to the micrometer scale would address this problem, however it would
generate one NGV circuit instance out of infinite variations that can be generated with my
framework. Nevertheless, experimental reconstructions are essential for constraining the
parameters of the NGV framework, therefore scientific efforts for detailed reconstructions
of complex systems is of paramount importance. Algorithmic approaches, such as the
NGV framework, are able to use sparse biological data to scale into entire brains with or

without pathological architectures.

3.9.1 Single cell morphometrics and topology

Three clones were generated from each reconstructed astrocyte morphology, with each
clone having as an input the original morphology’s endfeet appositions, morphometric
distributions, point cloud and branching topology (Fig. 3.9A, B). As the synthesized
cell was constrained by the original morphology, it allows for the systematic study
of its growth pattern without the external influence of the network organization. It
should be noted that the synthesized cell morphology is still unique, regardless of the
aforementioned constraints, due to the stochastic selection of the tree barcodes combined
with the exponential probability of branching at a specific path length. For all the
validations that follow, perisynaptic and perivascular trees were validated separately, due

to their different roles and their distinct morphological properties.

A set of commonly used morphometrics were extracted from the two morphology groups.
Specifically, I tested the section lengths radial and path distances, branch orders and
bifurcation angles. When comparing morphometrics between groups of a small size, like in
this example in which the morphometrics of 3 cells are compared with the morphometrics
of a single reconstruction, the mechanism of random barcode selection can result into

creating the same tree topology more than one time. This is especially often if the
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Bio Clones

Figure 3.9 Examples of synthesized cells (clones) that are generated from the branching topology,
morphometrics and endfeet targets of a single biological morphology. Perivascular processes are in blue
and perisynaptic processes in red.

pool of barcodes is created from a single cell. Therefore, the probability to draw the
exact combination of barcodes as in the reconstructed cell if very small. This effect can
be seen in the morphometric distribution comparisons in Figure 3.10 as a shift in the
distributions. Radial and path distance and section branch orders are the features that
are most inflicted by the aforementioned bias. The effect is more prominent in the second
cell (Fig. 3.9B), because of the larger difference between the barcodes of the trees. In all
cases the astrocyte successfully grew the perivascular processes to the endfeet targets

using the barcode that was available.

The topological colonization synthesis for astrocytes does not target to capture the
morphometrics of a single morphology, that is to generate a morphology that is identical
to the input cell. It aims instead to capture the population wide characteristics while
maintaining variability by creating unique realizations from that population. Therefore,

the design choice of sampling from a pool of barcodes makes better sense when a
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Figure 3.10 Comparison of the normalized histograms of the morphometrics of cloned (blue) and experi-
mentally reconstructed (orange) astrocytes. Astrocyte clones are synthesized by using the persistence
barcode of one cell while keeping endfeet appositions, morphometric distributions, point cloud and
branching topology unchanged.
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population of cells is used as an input in synthesis as we will see in the next section.
Before moving to a circuit wide validation, a more meaningful way to validate the

correctness of the branching structure will be presented.
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Figure 3.11 Cloned cells topology validation. Persistence diagrams for experimental reconstructions (A,
D) and synthesized astrocytes (B, E). From the persistence images of the diagrams, their topological
difference for each row is shown (C, F).

Persistence diagrams were extracted from the reconstructed (Fig. 3.11A,D) and synthesized-
cloned (Fig. 3.11B,E) morphologies, and subsequently converted to persistence images,
the pixel values of which are normalized in the [0, 1]. The size of the images in both

axes is normalized by the maximum dimension (in pm) of our dataset.

The topological difference between the branching topologies of the experimental and
cloned cells showed a less than 20% discrepancy close to the diagonal of the persistence
difference. Values close to the diagonal correspond to sections that are short lived, i.e.
their birth-death distance (section length) is small. This difference sources from the
choice of the segment length (0.1 m), which leads to the scaling of the bars that are
shorter than that. Even though it doesn’t contribute significantly in the total length
of the cell (see section 3.6), it is visible in the topological difference due to the slight
shift of the small branches from the diagonal. The heavily ramified nature of astrocytic
morphologies results into a high branching frequency, which requires a small segment
length in order to capture all the details during synthesis. Having a ten times denser
sampling of points makes synthesis significantly slower when compared to neuronal
synthesis that uses a segment length of 1 pm. However, it was necessary in order to

capture all the smallest bars. The dense morphologies can then be re-sampled after they
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are generated, reducing the number of points in longer sections and making sure that the
short branches consist of at least two points, their starts and ends. Unfortunately, with
the current synthesis implementation the computational overhead cannot be avoided, but

in the future a variable segment length approach could overcome this issue.

3.9.2 NGV circuit morphometrics and topology

Figure 3.12 Examples of NGV Circuit astrocyte morphologies. Five astrocytes from each layers that are
not in contact with the bounding wall.
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In the context of a circuit, each astrocyte could sample its barcodes from all available
branching topologies, which were previously extracted from the reconstructed datasets.
The perivascular targets, perisynaptic orientations, synaptic clouds and domain bound-
aries were generated from the NGV circuit building algorithms and were used as input
in synthesis to guide the growth process. Therefore, the input data for each astrocyte

was unique, determined by the local environment and the size of the astrocyte domain.

Five representatives from each layer that are not in contact with the boundaries were
randomly selected (Fig. 3.12) from which a set of common morphometrics were extracted,
such as the number and lengths of sections, the section radial and path distances and
branch orders, the remote bifurcation angles and the segment radii and volumes. The same
feature extraction was applied to the experimental reconstruction and the distributions
of reconstructed and synthesized morphologies were compared for each feature. The
morphological analysis was applied on perisynaptic and perivascular processes separately,

because of their different branching properties.

Due to the fact that topological synthesis of astrocytes uses the path distance from
the soma as a metric for branching, it was expected to reproduce very well the section
length and path distance distribution for the population. Radial distance distribution
on the other hand, depends on the radial outgrowth of the synthesized trees. On the
population level the radial distances from all experimental morphologies were pooled
together, smoothing out the distributions from longer or shorter cells. Therefore when
compared with a synthesized sample that drew from barcodes randomly, similar statistics

can be achieved.

It was surprising that the opening angles were so well reproduced without sampling from
a biological distribution. The simple rule of one child following the parent direction
and the second child following the direction to the seed that is available and furthest
away from the initial direction was sufficient to reproduce the angle distributions of the
experimental morphologies. This suggests that astrocyte create branches in a space filling
manner, as they progressively ramify during development, filling up the available space.
Therefore, using the synaptic cloud, which is already available from the neuronal circuit,
the biological splitting behavior can be reproduced without the need of extracting angle
morphometrics from the experimental data, reducing in this way the input measurements

that are required for astrocyte synthesis.

Simulation of calcium induced waves throughout the morphology requires biologically

realistic surface area and volume profiles for the distribution of ion channels and trans-
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Figure 3.13 Morphometric comparison between synthesized (orange) and experimental morphologies
(blue).

mission line dynamics. For this reason I computed how segment surface area and volume
vary with respect to the radial distance from the soma of the astrocyte. First I grouped
all segments in each morphology in perisynaptic and perivascular and sorted each segment
in the group according to the distance from the segment’s center to the center of the
cell’s soma. The sorted-by-distance segment volumes and surface areas were cumulatively
summed, producing the cumulative plots in Figure 3.14. The synthesized diameters
and perimeters result to a distribution of surface areas and volumes that fall within
the variance of the reconstructed values. Note that the reconstructed cells assume
significantly variable radial distributions, giving rise to high differences within the input
population and rendering a proper modelling of diameters and perimeters difficult. More
reconstructed datasets (10-20 astrocytes) would be necessary to successfully constrain
the model and identify potential subtypes of astrocytes instead of pooling them together

in the same group.
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Figure 3.14 Comparison of cumulative segment volumes and surface areas between synthesized and
experimental data. Blue plots correspond to experimental morphologies, whereas orange plots correspond
to the synthesized population. In both plots the mean value and variance are plotted. (A,C) Cumulative
segment volume plots as a function of radial distance. (B, D) Cumulative segment surface area plots as
a function of radial distance.

Similarly to the single cell synthesized clones in the previous section, the trees of both
reconstructed and synthesized morphologies were converted into persistence diagrams
and subsequently into persistence images (Fig. 3.15A,C). The first step was to calculate
the topological distance between each pair in the group of reconstructed morphologies in
order to determine the error baseline within the reconstructed population. The average
topological distance between reconstructed perivascular trees was 110 + 32 units. The

average topological distance of the reconstructed perisynaptic trees was 79 + 24 units.

The next step was to calculate the average over all distances for each pair of reconstructed
and synthesized morphology, grouped by layer. For perivascular processes, in layer |

the average topological distance was 69 + 27 units, in layer II 68 + 33 units, in layer III
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71 £+ 40 units, in layer IV 65 + 33 and in layer V 75 + 33 units. For perisynaptic processes,
the reconstructed baseline was in layer I the topological distance was 54 + 11 units, in
layer II 53 + 9 units, in layer III 54 + 11 units, in layer IV 52 + 16 units and in layer V
53 £ 12 units. These results can be seen in Figure 3.15B,D.

The comparison between the intra and per layer inter population topological distances,
showed that the reconstructed trees of the astrocytic morphologies exhibited large
distances even when perisynaptic and perivascular processes were considered separately.
One factor contributing to this results was the existence of trees in one morphology that
were very short as opposed to trees in a different morphology that were longer and spread
out. Pruned trees could be result of partial reconstruction or cut from the reconstruction
block. Unfortunately, given the small number of reconstructed morphologies (n=3),
further classification or curation was impossible. However, the synthesized trees exhibited

smaller topological distances on average because of the sampling of the barcodes.
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In experimental setups there is a specific number of measurements that can be made,
depending on the protocols that were used to stain, fix the tissue and digitally reconstruct
it. Slightly different scientific questions might require starting the entire process anew with
different strains of animals, transgenic or not, and weeks of work until measurements can
be extracted. In-silico anatomical reconstructions of the NGV do not seek to replace the
experimental setup, but to minimize the costs and time required from scientific discoveries
and most important the avoidable sacrifice of animals. Algorithmically generated NGV
circuits could serve as magnifying glasses into brain’s complexity, allowing scientists
to explore the geometry and topology of its entities and their connections. Moreover,
the creation of multiple NGV circuits, each one with a different set of parameters that
reflect organizational changes in brain anatomy, allow for a better understanding of the
anatomical principles and their geometric constraints on brain function. All these insights
could guide the scientist for the construction of focused experiments, limiting exploration
as much as possible thanks to in-silico circuits. Here I present an exploratory journey

into the quantification of compositional and organizational aspects of the NGV circuit.

4.1 Spatial organization of astrocytic endfeet

To gain a general overview of the spatial organization of the gliovascular elements, spatial
kernel density estimate (kde) plots were generated from the points comprising these
datasets. A Gaussian kernel was used for the estimation of the probability density
function, the bandwidth of which (standard deviation) was determined by the Scott’s
rule (Scott, 2015). The plots were realized on the x-y plane, where y corresponded to the
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cortical depth of the circuit. The vasculature point samples were differentiated into large
vessels (Fig. 4.1A) and capillaries (Fig. 4.1B) using a diameter threshold 6 um, which
was reported for rodents in Schmid et al. (2019). In addition, two more datasets were
used for the density plots: the astrocytic somata coordinates (Fig. 4.1C) and the endfeet
target points on the surface of the vasculature (Fig. 4.1D). Altogether, using the four

plots I sought to investigate the effect of gliovascular elements on the endfeet generation,
if any.
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Figure 4.1 Spatial kernel density estimate plots of large vessels (A)m capillaries (B), somata coordinates
(C) and endfeet targets on the surface of the vasculature (D). (E) Homogeneous distribution of endfeet

targets in Layer I. (F) A 30 pm slice in layer I of endfeet targets (black) and the vasculature mesh points
(red).

The density plots showed no prominent spatial correlation between the endfeet targets

and either the large vessels or the capillaries. They exhibited instead overlapping density
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regions with the density profile of the astrocytic somata, especially in layer I. In the
NGV circuit most astrocytes produce endfeet (> 90% in the NGV circuit), therefore the
higher density of endfeet in regions of high soma density was a consistent prediction. As
a matter of fact the density of endfeet in the NGV circuit was measured as 23464 endfeet
per mm? in layer V and 28421 endfeet per mm? in layer I. The cerebral micro-vasculature
is a space-filling structure (Gould et al., 2011) that spans the entire cortical space , whilst
occupying less than 5% of the total cortical volume (Heinzer et al., 2006, 2008; Serduc
et al., 2006). As we already saw in the NGV circuit generation (see section 2.8.2), the
astrocytic somata were evenly spaced following the density which almost doubled in
layer one. Therefore, it appears the generation of the endfeet was not restricted by the
vascular volume. and by extension most astrocytes always project endfeet targets to

nearby vessels.

Creating a scatter plot of the target points in layer I (Fig. 4.1E) showed that indeed the
distribution of the endfeet targets wasn’t “trapped” by the vascular structures, rather
it was homogeneously distributed throughout the available space. In addition, taking a
closer look into a 30 pm slice verified that the endfeet target selection was spread out
throughout the entire space, an observation that explained their spatial correlation with

the astrocytic somata, but not with the vascular structures.

In conclusion, the evenly spaced distribution of astrocytic somata throughout the neuropil
allows for the generation of vascular endfeet projections, which extend to the vasculature
from their local environment. The space-filling organization of the vasculature in combi-
nation with the astrocytic somata spacing allows for the uniform provision of glucose
and nutrient provision to the neurons (Magistretti and Allaman, 2018; Magistretti and
Pellerin, 1996), which co-occupy the same space, and for an efficient recycling of water,
neurotransmitters, toxic molecules and ions (e.g. K* clearance) (Abbott et al., 2010;
Bellot-Saez et al., 2017).

4.2 Effect of astrocytic density on endfeet organization

A number of studies suggest that astrocytic density varies little across brain structures
and species when compared to the variation of the neuronal density due to differences in
neuronal sizes (Haug, 1987; Herculano-Houzel, 2014; Leuba and Garey, 1989; Tower and
Young, 1973). As neurons increase in size in bigger brains, their density decreases leading
to a higher glia/neuron ratio, ranging from 0.3 in rodents to 1.5 in humans (Blinkow
and Glezer, 1968; Nedergaard et al., 2003; Pelvig et al., 2003). However, recent studies
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showed that astrocytes in humans have spans twice as big as their rodent counterparts
(Oberheim et al., 2009), which raises the question of how morphological constraints in a

dense neuropil affect the astrocytic population.
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Figure 4.2 Effect of astrocyte density increase on the feasibility of perivascular processes in the same
bounding space. The red data points correspond to the reference circuit with the biological parameters.
As the astrocytic density increases the total number of endfeet increases sublinearly with respect to the
total number of astrocytes (A), which is also reflected in the per astrocyte number of endfeet (B) and
leads to smaller distances and domain extents (C). As the number of astrocytes increases, astrocytes
with no endfeet increase in number (D), their distance to the closest vessel becomes smaller (E) and
because of the packing there is a bias for smaller soma sizes (F).

In order to explore the structural relationship between astrocytic density and mi-
crodomains, I generated 100 NGV circuits, where cell placement, microdomains and
gliovascular connectivity stages were executed. The initial NGV circuit had the default
parameters and the total number of 14648 astrocytes. An uniform scaling factor was
applied to the astrocyte densities for each subsequent circuit until the total number of
astrocytes was scaled up to half a million. The vasculature dataset, bounding space and

neuronal population remained unchanged for all circuits.

I discovered that as the astrocytic density increased, leading to a higher total number of
astrocytes, the number of endfeet did not increase accordingly, but follows a sub-linear
relation (Fig. 4.2A). This relation was a result of the reduction of the number of endfeet
per astrocyte from an average of 2.1 to 0.8, induced by the shrinking of the microdomain

bounding space, the extent of which dropped from 64.2 um down to 15 pm (Fig. 4.2C).
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A smaller microdomain extent reduces the reachable space of an astrocyte, which in
turn results in the decrease of the number of astrocytes which have endfeet. Specifically,
the percentage of astrocytes with no endfeet increased from 1.5% to almost 60% of the
total astrocyte number in the circuit (Fig. 4.2D) and because of the tight packing, the
average distance of the perivascular astrocytes to the closest vessel dropped from 19 pm to
0.8 um (Fig. 4.2E), with their somata essentially touching the surface of the vasculature
and their anatomical domains occluding access to neighboring astrocytes. In fact, the
packing becomes so dense that the Gaussian sampling of the somata radii becomes

skewed, thereby favoring smaller values because of lack of available space (Fig. 4.2F).

4.3 Wiring, surface areas and volumes

In order to obtain a deeper understanding of the elements that compose the gray matter
of the cerebral cortex, quantification was performed of the wiring, surface areas and
volumes for neurons, astrocytes and the vasculature. The processes of neurons, astrocytes,
and vasculature were decomposed into segments, which populated three separate spatial
indices (R-trees, Beckmann et al. (1990)), indexed by their centroid. Spatial queries were
performed to extract morphological features such as process length, area, and volume for
specific regions of interest, such as layers or astrocytic microdomains. I then extracted
both total measurements and densities, separated by layer for the three types of entities
in the NGV.

Starting with the volume fractions, I measured that neuronal processes occupied (33 + 13) %
of the neuropil, astrocytes (4.0 £ 0.1) % and vasculature (4.7 £ 0.7) % (Table 4.1). In the
literature, the volume fraction of neuronal processes has been reported to be (35.0 + 0.5) %
for dendrites and (47.0 = 0.5) % for axons in the rat hippocampus (Karbowski, 2015;
Mishchenko et al., 2010). Astrocytes were reported to occupy (11 + 4) % of the neuropil in
the cerebral cortex (Dienel and Rothman, 2020; Mishchenko et al., 2010), and vasculature
less 5% of the total cortical volume (Heinzer et al., 2006, 2008; Serduc et al., 2006).

Vasculature volume fractions were consisted with previous experimental estimates.

The missing volume percentage of the neuronal wiring in the NGV circuit corresponds to
the missing afferent fibers from outside the region of interest, which have been predicted
to be approximately 41 million and would form an additional 147 + 4 million synapses
(Markram et al., 2015). Astrocytic process volume fractions exhibited a 6% compared
to experimental estimates, which could not be explained in terms of missing wiring

because of the localized structure of astrocytes. However, the NGV circuit models the
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Figure 4.3 Total process (A) wiring, (B) surface areas and (C) volumes per layer of neurons (blue),
astrocytes (green) and vasculature (red).

anatomical architecture of the somatosensory cortex of a P14 rat, in which the density
of astrocytic somata ((12286 + 1601) mm™) hasn’t reached adult values (15000 mm™3
to 18000 mm™3, Gordon et al. (2007); Leahy et al. (2013)). In addition, the degree of
astrocytic ramification increases significantly from P14 to P21, in which age it converges
into the mature phenotype, full of spongiform processes that cover the entire domain
(Bushong et al., 2002, 2004). The synthesized morphologies of astrocytes in the NGV
circuit were generated from the branching topologies of P14 reconstructed morphologies
(Cali et al., 2019), which have not yet acquired the mature phenotype. Therefore, under

the light of these two predicates, i.e. lower soma density and ramification compared



4.3 Wiring, surface areas and volumes 73

to mature astrocytes, the lower volume fractions in the NGV circuit were consistent

compared to the reported measurements on adult rodents.



74

Validations and predictions

Total length (m)

L1 L2 L3 L4 L5

Neurons
Astrocytes
Vasculature

169.6  157.5 406.7 271.6 636.7
10.3 8.6 20.6 10.7 29.8
0.2 0.2 0.3 0.2 0.4

Length density (m/mm?)

L1 L2 L3 L4 L5

Neurons
Astrocytes
Vasculature

1308.9 1347.7 1467.2 18244 15414
79.2 73.7 74.2 71.5 72.3
1.3 14 1.2 1.4 0.9

Total surface area (mm?)

L1 L2 L3 L4 L5

Neurons
Astrocytes
Vasculature

2429 188.8 4821 3359  T81.7
31.0 26.0 62.2 32.1 90.0
3.2 3.2 6.1 3.2 6.2

Surface area density (mm?/mm?)

L1 L2 L3 L4 L5

Neurons
Astrocytes
Vasculature

1874.9 16154 17394 2256.2 1895.4
239.3 2224 2242 2158 2183
25.0 27.2 21.9 21.8 15.0

Total volume (x10~2 mm?)

L1 L2 L3 L4 L5

Neurons
Astrocytes
Vasculature

4.8 3.6 9.8 7.4 16.0
0.6 0.5 1.1 0.6 1.6
0.6 0.6 1.0 0.5 0.9

Volume occupancy (% of the layer volume)

L1 L2 L3 L4 L5

Neurons
Astrocytes
Vasculature

37.2 30.5 35.5 49.4 38.8
4.3 4.0 4.0 3.9 3.9
4.7 5.0 3.9 3.2 2.2

Table 4.1 Quantification of the total wiring, total surface areas and volume fractions for neurons,
astrocytes and the vasculature and for each layer in the NGV circuit.
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Apart from volume fractions, which are usually reported in the literature, I also measured
surface area and length of all three entities in the NGV circuit, both in absolute and
density representation (Table 4.1). Neuronal process total length ranged from 120m in
layer I to 657 m in layer V, two orders of magnitude higher than astrocytic process length,
which ranged from 1.4m to 3.5m in layer V and three orders of magnitude higher than
vasculature wiring, which ranged from 0.2m in layer I to 0.5m in layer V. Total Surface
area for neurons ranged from 242.9 mm? in layer I to 781.7mm? in layer V. Astrocytic
processes surface area was measured from 31 mm? in layer I to 90 mm? in layer V. Finally,
vasculature surface area ranged from 3.2mm? in layer I to 6.2mm? in layer V. The ratio
of the total length between neurons and astrocytes was 20 + 3 and between neuronal and
vascular total length was 1347 + 372. The total process surface ratios were 8 + 1 and

98 + 29 respectively.

Following the quantification of the geometrical features of neurons, astrocytes and the
vasculature, it was apparent that there was a systematic order-of-magnitude difference
between them. The data suggested there is a hierarchy in cortical composition, the origin
of which has been theorized in terms of length (Klyachko and Stevens, 2003; Wen et al.,
2009), conduction delay (Budd et al., 2010), volume or/and spine economy (Karbowski,
2015) minimization. Most importantly, I have shown here that an in-silico circuit of the
NGV architecture can indeed be used to investigate questions concerning the intricacies

of cortical composition and their relation to computational capacity.

4.4 Astrocyte-related numbers

In this section I will focus into the central player of the NGV architecture, the astrocyte.
Due to the fact that the gliovascular interface has been extensively analyzed in the
validation of the NGV model, I extracted two quantities that were not found in the
literature, namely the total endfeet surface areas for each astrocyte. The median of the
total endfeet surface areas per astrocyte was 427 pm? with a 95th percentile of 992 pm?
(Fig. 4.4A), and the median of the total endfeet volume areas per astrocyte was 414 pm?
with a 95th percentile of 962 ym? (Fig. 4.4B).

The neuroglial interface consists of the connections between neurons and astrocytes via
the formation of tripartite synapses. Each astrocyte domain connected to 627 + 259
neurons via tripartite synapses (Fig. 4.4C), whereas 6 + 4 neuronal somata were in
contact with each microdomain. The number of neuronal somata per astrocyte was in

a consistent range compared to reported numbers of four to eight neuronal cell bodies
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per astrocytic domain in the rat hippocampus (Halassa et al., 2007b). The median of
the number of synapses per microdomain was 3010 and the 95th percentile was 7175
synapses. Compared to the 100000 synapses per domain that have been reported by
Bushong et al. (2002), the circuit numbers fell short, although this discrepancy has
been encountered before and was due to he missing afferent fibers, mostly long range
projections (Stepanyants et al., 2009). Taking into account the missing synapses from
the external connections would result into a synapse density of (0.9 + 0.1) synapses/pm?
for layers I-V (Santuy et al., 2018), the predicted median for each microdomain would be
71995 and the 95th percentile 134010 synapses, which is consistent with the literature.
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Figure 4.4 Quantification of the astrocytic interfaces. Histograms of per-astrocyte total endfeet area (A),
volume (B), connected neurons (C), connected synapses (D), astrocytic neighbors (E) and gap junctions
(F). (G-I) Neuronal processes total lengths, areas and volumes per microdomain and across the cortical
depth. Purple line represents the average and the gray area the respective standard deviation.

The astrocytic syncytium is formed via gap junctional connections, established in the

overlapping interface between each astrocyte and its neighboring astrocytes. The NGV
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circuit astrocytes formed 5 + 2 connections with their neighbors (Fig. 4.4E). In the study
of Xu et al. (2010), the inter-astrocytic connections were estimated to 11 + 3 connections,
ranging from 6 to 15 in hippocampal slices from P21 to P25 rats (Xu et al., 2010). In
order to discern if the source of this significant discrepancy in the emergent connections
of my model was either a geometrical restriction resulting from the domain tessellation or
morphological artifact, I calculated the number of neighbors per astrocyte based on the
domain tessellation (using only the polygons). Therefore, analysing the incident domains
to each domain resulted to 15 + 3 neighbors per astrocyte, which were notably higher
than the connections established from the gap junctions. The connections were calculated
from the detection of the intersections (touches) between neighboring morphologies.
The median number of gap junctional connections were found to be 198, with the 95th
percentile being 609 (Fig. 4.4). The exponential distribution of the gap junction numbers
in combination to the available neighbors signified that the NGV astrocytes, not being
yet fully mature, they didn’t exhibit an extensive ramification, allowing for a uniform
interface across the boundaries of the domain. Rather the primary processes reached the
boundaries of the domain and penetrated into neighbor territory forming a lot of close-
together touches (in small distances). This is indeed how astrocytes form connections
with their neighbors while developing and before reaching the maturation stage (Bushong
et al., 2002, 2004; Ogata and Kosaka, 2002). There is however space for improvement in
my model so that astrocytic processes could optimally cover the extents of the domain

and connect to more neighbors as reported in experiments.

On a microdomain basis, I calculated the total wiring, surface area and volume of neuronal
processes for each microdomain across the cortical depth of the somatosensory cortex
(Fig. 4.4G-I). The total process length density per microdomain was calculated for all
neuronal morphologies and found to range from 1 to 2 ym/um3 across all layers. The
average number of neurons and synapses per astrocytic microdomain were 250 and 3000
respectively (Fig. 4.4D E)






Conclusions and future work

5.1 Conclusions

Astrocytes extend ramified processes to the vasculature and neuronal synapses, creating
reticular highways for neuronal trophic support, homeostatic control (ions, water),
and multi-directional signaling to and from the vasculature, neurons, and neighboring
astrocytes. The plethora of complex biological mechanisms that arise from the neuronal-
glial-vascular (NGV) ensembles and how they support brain function have not been
completely understood. This is because we lack an understanding of the detailed

anatomical organization of the NGV that forms the foundation for these interactions.

In this thesis, I created for the first time a data-driven digital reconstruction of the
neuronal-glial-vascular (NGV) ensemble at a micrometer anatomical resolution. I used
sparse data from numerous studies to build an NGV circuit of 14648 protoplasmic
astrocytes and 88541 neocortical neurons, forming a functional column of the P14 rat
neocortex with its microvasculature. I designed an algorithmic framework for constructing
large-scale networks of neurons, astrocytes, and the cerebral microvasculature to achieve
this. Previous work on the digital reconstruction of neuronal networks was extended with
a new pipeline to include astrocytes, the vasculature, and reconstructing their pairwise

connectivities: neuro-glial, glio-vascular, and glial-glial.

The first step was to generate the spatial organization of the astrocytic syncytium based
on experimental data. The reproduction of both the spatial frequency and dispersion of
astrocytic somata was achieved by developing a novel method that allowed the somata’

placement at a specific density and distance to their closest neighbors while avoiding
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collisions with geometric entities co-occupying space. Previous cell placement models
generated positions without considering their spatial embedding and dispersion, which
is an essential feature of the astrocyte’s tiling organization. This method successfully
reconstructed the key properties of the astrocyte positions from which stellar morphologies

are grown.

Instead of growing the astrocytes simultaneously, searching for connections, interacting
with their neighbors, and remodeling to form a tiling organization, I turned the problem
on its head by first partitioning the cortical space into polygons (anatomically exclusive
regions of the astrocytes) and then process each astrocyte region independently. This
approach converted a computationally intractable problem into an embarrassingly parallel
one, which scales efficiently to any number of astrocytes. Furthermore, to make the
domain size proportionate to the soma dimensions, I modeled the polygon generation
as a power diagram in which the soma’s radius influences the size of the domain. I also
successfully reproduced the overlapping interface of neighboring astrocytes by applying
a uniform scaling of the domains until they reached a 5% volume overlap with their
neighbors. Each domain polygon delimited the accessible vascular branches and synapses
for each astrocyte, and all connectivity methods, apart from the glial-glial that required

the entire astrocytic population, were calculated independently.

The gliovascular connectivity was established within each astrocyte domain by first
distributing potential targets on the vascular branches and sampling the number of
endfeet from a distribution with an average value of two, according to literature data
for P14 rats. Which targets should we select and with what kind of relation to each
other? To answer this question, I analyzed the endfeet geometry in the reconstructed
astrocyte morphologies and created a selection strategy that incrementally selected
the closest targets from different branches by maximizing the distance to previously
selected ones. The endfeet surface geometry was then reconstructed from the competitive
propagation of 2D waves along the vasculature surface geodesics, constrained by reported
area distributions. The neuroglial connectivity was established by randomly selecting a

subset of the synapses inside the astrocyte domain.

The last and most complex stage was to grow detailed stochastic astroglial morphologies,
constrained by the per-astrocyte data produced in the steps above. Thus, astrocytes
were grown in space, targeting the endfeet vasculature sites, using the available synaptic
cloud to influence their growth, replicating the branching topology of the experimentally-
reconstructed cells. Perisynaptic process orientations were distributed based on the

microdomain’s orientation, which also constrained the cell’s overall growth. To make this
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possible, I developed a novel algorithm that combined the topological branching and space
colonization methods using the neuronal synapses as a point cloud of attraction seeds.
Following the morphology generation, the glial-glial connectivity was generated based on
the overlapping geometries between neighboring astrocyte morphologies. The neuroglial
connectivity was defined by assigning the astrocyte morphology’s closest segment to each

neuronal synapse, starting from the available synthesized morphologies of astrocytes.

The topological branching synthesis for astrocytes is a paradigm shift from existing
approaches, limited by the small number of digitally-reconstructed morphologies. In-
stead of relying on the existing reconstructions available from biological experiments, I
computationally generated a large number of morphologies of astrocytes based on the
extracted branching topology of the astrocytic reconstructions. This framework allowed
the generation of an unlimited number of morphologies, which replicated the input exem-
plars’ biological branching topology, yet have grown into unique, space-embedded, and
context-aware entities. The integration of additional data concerning different astrocytic

types will incrementally add morphological variability into the NGV circuit.

The NGV circuit was validated against numerous literature sources to ensure its biological
fidelity. It successfully reproduced the spatial organization, dispersion, and geometric
characteristics of the astrocytic somata. In addition, the astrocytic somata were placed
without collisions with other somata or the vasculature geometry, reproducing the physical

limitations and occupancy that naturally emerge in a biological network.

The domain volume distribution was consistent with reported estimates on juvenile
rodent brains, whereas there was no notable difference between the overlapping and
non-overlapping volumes due to the small overlap factor. Most importantly, the NGV
circuit’s domains reproduced literature findings of decreased domain sizes in layer I,
resulting from the increased astrocyte density in said layer. This result confirmed that
astrocytic shapes are indeed susceptible to purely geometric constraints induced by their

contacts and spatial organization.

Cells were generated with perisynaptic and perivascular processes connecting astrocytes
to the synaptic cleft and vascular sites, respectively. The number of vascular sites
was sampled from biological data. The emerging astrocyte distance distribution to the
vasculature and neuronal somata was in agreement with experimental measurements,
which suggested that the organizational relationship between neurons, astrocytes, and
the vasculature does not exhibit a specific spatial pattern. Instead, it only depends on

the somata distribution and physical limitations.
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The digital reconstruction of the endfeet areas on the vasculature’s surface followed the
constraints extracted from the literature estimates. However, when the surface meshes
were pruned to reach the target distributions, the vasculature’s respective total coverage
dropped from ~ 91% down to ~ 30%. Thus, I discovered that the specific combination
of constraints (astrocyte densities, number of endfeet, and endfoot area distributions)
was impossible to result in the expected biological coverage of ~ 60%, indicating an
inconsistency in the values reported in the literature. This discrepancy illuminated the
power of using a computational model to uncover the geometric underpinnings that

govern the NGV architecture.

Topological astrocyte synthesis was first validated for its ability to reproduce unique
morphologies. Thus, each reconstruction was decomposed into a pool of barcodes, and
multiple cells (clones) were synthesized from each barcode pool. All the cell characteristics,
such as the number of trees, endfeet targets, and soma size, remained unchanged. The
morphometrics were in agreement with the reconstructed ones. However, because of
the random selection of barcodes from the pool for each cell realization, the exact
configuration of barcodes that comprise the initial cell rarely occurs. Since each barcode
may appear more than once in the resulting morphologies due to the random sampling,
the morphometric distributions, especially radial and path distances, could be skewed.
This behavior was anticipated because of the topological synthesis’s design to capture
the variability of the population instead of reproducing exact cells. In addition, this
effect is more severe when few sample morphologies are available, which results in the
high variance of single cells within the input population. The topological comparison
exhibited a difference close to the diagonal of the persistence diagrams, a result caused by
choice of the minimum segment length (0.1 m), which resulted in the scaling of smaller
branches to that value. This difference, however, was measured to negligibly affect the
total length of the cell.

After validating that the synthesis method could successfully reproduce the topologies of
astrocytes starting from a single cell, I validated the circuit morphologies synthesized
inside the NGV network. The population morphometrics matched the reconstructed ones,
and the topological distance between the population in each layer and the biological cells
was smaller than the topological distance within the group of biological reconstructions.
The space colonization component of the model succeeded in reproducing the branches’
bifurcation angles without sampling from morphometrics. Finally, synthesized astrocytes
accurately reproduced the surface areas and volume distributions, which are essential for

modeling their functional properties.
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The NGV circuit provided access to a plethora of measurements that I collected as
exploratory predictions of the underlying biological complexity. Analysis of astrocyte
somata’s spatial densities, vasculature, and endfeet unveiled that astrocytic endfeet are
homogeneously distributed in space due to the space-filling geometry of the vasculature.
This geometrically-constrained architecture allows for a spatially-continuous provision of
trophic support to neurons throughout the cortical space, which only varies with cortical
astrocytic density. Thus, the tiling astrocyte compartmentalizes the vasculature, and
their endfeet optimize the communication wiring from the endfoot to neurons. Given the
relatively low density of astrocytes compared to neurons, this endfeet organization and
coverage would be impossible if astrocytes did not partition the cortical space with the

anatomically exclusive regions, leading to insufficient trophic support.

Multiple circuit realizations of increasing astrocyte densities were generated to explore
how endfeet appositions vary with respect to the number of astrocytes. Specifically, I
evaluated the effect of increasing the astrocytic density, up to half a million astrocytes,
on the network’s gliovascular connectivity. I found that as the total number of astrocytes
increased, their overall extent shrank due to their tight packing, reducing their access to
vascular sites. However, the astrocyte number increase did not compensate for the drop
in endfeet numbers due to the tight packing of domains that prevented astrocytes from
projecting to the vasculature. In contrast to neurons, astrocytic density varies little in
different species and animal ages. My experiments indicated that the contact spacing
behavior, which gives rise to anatomically-exclusive domains, acts as a global constraint
for the astrocytes’ morphological steady state, which is reached at one month of age in
rodents. In addition, for the morphological domain to include the vascular sites within
reach, a specific range of spacing is required, which depends on the inter-vessel distance.
Therefore, the astrocyte’s role in providing trophic support polarizes its morphology and

constraints its location to maximize the connections from the vasculature to neurons.

Delving deeper into the NGV quantification, I extracted the per layer lengths, surface
areas, and volumes, both in terms of total and density measurements. Compared to
reported biological numbers, the volume fractions of neuronal processes were smaller than
the values reported in the literature due to the missing afferent fibers that reached the
circuit from outside. Also, the lower average density of the P14 rat neuropil combined with
the partially ramified morphologies resulted in a volume occupancy that was 6% lower
than reported values for adult animals. The quantification of the geometric features of
all three elements in the NGV verified the emergence of a systematic order-of-magnitude

difference in the cortical composition that has been observed in experimental studies.
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This finding proved the usefulness of the model to study the emerging organizational
properties of NGV ensembles. The unique morphological characteristics of all three
entities are sufficient to explain this hierarchy. Vasculature’s low density accounts for
the lower end of this hierarchy, whereas neuronal wiring was measured approximately
20 times higher than astrocytes and 1000 times higher than vasculature. Astrocytes are
locally bound and populate the cortical space in densities that are six times lower than
neurons, while neurons span multiple layers innervating both locally and long-range areas

with their axons.

I subsequently sought to investigate the organizational numbers surrounding the central
player of the NGV, the astrocyte. Given that the glio-vascular interface has already been
validated, I focused on the connections with neurons and neighboring astrocytes. At the
neuro-glial interface, the number of neuronal somata and synapses in contact with each
astrocyte was found to agree with experimental estimates. At the glial-glial interface, the
number of neighbors was measured to be smaller than the reported values, a discrepancy
which was caused by primary astrocytic processes penetrating the neighboring domains
and establishing clusters of gap junctional connections. While this is indeed the observed
behavior for P7 astrocytes, at P14 of age, a wider spread of connections was expected to
occur, suggesting tree distribution within the domain needs to be revisited in the future.
The NGV model renders possible the simultaneous quantification of both compositional
(densities, wiring, surface areas, and volume) and organizational (connectivities, distance

distributions, correlations) aspects of its entities.

Biophysical models of the blood-brain barrier interface and its metabolic signaling require
precise geometry specification of the astrocytic endfoot. Therefore, the endfoot surface’s
algorithmic reconstruction allows for modeling the functional interface between astrocytes,
pericytes, smooth muscle, and endothelial cells. The present study’s algorithmic approach
allows for the computational reconstruction of all endfoot surfaces in a circuit, across the
entire microvasculature in the region of interest. Changes in the endfeet surface areas,
which lead by extension to the vasculature coverage variation, have been observed in
pathologies such as major depressive disorder (Rajkowska et al., 2013) and Huntington’s
disease (Hsiao et al., 2015). For example, the endfoot area’s extent determines total
counts of the Kir and BK potassium channels that need to be distributed for a potassium
buffering model in the NGV unit (Witthoft et al., 2013). Therefore, proper distribution
of abutting endfeet areas is an integral part of a blood-brain barrier’s functional model.
A crucial factor for the accuracy of the endfeet areas is the quality of the vascular surface

mesh. Disconnected components, floating segments, and reconstruction artifacts will all
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negatively influence the faithful reconstruction of the endfeet, as they will either trap the
growth of an endfoot surface or force it to grow on a non-existent structure. In our model,
vasculature reconstruction errors are present and influence the endfeet area distribution;

however, with upcoming high-quality datasets, such error sources will be eliminated.

The NGV circuit provides the structural foundation for the large-scale biophysical
modeling of cross-talk between neurons, glia, and the vasculature. This data-driven
approach allows for incremental refinement as more experimental data become available,
new biophysical models get published, and new questions arise. Drug delivery research
studies the molecular properties of drugs. However, it should also consider the drug’s
interaction with its environment, i.e., the physicochemical properties as the drug travels
through the blood-brain barrier to various locations of a healthy or/and pathological
brain. Similarly, research in neurodegenerative diseases such as Alzheimer’s disease target
reactive astrocytes, the morphology of which is entirely transformed with variation in
their ramification, overlap, and proliferation compared to healthy brains. Although
local interactions can be studied, the large-scale emergent effects of changes in the
lactate shuttle, glutamate recycling, synthesis of glutathione, and overall disruption in
homeostasis can provide insights that will advance therapeutic solutions. This model

will provide a factual basis for this type of work.

5.2 Future directions

5.2.1 Simulation

The digital reconstruction activity of the neuronal microcircuit Markram et al. (2015)
was simulated via multi-compartmental conductance-based Hodgkin-Huxley models using
the NEURON simulation tool. The extension to NGV ensembles will allow functional

models that simulate the interactions between neurons, astrocytes, and the vasculature.

Existing functional models of neuro-glial, glio-vascular and glial-glial coupling are re-
stricted to oversimplified models of no or a small number of compartments (Farr and
David, 2011; Li et al., 2017; Volman et al., 2007), as a 2D single compartment networks
(Bellinger, 2005; Hofer et al., 2002) or as 3D graphs (Chan et al., 2017; Lallouette et al.,
2014; Wallach et al., 2014). Yet, no biophysical model of NGV interactions has been
implemented in a detailed 3D network of synthesized morphologies at a micrometer
resolution. Therefore, the NGV circuit provides the necessary geometric architecture to

simulate such models for neuronal-glial-vascular interactions.
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5.2.2 Murine and primate glial classes and sub-classes

The murine CNS is populated by three main glial classes: astrocytes, oligodendrocytes,
and microglia. In this thesis, I focused on protoplasmic astrocytes due to their key
and well-understood role in forming the NGV architecture, yet it is only the beginning
for an entire NGV organization. New emerging studies have identified new subtypes
(Batiuk et al., 2020; Clavreul et al., 2019) of protoplasmic astrocytes, the morphological

characteristics of which may vary in different cortical depths and regions.

Extending the model to the white matter would require the addition of fibrous astrocytes
and oligodendrocytes. Fibrous astrocytes grow straight and less branched processes
(Matyash and Kettenmann, 2010), which connect to Ranvier’s nodes of myelinated axons
and the vasculature much alike their protoplasmic relatives (Marin-padilla, 1995). They
cover larger regions (up to 300 pm) than protoplasmic astrocytes (< 60pm) (Ransom,
2012), lack fine processes (Oberheim et al., 2009) and they are evenly distributed, although
they don’t form anatomically exclusive regions (Vasile et al., 2017). During neuronal
development, oligodendrocytes myelinate axons to increase signal conduction velocities
and form bi-directional functional units (Nave and Trapp, 2008). One oligodendrocyte
attaches to multiple axonal fibers and can be depolarized by them, influencing the axonal
conduction velocity in a coordinating manner (Yamazaki et al., 2010), which is not yet

understood.

It has been discovered that in primates and humans, astrocytes differ not only in
numbers (Bass et al., 1971), but also in topological branching and cell-type diversity.
Two primate and human-specific types have been found: interlaminar and varicose
projections astrocytes. The somata of interlaminar astrocytes are located in layer I and
extend long processes that traverse the cortical layers parallel to each other, terminating
to layers III-IV (Falcone et al., 2019). Their processes contact both capillaries and
neuronal processes (Falcone et al., 2019) and have been reported to share functions
with protoplasmic astrocytes (Sosunov et al., 2014), allowing them to monitor and
maintain distant territories. Varicose projection astrocytes are encountered in the deep
layers V-VI, where they radially extend long unbranched processes with varicose-like
enlargements (Oberheim et al., 2009; Sosunov et al., 2014; Verkhratsky et al., 2018). They
too exhibited electrophysiological properties similar to protoplasmic and interlaminar

astrocytes (Sosunov et al., 2014).

Microglia are morphologically motile macrophages in the CNS, which continuously

protrude and retract their processes, monitoring their micro-environment (Davalos et al.,
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2005; Nimmerjahn et al., 2005). They make repetitive contacts with tripartite synapses,
and their behavior is modulated by neuronal activity (Tremblay et al., 2010), engaging in
intricate signaling patterns that also involve astrocytes (Pascual et al., 2012). Thus, the
tripartite synapse has a fourth active player, which, apart from inflammatory functions,
also participates in the development, maturation, regulation, and homeostasis of synapses,

establishing a quad-partite synapse (Schafer et al., 2013).

The greatest challenge in adding new cell types in the NGV framework revolves around
data availability and complete characterization of cell properties. Although protoplasmic
astrocytes are the next most studied CNS cells to neurons, the number of highly detailed
reconstructed morphologies is relatively small. However, the use of morphology synthesis
reduces the need for thousands or millions of morphologies down a small number essential

to capture the branching behavior of a cell type.

5.2.3 Improvements of the NGV framework

The NGV framework was designed with the use of a brain atlas in mind, in which densities,
brain region annotations, the cerebral vasculature, etc., would all be registered in the same
coordinate system, and a query for a specific region would extract all the data required
by the framework. However, because the cerebral microvasculature was independently
obtained, I manually transformed it into the neuronal coordinate space and ensured a
common registration space. In the future, full automation of selecting a brain region and
extracting the respective information will be possible with new microvasculature datasets
that are registered in the same reference space, such as the whole brain vasculature
reconstruction of Todorov et al. (2019). This is an essential step for scaling my model to

the whole brain and in curved regions.

Scaling into whole-brain networks would affect the framework by increasing reading and
writing times of the datasets, memory allocation, and running time for each processing step.
The SONATA specification (Dai et al., 2020) and libSONATA library provide efficient
out-of-core storage, which is ideal for large-scale networks. Cell placement, microdomains,
and endfeet area generation would be the most affected steps of such scaling because
they use the entire cortical space for their computations. Partitioning the space into
chunks and running each chunk in parallel, taking care of the boundaries’ computation,
would resolve such a bottleneck. On the other hand, morphology synthesis would not
be affected from scaling to bigger circuits because each cell is synthesized in parallel,
distributed into the available CPUs of the machine. The synthesis of approximately

10000 astrocytes requires less than ten hours in 36 CPUs of one node. Therefore using
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clusters with thousands of nodes would easily allow for scaling to millions of cells in the

same amount of time.

A key aspect of the NGV that is currently missing from my model is the ultra-structural
generation of the geometry corresponding to the perisynaptic astrocytic process that
engulfs the pre and post-synaptic terminals of the synapse, forming the tripartite ensemble
(Araque et al., 1999). A synthetic ultra-structural model of the tripartite synapse would
combine sub-cellular functional models with large scale signal propagation throughout
the NGV circuitry.

In the predictions of chapter 3, it was found that the distribution of gap junctional
connections was clustered around penetrating processes in the neighboring domains. To
improve the current approach, it would first require more astrocytic reconstructions to
create a diverse barcode population of trees that extend at different radial distances from
the soma. Then, during barcode selection in morphology synthesis, the distance from
the soma to the domain boundary could be used to select a barcode that fits within
that available space instead of randomly selecting one. This approach would result in

improved coverage of the domain space by the grown morphology.

Finally, the NGV model is a first draft of the neuronal-glial-vascular organization,
generated from sparse data across numerous studies. As data acquisition techniques
improve, more and more constraints will be added in the future, incrementally improving
the current model and allowing for the extension to new models that would represent

different animal species or ages and simulate various CNS pathologies.



Supplementary Material

6.1 Vasculature site attraction field

In order to model the chemo-attractive field which influences the growth of the perivascular
processes, we need first to make some assumptions of its form and properties: We assume
that there isn’t a preferred direction of the diffusive gradient of the chemo-attractive
molecules , i.e. it’s isotropic. Furthermore, given that the vasculature graph and surface
mesh are not available at the time of the morphology generation , the second assumption
constrains the field to be generated by a point source instead of the entire surface of the

vasculature in the vicinity.

For each reconstructed astrocyte the endfeet targets were annotated as points close the
the termination of an endfoot process. The closest leaf was found for each endfoot target
and the upstream sections from the leaf to the root were extracted as show in Figure

6.1A.

Let a point T be the target point, S the center of the astrocytic soma. For each first
point p; of each section, the angles theta; between S?),- and ST, as a function to the radial
distance to the target TP;. However, measurements on different trees lead to different
trends that depend on the extent and orientation of the tree inside the attraction field. In
order to normalize the data and quantify the underlying attraction trend we performed
min-max normalization for both angles and radial distances as shown in the comparison
of figure 6.1B.

The attraction of the main process to the target was fit using the quantile logit function
(Figure 6.1C).
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Figure 6.1 Attraction field analysis. (A) Analysis of radial distances from the soma S to each section end

and the respective angle to ST. (B) Scatter plots of non-normalized and min-max normalized data. (C)
min-max normalized data (blue scatter) of how influenced the direction of the process is as it approaches
the target along with the logit function fit (red) and the corresponding contribution coefficient @

y(x) =0.12 X L(x) + 0.37 x € [0,1] (6.1)
X
L(x) = In (1 _x) (6.2)

The function a(x) produces values in the (—co, ), but we are only interested in the inter-
val [0, 1]. For this reason we introduce the clamp function ¢(x) = max (0, (min (x, 1))),
which limits the image into the desired interval. Finally, let d; and d,, be the dis-

tances from the soma center to the target. The contribution factor of the direction to



6.2 Solution to the eikonal equation 91

the target can be calculated, by substituting x with 1 — x and by using the identity
logit(1 —x) = —logit(x):

T | e DU I

6.2 Solution to the eikonal equation

T3=T1 + /lTLQ + \/(51,3 — /lélg)T Q (51,3 - /151’2) (6.4)
i=2és (6.5)
b=2&19 (6.6)
6.7)
0713
—5 =0 (6.8)
24bTQb - @' Qb - b Qd
TLQ + Q Q Qa =0 (6.9)

2\(7 - 45)" 0 (3 - 15)

\/(ﬁ _ /ll_;)T 0 (5 ~ /ll;) _ a’ Qb + IZTQQTZ— 2467 Qb (6.10)
L AT . -\ (@b +bTQd - 246" 0b ?
(a - /lb) 0 (a - /lb) - ( T ) (6.11)

il Qi = Co (6.12)
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_ (Cap + Cpg = 2ACpp)?

Caa — A (Cap + Cpa) + 12Cyy, = 6.13
aa = A (Cap + Cpq) bb a2, (6.13)
_ (Cab + Cpa)® =42 (Cap + Cpa) Cpp +42°Cy,
= - (6.14)
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6.3 Connection of disconnected vasculature components

The vasculature dataset that is currently available from Prof. Weber’s lab was extracted
via synchotron based x-ray tomographic microscopy (stXTM) (Plouraboué et al., 2004)
and a graph representation was generated (Reichold et al., 2009) and outputted in the
vtk file format. I am developing a Python package, NeuroV, to enable the processing

and analysis of such datasets.

The vasculature reconstruction consists of approximately 12000 disconnected components
exponentially distributed by the number points that they contain (Figure 6.2). The
aforementioned histogram does not contain the biggest component which consists of
3.8 million points (4 million total points). Due to the fact that the vasculature object

consists of vertices connected by edges, it can trivially be represented via a graph G.

Let H; be the i-th connected component (subgraph) of the graph G = (V, E), where V,
E are the respective vertices and edges. For each of the N connected components H; it
holds that, V(H;) c V(G) and E(H;) C E(G). Moreover, given that G is disconnected,
there is no edge that connects H; components with each other and by extension there
is no shared vertex: V(H;) NV(H;) = @, i # j. We define a minimal edge set E’ which

renders G connected, i.e.:
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E'UE ={{u,v} :u,v € V(G) : Vk,m € V(G) I path p : p connects k, m} (6.18)

Vasculature graph vertices are embedded in space, therefore the centroid of the 3D points
that correspond to the vertices in each component was calculated. In order to reduce
the computation overload due to the size of the dataset, a variable neighborhood n was
defined as a sphere around the centroid of a component of radius r. It’s initial value
was equal to the average adjacent vertex distance and increased until a suitable vertex
from another component was found. The algorithm performs an hierarchical matching of
components. Specifically, starting with the set of connected components [y it matches
each non-connected component with its closest neighbor by creating a connecting edge
uv (see Figure 6.2 (b)). In the next iteration pairs of bigger components are matched
from the remaining set I, a procedure that continues until they are all connected, i.e.
[1,| = 1.

E, ={{u,v}:ueV(H;), veV(H)),i#j:min|lu,v|} Hj,Hj eI (6.19)
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Figure 6.2 (a) Histogram of the number of the disconnected components and their respective number of
nodes that they contain. (b) Example of the iterative connection (clockwise from upper left corner) of a
graph test sample.

The end result was a connected undirected graph that allowed the parsing of the
vasculature as a whole. Parsing of the vasculature is essential for the extraction of

morphological features, such as path distances from a start point, and especially for
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finding and labeling the closest neighbor segment to a point in space. For example, the
calculation of the best candidate segments for endfoot targeting requires the detection of
the closest neighboring point followed by the parsing of the graph in order to determine
the best position of the endfeet.

6.4 Calculation of Empty and Overlap Space

The domain geometry of the astrocytic morphologies was approximated by calculating
the convex hulls of the points that constitute each morphology. The overlap volume is
defined as the intersection volume of the convex hulls and the empty space as the union

volume subtracted from the volume of the circuit.

Voverlap = ﬂ V}nlull Vempty = Veircuit ~ U Vﬁull

Given a rectangular box of known volume V} . that includes all the convex hulls, a
sample of N uniformly random 3D points were generated. The number of points that lie
inside an intersection C;;,; and inside the convex hulls in general Cj,;; were counted. The

aforementioned values can be trivially calculated with the following analogical relations:

Voverlap _ Cint Vhull _ Chuli

Ybox N Ybox N
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