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It is going dark.

There are bombs exploding.

Alice is losing patience.

She throws down the map and shouts at Gertrude:
“This is the wrong road!”

Gertrude drives on.

“Right or wrong,
this is the road and we are on it.”

— Jeanette Winterson, Why be happy when you could be normal?,
rephrasing a passage from
Gertrude Stein, The autobiography of Alice B. Toklas.

To Eva, my sister
YevxapoTd.
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Abstract

Learning how to act and adapting to unexpected changes are remarkable capabilities of
humans and other animals. In the absence of a direct recipe to follow in life, behaviour is
often guided by rewarding and by surprising events. A positive or a negative outcome
influences the tendency to repeat some actions, and a sudden unexpected event signals
the possible need to act differently or to update one’s view about the world. Advances in
computational, behavioral and cognitive neuroscience have indicated that animals employ
multiple strategies to learn from interaction. However, our understanding of learning
strategies and how they may be combined is still largely restricted. The main goal of this
thesis is to study the use of surprise by ever-adapting biological agents, its contributions
to reward-based learning, and its manifestation in the human brain.

We first study surprise from a theoretical perspective. In a probabilistic model of changing
environments, we show that exact and approximate Bayesian inference give rise to a trade-
off between forgetting old observations and integrating them with new ones, modulated
by a naturally emerging surprise measure. We develop novel surprised-based algorithms
that can adapt in the face of abrupt changes and accurately estimate the model of the
world, and that could potentially be implemented in the brain.

Next, we focus on the contributions of surprise-based model estimation to reinforcement
learning. We couple one of our adaptive algorithms as well as simpler non-adaptive meth-
ods with reinforcement learning agents and evaluate their performance on environments
exhibiting different characteristics. Abrupt changes that directly affect the agent’s policy
call for surprise-based adaptation, in order to achieve higher performance. Often, however,
the agent does not need to invest in maintaining an accurate model of the environment to
obtain high reward levels. More specifically, in stochastic environments or in environments
with distal changes, simpler methods, equipped with exploration capacity, perform equally
well compared to more elaborate methods.

Finally, we turn to human learning behaviour and brain signals of surprise- and reward-
based learning. We design a novel sequential decision making task of multiple steps where
strategic use of surprising events allows us to dissociate fMRI brain correlates of reward
learning and model estimation. We show that Bayesian inference on this task leads to
the same surprise measure we found earlier, where the trade-off is now between ignoring
new observations and integrating them with the old belief, and we develop reinforcement
learning algorithms that perform outlier detection via this surprise-modulated trade-off.
At the level of behaviour we find evidence for a model-free policy learning architecture,
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Abstract

with potential influences from a model estimation system. At the level of brain responses
we identify signatures of both reward- and model estimation signals, supporting the
existence of multiple parallel learning systems in the brain.

This thesis presents a comparative analysis of surprise-based model estimation methods
in theory and simulations, provides insights in the type of approximations that bio-
logical agents may adopt, and identifies signatures of model estimation in the human
brain. Our results may aid future work aiming at building efficient adaptive agents and at
understanding the learning algorithms and the surprise measures implemented in the brain.

Keywords: Reinforcement learning, adaptive learning, surprise, human learning, sequen-
tial decision making, behaviour, brain imaging, fMRI.

viii



Résumé

Apprendre & agir et s’adapter a des changements inattendus sont des capacités remar-
quables des humains et des autres animaux. En ’absence d’une recette directe a suivre
dans la vie, le comportement des étres vivants est souvent guidé par des événements
gratifiants et surprenants. Un résultat positif ou négatif influence la tendance a répéter
certaines actions, et un événement soudain et inattendu signale la nécessité éventuelle
d’agir différemment ou d’actualiser sa vision du monde. Les progrés des neurosciences
computationnelles, comportementales et cognitives ont montré que les animaux utilisent
de multiples stratégies pour apprendre des interactions. Cependant, notre compréhension
des stratégies d’apprentissage et de la fagon dont elles peuvent étre combinées est encore
largement limitée. Le but principal de cette thése est d’étudier 'utilisation de la surprise
par des agents biologiques en constante adaptation, les contributions de la surprise a
I’apprentissage basé sur la récompense, et sa manifestation dans le cerveau humain.

Nous étudions d’abord la surprise d’un point de vue théorique. Dans un modéle probabi-
liste d’environnements changeants, nous montrons que l'inférence bayésienne exacte et
approximative donne lieu & un compromis entre 'oubli d’anciennes observations et leur
intégration & de nouvelles, modulées par une mesure du degré de surprise qui émerge
naturellement. Nous développons de nouveaux algorithmes basés sur la surprise qui
peuvent s’adapter face & des changements brusques et estimer avec précision le modéle de
I’environment, et qui pourraient potentiellement étre mis en ceuvre dans le cerveau.

Ensuite, nous nous concentrons sur les contributions de ’estimation de modéles basés
sur la surprise a 'apprentissage par renforcement. Nous couplons I’'un de nos algorithmes
adaptatifs ainsi que des méthodes non adaptatives plus simples avec des agents d’appren-
tissage par renforcement et évaluons leurs performances sur des environnements présentant
des caractéristiques différentes. Les changements brusques qui affectent directement la po-
litique de I'agent exigent une adaptation basée sur la surprise, afin d’obtenir de meilleures
performances. Souvent, cependant, 'agent n’a pas besoin d’investir dans le maintien
d’un modéle précis de 'environnement pour obtenir des niveaux de récompense élevés.
Plus précisément, dans les environnements stochastiques ou dans les environnements
présentant des changements distaux, les méthodes plus simples, dotées d’une capacité
d’exploration, sont tout aussi performantes que les méthodes plus élaborées.

Enfin, nous nous tournons vers le comportement de "apprentissage humain et les signaux
cérébraux d’un apprentissage basé sur la surprise et la récompense. Nous concevons
une nouvelle tache de prise de décision séquentielle en plusieurs étapes ou l'utilisation
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Abstract

stratégique d’événements de surprise nous permet de dissocier les corrélats cérébraux de
I'TIRMf de 'apprentissage par récompense et de I’estimation du modéle. Nous montrons
que l'inférence bayésienne sur cette tache conduit & la méme mesure du degré de surprise
que nous avons trouvée plus t6t, ol le compromis est maintenant entre I'ignorance des
nouvelles observations et leur intégration a ’ancienne croyance, et nous développons des
algorithmes d’apprentissage par renforcement qui effectuent la détection des aberrations
via ce compromis modulé par la surprise. Au niveau du comportement, nous trouvons des
preuves d’une architecture d’apprentissage des politiques sans modéle, avec des influences
potentielles d’un systéme d’estimation de modéle. Au niveau des réponses du cerveau,
nous identifions des signatures de signaux de récompense et d’estimation de modéle, ce
qui confirme 'existence de multiples systémes d’apprentissage paralléles dans le cerveau.
Cette thése présente une analyse comparative des méthodes d’estimation de modéle
basées sur la surprise en théorie et en simulation, fournit des indications sur le type
d’approximations que les agents biologiques peuvent adopter et identifie les signatures
d’estimation de modéle dans le cerveau humain. Nos résultats peuvent aider les travaux
futurs visant a construire des agents adaptatifs efficaces et & comprendre les algorithmes
d’apprentissage et les mesures du degré de surprise mises en ceuvre dans le cerveau.

Mots-clés : Apprentissage par renforcement, apprentissage adaptatif, surprise, appren-
tissage humain, prise de décision séquentielle, comportement, imagerie cérébrale, IRM{.
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Il Introduction

“Life is sequential decision making and learning under uncertainty and risk”. This is a quote
from a talk of Maté Lengyel at the “Computational and Systems Neuroscience conference”
(Cosyne) in 2017, that stayed in my mind. Indeed, few cognitive processes are as central
in the lives of humans and other animals as the ability to learn and to adapt their future
decisions. When a kitten opens it eyes and its visual system learns to recognize objects,
or when a baby makes its first steps, when we avoid eating a suspicious-looking fruit in
the fridge since a similar one made us ill in the past, up to when a trained clinician makes
a diagnosis that saves someone’s life, these are all examples of the fundamental role of
the brain processes that allow the incorporation of experience to guide behaviour.

Sometimes there are clear instructions, direct feedback, or some form of a “teacher” that
guide learning. But in many other cases feedback comes very late or is not explicit.
For example, when we learn to ride a bike, there is a series of movements that may
eventually lead to a fall, and it is hard to know what we should do differently. Through
the observation of positive and negative outcomes (rewards) of our repeated efforts, we
slowly learn how to keep our balance. And in other cases, learning occurs by observing
patterns in the world and their violation. Feedback is, then, often implicit for the “hidden”
process we try to understand. For example, if we start encountering traffic jams on our
usual route to work, we are surprised. As a consequence, we may infer that there is
construction work on some alternative route that causes the increased traffic, and adjust
our schedule accordingly. Our understanding of how the various types of learning are
implemented in the brain is quite limited. This thesis presents research on these two
latter types of learning; learning from reward and from surprise.

We, first, investigate surprise and surprise-modulated learning from a theoretical per-
spective. We develop surprise-modulated algorithms both for building a model of the
world and for obtaining reward in non-stationary environments, and study their behaviour
and performance by means of simulations. We then present an experiment where we
study signatures of different learning methods in the behaviour and in blood oxygenated



Chapter 1. Introduction

levels (BOLD) responses of human participants, during a reward-based sequential decision
making task.

In this introduction, I first provide an overview of the theory of Reinforcement Learning,
with particular focus on model-free and model-based reinforcement learning. Next, I
briefly review the theoretical background of surprise and surprise-based learning, as one
component of model learning. Then I present a short review of findings that have bridged
these theories with neuroscience: behavioural and neural evidence for the implementation
of these types of learning in the brain. Finally, I conclude with a comment on the shared
nature and neural mechanisms between reward- and surprise-based learning and on the
open issues this thesis aims at contributing to. A more detailed review of previous studies
on the specific topic of each chapter will be provided at the Introduction or Discussion
sections of the corresponding chapter, in a more targeted manner. The aim of this
introduction is to lay out the general background and the fundamental concepts on which
our work is based.

1.1 Reinforcement Learning theory

Reinforcement Learning (RL) (Sutton and Barto, 1998) is the mathematical formulation
of learning from delayed feedback — reward or punishment — that has had an extremely
influential impact in studying and understanding learning behaviour. The most widely
used starting point for the framework of RL is viewing the world as a Markov Decision
Process (MDP). In an MDP the world is made of a set of possible states S, a set of
possible actions A that the — biological or artificial — agent can perform, and a set of
possible reward (scalar) values R C R, that the agent can receive. On a given time step ¢
the agent is at (or observes) a state s; € S, selects an action a; € A, and, on the next time
step, transits to a state s;11 € S and possibly receives some reward ry41 € R (Fig. 1.1).

Figure 1.1 — Markov decision process (MDP) and agent. The interaction between
the agent and the environment, modelled as an MDP, gives rise to a sequence of states,
actions, and rewards. In this simple example there are four available actions: up 1, down
J, left <, and right —. At every time step, from a state S; = s;, and upon the selection
of an action A; = ay, the agent transits to a state Sy11 = s¢11 and observes some reward

Ryy1=riq1.

The MDP is characterized by its dynamics: the probability distribution of observing the



1.1. Reinforcement Learning theory

state s;+1 and reward ry41 at the time step ¢+ 1, when choosing a; from s; at time ¢, i.e.

P(St41, o156, ap) = P(Spp1 = se41, Rep1 = 11| St = 8¢, Ar = ay), (1.1)

where capital letters indicate random variables and small letters indicate values, and P
stands either for probability mass function (for the discrete variables, which is the case
here), or for probability density function (for the continuous variables). The next state
S¢+1 and the reward r¢4; depend only on the current state s; and action a¢, and not on
the whole history of states and actions, i.e. the dynamics assume the Markov property

P(3t+1, Tt+1’51:t7 al:t) = p(3t+1, 7“t+1|3t7 CLt)~

From these dynamics one can define the so-called transition matriz

T(st, ar, s011) = P(Sie1 = se1]Se = s, A = ar) = Y plses1, s, ar), (1.2)
reR

that is the probability to transit to sy41 from s; when choosing a4, i.e. a three-argument
function T': S x A x § — [0, 1], as well as the reward function

R(st,at, st41) = E[Re11]St = st, Ar = at, St1 = St41]

= Z rP(Rip1 =[St = s¢, Ae = ag, Stq1 = S¢41)

rerR (13)
_ Z p 8t+1,7°|5t,(lt)
reR St7at73t+1) ’

that is the reward that is expected to be received when the agent was at s;, chose a;, and
transitioned to s;, 1. R is defined here as a three-argument function, i.e. R : SxAxS — R,
but oftentimes it is a function of the landing state only.

The goal of an agent is to maximize the total reward that he or she will receive from the
environment in the future. Sometimes rewards that occur very far off in the future are
less important. The quantity that takes into account this subjective weighting between
immediate and long-term rewards is the return, i.e. the discounted total future reward
calculated from time step ¢ onwards

o0
Gi=Rip1+7vRi2+ 7 Riys + .. Z’Yth+k+1- (1.4)

The parameter 7 € [0, 1] is called discount rate and discounts the importance of distant
in time rewards.

The agent, thus, seeks to find the behaviour or the policy that maximizes the above
discounted sum in expectation. A policy is defined as the probabilistic mapping from

!Throughout this thesis we assume discrete rewards. If rewards are continuous quantities, all sums
over rewards in the following equations should be replaced by integrals.
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states to actions, i.e.
m(st,ar) = P(Ar = a4| St = st). (1.5)

The policy that fulfils the goal of the agent, i.e. that maximizes the expected discounted
sum G is called “optimal policy” and is denoted as 7*.

There are several algorithms in order to find the optimal policy and we will briefly review
them. Some of them achieve this goal, through the calculation of values. Value is a core
concept in RL, and quantifies the “goodness” of selecting a certain action from a certain
state. The state-action value Q™ (s, a) given a policy 7 is defined as

Q7 (s,a) = E;[Gy|S; = s, Ay =a], for alls € S,a € A, (1.6)

and expresses the expected future discounted reward when the agents chooses a at s and
follows the policy 7 thereafter. Sometimes it is useful to think of the values of being in a
certain state, and not of a state and an action jointly, in which case we have

V”(s) = EW[Gt‘St = 8]

= Zﬂ(s,a)Q“(s, a), for alls € S. (1.7)
Equation 1.6 can be re-written in the following way
QW(S, a) = E [Rt+1 + ’YGt+1|St =S, At = a]
—ZP '|s,a) Zr (r|s,a,s") + VEx[Gs1|Sts1 = §]]
(1.8)

—ZTsas R(s,a,s') +~Ex [Gt+1]5’t+1—sﬂ

—ZTS(ZS R(s,a,s") + V7 (s")].

This recursive self-consistent expression is a fundamental property of values, and it is
called the Bellman equation. If we spell out this equation in words, it means that the
“goodness” of a state and action pair is equal to the immediate reward we expect to receive
at the next step, plus the “goodness” of the state we expect to land on, discounted by one
factor 4. The Bellman equation for the V' values can similarly be written as

V7(s) = Z (s,a) ZTSCLS R(s,a,s") + V7 (s)]. (1.9)

The optimal policy 7*, which is better than or equally good to all other policies is the
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one associated with the optimal value function Q*, where

Q(s,a) = maxQ(s,a) = > T(s,a,8")[R(s,a,5') +4V*(s)], (1.10)

where V*(s') = max, Q*(s',a’). Equation 1.10 is called the “Bellman optimality equation”.

If the dynamics of the environment p(s;+1, 71415, a¢) are known, then the set of equations
like the one of Equation 1.10 for all state and actions in the environment, form a set of
non-linear equations, that one could solve. After having the solution @Q*, one automatically
knows the optimal policy 7*; the optimal thing to do is to be greedy with respect to
Q*(s,a), i.e. choose the action a for which Q*(s,a) is maximal (or, if there is not only
one best action, randomly select one among the equally best ones).

However, in most cases, such as in real life, we often do not know the dynamics of the
environment. In fact, even if we knew them, solving the set of Bellman equations is often
intractable when the state-action space is large (e.g. for the game of backgammon or Go,
but also in less extreme cases). In the following subsections, I briefly review some RL
methods that attempt to approximately solve the Bellman equation as they experience
the environment. All these methods learn through interaction with the world, but employ
different ways to do so.

1.1.1 Model-free reinforcement learning
Value-based learning

Equation 1.7 and Equation 1.9 mean that after learning the following should in expectation
hold true

V(St) =741+ ’YV(St_;,_l). (1.11)

As long as learning has not occurred, the above equation does not hold. Some value-based
RL algorithms exploit this idea and turn Equation 1.11 into an update rule, using the
discrepancy between the left-hand side and the right-hand side of Equation 1.11. This
discrepancy is defined as the reward prediction error (RPE)

RPE; = ripq1 + 4V (si41) — V(st). (1.12)

As we will see later, the RPE has played an extremely important role in the neuroscience
of reinforcement learning.

Using the RPE, V (s;) is then updated, at every time step, as

V(sy) ¢ V(s;) + o RPE;, (1.13)
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where o € (0,1] is the learning rate, controlling the amount of the update.

Equation 1.12 and Equation 1.13 are the simplest form of the temporal-difference (TD)
algorithms. The name of these algorithms comes from the fact that the updates are
based on the difference in the agent’s estimation between two consecutive time points;
the predicted V'(s;) at time ¢ and the experienced or new estimation ry11 + vV (s441) at
time ¢ + 1.

TD algorithms belong to the category of model-free RL algorithms. They try to ap-
proximate the Bellman equation by sampling and averaging over the experienced reward
at each step, without explicitly learning the dynamics of the environment, such as the
transition matrix 7.

A TD algorithm, commonly used in human learning studies, is the SARSA algorithm
(Sutton and Barto, 1998)

RPE; = ri11 +7Q(st41, at41) — Q(s¢, ay)

(1.14)
Q(st,at) < Q(s¢,a:) + o« RPEy,

and a closely related and famous TD algorithm is the Q-learning algorithm (Watkins and
Dayan, 1992; Watkins, 1989)

RPE; =141 + 7 max Q(s¢41,a") — Q(sy, ay) )
Q(s¢,at) < Q(st,at) + o RPE;.

The name “SARSA” comes from the fact that the update depends on the tuple (S)tate
- A(ction) - R(eward) - next S(tate) - next A(ction). In Q-learning, on the other hand,
the update is based on the current estimate of the value of the next best — greedy —
action (maxy Q(St+1,a’)), rather than the value of next action chosen according to the
agent’s policy (Q(s¢+1,ar+1)). Hence, Q-learning directly approximates the optimal Q*
independently of the policy the agent follows, whereas SARSA estimates Q™ for a policy
7. In order to find the optimal policy 7* with SARSA, the policy 7 should be changing
according to the estimated @ values, and the convergence of SARSA to the optimal policy
depends on the relationship between policy and @ values. The fact that SARSA takes
into account the agent’s policy in its updates leads often to better online performance —
while the agent is learning and has not converged yet — to lower variance across updates
and to faster convergence (Sutton and Barto, 1998).

In general, the convergence of model-free RL algorithms to the optimal policy m* can
theoretically be ensured, given infinite number of visits of all state-action pairs in the
environment, and under other appropriate conditions (e.g. decreasing learning rate )
(Singh et al., 2000; Sutton and Barto, 1998; Watkins and Dayan, 1992). The requirement
of “infinite” number of visits in the previous statement maybe makes already apparent the
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problem, or the dilemma, an agent is faced with: the goal is to maximize the obtained
reward, i.e. find the optimal policy 7*, but to do so one needs to fully explore the
environment. That is, the agent needs to spend time being suboptimal, and possibly
obtain less reward, in order to eventually be optimal. This is called the exploration-
exploitation dilemma, which is an active field of research with many open questions.
Typically, the policy that is employed is an e-greedy policy, that is choosing the action
a = argmax,Q(s,a) with probability 1 — e and another action with probability €, or a

softmax policy with respect to the () values, i.e.

Qs.a)/7

= 5= (1.16)

(s, a)

with a temperature parameter 7.

According to Equation 1.13, Equation 1.14 and Equation 1.15, at each time step, the
state that was just visited is updated in the light of new experience. However, when
something good happens, for example when we finally get an ice cream, it is not only the
state and action just before that led to it (entering the ice cream shop), but possibly a
whole series of previous states and actions (turning left at the previous block to reach the
shop). In other words, the credit assignment should be done to the history of choices as
well, and not only to the last one before the reward.

A mechanism to achieve this is the use of eligibility traces. Eligibility traces are decaying
memory traces of previous states and actions. Upon the receipt of the reward, all states
and actions in the memory trace are updated and reinforced in a weighted fashion that
depends on the time lapsed since they were experienced. For example, in the SARSA
algorithm with eligibility traces, i.e. SARSA-), the calculated RPE of Equation 1.14 is
used in the following way? (Sutton and Barto, 1998)

Q(s,a) < Q(s,a) + a« RPE; ei(s,a), VseS,acA

er(s,a) = 1, ifsg=s,a0=a
amt yAer—1(s,a), otherwise,

(1.17)

where e;(s, a) are the exponentially decaying eligibility traces, for each state and action,
that are initialized to zero, and decay with a decay factor A € [0,1]. Thus, all state-
action pairs are updated at each step, according to the decaying memory of visits. This
mechanism can also be applied to Q-learning in the same way, and give rise to the
Q-X algorithm. The eligibility traces accelerate learning and are relevant for biological
implementations of learning (Gerstner et al., 2018) and for human behaviour (Lehmann
et al., 2019).

2This is the version of replacing traces (Sutton and Barto, 1998), which we use also later in Chapter 4.
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Policy learning

In all the aforementioned methods, the policy is a function of the values and the agent
tries to find the optimal policy by estimating the optimal values. Other methods, e.g. the
policy gradient methods, work directly in the policy space, without using the values as a
proxy (Peters, 2010; Schulman et al., 2015; Sutton and Barto, 1998). In policy gradient
mehtods, the main idea is changing the policy by performing gradient ascent on some
objective measure, e.g. the expected return. The policy is still a function (e.g. softmax)
parametrized by some parameters, often called preferences, but estimating directly the
policy offers often higher flexibility; value-based methods will converge to the optimal
values, whereas policy gradient will converge to the optimal stochastic or deterministic
policy directly. For example, if ones uses a softmax policy and the optimal policy is
deterministic, the policy preferences in the softmax are free to reach any high value,
whereas the Q values will reach the true Q* values, and may thus still allow for some
stochastic behaviour. Moreover, an often disregarded feature of policy gradient is that, in
most of its versions, the policy preferences from a particular state are not independent
and jointly estimated, whereas in value-based learning, the value of each (s, a) pair is
estimated independently. For example, learning that we should select a certain action
usually means that we should not select the other available actions, hence, this feature
may add to the flexibility of these methods. The simplest example of a policy gradient
method is the REINFORCE algorithm (Williams, 1992) that at each step updates the
policy preferences p(s, a) of all preceding decisions with gradient ascent using the return
Gt (see Chapter 4 subsection 4.4.4 for more details).

Some policy gradient methods do calculate values as well, because this offers better
properties during learning, such as reduced variance across updates. One such algorithm
is the Actor-critic algorithm (Sutton and Barto, 1998), where one “compartment” of the
algorithm, called the critic, estimates V' values and another compartment, called the
actor estimates the policy preferences. The RPE calculated by the critic is inserted to
the actor and influences its updates (see Chapter 4 subsection 4.4.4 for more details).

1.1.2 Model-based reinforcement learning

Model-free RL is appealing due to its simplicity and has played a crucial role in un-
derstanding animal and human learning. It is however slow and sample-inefficient, i.e.
requires a very large number of state-action visits. Furthermore, it is agnostic to the
topology between states, which makes it inflexible to changes. In other words, all that a
model-free agent learns is a value or a policy landscape with respect to reward. After
learning, the agent still does not know about how states are related to each other, beyond
their relation with respect to the reward. Thus, if, for example, the reward changes
location, a model-free agent needs to start learning from scratch.
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A family of algorithms with better features in this respect are the model-based (MB)
reinforcement learning algorithms. In model-based RL, the agent learns explicitly the
model of the world, i.e. estimates the transition matrix 7" and the reward function R, and
then directly solves the Bellman equation (Equation 1.10). As we saw, the value of each
state depends on its successors, thus this is not an easy calculation to do. One way to find
the solutions to the Bellman optimality equation is value iteration, that is, at each time
step, going through the whole state-action space many times and repeatedly calculating all
@ values, until a stationary solution is reached (no significant change from one repetition
to the next). This is, however, computationally expensive. Other approximate methods,
such as Prioritized Sweeping (Moore and Atkeson, 1993; Van Seijen and Sutton, 2013)
mitigate the computational cost by updating only the (s, a) pairs whose predecessors
changed more than some priority threshold.

One example of such a MB algorithm is the Forward Learner (Daw et al., 2011a; Gléscher
et al., 2010), where the transition matrix is estimated via the state prediction error (SPE)
defined as

SPE; =1—T(s;,ar, 8141), (1.18)

where T' is the agent’s estimate of the true transition matrix 7. The above equation
could be roughly interpreted as the difference between the experienced certainty of the
occurrence of s;11 and the agent’s current estimated transition probability. Then the
transition matrix is updated via a d-rule in the following way

T(St,au )
T(St,au )

— T(sg,ai,8') +a SPE;, if sp41 = ¢
(50,1, ) b (1.19)
T(s,a4,8") — « T(st, at, s'), otherwise,

where v € (0, 1] is a learning rate. The SPFE is a signal of important relevance in studying
human learning, as we will discuss later.

Another way to estimate the transition matrix is via incrementally counting (Perfect
Integration) the number of times state-action pairs and transition to other states were
experienced (Moore and Atkeson, 1993; Van Seijen and Sutton, 2013)

N(st,at,5611) < N(s¢,a¢,5¢41) + 1,

N(
N(

N(syar) « N(sgyae) +1, (1.20)
. N(s¢, a4, 8
Ti(s¢,at, Se41) = W

where N(s¢, a, S¢41) is the number of times the agent transitioned to sy41, from s; after
taking a;, and N (s, a;) is the number of times the agent took the action a; from state s;.

The reward function R can be estimated from experience in a similar spirit through
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averaging the immediate reward values ry1 observed

N (st at, 8¢41) < N1, a8, 8141) + 1,

R (¢, ap, seq1) < R¥™(se, ar, $141) + 71, (1.21)

~

R(st,as, s¢41) < R*“™ (¢, ar, Se+1) /N (¢, ar, St41),

where, as before, N (s, at, si41) is the number of times the agent transitioned to s¢y1,
from s; after taking a;, and R*“™(sy, a, S¢4+1) is the sum of the rewards received as a
result of this transition.

As already mentioned, model-based algorithms learn faster, allow for planning and for
adaptation to changes, but are more computationally costly. On the other hand, model-
free algorithms are simple and straightforward, but slow and sample inefficient. In the
next subsection we briefly describe computational approaches where model-free and
model-based learning are combined and interact.

1.1.3 Hybrid reinforcement learning algorithms: model-free and model-
based interaction

One of the earliest mentioned approaches to combine model-free and model-based features
is the Dyna-Q algorithm (Sutton, 1990). The main idea in the Dyna architecture is that
the model-based system feeds simulated (“imaginary”) experience into the model-free
system during offline updates. At each time step the agent updates both its @) values
via Q-learning (Equation 1.15) and its model of the world (typically via Equation 1.20)
based on the latest observation. At the same time, the agent randomly samples (or
“Imagines”) possible outcomes of states and actions based on its estimated model, in a
number of offline (background) steps. The agent uses then these simulated outcomes to
update its @) values, again via Q-learning. Variations of Dyna-Q have been suggested,
that use different algorithms for the updates, but follow the same idea of direct updating
and action selection via model-free learning, and background simulating/planning via
learning the model of the world (Sutton, 1990; Sutton and Barto, 2018). Notably, the
original version of Prioritized Sweeping (Moore and Atkeson, 1993; Peng and Williams,
1993) was a hybrid method that can be seen as a variant of Dyna-Q, where the simulated
experiences are not selected randomly, but based on how much change they would cause
when updating the @ values of their preceding states.

Dyna is an example of cooperative interaction between model-free and model-based
learning (Gershman et al., 2014a; Sutton and Barto, 1998). Other suggestions for
a cooperative mechanism come from studies with more focus on animal and human
behaviour, rather than high learning performance. A recent and influential algorithmic
suggestion is the Hybrid Learner (Daw et al., 2005, 2011a; Glascher et al., 2010) where Q
values are computed as a weighted average of the SARSA @ values (cf. Equation 1.14)

10
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and the Forward Learner ) values (cf. Equation 1.19 and Equation 1.10). Dezfouli and
Balleine (2013) suggested a hierarchical organisation, where model-based learning function
at a higher level on action sequences (options), and model-free learning at the level of
actions, giving rise to action sequences or “habits”. A hierarchical scheme has also been
proposed by Cushman and Morris (2015), employing a nearly opposite organization, where
the selection of the higher level option is done by the model-free system, and model-based
planning is performed at the level of individual actions in order to fulfil it. In this way the
model-free system helps the model-based one by reducing the search-space. An additional
suggested mechanism for reducing the computational burden of the model-based system
is via a (presumably serotonin-mediated) model-free system that “prunes” the planning
horizon (tree) following large negative rewards, so that all the possibilities following a
large loss are completely ignored during model-based computations (Huys et al., 2012).

Other approaches view the two systems as competing opponents. One suggestion has
been that the two systems run in parallel, and the agent (or the brain) decides which
one of the two to “trust” based on their estimation uncertainty (Daw et al., 2005; Lee
et al., 2014). In this view, the two systems run in parallel and compete, and the system
that is finally followed and controls behaviour is the one that is more certain about the
value estimation. Other factors playing a role in the competition may be the availability
of cognitive resources and amount of training. For example, human experiments have
suggested that increasing the working memory load via another concurrent task may lead
to the model-free system taking over (Otto et al., 2013a), but if the original task has
been extensively learned then the model-based system can be resistant to the competition
(Economides et al., 2015).

All the aforementioned RL algorithms, model-free value-based, model-free policy gradient,
and model-based have their own strengths and weaknesses. Recently suggested hybrid
approaches express the more recent thinking that multiple strategies co-exist and interact
in the brain. It is still unclear which of these algorithms may be employed by animals
and humans in which situations, and how they may be implemented in the brain. Before
we present a review on findings and on the current understanding of the neuroscience of
reinforcement learning, we will first briefly focus on computational approaches that aim
at building the model of the world — and possibly use it for model-based reinforcement
learning — and in particular on learning driven by signals of surprise.

1.2 Model learning

Building a model of the world, or in other words, understanding the environment’s
dynamics, in order to be able to make predictions about future events, is a vast topic that
can be treated through the lenses of unsupervised learning, adaptive learning, Bayesian
inference, change-point detection, statistics, signal processing, and other research fields.
For this thesis, we focus on adaptive Bayesian or approximate online learning methods,

11
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that are relevant in the study of how animals learn from sequences of observations.
Moreover, for model building, we focus on passive inference processing, i.e. computations
occurring when an agent is passively observing a sequence of events and tries to make
sense of the world. Throughout the thesis, the “active” part of an agent comes from the
reinforcement learning theory.

One exciting but also controversial approach to model learning is the so-called Bayesian
Brain hypothesis, an idea traced back in the 19th century (Helmholtz, 1948). According
to this idea, the brain is equipped with a generative model of the world, i.e. a set of
probability distributions that relate sensory observations with hidden states or hidden
causes in the world. Given this model, the brain tries to infer the hidden states and
predict future events. For example, we may have some belief about how dice function, so
that after a large number of throws resulting in a “6” while playing backgammon, we may
start doubting the fairness of the dice (and our trust towards our opponent). A second
important component of this hypothesis is that, in light of new information, the brain
updates its beliefs about the world using the Bayes’ rule. Formally, let us define as ©;
some parameters or hidden states of the environment that the agent tries to estimate or
infer (e.g. the probability of receiving the result “6” with the dice), and y1, yo, ...ys the
observed stimuli (the dice marking after each throw). We then define the belief of the
agent over the parameters

b® () = P(©; = 0)y1.1). (1.22)

We recall that P is either a probability density function or a probability mass function,
for continuous and discrete variables, respectively. Then, after seeing the new observation
Y41, the updated posterior belief b+ (9) = P(0;41 = 6|y1.1+1) will be according to
Bayes’ rule

b+ (g) = P Wer1lf,v1:0)P(O: = Olyre). (1.23)

P(yt+1\y1:t)

Even though the Bayesian brain hypothesis has provided account for a number of
experiments (Behrens et al., 2007; Doya et al., 2007; Heilbron and Meyniel, 2019; Kérding
and Wolpert, 2004; Mars et al., 2008; Ostwald et al., 2012), there is still a heated debate
on whether the brain is indeed a Bayesian inference machine. An important argument
against this hypothesis is that in most cases, apart from toy tasks, performing inference
or “inverting” the generative model, i.e. applying Equation 1.23, involves complicated
intractable computations, of which the possible biological implementation is questionable
(Mathys et al., 2011). Furthermore, Bayesian inference is a normative approach to the
problem of model estimation; animals and humans are, however, often suboptimal and
“irrational” (Glaze et al., 2015; Mathys et al., 2011; Nassar et al., 2010; Prat-Carrabin
et al., 2020; Summerfield and Tsetsos, 2015; Wilson et al., 2013).
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Thus, a variety of approximate Bayesian or heuristic approaches have been suggested
(Faraji et al., 2018; Findling et al., 2019; Friston, 2010; Glaze et al., 2015; Mathys et al.,
2011; Nassar et al., 2010, 2012; Schwartenbeck et al., 2013; Wilson et al., 2013), which have
successfully explained aspects of behaviour and physiological signals. Among the simplest
of the heuristic approaches, which will be important in this thesis, is Leaky Integration,
namely the integration of a new observation with the agent’s previous belief with a leak
parameter, so that previous observations are gradually forgotten in an exponentially
decaying fashion. For example, if we would like to estimate the number of times we
got the observation y; = 6 with the dice (denoted as N (6)) with Leaky Integration,
our online updating would be Nt(_?)l = [yi+1 = 6] + nNt(6), where n € [0,1] is the leak
parameter, and [.] is the Iverson bracket, which equals to 1 if the condition within the
bracket is fulfilled, and 0 otherwise. Thus, at any time point ¢ our estimation would be
Nt(G) = Z_:lo[yk = 6]n*. Despite its simplicity and its non-adaptive nature — i.e. the
parameter 7 is fixed in time and each observation is treated equally regardless of how
unlikely it is —Leaky Integration of sensory input has successfully explained behaviour
in multiple tasks (Gijsen et al., 2020; Maheu et al., 2019; Meyniel et al., 2016; Yu and
Cohen, 2009) and, under certain circumstances, has been shown to approximate exact
Bayesian inference (Ryali et al., 2018; Yu and Cohen, 2009).

In general, building the model of the world, that is learning the results of actions and
not only the resulting values of actions (Koechlin, 2016), allows planning and can give
rise to adaptive behaviour when the environment changes. This is, however, not always
the case. In some situations when the estimated model is wrong and, in particular, when
there are distal changes (Sutton and Barto, 2018) or when a change occurs long after the
agent has converged to a solution, adapting to the change may require a long time or
even never be achieved. It appears, thus, that being equipped with a model of how the
environment functions may be necessary but not sufficient for adaptive behaviour. This
raises the question of how a model should be estimated in order to give rise to adaptive
behaviour, which is the topic of Chapter 2 and Chapter 3. A more detailed literature
review on adaptive model learning algorithms is provided in the Introduction and in the
Discussion sections of Chapter 2. Related work on the use of model learning for adaptive
model-based reinforcement learning is discussed in Chapter 3.

A concept often evoked in adaptive model learning approaches and studies is the one
of surprise. Yet, it is still unclear how surprise should contribute to learning and which
measure of surprise is used by the brain. In the next section, we briefly present the notion

of surprise and some of its mathematical definitions commonly used in neuroscience.

1.3 The notion of surprise

Surprise is a familiar psychological state occurring when something unexpected happens.
More formally, surprise is a way to quantify the discrepancy between an agent’s belief
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about the world and reality, or the discrepancy between the agent’s prediction and the
observation. The SPE (Daw et al., 2011a; Gléscher et al., 2010) we saw in the previous
section is actually a measure of surprise, although it was originally not defined as such.

Perhaps the most widely known measure of surprise is the Shannon surprise (Shannon,
1948). Shannon surprise comes from the field of information theory and is defined as the
negative log likelihood of an event. Thus, the Shannon surprise as a result of observing
Y41 while the agent maintains the belief b® is defined as

Ssn(yer1;0") = —log(P(yt+1|y1:t)>- (1.24)

According to Shannon surprise, the more unlikely an observation is, the more surprising
it will be. However, subjectively, the same event can be more or less surprising depending
on our commitment to our belief. Such effects are not captured by Shannon surprise.

Another popular measure of surprise is the Bayesian surprise (Itti and Baldi, 2006;
Schmidhuber, 2010; Storck et al., 1995), which measures the amount that the belief is
changed after the agent has updated it in the light of new information. Intuitively, the
farther away from our belief an observation lies, the more it will alter our belief about
the world, and, according to Bayesian surprise, the more surprising it is. The Bayesian
surprise is defined as

SBa(yes1;0") = Dir [b(t)HbgH)}v (1.25)
where D is the Kullback-Liebler divergence and bgﬂ) is the updated belief following
the Bayes’ rule. Bayesian surprise, thus, entails a kind of chicken and egg problem: a
surprising event will change our belief a lot, but we first need to update our belief to find
out if we were surprised. It is therefore not suitable for a quantity used in online update

rules, but it could potentially be used in order to measure the information that the agent
gained after the update (Sun et al., 2011).

Finally, a more recent measure of surprise that includes the effect of certainty of the belief
is the Confidence Corrected Surprise (Faraji et al., 2018), defined as

Scc(yer1;bY) = D bW |[py (6)], (1.26)

— _P(yi41l0)
. - Jo P(yt+110)do” . .
all observations yi.;. Intuitively, Scc compares at every step the current belief with

where py () is the posterior belief under a flat prior py (6) i.e. disregarding

a flat (or null) uninformative belief, and it can be shown that it includes the effect of
commitment (Faraji et al., 2018). We may however have a more informed prior belief
about a situation, rather than believing that everything is equally possible. Scc does not
include this effect.

As we will see later, various studies have sought to identify the aforementioned surprise
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measures in behaviour or in the brain. In a less mathematical and more neuroscientific
perspective, surprise has been thought to serve three possible roles. First, it signals
saliency and serves a mechanism of attention, so that the animal’s focus is drawn towards
something unexpected and possibly alarming (Fouragnan et al., 2018). Second, it may
serve as a learning signal, so that the animal updates its belief accordingly and can make
more accurate predictions in the future (Faraji et al., 2018; Fouragnan et al., 2018). A
third, more recently identified role relates to memory formation; it has been suggested
that surprise may be important for memory reactivation and reconsolidation, i.e. the
process of making a memory liable to change, as well as for signalling the need for the
creation of new memory (Rouhani et al., 2020; Sinclair and Barense, 2018) or the shift to
a previous strategy stored in memory (Collins and Koechlin, 2012).

Among these roles, the way the second one may be mediated is particularly unclear. In
many studies on learning, surprise is used as a quantity with which behavioural and
neurophysiological signals are correlated with (Maheu et al., 2019; Meyniel et al., 2016;
Squires et al., 1976), but it is rarely used as part of the learning algorithm (Faraji et al.,
2018). In Chapter 2, we suggest a possible way that surprise may influence learning at an
algorithmic level and we connect Bayesian and approximately Bayesian approaches with
surprise-based modulated learning.

In the remaining sections of this introduction we turn to neuroscience and review current
ideas on how reinforcement learning, adaptive learning and surprise signalling may be
implemented in the brain, as well as evidence of their manifestation in behaviour and
neurophysiological recordings.

1.4 The neuroscience of learning

1.4.1 Three-factor learning

At a microscopic and mesoscopic level, learning is mediated by the change of synapses,
namely connections between neurons, a phenomenon called synaptic plasticity (Purves
et al., 2004). During experience, synapses are formed, strengthened, weakened or elimi-
nated. This spectacular capability of the brain is considered to be the basis of learning
and memory formation (Martin et al., 2000).

Neurons communicate with their post-synaptic neurons through small current pulses
(spikes) and through the release of neurotransmitters. A fundamental mathematical de-
scription that has shaped the way we think about synaptic plasticity and that corresponds
to multiple experimental observations is Hebbian learning (Hebb, 1949). According to
Hebbian learning rules,; a synapse becomes liable (or eligible) to get strengthened if there

is simultaneous occurrence of pre-synaptic and post-synaptic activity. The word “activity
here may mean the presence of neurotransmitters at the site of the synapse or on the
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membrane of the post-synaptic neuron, the presence of other molecules and ions at the
spine, spiking activity, or an elevated voltage (Frémaux and Gerstner, 2016; Gerstner
et al., 2018).

For the case of reinforcement learning though, learning that from state s the animal
should select action a, should happen only if the result of this state-action combination is
a positive outcome. There is, thus, a “third” factor that affects learning. Hebbian learning
has been extended to the so-called neoHebbian or three-factor learning that explains this
type of learning (Barto, 1985; Lisman et al., 2011). The idea in this framework is that as,
with Hebbian learning, the co-occurence of two factors sets an “eligibility trace” — which
draws connections to some algorithms we saw in a previous section — for a possible change
at the synapse, and the change happens only if a third factor occurs, i.e. a rewarding or
surprising event is observed. The biological realization of this third factor can be various
neuromodulators, such as dopamine, norepinephrine, serotonin and others (Gerstner et al.,
2018; Montague et al., 1996).

We, next, describe findings on the specific instances of three-factor learning for reward-
and for suprised-based learning, going also at a more macroscopic description on the role
of various brain regions and on behaviour.

1.4.2 The neuroscience of reinforcement learning
Behaviour

Historically, the study of animal learning behaviour begins with an almost incidental
experimental observation. Ivan Pavlov was a physiologist studying the digestive system,
and in one of his experiments on dogs he observed that if a certain stimulus, e.g. a sound,
preceded the appearance of food repeatedly, then dogs would react, i.e. salivate, to the
sound same as they did to the food (Pavlov, 1927). That is, a physiological response to
food would now occur as a response to a previously neutral stimulus, that is not related to
food per se. A new association between the two stimuli was learned, and a response was
now evoked to the new stimulus, indicating a reward prediction capability. This can be
seen as an instance of three factor learning; the reward (food) caused a strengthening of
an association between a response (salivating) and a stimulus (sound) occurring in close
timing proximity. This seemingly simple experiment laid the basic principles of many
later experiments on learning, memory formation and fear, nowadays called classical
conditioning experiments.

Another important hallmark in the field of animal learning, is the work of the psychologist
Edward Thorndike. He performed various behavioural experiments, where animals
had to perform a series of actions to obtain reward. Based on these experiments he
formulated a set of “laws” that behaviour follows (Thorndike, 1911), most importantly
the learning by trial-and-error, also now called model-free learning, according to which
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the association between a stimulus and an action is strengthened if the action leads to
a positive outcome and weakened otherwise. His experiments formed the basis of the
various later instrumental conditioning experiments.

Other early experiments showed that animals are able to learn the structure of mazes
in the absence of reward, i.e. to build a model or a “cognitive map” of the environment
(Blodgett, 1929; Thistlethwaite, 1951; Tolman, 1948). These experiments were the
precursors of studying model-based learning behaviour, and seem to mark the beginning
of the model-free vs model-based dichotomy in learning (Daw et al., 2005).

Neural circuitries

The mid-90’s mark a breakthrough in the neuroscience of reinforcement learning with the
work of R. Montague, P. Dayan, T. Sejnowski, and W. Schultz, when it was demonstrated
that the activity of dopamine-releasing neurons bore a striking similarity to a model-free
RPE (Montague et al., 1996; Schultz et al., 1997). In short, when a monkey received
a reward that was not expected, the phasic activity of midbrain dopaminergic neurons
increased. When an expected reward was not received, there was a silencing in their
activity at the moment when reward was expected. This work linked for the first time
the theory of reinforcement learning with neurophysiology, and it has led to the so-called
Reward prediction error hypothesis of dopamine. This idea has proven to be very influential,
since it has shaped the way we think about learning in neuroscience, but, as we will
discuss later, it has also been subjected to large controversy.

Although a lot about the function of dopamine remains unknown, multiple studies over the
last few decades have confirmed the important role of dopamine in (three factor) learning.
Dopamine is a neuromodulator released by neurons in the ventral tegmental area (VTA)
and the substantia nigra pars compacta (SNc¢) in the midbrain. Dopamine neurons receive
inputs from multiple brain areas. It has been found that the main excitatory inputs to
VTA are the lateral oribitofrontal cortex and the lateral hypothalamus, whereas SNc
receives inputs from the sensorimotor cortex and the subthalamic nucleus (Watabe-Uchida
et al., 2017). At the same time, ventral and dorsal structures in the basal ganglia, i.e. a set
of nuclei, at the base of the forebrain (striatum, pallidum, globus pallidus, entopeduncular
nucleus, and substantia nigra reticulata) are the main inhibitory inputs to dopamine
neurons in VTA and SN, respectively (Watabe-Uchida et al., 2017). All these input
areas are also connected with each other, forming a complex recursive network. There is
evidence supporting that dopamine neurons, receiving diverse information from multiple
brain areas, combine this input information and calculate a RPE, rather than passively
receiving it and relaying it (Watabe-Uchida and Uchida, 2018; Watabe-Uchida et al.,
2017). In particular, it is thought that the striatum encodes the predicted value that it
then provides to VTA for the calculation of the RPE (Joel et al., 2002; Watabe-Uchida
et al., 2017) (Fig. 1.2A).
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Dopamine neurons project, in turn, to a wide range of targets (Avery and Krichmar, 2017;
Eshel et al., 2015). Depending on the target (and the post-synaptic receptors on the
target) dopamine can induce different effects. The main target of dopamine neurons in
SNc is the dorsal striatum, whereas for VTA is the ventral striatum and the prefrontal
cortex (Avery and Krichmar, 2017).

The striatum is a particularly important structure in the reward-processing machinery. It
receives input from virtually all of the cerebral cortex, thus, a variety of information. It
then projects back, through other basal ganglia structures and the thalamus, to the frontal
cortex and to motor areas, influencing in this way abstract learning processing, action
selection and movement (Sutton and Barto, 2018). There is a gradient of various kinds of
differences across the dorsal to the ventral striatum in their cytological profiles, in their
input regions (from SNc and VTA for dorsal and ventral striatum, respectively), in their
output regions (less and more to dopaminergic neurons, respectively), and in the functions
they influence (action selection and value prediction, respectively) (Haber, 2016). These
observations have led to the hypothesis that the striatum forms an actor-critic architecture
(Joel et al., 2002; Takahashi et al., 2008), with the ventral striatum implementing the
critic and the dorsal the actor (Fig. 1.2B).

A part of the brain extremely important in learning, adaptive decision making, goal-
directed behaviour and higher cognition is the prefrontal cortex (PFC). Some subdivisions
of the prefrontal cortex, with distinct roles in learning, are the ventromedial prefrontal
cortex (vinPFC), the oribitofrontal cortex (OFC), the lateral prefrontal cortex (IPFC), the
anterior prefrontal cortex (aPFC) and the anterior cingulate cortex (ACC) (Coutureau
and Parkes, 2018; Rushworth et al., 2011; Sharpe et al., 2019). Experimental findings on
the functions of different parts of the PFC are often hard to reconcile and to interpret,
partially due to confusion in anatomical analogues across species (Wallis, 2012).

Perhaps the most well-studied frontal cortical area is the ventromedial prefrontal cortex.
A widely accepted and replicated finding is that vimPFC activity is associated with
reward and expected reward (i.e. values) (Euston et al., 2012; Rushworth et al., 2011).
Evidence from various experiments has led to the suggestion that vinPFC receives as
inputs and combines external (sensory) and internal (emotional) cues and events as
well as previous experience, and maps them to a response (Euston et al., 2012). It
therefore has an important role in goal-directed (Rushworth et al., 2011) and adaptive
behaviour (Domenech and Koechlin, 2015), memory formation, recall and consolidation
(Myers-Schulz and Koenigs, 2012).

A particularly mysterious region of PFC is the orbitofrontal cortex. The OFC lies in the
ventral part of the frontal cortex, just above the eyes (orbits) (Murray and Rudebeck, 2018;
Rudebeck and Rich, 2018). Inactivation or damage of OFC impairs decision making and
control over impulsive actions, but does not absolutely diminish or prevent any function
(Sharpe et al., 2019). In other words, there is virtually nothing that animals and humans
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action

Figure 1.2 — Neural pathways of the reward system. A. Schematic of the imple-
mentation of model-free RL in the human brain. The reward prediction error is computed
mainly by dopaminergic neurons in the ventral tegmental area (VTA) and provided as
an input to the ventral striatum (VS), which in turn updates the predicted value. B.
Hypothetical implementation of the Actor-critic architecture in the brain. The ventral
striatum (VS) takes the role of the critic that calculates the values. The dorsal striatum
(DS) implements the actor, that updates the policy parameters and influences action
selection. Even though VS and DS are depicted as separate compartments, they belong
to one single structure, the striatum. Dopamine (DA) is released by VTA, signals an RPE
and is the third factor that modulates the synaptic plasticity between cortex and striatum
in a three-factor learning rule. Figure based on (Takahashi et al., 2008). Abbreviations:
VS — ventral striatum, VTA — ventral tegmental areas, DS — dorsal striatum, SNc¢ —
substantia nigra pars compacta, DA — dopamine.

cannot do without an OFC; they can still learn and erase or update previous associations,
if only just more slowly and with more training (Sharpe et al., 2019; Wilson et al., 2014).
The concrete role of OFC in reward-based learning is a topic of debate (Murray and
Rudebeck, 2018). For example, neurons in OFC have been found to encode the value of
cues (Padoa-Schioppa and Assad, 2006), but inactivation of the OFC does not prevent
value-driven actions (Gardner et al., 2017). It has been suggested that OFC may be
more sensitive to values of external cues, whereas the vimPFC more to values concerning
internal events (Wallis, 2012). An influential theoretical suggestion that reconciles a
number of puzzling experimental findings is that OFC encodes a cognitive map (Wilson
et al., 2014). A cognitive map is a representation of the underlying structure of the task
or the situation at hand, including both observed information and hidden information
(e.g. task instructions, latent causes of observed events, previous actions) (Sharpe et al.,
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2019; Stalnaker et al., 2015; Wilson et al., 2014).

Concerning the lateral PFC, parts of it lie (functionally) between sensory areas and motor
execution areas, and have thus immediate influence in motor planning (Tanaka et al.,
2015). 1PFC is also thought to be involved in learning stimulus-stimulus associations
(Pan et al., 2014), category learning, i.e. learning which things belong together (Tanaka
et al., 2015), and strategy switching when aspects of the environment or the task change
(Domenech and Koechlin, 2015; Sharpe et al., 2019).

Sometimes learning about the values of alternative actions can happen without actually
taking these actions and the anterior PFC is thought to mediate such processes by
encoding the value of unchosen actions (Rushworth et al., 2011). Its activity has been
found to increase with the probability to switch to another action at the next trial
(Boorman et al., 2009), with the reliability of the current strategy (Donoso et al., 2014),
and with exploratory actions (Daw et al., 2006). It has been suggested that aPFC keeps
a representation of possible alternative courses of action, different from the currently
followed one, which a person might employ in the short-term future (Koechlin and Hyafil,
2007). Another region also encoding information about switching strategy and important
for flexibility in behaviour is the ACC (Kolling et al., 2016). ACC has been reported to
respond to errors, to quantities that track recent performance (e.g. expected reward rate)
and to updates of the model of the world (Kolling et al., 2016; O’Reilly et al., 2013), as
we also mention in the next section.

Much about the circuit of the reward-system, the role of the different areas, and the
flow of information between them remains unknown. It is not possible to cover in this
introduction the vast amount of experimental findings that attempt to slowly solve the
puzzle of this brain network. In addition to the above brief review of subcortical and
cortical structures, we simply list some main players of the reward processing system and
their assumed role in Table 1.1, and refer to a (non-exhaustive) collection of corresponding
references for more information.

The fact that dopamine plays a role in the calculation and signalling of model-free
prediction errors is fairly established. There are, however, findings that seem inconsistent
with the Reward prediction error hypothesis for dopamine, or suggest that the role of
dopamine is multi-faceted and that the account of this hypothesis alone is incomplete.
The same applies for other reward-processing brain structures that have been traditionally
thought to be involved in model-free learning, such as the striatum. For example, the
role of dopamine in negative rewards is unclear, some dopamine neurons respond to
both positive and negative events (Menegas et al., 2018), or even to neutral events
(Watabe-Uchida et al., 2017), and other dopamine neurons increase their activity at the
onset of movement (Coddington and Dudman, 2019; Jin and Costa, 2010) or change their
activity according to the direction of movement (Jin and Costa, 2010; Watabe-Uchida
et al., 2017). Dopamine activity also increases with novel stimuli (Menegas et al., 2018),
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and recent studies have shown that some dopamine neurons respond to model-based or
purely sensory prediction errors (Langdon et al., 2018; Stalnaker et al., 2019; Takahashi
et al., 2017). A recent exciting work provided evidence that there is a wide range of
different dopaminergic responses to the same reward, that could correspond to not only
the expected reward, but to probability distribution of reward (Dabney et al., 2020). This
work points to an implementation of distributional RL in the brain, could potentially
reconcile previous puzzling findings, and might — in my view — bring a paradigm shift in

the neuroscience of reinforcement learning.

1.4.3 The neuroscience of model learning and surprise signalling
Behaviour

As we already mentioned in the previous section, early experimental evidence indicated
that animals are able to learn a model of an environment (Tolman, 1948). More recent
experiments have further explored spatial model learning. For example, in Bast et al.
(2009), after one single visit to a new reward location in a familiar maze, animals can
immediately re-visit it from different starting locations, which is an indication of structure
learning in the absence of reward and of rapid model-based learning.

An important type of experiments studying model-based or goal-directed behaviour is the
outcome devaluation experimental paradigm. In these, the experimenter changes after
some time the value of a stimulus, or the desirability of a reward, and tests whether the
animal would repeat the previously selected action or whether it infers that the stimulus
does not lead to a desired outcome anymore (Adams and Dickinson, 1981). Based on this
paradigm, multiple other studies have shown model learning adaptive capabilities and
association of stimuli in animals depending on many factors (e.g. training time) (Balleine,
2005; Dolan and Dayan, 2013; Pearce and Hall, 1980; Wilson et al., 1992).

Adaptive model learning in humans has been a topic of active research and has been
demonstrated in numerous experiments (Behrens et al., 2007; Glaze et al., 2015; Heilbron
and Meyniel, 2019; Nassar et al., 2010, 2012). In fact, humans seem to have a natural
tendency to build a model and try to find structure, even when there is none, that is
when they are exposed to sequences of random stimuli (Huettel et al., 2002; Meyniel
et al., 2016; Yu and Cohen, 2009). A popular paradigm that studies humans’ capacity
to build expectations about the next stimulus, as well as the manifestation of surprise,
is the oddball task (Meyniel et al., 2016; Ostwald et al., 2012; Squires et al., 1976). In
oddball experiments participants view (or listen to) a sequence of (usually) two stimuli,
where one of them is more improbable to occur, and have to press a different button for
each stimulus. A behavioural manifestation of surprise is longer reaction times (Vassena
et al., 2020; Vossel et al., 2014). An unexpected (oddball) stimulus causes longer reaction
times, in proportion to the number of non-oddball stimuli preceding it (Huettel et al.,
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2002; Meyniel et al., 2016; Vossel et al., 2014).

Model learning in humans is also actively studied in the context of reward-based tasks,
where it is generally thought that humans employ hybrid strategies of model-free and
model-based learning (Daw et al., 2011a; Gershman et al., 2014a; Glascher et al., 2010;
Simon and Daw, 2011). More details on existing studies on adaptive model learning and
model estimation for reinforcement learning in humans can be found in Chapters 2 and 4,
respectively.

Neural circuitries

Surprise in the brain has been associated with the neuromodulator norepinephrine, also
called noradrenaline (Aston-Jones and Cohen, 2005). Norepinephrine is released by a set
of neurons located in the locus coeruleus (LC), a brain structure in the brainstem. LC
receives inputs from other structures in the brainstem and from the prefrontal cortex,
and projects to essentially all cortical and subcortical regions in the brain, apart from
the basal ganglia (Avery and Krichmar, 2017). Bursts of activity of LC neurons have
been reported as a response to salient, unexpected or novel stimuli (Sara et al., 1995;
Vankov et al., 1995) and sudden changes in tasks (Aston-Jones et al., 1997). The function
of LC neurons is thought to be important for fast adaptation to changes and belief
updating (Aston-Jones and Cohen, 2005; Aston-Jones et al., 1994; Avery and Krichmar,
2017; Bouret and Sara, 2005; Nassar et al., 2012), as well as shifts from exploitation to
exploration (Aston-Jones and Cohen, 2005).

LC activity has been found to robustly correlate with pupil dilation, therefore pupillary
responses have been used as a surrogate measure of noradrenergic activity (Aston-Jones
and Cohen, 2005). In humans, pupil dilation has been found to correlate with unexpected
uncertainty (Preuschoff et al., 2011) and with an adaptive learning rate and belief updating
(Lavin et al., 2014; Nassar et al., 2012). At the same time, other neuromodulators have
also been implicated for surprise signalling; acetylcholine has been associated to expected
uncertainty, i.e. known stochasticity in the environment, (Yu and Dayan, 2005) and
dopamine has also been reported as a response to surprising and novel stimuli (Avery and
Krichmar, 2017; Krugel et al., 2009; Langdon et al., 2018; Morrens et al., 2020; Stalnaker
et al., 2019; Takahashi et al., 2017).

Surprise manifestation in humans is extensively being studied through electroencephalog-
raphy (EEG) recordings. Unexpected or oddball stimuli robustly elicit certain evoked
related potentials (ERPs), namely the P300, that is positive deflection around 300ms
after the stimulus, observed at electrodes covering the parietal lobe, and the mismatch
negativity (MMN), that is a negative deflection roughly 150ms post-stimulus, over sensory
areas (Gijsen et al., 2020; Kolossa et al., 2013; Mars et al., 2008; Modirshanechi et al.,
2019; Ostwald et al., 2012; Squires et al., 1976).
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Brain regions related to model estimation, model updating and surprise signals are
widespread in the brain. Some of them are parts of the prefrontal cortex, such as the
OFC (see previous section) and the ACC, the insula, the inferior parietal cortex, and the
hippocampus (Table 1.1). The ACC in particular has been found to increase its activity
with surprise, with model updating, with an adaptive learning rate and with an increasing
advantage of a behavioural change (Kolling et al., 2016; O’Reilly et al., 2013).

1.4.4 The thin line between reward- and model- learning

As we saw, early experiments and theory displayed a dichotomy between model-free
and model-based learning. The more we investigate how the brain learns, the more this
separation seems to be a simplification (Collins and Cockburn, 2020; da Silva and Hare,
2020; Daw, 2018; Langdon et al., 2018). Animal and human behaviour shows both or a
mixture of the two strategies (Daw et al., 2005, 2011a; Gléscher et al., 2010) and neural
circuits are often shared (Langdon et al., 2018). The very notion of reward and surprise
as it is perceived by the brain may be elusive; a reward may be surprising and a surprising
event may be internally rewarding (Juechems and Summerfield, 2019; Schmidhuber, 1991),
and it is difficult to think of real life situations where the two are clearly separated
(beyond maybe primary rewards — such as food — in animal experiments). We just begin
to unravel how these signals and learning mechanisms may be implemented in the brain,
in order to understand its extraordinary capability to learn from interaction with the
world, and both theory and experiments are vital to this end.

How are such signals combined and used by the brain? How should a model of the world
be estimated and when is model estimation itself beneficial for a biological or artificial
agent? How is surprise perceived by the brain and how can it be used for adapting to
changes? How does the brain combine model-free and model-based strategies and how
are different brain regions involved and work together? These are some of the open
questions in the field of learning in neuroscience, the elucidation of which this thesis aims
at contributing to.
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Brain region

Reported associated functions

ventral striatum

reward prediction (Joel et al., 2002; Menegas et al., 2018; Watabe-Uchida
et al., 2017)
reward prediction error (Daw et al., 2011a; Gléscher et al., 2010; O’Doherty
et al., 2003)

dorsal striatum

action selection and policy learning (Joel et al., 2002; Takahashi et al., 2008)
stimulus-response and response-outcome associations (Balleine, 2005; Miller
and Venditto, 2020)

ventromedial
prefrontal cortex
(vimPFC)

reward expectation & values (Haber, 2016; Rouault et al., 2019; Vassena
et al., 2020)
comparison of evaluated options (Haber, 2016)

orbitofrontal cortex

(OFC)

reward expectation (Padoa-Schioppa and Assad, 2006; Stalnaker et al., 2018;
Watabe-Uchida et al., 2017)

stimulus-stimulus and stimulus-outcome associations (Balleine, 2005; Doll
et al., 2012; Haber, 2016; McDannald et al., 2011; Schoenbaum et al., 2009)
representation of observed and hidden states (Niv, 2019; Schuck et al., 2018;
Wilson et al., 2014)

lateral state prediction error (Gléscher et al., 2010)
prefrontal cortex belief updating (Visalli et al., 2019)

(IPFC) surprise (Visalli et al., 2019)

dorsal reward expectation (Haber, 2016)

prefrontal cortex working memory (Haber, 2016)

(dPFC) behavioural shifts (Bissonette and Roesch, 2017)

prefrontal cortex (PFC)
— inferior and middle
frontal gyrus

sequence violation (Huettel et al., 2002)
Bayesian surprise (d’Acremont et al., 2013)
posterior belief (d’Acremont et al., 2013)

hippocampus

spatial learning, navigation, planning (Dolan and Dayan, 2013; Johnson and
Redish, 2007; Mathis et al., 2012; O’Keefe and Nadel, 1978; Pfeiffer and
Foster, 2013)

episodic memory (Gershman and Daw, 2017)

learning latent causes (Gershman and Niv, 2010)

anterior cingulate

cortex (ACC)

learning rate (Behrens et al., 2007)

action selection (Haber, 2016)

sequence violation (Huettel et al., 2002)

surprise (Alexander and Brown, 2019; Hayden et al., 2011; Schwartenbeck
et al., 2016; Vassena et al., 2020; Visalli et al., 2019)

belief updating (O’Reilly et al., 2013)

behavioural shifts and planning (Kolling et al., 2016)

Intraparietal sulcus

(pIPS)

state prediction error (Gléscher et al., 2010)

belief updating (Kolling et al., 2016; Visalli et al., 2019)
surprise (O’Reilly et al., 2013; Visalli et al., 2019)
confidence (Payzan-LeNestour et al., 2013)

Table 1.1 — Brain regions implicated in reward processing and learning. The
reported associated functions are accompanied with a non-exhaustive list of references.
See also (Doll et al., 2012; Doya, 2008; Fouragnan et al., 2018; Haber, 2016; Huang et al.,
2020; Koechlin, 2016; Miller and Venditto, 2020; O’Doherty et al., 2015; Rushworth et al.,
2011; Sharpe et al., 2019; Sutton and Barto, 2018) for reviews and meta-analyses.
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1.5 Thesis contribution

This thesis summarizes the research I conducted during my Ph.D. from 2015 to 2020 in
the Laboratory of Computational Neuroscience (LCN) in EPFL, under the supervision of
Prof. Wulfram Gerstner and the co-supervision of Prof. Kerstin Preuschoff (University
of Geneva). The main goal of my work was to investigate the contributions of model
estimation and model learning signals to reinforcement learning in complex tasks, both
in terms of algorithmic performance and in terms of neural manifestations in the human
brain.

In Chapter 2, we investigate how the brain may measure surprise and how surprise may be
used by ever-adapting biological agents. We present a theoretical framework that bridges
Bayesian inference and surprise-driven learning. We show that exact Bayesian inference
leads to an adaptive trade-off between abandoning the current belief and integrating it
with a new piece of information, which is modulated by a naturally emerging measure of
surprise. We present three novel scalable approximate algorithms that reach high levels of
performance and may be implemented by biological agents. Finally, we demonstrate that
both our proposed algorithms and various existing approaches use the same emerging
measure of surprise in their update rules.

In Chapter 3, we are interested in the role of surprise in reward-driven learning and in
building model-based reinforcement learning agents that can successfully adapt in non-
stationary environments. We combine one of our surprise-based approximate algorithms
of Chapter 2, as well as simpler methods, with Prioritized Sweeping, and we investigate
the scenarios under which accurate and adaptive model estimation is beneficial for
reinforcement learning. In environments with abrupt changes that directly affect the
agent’s policy, surprise-modulation leads to higher performance. In environments with
distal changes, where exploration is crucial, a simple leaky integration with background
forgetting is sufficiently successful.

In Chapter 4, we shift our attention to the manifestation of model-based and model-free
learning in human behaviour and in BOLD responses. We design a novel multi-step
task that decorrelates learning components of different strategies at the level of brain
signals. We find that behaviour, in this task, is best described by a model-free Actor-critic
algorithm, potentially influenced by model estimation, and we find signatures of both
model-free and model-based prediction errors in brain responses.

Finally, I conclude with a short summary and general future directions and, in the
Appendix, I provide the abstract of a related project to which I contributed (Lehmann
et al., 2019).

The work presented in this thesis is a product of fruitful collaborations with Dr. Johanni
Brea, Dr. Marco Lehmann and Alireza Modirshanechi. My specific contributions to each
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project are stated at the end of each chapter, and summarized collectively for all projects
at the end of the thesis, for convenience. An illustrative schematic of each chapter’s
content can be seen in Fig. 1.3.

Model Learning Simulations Experiments
® o o o ® ®
Theory Reinforcement Model free RL
Learning

Chapter 2 00
Chapter 3 0000
Chapter 4 00000

Figure 1.3 — Chapters’ content. Schematic of the topics and the content of each chapter
in this thesis. (Illustration inspired by a report written by Dr. Thomas Bolton.)
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4 Learning in Volatile Environments
with the Bayes Factor Surprise

This chapter presents research performed in collaboration with Alireza Modirshanechi,
Dr. Johanni Brea and Prof. Wulfram Gerstner.
Alireza Modirshanechi and I contributed equally to this work 1.

2.1 Introduction

Animals, humans, and similarly reinforcement learning agents may safely assume that the
world is stochastic and stationary during some intervals of time interrupted by change
points. The position of leafs on a tree, a stock market index, or the time it takes to travel
from A to B in a crowded city is often well captured by stationary stochastic processes for
extended periods of time. Then sudden changes may happen, such that the distribution
of leaf positions becomes different due to a storm, the stock market index is affected
by the enforcement of a new law, or a blocked road causes additional traffic jams. The
violation of an agent’s expectation caused by such sudden changes is perceived by the
agent as surprise, which can be seen as a measure of how much the agent’s current belief
differs from reality.

Surprise, with its physiological manifestations in pupil dilation (Nassar et al., 2012;
Preuschoff et al., 2011) and EEG signals (Mars et al., 2008; Modirshanechi et al., 2019;
Ostwald et al., 2012), is believed to modulate learning, potentially through the release of
specific neurotransmitters (Gerstner et al., 2018; Yu and Dayan, 2005), so as to allow
animals and humans to adapt quickly to sudden changes. The quick adaptation to novel
situations has been demonstrated in a variety of learning experiments (Behrens et al., 2007;
Glaze et al., 2015; Heilbron and Meyniel, 2019; Nassar et al., 2010, 2012; Yu and Dayan,
2005). The bulk of computational work on surprise-based learning can be separated into

1This work is currently accepted for publication in Neural Computation.
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two groups. Studies in the field of computational neuroscience have focused on biological
plausibility with little emphasis on the accuracy of learning (Behrens et al., 2007; Bogacz,
2017; Faraji et al., 2018; Friston, 2010; Friston et al., 2017; Nassar et al., 2010, 2012;
Ryali et al., 2018; Schwartenbeck et al., 2013; Yu and Dayan, 2005), whereas exact and
approximate Bayesian online methods (Adams and MacKay, 2007; Fearnhead and Liu,
2007) for change-point detection and parameter estimation have been developed without
any focus on biological plausibility (Aminikhanghahi and Cook, 2017; Cummings et al.,
2018; Lin et al., 2017; Masegosa et al., 2017; Wilson et al., 2010).

In this work, we take a top-down approach to surprise-based learning. We start with a
generative model of change points similar to the one that has been the starting point
of multiple experiments (Behrens et al., 2007; Findling et al., 2019; Glaze et al., 2015;
Heilbron and Meyniel, 2019; Nassar et al., 2010, 2012; Yu and Dayan, 2005). We
demonstrate that Bayesian inference on such a generative model can be interpreted as
modulation of learning by surprise; we show that this modulation leads to a natural
definition of surprise which is different, but closely related to Shannon Surprise (Shannon,
1948). Moreover, we derive three novel approximate online algorithms with update rules
that inherit the surprise-modulated adaptation rate of exact Bayesian inference. The
overall goal of the present study is to give a Bayesian interpretation for surprise-based
learning in the brain, and to find approximate methods that are computationally efficient
and biologically plausible while maintaining the learning accuracy at a high level. As a
by-product, our approach provides theoretical insights on commonalities and differences
among existing surprise-based and approximate Bayesian approaches. Importantly, our
approach makes specific experimental predictions.

In the Results section, we first introduce the generative model, and then we present our
surprise-based interpretation of Bayesian inference and our three approximate algorithms.
Next, we use simulations to compare our algorithms with existing ones on two different
tasks inspired by and closely related to real experiments (Behrens et al., 2007; Mars et al.,
2008; Nassar et al., 2010, 2012; Ostwald et al., 2012). At the end of the Results section,
we formalize two experimentally testable predictions of our theory and illustrate them
with simulations. A brief review of related studies as well as a few directions for further
work are supplied in the Discussion section.

2.2 Results

In order to study learning in an environment that exhibits occasional and abrupt changes,
we consider a hierarchical generative model (Fig. 2.1A) in discrete time, similar to existing
model environments (Behrens et al., 2007; Nassar et al., 2010, 2012; Yu and Dayan,
2005). At each time point ¢, the observation Y; = y comes from a distribution with the
time-invariant likelihood Py (y|f) parameterized by ©; = 6, where both y and 6 can be
multi-dimensional. In general, we indicate random variables by capital letters, and values
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by small letters. Whenever there is no risk of ambiguity, we drop the explicit notation of
random variables to simplify notation. Abrupt changes of the environment correspond
to sudden changes of the parameter 6;. At every time ¢, there is a change probability
pe € (0,1) for the parameter 6; to be drawn from its prior distribution b(®) independently
of its previous value, and a probability 1 — p. to stay the same as 6;_1. A change at
time t is specified by the event C; = 1; otherwise C; = 0. Therefore, the generative
model can be formally defined, for any 7" > 1, as a joint probability distribution over
@LT = (@1, Ce ,@T), Cl:T; and }/1;7* as

T

P(crr, 01, y1.r) = P(e)P(O)P(wn]6) [ [P ()P (Biler, 6 1) P (yel6r) (2.1)
t=2

where P(61) = b©(6,), P(c1) = 6(c; — 1), and

P(c:) = Bernoulli(e; pe) , (2.2)
(5(9,5 — Ht,l) if Ct — 0,
P(O¢|ct,0i—1) = 2.
(Beler, O1-1) { b (6;) if =1, (23)
P(yl6:) = Py (y:]0:) - (2.4)

P stands for either probability density function (for the continuous variables) or probability
mass function (for the discrete variables), and § is the Dirac or Kronecker delta distribution,
respectively.

Given a sequence of observations y1.4, the agent’s belief b(t)(Q) about the parameter 0 at
time ¢ is defined as the posterior probability distribution P(©; = 0|y;.;). In the online
learning setting studied here, the agent’s goal is to update the belief b(®) () to the new
belief b(t+1)(0), or an approximation thereof, upon observing ;1.

A simplified real-world example of such an environment is illustrated in Fig. 2.1B. Imagine
that every day a friend of yours meets you at the coffee shop, starting after work from her
office (Fig. 2.1B left). To do so, she needs to cross a river via a bridge. The time of arrival
of your friend (i.e. y:) exhibits some variability, due to various sources of stochasticity
(e.g. traffic and your friend’s daily workload), but it has a stable average over time (i.e.
;). However, if a new bridge is opened, your friend arrives earlier, since she no longer
has to take detour (Fig. 2.1B right). The moment of opening the new bridge is indicated
by ¢i41 = 1 in our framework, and the sudden change in the average arrival time of your
friend by a sudden change from 6; to 6;11. Even without any explicit discussion with
your friend about this situation and only by observing her actual arrival time, you can
notice the abrupt change and hence adapt your schedule to the new situation.
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2.2.1 Online Bayesian inference modulated by surprise

According to the definition of the hierarchical generative model (Fig. 2.1A and Equation 2.1
to Equation 2.4), the value y;4;1 of the observation at time ¢ + 1 depends only on the
parameters 0;11, and is (given 6;,41) independent of earlier observations and earlier
parameter values. We exploit this Markovian property and update, using Bayes’ rule, the
belief b®) (0) = P(0; = 0|y14) at time ¢ to the new belief at time t + 1

Py (yt41|0)P (Or1 = 0|y1:¢)

bt (9) = Byl . (2.5)

So far, Equation 2.5 remains rather abstract. The aim of this section is to rewrite it in
the form of a surprise-modulated recursive update. The first term in the numerator of
Equation 2.5 is the likelihood of the current observation given the parameter ©;; = 6, and
the second term is the agent’s estimated probability distribution of ©;11 before observing
yr+1. Because there is always the possibility of an abrupt change, the second term is not
the agent’s previous belief b® | but P(0s1 = Oly14) = (1 — pe)b® (0) + p.b@ (6). As a
result, it is possible to find a recursive formula for updating the belief. For the derivation
of this recursive rule, we define the following terms.

Definition 1. The probability or density (for discrete and continuous variables respec-
tively) of observing y with a belief b(t) s denoted as

Py = [ Py(ylo)o)(6)ao . (2.6)

Note that if b is the exact Bayesian belief defined as above in Equation 2.5, then
P(y; b)) = P(Yy41 = ylyrwr, cvp1 = 0). In Section 2.2.2 we will use also P(y; b)) for
an arbitrary b(®). Two particularly interesting cases of Equation 2.6 are P(y;.1;b®), i.e.
the probability of a new observation y;y1 with the current belief b and P(yt11; b(o)),
i.e. the probability of a new observation g1 with the prior belief b(®).

Definition 2. The “Bayes Factor Surprise” Sgr of the observation y:11 is defined as the
ratio of the probability of observing yi+1 given c;y1 = 1 (i.e. when there is a change), to
the probability of observing yi+1 given c¢;41 = 0 (i.e. when there is no change), i.e.

P(yi11;b©)

Spr (yer1;bY) = Plyrerb®)

(2.7)

This definition of surprise measures how much more probable the current observation is
under the naive prior b(®) relative to the current belief b(® (see the Discussion section for
further interpretation). This probability ratio is the Bayes factor (Efron and Hastie, 2016;
Kass and Raftery, 1995) that tests the prior belief b(©) against the current belief b®). We
emphasize that our definition of surprise is not arbitrary, but essential in order to write
the exact inference in Equation 2.5 on the generative model in the compact recursive
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form indicated in the Proposition that follows. Moreover, as we show later, this term can
be identified in multiple learning algorithms (among them Nassar et al. (2010, 2012)), but
it has never been interpreted as a surprise measure. In the following sections we establish
the generality of this computational mechanism and identify it as a common feature of
many learning algorithms.

Definition 3. Under the assumption of no change c;+1 = 0, and using the most recent
belief b®) as prior, the exact Bayesian update for bUtY) s denoted as

_ Py (y14110)b® (0)
P(yt+1;b®)

bl () (2.8)

bg+1)(9) describes the incorporation of the new information into the current belief via
Bayesian updating.

Definition 4. The “Surprise-Modulated Adaptation Rate” is a function v : RT x RT —
[0, 1] specified as

mS

LSk A ey}

(2.9)

where S > 0 is a surprise value, and m > 0 is a parameter controlling the effect of surprise
on learning.

Using the above definitions and Equation 2.5, we have for the generative model of Fig. 2.1A
and Equation 2.1 to Equation 2.4 the following Proposition.

Proposition. Fzact Bayesian inference on the generative model is equivalent to the
recursive update rule

(t+1) _ - (t+1)  Dc (t+1) t+1)  DPe
b(0) = (1=~ (S 125 ) )ois ™ 0) + (S5 12 Plblye) - (210)

where Sg;fl) = Spr(yes1;b®) is the Bayes Factor Surprise and

Py (y:+1|0)b9) ()
P(Olyt+1) = Plyrer: D) (2.11)

is the posterior if we take yiy1 as the only observation.

The proposition indicates that the exact Bayesian inference on the generative model
discussed above (Fig. 2.1) leads to an explicit trade-off between (i) integrating a new
observation y"°% (corresponding to y;;1) with the old belief b°d (corresponding to
b®) into a distribution bi™*egration (corresponding to bg—H)) and (ii) forgetting the past

observations, so as to restart with the belief b**¢" (corresponding to P(6|y:+1)) which
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relies only on the new observation and the prior b(®)
bneW(e) _ (1 - 7) bintegration(mynew’ bold) + breset<9’ynew’ b(())) (2.12)

This trade-off is governed by a surprise-modulated adaptation rate (S, m) € [0, 1], where
S = Spr > 0 (corresponding to the Bayes Factor Surprise) can be interpreted as the

1{;} - > 0 is a parameter controlling

the effect of surprise on learning. Because the parameter of modulation m is equal to

Pc
17pc ’

Therefore, in more volatile environments, the same value of surprise S leads to a higher

surprise of the most recent observation, and m =

for a fixed value of surprise .5, the adaptation rate  is an increasing function of p..

adaptation rate than in a less volatile environment; in the case of p. — 1, any surprise
value leads to full forgetting, i.e. v =1.

As a conclusion, our first main result is that a split as in Equation 4.6 with a weighting
factor (“adaptation rate” «y) as in Equation 2.9 is exact and always possible for the class
of environments defined by our hierarchical generative model. This surprise-modulation
gives rise to specific testable experimental predictions discussed later.

2.2.2 Approximate algorithms modulated by surprise

Despite the simplicity of the recursive formula in Equation 2.10, the updated belief b+
is generally not in the same family of distributions as the previous belief b®), e.g. the
result of averaging two normal distributions is not a normal distribution. Hence it is in
general impossible to find a simple and exact update rule for e.g. some sufficient statistic.
As a consequence, the memory demands for b(t+1) gcale linearly in time, and updating
b(+1 using b®) needs O(t) operations. In the following sections, we investigate three
approximations (Algo. 1-3) that have simple update rules and finite memory demands,
so that the updated belief remains tractable over a long sequence of observations.

As our second main result, we show that all three novel approximate algorithms inherit the
surprise-modulated adaptation rate from the exact Bayesian approach, i.e. Equation 2.9
and Equation 4.6. The first algorithm adapts an earlier algorithm of surprise minimization
learning (SMiLe, Faraji et al. (2018)) to variational learning. We refer to our novel
algorithm as Variational SMiLe and abbreviate it by VarSMiLe (see Algo. 1). The
second algorithm is based on message passing (Adams and MacKay, 2007) restricted
to a finite number of messages N . We refer to this algorithm as MPN (see Algo. 2).
The third algorithm uses the ideas of particle filtering (Gordon et al., 1993) for an
efficient approximation for our hierarchical generative model. We refer to our approximate
algorithm as Particle Filtering with N particles and abbreviate it by pfN (see Algo.
3). All algorithms are computationally efficient, have finite memory demands and are
biologically plausible; Particle Filtering has possible neuronal implementations (Huang
and Rao, 2014; Kutschireiter et al., 2017; Legenstein and Maass, 2014; Shi and Griffiths,
2009), MPN can be seen as a greedy version of pfN without sampling, and Variational
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SMiLe may be implemented by neo-Hebbian (Gerstner et al., 2018; Lisman et al., 2011)
update rules. Simulation results show that the performance of the three approximate
algorithms is comparable to and more robust across environments than other state-of-the-
art approximations.

Variational SMiLe Rule (Algo. 1)

A simple heuristic approximation to keep the updated belief in the same family as the
previous beliefs consists in applying the weighted averaging of the exact Bayesian update
rule (Equation 2.10) to the logarithm of the beliefs rather than the beliefs themselves, i.e.

log(f)(t“)(ﬁ)) = (1 — 1) log(f)g“)(ﬁ)) + Y41 log(P(8lyt41)) + Const., (2.13)

where 441 = ’y(SBF (Ytt1; B(t)), m) is given by Equation 2.9 with a free parameter m > 0
which can be tuned to each environment. By doing so, we still have the explicit trade-off
between two terms as in Equation 2.10, but in the logarithms; yet an advantageous
consequence of averaging over logarithms is that, if the likelihood function Py is in the
exponential family, and if the initial belief b(®) is its conjugate prior, then b(t+1) and b©
are members of the same family. In this particular case, we arrive at a simple update rule
for the parameters of b(t+1) (see Algorithm 1 for pseudocode and Methods for details).
As it is common in variational approaches (Beal, 2003), the price of this simplicity is
that, except for the trivial cases of p. = 0 and p. = 1, there is no evidence other than
simulations that the update rule of Equation 2.13 will end up at an approximate belief
close to the exact Bayesian belief.

One way to interpret the update rule of Equation 2.13 is to rewrite it as the solution of a
constraint optimization problem. The new belief b(t+1) is a variational approximation of
the Bayesian update bgﬂ) (see Methods)

b“+1)(9) = argmin Dy [q(0)] 165" (6)] (2.14)

with a family of functions ¢(#) constrained by the Kullback-Leibler divergence

Dk [q(@)|P(Blye+1)] < Bryr, (2.15)

where the bound Bi11 € [0,Dgp 6g+1)(0)||P(9\yt+1)H is a decreasing function of the
Bayes Factor surprise Spp(y.+1;0®) (see Methods for proof), and P(0|y,41) is given by
Equation 2.11.

Because of the similarity of the constraint optimization problem in Equation 2.14 and
Equation 2.15 to the Surprise Minimization Learning rule “SMiLe” (Faraji et al., 2018),
we call this algorithm “Variational Surprise Minimization Learning” rule, or in short
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A
Ci=1
a @ a C ~ Bernoulli(p.)
O,{C; =1} ~bV()
OINGYORE
Yi{©; =0} ~ Py (.|0)
B

Coffee shop Coffee shop

&K
K

o

Your friend’s office Your friend’s office

Figure 2.1 — Non-stationary environment. A. The generative model. At each time
point t there is a probability p. € (0,1) for a change in the environment. When there
is a change in the environment, i.e. Cy = 1, the parameter ©; is drawn from its prior
distribution b(®), independently of its previous value. Otherwise the value of ©; retains its
value from the previous time step ¢t — 1. Given a parameter value ©; = 6, the observation
Y; = y¢ is drawn from a probability distribution Py (y¢|f). We indicate random variables by
capital letters, and values by small letters. B. Example of a non-stationary environment.
Your friend meets you every day at the coffee shop (blue dot) starting after work from
her office (orange dot) crossing a river. The time of arrival of your friend is the observed
variable Y;, which due to the traffic or your friend’s workload may exhibit some variability,
but has a stable expectation (i.e. 6). If, however, a new bridge is opened (i.e. Cy =1
where ¢ is the moment of change), your friend no longer needs to take a detour. There is,
then, a sudden change in her observed daily arrival times.
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“Variational SMiLe” rule. The differences between SMiLe and Variational SMilLe are
discussed in the Methods section.

Our variational method, and particularly its surprise-modulated adaptation rate, is
complementary to earlier studies (Masegosa et al., 2017; Ozkan et al., 2013) in machine
learning which assumed different generative models and used additional assumptions and
different approaches for deriving the learning rule.

Algorithm 1 Pseudocode for Variational SMiLe (exponential family)

1: Specify Py (y|6), Pp(© = 6;x,v), and ¢(y)
where Py € {exponential family}, Py € {conjugate priors of Py} parametrized by x
and v, and ¢(y) is the sufficient statistic.
Specify m.
Initialize (@, v, and t « 0.
while the sequence is not finished do
Observe 411
£ Surprise
6: Compute Spr(yi+1; E)(t)) using Equation 2.83
# Modulation factor
7. Compute Y41 = v(Spr(yes1; D), m)
£ Updated belief

8: YD e (1 = v DX + v 1 x© + d(yesr)

9: VD (1 =y ) oy 41
10 BEHD(9) = Py (0 = 0; X1+, p(t4D)
# Iterate

11: t+—t+1

Message-Passing N (Algo. 2)

For a hierarchical generative model similar to ours, a message passing algorithm has
been used to perform exact Bayesian inference (Adams and MacKay, 2007), where the
algorithm’s memory demands and computational complexity scale linearly in time ¢t. In
this section, we first explain the idea of the message passing algorithm of Adams and
MacKay (2007) and its relation to our Proposition. We then present our approximate
version of this algorithm which has a constant (in time) computational complexity and

memory demands.

The history of change points up to time ¢ is a binary sequence, e.g. ¢1.; = {1,0,0,1,0,1,1},
where the value 1 indicates a change in the corresponding time step. Following the idea of
Adams and MacKay (2007), we define the random variable R; = min{n € N: Cy_,,11 = 1}
in order to describe the time since the last change point, which takes values between 1 to t.
We can write the exact Bayesian expression for b®) () by marginalizing P(©; = 0, |y1.¢)
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over the ¢ possible values of r; in the following way
t—1
b®(9) = ZP(Rt =t —kly1.)P(Or = 0|Ry =t — k,y1.4). (2.16)
k=0

For consistency with Algorithm 3 (i.e. Particle Filtering), we call each term in the sum of
Equation 2.16 a “particle”, and denote as b,(j)(e) =P(0; =0|R =t — k,y1.t) the belief of
the particle corresponding to Ry =t — k, and wt(k) = P(R; =t — k|y1.¢) its corresponding
weight at time ¢, i.e.

)= wib (0 (2.17)

k=0

For each particle, the term b,(:)(e) is simple to compute, because when r; is known,
inference depends only on the observations after the last change point. Therefore, the
(k)

goal of online inference is to find an update rule for the evolution of the weights w,"’ over
time.

We can apply the exact update rule of our Proposition (Equation 2.10) to the belief
expressed in the form of Equation 2.17. Upon each observation of a new sample y;41, a
new particle is generated and added to the set of particles, corresponding to P(0|y:+1)
(i.e. b)) modelling the possibility of a change point occurring at t + 1. According to
the proposition, the weight of the new particle (i.e. & =t) is equal to

wt(i)1 = Vt+1, (2.18)

where v41 = 7(SBr(Yt+1; b®), 13;)6) (cf. Equation 2.9). The other ¢ particles coming

bg‘f‘l) (1e bintegration)

from b corresponds to in the proposition. The update rule (see
Methods for derivation) for the weights of these particles (i.e. 0 <k <t —1)is

)
Plyeaiby ) ) (2.19)
P(?/t+1; b(t))

So far, we used the idea of (Adams and MacKay, 2007) to write the belief as in Equa-
tion 2.17 and used our proposition to arrive at the surprise-modulated update rules in
Equation 2.18 and Equation 2.19.

k k
w§+)1 =(1- %+1)wga,)t+1 = (1 —7+1)

The computational complexity and memory requirements of the complete message passing
algorithm increase linearly with time ¢. To deal with this issue and to have a constant
computation and memory demands over time, we implemented a message passing al-
gorithm of the form of Equation 2.17 to Equation 2.19, but with a fixed number N of
particles, chosen as those with the highest weights wgk). Therefore, our second algorithm
adds a new approximation step to the full message passing algorithm of Adams and
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MacKay (2007): Whenever ¢ > N, after adding the new particle with the weight as in
Equation 2.18 and updating the previous weights as in Equation 2.19, we discard the
particle with the smallest weight (i.e. set its weight equal to 0), and renormalize the
weights. By doing so, we always keep the number of particles with non-zero weights
equal to N. Note that, for ¢t < N, our algorithm is exact, and identical to the message
passing algorithm of (Adams and MacKay, 2007). We call our modification of the message
passing algorithm of Adams and MacKay (2007) “Message Passing N and abbreviate it
by “MPN”.

To deal with the computational complexity and memory requirements, one may alterna-
tively keep only the particles with weights greater than a cut-off threshold (Adams and
MacKay, 2007). However, such a constant cut-off leads to a varying number (smaller
or equal to t) of particles in time. Our approximation MPN can therefore be seen as a
variation of the thresholding algorithm in Adams and MacKay (2007) with fixed number
of particles IV, and hence a variable cut-off threshold. The work of Fearnhead and Liu
(2007) follows the same principle as Adams and MacKay (2007), but employs stratified
resampling to eliminate particles with negligible weights, in order to reduce the total
number of particles. Their resampling algorithm involves solving a complicated non-linear
equation at each time step, which makes it unsuitable for a biological implementation. In
addition, we experienced that in some cases, the small errors introduced in the resampling
step of the algorithm of Fearnhead and Liu (2007) accumulated and led to a worse
performance than our MPN algorithm which simply keeps the N particles with the
highest weight at each time step.

For the case where the likelihood function Py (y|6) is in the exponential family and b(®)

is its conjugate prior, the resulting algorithm of MPN has a simple update rule for the
belief parameters (see Algorithm 2 and Methods for details). For the sake of comparison,
we also implemented in our simulations the full message passing algorithm of Adams and
MacKay (2007) with an almost zero cut-off (machine precision), which we consider as
our benchmark “Exact Bayes”, as well as the stratified optimal resampling algorithm of
Fearnhead and Liu (2007), called “SORN".

Particle Filtering (Algo. 3)

Equation 2.17 demonstrates that the exact Bayesian belief b(®) can be expressed as a
sum of two factors, i.e. as the marginalization of P(©; = 6, r¢|y;.+) over the time since
the last change point r;. Equivalently, one can compute the exact Bayesian belief as the
marginalization of P(©; = 0, c1.4|y1.¢) over the history of change points cj4, i.e.

b{")(0) = ZP(Clzt!ylzt)P(@t = Olc1:t, y1:t)

i (2.20)
= EP(Cl:tlyl:t) [P(@t = 0|Clit’ y].:t)] .
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Algorithm 2 Pseudocode for MPN (exponential family)

1:

Specify Py (y|d), Pp(© = 6; x,v), and ¢(y)

where Py € {exponential family}, Py € {conjugate priors of Py} parametrized by x
and v, and ¢(y) is the sufficient statistic.

Specify m = p./(1 — p.), and N.

Initialize Xgo), I/£O), w(()l) =1and t <+ 0.

: Until N = ¢, do the exact message passing algorithm of Equation 2.19 and Equa-

tion 2.18

5: while the sequence is not finished and N < t do

10:

11:
12:

13:

14:

15:
16:
17:

18:

19:

Nej

20:

Observe 3411
# Surprise per particle ¢
forie {1,...,N} do

Compute Sgr(yr41,b\") using Equation 2.83 with y\", ")

i oY
# Global surprise

Compute Spr(yi+1, B(t)) as the weighted (wEi)) harmonic mean of Spp (Y11, E)gt))
+# Modulation factor

Compute Y4+1 = 7 (Spr(yer1, D), m)
# Weight per particle ¢

forie {1,...,N} do

Compute the Bayesian weight wg?t 41

wgl ~ (- ’Yt+1)wg?t+1

using Equation 2.22

# Weight for the new particle
N+1

w§+1 = Vt+1

# Updated belief per particle ¢
forie {1,..,N} do

XEtH) — xl(-t) + ¢(y1+1) and Vi(Hl) — I/l-(t) +1

X%ill) X9 + ¢(yr41) and z/](\?ﬁ) — v 41

Approximation

Keep the N particles with highest weights among wﬁi\f H), rename and normalize

their weights
# Updated belief ’
b(t+1)(9) _ vazl wﬁfﬁle(@ _ Q;X(t-&-l), I/(t+1))

i i
Iterate

t—t+1
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The idea of our third algorithm is to approximate this expectation by particle filtering,
i.e. sequential Monte Carlo sampling (Doucet et al., 2000; Gordon et al., 1993) from

P(Cl:t|y1:t)-

We then approximate b® by
) N N '
b (0) = wB"(0) = > w"P(Or = 0l y1e) (2.21)
i=1 i=1

where {c%}fil is a set of N realizations (or samples) of ¢y, (i.e. N particles) drawn from

a proposal distribution W(cy.¢|y1.¢), {wgl) f\;l are their corresponding weights at time ¢,

and BZ@ 0)=P(6, = 0|c(1f1, y1.¢t) is the approximate belief corresponding to particle i.

Upon observing 4,41, the update procedure for the approximate belief bt+1) of Equa-
tion 2.21 includes two steps: (i) updating the weights, and (ii) sampling the new hidden
state ciy1 for each particle. The two steps are coupled together through the choice of
the proposal distribution ¥, for which, we choose the optimal proposal function (Doucet
et al., 2000) (see Methods). As a result, given this choice of proposal function, we show
(see Methods) that the first step amounts to
wi)y = (1~ %+1)wg?t+1 + 1wy
@ Pweub) o (2.22)
W41 = mwt ;
Ye+1;

where Y41 = 7(SBr(Yt+1; b®), m) with m = 2= (cf. Equation 2.9), and {wg)tﬂ}ﬁ\;l

1_pc
are the weights corresponding to the Bayesian update B(Bfﬂ) of Equation 2.8 (see Methods).

In the second step, we update each particle’s history of change points by going from
the sequence {cgzi}fil to {ng)t +1}£\L1> for which we always keep the old sequence up to

time ¢, and for each particle 7, we add a new element 07521 € {0,1} representing no

change ng% 1= [cﬁ, 0] or change ng)t 1= [cgli, 1]. Note, however, that it is not needed

to keep the whole sequences cgll 41 in memory, but instead one can use cgzl to update

62@ to E)Z(Hl). We sample the new element cgl from the optimal proposal distribution

W(cﬁﬁcﬂ, y1:t+1) (Doucet et al., 2000), which is given by (see Methods)

i i " Pc
‘I’(Cgll = 110311, Yrie+1) = ’Y(SBF(ytH; bﬁ”), q) . (2.23)

Interestingly, the above formulas entail the same surprise modulation and the same
trade-off as proposed by the Proposition Equation 2.10. For the weight update, there
is a trade-off between an exact Bayesian update and keeping the value of the previous
time step, controlled by a adaptation rate modulated exactly in the same way as in
Equation 2.10. Note that in contrast to Equation 2.10, the trade-off for the particles’
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weights is not between forgetting and integrating, but between maintaining the previous
knowledge and integrating. However, the change probability (Equation 2.23) for sampling
is equal to the adaptation rate and is an increasing function of surprise. As a result,
although the weights are updated less for surprising events, a higher surprise causes a

higher probability for change, indicated by cgl = 1, which implies forgetting, because for

a particle ¢ with 0521 = 1, the associated belief E)Etﬂ) =P(Oy1 = 6’|c§21 =1, c%, Y1:t+1)
is equal to P(©41 = 9’6%21 = 1,y1+1) = P(0lyi+1) (see Fig. 2.1A), which is equivalent
to a reset of the belief as in Equation 4.6. In other words, while in MPN and the exact
Bayesian inference in Proposition Equation 2.10, the trade-off between integration and
reset is accomplished by adding at each time step a new particle with weight .41, in
Particle Filtering, it is accomplished via sampling. As a conclusion, the above formulas are
essentially the same as the update rules of MPN (c.f. Equation 2.19 and Equation 2.18)

and have the same spirit as the recursive update of the Proposition Equation 2.10.

Equations 2.21 and 2.22 can be applied to the case where the likelihood function Py (y|6)
is in the exponential family and b(®) is its conjugate prior. The resulting algorithm
(Algorithm 3) has a particularly simple update rule for the belief parameters (see Methods
for details).

The theory of particle filter methods is well established (Doucet et al., 2000; Gordon
et al., 1993; Séarkka, 2013). Particle filters in simpler (Brown and Steyvers, 2009) or
more complex (Findling et al., 2019) forms have also been employed to explain human
behaviour. Here we derived a simple particle filter for the general case of generative
models of Equation 2.2, Equation 2.3, and Equation 2.4. Our main contribution is to
show that the use of the optimal proposal distribution in this particle filter leads to a
surprise-based update scheme.

Surprise-modulation as a framework for other algorithms

Other existing algorithms (Adams and MacKay, 2007; Faraji et al., 2018; Fearnhead and
Liu, 2007; Nassar et al., 2010, 2012) can also be formulated in the surprise-modulation
framework of Equation 2.9 and Equation 4.6 (see Methods). Moreover, in order to allow
for a transparent discussion and for fair comparisons in simulations, we extended the
algorithms of Nassar et al. (2010, 2012) to a more general setting. Here we give a brief
summary of the algorithms we considered. A detailed analysis is provided in subsection
“Surprise-modulation as a framework for other algorithms” in the Methods.

The algorithms of Nassar et al. (2010, 2012) were originally designed for a Gaussian
estimation task (see Simulations for details of the task) with a broad uniform prior. We
extended them to the more general case of Gaussian tasks with Gaussian priors, and we
call our extended versions Nas10* and Nas12* for Nassar et al. (2010) and Nassar et al.
(2012) respectively (for a performance comparison between our extended algorithms and
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Algorithm 3 Pseudocode for Particle Filtering (exponential family)

1:

2

®

©

10:
11:

12:

13:

14:

15:
16:

17:
18:
19:

20:
21:

2

23:

N

Specify Py (y|0), Pp (@ =0;x, 1/), and ¢(y)
where Py € {exponential family}, Py € {conjugate priors of Py} parametrized by x
and v, and ¢(y) is the sufficient statistic.
Specify m = p./(1 — pg), N, and Nips
Initialize x(©), (), w(()z) Vi e {1..N}, and t < 0.
while the sequence is not finished do
Observe ys11
# Surprise per particle i
forie{1,...,N} do

Compute Sr(Yi+1; E)l(-t)) using Equation 2.83 with X(t), yi(t)

A
# Global surprise
~ . ~ _ 1

Compute Spr (yi1;b0) = [ SN wi” [Spr(yes1: b)) ]
# Modulation factor

Compute ve11 = 7(Spr (Y415 01"), m)
# Weight per particle ¢

forie {1,...,N} do

Compute the Bayesian weight wg)t 41 using Equation 2.22

wt(ﬁl «~ (1= %+1)wg?t+1 + '7t+1w1£1)

# Hidden state per particle ¢
forie {1,...,N} do

Sample cgl ~ Bernoulli(y(Sgr (yt+1; f)l(t)), m))

# Resampling .
Nt ¢ (1% wi)™
If Nep < Ninps: resample
# Updated belief per particle ¢
forie{1,...N} do
if ¢\’ = 0 then
X§t+1) — th) + ¢(ye+1) and VZ-(Hl) +— Vl-(t) +1
else
X§t+1) — O 4 é(yer1) and V§t+1) 10 41
# Updated (output) belief
bt (9) = SN, wl Po(© = 6:x (", oY)
# Iterate
tt+1
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their original versions see Supplementary Fig. 2.12 and Supplementary Fig. 2.13). Both
algorithms have the same surprise-modulation as in our Proposition (Equation 2.10).
There are multiple interpretations of the approaches of Nas10* and Nasl2* and links
to other algorithms. One such link we identify is in relation to Particle Filtering with
a single particle (pfl). More specifically, one can show that pfl behaves in expectation
similar to Nas10* and Nas12* (see Methods and Supplementary Material).

To summarize, the algorithms Exact Bayes and SORN come from the field of change-point
detection, and whereas the former has high memory demands, the latter has the same
memory demands as our algorithms pfN and MPN. The algorithms Nas10*, Nas12*,
and SMiLe, on the other hand, come from the human learning literature and are more

biologically oriented.

2.2.3 Simulations

With the goal of gaining a better understanding of different approximate algorithms, we
evaluated the departure of their performance from the exact Bayesian algorithm in terms
of mean squared error (MSE) of ©; (see Methods), on two tasks inspired by and closely
related to real experiments (Behrens et al., 2007; Maheu et al., 2019; Mars et al., 2008;
Nassar et al., 2010, 2012; Ostwald et al., 2012): a Gaussian and a Categorical estimation
task.

We compared our three novel algorithms VarSMiLe, Particle Filtering (pfN, where N is
the number of particles), and Message Passing with finite number of particles N (MPN)
to the online exact Bayesian Message Passing algorithm (Adams and MacKay, 2007)
(Exact Bayes), which yields the optimal solution with ©; = (:)to P! Furthermore, we
included in the comparison the stratified optimal resampling algorithm (Fearnhead and
Liu, 2007) (SORN, where N is the number of particles), our variant of Nassar et al.
(2010) (Nas10*) and of Nassar et al. (2012) (Nas12*), the Surprise-Minimization Learning
algorithm of Faraji et al. (2018) (SMiLe), as well as a simple Leaky Integrator (Leaky -
see Methods).

Gaussian estimation task

The task is a generalized version of the experiment of Nassar et al. (2010, 2012). The
goal of the agent is to estimate the mean 6; = u; of observed samples, which are drawn
from a Gaussian distribution with known variance o2, i.e. yp1|pr1 ~ N(pa1,0%).
The mean pz1q is itself drawn from a Gaussian distribution p41 ~ N(0,1) whenever
the environment changes. In other words, the task is a special case of the generative
model of Equation 2.2, Equation 2.3, and Equation 2.4, with b(® () = N'(p¢;0,1) and
Py (yi|pe) = N (yi; e, 0%). An example of the task can be seen in Fig. 2.2A.

42



2.2. Results

We simulated the task for all combinations of o € {0.1,0.5,1,2,5} and p. € {0.1,0.05,0.01,
0.005,0.001,0.0001}. For each combination of o and p., we first tuned the free parameter
of each algorithm, i.e. m for SMilLe and Variational SMilLe, the leak parameter for
the Leaky Integrator, and the p. of Nas10* and Nas12*, by minimizing the MSE on
three random initializations of the task. For the Particle Filter (pfN), the Exact Bayes,
the MPN, and the SORN we empirically checked that the true p. of the environment
was indeed the value that gave the best performance, and we used this value for the
simulations. We evaluated the performance of the algorithms on ten different random
task instances of 10 steps each for p. € {0.1,0.05,0.01,0.005} and 10° steps each for
pe € {0.001,0.0001} (in order to sample more change points). Note that the parameter o
is not estimated and its actual value is used by all algorithms except the Leaky Integrator.

In Fig. 2.2B we show the MSE[O,|R; = n] in estimating the parameter after n steps
since the last change point, for each algorithm, computed over multiple changes, for two
exemplar task settings. The Particle Filter with 20 particles (pf20), the VarSMiLe and
the Nas12* have an overall performance very close to that of the Exact Bayes algorithm
(i.e. MSE[(:)? PY|R; = n]), with much lower memory requirements. VarSMiLe sometimes
slightly outperforms the other two early after an environmental change (Fig. 2.2B, right),
but shows slightly higher error values at later phases. The MPN algorithm is the
closest one to the optimal solution (i.e. Exact Bayes) for low o (Fig. 2.2B, left), but its
performance is much worse for the case of high o and low p,. (Fig. 2.2B, right). For the
Stratisfied Optimal Resampling (SORN) we observe a counter-intuitive behaviour in the
regime of low o; the inclusion of more particles leads to worse performance (Fig. 2.2B,
left). At higher o levels the performance of SOR20 is close to optimal and better than the
MP20 in later time steps. This may be due to the fact that the MPN discards particles
in a deterministic and greedy way (i.e. the one with the lowest weight), whereas for the
SORN there is a component of randomness in the process of particle elimination, which
may be important for environments with higher stochasticity.

For the Leaky Integrator we observe a trade-off between good performance in the transient
phase and the stationary phase; a fixed leak value cannot fulfill both requirements. The
SMiLe rule, by construction, never narrows its belief 6(0) below some minimal value,
which allows it to have a low error immediately after a change, but leads later to high
errors. Its performance deteriorates for higher o (Fig. 2.2B, right). The Nas10* performs
well for low, but not for higher values of o. Despite the fact that a Particle Filter with 1
particle (pfl) is in expectation similar to Nas10* and Nas12* (see Methods), it performs
worse than these two algorithms on trial-by-trial measures. Still, it performs better than
the MP1 and identically to the SORL1.

In Fig. 2.3A, we have plotted the average of MSE[(:)? pt] of the Exact Bayes algorithm
over the whole simulation time for each of the considered o and p. levels. The difference
between the other algorithms and this benchmark is called AMSE[O;] (see Methods) and
is plotted in Fig. 2.3C-F. All algorithms except for the SOR20 have lower average error
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values for low ¢ and low p., than high o and high p.. The Particle Filter pf20 and the
Message Passing MP20 have the smallest difference from the optimal solution. The average
error of MP20 is higher than that of pf20 for high ¢ and low p., whereas pf20 is more
robust across levels of environmental parameters. The worst case performance for pf20 is
AMSE[©;] = 0.033 for ¢ = 5 and p. = 0.0001, and for SOR20 it is AMSE[©,] = 0.061
for 0 = 0.1 and p. = 0.1. The difference between these two worst case scenarios is
significant (p-value = 2.79 x 1079, two-sample t-test, 10 random seeds for each algorithm).
Next in performance is the algorithm Nas12* and VarSMilLe. VarSMilLe exhibits its
largest deviation from the optimal solution for high ¢ and low p., but is still more resilient
compared to the MPN algorithms for this type of environments. Among the algorithms
with only one unit of memory demands, i.e. pfl, MP1, SOR1, VarSMilLe, SMiLe, Leaky,
Nas10* and Nas12*, the winners are VarSMiLe and Nas12*. The SOR20 has low error
overall, but unexpectedly high error for environmental settings that are presumably more
relevant for biological agents (intervals of low stochasticity marked by abrupt changes).
The simple Leaky Integrator performs well at low ¢ and p. but deviates more from the
optimal solution as these parameters increase (Fig. 2.3F). The SMiLe rule performs best
at lower o, i.e. in more deterministic environments.

A summary graph, where we collect the AMSE[@t] across all levels of o and p,, is shown
in Fig. 2.4. We can see that pf20, Nas12*, and VarSMiLe give the lowest worst case (lowest
maximum value) AMSE[©,] and are statistically better than the other 8 algorithms (the
errorbars indicate the standard error of the mean across the ten random task instances).

Categorical estimation task

The task is inspired by the experiments of Behrens et al. (2007); Maheu et al. (2019); Mars
et al. (2008); Ostwald et al. (2012). The goal of the agent is to estimate the occurrence
probability of five possible states. Each observation y.41 € {1,...,5} is drawn from a
categorical distribution with parameters 6,1 = p; 1, i.e. yer1|Pip1 ~ Cat(Yey1:Ppyr)-
When there is a change C;;1 = 1 in the environment, the parameters p,,; are drawn
from a Dirichlet distribution Dir(s - 1), where s € (0,00) is the stochasticity parameter.
In relation to the generative model of Equation 2.2, Equation 2.3, and Equation 2.4 we,
thus, have b (p,) = Dir(p,;s - 1) and Py (y|p,) = Cat(ys; p,). An illustration of this
task is depicted in Fig. 2.5A.

We considered the combinations of stochasticity levels s € {0.01,0.1,0.14,0.25,1,2,5}
and change probability levels p. € {0.1,0.05,0.01,0.005,0.001,0.0001}. The algorithms of
Nassar et al. (2010, 2012) were specifically developed for a Gaussian estimation task and
cannot be applied here. All other algorithms were first optimized for each combination
of environmental parameters before an experiment starts, and then evaluated on ten
different random task instances, for 10° steps each for p. € {0.1,0.05,0.01,0.005} and
10° steps each for p. € {0.001,0.0001}. The parameter s is not estimated and its actual
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value is used by all algorithms except the Leaky Integrator.

The Particle Filter pf20, the MP20 and the SOR20 have a performance closest to that of
Exact Bayes, i.e. the optimal solution (Fig. 2.5B). VarSMiLe is the next in the ranking,
with a behaviour after a change similar to the Gaussian task. pf20 performs better for
s > 2 and MP20 performs better for s < 2 (Fig. 2.6). For this task the biologically less
plausible SOR20 is the winner in performance and it behaves most consistently across
environmental parameters. Its worst case performance is AMSE[O,] = 8.16 x 1077 for
s = 2 and p. = 0.01, and the worst case performance for pf20 is AMSE[@t] = 0.0048 for
s =0.25 and p, = 0.005 (p-value = 1.148 x 1072, two-sample t-test, 10 random seeds for
each algorithm). For all the other algorithms, except for MP20, the highest deviations
from the optimal solution are observed for medium stochasticity levels (Fig. 2.6B-F).
When the environment is nearly deterministic (e.g. s = 0.001 so that the parameter
vectors p, have almost all mass concentrated in one component), or highly stochastic (e.g.
s > 1 so that nearly uniform categorical distributions are likely to be sampled), these
algorithms achieve higher performance, while the Particle Filter is the algorithm that
is most resilient to extreme choices of the stochasticity parameter s. For VarSMilLe in
particular, the lowest mean error is achieved for high s and high p. or low s and low p..

A summary graph, with the AMSE[@t] across all levels of s and p., can be seen in
Fig. 2.7. The algorithms with the lowest “worst case” are SOR20 and pf20. The top-4
algorithms SOR20, pf20, MP20 and VarSMiLe are significantly better than the others (the
errorbars indicate the standard error of the mean across the ten random task instances),
whereas MP1 and SMiLe have the largest error with a maximum at 0.53.

Summary of simulation results

In summary, our simulation results of the two tasks collectively suggest that our Par-
ticle Filtering (pfN) and Message Passing (MPN) algorithms achieve a high level of
performance, very close to the one of biologically less plausible algorithms with higher
(Exact Bayes) and same (SORN) memory demands. Moreover, their behaviour is more
consistent across tasks. Finally, among the algorithms with memory demands of one unit,
VarSMiLe performs best.

Robustness against suboptimal parameter choice

In all algorithms we considered, the environment’s hyper-parameters are assumed to be
known. We can distinguish between two types of hyper-parameters in our generative
model: 1. the parameters of the likelihood function (e.g. ¢ in the Gaussian task), and
2. the p. and the parameters of the conjugate prior (e.g. s in the Categorical task).
Hyper-parameters of the first type can be added to the parameter vector 6 and be inferred
with the same algorithm. However, learning the second type of hyper-parameters is not
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straightforward. By assuming that these hyper-parameters are learned more slowly than
6, one can fine-tune them after each n (e.g. 10) change points, while change points can
be detected by looking at the particles for the Particle Filter and at the peaks of surprise
values for VarSMiLe. Other approaches to hyper-parameter estimation can be found in
Doucet and Tadi¢ (2003); George and Doss (2017); Liu and West (2001); Wilson et al.
(2010).

When the hyper-parameters are fixed, a mismatch between the assumed values and the
true values is a possible source of errors. In this section, we investigate the robustness of
the algorithms to a mismatch between the assumed and the actual probability of change
points. To do so, we first tuned each algorithm’s parameter for an environment with
a change probability p., and then tested the algorithms in environments with different
change probabilities, while keeping the parameter fixed. For each new environment with
a different change probability, we calculated the difference between the MSE of these
fixed parameters and the optimal MSE, i.e. the resulting MSE for the case that the Exact
Bayes’ parameter is tuned for the actual p..

More precisely, if we denote as MSE[@t; pL, pe] the MSE of an algorithm with parameters
tuned for an environment with p/, applied in an environment with p., we calculated
the mean regret, defined as MSE[(:)t;p’C,pC] — MSE[@)?pt,pc] over time; note that the
second term is equal to MSE[@t;pc,pC] when the algorithm Exact Bayes is used for
estimation. The lower the values and the flatter the curve of the mean regret, the better
the performance and the robustness of the algorithm in the face of lacking knowledge
of the environment. The slope of the curve indicates the degree of deviations of the
performance as we move away from the optimally tuned parameter. We ran three random
(and same for all algorithms) tasks initializations for each p. level.

In Fig. 2.8 we plot the mean regret for each algorithm for the Gaussian task for four
pairs of s and p/, levels. For o = 0.1 and p/, = 0.04 (Fig. 2.8A) the Exact Bayes and the
MP20 show the highest robustness (smallest regret) and are closely followed by the pf20,
VarSMiLe, and Nas12* (note the regret’s small range of values). The lower the actual p,
the higher the regret, but still the changes are very small. The curves for the SMiLe and
the Leaky Integrator are also relatively flat, but the mean regret is much higher. The
SOR20 is the least robust algorithm.

Similar observations can be made for o = 0.1 and p/, = 0.004 (Fig. 2.8B). In this case,
the performance of all algorithms deteriorates strongly when the actual p. is higher than
the assumed one.

However, for 0 = 5 (Fig. 2.8C and Fig. 2.8D), the ranking of algorithms changes. The
SOR20 is very robust for this level of stochasticity. The pf20 and MP20 perform similarly
for p. = 0.04, but for lower p/, the pf20 is more robust and the MP20 exhibits high
fluctuations in its performance. The Nasl2* is quite robust at this o level. Overall for
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Exact Bayes, SOR20, pf20, VarSMiLe and Nas12*, a mismatch of the assumed p,. from
the actual one does not deteriorate the performance dramatically for o = 5, p,, = 0.004
(Fig. 2.8D). The SMiLe and the Leaky Integrator outperform the other algorithms for
higher p/, if p. < p. (Fig. 2.8C). A potential reason is that the optimal behaviour for
the Leaky Integrator (according to the tuned parameters) is to constantly integrate new
observations into its belief (i.e. to act like a Perfect Integrator) regardless of the p/,
level. This feature makes it blind to the p. and therefore very robust against the lack of
knowledge of it (Fig. 2.8C).

In summary, most of the time, the mean regret for Exact Bayes and MP20 is less than
the mean regret for pf20 and VarSMilLe. However, the variability in the mean regret for
pf20 and VarSMiLe is smaller, and their curves are flatter across p. levels, which makes
their performance more predictable. The results for the Categorical estimation task are
similar to those of the Gaussian task, with the difference that the SOR20 is very robust
for this case (Fig. 2.9).

2.2.4 Experimental prediction

It has been experimentally shown that some important behavioural and physiological
indicators statistically correlate with a measure of surprise or a prediction error. Examples
of such indicators are the pupil diameter (Joshi and Gold, 2019; Nassar et al., 2012;
Preuschoff et al., 2011), the amplitude of the P300, N400, and MMN components of
EEG (Kopp and Lange, 2013; Lieder et al., 2013; Mars et al., 2008; Meyniel et al., 2016;
Modirshanechi et al., 2019; Musiolek et al., 2019; Ostwald et al., 2012), the amplitude of
MEG in specific time windows (Maheu et al., 2019), BOLD responses in fMRI (Konovalov
and Krajbich, 2018; Loued-Khenissi et al., 2020), and reaction time (Huettel et al.,
2002; Meyniel et al., 2016). The surprise measure is usually the negative log-probability
of the observation, known as Shannon Surprise (Shannon, 1948), and denoted here as
Ssn. However, as we show in this section, as long as there is an uninformative prior
over observations, Shannon Surprise Sgy, is just an invertible function of our modulated
adaptation rate 7 and hence an invertible function of the Bayes Factor Surprise Spr.
Thus, based on the results of previous works (Meyniel et al., 2016; Modirshanechi et al.,
2019; Nassar et al., 2010, 2012; Ostwald et al., 2012), that always used uninformative
priors, one cannot determine whether the aforementioned physiological and behavioural
indicators correlate with Sg;, or Sgp.

In this section, we first investigate the theoretical differences between the Bayes Factor
Surprise Sgr and Shannon Surprise Sgy. Then, based on their observed differences, we
formulate two experimentally testable predictions, with a detailed experimental protocol.
Our predictions make it possible to discriminate between the two measures of surprise,
and to determine whether physiological or behavioural measurements are signatures of
Sgr or of Sgy,.
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Figure 2.2 — Gaussian estimation task: Transient performance after changes.
A. At each time step an observation (depicted as black dot) is drawn from a Gaussian
distribution ~ exp(—(y; — p¢)?/202) with changing mean p; (marked in blue) and known
variance o2 (lower left panels). At every change of the environment (marked with red
lines) a new mean gy is drawn from a standard Gaussian distribution ~ exp(—p?). In
this example: ¢ = 1 and p. = 0.01. B. Mean squared error for the estimation of u; at
each time step n after an environmental change, i.e. the average of MSE[©,|R; = n] over
time; o = 0.1, p. = 0.1 (left panel) and o = 5, p. = 0.01 (right panel). The shaded area
corresponds to the standard error of the mean. Abbreviations: pfN: Particle Filtering
with N particles, MPN: Message Passing with N particles, VarSMiLe: Variational SMiLe,
SORN: Stratisfied Optimal Resampling with N particles (Fearnhead and Liu, 2007),
SMiLe: Faraji et al. (2018), Nas10*, Nas12*: Variants of Nassar et al. (2010) and Nassar
et al. (2012), respectively, Leaky: Leaky Integrator, Exact Bayes: Adams and MacKay
(2007).
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Figure 2.3 — Gaussian estimation task: Steady-state performance. A. Mean
squared error of the Exact Bayes algorithm (i.e. optimal solution) for each combination
of o and p. averaged over time. B — F. Difference between the mean squared error of
each algorithm and the optimal solution (of panel A), i.e. the average of AMSE[@t] over
time. The colorbar of panel A applies to these panels as well. Note that the black color
for the MP20 indicates negative values, which are due to the finite sample size for the

estimation of MSE. Abbreviations: See the caption of Fig. 2.2.
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Figure 2.4 — Gaussian estimation task: Steady-state performance summary.
Difference between the mean squared error of each algorithm and the optimal solution
(Exact Bayes), i.e. the average of AMSE[©;] over time, for all combinations of o and p.
together. For each algorithm we plot the 30 values (5 o times 6 p. values) of Fig. 2.3 with
respect to randomly jittered values in the z-axis. The color coding is the same as in Fig. 2.2.
The errorbars mark the standard error of the mean across 10 random task instances. The
difference between the worst case of SOR20 and pf20 is significant (p-value = 2.79 x 1076,
two-sample t-test, 10 random seeds for each algorithm). Abbreviations: See the caption
of Fig. 2.2.
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Figure 2.5 — Categorical estimation task: Transient performance after changes.
A. At each time step the agent sees one out of 5 possible categories (black dots) drawn
from a categorical distribution with parameters p;. Occasional abrupt changes happen
with probability p. and are marked with red lines. After each change a new p; vector
is drawn from a Dirichlet distribution with stochasticity parameter s. In this example:
s = 1 and p. = 0.01. B. Mean squared error for the estimation of p; at each time
step n after an environmental change, i.e. the average of MSE[C:)t\Rt = n| over time;
s = 0.14, p. = 0.01 (left panel) and s = 5, p. = 0.005 (right panel). The shaded area
corresponds to the standard error of the mean. Abbreviations: pfN: Particle Filtering
with N particles, MPN: Message Passing with N particles, VarSMiLe: Variational SMiLe,
SORN: Stratisfied Optimal Resampling with N particles (Fearnhead and Liu, 2007),
SMiLe: Faraji et al. (2018), Leaky: Leaky Integrator, Exact Bayes: Adams and MacKay
(2007).
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Figure 2.6 — Categorical estimation task: Steady-state performance. A. Mean
squared error of the Exact Bayes algorithm (i.e. optimal solution) for each combination
of environmental parameters s and p. averaged over time. B — F. Difference between
the mean squared error of each algorithm and the optimal solution (of panel A), i.e. the
average of AMSE[@t] over time. The colorbar of panel A applies to these panels as well.

Abbreviations: See the caption of Fig. 2.5.
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Figure 2.7 — Categorical estimation task: Steady-state performance summary.
Difference between the mean squared error of each algorithm and the optimal solution
(Exact Bayes), i.e. the average of AMSE[©,] over time, for all combinations of s and p,
together. For each algorithm we plot the 42 values (7 s times 6 p. values) of Fig. 2.6 with
respect to randomly jittered values in the z-axis. The color coding is the same as in Fig. 2.5.
The errorbars mark the standard error of the mean across 10 random task instances. The
difference between the worst case of SOR20 and pf20 is significant (p-value = 1.148x 10712,
two-sample t-test, 10 random seeds for each algorithm). Abbreviations: See the caption
of Fig. 2.5. Note that MP1 and SMiLe are out of bound with a maximum at 0.53.

93



Chapter 2. Learning in Volatile Environments with the Bayes Factor
Surprise

A o=0.1,p, =0.04 B o =0.1,p, = 0.004
1071 T T T 1T T T T T T 11T T T T T T T T T T T
10-2 |- / |
© ° T T
— —
20 20
= | & | ==
= «\ g 1074 |
[ [
] [}
g g
107° = 1076 |- ,
L1 A 11 llA (i ] | - llA Al
10°* 107* 107* 107" 10°* 107* "107* 107!
actual p. actual p.
C o=25,p. =0.04 D o =5,p. =0.004
) k k/\’w\ i E ~ E i E
5 1071 e S S-S T & : e
2 " E g " s
=) i 1 = [ 1
[ [
£ 1077 1 E W07 5
:ml I 1 lA L | T A llA A
10-* 107* 107* 107" 10°* 107* "107* 107!
actual p. actual p.
pfl — MP1 —— SOR1 —— VarSMiLe — Nas10* ——  Leaky
— pf20 — MP20 SOR20 SMiLe —— Nasl12* —— Exact Bayes

Figure 2.8 — Robustness to mismatch between actual and assumed probability
of changes for the Gaussian estimation task. The mean regret is the mean squared
error obtained with assumed change probability p/, minus the mean squared error obtained
with the optimal parameter choice of Exact Bayes for the given actual p,, i.e. the average
of the quantity MSE[O;; p’., p.] — MSE[(:)? Pt pe] over time versus. A red triangle marks
the p!. value each algorithm was tuned for. We plot the mean regret for the following
parameter combinations: A. o = 0.1 and p/, =0.04, B. 0 = 0.1 and p,, =0.004, C. 0 =5
and p. = 0.04, D. 0 =5 and p.. = 0.004. Abbreviations: See the caption of Fig. 2.2.
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Figure 2.9 — Robustness to mismatch between actual and assumed probability
of changes for the Categorical estimation task. The mean regret is the mean
squared error obtained with assumed change probability p. minus the mean squared
error obtained with the optimal parameter choice of Exact Bayes for the given actual
Pe, i.e. the average of the quantity MSE[(:)t;p’c,pC] — MSE[@?pt,pc] over time. A red
triangle marks the p/, value each algorithm was tuned for. We plot the mean regret for
the following parameter combinations: A. s = 0.14 and p, = 0.04, B. s = 0.14 and
p. =0.004, C. s =5 and p. = 0.04, D. s =5 and p. = 0.004. Abbreviations: See the
caption of Fig. 2.5
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Theoretical difference between Sgr and Sgy,

Shannon Surprise (Shannon, 1948) is defined as

Ssn(yr41;0) = —10g(P(yt+1\y1;t)) (2.24)

where for computing P(y¢11|y1.), one should know the structure of the generative model.
For the generative model of Fig. 2.1A, we find Sgp, (y,41;b®) = —log<(l—pC)P(yt+1; b®)+

PP (Yt41; b(O))). While the Bayes Factor Surprise Spr depends on a ratio between the
probability of the new observation under the prior and the current beliefs, Shannon
Surprise depends on a weighted sum of these probabilities. Interestingly, it is possible
to express (see Methods for derivation) the adaptation rate ;11 as a function of the
“difference in Shannon Surprise”

Vt+1 = PcCXp (ASSh(ytJrl; b, bm))),

(2.25)
where ASgp (ye+1; 0@, b)) = Sgy (y41; b)) — Sgn (yer1;0),

where v11 = V(Sgg D,m) depends on the Bayes Factor Surprise and the saturation

parameter m (cf. Equation 2.9). Equation 2.25 shows that the modulated adaptation
rate is not just a function of Shannon Surprise upon observing y41, but a function of the
difference between the Shannon Surprise of this observation under the current and under
the prior beliefs. In the next subsections, we exploit differences between Spr and Sgy, to
formulate our experimentally testable predictions.

Experimental protocol

Consider the variant of the Gaussian task of Nassar et al. (2010, 2012) which we used in
our simulations, i.e. Py (y|8) = N(y;8,02) and b(®)(§) = A'(9;0,1). Human subjects are
asked to predict the next observation y.y1 given what they have observed so far, i.e. yj..
The experimental procedure is as follows:

1. Fix the hyper parameters o2 and p..

2. At each time t, show the observation y; (produced in the aforementioned way) to
the subject, and measure a physiological or behavioural indicator My, e.g. pupil
diameter (Nassar et al., 2010, 2012).

3. At each time t, after observing y;, ask the subject to predict the next observation
Jr+1 and their confidence Cy about their prediction.

Note that the only difference between our task and the task of Nassar et al. (2010, 2012)
is the choice of prior for # (i.e. Gaussian instead of uniform). The assumption is that,

o6



2.2. Results

according to the previous studies, there is a positive correlation between M; and a measure
of surprise.

Prediction 1

Based on the results of Nassar et al. (2010, 2012), in such a Gaussian task, the best fit
for subjects’ prediction 41 is ét, and the confidence C is a monotonic function of ;. In
order to formalize our experimental prediction, we define, at time ¢, the prediction error
as 0y = Yy — U and the “sign bias” as s; = sign(9;9;). The variable s; is a crucial variable
for our analysis. It shows whether the prediction 7, is an overestimation in absolute
value (s; = +1) or an underestimation in absolute value (s; = —1). Fig. 2.10A shows a
schematic for the case that both the current and prior beliefs are Gaussian distributions.
The two observations indicated by dashed lines have same absolute error |§;|, but differ
in the sign bias s.

Given an absolute prediction value ¢ > 0, an absolute prediction error § > 0, a confidence
value C' > 0, and a sign bias s € {—1, 1}, we can compute the average of M; over time
for the time points with |g:| = 7, |6 = 0, C; = C, and s; = s, which we denote as
M;i(4,6,s,C) — the index 1 stands for experimental prediction 1. The approximation
notation = is used for continuous variables instead of equality, due to practical limitations,
i.e. for obtaining adequate number of samples for averaging. Note that for our theoretical
proofs we use equality, but in our simulation we include the practical limitations of a real
experiment, and hence, use an approximation. The formal definitions can be found in
Methods. It is worth noting that the quantity Mi (9,4, s,C) is model independent; its
calculation does not require any assumption on the learning algorithm the subject may
employ. Depending on whether the measurement Mj (7, §, s, C) reflects Sgy, or Spr, its
relationship to the defined four variables (i.e. ¢, d, s, C) is qualitatively and quantitatively
different.

In order to prove and illustrate our prediction, let us consider each subject as an agent
enabled with one of the learning algorithms that we discussed. Similar to above, given
an absolute prediction 6>0 (corresponding to the subjects’ absolute prediction ), an
absolute prediction error § > 0, a standard deviation o (corresponding to the subjects’
confidence value ('), and a sign bias s € {—1,1}, we can compute the average Shannon
Surprise Sgp(yt; B(t_l)) and the average Bayes Factor Surprise Spr(yy; B(t_l)) over time,
for the time points with \ét_l\ ~ é, |0¢| = 6, 6¢ = o¢, and s; = s, which we denote as
Sgh(é, d,s,0¢) and SBF(é, d, s,0¢) respectively. We can show theoretically (see Methods)
and in simulations (see Fig. 2.10B and Methods) that for any value of 6, 8, and oc, wWe
have SSh(é, d,s =+41,00) > Sgh(é, d,s = —1,0¢) for the Shannon Surprise, and exactly
the opposite relation, i.e. Sgp(f,d,s = +1,0¢) < Sgr(f,68,s = —1,0¢) for the Bayes
Factor Surprise. Moreover, this effect increases with increasing ¢.
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Table 2.1 — Experimental Hypotheses and Predictions 1. AM, (é, 9, C) stands for
M;(0,6,5s =+1,C) — M1(0,6,s = —1,C)

Hypothesis Prediction

The indicator reflects Spp A]\Zfl(é,é, C) <0 and % <0
The indicator reflects Sgy, A]\Zfl(é,d, C) >0 and % >0
The prior is not used for inference AM;(0,6,C) =0

It should be noted that such an effect is due to the essential difference of Sg;, and Sgp in
using the prior belief b(®)(#). Our experimental prediction is theoretically provable for
the cases that each subject’s belief b® is a Gaussian distribution, which is the case if
they employ VarSMiLe, Nas10*, Nas12*, pfl, MP1, or Leaky Integrator as their learning
rule (see Methods). For the cases that different learning rules (e.g. pf20) are used, where
the posterior belief is a weighted sum of Gaussians, the theoretical analysis is more
complicated, but our simulations show the same results (see Fig. 2.10B and Methods).
Therefore, independent of the learning rule, we have the same experimental prediction on
the manifestation of different surprise measures on physiological signals, such as pupil
dilation. Our first experimental prediction can be summarized as a set of hypotheses
shown in Table 2.1.

Prediction 2

Our second prediction follows the same experimental procedure as the one for the first
prediction. The main difference is that for the second prediction we need to fit a model
to the experimental data. Given one of the learning algorithms, the fitting procedure can
be done by tuning the free parameters of the algorithm with the goal of minimizing the
mean squared error between the model’s prediction ét and a subject’s prediction i1
(similar to Nassar et al. (2010, 2012)) or with the goal of maximizing the likelihood of
subject’s prediction b® (t+1). Our prediction is independent of the learning algorithm,
but in an actual experiment, we recommend to use model selection to find the model that
fits the human data best.

Having a fitted model, we can compute the probabilities P(y;y1; B(t)) and P(ys41; 6(0)).
For the case that these probabilities are equal, i.e. P(ys41; B(t)) = P(yy1; 6(0)) = p, the
Bayes Factor Surprise Spr is equal to 1, independent of the value of p (cf. Equation 2.7).
However, the Shannon Surprise Sgy, is equal to — log p, and varies with p. Fig. 2.11A shows
a schematic for the case that both current and prior beliefs are Gaussian distributions.
Two cases for which we have P(y,1:b®) = P(y,41:b©) = p, for two different p values,
are marked by black dots at the intersections of the curves.

Given a probability p > 0, we can compute the average of M; over time for the time points
with P(y;41:b®) ~ p and P(yi41;0) ~ p, which we denote as M(p) — the index 2
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Table 2.2 — Experimental Hypotheses and Predictions 2.

Hypothesis Prediction
The indicator reflects Sgp 8M@7§)(p) =0
The indicator reflects Sgp, aMsz(p) <0

stands for experimental prediction 2. Analogous to the first prediction, the approximation
notation =~ is used due to practical limitations. Then, if M(p) is independent of p,
its behaviour is consistent with Sgp, whereas if it decreases by increasing p, it can be
a signature of Sgp. Our second experimental prediction can be summarized as two
hypotheses shown in Table 2.2. Note that in contrast to our first prediction, with the
assumption that the standard deviation of the prior belief is fitted using the behavioural
data, we do not consider the hypothesis that the prior is not used for inference, because
this is indistinguishable from a very large variance of the prior belief.

In order to illustrate the possible results and the feasibility of the experiment, we ran a
simulation and computed Spr(p) and Sgy(p) for the time points with P(y;11; E)(t)) ~p
and P(y,41;0©) ~ p (see Methods for details). The results of the simulation are shown
in Fig. 2.11B.

2.3 Discussion

We have shown that performing exact Bayesian inference on a generative world model
naturally leads to a definition of surprise and a surprise-modulated adaptation rate. We
have proposed three approximate algorithms (VarSMiLe, MPN, and pfN) for learning in
non-stationary environments, which all exhibit the surprise-modulated adaptation rate
of the exact Bayesian approach and are biologically plausible. Empirically we observed
that our algorithms achieve levels of performance comparable to approximate Bayesian
methods with higher memory demands (Adams and MacKay, 2007), and are more resilient
across different environments compared to methods with similar memory demands (Faraji
et al., 2018; Fearnhead and Liu, 2007; Nassar et al., 2010, 2012).

Learning in a volatile environment has been studied for a long time in the fields of
Bayesian learning, neuroscience, and signal processing. In the following, we discuss the
biological relevance of our work, and we briefly review some of the previously developed
algorithms, with particular focus on the ones that have studied environments which can
be modeled with a generative model similar to the one in Fig. 2.1. We then discuss further
our results, and propose directions for future work on surprise-based learning.
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Figure 2.10 — Experimental prediction 1. A. Schematic of the task for the case of
a Gaussian belief. The distribution of y;4; under the prior belief b©® and the current
belief b(®) are shown by black and red curves, respectively. Two possible observations
with equal absolute prediction error § but opposite sign bias s are indicated by dashed
lines. The two observations are equally probable under b® | but not under b(®. Sgp is
computed as the ratio between the red and black dots for a given observation, whereas
Sgn is a function of the weighted sum of the two. This phenomenon is the basis of our
experimental prediction. B. The average surprise values Sgy, (é =1,6,s =+1,0¢ =0.5)
and Spp(f = 1,4, s = £1,0¢ = 0.5) over 20 subjects (each with 500 observations) are
shown for two different learning algorithms (Nas12* and pf20). The mean Spr is higher
for negative sign bias (marked in blue) than for positive sign bias (marked in orange).
The opposite is observed for the mean Sgj,. This effect increases with increasing values of
prediction error §. The shaded area corresponds to the standard error of the mean. The
experimental task is the same as the Gaussian task we used in the previous section, with
o = 0.5 and p. = 0.1 (see Methods for details).
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Figure 2.11 — Experimental prediction 2. A. Schematic of the task for the case of a
Gaussian belief. The probability distribution of observations under the prior belief is
shown by the solid black curve. Two different possible current beliefs (determined by
the letters A and B) are shown by dashed red curves. The intersections of the dashed
red curves with the prior belief determine observations whose Spp is same and equal to
one, but their Sgy, is a function of their probabilities under the prior belief p. B. The
average surprise values Sgp,(p) and Sgr(p) over 20 subjects (each with 500 observations)
are shown for two different learning algorithms (Nas12* and pf20). The mean Spy is
constant (equal to 1) and independent of p, whereas the mean Sgy, is a decreasing function
of p. The shaded area corresponds to the standard error of the mean. The experimental
task is the same as the Gaussian task we used in the previous section. Observations 1
are drawn from a Gaussian distribution with ¢ = 0.5, whose mean changes with change
point probability p. = 0.1 (see Methods for details).

61



Chapter 2. Learning in Volatile Environments with the Bayes Factor
Surprise

2.3.1 Biological interpretation

Humans are able to quickly adapt to changes (Behrens et al., 2007; Nassar et al., 2010,
2012), but human behaviour is also often observed to be suboptimal, compared to
the normative approach of exact Bayesian inference (Glaze et al., 2015; Mathys et al.,
2011; Nassar et al., 2010; Prat-Carrabin et al., 2020; Wilson et al., 2013). In general,
biological agents have limited resources and possibly inaccurate assumptions about hyper-
parameters, yielding sub-optimal behaviour, as we also see with our algorithms whose
accuracies degrade with a sub-optimal choice of hyper-parameters. Performance also
deteriorates with a decreasing number of particles in the sampling-based algorithms,
which might be another possible explanation of suboptimal human behaviour. Previously,
Particle Filtering has been shown to explain the behaviour of human subjects in changing
environments: Daw and Courville (2008) use a single particle, (Brown and Steyvers, 2009)
use a simple heuristic form of particle filtering based on direct simulation, Findling et al.
(2019) combine Particle Filtering with a noisy inference, and Prat-Carrabin et al. (2020)
use it for a task with temporal structure.

At the level of neuronal implementation, we do not propose a specific suggestion. However,
there are several hypotheses about neural implementations of related particle filters (Huang
and Rao, 2014; Kutschireiter et al., 2017; Legenstein and Maass, 2014; Shi and Griffiths,
2009), on which, a neural model of pfN and — its greedy version — MPN could be based.
In a similar spirit, the updating scheme of Variational SMiLe may be implemented in
biological neural networks (for distributions in the exponential family).

Our theoretical framework for modulation of learning by the Bayes Factor Surprise Spp
is related to the body of literature on neo-Hebbian three-factor learning rules (Frémaux
and Gerstner, 2016; Gerstner et al., 2018; Lisman et al., 2011), where a third factor
indicating reward or surprise enables or modulates a synaptic change or a belief update
(Angela, 2012; Yu and Dayan, 2005). We have shown how Bayesian or approximate
Bayesian inference naturally leads to such a third factor that modulates learning via the
surprise modulated adaptation rate y(Sgr,m). This may offer novel interpretations of
behavioural and neurophysiological data, and help in understanding how three-factor
learning computations may be implemented in the brain.

2.3.2 Related work

Exact Bayesian inference As already described in the “Message-Passing N” section
of the Results, for the generative model in Fig. 2.1, it is possible to find an exact online
Bayesian update of the belief using a message passing algorithm (Adams and MacKay,
2007). The space and time complexity of the algorithm increases linearly with ¢, which
makes it unsuitable for an online learning setting. However, approximations like dropping
messages below a certain threshold (Adams and MacKay, 2007) or stratified resampling
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(Fearnhead and Liu, 2007) allow to reduce the computational complexity. The former
has a variable number of particles in time, and the latter needs solving a complicated

non-linear equation at each time step in order to reduce the number of particles to N
(called SORN in the Results section).

Our message passing algorithm with finite number of particles (messages) N (MPN,
Algo. 3) is closely related to these algorithms and can be seen as a biologically more
plausible variant of the other two. All three algorithms have the same update rules given
by Equation 2.19 and Equation 2.18. Hence the algorithms of both Adams and MacKay
(2007) and Fearnhead and Liu (2007) have the same surprise modulation as our MPN.
The difference lies in their approaches to eliminate less “important” particles.

In the literature of switching state-space models (Barber, 2012), the generative models
of the kind in Fig. 2.1 are known as “reset models”, and the message passing algorithm
of Adams and MacKay (2007) is known to be the standard algorithm for inference over
these models (Barber, 2012). See Barber (2006, 2012); Ghahramani and Hinton (2000) for
other variations of switching state-space models and examples of approximate inference
over them.

Leaky integration and variations of delta-rules In order to estimate some statis-
tics, leaky integration of new observations is a particularly simple form of a trade-off
between integrating and forgetting. After a transient phase, the update of a leaky integra-
tor takes the form of a delta-rule that can be seen as an approximation of exact Bayesian
updates (Heilbron and Meyniel, 2019; Meyniel et al., 2016; Ryali et al., 2018; Yu and
Cohen, 2009). This update rule was found to be biologically plausible and consistent with
human behavioural data (Meyniel et al., 2016; Yu and Cohen, 2009). However, Behrens
et al. (2007) and Heilbron and Meyniel (2019) demonstrated that in some situations, the
exact Bayesian model is significantly better than leaky integration in explaining human
behaviour. The inflexibility of leaky integration with a single, constant leak parameter
can be overcome by a weighted combination of multiple leaky integrators (Wilson et al.,
2013), where the weights are updated in a similar fashion as in the exact online methods
(Adams and MacKay, 2007; Fearnhead and Liu, 2007), or by considering an adaptive leak
parameter (Nassar et al., 2010, 2012). We have shown that the two algorithms of Nassar
et al. (2010, 2012) can be generalized to Gaussian prior beliefs (Nas10* and Nas12*).
Our results show that these algorithms also inherit the surprise-modulation of the exact
Bayesian inference. Our surprise-dependent adaptation rate v can be interpreted as a
surprise-modulated leak parameter.

Other approaches Learning in the presence of abrupt changes has also been considered
without explicit assumptions about the underlying generative model. One approach uses
a surprise-modulated adaptation rate (Faraji et al., 2018) similar to Equation 2.9. The
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Surprise-Minimization Learning (SMiLe) algorithm of Faraji et al. (2018) has an updating
rule similar to the one of VarSMiLe (Equation 2.14 and Equation 2.15). The adaptation
rate modulation, however, is based on the Confidence Corrected Surprise (Faraji et al.,
2018) rather than the Bayes Factor Surprise, and the trade-off in its update rule is between
resetting and staying with the latest belief rather than between resetting and integrating
(see Methods).

Other approaches use different generative models, such as conditional sampling of the
parameters also when there is a change (Glaze et al., 2015; Yu and Dayan, 2005), a
deeper hierarchy without fixed change probability p. (Wilson et al., 2010), or drift in
the parameters (Gershman et al., 2014b; Mathys et al., 2011). A recent work shows
that inference on a simpler version of the generative model of Fig. 2.1, with no change
points but with a noisy inference style, can explain human behaviour well even when the
true generative model of the environment is different and more complicated (Findling
et al., 2019). They develop a heuristic approach to add noise in the inference process of
a Particle Filter. Their algorithm can be interpreted as a surprise-modulated Particle
Filter, where the added noise scales with a measure of surprise (conceptually equivalent
to Bayesian surprise (Itti and Baldi, 2006; Schmidhuber, 2010; Storck et al., 1995)).
Moreover, another recent work (Prat-Carrabin et al., 2020) shows that approximate
sampling algorithms (like Particle Filtering) can explain human behaviour better than
their alternatives in tasks closely related to the generative model of Fig. 2.1. The signal
processing literature provides further methods to address the problem of learning in
non-stationary environments with abrupt changes; see Aminikhanghahi and Cook (2017)
for a review, and Cummings et al. (2018); Lin et al. (2017); Masegosa et al. (2017); Ozkan
et al. (2013) for a few recent examples.

2.3.3 Surprise-modulation as a generic phenomenon

Learning rate modulation similar to the one in Equation 2.9 has been previously proposed
in the neuroscience literature with either heuristic arguments (Faraji et al., 2018) or with
Bayesian arguments for a particular experimental task, e.g. when samples are drawn
from a Gaussian distribution (Nassar et al., 2010, 2012). The fact that the same form
of modulation is at the heart of Bayesian inference for our relatively general generative
model, that it is derived without any further assumptions, and is not a-priori defined
is in our view an important contribution to the field of adaptive learning algorithms in
computational neuroscience.

Furthermore, the results of our three approximate methods (Particle Filtering, Variational
SMiLe, and Message Passing with fixed N number of messages) as well as some previously
developed ones (Adams and MacKay, 2007; Fearnhead and Liu, 2007; Nassar et al.,
2010, 2012) demonstrate that the surprise-based modulation of the learning rate is a
generic phenomenon. Therefore, regardless of whether the brain uses Bayesian inference
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or an approximate algorithm (Bogacz, 2017, 2019; Findling et al., 2019; Friston, 2010;
Gershman, 2019; Gershman et al., 2014b; Mathys et al., 2011; Nassar et al., 2010, 2012;
Prat-Carrabin et al., 2020), the notion of Bayes Factor Surprise and the way it modulates
learning (i.e. Equation 4.6 and Equation 2.9) look generic.

The generality of the way surprise should modulate learning depends on an agent’s
inductive biases about its environment and is directly associated with the assumed
generative model of the world. The generative model we considered in this work involves
abrupt changes. However, one can think of other realistic examples, where an improbable
observation does not indicate a persistent change, but a singular event or an outlier,
similar to d’Acremont and Bossaerts (2016); Nassar et al. (2019). In such situations, the
belief should not be changed and surprise should attenuate learning, rather than accelerate
it. Interestingly, we can show that exact and approximate Bayesian inference on such a
generative model naturally lead to a surprise-modulated adaptation rate v(Sgr, m), with
the same definition of Spr, where the trade-off is not between integrating and resetting,
but between integrating and ignoring the new observation (see Chapter 4). This extends
previous work on such environments (d’Acremont and Bossaerts, 2016; Nassar et al., 2019)
to a general setting and highlights the general principle of surprise-based modulation,
given the prior knowledge on the structure of the environment.

An aspect that the generative model we considered does not capture is the potential
return to a previous state of the environment, rather than a change to a completely new
situation. If in our example of Fig. 2.1B, the bridge with the shortest path is temporarily
closed for repairs, your friend would again have to take the longer detour, therefore, her
arrival times will return to their previous values, i.e. increase. In such cases, an agent
should infer whether the surprising observation stems from a new hidden state or from
an old state stored in memory. Relevant generative models have been studied in Collins
and Koechlin (2012); Findling et al. (2019); Fox et al. (2011); Gershman et al. (2014b,
2017) and are out of the scope of our present work.

2.3.4 Bayes Factor Surprise as a novel measure of surprise

In view of a potential application in the neurosciences, a definition of surprise should
exhibit two properties: (i) surprise should reflect how unexpected an event is, and, (ii)
surprise should modulate learning. Surprising events indicate that our belief is far from
the real world and suggest to update our model of the world, or, for large surprise,
simply forget it. Forgetting is the same as returning to the prior belief. However, an
observation y;41 can be unexpected under both the prior b(®) and the current beliefs b(®).
In these situations, it is not obvious whether forgetting helps. Therefore, the modulation
between forgetting or not should be based on a comparison between the probability of
an event under the current belief P(y;41; b(t)) and its probability under the prior belief
P(yt+1;b(0))-
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The definition of the Bayes Factor Surprise Spr as the ratio of P(y;41; b(t)) and P(yi41; b(o))
exploits this insight. The Bayes Factor Surprise appears as a modulation factor in the

recursive form of the exact Bayesian update rule for a hierarchical generative model of

the environment. When two events are equally probable under the prior belief, the one

which is less expected under the current belief is more surprising - satisfying the first

property. At the same time, when two events are equally probable under the current

belief, the one which is more expected under the prior belief is more surprising - signaling

that forgetting may be beneficial.

Spr can be written (using Equation 2.6) in a more explicit way as

P(yy41;b®) _Epo [Py (y:4110)]
P(yi+1;0®)  Epe [Py (y141]0)]

Spr (yi11; b)) = (2.26)

Note that the definition by itself is independent of the specific form of the generative
model. In other words, even in the cases where data is generated with another generative
model (e.g. the real world), Spr could be a candidate surprise measure in order to
interpret brain activity or pupil dilation.

We formally discussed the connections between the Bayes Factor Surprise and Shannon
Surprise (Shannon, 1948), and showed that they are closely linked. We showed that the
modulated adaptation rate () used in (approximate) Bayesian inference is a function
of the difference between the Shannon Surprise under the current and the prior beliefs,
but cannot be expressed solely by the Shannon Surprise under the current one. Our
formal comparisons between these two different measures of surprise lead to specific
experimentally testable predictions.

The Bayesian Surprise S, (Itti and Baldi, 2006; Schmidhuber, 2010; Storck et al., 1995)
and the Confidence Corrected Surprise Scc (Faraji et al., 2018) are two other measures
of surprise in neuroscience. The learning modulation derived in our generative model
cannot be expressed as a function of Sg, and Scc. However, one can hypothesize that
Spa is computed after the update of the belief to measure the information gain of the
observed event, and is therefore not a good candidate for online learning modulation.
The Confidence Corrected surprise Scc takes into account the shape of the belief, and
therefore includes the effects of confidence, but it does not consider any information
about the prior belief. Hence, a result of Ml(é, d,s =+1,C) = Ml(é, d,s =—1,C) in our
first experimental prediction would be consistent with the corresponding behavioral or
physiological indicator reflecting the Scc.
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2.3.5 Difference in Shannon Surprise, an alternative perspective

Following our formal comparison in the “Experimental prediction” section, Sgr can be
expressed as a deterministic function of the difference in Shannon Surprise as

(1 — pc)eASSh

1-— pceASSh ' (227)

Sgr =
All of our theoretical results can be rewritten by replacing Sgr with this function of ASgy,.
Moreover, because there is a 1-to-1 mapping between Sgr and ASgy,, from a systemic
point of view, it is not possible to specify whether the brain computes the former or the
latter by analysis of behavioural data and biological signals. This suggests an alternative
interpretation of surprise-modulated learning as an approximation of Bayesian inference:
What the brain computes and perceives as surprise or prediction error may be Shannon
Surprise, but the modulating factor in a three-factor synaptic plasticity rule (Frémaux
and Gerstner, 2016; Gerstner et al., 2018; Lisman et al., 2011) may be implemented by
comparing the Shannon Surprise values under the current and the prior beliefs.

2.3.6 Future directions

A natural continuation of our study is to test our experimental predictions in human
behaviour and physiological signals, in order to investigate which measures of surprise are
used by the brain. Along a similar direction, our approximate learning algorithms can
be evaluated on human behavioural data from experiments that use a similar generative
model (Behrens et al., 2007; Glaze et al., 2015; Heilbron and Meyniel, 2019; Nassar et al.,
2010, 2012; Wilson et al., 2013; Yu and Dayan, 2005) in order to assess if our proposed
algorithms achieve similar or better performance in explaining data.

Finally, our methods can potentially be applied to model-based reinforcement learning
in non-stationary environments. In recent years, there has been a growing interest in
adaptive or continually learning agents in changing environments in the form of Continual
learning and Meta-learning (Lomonaco et al., 2019; Traoré et al., 2019). Many Continual
learning model-based approaches make use of some procedure to detect changes (Lomonaco
et al., 2019; Nagabandi et al., 2018). Integrating Spr and a learning rate v(Spr) into a
reinforcement learning agent is a direction we explore in the next chapters.

2.4 Methods

2.4.1 Proof of the proposition
By definition
b1 (0) = P(O141 = Oly1:141). (2.28)
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We exploit the Markov property of the generative model in Equation 2.2, Equation 2.3,
and Equation 2.4, condition on the fixed past y;.; and rewrite

Py (y141|0)P(O41 = 0|y1:1)

(1) gy —
oo P(yis1ly1:t)

. (2.29)

By marginalization over the hidden state C;11, the second factor in the numerator of
Equation 2.29 can be written as

P(O111 = 0ly1) = (1 - pe)b(6) + pb© (6). (2.30)
The denominator in Equation 2.29 can be written as
P(yrlyne) = [ Prloeaal6)P(©rsr = blyn)as

=(1—-pc) /PY(yt+1|0)b(t)(9)d9 +pc/PY(yt+1!9)b(0)(«9)d0 (2.31)
= (1 = pe) P(ye1; D) + peP(yeq1; b?).

where we used the definition in Equation 2.6. Using these two expanded forms, Equa-
tion 2.29 can be rewritten

Py (ye110) (1 = )b (0) + pb@ (9))

bt (9) = , (2.32)
(1= pe) P(yr+1;DO) + peP(yp41;b®)
We define P(0|y;+1) as the posterior given a change in the environment as
Py (yt+1 ]Q)b(o)(ﬂ)
P60 = 2.33
Then, we can write Equation 2.32 as
b+ (g) = (1 = pe)P(yr+1:0)bE (0) + peP (y141:0@) P(0]y141)
(1 = pe) P(yer150®) + peP(ye41;bO)
t+1 . P ;b(©
b O) + o R R P(6lyi) (2.34)
- pe_ P(yi+1:b()
L+ 25 Py 0®)
= (1= 7s0)b" (0) + 201 POy,
where bgﬂ)w) is defined in Equation 2.8, and
Pc
Vi1 = 'Y(SBF(yt+1§ b(t)), 1_ pc) (2.35)

with Spp defined in Equation 2.7, and ~(S,m) defined in Equation 2.9. Thus our
calculation yields a specific choice of surprise (S = Spr) and a specific value for the
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Pc

saturation parameter m = T—po
C

2.4.2 Derivation of the optimization-based formulation of VarSMiLe
(Algo. 1)

To derive the optimization-based update rule for the Variational SMiLe rule and the
relation of the bound B, with surprise, we used the same approach used in Faraji et al.
(2018).

Derivation of the update rule. Consider the general form of the following variational
optimization problem:

q*(0) = argmin D1, [q(0)][p1(0)]

a(0) st- Dicr[a(0)||p2(0)] < B and E,[1] =1 (2.36)

where B € [0, Dgr[p1(8)|[p2(8)]]. On the extremes of B, we will have trivial solutions

«gy = 4 P2(0) if B=0

Note that the Kullback—Leibler divergence is a convex function with respect to its first
argument, i.e. ¢ in our setting. Therefore, both the objective function and the constraints
of the optimization problem in Equation 2.36 are convex. For convenience, we assume
that the parameter space for 6 is discrete, but the final results can be generalized also to
the continuous case with some considerations - see Beal (2003) and Faraji et al. (2018).
For the discrete setting, the optimization problem in Equation 2.36 can be rewritten as

= argmin Z ) (log(g — log(p1(0))

(2.38)
g(0) s:t. ZQ(G)(IOg(Q(G)) —log(pa(0)) < B and > q(0) =
[%

0

For solving the mentioned problem, one should find a ¢ which satisfies the Karush-Kuhn—Tucker
(KKT) conditions (Boyd and Vandenberghe, 2004) for

L= Z log( )> + A%:q(ﬁ)log(]i((ge))) —AB+a-— aze: q(8), (2.39)

82(%) —log(;ll((ee))> + 14+ Ao ( ((09))> +A—«a

= (14 A)log(q(#)) — log(p1(#)) — Alog(p2(0)) + 1+ A — a,

(2.40)
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where A and « are the parameters of the dual problem. Defining v = 1_%\, and considering

the partial derivative to be zero, we have

log(g"(0)) = (1 — v)log(p1(8)) + vlog(p2()) + Const(c, ), (2.41)

where « is always specified in a way to have Const(«,y) as the normalization factor

Const(a, ) = —log(Z(7))
where Z(v) = Zp}”(g)pg(g). (2.42)
0

According to the KKT conditions, A > 0, and as a result € [0, 1]. Therefore, considering
p1(0) = Bgﬂ)(@) and pa(0) = P(0|y+1), the solution to the optimization problem of
Equation 2.14 and Equation 2.15 is Equation 2.13.

Proof of the claim that B is a decreasing function of Surprise. According to the
KKT conditions

A(DKL[q*(@Hm(@)] - B) =0. (2.43)
For the case that A\ # 0 (i.e. v # 0), we have B as a function of v

B(v) = Dkr[q"(0)]|p2(0)]

2.44
=(1—7)E4p [log(g ( )

(©)
(©)

Now, we show that the derivate of B(7y) with respect to 7 is always non-positive. To do

)| = 1og(2 (7).

so, we first compute the derivative of Z(v) as

ﬁlogéi(ﬂ) _ Z(lw ai > pi(0)p30)
0
St e 20) o
0
B p2(0)
= a3 )]
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and the derivate of Eg«[h(0)] for an arbitrary h(f) as

OE
O, [1(0)] a’yzq

Oy

- 29: q*(@)h(@)%bg(q*(e))

= q*(e>h<e>; ((1 = 7)10g(p1(6)) + YMog(p2(0)) ~ log(Z(7))) o
—E, {h(&)log(ijgg)} _E, [h(O)]E,- [1og(§j$§)]
Using the last three equations, we have
R D NRL S ) D
— —(1—7)Var, [m(if%)} <0, |

which means that B is a decreasing function of . Because « is an increasing function of
surprise, B is also a decreasing function of surprise.

2.4.3 Derivations of Message Passing N (Algo. 2)

For the sake of clarity and coherence, we repeat here some steps performed in the Results
section.

Following the idea of Adams and MacKay (2007) let us first define the random variable
R, = min{n € N: Cy_,,41 = 1}. This is the time window from the last change point.
Then the exact Bayesian form for b(*)(#) can be written as

b(t)(e) = (9t+1 = 9|y1~t)

(2.48)
= ZP T‘t\ylt @t+1—9’7’t,y1t)

re=1

To have a formulation similar to the one of Particle Filtering we rewrite the belief as
t—1 .
Zwt (O141 =0|Ry =t — k,y1.4) ng )bl(.;t)(e)a (2.49)

where b,(f) (0) =P(©; = 0|R; =t — k,y1.¢) is the term corresponding to R =t — k, and

wt(k) = P(R; =t — k|yy.¢) is its corresponding at time t.
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To update the belief after observing ¥;11, one can use the exact Bayesian recursive formula
Equation 2.10, for which one needs to compute bg+1)(0) as

b+ (g) = b® (0) Py (y41(6)
B P(yt+1;b(t))
- (2.50)

Py ( 0)
by yt+1| Z P(Oi11 =0|Ry =1t —k,y14).
yt+17 k:

Using Bayes’ rule and the conditional independence of observations, we have

(t+1) gy _ PY yt+1|‘9 — P(yit1:4|O41 = 0, Ry = t — k)b (6)
Py 0) = E:w P Ri—t—k
P(yt+1;b k 0 (Yr+1:4| Be = )

(2.51)

_ 1 ’i o 1541 Py (4:]0)0©(9)
P(ypy1;00) &= 70 Plyprra|Re =t — k)

and once again, by using the Bayes’ rule and the conditional independence of observations,

we find
t—1
b(g+1)(9) _ 1 Z () P(yri1a11|Rep1 =t —k+1) »
P(ye1;b0) = P(yYp+1:e| Ry =t — k)
P(Ot41 = 9\Rt+1 =t—k+1,Yks1:041) (2.52)
Zwt (Ye41|Rep1 =t — k + 1, y1.) X
P(yi+1;b
P(O41 = 9|Rt+1 =t—k+1,y1e41)
This gives us
= (t)
t+1 P(yi+1;:b,7)
— % L
kz P(yi11;b t)) (2.53)
XP(O1 =0|Rp1 =t —k+ 1, Y1441 = Y1441),
and finally
k P(yis1;b)
i = PR, 254)
P(ye+1;b®)
Using the recursive formula, the update rule for the weights for 0 < k <t —1is
(k) (k) P(yt-i-l; bl(gt)) (k) 2.55
wy =1 —yp)wgyy =1 —n+) 5 — o (2.55)

w )
P(ytH; b(t)) !
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and for the newly added particle ¢

wt(:?l = Vt+1, (2.56)

where 11 = v(SBr(Yt+1; b®),m = 16;%) of Equation 2.9.

The MPN algorithm uses Equation 2.49, Equation 2.55, and Equation 2.56 for computing
the belief for t < N - which is same as the exact Bayesian inference. For ¢ > N, it first
updates the weights in the same fashion as Equation 2.55 and Equation 2.56, keeps the
greatest N weights, and sets the rest weights equal to 0. After normalizing the new
weights, it uses Equation 2.49 (but only over the particles with non-zero weights) to
compute the belief b®). For the particular case of exponential family, see Algorithm 2 for
the pseudocode.

2.4.4 Derivation of the weight update for Particle Filtering (Algo. 3)

We derive here the weight update for the particle filter. The difference in our formalism
from a standard derivation (Séarkka, 2013) is the absence of the Markov property of
conditional observations (i.e. P(yi+1|c1:e41,91:4) # P(ye41]ce+1)). Our goal is to perform
the approximation

N
P(criq1|yree1) = Z w§215(01:t+1 - Cgﬂ) . (2.57)
i=1

Given a proposal sampling distribution V¥, for the weight of particle i at time t + 1 we

have
(1) (01 t+1‘ylzt+1) (01;t+1, Yer1|y1:e)
w x
t+1 \I/ (@) U (7)
(c1. t+1‘yllt+1) (Clzt-s-l‘yl:t—i-l) (2.58)
o P(yer1, el 15, g1 P (et y1.e)
t+1 ~ ~ - )

Tl 1, ) T (D i)

where the only assumption for the proposal distribution V¥ is that the previous hidden

(1)

states cj.; are independent of the next observation y;1, which allows to keep the previous

(%) (2) (%)

samples cj;; when going from cj,; to ¢y, and to write the update of the weights in a
recursive way (Sarkké, 2013).

P(c\)ly1:)

Notice that w,gi) o ——
\ll(cl;t|y1:t)

are the weights calculated at the previous time step. There-
fore
@ Py, cﬁiﬁllc?i, Yit) ()

w; [y o w; . (2.59)
U(c t+1‘01t7?/1 t+1)
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For the choice of ¥, we use the optimal proposal function in terms of variance of the
weights (Doucet et al., 2000)

W(Cﬁfﬁllcﬁfl, Yitr1) = P(cﬁllcﬁ@, Yl:t41) - (2.60)

Using Bayes’ rule and Equation 2.59 and Equation 2.60, after a few steps of algebra, we
have

(@) 1.8
% P Yt+1,C C1.45 Y1 [ 7 i
w§+)1 : H(z‘) H(—z§| = t)w§ )= P(yt+1‘cg:3§ay1:t)w§ )
P(c;qleis yries1) (2.61)

o ((1 — )P (el yre )y = 0) + P (yesr|el), yre, by = 1))w§i) :

Using the definition in Equation 2.6, we have P(yt+1]c§2, Y1:t cgi)l =0) = P(yes1; 61@)

and P(yt+1|c§2, Y1:t, cgle =1) = P(y+1; b(o)). Therefore, we have

wl| = [(1 — pe)P(yes1; D) + peP(yiy1:0@) |0/ 7, (2.62)
where Z is the normalization factor
Z = (1 - pe)Py41;0) + peP(yr41;00) (2.63)

where we have

N
P(yir1:0") = 3~ wf” Pyea;b). (2.64)
i=1
We now compute the weights corresponding to bgﬂ) as defined in Equation 2.8
i P(yit1; 61@) i
Wy = DB 0 (2.65)
P(yi41;00)

Combining Equation 2.62, Equation 2.63 and Equation 2.65 we can then re-write the
weight update rule as

wﬁzl =(1- ’Yt—l—l)w(BZ?t-i-l + 'Yt+1w§1) ) (2.66)

where ;11 = V(SBF(ytH; b®), lf‘;)c) of Equation 2.9.

At every time step t 4+ 1 we sample each particle’s hidden state ¢;41 from the proposal
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distribution. Using Equation 2.60, we have

PP (ye+1309)
1= pe) P(yi41;01") + peP(yr15 b)) (2.67)

oSt )

\11(67521 - Hcgl?ta yl:t+1) =

We implemented the Sequential Importance Resampling algorithm (Doucet et al., 2000;
Gordon et al., 1993), where the particles are resampled when their effective number falls
below a threshold. The effective number of the particles is defined as (Doucet et al., 2000;
Sarkké, 2013)

1
N (o
> i (wg”)

When Ngg is below a critical threshold, the particles are resampled with replacement

Neg ~ (2.68)

from the categorical distribution defined by their weights, and all their weights are set to
wt(z) = 1/N. We did not optimize the parameter Neg, and following Doucet and Johansen
(2009), we performed resampling when Neg < N/2.

2.4.5 Surprise-modulation as a framework for other algorithms
SMiLe Rule
The Confidence Corrected Surprise (Faraji et al., 2018) is

Soc(ye1;0) = D, [09(0)|1P(0]ye11)], (2.69)
where P(fy;41) is the scaled likelihood defined as

P(Oyi1) = Py (110) (2.70)

[ Py (ye|0)do"”

Note that this becomes equal to P(6|y,41) if the prior belief b(?) is a uniform distribution;
cf. Equation 2.11.

With the aim of minimizing the Confidence Corrected Surprise by updating the belief

during time, Faraji et al. (2018) suggested an update rule solving the optimization problem

b1 (g) = argmqin D1 [a(0)]|P(0]yis1)] -
2.71
s.t. Dz [q(0)]b®(0)] < By,
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where By € [0,DKL[P(¢9|yt+1)||E)(t)(9)]] is an arbitary bound. The authors showed
that the solution to this optimization problem is

log(f)(t+1)(9)) = (1 —y41) log(f)(t)(ﬁ)) + Ver1 log(P(0|yt+1)) + Const., (2.72)
where 411 € [0, 1] is specified so that it satisfies the constraint in Equation 2.71.

Although Equation 2.72 looks very similar to Equation 2.13, it signifies a trade-off between
the latest belief b®) and the belief updated by only the most recent observation P(6]y;41),
i.e. a trade-off between adherence to the current belief and reset. While SMiLe adheres to
the current belief B(t), Variational SMiLe integrates the new observation with the current
belief to get E)(t), which leads to a trade-off similar to the one of the exact Bayesian
inference (Equation 4.6 and Equation 2.10).

To modulate the learning rate by surprise, Faraji et al. (2018) considered the boundary
Byt as a function of the Confidence Corrected Surprise, i.e.

Bt+1 = Bmaxry (SCC (yt+1), m)

A (2.73)
where Bpax = DKL[P(9’yt+1)Hb(t) 0],

where m is a free parameter. Then, ;.1 is found by satisfying the constraint of the
optimization problem in Equation 2.71 using Equation 2.72 and Equation 2.73.

Nassar’s algorithm

For the particular case that observations are drawn from a Gaussian distribution with
known variance and unknown mean, i.e. ypi1|per1 ~ N (pet1, 02) and 6; = p;, Nassar
et al. (2010, 2012) considered the problem of estimating the expected p; and its variance
rather than a probability distribution (i.e. belief) over it, implicitly assuming that the
belief is always a Gaussian distribution. The algorithms of Nassar et al. (2010, 2012)
were developed for the case that, whenever the environment changes, the mean g1 is
drawn from a uniform prior with a range of values much larger than the width of the
Gaussian likelihood function. The authors showed that in this case, the expected 41
(i.e. [iz+1) estimated by the agent upon observing a new sample y;11 is

a1 = fu + g1 (Y1 — ), (2.74)
with ay41 the adaptive learning rate given by

1+ QtJrlTAt

2.75
147 ( )

a1 =

where 7 is the estimated time since the last change point (i.e. the estimated R; =
min{n € N: Cy_p,11 = 1) and Q11 = P(¢i41 = 1|y1.441) the probability of a change
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given the observation. Note that this quantity, i.e. the posterior change point probability,
is the same as our adaptation rate .1 of Equation 2.9.

In the next subsection, we extend their approach to a more general case where the prior is
a Gaussian distribution with arbitrary variance, i.e. i1 ~ N (ug,03). We then discuss
the relation of this method to Particle Filtering. A performance comparison between our
extended algorithms Nas10* and Nas12* and their original versions Nas10 and Nas12 is
depicted in Supplementary Fig. 2.12 and Supplementary Fig. 2.13.

Nasl10* and Nas12* algorithms

Let us consider that y;.; are observed, the time since the last change point r; is known,
and the agent’s current estimation of p; is jiz. It can be shown (see Supplementary
Material for the derivation) that the expected 41 (i.e. fiz+1) upon observing the new
sample Y41 is

1
ptre+1

1

(Yt+1— ﬂt)) + Vet+1 (uo + —— (Y1 — u0)> , (2.76)

(1 (
a1 = (1 —yeq1) ( foe + b1

o2

where p = % pg is the mean of the prior distribution and 741 is the adaptation rate of
0
Equation 2.9.

We can see that the updated mean is a weighted average, with surprise-modulated weights,
between integrating the new observation with the current mean fi; and integrating it
with the prior mean pg, in the same spirit as the other algorithms we considered here.
Equation 2.76 can also be seen as a surprise-modulated weighted sum of two delta rules:
one including a prediction error between the new observation and the current mean
(yt+1 — fir) and one including a prediction error between the observed sample and the

prior mean (y;+1 — fo)-

In order to obtain a form similar to the one of Nassar et al. (2010, 2012), we can rewrite
the above formula as

P ( . ) 1 ( . )
= — + - + — + - , 2.77
sy = 27 e Y1 (o — fit) o1\ t+1(Yer1 — fie) (2.77)
where we have defined ay; = £T 11T Jgtjtlflﬂ. Hence the update rule takes the form of a

weighted average, with fixed weights, between two delta rules: one including a prediction
error between the prior mean and the current mean (uo — fiz) and one including a
prediction error between the observed sample and the current mean (y;+1 — fi), both
with surprise-modulated learning rates.

In Nassar et al. (2010, 2012) the true new mean after a change point is drawn from a
uniform distribution with a range of values much larger than the width of the Gaussian
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likelihood. Their derivations implicitly approximate the uniform distribution with a

Gaussian distribution with oy > . Note that if og > ¢ then p — 0, so that the first
1+vyev1re
147t
the original algorithm in Equation 2.74 and Equation 2.75, with ;41 = Q1.

term of Equation 2.77 disappears, and az11 = . This results in the delta-rule of

All of the calculations so far were done by assuming that r; is known. However, for the
case of a non-stationary regime with a history of change points, the time interval r; is
not known. Nassar et al. (2010, 2012) used the expected time interval 7, as an estimate.
We make a distinction here between Nassar et al. (2012) and Nassar et al. (2010):

In Nassar et al. (2010) 7, is calculated recursively on each trial in the same spirit as
Equation 2.10: 7441 = (1 —7¢41)(F¢+1) +9441, i.e., at each time step, there is a probability
(1 —~441) that 7 increments by 1 and a probability ;41 that it is reset to 1. So 7441 is the
weighted sum of these two outcomes. Hence, Equation 2.77 combined with the expected
time interval 7; constitutes a generalization of the update rule of Nassar et al. (2010) for
the case of Gaussian prior N (g, o 3) We call this algorithm Nas10* (see Supplementary
Material for the pseudocode).

In Nassar et al. (2012), the variance &t2+1 = Var|u+1|y1:4+1] is estimated given fig, 7, and
62. Based on this variance, 7111 = ﬁ — g—g is computed. The derivation of the recursive
computation of 62 "1 for the case of Gaussian priors can be found in the Supplementary
Material. We call the combination of Equation 2.77 with this way of computing the
expected time interval 7, Nas12* (see Supplementary Material for the pseudocode). These
two versions of calculating 7; in Nassar et al. (2010) and Nassar et al. (2012) give different
results, and we compare our algorithms with both Nas10* and Nas12* in our simulations.
Note that, as discussed in the section “Online Bayesian inference modulated by surprise”
of the Results, the posterior belief at time ¢ 4+ 1 does not generally belong to the same
family of distributions as the belief of time t. However, we therefore approximate for

both algorithms the posterior belief P(6|y1.4+1) by a Gaussian.

Nassar’s algorithm and Particle Filtering with one particle

In the case of Particle Filtering (cf. Equation 2.23) with only one particle, at each time step
we sample the particle’s hidden state with change probability \I/(c&)l = l\cglt) JYLitt1) =
Vi+1, generating a posterior belief that takes two possible values with probability (according

to the proposal distribution)

W<6(t+1)(9) = 63_5“)(9)! yt+1> =1 =741,

A (2.78)
@ (B0 (9) = POlyes)] yre1) = .
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So, in expectation, the updated belief will be

Eo[DD(0)] = (1 — 311)BG ™ (0) + 741 P(Olyrs)- (2.79)

If we apply Equation 2.79 to fi;+1, we find that Ey [/l(t“)], is identical to the generalization
of Nassar et al. (2010) (see Equation 2.76).

Moreover, in Particle Filtering with a single particle, we sample the particle’s hidden
state, which is equivalent to sampling the interval Rt+1. Because Rt+1 takes the value
74+ 1 with (1 —~41) and the value of 1 (=reset) with probability ~;11, the expected value
of RtH is

Ev[Re1] = (1= ye41) (P + 1) + Yeg1. (2.80)

In other words, in Nassar et al. (2010), the belief is updated based on the expected 74,
whereas in Particle Filtering with one particle, the belief is updated using the sampled 7.

In summary, the two methods will give different estimates on a trial-per-trial basis, but
the same result in expectation. The pseudocode for Particle Filtering with one particle
for the particular case of the Gaussian estimation task can be found in the Supplementary
Material.

2.4.6 Application to the exponential family

For our all three algorithms Variational SMiLe, Message Passing with fixed number N of
particles, and Particle Filtering, we derive compact update rules for E)(Hl)(ﬁ) when the
likelihood function Py (y|6) is in the exponential family and b(®)(8) is its conjugate prior.
In that case, the likelihood function has the form

Py (y|0) = h(y)exp (67 ¢(y) — A(9)), (2.81)

where 6 is the vector of natural parameters, h(y) is a positive function, ¢(y) is the vector
of sufficient statistics, and A(#) is the normalization factor. Then, the conjugate prior
b© has the form

b (g) = Py (O = 6; X, 1/(0))

= B(G)f(x(°)7 I/(O))exp(HTX(O) - V(O)A(Q)) (2.82)

where X(O) and () are the distribution parameters, iL(Q) is a positive function, and
f(X(O),V(O)) is the normalization factor. For this setting and while b(*) = Py, (@ =
0; ), V(t)), the “Bayes Factor Surprise” has the compact form

FOX + d(yern), v +1) f(XO, 00
FOXO + @(ye41), VO + 1) f(x D, vD)

Ser (yt-i-l;Pb(@ = 0; X(t),l/(t))> = . (2.83)

79



Chapter 2. Learning in Volatile Environments with the Bayes Factor
Surprise

The pseudocode for Variational SMile, MPN, and Particle Filtering can be seen in
Algorithms 1, 2, and 3, respectively.

2.4.7 Simulation task

In this subsection, we first argue why the mean squared error is a proper measure for
comparing different algorithms with each other, and then we explain the version of Leaky
integrator which we used for simulations.

Mean squared error as an optimality measure

Consider the case that at each time point ¢, the goal of an agent is to have an estimation
of the parameter ©; as a function of the observations Y7., i.e. @t = f(Y1.t). The estimator
which minimizes the mean squared error MSE[©,] = Ep(vi..00) [(é)t —©y)%] is

67" = Ep(o,vin) [01] = Epw [04], (2.84)

which is the expected value of ©; conditioned on the observations Y7., or in other words
under the Bayes-optimal current belief (see Papoulis and Saunders (1989) for a proof).
The MSE for any other estimator ©; can be written as (see below for the proof)

MSE[6,] = MSE[6"'] + AMSE[6,],
here AMSE[O,] = 9 — O (289
where E[O/] =Epy,,) [(O: —O;,7)7| > 0.

This means that the MSE for any arbitrary estimator O, includes two terms: the optimal
MSE and the mismatch of the actual estimator from the optimal estimator (:)? Pt As
a result, if the estimator we are interested in is the expected value of ©; under the
approximate belief b(®) computed by each of our algorithms (i.e. @2 = Epo [@t] ), the
second term in Equation 2.85, i.e. the deviation from optimality, is a measure of how
good the approximation is.

Proof for the algorithms without sampling:

Consider C:)to Pt — fopt(Y1:4). Then, for any other arbitrary estimator 6, = f(Y14) (except
for the ones with sampling), we have

MSE[6/] = Ep(y,.0,) (01 — ©1)?]
= Ep(vi,00) [(f (Y1) — ©1)7] (2.86)
= Ep(vi..,0:) [((f(Ym) — fopt(Y1:t)) + (fopt(Y:e) — @t))ﬂ-
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The quadratic term in the last line can be expanded and written as

MSE[0;] =Epy;,,.0,) [(f(let) - fOpt(let))ﬂ +
Ep(vi..00) [(fOpt(Ylst) - Gﬂ + (2.87)

2EP(Y1:t,9t) [(f(Y12t> - fOpt(}/iit))(fOpt(let) - @t)] .

The random variables in the expected value of the first line are not dependent on Oy, so it
can be computed over Y7.4. The expected value of the second line is equal to MSE[@? pt].

It can also be shown that the expected value of the third line is equal to 0, i.e.

3rd line = 2Ep(y;,) [Ep(oyviu | (F(Yia) = fop (Y1) (fopt (Y1) = 1)) |

(2.88)
= 2Ep(vy.) [(f(YLt) — fopt(Y1:)) (fopt (Y1:t) — EP(®t|Yu)[@t])} =0,

where in the last line we used the definition of the optimal estimator. All together, we
have

MSE[0,] = MSE[0,™"] + Ep(y,.,) | (61 — 67"")?. (2.89)

Proof for the algorithms with sampling:

For particle filtering (and any kind of estimator with sampling), the estimator is not
a deterministic function of observations Yi.;. Rather, the estimator is a function of
observations as well as a set of random variables (samples) which are drawn from a
distribution which is also a function of observations Y7.;. In our case, the samples are the
sequence of hidden states C1.;. The estimator can be written as

étPF = f(Ylsta CptN))? (290)

where C'St:N) are N iid samples drawn from the proposal distribution ¥(C1.t|Y14). MSE
for this estimator should also be averaged over the samples, which leads to

MSE[O}*] = E,, [(OFF - ©,)?]

V1,000 (V) vy,
(Y1:,04)W(Cp,, [Y1:t) . ) (2.91)
= EP(YLt,@t)‘I’(CS{N)|Y1:t) [(f(Yl:ta Cl:t ) - @t) ]
Similar to what we did before, the MSE for particle filtering can be written as
APF _ AOpt APF _ AOpty2
MSE[O]"] = MSEO™] +Epy; 1y cmyy, ) |[(OF —67)’] (2.92)

AO A AO
= MSE[O]™] + Ep(yi ) [Eyg 0y, [(OFF = 6777
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which can be written in terms of bias and variance over samples as

MSE[6FF] = MSE[6""]
(2.93)

+ EP(Yl:t) Var @ ) + Bias (@PF @Opt)

(5 |y, )( (5 v

Leaky integration

Gaussian task: The goal is to have an estimation of the mean of the Gaussian distribution
at each time t, denoted by ;. Given a leak parameter w € (0, 1], the leaky integrator
estimation is

t t—k
= 1 (2.94)
D k=g W

Categorical task: The goal is to have an estimation of the parameters of the categorical
distribution at each time ¢, denoted by 6; = [91-7,5]1»]\;1 for the case that there are N
categories. Given a leak parameter w € (0, 1], the leaky integrator estimation is

t _ .
é,t _ Ek:l w k5(yk — 1)
,t — t _ bl
PR EAL k

where § is the Kronecker delta function.

(2.95)

2.4.8 Derivation of the Formula Relating Shannon Surprise to the
Modulated Learning Rate

Given the defined generative model, the Shannon surprise upon observing y;+1 can be

written as
Ss,h(yt+1, = log B yt+1|y1t )
1
= log
( 1= Pc (Y1413 D) + pe P (yera; b(o))> (2.96)
1 1 :
log( >+log< 1+7+>
P(yt+1;b Pe ™ Spr e D)
= Ssn(ye+1; b)) + log<%),
C

(‘

where ;41 = 7<SBF(yt+1; b(t)), m= 1= C) of Equation 2.9. As a result, the modulated

adaptation rate can be written as in Equation 2.25 and the Bayes Factor Surprise as in
Equation 2.27.
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2.4.9 Experimental predictions
Setting

Consider a Gaussian task where Y; can take values in R. The likelihood function Py (y|6)
is defined as

Py (yl0) = N (y;0,07), (2.97)

where 0 € RT is the standard deviation, and 6§ € R is the mean of the distribution,
i.e. the parameter of the likelihood. Whenever there is a change in the environment
(with probability p. € (0,1)), the value 8 is drawn from the prior distribution b(®)(§) =
N(0;0,1).

Theoretical proofs for prediction 1

For our theoretical derivations for our first prediction, we consider the specific but relatively
mild assumption that the subjects’ belief b(®) at each time is a Gaussian distribution

b®(0) = N'(6;6;,67), (2.98)

where 6, and 6, are determined by the learning algorithm and the sequence of observations
y1:¢- This is the case when the subjects use either VarSMiLe, Nas10*, Nas12*, pfl, MP1, or
Leaky Integration as their learning rule. With such assumptions, the inferred probability
distribution P(y;b®) can be written as

P(y; b)) = N(y; 61, 0% + 67). (2.99)

As mentioned in the Results section, we define, at time ¢, the prediction error as d;11 =
Yer1 — ét and the “sign bias” as sy11 = Sign(5t+1ét). Then, given an absolute prediction
6 > 0, an absolute prediction error § > 0, a standard deviation o¢, and a sign bias
s € {—1,1}, the average Bayes Factor Surprise is computed as

Spr(y; bUY),
— 7 teZT (2.100)

where T = {t : |0,_1| = 0,6, = 6,6, = 0¢, 51 = s}

SBF(@ d,8,0¢0)

It can easily be shown that the value Spp(y;; E)(t_l)) is same for all t € T, and hence the
average surprise is same as the surprise for each time point. For example, the average
surprise for s = +1 is equal to

N0 +6;0,0%+1)

SBF(é767S:+1700): N(60 O'2+O'2) :
» Yy C

(2.101)
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Similar formulas can be computed for SBF(é, d,s = —1,0¢). Then, the difference
ASBF(é, d,00) = SBF(é, d,s =+1,00) — SBF(é, d,s = —1,0¢) can be computed as

N(O+6;0,02+1)—N(0 —5;0,0241)

ASre (6 5, = 2.102
Br (6,9, 00) N(8;0,0% 4 c2) ( )

It can be shown that
ASBF(é, (5, Uc) < 0 and QASBF(HA, (5, Uc) < (), <2~103)

00

for all 6 > 0, 9 > 0, and oo > 0. The first inequality is trivial, and the proof for the

second inequality is given below.

The average Shannon Surprise can be computed in a similar way. For example, for s = +1,

we have

SSh(é, d,s =+1,0¢0) = —log (ch(é +8:0,0% + 1)+ (1 — pe)N (650, o + O’%«)),
(2.104)

and then the difference ASSh(é, d,00) = gSh(é,é,s = +1l,00) — SSh(é,é,s = —1,00)
can be computed as

1+ mSBF(é,(S, s = _17 UC’))

oBrY (2.105)
1+ mSgr(0,d,s =+1,0¢)

ASSh(év 57 UC) = lOg (

Pc

T Then, using the results for the Bayes Factor Surprise, we have

where m =

ASg(0,6,0¢) > 0 and %Asgh(é,é, oc) >0, (2.106)

for all @ >0, § > 0, and o > 0. See below for the proof of the second inequality.

Proof of the 2nd inequality for Sgp: Let us define the variables

oi=0*4+0k o2=0"+1, (2.107)

n —

as well as the functions

_ R o4 52 (5+ é)z

f1(0) = Spr(6,0,5 = +1,0¢) = (Tnexp(ﬂ_ 202 )
— Spr(d,6,s = _oa 0 (0-0) (2.108)

f2(0) = Spp(6,0,5 = —1,00) = aneXp(za§ 202 )

£(8) = ASgr(6,6,0¢) = f1(5) — f2(0).
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The following inequalities hold true

f(8) <0 = f1(d) < f2(9)

0k <oi=1= 03 <o (2.109)
Then, the derivative of f(J) can be compute as
d §_d46 G LI y
d n d "
6 £1(6) — 12(8) 8 02 2.110)
7721(f1( )+ fz(d))( - mg(;?l _ 1))

Therefore we have 35ASBF(9 5,00) = Lf(0) <

Proof of the 2nd inequality for Sgy: Using the functions we defined for the previous
proof, and after computing the partial derivative of Equation 2.105, we have

(9 8 1+mS é7578:_17
—ASg(0,0,00) = ( —BF(A UC))
20 5 1° 1+ mSgr(0,d,s = +1,00) (2.111)
d (M)
“ @ B\ mae))

The derivative of the last term can be written in terms of the derivates of fi; and fo,
indicated by f{ and f}, respectively,

O \a a o omfyd)  mfi(d)
a5 2Ssu(0:0,0¢) = 1+ mf2(0)  1+mfi(0) 2112
—mf’(6) m2(f1fs — f1/2)(6) '

T O mh@) A+ mb®) 0+ mA®)(1+mpb)

The 1st term is always positive based on the proof for Sgr. The 2nd term is also always
positive, because

(s 1)) = 16 200)(( 5 -

= f1(5)f2(5)027§ > 0.

n

(2.113)

As a result, we have %ASSh(é, d,0c) > 0.
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Simulation procedure for prediction 1

In order to relax the main assumption of our theoretical proofs (i.e. the belief is always
a Gaussian distribution), to include the practical difficulties of a real experiment (e.g.
to use |0 & ¢ instead of |0, = §), and to have an estimation of the effect size, we also
performed simulations for our first experimental prediction.

For each simulated subject, the procedure of our simulation was as follows:

1. We fixed the hyper parameters o and p. for producing samples.

2. We selected a learning algorithm (e.g. pf20) and fixed its corresponding tuned
parameters (based on our simulations in the Results section).

3. We applied the learning algorithm over a sequence of observations y;.7. Note that
in a real experiment, this step can be done through a few episodes, which makes it
possible to have a long sequence of observations, i.e. large T

4. At each time ¢, we saved the values y;, 0y, 64, 0y, s¢, Ssn(ye; E)(t_l)), and Spr(ys; E)(t_l)).

Then, given an absolute prediction > 0, an absolute prediction error § > 0, a standard
deviation o¢ > 0, and a sign bias s € {—1,1}, we defined the set of time points

T={1<t<T:||0;_1] — 0] < A0, ||6;] — 6| < AG,|6, — oc| < Ao, s, = s}, (2.114)

where [|0;,_1| — 0] < AB, ||6;] — 6| < AJ, and |6, — 0| < Ao are equivalent to [6;_1| ~ 0,
|0:] ~ d, and 6y ~ o¢, respectively. A6, A, and Ao are positive real values that
should be determined based on practical limitations (mainly the length of the observation
sequence T). We then computed the average surprise values as

SBF(9 0,8,0¢0) |T| ZSBF yta b~ 1))

teT (2.115)

Sgh(9 d,s,00) ’7.’ ZSSh ye b )

teT

We repeated this procedure for N different simulated subjects (with different random
seeds). The average of Spr and Sgj, over N = 20 subjects, for two learning algorithms
(i.e. Nasl12* and pf20), and for 7' = 500, =1, 0c =05 A0 =0.25 A§ = 0.1, and
Aocc =1 is shown in Fig. 2.10B. The results are the same as what was predicted by our
theoretical analysis.
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Simulation procedure for prediction 2

For our second prediction, the theoretical proof is trivial. However, in order to have a
setting similar to a real experiment (e.g. to use P(y,41;b®) & p instead of P(y,41;b®) =
p), and to have an estimation of the effect size, we used simulations also for our second
experimental predictions.

We followed the same procedure as the one for the simulation of the first prediction.
For each simulated subject, and at each time ¢, we saved the quantities P(y;y1; E)(t)),
P(y41;0©), Sqn(y; b)), and Spp(y:; bE1). Then, for a given a probability value
p > 0, we defined the set of time points

T ={0<t<T:[P(yr1;0") = p| < Ap, [ P(yr41:0©) —p| < Ap},  (2.116)

where |P(yy41; b®)—p| < Ap and | P(y;11;b©)—p| < Ap are equivalent to P(y,,1;b®) ~
p and P(yi41; 6(0)) ~ p, respectively. Ap is a positive real value that should be determined
based on practical limitations (mainly the length of the observation sequence T'). We then
computed the average surprise Sgr(p) and Sgy(p) over T for each value of p. We repeated
this procedure for N different simulated subjects (with different random seeds). The
average of Sgr and Sgj over N = 20 subjects, for two learning algorithms (i.e. Nas12*
and pf20), and for "= 500 and Ap = 0.0125 is shown in Fig. 2.11B.

2.5 Supplementary Material

Modified algorithm of Nassar et al. (2010, 2012): Adaptation for Gaus-
sian prior

Recursive update of the estimated mean for Gaussian prior

Let us first consider the case of a stationary regime (i.e. no change points) where
observed samples are drawn from a Gaussian distribution with known variance, i.e.
Yir1|0 ~ N(0,0?%), and the parameter 6 is also drawn from a Gaussian distribution
0 ~ N (o, 03). After having observed samples 41, ..., 141, it can be shown that, using

Bayes’ rule, the posterior distribution P(0|yi.4+1) = bgH)(G) is

t+1
Ho | DiliYi 2 1
t 1(7"‘ : Z)aUB,t+1: Ler)’ (S1)

1
POlyris1) = /\/(9; S
(0]y1:41) B t+1 1+ 5\ =

An estimate of 6 is its expected value E(0|y1.441) = B t+1-

In a non-stationary regime where, after having observed i, ..., y; from the same hidden
state, there is the possibility for a change point upon observing w11, the posterior
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distribution is

POly1:4+1) = (1 — ve41) P(Oly1:e41, ct41 = 0) + Y1 P(O| Y41, o1 = 1) . (52)

To facilitate notation in this subsection we denote c;11 = 0 as “stay” and c;+1 =1 as
“change” so that

POlyi:t+1) = (1 — v41)P(8]y1:441, stay) + ve41P(0|ye+1, change) (S3)

Note that the above is equivalent to Bayesian recursive formula (Equation 2.10) of the
main text, where 7,41 is the adaptation rate we saw in Equation 2.9 of the main text, and
is essentially the probability to change given the new observation, i.e. P(ciy1 = 1|y1.441).
In Nassar et al. (2010) this quantity is denoted as ;1. Taking Equation S1 into account
we have

E(0|y1:t41,stay) = puBi+1 =

t+1 A
1 (@ n Dittilor yl)
T rfl\ 52 2 ’
72 + =5 \oj o

1 Mo | Y+l
T“TC?+‘%»7

(54)
E(0|y1.¢+1,change) =

where 74 is the time interval of observations coming from the same hidden state, calculated
at time t. Taking the expectation of Equation S3 the estimated mean upon observing the
new sample y;y1 is

o S v L rpo | Yt
(] — 7<7+1=+7—”>+ 7<7+7>, S5
b1 = ( 'Y)Glg_i_r?; 0(2) o2 ’Yﬁ‘*‘g% 0(2] o2 (S5)

where we dropped the subscript ¢ + 1 in v to simplify notations. We have

t
. 1 1o Doictii-m Yi Y+ 1 Ho | Y+l
—(1— ( L ) 7(— 7> . (S6
Ht+1 ( 7)%_'_ ’”f:gl 0(2) + o2 + o2 + %-ﬁ- # U(% + o2 ( )
0 0

t

{ Dimtai—r, Yi
Because fi; = 1 (“—g 4 st U
B

= — ), after a few lines of algebra we have
0

1 R 1
%(yﬂrl — ) + 7= (Ye+1 — o). (ST7)
0

&+ 1

fir4r = (L —y)fae +ypo + (1 =)

We now define p = g—z and find

0

1 N 1
(Ye1 — fir) + y——=(yt+1 — po) . (S8)

(] :1— A+ +17 -
i1 = (1 —y)fie + o + ( V)p+rt+1 ]
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A rearrangement of the terms and inclusion of the dependency of v on time yields

1
p+ri+1

1

(Ye41 — ﬂt)) + Y41 (Mo + ——(Yt+1 — MO)) . (S9)

(1 (
frr1 = ( Yeg1) | e+ b1

In order to obtain a form similar to the one of Nassar et al. (2010, 2012) we continue and
we spell out the terms that include the quantities ji;, o and yeq1

1
I — 1_ N 1_ - A
fit+1 = (1 —y)i — ( wp+n+1m
1
0 =Y (810)
+(1-7) + !
Y p—l—Tt—l—lyt+l 7p+1yt+1
_ 1
USlng that +7‘ +1 = m — (P‘i’l)(;i:’rt‘i’l) we haVe
g1 = (1= )ju — (1= 7)——ji + (1= 7) - z
Ht+1 = )t Y p+1ﬂt v (p+1)(p+rt+1)ut
— 11
+ Yo 7p+1uo (511)
+(1-7) (1-7) i -
Y p—}-lyH_l Y (p+1)(p+rt+1)yt+1 ’Yp+1yt+1-

After a further step of algebra we arrive at

Tt

m(ﬂt —Ye41) + ytH) . (S12)

e = L (1= e+ ) + 5 (
- (1- + +—((1-
fut+1 p+1( ¥) e + Yo p+1( )

Tt _ ptoyretl
ptre+1 = 0= p+re+1

If we define 1 —a = (1-7) 7ty = a=1-(1-7) and rearrange

the terms, we have

. . 1 .
fler1 = . ((1 — )i + 7#0) +— ((1 —a)fiy + 013/t+1)

prl pfl (S13)
i1 = i 1 (,Ut +(po — Mt)) + PE] <Mt + a(yr+1 — ﬂt)) :
Adding back the dependency of v and « on time we finally have
N N 1 X
He+1 = o+ 1 (,Ut + Vi1 (ko — Mt)) + ﬁ (,Ut + a1 (Y1 — Mt)) . (S14)

Recursive update of the the Estimated Variance for Gaussian Prior

In Nassar et al. (2012) the authors calculate first the variance 67, = Var(f|y:1+1) and
based on this compute then 7:11. We derive here these calculations for the case of
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Gaussian prior. We remind once again that

P(O|y1:t+1) = (1 — vy41) P(0]y1:4+1, stay) + vet1 P (0|y+1, change) (515)

Then for the variance 67,,; = Var(f|yi..+1) we have

a-tQ—&—l = (1 - ’y)agtay =+ ’Yo-zhange + (1 - V)W(Mstay - :ut:hanE)2

) 5 ) (S16)
= (1 - r)/)O-B,tJrl + YO change + (1 - 7)7(”B,t+1 - Nchange)
2 _ 1 2 _ 1
where o, = T and Ochange = T4 L
0'0 o ) o
We have defined earlier p = g—z so that
0
) ) 2 o’ o 817
=(1— =(1-—
( V)O-B,t—i-l + Vo-change ( 7)p 1 + 7[0 +1 ( )
X 1 1
Ublng, as before, that m = m — (P‘f’l)(;i:”ﬁ‘f’l) we have
2
1
U PR . . 519
p+1 p+re+1
We have defined earlier the learning rate « =1 — (1 — 7)#, SO we can write
2
A= _a (S19)
p+1

¢ .
Note that p; = — Jlrrt <% + = yl) so for the calculation of the last term we have
22 0
0-0 o

B = HUBt+1 — Mchange

t+1
B 1 [0 Dictiior Yi 1 MO | Ytt1 (520)
Tyl T 2 ) T g e )
o3 o2 0 o2 o2 0
We now rearrange terms
B =+ " )( ) L ). (S21)
= Mt 11 (p—i—l)(p—l—rt—i—l) Yt+1 — Mt Ko bt 1 Yt+1 — H0),
and finally we have
2 o’ 2 (S )
o =—a+(1— B-. 22
t+1 o+ 1 ( ’Y)’Y
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Implementation of Nas10*, Nas12* and Particle Filtering with 1 particle
for the Gaussian estimation task

We provide here the pseudocode for the algorithms Nas10*, Nas12* and Particle Filtering
with 1 particle for the Gaussian estimation task. Observations are drawn from a Gaussian
distribution with known variance and unknown mean, i.e. ysy1|per1 ~ N (per1,0?) and
0; = . When there is a change, the parameter p is also drawn from a Gaussian
distribution p ~ N (o, 03). All three algorithms estimate the expected pyy1 (i.e. fizr1)
upon observing a new sample y;1.

After re-writing Equation 2.83 we have

Y 1% Y
S (y ” 6) o2 + 62 exp po i gjé+ =2 +7§+ :51] (523)
BF (Yt+1; b, 0t | = —— - 0
+ 02+ 03 208 267 2(% +1) 2(% +1)
t 0

Note that the pseudocode for pfl provided here, is a translation of Algorithm 3 to the
case of a single particle (where there are no weights to calculate) and for the Gaussian
distribution as a particular instance of the exponential family.

Algorithm S1 Pseudocode for Nas10* for the Gaussian estimation task

1: Specify m = p./(1 — p), po, 00, o and p = o2 /od.
2: Initialize fig, 69, 7o and t < 0.
3: while the sequence is not finished do
4: Observe 9441
# Surprise
Compute Spr(yi+1; fit, 0¢) using Equation S23
+# Modulation factor
6: Compute 41 = fy(SBF(yHl; ity Gt), m) as in Equation 2.9
Expected mean
7 Compute ji;+1 using Equation 2.76
Expected time interval

o

g

8: Compute 'f't_i'_l = (1 — ’Yt—‘,—l)(ft + 1) + Yi+1
Expected variance
) s[4y Fea)l
9: Compute 64411 = [02 + =5 ]
0

+# Tterate
10: t+—t+1
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Algorithm S2 Pseudocode for Nas12* for the Gaussian estimation task

1: Specify m = p./(1 — pc), to, 00, o and p = o2 /3.
2: Initialize fig, 69, 79 and t < 0.
3: while the sequence is not finished do
4: Observe ;11
Surprise
5: Compute S (y¢+1; fit, 0¢) using Equation S23
# Modulation factor
6: Compute V41 = 7(SBr(Yi+1; fu, 61),m) as in Equation 2.9
# Expected mean
7 Compute fi;41 using Equation 2.76
# Expected variance
8: Compute the expected variance 6441 using Equation S22
# Expected time interval
9: Compute the expected time interval 7111 = 32 — ”—2
# Iterate A

10: t+—t+1

Algorithm S3 Pseudocode for Particle Filtering with 1 particle for the Gaussian esti-
mation task

1: Specify m = p./(1 — pc), to, 00, o and p = o2 /3.
2: Initialize fig, 69, 79 and t < 0.
3: while the sequence is not finished do
4: Observe 941
Surprise
5: Compute S (y¢+1; fit, 0¢) using Equation S23
# Modulation factor
6: Compute V41 = ¥(SBr(Yi+1; fu, 61),m) as in Equation 2.9
# Hidden state of particle
7: Sample cg_)l ~ Bernoulli(vy¢41)
Expected mean
s if ¢{})} = 0 then
9: fliy1 < fip + ﬁ(ytﬂ — fig) and Fppq 7+ 1
10: else
11: fir1 < o + 515 (Y1 — po) and 7oy < 1
# Expected variance
12: Compute the expected variance 64y = 'Ft-f%P

4 Jterate
13: t+—t+1
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Figure 2.12 — Gaussian estimation task: Transient performance after changes
for original algorithms of Nassar et al. (2010) and Nassar et al. (2012). Mean
squared error for the estimation of u; at each time step n after an environmental change,
i.e. the average of MSE[©;|R; = n] over time; o = 0.1, p. = 0.1 (left panel) and
o =5, p. = 0.01 (right panel). The shaded area corresponds to the standard error of the
mean. Abbreviations: Nasl0*, Nas12*: Variants of Nassar et al. (2010) and Nassar et al.
(2012) respectively, Nas10 Original, Nas12 Original: Original algorithms of Nassar et al.
(2010) and Nassar et al. (2012) respectively.
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Figure 2.13 — Gaussian estimation task: Steady-state performance for original
algorithms of Nassar et al. (2010) and Nassar et al. (2012). Difference between
the mean squared error of each algorithm and the optimal solution (Exact Bayes), i.e.
the average AMSE[©,] over time for each combination of environmental parameters o
and p.. Abbreviations: Nas10*, Nas12*: Variants of Nassar et al. (2010) and Nassar et al.
(2012) respectively, Nas10 Original, Nas12 Original: Original algorithms of Nassar et al.
(2010) and Nassar et al. (2012) respectively.
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2.6 Contributions

VL, AM and JB conceived and designed the project.

AM defined the Bayes Factor Surprise and worked out the surprise-based interpretation
of the exact Bayesian inference, with the help of VL and JB.

VL and AM worked out the surprise-based interpretation of the algorithms, with the help
of JB.

VL developed the Particle Filtering algorithm, with the help of AM and JB.

AM developed the Variational SMiLe algorithm.

JB developed the Message-Passing N algorithm.

AM conceived and worked out the experimental prediction 1.

WG conceived the experimental prediction 2.

VL wrote the code for the algorithms, the simulations, and the experimental predictions,
with the help and feedback of AM and JB.

VL analyzed the simulation results, with the help of AM and JB.

VL made the figures, with the help of JB.

VL, AM, JB and WG interpreted the results.

VL, AM, JB and WG wrote the manuscript.
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§] Surprise is (not) important:
model estimation in non-stationary
reinforcement learning

This chapter presents research performed in collaboration with Alireza Modirshanechi,
Dr. Johanni Brea and Prof. Wulfram Gerstner.

3.1 Introduction

Model-based reinforcement learning agents learn by building an explicit model of the world
and present many advantages over model-free learning, such as flexibility to changes. Still,
this flexibility is often compromised when abrupt changes occur long after convergence or
in cases of unseen situations (Sutton and Barto, 2018). A sudden blockage or opening of
a path in a maze, a shift in the reward characteristics, a failure of an agent’s system, or a
perturbation in the agent-environment interaction are examples of changes likely to be
encountered at any time in real-world tasks.

In the recent years the focus is increasingly turning towards this more challenging problem
of building agents that are able to quickly adapt in the face of non-stationarity, rather
than converge to a sole stationary solution. Depending on the aim, the problem statement
and the type of environmental changes, this interest is addressed by approaches such as
meta-RL and continual RL (Lomonaco et al., 2019). On the other hand, change-point
detection and surprise-based model learning are active fields of research that offer a
repertoire of online algorithms for adaptive parameter estimation (Adams and MacKay,
2007). Many recent RL algorithms for non-stationary learning do employ some procedure
or measure to detect a change, but transfer of knowledge from the field of model learning
to RL seems to be rare. It is thus unclear in which non-stationary learning situations RL
could use and profit from advances in the change-point detection field.

In this work, we identify conditions under which surprise, generated by change-point
detection, is or is not important for non-stationary RL. Our overarching goal is to
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investigate in which non-stationary learning scenarios an artificial or biological agent
needs to invest significant resources in rigorous model estimation and in which scenarios
approximate and inaccurate models can safely be employed.

To this end, we consider model learning procedures of varying complexity and accuracy
and apply them on non-stationary tasks with local — and possibly more difficult to detect —
changes, rather than global ones. Previously, we have developed an approximate Bayesian
algorithm (Particle Filtering) featuring surprise-based adaptation to changes (Chapter 2).
Here, we extend it in order to incorporate the treatment of possible environmental changes
happening in the background, in the absence of direct experience, and allow for informed
exploration. We couple this approach, as well as simpler Leaky Integration approaches,
with the Prioritized Sweeping algorithm from model-based RL (Moore and Atkeson, 1993;
Van Seijen and Sutton, 2013) and evaluate their performance. This chapter builds on the
work presented in Chapter 2 and applies model and surprise-based learning approaches
developed there to reinforcement learning purposes. Our results show that in a task
where adapting to abrupt changes is crucial for performance, a surprise-based method,
such as Particle Filtering, performs better. In cases of distal changes, where exploration
is desired, as well as in cases of higher stochasticity, a simple Leaky Integrator with prior
knowledge on the environment is sufficient to achieve high levels of performance.

In the following section, we first recall the general RL framework and notations, and
introduce our model learning approaches for non-stationary reward-based tasks. We then
present their evaluation on three simulated tasks with different characteristics. Finally,
we briefly review related work and discuss possible future directions.

3.2 Learning in non-stationary environments

3.2.1 Reinforcement Learning preliminaries

We employ the widely used Markov Decision Process (MDP) formulation for reinforcement
learning problems (Sutton and Barto, 2018). At each time step t the agent observes
a state Sy = s € §, where § = {3(1),5(2), ...,S(")} is the set of n possible states, and
chooses an action A; = a; € A from the set of possible actions A. This causes a transition
to a state Si11 = sy+1 € S and the observation of some reward Ry =141 € R CR.
As in Chapter 2, we indicate random variables by capital letters, and values by small
letters, and we omit the explicit indication of random variables whenever there is no
ambiguity. The transition probability from S; = s; to Si+1 = si+1 when taking action
Ay = ay is denoted as Ty(s¢, at, St4+1) = P(Si41 = s141|St = s¢, A = ar) € [0,1], where, as
in Chapter 2, P stands for probability mass function (for the discrete variables, which is
the case here), or for probability density function (for continuous variables). The expected
reward when taking action A; = a at Sy = s is Ry(ss, ar, 5t11) = E[Rep1|S; = 5, 4 =
a, St+1 = St+1) € R. These quantities are the same as the ones we introduced in Chapter
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1 (cf. Equation 1.2 and Equation 1.3), but, in the non-stationary setting we are interested
in, they are now also time-dependent. The goal of an RL agent is the maximization of the
expected cumulative discounted sum of rewards E[Y 32, v* Ryyk41], where v € [0,1] is a
parameter that discounts the importance of distant rewards. In other words, the agent
seeks the optimal policy 7*, i.e. the mapping from states to actions or to action selection
probabilities (s, at) = P(A; = a4|S¢ = s¢) that maximizes this expected discounted
sum.

One way to do so is through the calculation of values, which quantify the “goodness” of
selecting certain actions from certain states. The value of selecting action a; in state s;
and following the policy 7 thereafter is defined as Q7 (s¢, ar) = Ex[> 5oV Rethr1|St =
st, Ay = ay), for all s € S,a € A. A model-based RL agent estimates the @ values of
the optimal policy 7*, i.e. the optimal Q* values, by explicitly learning the model of
the world, i.e. the quantities Ty and Ry, and directly estimating the (Bellman) equation
Qi(st,ar) = 3y Ti(se, ar, s') (Ri(st, ar, s") +7Vi(s')), where Vi(s') = maxqy Q4(s', a’), and
Tt and ]i’,t are the estimations of the true T; and R; by the agent. This can be done
through value iteration or through other approximate methods, such as Prioritized

Sweeping (Moore and Atkeson, 1993; Van Seijen and Sutton, 2013).

In this work, we focus on the estimation of non-stationary transition probabilities T.
The framework and the model learning modules we use build on the framework and the
algorithms developed in Chapter 2, and we briefly describe them in the following section.

3.2.2 Learning the model of the world
The Generative Model

In Chapter 2 we have considered a hierarchical generative model in discrete time (Equa-
tion 2.2 - Equation 2.4 and Fig. 2.1) and studied surprise-based learning in non-stationary
tasks. An environment that exhibits sudden changes in the transition probabilities can
be modelled as a set of generative models of the same type, one for each state-action pair
(s,a). We represent the vector of transition probabilities for a single state-action pair

IS, To avoid

to all states in the environment as the random variable P* = p;® € [0, 1]
confusion, we recall that T; € [0,1] is the true value of the time-dependent transition
probability from a state and an action to another state, and T, € [0, 1] is the agent’s point

estimate of T;. In other words, P* = (Tt(s, a,s()) ),j e{1,...,|S|}.

From each state s and action a the agent observes at the next time step a state s’ € S
which is drawn from a Categorical distribution with parameters P = pj¢,, i.e. s'|pf¢; ~
Cat(s';pi¢,), where dim(pj},) = |S|. We consider an environment where changes in the
transition probabilities can occur at any time ¢ at any state-action pair, not only at the
currently experienced one, and independently of the other pairs, with change probability
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pe € (0,1). When there is an environmental change at a state-action pair (s, a), indicated
by the event C}{; = 1, the parameters p;}; are drawn from a prior Dirichlet distribution
pj¢, ~ Dir(o - 1), where o € (0,00) is a stochasticity parameter. The next observed state
s’ at time step ¢ + 1 is, however, drawn from the Categorical distribution corresponding
only to the currently experienced state-action pair at time t. Thus, the time index ¢ refers
to real time, and we define the variable T (s,a) as the set of timepoints in [1,¢] that a
particular (s, a) pair is visited.

In other words, the generative model for each state (s, a) pair independently is

P(c¢j*) = Bernoulli(¢{*; pc) , (3.1)
o(pi* —pi2y) it " =0,

P sa| sa Sa — 3.2

(pi"let”s pi%1) { Dir(pi*o-1) if ¢*=1, (3:2)

P(s'|pf*) = Cat(s'|p{*) if t—1€T(s,a), (3.3)

where ¢ is the Dirac delta distribution. In general, the superscript sa serves as a reminder
that all the corresponding quantities refer to a single state-action pair, i.e. they are
functions with arguments (s,a). Sometimes, we skip the explicit mention of these
arguments to simplify notation.

Here, we focus on non-stationarity in the transition matrix and not in the reward
locations or values. However, our framework can easily be applied to other sources
of non-stationarity. For reward locations, we can consider a binary indicator random
variable I} associated with the occurrence of reward at a certain state at time ¢, so that
P(i7) = Bernoulli(if; p§), where pj is the probability of obtaining reward at a certain
state at time ¢. For the case of non-stationary reward values, we can consider that they
are drawn from a Gaussian distribution, for example, with state-dependent mean p; and

2

variance o2, i.e. 7¢|pi ~ N (1§, 02), and then the goal of the agent is the estimation of the

changing p for all s € S, similar to the Gaussian estimation task of the previous chapter.

It is worth noting that the generative model describes how the agent views and models
the world, which, later in our simulations, may or may not be the same as how the world
really functions.

Model Learning approaches

We briefly describe here the approaches we use in order to learn the environment’s
transition probabilities: an adaptive surprise-modulated Particle Filtering algorithm,
introduced in Chapter 2 (section 2.2), as well as simple Leaky Integrators with and
without prior knowledge.
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Particle Filtering. The goal of our particle filter is to approximate the belief
b*® ) (p;®) = P(P* = pj®|s1.c) (3.4)
for each (s, a) pair and recursively update it upon each new observation s;41.

As we showed in the previous chapter, b**(!) can be approximated as

bsa (t Z wsa (1 fa (t Z wsa (1 5a|csa ,(2) Slst) , (35)

(@) N

where {c[7""}Y | is a set of N realization (or samples) of ¢{% (i.e. N particles) drawn

,()N

from a proposal distribution W(c§%|sy.¢), {w; """ }Y, are thelr corresponding weights at

time ¢, and bi a(t )(pt ) is the approximated belief correspondlng to particle .

In an environment where a change can happen at any time ¢ at any (s, a) pair (and not
only at the currently experienced one), performing inference means performing additional
background updates in all (s,a) pairs not currently visited, in order to take into account
the possibility of changes in some other part of the environment. We therefore make a
distinction between the particles’ update process for the currently experienced state-action
pair, i.e. t € T (s, ar), with Sy = s; and Ay = ay, and for other the state-action pairs
(s”,a") not currently experienced, i.e. t ¢ T (s, a¢), which implies (s”,a”) # (s¢, at).

For the first case, the update rule for the approximated belief over the transition probability
vector pi¢; to all other states, upon the observation of the next state Siy1 = s441 follows
Equation 2.22 and Equation 2.23 of Chapter 2 and is the same as for the Categorical
estimation task in the Simulations section of Chapter 2 (subsection 2.2.3). After applying
the general treatment for the exponential family for this task, it can be shown that the
update of the unnormalized weights for the currently experienced state and action pair
St = s¢ and Ay = a; takes the simple form

(2)
) _ (1- o (8¢, at,5¢41) 1 ()
= pc) + Dc ) (3-6)
il = ( S af (51, a, 50)) IS\)

where a?)(st, ag, S¢+1) = 0 + Nt(z)(st, at, St4+1)-

Here, Nt(l)(st, at, St41) = Zt'ersa’(“ [Sy = s¢+1] denotes the actual counts of observing s;4+1
t

a, (%)

from (s¢,a;) within the time interval ;" = min{n € N : C:ar(i)kl =1,5= 5,0 = a}, ie.
since last change point of the ith particle for this state-action pair. [.] denotes the Iverson

bracket (and equals to 1 if the condition within the bracket is fulfilled, 0 otherwise).

Intuitively, as we have shown in detail in the previous chapter, the above equation entails
a weighted average between the expected value of the transition probability as calculated
under the particle’s current belief, and under the uniform prior.
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At each time step, we first update the weights according to Equation 3.6 and normalize

(%)

them. Second, we sample each particle’s hidden state cfi’l from the proposal distribution
with change probability

~ sa, D
\I’( fil() = 1|08a() 81;t+1) = '7<SBF(3t+1; bfa (t))a 1 cp ) s (3-7)
I
where v is the adaptation rate and Spr the Bayes Factor Surprise we have seen in Chapter
2 (Equation 2.9 and Equation 2.7, respectively). Following the general formulation of the
exponential family, it can be shown that the Bayes Factor Surprise Sgp(s¢41; bfa’(t)) for
particle ¢ in this application is given by
1/|s !

Spr(ses1; ;") = —. (3.8)
O‘E)(staahst-&—l)/z 1ozt (st,at,s(J))

For all other pairs (s”,a") # (st,at), there is also a possibility for an independently
occurring change. We sample at each time step the hidden state of their particles from
the proposal distribution

(e = 1eiy i) = P57 = 1) = pe. (3.9)

This means that at each time step particles change their states “in the background”,
in the absence of observation, with probability p.. It can be shown that the values of
the particles’ weights for the pairs (s”,a”) # (s¢,ar) do not change (See Supplementary
Material 3.5.3). Interestingly, this optimal — in the Bayesian sense — updating of the
background (s, a) pairs naturally leads to exploratory behavior (see also (Dayan and
Sejnowski, 1996)). If an agent has some prior about how the world works and forgets
experiences at a rate consistent with the rate of changes in the world, the agent is more
likely to explore and discover new ways to reach rewards. In this way, if, for example,
the passage from a certain state to a reward was once experienced to be blocked, taking
into account that the block may not be permanent influences the estimated @) values and
encourages an agent to re-visit the passage after some time.

The implementation details of our particle filtering (e.g. the resampling procedure) are
the same as described in the previous chapter (See section 2.4 and Algorithm 3 for the
pseudocode).

Finally, the (model-based RL) agent’s point estimate T} of the true transition probabilities
T; from any (s,a) pair to any state s’ given is calculated from the weighted mean of the
parameter PP® averaged over the particles, i.e.

a / sa al sa (Z) azgl) (S a, S/)
Ti(s,a,s') = Epsa.n [PEY] = ) wy N0 —. (3.10)
i—1 Yty (st ar, sV))
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Leaky Integration with prior knowledge. = We employed a simple Leaky Integrator
that includes as a free parameter the environment’s stochasticity . In our simulations we
denote this agent as “Leaky prior”. For the current state-action pair (s, a;) the outgoing
counts to all states s), j € {1, ...,|S|}, upon the observation of the state s;,1 are updated
as

Nt+1(3t7at73(j)> = UNt(Staatas(j)) + [S(j) = 3t+1]7 (3-11>

where 7 is a constant leak parameter [] is the Iverson bracket, and Ny (s, as, s9)) are the
(leaky) counts of observing s9), j € {1,...,|S|} from (s,a), which are initialized to zero.

For all background (s”,a”) # (s¢, as) pairs the counts are leaked as
Nig1(s",a",s9)) = pNy(s",a", s19)), (3.12)
for all s € S, a” € Aand sU),j e {1,...,|S|}.

Concerning the operations on the background (s”,a”) pairs, there is an equivalence
between the Particle Filter and the Leaky prior, roughly of the form n o« (1 — p.), but
the exact relationship would also depend on the number of particles. Moreover, in the
extreme cases of 7 = 1 and p. = 0, the Leaky prior is equivalent to Particle Filtering with
one particle.

The estimated transition probabilities from any (s,a) pair to any state s’ are then

Ni(s,a,s') + o
Z'S‘ (Ne(s,a,s0) +0)

Ti(s,a,s") = Epoa, [PP"] = (3.13)

Thus the estimated transition probabilities for all state-action pairs not visited are
gradually in time leaked (“forgotten”) towards the uniform prior. Similar to the particle
filter this background forgetting can promote exploration. This operation of background
leakage to the prior is similar to the one performed in the algorithm of Dayan and
Sejnowski (1996) (see “Related work” in the Discussion section).

Leaky Integration. Finally, we used a simple Leaky Integrator (“Leaky” in our
simulations) that has no knowledge of the stochasticity o of the environment. For the
current state-action pair (s;,a;) the outgoing counts to all states s, j € {1,...,|S|},
upon the observation of the state s;11 undergo the same update as in Equation 3.11, with

a free leak parameter 7.
For all background (s”,a”) # (s¢, a;) the counts are leaked as

Nt-‘rl (8”7 allv 3(j)) - nbckgrdNt(S”7 (I”, 8(j))7 (314)
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for all s € S, a” € Aand sU) j € {1,...,|S|}, where TNbekgrd 15 @ constant leak parameter.

The estimated transition probabilities from any (s,a) pair to any state s’ are then

. Ny(s,a,s
Tt(87a73/) = |S\ t(~ ) NN
Zj:l Nt(svaa S(J))

(3.15)

In this case, the background leakage does not lead to forgetting, but affects only the
confidence of the estimation. In other words, the estimated T} of a certain (s,a) pair
will stay the same, no matter how much time has passed since the last visit. However,
the longer the time since the last visit, the more the T, would potential be changed
upon the next visit of the (s,a) pair. Note that, Perfect Integration, typically used in a
standard implementation of Prioritized Sweeping (Moore and Atkeson, 1993; Van Seijen
and Sutton, 2013), is a special case of Leaky Integration without prior knowledge, with

n= 1 and Tbckgrd = 1.

In summary, the three model learning procedures we consider exhibit different features,
whose importance we later test by means of simulations. The Particle Filter implements
surprise-based adaptation through Equation 3.7, as well as exploratory behaviour through
prior knowledge about the environment and background updating in Equation 3.9. The
Leaky Integrator with prior knowledge is not surprise-based, but has the capability to
explore. Finally, the Leaky Integrator without prior knowledge has neither of the two
features. We used these three model learning alternatives in conjunction with Prioritized
Sweeping, a tabular model-based RL algorithm, which we describe in the next section.

3.2.3 Using the learned model for Reinforcement Learning

Prioritized Sweeping (Moore and Atkeson, 1993; Van Seijen and Sutton, 2013) is an
efficient model-based RL algorithm that instead of updating at each time step the whole
state-action space, until the Bellman equations reach an equilibrium (i.e. value iteration),
it updates only the state-action pairs that would change “a lot”. More specifically,
after an observed transition from a state-action pair (s,a) to a state s;+1 the estimate
Ty is updated, and, thus, the Q(s,a) value needs to be updated so that Q;4+1(s,a) =
Sy Tivi(s,a,8") (§t+1(3, a,s')+7Vi(s')). We can measure the change in the value of state
s caused by this update as AV = Vi11(s) — Vi(s) = maxy Qi41(s,a’) — maxy Q¢(s, d’).
If we propagate the updated Q;+1(s,a) to other state-action pairs, in order to restore
the Bellman equation everywhere, then, intuitively, a large value change of a state, will
give rise to a large value change at the states that lead to it. Prioritized Sweeping keeps
track of these AV changes, called priorities, in a list, called priority queue, and at every
time step, updates, in a number of update cycles, only those states that precede the
ones with the largest priorities AV. As the number of update cycles goes to infinity
Prioritized Sweeping becomes identical to value iteration, where the whole state-action

102



3.2. Learning in non-stationary environments

space is updated at each time step recursively until convergence.

There are two key differences between the three model learners we consider and the
standard Perfect Integration typically used in Prioritized Sweeping, which have direct
implementational consequences. First, a transition from (s,a) — s;+1 changes the
estimation not only of this transition, but also of all the transitions (s,a) — s’, where s’ #
St+1, 1.e. of the whole transition probability vector from (s, a). This poses a difficulty in
using the efficient “small backup” update method of Van Seijen and SuAtton (2013). Instead,
we use traditional (“full”) backups, i.e. Qi(s,a) =, Ti(s,a,s) (Re(s,a,8") + 4V ()],
for all s € S. Second, at every step the estimated transition probabilities of the whole
state-action space change through background updating (forgetting). Thus, at every step,
before going through the priority queue and reverse backups, we perform one round of
full backups for all states and actions in the environment, in randomized order. Even
though this may appear computationally expensive, it is still linear in the number of
states and actions. Efficiency could be improved by applying theses backups, that aim at
incorporating the background forgetting, only every few time steps, instead of every step.

Furthermore, we initialize the estimated T} uniformly to 1/|S| for all model learners.
In the standard implementation of Prioritized Sweeping with Perfect Integration the
knowledge of a possibility to transition from any state to any other state is not provided
to the agent. The rewarded (goal/terminal) states, once discovered by the agent, are set
to uniform outgoing transitions to all other states, and stay fixed thereafter (no updates
are performed).

The reward function in our tasks is a function of the landing states only, that is we
can write R;(s,a,s’) = R;(s'). For its estimation we use Perfect Integration for all our
simulated agents, since in all our tasks the reward locations and values are stationary, i.e.

Nt+1(8) = Nt<8) + 1,
RV (s) = R{“™(s) + 1, (3.16)
Rey1(s) = Ry (s)/Neva (),

where N;(s) is the number of visits of a state s and r the immediate reward experienced.
We use optimistic initialization, i.e. we initialize ]z%t to the maximum possible immediate
reward value and the () values as R /(1 —~), so that the Bellman equation is fulfilled.
Once a state s’ is visited, the reward function R is overwritten by the result of the
updates in Equation 3.16. The pseudocode of our implementation is provided in the
Supplementary Material (Algorithm 4).
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3.3 Simulations

We evaluate the three model learning modules — Particle Filtering with 20 particles
(“pf20”), Leaky Integration with prior knowledge (“Leaky prior”) and Leaky Integration
without prior knowledge (“Leaky”) — combined with Prioritized Sweeping on three RL
tasks: (i) non-stationary random MDPs, which correspond to the generative model of
Equation 3.1 - Equation 3.3; (ii) a task similar to Sutton and Barto (2018) which we
denote as “Simple Maze”; and (iii) a task inspired by Sutton et al. (1999) and Bacon et al.
(2017) which we call the “Four Rooms Maze” task. These tasks allow us to test different
facets of learning and assess the impact of the three alternative model learners. We first
describe the procedure we follow in order to optimize the algorithms and evaluate their
performance.

Optimization and evaluation procedures. For all agents and all tasks we use a
discount factor v = 0.9, e-greedy policy with e = 0.01, and 100 priority queue update
cycles, and we do not optimise these parameters. The simulation time for each instance
of a task is 10° steps. Each of the model learners has two free parameters; (p., o) in the
Particle Filter, (n, o) in the Leaky prior and (7, fpckgrd) in the Leaky Integrator. For the
case of non-stationary MDPs, in order to reduce the computing time of the optimization
procedure, we set the stochasticity parameter o of the Particle Filter and the Leaky prior
to the true stochasticity of the environment and do not optimize it.

We first tune each learner’s free parameters using a number of random seeds: 9 random
seeds for the non-stationary random MDPs, and 6 random seeds for each of the Simple
Magze and Four Rooms Maze tasks. The seeds control the following sources of randomness:
the environmental probabilistic changes, the true transition probabilities drawn randomly
after each environmental change, the agent’s e-greedy policy, and the sampling procedure
in the Particle Filter. For a given learner, for each task instance (i.e. random seed) we
perform a gridsearch over the two- (or one-) dimensional parameter space. For each
parameter values in the gridsearch, we record the total reward obtained on each random
seed, and, then, average the total reward across seeds. The optimal parameter values
are the ones that yield the maximum mean reward across the (training) random seeds.
However, we have empirically seen that using as a criterion the maximum mean reward
across the training seeds was often not the most fair choice. In some cases, the parameters
associated to the maximum mean reward also exhibit very high variance (across seeds).
For a more fair comparison, we retain for each agent the parameter values of the maximum
mean reward, as well as all the parameter values of a mean reward within one standard
deviation (over training seeds) of the maximum. We then evaluate all these “winning”
parameter values on 10 different (testing) random seeds.

To motivate this approach, let us denote as R(, k) the total reward obtained using the
parameter values 6 on a random seed k (the seed includes all sources of stochasticity,
so that R(0, k) is deterministic). For example, for the Particle Filter 6 is a tuple of
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values for (p.,0). We are seeking the optimal parameters §°P! = argmax,ycraEx[R(6, )],
i.e. the parameter values that are optimal, averaged over all possible random seeds. We
estimate this quantity via the empirical mean, and at the limit of infinite random seeds,
the empirical mean should converge to the true expectation. We are however restricted
to employ a finite and small number of seeds. We thus have a noisy estimation and
we can not be sure whether we are close to the true expectation. Choosing this set of
“winning” parameter values increases our estimation precision and we can consider them
as a range of values within which the true values should fall. Another motivation for
this procedure is that the single objective of maximum mean reward may not be the
only desired feature, and the robustness, i.e. variance across seeds, should also be taken
into account in the evaluation criteria. Overall, this treatment of retaining a set of best
possible parameter values rather than a single value, gives us a better idea about the best
possible performance of the algorithms.

3.3.1 Non-stationary Random MDPs

We simulated our algorithms on tabular non-stationary random MDPs that correspond
to the generative model we described in Equation 3.1 - Equation 3.3. The environment
consists of 100 states, 4 actions and 4 reward locations of reward r» = 1. In the beginning
and after each environmental change, the transition probabilities from each (s, a) pair to
all states are randomly drawn from a Dirichlet distribution, i.e. pi* ~ Dir(o - 1). Note
that, for a single (s, a) pair, this task is similar to the Categorical task of the previous
chapter (subsection 2.2.3). The only difference is the occasional absence of observation,
since the agent is on different (s,a) pairs at different time steps, and changes can happen
even in the absence of observations. The four reward locations are randomly selected
and stay fixed throughout the duration of the task. After reaching the reward, the agent
is placed on some randomly chosen state among all the available states, excluding the
rewarding ones.

We simulated all combinations of stochasticity levels o € {0.01,0.1} and change probability
levels p. € {107°,107%,1073}, each for 10° steps. Each p. level translates to |S| x |A| - p.
state-action pairs changing on average at each time step.

Fig. 3.1 shows the mean reward for all algorithms and winning parameter values across the
10 task instances, and Fig. 3.2 the total reward for the best ones among those of Fig. 3.1.
For p. = 107° (Fig. 3.1A and B, left panels) all algorithms achieve similar performance
levels, and even the simple Leaky Integrator performs well. Since we did not hand-craft
the environments, and changes happen randomly, it might be that they rarely lead to a
need for a change of the agent’s policy. Moreover, the o levels we use, combined with the
large number of states, give rise to fairly stochastic environments (see Supplementary
Material Fig. 3.11). It is likely that the agents do not have enough time to encounter
enough re-occurrences of states before a change happens and to build strong beliefs (i.e.
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Figure 3.1 — Non-stationary Random MDPs: Mean total reward. Mean reward
(across the testing random seeds) obtained by each algorithm for A. ¢ = 0.01, and B.
o = 0.1, for different p. levels (increasing from left column to right column). Each circle
corresponds to a different set of winning parameter values for each algorithm, chosen
as described in the “Optimization and evaluation procedures” paragraph. The order of
the circles is according to their performance during the optimization (training seeds)
in terms of maximum mean reward (from larger to smaller). The error bars indicate
the standard error of the mean across the 10 testing seeds. Leaky prior achieves high
levels of performance compared to pf20. The only case where the Particle Filter performs

significantly better than the Leaky prior is for p. = 1072 and ¢ = 0.01.

move away from the prior), thus, surprise is less effective. For p, = 10~% (Fig. 3.1A and
B, middle panels) the Leaky prior and the Particle Filter perform better than the Leaky,
and more so for o = 0.1 (Fig. 3.1B, middle panel). A similar observation can be made for
the case of p. = 1073 (Fig. 3.1B, right panel). The only case where the Particle Filter
performs significantly better (Wilcoxon rank-sum test, p-value = 0.05; unequal variance
two-sample t-test, p-value = 0.02) than the Leaky prior is for the relatively low, but
not extremely low, level of p. = 107 and low stochasticity o = 0.01 (Fig. 3.2A and B,
upper right panels). A closer look at the best possible performance of all algorithms is
provided in Fig. 3.2. We empirically found that for even higher p. and o values, the three
algorithms perform very similarly.

In summary, in the general case of random independent abrupt changes, simple Leaky
Integrators, in some cases even without prior knowledge, are sufficient to achieve high
levels of performance. The Particle Filter performed significantly better only at a specific
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Figure 3.2 — Non-stationary Random MDPs: Total reward. Total reward obtained
by the best performing parameter set of the two algorithms, across the 10 task instances,
for A. 0 = 0.01, and B. 0 = 0.1, , for different p. levels (increasing from left to right).
The boxplots are made with 10 values, corresponding to the 10 random seeds.

regime of change probability and stochasticity. It is, however, difficult to quantify the
extend to which a change in these environments requires a change in the agent’s policy.
Using rewards of different values spread across the environment or lower stochasticity
levels, could potentially bring larger differences among the algorithms. The next two
tasks include abrupt environmental changes that directly affect the optimal policy.

3.3.2 Simple Maze

We implemented the tabular task that appears in (Sutton and Barto, 2018), in Chapter 8
(“When the model is wrong”). An illustration of the task can be seen in Fig. 3.3. Each
cell in the environment is a state and there are four available actions (up, down, left, and
right). Each action leads deterministically to a transition in the corresponding direction,
unless it is towards a wall, in which case the agent stays at the same state. There is
one starting state (marked in blue) and a single goal (terminal) state with reward value
r =1 (marked in red). Once the goal state is reached the agent is placed back to the
starting state. Initially there is a path from the starting state to the reward at the right
side of the maze (Fig. 3.3, Left). After N =5 -10* time steps, i.e. in the middle of the
simulation time, this passage is blocked and a new passage opens on the left side of the
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maze. Thus, this task, with its sudden blocking of a learned path that directly affects the
optimal policy, assesses the capability of the agent to adapt to a sudden environmental
change.

Figure 3.3 — Simple Maze task. The path from the starting state (marked in blue) to
the goal (marked in red) passes initially through the right side of the environment (Left
figure). After N time steps this path is blocked and a door opens at the right side of the
environment (Right figure).

We emphasize that this task is not a faithful implementation of the generative model we
saw in Equation 3.1 - Equation 3.3 for the following reasons: 1. From each state-action
pair there is a possibility to transition to at most 4 states, and for all the other states
the probability is 0. In other words, the transition probabilities are not drawn from a
Dirichlet distribution with equal stochasticity o for all states. Humans and animals may
have additional priors about the relative topology of states, possibly formed through
hippocampal place cells and grid cells, that allow for more informed transition probabilities
priors. We do not provide such capability to the agents here. 2. Changes do not occur
strictly independently across state-action pairs; opening a door in the maze implies
changes in the transition probabilities of two state-action pairs (corresponding to the
two states adjacent to the wall). This again relates to a topological dependence between
the generative models of different state-action pairs. 3. Changes are not generated
probabilistically, but at a predetermined moment (at least from an omniscient observer’s
point of view).

We evaluated the mean reward across the 10 random seeds, for all algorithms and winning
parameter values. The Leaky Integrator exhibited very low performance and most often
did not discover the new path to the goal (best case: 3 out of 10 seeds). Overall, the
Particle Filtering obtains more reward than the Leaky prior (Fig. 3.4). All algorithms’
instances found the new path from the goal, except for one seed for the Particle Filter
(first green circle in Fig. 3.4A). For this particular seed, the failure occurred because —
by chance — no particle sampled a change-point when experiencing the closed passage.
Therefore, the new observation was integrated with the old belief, and beyond this point
it became even more unlikely for a switch to happen in the particles’ state. Note that
this would most likely have been prevented with the use of more particles, and it did not
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occur with different parameter values (rest of green circles).

Fig. 3.4B shows the reward obtained by the best performing parameter set for the two
algorithms (1st circle of Fig. 3.4A for Leaky prior, and 16th for the Particle Filter). The
best parameter set for the Particle Filter is the one that exhibited the minimum variance
on the training seeds. The Particle Filter obtains significantly higher reward (Wilcoxon
rank-sum test, p-value < 107%).

Simple Maze: total reward
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Figure 3.4 — Simple Maze task: Total reward. A. Mean reward (across the random
seeds) obtained by each algorithm. Each circle corresponds to a different set of winning
parameter values for each algorithm, chosen as described in the “Optimization and evalu-
ation procedures” paragraph. The order of the circles is according to their performance
during the optimization (training seeds) in terms of maximum mean reward (from larger
to smaller). The error bars indicate the standard error of the mean across the 10 testing
seeds. For better visualization we show here the performance of only the Leaky prior and
the Particle Filter (see Supplementary Material Fig. 3.9 for the figure that includes the
Leaky Integrator). B. Total reward obtained by the best performing parameter set for
the two algorithms (1st circle of A for Leaky prior, and 16th for the Particle Filter). The
boxplots are made with 10 values, corresponding to the 10 testing random seeds. The
Particle Filter obtains more reward than the Leaky prior.

In order to investigate the transient performance of the algorithms, we checked how
much time it takes for each agent to reach the goal state after experiencing the change
in the environment, i.e. after attempting to move down from the state adjacent to the
newly closed passage. Then, we also calculated the time between this 1st visit to the
goal following the new path and the 2nd visit. These quantities indicate how fast the
algorithms adapt to the change in the environment.

Fig. 3.5A and B show the mean time until 1st visit after experiencing the blocked passage,
and the difference between the 2nd and the 1st visit, respectively. When the new path
was not found, we set the calculated time to the duration of the simulation after the
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change (i.e. 5-10%). Apart from the one case where the new path was never found,
the surprise-based Particle Filter adapts faster than the Leaky prior (Fig. 3.5A and B).
Fig. 3.5C and D show the same quantities for the parameter sets that led to the highest
reward (1st circle for Leaky prior, and 16th for the Particle Filter). The Particle Filter
reaches the reward faster after the change than the Leaky prior (Wilcoxon rank-sum test,
p-value = 0.03). For one seed among the 10 seeds we used, Particle Filter exhibits an
outlier behaviour, where it reaches the reward much later (1140 time steps) than in the
rest seeds (Fig. 3.5C, green outlier), and than the Leaky prior at the same seed (627 time
steps). Excluding this seed from both learners increases even more the significance in
favour of the Particle Filter (Wilcoxon rank-sum test, p-value = 0.008).

3.3.3 Four Rooms Maze

We implemented a tabular task inspired by Sutton et al. (1999) and Bacon et al. (2017).
The environment consists of four rooms as shown in Fig. 3.6. As in the Simple Maze task,
each cell in the environment is a state, and there are four available actions. Transitioning
towards a wall causes the agent to stay at the same state. There are two fixed reward
locations (goals) G1 and G9 (marked in red in Fig. 3.6) of values 1 = 1 and ry = 12,
respectively. G is located in the bottom left room and G in the bottom right room.
Initially G is surrounded by walls and there is no access to it (Fig. 3.6, Left). One door
opens and closes stochastically, with probability p, = 107%, and can thus provide access
to Gy (Fig. 3.6, right). Note that p/, is different from the parameter p. of the generative
model of Equation 3.1 - Equation 3.3, which refers to the change probability of each (s, a)
pair. After reaching either of the two goals the agent is moved to the single initial state,
at the top and left corner of the environment (marked in blue). We implemented two
versions of this task: one with deterministic transitions, and one where the agent moves
to its selected direction with a probability 2/3 and to one of the other three directions
with probability 1/9 each. We indicate the deterministic version with w, = 1, where w,
stands for weight of action, and the second version with w, = 2/3.

Similar to the Simple Maze, this task does also not faithfully correspond to the generative
model we described in Equation 3.1 - Equation 3.3. Unlike the Simple Maze, this task
features a distal change that leads to a more rewarding option, and thus assesses the
capability of the algorithms to explore.

Fig. 3.7A shows the mean reward across the 10 random seeds of the Four Rooms Maze
task with w, = 1, for all winning parameter values of all algorithms, and Fig. 3.7B shows
the total reward for the best ones among them (1st circle for Leaky, 18th circle for Leaky
prior, and 6th for the Particle Filter) in boxplots. The simple Leaky Integrator is not
equipped with background forgetting and therefore never reached the reward ro = 12. In
this task the Leaky Prior and the Particle Filter achieve similar levels of performance
(Wilcoxon rank-sum test, p-value = 0.7).
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Simple Maze: Time to goal after change

A 1st visit B 2nd visit
10* | = 104 |- N
H 1 F )
[ ] B L
2 N B [
‘@ B Kzl L
Z S
- 4 o ;
A & 10° =
g 108 b 1z L
£ 10 1 r
: 1z |
2 B -2 r
2 1 g
3 B g 102 | -
=1 = F B
| ; ]
10 ¢ ¢ ] F so®e000
| | ] 10! & L L .
Leaky pf20 Leaky pf20
prior prior
C 1st visit D 2nd visit
T
. ]
10% |- B 108 - y
- ) B=1
£ 1 B
- g 1016 [ .
-
- a )
; % :
5 g
E E 1.4
10% [ | 10 °
| | 1 1012 | |
Leaky pf20 Leaky pf20
prior prior

Figure 3.5 — Simple Maze task: Transient performance. A. Mean time (across the
random seeds) until the 1st visit to the goal after the blockage of the passage, and B.
Mean time between the 1st and the 2nd visit to the goal. Each circle corresponds to a
different set of best parameter values for each algorithm. When the new path was not
found, we set the calculated time to the duration of the simulation after the change (i.e.
5-10%). The error bars indicate the standard error of the mean across the 10 testing seeds.
C. Total time until the 1st visit and, D. between 1st and 2nd visit, for the parameter
sets that yielded highest reward (1st circle of A for Leaky prior, and 16th for the Particle
Filter). The boxplots are made of 10 values, corresponding to the 10 testing random
seeds. The minimum possible number of steps from the starting state to the reward, after
the passage is blocked is 18 steps. The Particle Filter reaches the goal faster than the
Leaky prior after the environmental change.

In order to examine the transient performance of the algorithms, we recorded the time
it took to reach the reward ro = 12 from the moment the door opens, as well as the
time lapsed between this 1st and the 2nd visit to ro = 12. The first quantity reflects the
exploratory behaviour of the algorithms, whereas the second one assesses their capability
for fast updating. Cases where the door closed before the agent reached the high reward,
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Figure 3.6 — Four Rooms Maze task. The starting state is marked in blue and the goal
locations (terminal states) in red. The goal location G (bottom left room) is associated
with an immediate reward value 71 = 1 and the goal location G2 (bottom right room)
with ro = 12. Initially there is no access to G (Left figure). The door that gives access
to G2 opens (Right figure) and closes probabilistically.

Four Rooms Maze, w, = 1: Total reward
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Figure 3.7 — Four Rooms Maze task, w, = 1: Total reward. A. Mean reward
(across the random seeds) obtained by each algorithm. FEach circle corresponds to a
different set of winning parameter values for each algorithm, chosen as described in the
“Optimization and evaluation procedures” paragraph. The order of the circles is according
to their performance during the optimization (training seeds) in terms of maximum mean
reward (from larger to smaller). The error bars indicate the standard error of the mean
across the 10 testing seeds. B. Total reward obtained by the best performing parameter
set for the two algorithms (1st circle of A for Leaky, 18th circle for Leaky prior, and 6th
for the Particle Filter). The boxplots are made with 10 values, corresponding to the 10
testing random seeds. The Leaky Prior and the Particle Filter achieve similar levels of
performance.

were excluded from our counts, in order to get a cleaner estimation.

Fig. 3.8A and B show the average of the above two quantities across switches for the
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winning parameter values for the Leaky prior and the Particle Filter, for the deterministic
environment (w, = 1). The Leaky Integrator did not reach the high reward at any point,
we thus exclude it from this analysis. Fig. 3.8C and D depict the boxplots for the best
performing (in terms of reward) parameter sets (18th circle for Leaky prior, and 6th for
the Particle Filter). From the total 53 times of door openings during the 10 task instances,
the Leaky prior reached the high reward state 44 times (83%), and the Particle Filter
45 times (85%) — these are the numbers of data points we used to create the boxplots.
Among the times that ro = 12 was reached, it was always reached a 2nd time, by both
algorithms. We observe that the time until 1st visit is not significantly different for Leaky
prior and Particle Filter (Wilcoxon rank-sum test, p-value = 0.9) indicating that both
algorithms are capable to re-explore previously visited states (Fig. 3.8A and C). On the
other hand, the 2nd consecutive time the high reward state is reached is significantly
faster for the Particle Filtering (Wilcoxon rank-sum test, p-value = 10~%) (Fig. 3.8D).

In this task, where exploration and strategic forgetting are presumably more important
for good performance, a Leaky Integrator with prior knowledge suffices. The Particle
Filter has better transient performance, since it seems to adapt faster at the detected
change. However, this ability does not seem to impact much the final performance and
is overshadowed by the ability to explore. We obtained similar results for the case of
we = 2/3. In this case of higher stochasticity the two algorithms become even more
indistinguishable in their performance (see Supplementary Material Fig. 3.10).

3.4 Discussion

We have developed a model based RL agent that features fast surprise-based updates
and exploration. Both of these features stem from a Bayesian treatment of environ-
ments exhibiting abrupt changes. We have tested model estimation methods of varying
sophistication in a number of environments with different characteristics. Our surprise-
modulated RL agent adapts rapidly to sudden immediately experienced changes and
achieves high performance. In environments, however, with distal changes or with higher
stochasticity, simpler methods of Leaky Integration perform equally well. Furthermore,
maintaining a prior on the stochasticity of the environment appears crucial in coping
with non-stationarity. Interestingly, in some scenarios, learning an accurate model of the
world is not needed for reinforcement learning. In this section we briefly review previous
related work, we discuss our findings and possible future directions.

3.4.1 Related Work

Exploration-Exploitation.  Upon its first mention, the problem of sudden environ-
mental changes in RL was addressed as part of the exploration-exploitation dilemma
(Sutton, 1990; Sutton and Barto, 2018); an agent that is encouraged to explore is more

113



Chapter 3. Surprise is (not) important:
model estimation in non-stationary reinforcement learning

Four Rooms Maze, w, =1

Mean time to goal ro = 12 after door opening

A 1st visit B 2nd visit
103 | - -
a B
I 10%° - - Il
E § 2 % i
;E 10% - i ? #} ; 10% |- § ¢ |
a |
o o
LA : .
T t.é 7
= el PR gﬁ %
Lez‘lky pf‘?O Lee‘tky pf‘20
prior prior
Time to goal ro = 12 after door opening
C 1st visit D 2nd visit

10* B
S 102.5 | - -

[_J
=12
[ _J

10% |- a

10 |-

Time until 1st visit to ro = 12
Time until 2nd visit to ro

L]

) L]
1 L]
10% E B :
I

1
Leaky pf20 Leaky pf20
prior prior

Figure 3.8 — Four Rooms Maze task, w, = 1: Transient performance. A. Mean
time (across switches) until the 1st visit to the reward ro = 12 after the door opening,
and B. Mean time between the 1st and the 2nd visit to the reward ro = 12. Each circle
corresponds to a different set of best parameter values for each algorithm. The error bars
indicate the standard error of the mean across switches. We excluded the cases where the
door closed before the agent reached the high reward. C. - D. Boxplots corresponding
to the quantities of A and B, respectively, for the parameter sets that yielded highest
reward (18th circle for Leaky prior, and 6th for the Particle Filter). The boxplots are
made with 44 values for the Leaky prior and 45 values for the Particle Filter (i.e. number
of times the reward ry = 12 was reached out of the total 53 times the door opened). The
minimum possible number of steps from the starting state to the reward ro = 12 is 15
steps. The two algorithms reach the high reward state equally fast after the door opens.
The Particle Filter re-visits it faster for a 2nd time, i.e. after having experienced the
change.

likely to cope with a change and discover a new path. A simple illustration of a sudden
environmental change leading to suboptimal performance is the blocking maze in Sutton
and Barto (2018), similar to the Simple maze task (Fig. 3.3). Depending on the time point
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in the agents’ lifetime at which this change happens, the agent may get completely stuck.
Sutton (1990) added to each state-action pair’s value an exploration bonus, according to
the time since it was last encountered. This enables re-testing actions that were found
unsuccessful in the past and recovers the performance. A more systematic approach to
exploration bonuses was employed by Dayan and Sejnowski (1996), starting from the
argument that exploration should be driven by the agent’s uncertainty about the world.
Since their method is the closest to our work, we describe it here in more detail.

Dayan and Sejnowski (1996) considered deterministic mazes, where changes can happen
between episodes (i.e. after the agent has reached a terminal state). Whenever there is an
environmental change, the effectiveness of an action to advance the agent to some other
state is changed, i.e. the path from an (s,a) pair to another state is blocked or opened.
There are no rewards, each action costs a certain amount and the goal of the agent is to
minimize the expected discounted cost. The agent is equipped with an abstract model of
how often the world changes, and knows the change probability p. and the probability ¢
for an action to be effective, as well as the cost of each action and the locations of the
terminal states. The agent estimates the transition probabilities as follows: Within an
episode the agent’s estimated probability for a transition (or for the efficacy of an action)
is reset to whatever happened, i.e. is set to 1 or 0, if the action was effective (successfully
led to some other state, instead of the same one) or ineffective, respectively. At the end
of an episode, estimated transition probabilities of state-action pairs that were not visited
are leaked at a rate given by p., and relax in time to the prior ¢, similarly to the Leaky
with prior in our simulations. This forgetting gives naturally rise to an exploration bonus.
For the state-action pairs that were visited during the episode, the estimated transition
probability for the transitions that were permitted — which during the episode were set to
1 — is now reduced by the amount p.- (1 — ¢). The estimated transition probability for the
transitions that were not permitted is set to the value p. - ¢. These last two operations
implement the agent’s knowledge that between two episodes a change might occur. This
approach begins with solid Bayesian arguments and is intuitive and elegant, but is still a
heuristic approximation. Our particle filter improves upon this approach and represents
a more principled and generic way of learning in non-stationary environments.

Context Detection. Other approaches tackled non-stationarity using context or
“hidden mode” detection. Choi et al. (2000) assume that there is a small number of
possible stationary “modes” that the environment can be in. The agent knows the number
of modes and model learning is done with a variant of the Baum-Welch algorithm. This
requirement of an a priori knowledge on the number of possible environments is removed
in (Da Silva et al., 2006) and (Hadoux et al., 2014). There, a quality measure is calculated
to estimate which of the so far learned modes is currently the most likely one. If this
measure is below some threshold for all possible modes, then a new uniformly initialized
mode is appended and the agent starts learning the model from scratch. The possible
drawbacks of these approaches are high memory demands, especially for high-dimensional
spaces, and possible failure for similar modes. All the above methods can be seen as
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“reactive” approaches to non-stationarity (Papoudakis et al., 2019), in the sense that they
develop agents that quickly modify their behaviour after a change has been detected. Our

approach also falls in this category.

Meta- and Continual Learning. Recently there has been a renewed interest in non-
stationary learning in the form of meta-learning and continual learning, and particularly
in the domain of deep RL. In contrast to the reactive view, the focus of meta-learning is on
building agents that are prepared for changes, rather than agents that learn how to react
to them (Papoudakis et al., 2019). These agents perform better in changed situations,
because they were exposed beforehand to various perturbations and task variants. A key
assumption is that all situations come from the same distribution and the aim is to find
the (initial) parameters so that the algorithm has learned how to learn, namely knows how
to generalize and adjust with minimal or no updates, and is more efficient than starting
from scratch. Continual learning is a notion closely linked to meta-learning and often
interchangeably used. Sometimes continual learning is defined as the ability to adapt and
generalize in the light of new observations, while resorting as little as possible to storage
and re-processing of past observations (Lomonaco et al., 2019). Elsewhere, continual
learning is formulated as the ability to learn new tasks without forgetting previous ones.
This can be a different aim as it may imply maintaining some memory of previous tasks
and being able to recognize the current task, in order to select which policy to use (Traoré
et al., 2019). In that sense, continual learning is similar to multi-task learning, but with
tasks being experienced sequentially. The main approaches to continual learning are:
rehearsal, regularization, dynamic network architecture and generative replay (see Traoré
et al. (2019) for more details). At the same time, some continual learning approaches do
essentially employ some change-detection procedure and “reactive” handling, for example,
comparing the average obtained reward within a short-term time window to a long-term
average reward in order to control weight regularization (Lomonaco et al., 2019), or
computing the likelihood of the next few data points under a predictive model with
parameters that were updated based on the past few data points (Nagabandi et al., 2018).

Model-free methods. An approach to non-stationarity on the model-free side has
been developed by Kearney et al. (2018) and Young et al. (2018), where the learning
rate is adapted proportionally to the correlation between the current weight update and
a memory trace of past updates, analogous to momentum. Other model-free meta-RL
approaches with function approximation have been done by Duan et al. (2016); Finn et al.
(2017); Wang et al. (2018). One possible disadvantage of these approaches, is that they
are often sample inefficient, even more so than standard model-free RL algorithms.

Distributional RL. In our work we perform approximate Bayesian inference via
particle filtering, but the model-based RL agent eventually uses the expected value of
the transition probabilities over its belief and not the full distribution. One can think of
extensions of our work where the full distribution is taken into account, and thus the
values are also distributions, instead of scalar values. Examples of such approaches can
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be seen in Bellemare et al. (2017); Dearden et al. (2013); Osband et al. (2013), but have

not been applied to non-stationary environments.

3.4.2 When do we need change-point detection for non-stationary RL?

In our simulations we found that a simple Leaky Integrator with prior knowledge can
achieve high levels of performance in seemingly complex environments. An approach of
this type, where an agent is equipped with a model of how transitions can change over
time, was previously developed in (Dayan and Sejnowski, 1996) and was found to be
successful in non-stationary mazes. Our results are also consistent with the work of (Ryali
and Yu, 2016), who showed that in non-stationary categorical tasks an appropriately
adjusted Leaky Integrator with constant leak parameter can reach near-Bayes-optimal
performance in data prediction. Other studies have also shown that, after an initial phase,
the updates of a Leaky Integrator form a delta-rule that can approximate exact Bayesian
updates (Heilbron and Meyniel, 2019; Yu and Cohen, 2009), as well as that such an
updating scheme is consistent with human behaviour (Gijsen et al., 2020; Heilbron and
Meyniel, 2019; Meyniel et al., 2016). Along similar lines, Findling et al. (2019) showed
that an inferential procedure on a simpler generative model than the true one, that
assumes stationarity and is equipped with noise, can lead to near-optimal adaptation in
volatile environments, and matches observed human data in adaptive bandit tasks.

The aforementioned findings combined with our results indicate that elaborate and
computationally more expensive change-point detection methods may often not be needed
by an artificial or a biological agent to achieve high performance. “Bounded rationality”
(Simon, 1957) is a widely used term to express the idea that biological organisms have
constrained resources, which prevent them from being optimal in the often intractable
real-world problems. These results, however, add another facet to this notion; that
organisms often do not need to invest resources in order to behave near-optimally. This
line of thought also echoes ideas from the science of heuristics; heuristic inference can often
be equally or more accurate than complex formal methods, given the agent’s uncertainty

(Belousov et al., 2016; Gigerenzer and Gaissmaier, 2011).

3.4.3 Future directions

All the above findings, as well as ours, refer to tasks where the observed data are of
categorical nature, which is the case for a wide range of real-world situations. Complex
and accurate change-point detection are likely to be more beneficial in continuous or
tracking tasks, and this would be interesting to test in future work. Along the same lines,
the evaluation of these algorithms in more complicated tasks, such as mazes with multiple
doors changing their status in individually different degrees of volatility, would be very
informative.
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Additionally, one parameter that we did not investigate systematically is the number
of update cycles of the Prioritized Sweeping. This parameter dictates how far back
the agent backpropagates its estimations after a new information. We empirically saw
that in some cases, counterintuitively, increasing the number of update cycles does not
necessarily lead to better performance. The reason is that when the model estimation is
suboptimal, deeper backpropagation of the information throughout the value landscape
can be even harmful. This adds another aspect to take into account when assessing the
necessity of accurate model estimation, and it would be very interesting to be quantified
systematically.

For all our algorithms we first fine-tuned their parameters with respect to each task. It
would be insightful to investigate the robustness of the algorithms under a mismatch
between the assumed and the true environmental parameters, similar to what we did in
Chapter 2. This procedure, on the other hand, could entail some arbitrariness in the
range and the resolution of the parameter values considered.

An exciting continuation of our work would be the online estimation of the environment’s
hyper-parameters, with the ultimate goal of building a “generic” learner. We briefly
mentioned in Chapter 2 some methods that could handle this challenging problem. We
hypothesize that in tasks with distal changes, like the Four Rooms maze, a prior on how
the world functions or a smart initialisation of the parameters might still be needed for a
good estimate of the environment’s volatility.

Finally, it would be interesting to combine these model learning approaches with function
approximation (deep RL) methods, and in particular with deep RL agents with tabular
abstraction (Corneil et al., 2018; Sutton et al., 1999) that allow the use of efficient tabular
model-based methods. Overall, our results may guide building efficient adaptive RL
agents and can provide insights in the type of estimations that biological organisms may
adopt.

3.5 Supplementary Material

3.5.1 Supplementary figures
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Figure 3.9 — Simple Maze task: Total reward - Supplementary figure. A. Mean
reward (across the random seeds) obtained by each algorithm. Each circle corresponds to
a different set of winning parameter values for each algorithm, chosen as described in the
“Optimization and evaluation procedures” paragraph. The order of the circles is according
to their performance during the optimization (training seeds) in terms of maximum mean
reward (from larger to smaller). The error bars indicate the standard error of the mean
across the 10 testing seeds. The Leaky Integrator exhibited very low performance and
most often did not discover the new path to the goal (best case: 3 out of 10 seeds). B.
Total reward obtained by the best performing parameter set for the two algorithms (38th
circle of A for Leaky, 1st circle for Leaky prior, and 16th for the Particle Filter). The
boxplots are made with 10 values, corresponding to the 10 testing random seeds.
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Four Rooms Maze, w, = 2/3: total reward
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Figure 3.10 — Four Rooms Maze task, w, = 2/3: Total reward - Supplementary
figure. A. Mean reward (across the random seeds) obtained by each algorithm. Each
circle corresponds to a different set of winning parameter values for each algorithm, chosen
as described in the “Optimization and evaluation procedures” paragraph. The order of
the circles is according to their performance during the optimization (training seeds) in
terms of maximum mean reward (from larger to smaller). The error bars indicate the
standard error of the mean across the 10 testing seeds. B. Total reward obtained by the
best performing parameter set for the two algorithms (29th circle of A for Leaky, 1st
circle for Leaky prior, and 7th for the Particle Filter). The boxplots are made with 10
values, corresponding to the 10 testing random seeds. The Leaky Prior and the Particle
Filter achieve similar levels of performance.
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Figure 3.11 — Sampled transition probability vectors. Examples of transition proba-
bility vectors of 100 elements (states) drawn from a Dirichlet distribution with stochasticity
parameter A. 0=0.01 and B. o= 0.1, for the non-stationary random MDPs. Each figure
shows 3 random draws of pj* ~ Dir(o - 1), marked with 3 different colors.

3.5.2 Weight update for the background (s, a) pairs in Particle Filtering

The weight of a particle 4 for a background pair (s”,a”) # (s¢, a¢) at time ¢ + 1, given a
proposal function ¥ and the absence of an observation coming from this (s”,a”) pair at
t + 1, can be calculated as

@  PEslst) P15, su)P ) lsi)

sa,
wt+1 B - . . B .
WS s) WD 500 (Es D s1)

(3.17)

P(Cii’(i)|51:t)
‘I/(Ci:lt’@)lsl:t)

sa,(i)| sa,(i) sa,(i)| sa,(i)
Moreover, W(c, "y’ |cr.; s s1:e01) = Plegyy lery 5 S1:441)-

Note that wfa’(i) o are the weights calculated at the previous time step.

() _ ) 5a,(4)

sa
Hence, we have that w; 1" = w, ™.

3.5.3 Prioritized Sweeping algorithm
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Algorithm 4 Pseudocode for Prioritized Sweeping

1:

9:
10:

12:

13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:

24:

25:
26:

27:

Specify the discount rate v, Ncycles number of update cycles, |S| number of states,
| A| number of actions, py, minimum priority value.
Initialize Tp(s, a,s’) = 1/|S|, Ro(s) = rmax, Qo(s,a) = Vo(s) = Up(s) = Ro/(1 — ),
forallse S,ac A, s’ € 8.
Initialize empty priority queue PQ.
Observe the state sy and select the action ag.
while the sequence is not finished do

Observe the s¢y1 and the reward 7441
# Update the estimated transition probabilities T

Compute Tt+1(s,a, §') forall s € S, a € A and s’ € § according to one of the
model learners (Equation 3.10, Equation 4.15, or Equation 3.15).

Update lhvostinlat(‘d reward function R

Compute Ryy1(s¢41) according to Equation 3.16.
# Perform one back-up to incorporate the background updates of T into Q

for s € |S| in randomized order do

for a € | A| in randomized order do

Qi11(s,a) =>4 Tii1(s,a, s’)(ﬁitH(S, a,s') +V(s)], forall s' € S.

Vit1(s) = maxy Qit1(s, a’).
# Calculate priority
p=|V(s) - U(s)
if p > Py then
Add or update the state s in PQ with priority p.
Process priority queue
for Ncycles do
Remove the state s” from PQ that has the largest priority p.
Compute AV =V (s") - U(s")
Set U(s") =V (s")
for s € |S| do
for a € | A| do
Update Qy11(s,a) < Qur1(s,a) +vT11(s,a, s")AV
Vit1(s) = maxy Qt41(s,a’).
# Calculate priority
p=IV(s) - U(s)
if p > Py then
Add or update the state s in PQ with priority p.
Iterate
t—t+1
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3.6 Contributions

VL and JB conceived and designed the project.

VL developed the algorithms, with the help and feedback of AM and JB.

VL wrote the code for the algorithms and the simulations, with the help and feedback of
AM and JB, and using as a starting point a julia package ! written by JB.

VL analysed the results and made the figures, with the feedback of AM and JB.

VL, AM, JB and WG interpreted the results.

VL, JB and WG wrote the manuscript.

"https://github.com/JuliaReinforcementLearning /ReinforcementLearning.jl
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%Y Dissociating human brain regions
encoding reward prediction error
and surprise

This chapter presents research performed in collaboration with Dr. Marco Lehmann,
Alireza Modirshanechi, Dr. Johanni Brea, Prof. Michael Herzog, Prof. Wulfram Gerstner,
and Prof. Kerstin Preuschoff.

4.1 Introduction

When learning to ride a bike, many falls and adjustments are needed until we experience
some encouraging sign of maintaining our balance for a few meters. Through this experi-
ence, we then, slowly, and maybe subconsciously, learn which positions and movements
are successful and which make us lose balance. At the same time, while navigating in a
part of the town we have never been, we are often able to quickly form a mental map of
the place, so that when we finally find this new recommended restaurant, we can easily
visit it again in the future.

In the field of reinforcement learning (RL) (Sutton and Barto, 1998), these two types of
learning have been mathematically formalised as model-free (MF) and model-based (MB)
learning, respectively (Daw et al., 2005). In model-free RL, artificial or biological agents
incrementally update their values or their policies via trial-and-error interaction with
the world. In value-based model-free algorithms (Sutton and Barto, 1998), the values,
i.e. the “goodness” of being in certain states and taking certain actions, are learned via
the reward prediction error (RPE), namely the discrepancy between the value that was
expected and the one that is perceived given the new actual experience. The estimated
values are then used to guide the agent’s policy. Policy gradient model-free algorithms
(Peters, 2010; Schulman et al., 2015; Sutton and Barto, 1998; Williams, 1992) feature
reward triggered changes directly on the agent’s policy, i.e. the mapping from states to
favorable actions, typically using eligibility traces.
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Model-free learning is a simple way to reinforce repetition of rewarded actions and has
successfully explained many aspects of reward-based learning in animals and humans
(Matsumoto et al., 2007; Niv and Schoenbaum, 2008; O’Doherty et al., 2004; Roesch et al.,
2007; Schultz et al., 1997; Tobler et al., 2003). However, it is slow and inflexible and fails
to explain other aspects of animal behaviour, such as quick adaptation to changes or
learning of associations in the absence of direct reward (Balleine and Dickinson, 1998;
Daw et al., 2005; Dayan, 2012; Doll et al., 2012; Foster and Wilson, 2006; Pfeiffer and
Foster, 2013; Tanaka et al., 2015). Model-based RL algorithms, on the other hand, exhibit
these capacities. In model-based RL, agents learn a model of the environment, i.e. how
states are connected, and can flexibly update values through mental simulation, at the
expense of higher computational costs. Learning the model of the world is mediated by a
state prediction error (SPE) or by surprise, which express the discrepancy between the
expected and the experienced state in the world.

In the field of neuroscience, it soon became apparent that this binary segregation between
model-free and model-based may be oversimplifying and there may not be a clear separat-
ing line (Collins and Cockburn, 2020; Daw, 2015, 2018; Langdon et al., 2018); humans and
animals exhibit behaviours consistent with both or a mixture of the two types of learning
in different circumstances (Daw et al., 2005), and in the brain, the neural substrates of the
two strategies are often shared (Doll et al., 2012; Gremel and Costa, 2013; Langdon et al.,
2018; Tanaka et al., 2015). For example, dopaminergic neurons have been traditionally
thought to convey a model-free RPE, but recent results have shown that they are also
sensitive to sensory prediction errors (Howard and Kahnt, 2018; Takahashi et al., 2017).
Thus, despite the wealth of studies on human learning (Anggraini et al., 2018; Cushman
and Morris, 2015; Daw et al., 2011a; Deserno et al., 2015; Dezfouli et al., 2014; Doll et al.,
2015a,b; Economides et al., 2015; Fermin et al., 2016; Gershman et al., 2014a; Gléscher
et al., 2010; Huys et al., 2012; Kroemer et al., 2019; Lee et al., 2014; Otto et al., 2013a,b;
Simon and Daw, 2011; Wimmer and Shohamy, 2012; Wunderlich et al., 2012a,b) it is
still an open question which strategies best describe human behavior in what type of
situations, as well as how strategies are implemented and combined in the brain (Daw,
2018; Huang et al., 2020).

More specifically, on the experimental side, research trying to address the above questions
has mostly employed the now classic two-stage task (Daw et al., 2011a; Glascher et al.,
2010) or variations thereof (Cushman and Morris, 2015; Deserno et al., 2015; Dezfouli
et al., 2014; Doll et al., 2015a,b; Economides et al., 2015; Kroemer et al., 2019; Otto et al.,
2013a,b; Wunderlich et al., 2012b), where the temporal credit assignment problem is less
pronounced and the computational cost of MB learning becomes minor. Scaling up the
task complexity in brain imaging experiments causes challenges for dissociating different
entangled learning signals (Daw, 2018; Fouragnan et al., 2018; Pernet, 2014). Moreover,
results seem to largely depend on task details, or even task instructions (da Silva and
Hare, 2020; Tanaka et al., 2015). On the theory side, the current RL account seems to be
missing various aspects of human learning both in terms of efficiency (Gershman and Daw,
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2017; Lake et al., 2017; Lengyel and Dayan, 2007), and of suboptimality (da Silva and
Hare, 2020; Findling et al., 2019; Mathys et al., 2011; Prat-Carrabin et al., 2020). The
space of possible algorithms describing human learning is yet to be determined (da Silva
and Hare, 2020; Daw, 2018) and the number of possible competing models considered
in studies is usually quite limited. In particular, policy gradient methods have received
relatively less attention in human experimental studies (Coddington and Dudman, 2019;
Li and Daw, 2011; O’Doherty et al., 2004).

In this work, we aim at identifying which classes of algorithms — model-free value-based,
model-free policy gradient, and model-based value-based — or combinations thereof
describe human learning behaviour and brain activity in a multi-step task with larger
state-space. We started from the broadly accepted standpoint that both model-free
and model-based computations are implemented in the human brain (Daw et al., 2011a;
Gléscher et al., 2010; Lee et al., 2014). We designed a novel multi-step decision making
task with an experimental manipulation that disentangles different learning signals at the
level of BOLD brain responses. A Bayesian treatment of our task gives rise to an outlier
detection algorithm featuring a surprise-modulated update. Contrary to the algorithms we
saw in the previous chapters, this algorithm entails a trade-off between integrating a new
observation and ignoring it, where the role of surprise is to attenuate learning instead of
accelerating it. We use this surprise modulation in a model-based algorithm and in novel
hybrid algorithms, where model-based surprise influences the model-free learning rate.
We report evidence for an actor-critic framework with possible model-based influences
as a likely model for behaviour, and we find neural signatures for both model-free and
model-based prediction errors. Our results extend previous fMRI findings to a multi-step
scenario and support the existence of multiple parallel learning systems in the brain.

4.2 Results

4.2.1 Experimental design to separate RPE from SPE

Twenty-three participants were recruited to perform our multi-step decision making task,
in a state-space with 7 circularly arranged fractal images (states) and 2 possible actions at
each state (apart from the goal which is a terminal state) (Fig. 4.1A). At the beginning of
each episode participants are shown an initial state, randomly chosen among two possible
initial states. As soon as a participant chooses an action, a different image is shown.
Participants continue to choose actions until they reach the goal, which completes an
episode (Fig. 4.1B). Their task is to reach the goal in the smallest number of actions.
The image of the goal state is visually distinguishable from all other states and known
to participants beforehand. State transitions are deterministic, with occasional “surprise

trials”, explained further below. In what follows, we will use the terms “state transition’
and “trial” interchangeably.
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During the experiment we run in the background the model-free SARSA-)\ algorithm
(Sutton and Barto, 1998) and the model-based Forward Learner (Gléscher et al., 2010)
with the participant’s choices as inputs. This gives us an online estimate of the reward
prediction error (RPE) and the state prediction error (SPE) used in the two algorithms,
respectively. The SARSA-) uses the RPE to approximate the Q(s,a) values, i.e. the
expected sum of future discounted rewards starting from state s and action a. The
Forward Learner updates the transition probabilities via the SPE and uses them to
directly compute the Q(s,a) values via the Bellman equation. More details on the
algorithms are provided in the Methods (subsection 4.4.4) and in Chapter 1. For the
online RPE and SPE computations, the choice of the parameters (e.g. learning rates
«) was based on pilot experiments performed prior to this study. On a “surprise trial”
participants transit to a state s” other than the one they have learned to expect as the
outcome of action a from state s (Fig. 4.1C). We have two types of surprise trials: (i)
purely random transitions, (ii) transitions that meet a threshold criterion on V values,
explained in the following. If a participant expects to transit from s to s’, the other state
s" is chosen such that s’ and s” have similar V' values, i.e. |V (s') — V(s")] < AV where
V(s) = max, Q(s,a) and AV is a small threshold. This manipulation does not affect
the MF system, since the experienced RPE stays the same. In learned transitions, in
particular, the RPE will take low values. At the same time, the experienced MB SPE
will be high, since the learned transition has been violated (Fig. 4.1C). As planned, this
novel experimental manipulation with online monitoring enables us to decorrelate the
RPE from the SPE (see Methods and Fig. 4.4 for more details).

4.2.2 Behavioral results

Participants were able to learn the task during a block of 20 minutes and reached the goal
in 3.5 actions on average (minimum possible is 2) already at the 4th episode (Fig. 4.1D).
We introduced surprise trials from the 5th episode onwards, which results in an increased
average number of steps that participants took to reach the goal (Fig. 4.1D). After this
point, the episode length gradually decreases again, indicating that participants were able
to learn how to act, even in the presence of surprise trials.

Fig. 4.1E depicts the percentage of correct actions in time averaged across all participants,
for 4 representative states. The task structure allows different paths to the goal state
and therefore not every participant visits the same states in each episode. In order to
make learning comparable across participants, the horizontal axis of Fig. 4.1E does not
index the episode number, but the n-th visit of that state. We define a “correct action”
as the one that brings the participant closer (in terms of number of actions) to the goal
state. Starting from a given state the two actions lead to new states at different distances
from the goal. For example, from the state s5 of Fig. 4.1A one action (the correct one)
leads to the goal (0 actions from goal), whereas the other action leads to a state located

2 actions away from the goal. We therefore denote state s5 as “0-or-2”. States that have
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Figure 4.1 (previous page) — Multi-step learning task de-correlates learning signals.
A. The hidden graph of the task. There are seven states and two possible actions at
each state. Black arrows mark the possible deterministic transitions between states. The
goal state G is highlighted in yellow. For most states there is a “correct” action that
brings participants closer to the goal and a “wrong” one that brings them to a state
away from the goal. For the exemplar state s5 the correct action leads directly to the
goal (green arrow - 0 actions from G), whereas the wrong action leads to state s6 which
is 2 actions away from the goal (red arrows - 2 actions from G). We denote this state
as “0-or-2”. B. Schematic of the timeline of a full episode. Participants view one state
(specific fractal at a specific location) on the screen, choose one action that moves them
to the next state, and continue until they eventually reach the goal state. C. Example
of a surprise trial. The expected transition for the action chosen by the participant is
s2 — s5, but the next image (and corresponding location) is the one of s6, which has a
model-free V value approximately equal to the one of s5. This results in a high State
Prediction Error (SPE) and a low Reward Prediction Error (RPE). D. Mean length of
each episode. The circles represent the number of actions per episode (from start to goal
state) averaged across participants. The error bars mark the standard error of the mean.
Already at the 4th episode, participants reach the goal within 3.5 state visits on average
(minimum possible is 2). From the 5th episode onwards, we introduce surprise trials and
the average episode length increases at this point. Participants learn nevertheless how
to act despite the presence of surprise trials, indicated by the decrease in episode length
thereafter. E. Percentage of selecting the “correct” action at states whose distance from
goal is “0-or-3”, “0-or-1", “l-or-2”, and “2-or-2” actions, respectively, as a function of the
number n of state visits. The vertical position of a green circle indicates the fraction of
participants that selected the “correct” action, while the circle size represents the number
of participants that visited this state n times. Only a few participants (small circles)
have visited a state more than 20 times. The average learning curve (red line) is obtained
by fitting a weighted exponential to the dots. The vertical dashed blue line indicates
the time when the red learning curve reaches the 80% performance level. These graphs
provide qualitative evidence that participants learn to choose the “correct” action faster
for states that are closer to the goal and for which the “wrong” action has more negative
consequences.
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equal minimum distance from goal may differ in the resulting distance from goal when the
“wrong” action is chosen, or, in other words, in their “difference in correctness” between
the two available actions. For example, for two states “0-or-3” and “0-or-1” choosing
the correct action brings participants to the goal, but choosing the wrong one is more
detrimental for the “0-or-3” state (see Supplementary Material Table 4.2 for distance to
goal and action “correctness” across states). We find that participants’ speed of learning
at each state is, qualitatively, related to the distance from the goal and to the “correctness
difference” of the available actions (Fig. 4.1E).

More specifically, participants reach higher performance levels much earlier for the state
that is “0-or-3” actions away from the goal, compared to the “0-or-1” and “l-or-2” states
(Fig. 4.1E, upper left, bottom left and upper right panels, respectively). In the state
“0-or-3” (Fig. 4.1E, upper left) the 80% performance level (vertical dashed blue line) is
reached after only 5 visits, whereas for the state “0-or-1” (Fig. 4.1E, bottom left) after
approximately 14 visits. This is likely due to the fact that, even though the correct action
is still only one step away from the goal, the “wrong” action has less negative effects. At
the state with distance index “1-or-2” (Fig. 4.1E, upper right) learning to a performance
level of 80% takes 27 visits. On the other hand, for the state of Fig. 4.1E bottom right,
where any action brings the participant to states 2 actions away from the goal we do
not observe a clear preference between the two. Collectively, this tendency to choose the
correct action when in closer proximity to the goal, can be interpreted as a sign of reward
information backpropagating to actions that led to it.

4.2.3 Model-free algorithms explain behaviour best

We consider several possible strategies that a participant may follow to accomplish the
task: purely model-free, purely model-based, model-free with surprise modulation, and a
hybrid combination of model-free and model-based (Fig. 4.2).

A MF strategy with RPE-mediated updates does not take into account the information
about the existence of surprise trials, and caches the values of surprising transitions
together with non-surprising ones. By construction of the task, this will most of the time
not affect substantially the value estimation, since the landing state of a surprise trial is
chosen so that it has a value similar to the expected state (apart from the purely random
transitions). In the family of purely MF algorithms we considered the TD algorithm
SARSA-) (Sutton and Barto, 1998), the policy gradient REINFORCE (Williams, 1992),
and the Actor-critic (Sutton and Barto, 1998). SARSA-) estimates the Q(s, a) values with
RPE-mediated updates, and the REINFORCE algorithm estimates the policy parameters
of all the preceding within-episode decisions directly with gradient ascent using the return.
The Actor-critic involves both value and policy parameter learning. The V values are
estimated by the critic and an RPE is fed into the actor to modify the policy parameters.
All three algorithms use eligibility traces to backpropagate updates to preceding actions.
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On the other hand, a MB strategy attempts to estimate a model of the world, summarized
by the transition matrix T'(s¢, at, S¢+1) = P(Si41 = $¢41]St = s¢, Ay = a;) from a state
St = s¢ to a state Sy11 = s¢+1 when selecting action A; = a;, and the reward function
R(sy,ag,8¢41) = E[Riy1 = re41|St = s¢, Ay = ag, Sy11 = s¢41]. It then uses its estimated
model to compute the values of states and action. Analogous to Gléscher et al. (2010), we
assume that the reward function is known to participants through the instructions and
familiarization with the task; i.e. only one of the images is rewarding. We consider two

ways of estimating the transition matrix of the task, a sub-optimal and an optimal way.

First, a traditional approach for learning the transition matrix employs a delta-rule
based on the SPE (Forward Learner: Daw et al. (2011a); Gléscher et al. (2010)), that
incorporates new information with a constant leak term. In this case, surprising trials
are essentially treated as stochasticity in the environment.

Second, the transition matrix can be estimated optimally in a Bayesian fashion, assuming
prior knowledge on the structure of the task (generative model), formed by the instructions
we gave to participants (i.e. that there will be occasional unexpected transitions, but the
task graph does not change). For this, we developed an approximate Bayesian model
learning algorithm — a particle filter — that estimates the transition matrix accurately, while
maintaining constant computational complexity in time (see Methods - subsection 4.4.3 -
for details). The derived update rule involves a surprise-modulated adaptation rate vs;,
where Spr stands for the “Bayes Factor Surprise” we have seen in Chapter 2 (Equation 2.7
and Equation 2.9). Our algorithm essentially implements outlier detection; high values
of surprise in this task, signal a surprising transition that should be ignored, since the
underlying graph connectivity does not change. Hence, in contrast to Chapter 2, surprise
slows down learning, instead of accelerating it.

Either of the two ways to estimate the model of the world can be coupled to a reinforcement
learning procedure that estimates the @) values through value iteration (e.g. the Forward
Learner (Daw et al., 2011a; Gléascher et al., 2010)) or an approximation thereof (e.g.
Prioritized Sweeping (Moore and Atkeson, 1993; Van Seijen and Sutton, 2013)), leading
to a total of four MB algorithms. We considered two of these: the Forward Learner that
estimates the transition probabilities via an SPE (FWD), and a particle filter (with 20
particles) for the model estimation combined with Prioritized Sweeping (PS with pf),
similarly to Chapter 3.

We also considered strategies that are a mixture of MF and MB. A first possibility is
that model learning provides an additional teaching signal to the model-free system
and affects the value or policy computations implicitly. For example, a high value of
Ysgp OF a detection of a surprise trial by the particle filter may dampen (“continuous
modulation”) or shut off (“binary modulation”) the update of the model-free values or
the policy parameters of a particular transition (see Methods - subsection 4.4.4 - for
details). We indicate methods with binary modulation with the suffix “binary” and
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with continuous modulation with “continuous”. We introduce the Surprise REINFORCE
binary, the Surprise Actor-critic binary and the Surprise SARSA-X binary, as well as their
corresponding continuous versions.

A second possibility is a hybrid strategy that involves a weighted average of MF and MB
computations, similar to Daw et al. (2011a); Glascher et al. (2010); Lee et al. (2014).
In the category of hybrid strategies we include the Hybrid Learner-0 (Gléscher et al.,
2010), which is a mixture of FWD and SARSA-0, and the Hybrid Learner-A (Daw et al.,
2011a), which is a mixture of FWD and SARSA-X. Moreover we introduce the following
hybrid algorithms: (1) Hybrid-A-PS-pf, that combines a particle filter (pf) with Prioritized
Sweeping (PS) and SARSA-A, (2) the Surprise Hybrid-A-PS-pf binary, that combines pf
with PS and Surprise SARSA-X binary, (3) the Surprise Hybrid-A-PS-pf continuous, that
combines pf with PS and Surprise SARSA-) continuous, and (4) the Hybrid Actor-critic,
that is a mixture of the Actor-critic and the FWD. Finally, we also included a random
walk with a bias term as a null model. More details on each algorithm can be found in
the Methods (subsection 4.4.4).

After the experiment we fit the above algorithms to behaviour, i.e. to participant’s actions,
using the Metropolis-Hasting Markov Chain Monte Carlo (MCMC) method (Hastings,
1970), similar to Lehmann et al. (2019). In order to perform model comparison we
approximated each model’s log-evidence using cross-validation. This method is similar to
approaches used in statistics and economics (Berger and Pericchi, 1996; Fong and Holmes,
2020; Rust and Schmittlein, 1985; Wang and Pericchi, 2020) and is often considered a
more robust method for model comparison than Akaike’s Information Criterion (AIC)
and Bayesian information criterion (BIC) (Ito and Doya, 2011). We repeated 5 times a
3-fold cross-validation optimization procedure, starting from different random locations
in the parameter space for each run and each fold. Each cross-validation run gives us
the sum of the estimated maximum negative log-likelihood (LL) across the 3 test folds.
We compute the mean of this quantity over the 5 optimization runs and report this as
log-evidence for each algorithm. More details on the model fitting procedure can be found
in the Methods (subsection 4.4.5).

Fig. 4.2A and Fig. 4.2B depict the results of the model fitting procedure in terms of
negative log-evidence. Fig. 4.2A shows all algorithms we considered and Fig. 4.2B
is a zoomed version of only the leading algorithms. For simplicity, we omit here the
“continuous” versions of the algorithms, which led to similar results as their “binary”
versions. We also omit the Surprise Hybrid Learner-\-PS-pf binary and the Surprise
Hybrid Learner-A-PS-pf continuous, which led to similar or worst performance than the
Hybrid-A-PS-pf, and provide them in the Supplementary Material (Fig. 4.6).

The algorithms that are the most likely models of behaviour are the Actor-critic, the
Surprise Actor-critic, the Hybrid Actor-critic and the REINFORCE (Fig. 4.2B). The
Actor-critic is weakly significantly better than the other three, with difference in log-
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Figure 4.2 (previous page) — Algorithm fit to behaviour. A. Negative model log-
evidence for all algorithms. Smaller values indicate better performance. The most
likely models for behavior are the Actor-critic, the Surprise Actor-critic binary, the
Hybrid Actor-critic and the REINFORCE. B. Negative model log-evidence for only
the best algorithms, sorted with increasing performance. The error bars (not marked
in A because they were not visible) indicate the standard error of the mean across 5
runs of a 3-fold cross-validation procedure. The log-evidence differences A between the
Actor-critic and the rest closest winning algorithms are noted on the graph. A larger
than 3 is considered significant, and larger than 10 strongly significant, but sometimes
the significance threshold is placed at the value of 2 (Efron and Hastie, 2016; Held and
Ott, 2018; Neath and Cavanaugh, 2012). We thus consider the Actor-critic only weakly
significantly better than the other winning algorithms. The Surprise Actor-critic, the
Hybrid Actor-critic and the REINFORCE are essentially indistinguishable from each
other (A < 1). C. Schematic illustration of the families of algorithms considered. The
participants’ policy 7 might be formed in a pure model free manner (blue), possibly
mediated by an RPE, or in a purely model based manner (green), possibly mediated by
an SPE or a surprise-modulated rate yg,,. Alternatively participants may exhibit hybrid
policies. One possibility is the modulation of the model free system by a model based
surprise-related signal (magenta), either in a continuous or in a binary way (i.e. on/off
manner). Another possibility is a weighted sum of a model free (pure or modulated) and
a model based strategy (orange). Abbreviations: PS: Prioritized Sweeping, pf: Particle
Filtering.

evidence (A) 2.05, 2.33, and 2.46 from the Surprise Actor-critic, the REINFORCE and
the Hybrid Actor-critic, respectively (Fig. 4.2B). Differences larger than 3 are usually
considered significant, and larger than 10 strongly significant, but some authors place the
significance threshold at the value of 2 instead of 3 (Efron and Hastie, 2016; Held and Ott,
2018; Neath and Cavanaugh, 2012). The Surprise Actor-critic, the Hybrid Actor-critic
and the REINFORCE are essentially indistinguishable from each other (A < 1). We
interpret these results as evidence for the family of algorithms with policy learning and
Actor-critic architecture as the most likely model of behaviour, and as not strong evidence
for selecting one among them compared to the rest in this family.

The purely MB algorithms seem not appropriate for explaining behaviour in this task.
Among the hybrid algorithms, the one that achieves the highest log-evidence is the Hybrid
Actor-critic. Overall our results suggest that behaviour is more consistent with model-free
learning. The Surprise Actor-critic and the Hybrid Actor-critic do employ a model
learning procedure, each one with a different approach. The first one learns to ignore the
surprise trials and the second one averages them together in the transition probabilities
estimation. Nevertheless, in terms of behavioural fitting, they are indistinguishable from
each other and from a purely model-free Actor-critic.

Our behavioural fit favors an estimation of policy parameters rather than @) values, since
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overall the frameworks of Actor-critic and REINFORCE are the winning ones. It is worth
mentioning that in the Actor-critic the resulting fitted learning rate of the critic was
smaller than 0.0001, making it therefore very similar to the REINFORCE algorithm. The
exact values of the log-evidence for each algorithm, and its standard error across the
optimization rounds, can be found in Table 4.1 of the Methods.

4.2.4 Neural signatures of learning signals

So far we saw that the model-free Actor-critic is sufficient for explaining behavior and
weakly significantly better than the Hybrid Actor-critic and the Surprise Actor-critic.
At the same time, however, the introduction of surprise trials from the 5th episode
onwards causes an increase in the mean path length of participants (Fig. 4.1D). We also
found that the participants’ reaction times were significantly longer on surprise trials (see
Supplementary Material Fig. 4.7). Moreover, at the end of the experiment, participants
reported that they were able to notice the occurrence of surprising transitions. We, thus,
hypothesized that fMRI brain activity nevertheless correlates with a surprise signal, that
is presumably relevant for action selection rather than model updating. We use two
different algorithms to evaluate this, the Hybrid Actor-critic and the Surprise Actor-critic.
Both rely on RPE and a surprise signal in an Actor-critic architecture. For each of the
two algorithms we build one General Linear Model (GLM), where we included their RPE
and their respective model learning signals (SPE and ~g,, for the Hybrid Actor-critic
and Surprise Actor-critic, respectively). Signals were time-locked to the occurrence of the
states and were othogonalized with respect to the states regressor, but not with respect
to each other (see Methods for details on the fMRI data acquisition, preprocessing and
statistical analysis).

Using the Hybrid Actor-critic, we find significant correlation of the RPE in the ventro-
medial prefrontal cortex (vimPFC), in the anterior cingulate gyrus, the posterior orbital
gyrus, the parahippocampal gyrus, the inferior occipital gyrus (Fig. 4.3A), as well as in
the middle temporal lobe and the fusiform area (not shown). As mentioned earlier, the
learning rate of the critic was very low, meaning that there is a very small update of
the critic’s V' values on a trial-per-trial basis. Thus, the RPE takes most of the time (in
non-goal states) very small values and higher values at the goal state. Hence, the neural
correlates we find largely include regions that have been associated with reward delivery
and values, e.g. vimPFC and orbitofrontal cortex (OFC) (Behrens et al., 2008; Chase
et al., 2015; Hare et al., 2008; Stalnaker et al., 2018; Wunderlich et al., 2012a), rather
than subcortical regions usually reported in the literature for RPEs.

For the MB SPE we find correlated activity in the supplementary motor area (SMA), the
anterior mid-cingulate cortex (mACC), the middle frontal gyrus, the angular gyrus, the
supramarginal gyrus, the superior parietal lobule and the superior frontal gyrus (Fig. 4.3B).
While some of these regions, namely the regions located around the intraparietal sulcus
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(angular gyrus, supramarginal gyrus and superior parietal lobule) and regions in prefrontal
cortex were also reported in the two-step task of Glascher et al. (2010), the prefrontal
regions we find are shifted to more middle and superior locations than the ones found in
Gléascher et al. (2010). All aforementioned regions we find overlap with components of
the “salience network” (Seeley et al., 2007), previously associated with the detection of
salient or novel stimuli and with error monitoring in order to guide actions. Interestingly,
we do not find correlates of the SPE in subcortical structures. The exact coordinates and

p-values of the locations showing significant (peak) correlation are provided in Table 4.3.

Using the Surprise Actor-critic, we next correlate BOLD responses with the RPE and the
Yspp Signals, in a separate linear model. For the RPE we overall find the same regions
as with the Hybrid Actor-critic. For the vg,, we find activation of a small extend in a
subset of the regions we reported for the SPE and unilaterally (right middle frontal gyrus,
right angular gyrus, left supramarginal gyrus, right superior parietal lobule, right superior
frontal gyrus). Empirically, there seems to be an (approximately) one-to-one non-linear
relationship between the SPE and the vg,, (see Supplementary Fig. 4.8). At least in a
linear model, however, the SPE seems to lead to more regions of significant correlation
with brain activity (see Supplementary Material subsection 4.5.5 for more details).

y=10

Figure 4.3 — Neural correlates of model-free and model-based prediction errors.
T-statistic maps of A. RPE in ventromedial prefrontal cortex, anterior cingulate gyrus,
posterior orbital gyrus, parahippocampal gyrus and inferior orbital gyrus, B. SPE in
supplementary motor area, middle frontal gyrus, angular gyrus, supramarginal gyrus and
in the superior frontal gyrus (21 subjects, random effects analysis, whole brain family-wise
error (FWE) correction p<0.05, nonparametric permutation test with maximum statistic
approach).
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4.3 Discussion

We have introduced a novel multi-step decision making task that allows the disentangle-
ment of model-free and model-based prediction errors in human BOLD signals. In our
analysis we considered various existing and novel RL algorithms, as well as different ways
to estimate the model of the task. We have developed a novel surprise-based particle
filtering approach for outlier detection, and hybrid RL algorithms, where the learning
rate of the model-free system is modulated by surprise. We have found that human
behaviour is best explained by the actor-critic/policy gradient framework. Contributions
from the model-based learning system are not detectable in behaviour, but we did find
representations of model-based prediction errors in neural signals. We found signatures
of RPE in vimnPFC and OFC, whereas SPE correlated with activity in the intraparietal
sulcus, SMA, and middle frontal gyrus. Our results extend previous fMRI results in a
multi-step scenario, support the existence of parallel learning systems in the brain, and
add to the collection of learning tasks towards gaining a better understanding of the

various aspects of human learning.

In this section we discuss our experiment and its connections to other experiments in the
field of animal and human learning. We then discuss further our results on behaviour
and neural signatures, and provide a few future directions.

4.3.1 A multi-step decision making task with surprising transitions

Our experiment allows the detection of model-free and model-based brain signatures in
a multi-step scenario. As a starting point for the task design, we had the algorithms
SARSA-) (Sutton and Barto, 1998), Forward Learner and their hybrid combination,
which have been shown to explain human behaviour in numerous studies (Daw et al.,
2011a; Doll et al., 2015a; Economides et al., 2015; Gléscher et al., 2010; Lee et al., 2014;
Otto et al., 2013a). However, the idea we follow for the decorrelation of MF and MB
prediction errors stays quite generic (but see subsection 4.4.2 in the Methods section for
a situation that can reduce the efficiency). It is worth noting that our task does not aim
at de-correlating or distinguishing algorithms at a behavioural level, but, given the view
that humans implement both MF and MB strategies, de-correlating prediction errors at
the level of brain signals. Moreover, our task does not seek to dissociate different possible
MB signals from each other (i.e. SPE from other surprise signals), but MF signals from

model learning ones.

We have shown that Bayesian inference on the generative model of our task leads to a
surprise signal that inhibits learning, rather than accelerating it (see Methods section 4.4).
The concept of surprise having different effect on learning depending on the statistical
context has been previously proposed and developed for tasks involving tracking of targets
in Gaussian settings (d’Acremont and Bossaerts, 2016; Nassar et al., 2019). Here, we
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start from a general generative model describing the occurrence of outliers and develop
an approximate Bayesian algorithm for a general case. Previous work has sought to
differentiate behavioural and brain responses for the case that learning should increase
(in a change-point setting) versus when learning should decrease (in a outlier occurrence
setting) (d’Acremont and Bossaerts, 2016; Nassar et al., 2019). In our work, we focused
on dissociating signals related to reward from those related to model learning, and the
use of outliers served as a handle towards this goal.

We see connections between our task and tasks developed recently for studying the role
of dopamine in learning (Langdon et al., 2018). For example, Uchida and colleagues
employed a virtual navigation task where mice were teleported to different tracks with
same distance to goal. They found that the ramping activity of dopamine neurons codes
for an RPE and not sensory surprise (Mikhael et al. (2019) and unpublished data).
In another study, Takahashi et al. (2017) administered reward of the same value but
different identity (flavor) to rats. This increased the firing rate of some dopamine neurons,
suggesting that they respond to errors in reward identity, and not only to reward quantity,
and that dopamine may relay a multi-dimensional prediction error (Stalnaker et al., 2019;
Takahashi et al., 2017). Similarly, in an fMRI study (Howard and Kahnt, 2018), the
identity of an unexpected odor with same pleasantness could be decoded from midbrain
BOLD signals (Howard and Kahnt, 2018; Stalnaker et al., 2019). The focus, the tasks
or the nature of the data of the above studies differ from ours, but the common line is
the introduction of a (sensory) change, while keeping the value similar. Here, we did not
find striatal activation uniquely explained by SPE or surprise. However, dopaminergic
neurons are known to project to many other regions in the brain apart from the striatum,
such as the prefrontal cortex, thus it is hard to tell from our data if dopamine is or is not
involved in the SPE.

4.3.2 Behaviour is best explained by model-free learning

Participants learn fast and all the models that are the most likely descriptions of behaviour
make use of eligibility traces, consistent with findings in Lehmann et al. (2019). The
winning algorithms come from the family of policy gradient methods, with possible
contributions of RPE from a critic in the Actor-Critic architecture and from a surprise
signal. Policy learning has received relatively less attention in human studies, with few
exceptions (Ito and Doya, 2011; Li and Daw, 2011; O’Doherty et al., 2004). More attention
is likely to be drawn, as recent studies indicate that the activity of midbrain dopamine
neurons seems to be closely related to the initiation of actions, and that policy learning
is a likely framework to reconcile these observations (Coddington and Dudman, 2019).

The reasons why these algorithms fit better with behaviour in our task are not clear.
One possibility is that the REINFORCE and the Actor-critic are more flexible and allow
the policy to turn into deterministic behaviour (for constant temperature 7), so they
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may be able to capture some gradual changes in the exploration strategy of participants
that SARSA-) cannot capture. Another possibility is that, similarly to Li and Daw
(2011) our task has a symmetric structure for the two actions, i.e. most of the time one
action is better than the other. REINFORCE allows for a simultaneous decrease in the
selection probability of the alternative action when the chosen one proved to be successful.
Further analysis, for example including the symmetric structure of the task in the other
algorithms, may help clarify the underlying reasons behind our behavioural fitting results.

From a pure model building perspective, our task can be seen as an outlier detection
task, where the optimal behaviour is to ignore the improbable observations. However,
the hybrid algorithm that includes an outlier detector modulated by surprise performed
similarly to algorithms without it, in terms of behavioural fit. Moreover, the resulting
values for the fitted stochasticity level (parameter o of the particle filter — see Methods
subsection 4.4.3 for details on the algorithm) were high. Taken together, these suggest
that participants may have not perceived the task as a purely deterministic one with
outliers, despite being instructed that the underlying graph does not change.

It is worth pointing out that our behavioural analysis carries the assumption that
participants use the same learning algorithm in this task, possibly with different parameter
values (e.g. learning rate). However, learning processes may differ across participants.
Since our task is not designed to make clear distinctions between learning algorithms at
the behavioural level, we did not consider this possibility here. Nevertheless, it may still
be interesting to investigate this possibility using a group-level analysis method (Rigoux
et al., 2014; Stephan et al., 2009).

4.3.3 Model-free and model-based neural signatures

Overall, learning the model of the task does not increase significantly the fit of the
respective hybrid algorithms and is not manifested clearly in behaviour. Nevertheless,
we find correlates of a MB SPE and weaker, but largely overlapping, correlates of yg;.
This may suggest that a MB learning system is active, possibly building an internal
model of the task and performing “latent learning” (Bast et al., 2009; Tolman, 1948),
but it is not (yet) in control. Such an interpretation is consistent with the idea that a
“mixture of experts” co-exist and run in parallel in the brain (Daw et al., 2005; Lee et al.,
2014; O’Doherty et al., 2020), and the control of the behaviour is delegated among them
depending on the circumstances and on multiple factors such as the uncertainty of each
expert and time constraints.

More specifically, concerning the neural representation of SPE, we find regions belonging
to the salience network (Seeley et al., 2007). The intraparietal sulcus has been found
to correlate with SPE and surprise signals in previous studies (Glascher et al., 2010;
Lee et al., 2014; Schad et al., 2020), as well as regions in the lateral prefrontal and
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orbitofrontal cortex (Doll et al., 2012; Gléascher et al., 2010; O’Doherty et al., 2015; Simon
and Daw, 2011). Moreover, the mACC and the SMA have been found to be components
of the network related to surprise (Fouragnan et al., 2018). Surprise and its network have
been viewed to comprise two roles. One role is the encoding of saliency or how much
an observation protrudes among others, driving an attentional mechanism that helps in
guiding actions. A second role is the implementation of a learning signal that mediates
the updating of beliefs and better future predictions (Fouragnan et al., 2018). Concerning
the first role, representations of surprise signals have been found in lateral parietal cortex
and the SMA, whereas the second role has been additionally associated with other brain
structures, such the insula and the striatum (Fouragnan et al., 2018). Our results are
consistent with the first role of surprise, also referred to as puzzlement surprise (Faraji
et al., 2018).

For the model-free RPE we found signatures in vmPFC, the anterior cingulate gyrus and
the posterior orbital gyrus. The vimPFC has been previously reported to correlate with
reward prediction errors, and more commonly with reward expectation and reward receipt
(Behrens et al., 2008; Chase et al., 2015; Daw et al., 2011a; Hare et al., 2008; Stalnaker
et al., 2018; Wunderlich et al., 2012a). The anterior cingulate gyrus has also been reported
to be active with expected values and with the assessment of outcomes (Chase et al.,
2015; Kolling et al., 2016). We did not find correlates of RPE in subcortical regions,
such as the ventral striatum. This can be explained by the fact that given our fitted
parameters the RPE timeline follows closely the timeline of reward receipt (higher values
at the goal state, lower elsewhere). Moreover, we did not perform a region-of-interest
analysis focused on specific regions, often done in the literature. At the same time, we
found activation in the putamen to be correlating with action selection, which speaks
in favour of an actor-based algorithm. Putamen is part of the dorsal striatum, and is
known to receive dopaminergic input from the substantia nigra and to be involved in
motor planning and execution (Takahashi et al., 2008).

The RPE timelines of the leading hybrid algorithms Hybrid Actor-critic and Surprise
Actor-critic give rise to similar brain regions with significant activations. Even more
interestingly, the timelines of SPE and 7s;., that stem from the different update rules of
the corresponding models, also give rise to similar brain regions with significant activations.
Thus, the observed neural representations seem to be robust and our results point to
regions involved in this type of computations, beyond the specific details of each signal
and each algorithm.

4.3.4 Future directions

We provide a method for decorrelating model-free and model-based prediction errors,
that can be used in different settings and can be combined with other experimental
manipulations. Our analysis of the behaviour and of the fMRI data indicates that
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behaviour in this task is explained best by model-free RL, that surprise trials were
perceived, and that model-based signals were calculated in the brain. Combining our
task with, for example, a change of goal location at a later stage would allow to assess

whether participants built indeed an internal model of a task.

In addition to finding neural correlates of model-based prediction errors, we found that
participants may have perceived the task as stochastic, rather than deterministic with
occasional outliers, despite having been informed that the graph does not change. A
recent study (da Silva and Hare, 2020) on the two-stage task (Daw et al., 2011a) pointed
out the impact of participants’ understanding of the task on behaviour. The authors also
showed that if a simulated agent is model-based but is using a “wrong” model of the task
structure, then the apparent best fit for behaviour can be a hybrid mixture of model-free
and model-based. Under the assumption that there were model-based contributions
in our task, the question is then, what is the model structure that human subjects
used? Does behaviour appear model-free because we yet do not know the “imperfect”
model and updating scheme that humans function with? These are in our view central
questions towards understanding human learning behaviour and more theoretical as well
as experimental work are needed to address them.

4.4 Methods

4.4.1 Participants and experiment details

Twenty-three healthy adults (average age 23.8 years old, right-handed, 10 female) were
recruited to participate in our experiment. All participants provided written informed
consent, and the experiment was conducted in accordance with the ethics commission
of the Canton de Vaud, Switzerland. Participants performed the task in a 3T Siemens
Prisma MRI Scanner at the Laboratoire de recherche en neuroimagerie (LREN) at the
Centre hospitalier universitaire vaudois (CHUV). Prior to the experiment, participants
were informed about the number of states and possible actions, and got familiar with
the task outside and inside the scanner during short sessions of two episodes each, with
different images and transitions than the ones used during the experiment. Furthermore,
participants were beforehand informed on the existence of surprise trials and on the fact
that the underlying transition matrix does not change.

We excluded two participants from both our behavioural and fMRI analysis: One par-
ticipant performed less than half of the average number of episodes that the rest of the
participants and likely did not understand the task, and another participant was falling
asleep and his brain images exhibited a high degree of movement artifacts. The remaining
21 participants performed on average 54 full episodes (std: 5.24), and 188 actions (std:
8.33). From these, approximately 17% (std: 1.5 %) were surprise trials. Fractal images,
their locations on the screen, and the assignment of transitions to left or right action
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presses were randomized across participants. We employed two different underlying
transition matrices also in a randomized way across participants. See Supplementary
Material Table 4.2 for the distance of each state from goal and the action “correctness”.
Participants were compensated with a fixed monetary amount for their participation,
plus a small extra performance-based amount.

After each action taken by a participant, from a state s to (an expected state) s’, we
checked whether the following conditions were fulfilled: (i) The transition from s to s
is learned according to the Forward Learner we ran online, (ii) there is a state s’ so
that |V (s') = V(s")| < AV where V(s) = max, Q(s,a) and AV is a small threshold,
according to the SARSA-A we ran online, and (iii) more than 3 trials have occurred
since the last surprise trial. If these conditions were fulfilled, the participant transited
to s”, and this constituted a surprise trial /surprising transition. Moreover, if during
8 consecutive trials no surprise trial had occurred, i.e. the above conditions were not
fulfilled, a randomly chosen unexpected transition was enforced in order to ensure some
variability — excluding the goal state and the current state from possible landing states.
Thus we have two types of surprise trials: those that meet the threshold criterion on V'
values and purely random transitions. We did not perform surprise trials during the first
4 episodes of the experiment.

4.4.2 Post-hoc analysis on the RPE/SPE decorrelation

After the experiment we fitted the SARSA-XA (Sutton and Barto, 1998) and the Forward
Learner (Daw et al., 2011a; Gléscher et al., 2010) to participants’ behaviour, obtained
their corresponding RPE and SPE values, and validated the original purpose of our
experimental design. Fig. 4.4A depicts the values of the RPE and the SPE for one
representative participant. Values that correspond to surprise trials are marked in red,
and non-surprise trials in blue. The Pearson correlation coefficient of RPE and SPE
without surprise trials (blue values) is r = 40.49. Adding controlled surprise trials to the
experiment yields an effective de-correlation » = +0.011 for this participant.

The mean absolute RPE and SPE correlation across participants is 0.105 £+ 0.063 (mean
+ std, 21 participants). The maximum correlation observed was 0.193 and the minimum
-0.151. Thus, our experimental design successfully breaks the correlation of the two
prediction errors over the course of learning. Fig. 4.4B and C show the histograms of the
RPE and the SPE, respectively, at surprise trials for all participants. The distribution of
the SPE is shifted towards higher values, whereas the one of RPE is centered around 0.

Fig. 4.5 depicts the same quantities for the Hybrid Actor-critic algorithm, which was
among the winning algorithms, with parameters fitted to the participants’ data. In this
case the RPE and SPE are moderately anti-correlated. The mean correlation of RPE
and SPE across participants is -0.503 4+ 0.122 (mean + std, 21 participants), with a
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Figure 4.4 — Post-hoc validation of RPE/SPE de-correlation. A. Each circle
corresponds to a joint RPE/SPE value (of SARSA-) and Forward Learner respectively)
for each of the 192 actions of one participant. Surprise trials are indicated in red and
non-surprise ones in blue. Without surprise trials (blue values only), RPE and SPE
have a Pearson Correlation Coefficient » = 40.49. The addition of surprise trials to the
experiment successfully decreased the correlation of the two signals (r = +0.011). B.
Histogram of RPE values at surprise trials and of C. SPE values at surprise trials, for all
675 surprise trials across all participants. We observe that surprise trials have overall low
RPE and high SPE values.

maximum correlation of -0.258 and a minimum of -0.684. Because the fitted learning rate
of the critic is very low, the V values are effectively not updated, and the RPE clusters
around zero and one: the RPE assumes very high values at the goal state and very low
values otherwise. The SPE at the goal state has lower values because it is a well-learned
transition. Nevertheless, the use of surprise trials successfully adds variability to the SPE
(Fig. 4.5C). The surprise trials push its distribution to higher values (Fig. 4.5C, red) and
make the SPE detectable in fMRI.

4.4.3 An approximate Bayesian algorithm for outlier detection

In the section we describe the approximate Bayesian model learning algorithm we devel-
oped that estimates the transition matrix of our task.

The generative model of the task

At each time step (trial) ¢ the participant is at a state Sy = s € S, where § = {1,...,7}
the set of possible states. Upon selection of an action A; = a € A, where |A| = 2 the
participant observes at the next time step ¢ +1 a state S;11 = s’ € S which is drawn from
a fized in time probability vector P** = p*® € [0, 1]‘3 l. Or equivalently, the next state s’
is drawn from a distribution with parameters p*®, i.e. §'[p°® ~ P(s';p**). However, at
every time step ¢, there is a jump probability p; € (0,1) for a surprising transition to take
place. The occurrence of a surprise trial is indicated by the event Z7* = 1; otherwise
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Figure 4.5 - RPE/SPE correlation in Hybrid Actor-critic. A. Each circle corre-
sponds to a joint RPE/SPE value of the fitted Hybrid Actor-critic model for each of
the 192 actions of one participant. Surprise trials are indicated in red and normal trials
in blue. Surprise trials add variability to the SPE, but the RPE and SPE values of
Hybrid Actor-critic are anti-correlated (Pearson Correlation Coefficient » = —0.3 for this
participant). This is because RPE is high at the goal states, where SPE is low since it
is a well-learned transition. B. Histogram of RPE values at surprise trials for all 675
surprise trials across all participants. C. SPE values at surprise trials in red (675 trials)
and at non-surprise trials in blue (3278 trials) . Surprise trials shift the distribution of
SPE to higher values, compared to the non-surprising trials.

Z7* = 0. On a surprise trial the next state s’ is uniformly selected from a pool of available
states, i.e. is drawn from a known (uniform) distribution, i.e. s’| ~ U(s’). Note that
our criterion for the landing state upon a surprise trial, i.e. having a V value close to
the state that was expected (see subsection 4.4.1 for details) is neglected here, since the

participants are agnostic to this fact.

The next observed state s’ at time step ¢ + 1 is drawn from the distribution corresponding
to the currently experienced state-action pair at time ¢. Thus, as in Chapter 3, the time
index ¢ refers to real time (discrete time steps), and we define the variable 7 (s,a) as the
set of timepoints in [1,¢] that a particular (s, a) pair is visited.

Our task can be formalized as a set of generative models of the following form, for each

(s,a) pair

P(psa) _ bsa,(O)(') ’

P(z’*) = Bernoulli(p,),

) (b3) (4.1) @
sa _sa P(s|p*®) if 2/*=0 and t—1¢€7T(s,a),

P(s/}p, 5 >={ (Ip™) i =i (5a)

U(s') if 2=1 and t—1€7T(s,a). @

We recall that random variables are indicated by capital letters, and values by small
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letters, and we often drop the indication of the random variables to ease notation. P
indicates either a probability density function (for the continuous variables) or a probability
mass function (for the discrete variables). b*®(®) is a prior distribution from which the
parameters p*® are drawn at the beginning and stay fixed throughout the task. P is the
time-invariant likelihood function and U can be any distribution.

The goal of a participant or an agent learning the model of the task is the estimation
of the parameters p**, for each (s,a) pair. Given a sequence of observed states sy., the
participant may maintain a belief psa(®) (p**) about the parameter p** at time ¢, which,
as we saw in the previous chapters, is defined as the posterior probability distribution
P(P** = p**|s1,). The participant’s goal is to update the belief b*®(®)(p*?) to the new
belief b*®(+1)(pse) = P(P5* = p*®|s1.4,1), or an approximation thereof, upon observing

St+1-

It can be shown that the updated belief b*®(+1) (ps@) after observing sy 41 is

bsa,(t+1)(psa) =(1- ’y(t+1))bg’(t+1)(psa) + ,.Y(t*l)bsav(t) (p**), (4.2)

SBF SBF

The derivation follows the same steps as in Chapter 2 (section 2.4) for the proof of the
Proposition (Equation 2.10) and is also provided in the Supplementary Material of this
chapter for completeness.

We briefly explain the terms appearing in Equation 4.2.

(t+1) |

The surprise-modulated adaptation rate Vspp 18

(t+1) _ mSBF(St+1; bsa’(t))
Spr 1+ mSpr(si11; be®)’

(4.3)

by
1-p;-
Surprise” of the observation S;11 = s¢41, which is defined as the ratio of the probability

where m = The Spr that modulates the adaptation rate is the “Bayes Factor
of observing S;;1 = s¢41 given Z7{; =1 (i.e. given a surprise trial), to the probability of
observing S;11 = sy41 given Z7¢, = 0 (i.e. given a non-surprise trial)

U(sty1)

Sr (yr+1; b* (1)) = Plsipr;bsad)

(4.4)

This definition is conceptually the same as the definition of Spr we saw in Chapter 2
(Equation 2.7) for this generative model, for the case of jumps instead of change points
(see Supplementary Material).

b?’(tﬂ)(ps“) is the updated belief corresponding to a simple Bayesian update, i.e. to the
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incorporation of the new observation to the current belief using Bayes’ rule,

sa(t41) sav  P(se41|p*®)b0 (ps0)
bp (p™*) = Plsii;boa®)

(4.5)

We can observe that the resulting belief b*®(+1)(ps®) of Equation 4.2 is a weighted
average between integrating the new observation to the current belief and maintaining
the current belief (i.e. ignoring the new observation). That is

bneW(psa) — (1 _ ’ySBF) bintegration(psa‘snew’ bold) + Sar bold(psa)‘ (4.6)

Bayesian inference on this generative model leads to an updating scheme that performs
outlier detection, similar to d’Acremont and Bossaerts (2016); Nassar et al. (2019).
Interestingly, in this setting surprise modulates learning, but does not accelerate it; on
the contrary high surprise reduces the influence of the new observation on the update.

Particle Filtering

Computing the updated belief of Equation 4.2 at each time step is computational intensive.
We describe here a way to approximate the belief with Particle Filtering.

One way to compute the belief at time ¢ 4 1 is through marginalization over the hidden
variables 215, 1, i.e.

b (D () = 37 P 2350, 5101 P (R o) (47)

Z1:t+1

The first term P (p**|2{% 1, s1:¢+1) in the sum can be easily computed; given the knowledge
of the occurrences of surprise trials, we simply gather together all the non-surprising
observations and use them to calculate the distribution of p*®.

The term P(z{4 11 |s1:¢4+1) is however difficult to compute and the summation over all pos-
sible sequences of surprise trial occurrences is computationally expensive. We approximate
this term via particle filtering (Gordon et al., 1993), i.e.

N
P(efilsnern) = 3wt V00 — A1), (48)
i=1
where {zfig N | is a set of N realizations (particles) of z{% drawn from a proposal

distribution W(z{%,|s1:441), and {wtsi’l(i) N | are their corresponding weights at time

t+1.
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Therefore the approximated belief is

N
sa,( t+1 t+1 sa sa (1 sa i)
b E , t+1 E :wt+1 |21 t+1a31t+1) (4.9)

@ (tH)( #4) is the approximated belief of each particle i. At each time step we (i)
update the weights {wtill)}Z 1, and (ii) sample the new state zfi’l(l) for all N particles.

where b

It can be shown (the derivation follows the same steps as in Chapter 2 (section 2.4) and
is also provided in the Supplementary Material of this chapter) that the weight update of
the particles is

sa, (i) (t+1)y  sa,(3) (t+1)  sa,(7)

wt+1 = (]' - ’YSBF ) B t+1 + SBF wt Y (41())
where ,yét;l) = Jigg(&t; 1bbs :)) ) the surprise-modulated adaptation rate of Equation 4.3,
_ _Dj .
m= i
. P . 6"30‘»(15) .
wsa,(z) o (5t+1a i )wfa,(z) (411)

B,t+1 ™ P(5t+1; 6sa,(t))

are the weights that correspond to the incorporation of the new observation, i.e. to the

Bayesian update bsa (D)

We can see that the weight update rule exhibits the same surprise-modulated trade-off as
Equation 4.2.
(@)

At each time step we sample the new state ztsi’l of each particle ¢ from a proposal

(1)

distribution (2,1} )\z ,81:4+1).- The probability for a particle i to interpret the

observed transition as a surprise trial is (see Supplementary Material)

Uz = 1257 s141) = Y55 (SBF(St—Ha b;“"), T fcp ) : (4.12)

Since yg, is @ monotonous function of surprise, the more surprising the observed state

s¢+1 18, the more likely it will be for the particle’s hidden state to take the value zta D _ g

Finally the approximated belief is

N N
b () = 3wt P e s1enn) = Y Wit P@ s, e ), (4.13)

i=1 i—1 [Let+1]

sa,(i)
[1:44+1]

= 1tot' = t+1 for particle i for a state-action pair, i.e. my oy Z) ={ke{1,.. t}z" @ —
0,5 = Sk,a = ai}.

where we denote m;. the time points of non-surprise trials within the time window
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The implementation details of our particle filtering (e.g. the resampling procedure) are
the same as described in Chapter 2 (See section 2.4 and Algorithm 3 for the pseudocode).

Approximating the belief via Equation 4.13 may give the impression that the whole
history of observations si.;y1 and of particles’ hidden states zfat_(ﬁ have to be kept in
memory. But in many tasks, and in particular in our task, this is not needed and all
information about the previous observation can be summarized in counts, similar to the

previous chapters.

Without loss of generality, we can formulate our task using distributions from the
exponential family. Then the parameters p** are drawn from a Dirichlet distribution
Dir(c - 1), where o € (0, 00) is the stochasticity parameter. On a non-surprise trial the
next state sy41 € {5(1), v 8(7)} is drawn from a categorical distribution with parameters
P, ie. spq1|p®® ~ Cat(sgr1;p%*). As in Chapter 3, following the general formulation of
the exponential family of distributions (given in Chapter 2) it can then be shown that
for the estimation of the transition probabilities p*® to all other states, for the currently
experienced state and action pair (s, a) the update of the unnormalized weights wfi’l(")
upon the observation of the next state s;r; = s is

(4)
o ,(1) Nt (S a, 3t+1) +o 1\ _sa (1)

= +p , 4.14
it = (- )2'5' (N (s,a,5®) + o) JISI> )

where Nt(i)(s, a,Sg41) = Zi/—ms"’(” [Sy = s+1] are the counts for the occurrence of a state
=M1
St+1 from (s,a) at all non-surprising trials, as counted by the ith particle ([.] denotes the

Iverson bracket, and equals to 1 if the condition within the bracket is fulfilled, 0 otherwise).
Intuitively, the above equation entails a weighted average between the expected value of
the transition vector p%® as calculated under the particle’s current hidden state, and a
uniform reset.

Finally, the estimated transitions from the particle filter from any (s, a) pair to any state
/
s' are

N
Tin0,) = B [P] = i =G
=1 ( (s, a, s )+ a)

(sas)

(4.15)

This estimation is then used in combination with Prioritized Sweeping, similar to Chapter
3.
4.4.4 Reinforcement learning algorithms

We briefly describe here the algorithms we considered or introduced. More details on
RL algorithms can be found in Chapter 1. At a time step t, the agent is at a state
sy € S, selects and action a; € A, which results in a transition to a state s;+1 € S and
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the observation of the reward r;11 € R at the next time step ¢ + 1, upon which the agent
updates its estimations. In all following algorithms, a € (0, 1] denotes the learning rate
and « € [0, 1] the discount factor.

SARSA-)\. SARSA-) (Sutton and Barto, 1998) estimates its (model-free) @ values
@ via the reward prediction error RPFE in the following way

RPE; = rip1 +7Q(St41, ary1) — Q(se, ar)
Q(s,a) < Q(s,a) + « RPE; ei(s,a), VseS,acA

(4.16)
{ 1, ifsg=s,a1=a
615(3,@) -

YAer—1(s,a), otherwise,

where the immediate reward ry41 is 1 for the goal state, and 0 for all other states),
and e;(s, a) are the exponentially decaying eligibility traces with decay factor A € [0, 1],
initialized to zero. Note that this is implementation of eligibility traces is called “replacing
eligibility traces” (Sutton and Barto, 1998).

Forward Learner. The Forward Learner (Daw et al., 2011a; Glascher et al., 2010)
estimates the true transition matrix 7" via the state prediction error SPE. It then estimates
its (model-based) @ values Qpsp through value iteration.

SPEt =1- T(st,at, St+1)
T(St,(lt,sl) < T(st,at,s') +OéSPEt, if St41 = s
T(st, at, s') T(St, at,s) —a T(st, at,s'), otherwise (4.17)

Q(s,a) = ZT(S,@,S’) [R(s,a,s') + VV”(S/)], VseS,ae A, seS,

where T' the estimated transition matrix. Analogous to Glischer et al. (2010) we as-
sume the reward function R to be known to participants through the instructions and
familiarization with the task; i.e. only one of the images is rewarding.

Hybrid Learner. The Hybrid Learner (Daw et al., 2011a; Gléscher et al., 2010) is a
(time-dependent) weighted average of SARSA-) and Forward Learner.

Q(s,a) = w Qup(s,a) + (1 —wy) Qur(s,a), Vse€S,acA (4.18)

where Qg and Qs the values of the model-based Forward Learner and of the model-
free SARSA-) respectively. The weight between the two systems can change in time in
an exponential fashion, controlled by an offset wy and a decay slope k.

Actor-critic.  The Actor-critic (Sutton and Barto, 1998) is a model-free algorithm,
where the V' values are estimated by the critic and a RPE is fed into the actor to modify
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the policy parameters.

RPEy =141+ V(st41) — V(st)
V(s) < V(s)+a.RPEef(s) VseS§

ef(s):{ 1, if s; =s

yAe§_(s), otherwise (4.19)
p(s,a) « p(s,a) + ay RPE ef(s,a) VseS,ae A

e3(s, q) = 1—7n(s,a), if s, =s,a, = a
yAe? {(s,a), otherwise,

where €f(s) and ef(s,a) are exponentially decaying eligibility traces for the critic and the
actor respectively, initialized to zero, a. and «ay are the learning rates of critic and actor
respectively, and p(s, a) signifies the preference for action a when in state s.

REINFORCE. The REINFORCE algorithm (Williams, 1992) estimates the policy
parameters of all the preceding within-episode decisions directly with gradient ascent
using the return, in a model-free manner.

0+ 0+ aVlogn(si,a) Gy, Yac€A, (4.20)

where 6 is the policy parameter vector, Gy is the (episodic) return Gy = Zf:_lt Yk,
with K the total episode length, and 7(s,a) is the policy of a state-action pair (s,a).
We consider a softmax policy 7(s,a) = e®(5®)'0/7 /S c®(50)00)/7 with temperature
parameter 7, where ¢(s, a) is the feature vector for the state action pair (s,a) and has the
same dimensionality as the vector 8, and ' stands for transpose. In our tabular setting,
the dimension of @ equals the number of states and actions and ¢(s,a) is a one-hot
feature vector (1 for current (s, a), 0 otherwise).

Expanding the previous formula we have

0 < 0+ o (P(st,a) — Z?r(b’t, b)o(si,b)') Gy, Vae A (4.21)
b

In our task, there are two possible actions at each state. If we denote the selected action

(sel)

from a state s; as a and the alternative non-selected as a(®), the update takes the

following form

B(St,a(sel)) +— 0(sy, a(“l)) + (1 - W(st,a(sel))) Gy,

4.22
H(St,a(alt)) « Q(St’a(alt)) — (1 — ﬂ(sha(sel))) Gy. ( )

That is, at each step both the selected and the non-selected action are updated. The
above update occurs at the end of each episode backwards in time, for allt =1,..., K — 1
steps within the episode.
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Surprise SARSA-)\ continuous, Surprise Actor-critic continuous, Surprise RE-
INFORCE continuous. We introduce surprise modulation of the model-free learning
rate. The algorithms we denote with the suffix “continuous” are same as their original
version, but the learning rate « is replaced by the surprise-modulated learning rate agg;
at each time point ¢ as follows

¢ t
af) =a-(1-9§)), (4.23)
where Vétép the surprise-modulated adaptation rate of Equation 4.3. This means that

(t)
SBrF
(model-free) value update is reduced. For Surprise Actor-critic continuous this modulation

is applied to the learning rate of the actor, i.e. a,. For REINFORCE this modulation is
applied on the backward update steps upon the receipt of the reward at the end of the

whenever a transition is surprising and -, gets high values, then its effect on the

episode.

Surprise SARSA-) binary, Surprise Actor-critic binary, Surprise REINFORCE
binary. The algorithms we denote with the suffix “binary” are same as their original

version, but the learning rate « is replaced by the surprise-modulated learning rate agg;

at each time point ¢ as follows

¢
o), = a- (1= |Egw[Z); (4.24)
where | -] stands for rounding to the nearest integer and Epe [Z7] = Zfil wfa’(i)zfa’(i) is
the estimated hidden state by the particle filter. This means that whenever a transition
is estimated to correspond to a surprise trial, it is completely omitted from the (model-
free) value update. As for the continuous version, for Surprise Actor-critic binary this

modulation is applied to the learning rate of the actor, i.e. ag, and for REINFORCE it is
applied at the backward step of policy updates.

Hybrid Actor-critic. = We implemented a weighted sum of Actor-critic and Forward
Learner as follows

Q(s,a) =wyp QuB(s,a) + wyr pur(s,a), VseS,acA, (4.25)

where QB are the values of the model-based Forward Learner and pp;r are the policy
parameters of the model-free Actor-critic. Since the policy parameters can take values
larger than 1, we use separate weights wysp and wysp instead of the convex sum of the
Hybrid Learner of (Daw et al., 2011a; Glascher et al., 2010). We did not include time
dependency of the weights, in order to keep the algorithms simpler, in particular since in
the resulting fit of Hybrid Learner we observed that the contribution of the decay slope
was very small.

Prioritized Sweeping with particle filtering. Prioritized Sweeping was described
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in Chapter 3 (subsection 3.2.3). Briefly, instead of computing the Bellman equation
Qup(s,a) = Y, T(s,a,s) [R(s,a,8') +vV™(s)], Vs € S,a € A, s’ € S recursively
until equilibrium (i.e. value iteration), Prioritized Sweeping (Moore and Atkeson, 1993;
Van Seijen and Sutton, 2013) performs a number of update cycles, where only the
predecessors of states that change “a lot” are updated. Here, we estimate the transition
matrix 7" with particle filtering, instead of Perfect Integration (which is typically used in
standard Prioritized Sweeping). Our implementation is similar to the one described in
Chapter 3 (see Algorithm 4 for pseudocode). The only difference is in the update rule
of the particle filtering, that involves a trade-off between integrating and ignoring (see
subsection 4.4.3), rather than integrating and resetting (see subsection 3.2.2).

Hybrid-\-PS-pf, Surprise Hybrid-\-PS-pf continuous and Surprise Hybrid-\-
PS-pf binary.
These three algorithms implement a weighted sum of the following form

Q(s,a) =wyup Qup(s,a) + wyr Qur(s,a), VseS,a€ A, (4.26)

where (Qpsp are the values of the model-based Prioritized Sweeping with particle filtering.
Qur are the values of SARSA-) for Hybrid-A-PS-pf, of Surprise SARSA-A continuous
for Surprise Hybrid-A-PS-pf continuous, and of Surprise SARSA-X binary in Surprise
Hybrid-A\-PS-pf binary. Thus, in the last two algorithms surprise modulation acts both
on the model-free and on the model-based system.

Policy. All algorithms were used in combination with a softmax action selection pol-
icy m(s,a) = ef0/T /5 /T with temperature parameter 7, where f(s,a) €
{Q(s,a), p(s,a), ¢(s,a)'0(s,a)} depending on the algorithm. ¢ is a one-hot feature
vector (1 for current (s, a), 0 otherwise) used at the REINFORCE algorithm. For the
hybrid algorithms that exhibit a non-convex sum, to avoid over-parametrization we set
7 =1 and the effect of the temperature is included in the hybrid weights, which can take
any possible value and are not restricted in [0, 1].

In Table 4.1 we provide for each algorithm the number of free parameters that are fitted
to data and the obtained log-evidence (mean cross-validated maximum log-likelihood),
and the standard error of the estimated log-evidence across the 5 optimization rounds.

4.4.5 Parameter fit and model selection

Each of the algorithms we consider includes a set of free parameters ©. In order to find
the parameter values that explain the participant’s actions best, we use the Metropolis-
Hastings Markov Chain Monte Carlo (MCMC) algorithm (Hastings, 1970) to approximate
the posterior distribution P(©|D), where D the data of all participants, similar to
Lehmann et al. (2019).
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Figure 4.6 — Algorithm fit to behaviour - Supplementary Figure. Negative model
log-evidence for additional algorithms we considered. Smaller values indicate better
performance. The Surprise Actor-critic continuous, and the Surprise REINFORCE
continuous are likely models for behavior and reach similar fit levels to the rest policy
learning algorithms we considered (see Fig. 4.2B). Abbreviations: PS: Prioritized Sweeping,
pf: Particle Filtering.
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Cross- Cross-
Algorithm #Param | validated validated
LL mean LL std error

Actor-critic 6 —1,504.98 0.15
Surprise Actor-critic binary 9 —1,507.03 0.4
REINFORCE 3 —1,507.31 8.77-1073
Hybrid Actor-critic 8 —1,507.44 0.4
Surprise REINFORCE continuous 6 —1,507.88 0.19
Surprise Actor-critic continuous 9 —1,508.41 1.66
Surprise REINFORCE binary 6 —1,510.12 0.34
SARSA-) 4 —1,557.97 9.18- 102
Surprise SARSA-) continuous 7 —1,558.12 0.24
Surprise Hybrid-A-PS-pf continuous 9 —1,563.96 1.34
Surprise SARSA-X binary 7 —1,564.45 0.94
Hybrid Learner - A 7 —1,565.28 1.1
Surprise Hybrid-A-PS-pf binary 9 —1,566.63 1.49
Hybrid-A-PS-pf 9 —1,568.49 1.25
Hybrid Learner - 0 6 —1,605.96 0.15
Prioritized Sweeping with particle filtering 6 —1,965.18 1.93
Forward Learner 3 —1,967.76 0.14
Biased Random Walk 1 —2,485.64 0

Table 4.1 — Learning algorithms and their corresponding performance in ex-
plaining the behavioral data. Abbreviations and notations: #Param: number of
parameters; Cross-validated LL mean: Cross-validated maximum log-likelihood, averaged
across b runs of a 3-fold cross-validation procedure. We use the mean cross-validated LL
as an approximation of the model log-evidence; Cross-validated LL std error: Standard
error of the mean for the cross-validated maximum log-likelihood across 5 runs of a 3-fold
cross-validation procedure.

We have
P(©|D) =P(D|O)P(0)/P(D). (4.27)

We use uniform prior P(0) and we sample from the likelihood P(D|0). The likelihood is
the joint probability of all participants’ actions for a set of parameter values © = 0, i.e.
for the log-likelihood (LL) of the parameters 6 we have

N T
LL(6; D) = log[P(D[0)] = > > " log[m(sn,t, an,t)]; (4.28)

n=1t=1

where n = {1, ..., N} the participant id, and ¢ = {1, ..., T} the trials (time steps) performed
by each participant.

Within a single MCMC run we perform 50 repetitions (i.e. 50 random starting points in
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the parameter space). For each repetition we collect 100,000 parameter samples, with a
burn-in (i.e. discarding) of the first 1500 samples and via keeping only every 10th sample.
At the end of the run we register the parameter values 6* that maximize the LL and the

corresponding LL value.

In order to select the model that explains the data best, we performed cross-validation in
3 folds. At each fold we leave 7 participants out of the fitting procedure and we estimate
the algorithms’ parameters on the data of the remaining participants (i.e. at each fold
we perform one MCMC run as described above). With the obtained parameter values
we then assess the goodness of fit on the left-out participants, by calculating the LL on
these unseen participants. At the end of a 3-fold cross-validation round, we sum, for each
algorithm, the out-of-sample LL of the 3 folds.

The MCMC procedure includes some randomness, due to random staring points and
random moves in the parameter space. In order to deal with this source of noise and to
make more informed conclusions about model selection, we repeated the cross-validation
rounds 5 times, for each algorithm. At the end of this procedure we obtain the mean
sum of out-of-sample LL and its standard error across the 5 rounds. We consider the
mean sum of out-of-sample LL as an approximation of the log-evidence. The penalty
for high complexity comes naturally through cross-validation and the algorithm with
the highest log-evidence is the winning model. This procedure for model selection is
similar to methods used in (Berger and Pericchi, 1996; Fong and Holmes, 2020; Rust and
Schmittlein, 1985; Wang and Pericchi, 2020). Furthermore, its theoretical foundations, as
well as extensions thereof, are ongoing work led by Alireza Modirshanechi (LCN, EPFL).

4.4.6 fMRI data acquisition and preprocessing

We acquired functional data of 23 participants (11 female) on a 3T Siemens Prisma MRI
Scanner, using a T2*-weighted 2D echo planar imaging (EPI) sequence (442 volumes,
34 slices/volume, slice thickness of 2.5 mm, 20% interslice gap, repetition time 2720 ms,
flip angle 90°, matrix size 64x64, field of view 192mm?). We acquired three echo images
following each radio-frequency excitation (echo times = 17.4s, 35.2s, 53s) in order to
achieve optimal BOLD sensitivity in all brain regions (Poser et al., 2006). Slices were tilted
by -20° off the line connecting the anterior-posterior commissure. Brain coverage included
the orbitofrontal cortex and subcortical structures and excluded some posterior-superior
frontal and parietal regions. We acquired structural T1-weighted MPRAGE images for
co-registration of the fMRI data. We used B0O-field maps, obtained from double-echo
FLASH acquisitions (64 slices; matrix size 64x64, spatial resolution 3 mm; short echo
time 10 ms, long echo time 12.46 ms; repetition time 1020 ms) to correct the EPI images
for distortions along the phase-encode direction (Hutton et al., 2002).

For the analysis of the fMRI images we used the SPM12 software (preprocessing and
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and first level statistical analysis), the SnPM13 (second level statistical analysis) and
the Nilearn software (plotting utilities). The three echo images were added to form the
final functional images. Then the images were realigned, spatially normalized to standard
Montreal Neurological Institute coordinates and smoothed with a Gaussian kernel of
8 mm (Full width at half maximum - FWHM). Two participants were excluded from
the analysis, one due to high degree of movement artifacts in his brain images and one
due to performance (completion of less than half of the number of episodes that other
participants performed on average).

4.4.7 fMRI data statistical analysis

After fitting the algorithms to the behavioral data we compute for each participants
trial-by-trial learning signals and use them as regressors against the fMRI data in a general
linear model (GLM). For this step, we used the population parameters resulting from
fitting all participants together, as it is usually done and recommended in the analysis of
fMRI data (Daw et al., 2011b). We included four regressors in the model: (i) one regressor
for the intervals during which a state was on the screen (boxcars events), (i) the SPE
calculated with the Hybrid Actor-critic, (iii) the RPE calculated with the Hybrid Actor-
critic, and (iv) one regressor for participants’ actions (zero-duration events). The SPE
and RPE regressors were placed at the time of the states (as their parametric modulators).
They were othogonalized with respect to the states, but not with respect to each other,
to ensure that any shared variance is not assigned to one or the other. All regressors were
convolved with the canonical hemodynamic response function (HRF) and its derivatives,
apart from the action regressor which was included to control for button presses, rather
than brain activity (note that the states stay on the screen until the participant presses a
button to select an action). To control for remaining motion artifacts the six rigid-body
realignment motion parameters were included in the model. The estimated regression
coefficients for each of the regressors from each participant were taken to random effects
group level analysis (one-sample t-test). For the statistical analysis at the group level we
perform nonparametric permutation testing and we controlled for multiple comparisons
(whole brain family-wise error rate FWER < 0.05) using the maximum statistic (Nichols
and Holmes, 2002). We included the whole brain in our analysis and we did not focus on
a-priori selected regions of interest.

4.5 Supplementary Material

4.5.1 Reaction times are longer for surprise trials

The participants’ reaction time serves as a behavioural signature of surprise (Huettel et al.,
2002; Meyniel et al., 2016). Fig. 4.7 shows the average reaction time across participants
for surprise and non-surprise trials. The reaction time following a surprising transition
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State id Action id State id Action id
1 2 1 2

1 - - 1 - -

2 2 1 2 0 1

3 1 3 3 0 2

4 3 0 4 2 1

5 1 1 5 3 1

6 0 2 6 2 1

7 2 2 7 2 2

Table 4.2 — Distance to goal at task graphs. We used two underlying task graphs,
randomized across participants. Starting from a given state the two actions lead to new
states at different distances from the goal. These distances are noted in the tables, for
each of the two graphs. For example, from the state with id 4 of the first task graph,
one action leads to a state that is 3 steps away from the goal and the other state leads
directly to the goal (“0”). The state with id 1 is the goal state. The locations of the states
on the screen, their associated images, and the assignment of action ids to left or right
were randomized across participants.

is significantly higher (unequal variance two-sample t-test, p=0.03), indicating that
participants do notice the unexpected transitions. Following a surprise trial, participants
need to leverage their knowledge and choose their next action from the unexpected landing
state. This cognitive process is presumably reflected in longer reaction times after a
surprising transition.
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reaction time (sec)

! !
Surprise  Non-surprise
trials trials

Figure 4.7 — Reaction time on surprise trials. Mean reaction times on surprise trials
(orange) and on non-surprise trials (blue). The boxplots are made by the mean reaction
times of participants across trials of each type (21 values each). The reaction time
on surprise trials is significantly higher than on non-surprise trials (unequal variance,
two-sample t-test, p=0.03).
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4.5.2 Brain activation statistical results

State Prediction Error (SPE)

Brain region T,Y, 2 t p

left supramarginal gyrus -36, -46, 38 | 7.80 | 0.0005
right middle frontal gyrus 45, 56, 2 8.01 | 0.0001
left middle frontal gyrus -42, 53, -1 6.19 | 0.01
superior frontal gyrus medial segment | 6, 26, 44 7.26 | 0.0013
left Supplementary motor area (SMA) | -6, 20, 44 7.04 | 0.0019
right angular gyrus 30, -67, 35 5.8 | 0.0199

Reward Prediction Error (RPE)

Brain region T,Y, 2 t p
right anterior cingulate gyrus -6, 26, -7 6.83 | 0.0007
superior frontal gyrus medial segment | 3, 44, -10 6.16 | 0.0022
left parahippocampal gyrus -30, -10, -31 | 6.86 | 0.0007
left occipital gyrus -42,-70, -7 | 6.40 | 0.0014
right occipital gyrus 45, -79, -10 | 4.99 | 0.0269

Table 4.3 — Brain activation statistical results. Brain x,y, z coordinates in Mon-
treal Neurological Institute (MNI) coordinate space of the peak activations, with their
corresponding ¢- and p-values. We performed random effects group level analysis (21
participants, one-sample t-test) with nonparametric permutation testing (SnPM13) and
we controlled for multiple comparisons for whole brain family-wise error rate FWER <
0.05 using the maximum statistic approach (Nichols and Holmes, 2002).

4.5.3 Derivation of Bayesian inference on the generative model

We derive here the recursive formula to update the belief b*»®)(p?) = P(P5* = p*®|sy.;)
to the new belief bsa’(tﬂ)(psa). To simplify notation we will skip the superscript sa in
this section, apart from the parameters P** = p5¢.

Exploiting the Markov property of the generative model we have

P(si1[p*)P(P* = p*[s14)

b(t—i—l)(psa) _ P(St+1|51.t)

(4.29)

The second factor in the numerator is by definition equal to b®) (p°®).

For the first factor in the numerator we have

P(sialp™) = Y Plseralp™, Zipr = k)P(Ziyr = k|p™)
ke{0,1} (4.30)

= (1 = pj)P(s¢+1|P°") + p;U(S¢41)-
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The denominator is equal to the marginalization of the numerator over P*¢, thus

P(staafsne) = [ Plotsals )b ) dp
= (1 _pj>/P(5t+1‘psa)b(t)(p5a)dpsa +pj/U(st+1)b(t)(psa)dp5a (431)
= (1 - pj)P(st41:0W) + p;U(s41),

where P(s;41;0®) = [ P(s141]|p°*)b® (p°@)dp*® is the probability of the observation
St+1 = St+1 under the current belief b® (p°®), as defined in Equation 2.6.

Combining all the above, we have for the updated belief

(1 =P Pssalp™) + pU (s141) ) DO ()

b(t+1) ) =
»™) (1= p) P(s22300) + p;U(s111) 32)
P(sealp®b® (%) | p;  Ulsern) sa '
_ t}tzsil;b(t))p +1jpj P(St+t1:rk;(t))b(t)(p )
- i _ U(st+1)
L+ T Florp)
We define
P sa b(t) sa
(1) () — (st41[p**)b" (p*) (4.33)

P(s141;b®)

the belief after an exact Bayesian update, i.e. the incorporation of the new observation
to the current belief using Bayes’ rule, as in Equation 2.8.

We define as surprise Spr(s¢y1;b®)

U(sty1)

Spr(si11; b)) = ma

(4.34)

i.e. the ratio of the uniform likelihood relative to the likelihood of the observation under
the current belief. Then we have for the updated belief

bg+1)(psa)+ p; SBF(StJrl;b(t))b(t)(psa)

b(t+1) ) = 1*vpj
") 1+ 12)]. Spr (st4+1; b®) (4.35)
=(1- ,Yét}:Fl))ngrl)(psa) + ,yg;l)b(t) (™),
with m = % and
Pj
(t+1) _ mSpr(sir1;bY)

= 4.36
Ser 1+ mSBF(stH; b(t)) ( )

the surprise-modulated adaptation rate. The resulting belief b(t+1)(p8a) is a weighted
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average between integrating the new observation to the current belief and maintaining
the current belief (i.e. ignoring the new observation).

4.5.4 Derivation of Particle Filtering

The difference here from a standard derivation (Sérkka, 2013) is the absence of the Markov
property of conditional observations (i.e. P(S¢y1|21:441,81:¢) # P(St41]2¢4+1)). Our goal is
to approximate

N
P(21:441]81:441) = Zw£215(21:t+1 - Z@H) ) (4.37)
i=1

where we skip the subscripts sa in the section as well, for simplicity.

Using a proposal distribution ¥ for particle ¢ at time ¢t + 1 we have

(%) P(Z§2+1|51:t+1) P(2§2+173t+1’31:t)
RN )] . (i)
U(z S1. U(z S1.
( 1:t+1| 1:441) ( 1:t+1‘ Lit+1)
(@) 1, (4) (4.38)
w® P(si11, 201210410 514)P (21 |51:4)
t+1 i i i ’
W 242 s ) R (1)
. (4)
Note that wgl) x %"81’5) are the weights calculated at the previous time step.
Z1:¢151:t
Therefore
‘ P ’ (@) 1,0 51, ,
) (81415 241121441 Sl-t)wgz)‘ (4.39)

CLAE Ty

We use the optimal proposal function in terms of variance of the weights (Doucet et al.,
2000)

‘IJ(Zt(i)l\Z@, S1:41) = P(zi?ﬁz@, 51:441) - (4.40)

Using Bayes’s rule we, thus, have

(@) 1,@)
oy Pl 220 s a Z- i
wt(421 (82 t+1| Lt 7] t)wg) = P(5t+1|2§;1)5751:t)w£)

P (240, s1041) (4.41)

x ((1 — PP (st 510, 2421 = 0) + PP (se1] 20, 514, 200 = 1))w§i)-

We have P(st+1|z§2, S1:t, z&)l =0) = P(s41; lA)l(t)) (see definition of Equation 2.6), and
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P(ses1l2(), s1t, 201 = 1) = Ulse41)-

Therefore the normalized weights are
w (1= p) Pl BY) + ;U se0) ul /2, (4.42)

where Z the normalization factor

N
7z = Z [(1 —pj)P(St_H; Bgt)) +ij(st+1)]wgl)
=1

(4.43)
N N
i - (t i
= (1=p)) Y wi" P(sieisb) 4 pU(s131) Y wy”.
i=1 i=1
The weights from the previous time step are normalized, i.e. Zf\; 1 wgi) = 1, and
Zij\il wgl)P(sH_l; E)Z(t)) = P(s441;b®), thus
Z = (1= p;)P(s111;0") + p;U(se11). (4.44)
We define as
i P(sq 1;6?)) i
wgt—i—l = %wg ) (4.45)

P(s¢11;b0)

the weights that correspond to the incorporation of the new observation, i.e. to a Bayesian

update bgH) (Equation 2.8). With m = 13—]@_ and S (siy1;b®) = % we can

find
(6 _ (t+1)y, (2) (t+1), (9
wity = (1- VS ) Bz,t+1 + V8pr w,” (4.46)
(t+1) _  mSprp(se41;:01) . .
where VSpp = mSpr(ors1 60 the surprise-modulated adaptation rate, same as we saw

in Equation 2.9.

We can see that the weight update rule exhibits the same surprise-modulated trade-off
between incorporating the new observation to the belief and ignoring it.

At each time step we sample the new state 27:(21 of each particle ¢ from the proposal
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distribution. After a few steps, it can be shown that the probability for a surprise trial is

. ; Uls
WeEly = 1o 1) = i
(1—p‘7)P(St+l,b )+p]U(St+1)
mSBF(StH, ) (4.47)

1+ mSpr(st41; E)Et))

(t+1),(2)
SBF ’

U(st+1)
P(st415b(")

7

particle ¢. This means that the more surprising the observation s;; the more likely it will

be for the particle’s hidden state to get the value zfi)l =1, i.e. to signal the occurrence

®

where Spr(si+1; f)z(-t)) = the surprise of observing s;+1 under the belief b

of a surprise trial.

Finally, the approximated belief of a particle ¢ is

my. t+1

N
t+1 ; ;
p*) Z wt+1 ‘”\Z&u SLt1) = Z wgl Sa|3 @ ) (4.48)

(4)
[1:t+1]

t'=1tot' =t+1 for particle 7, i.e m[(i)t] ={j e {1, ...,t}]z](.i) = 0}.

where we define as m the time points of non-surprise trials within the time window

In order to avoid the problem of degeneracy of the weights we implemented the Sequential
Importance Resampling algorithm (Doucet et al., 2000; Gordon et al., 1993), where the
particles are resampled when their effective number falls below a threshold. The effective
number of the particles can be computed as in (Doucet et al., 2000), (Sarkkéa, 2013)

I
SV (w2

When Neg is below a critical threshold, the particles are resampled with replacement

Neg ~ (4.49)

from the Categorical distribution defined by their weights, and then all the weights are
set to w( D=1 /N. We performed resampling when Neg < N/2, following Doucet and
Johansen (2009), and we did not optimize the parameter Neg-.

4.5.5 Relationship between SPE and Sgp

The SPE (Daw et al., 2011a; Glascher et al., 2010) for an observed state s;4+1 from a
state-action pair (s, a) at time ¢ + 1 is defined as

SPEi1 =1 — P(s441;b*>® (p*0)), (4.50)
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where b%»(®) (ps) = P(p*®|s1,;) is the participant’s belief at time .

On the other hand, the Bayes Factor Surprise Spr is defined as

U(8t+1)

Sur (st 00™) = 5 i)

(4.51)

If the expected transition probabilities under U are uniform (i.e. same o for all elements
of the transition probability vector), then P(s;i1;b**()(p®)) is a constant C. If the
same belief is used for computation of both Sgr and SPE, then

C
Ser(si+1; 0300 (psa))’

SPE. =1— (4.52)

However, two different learning algorithms lead to different beliefs at each time step, and
hence, there is no clear connection between the SPE of an algorithm and the Spr (or
even the SPE) of another.

Another important influence on how much the timelines of SPE and Sgp differ, comes
from the assumed prior stochasticity o of the environment. The lower the o, the more
“spiky” Spr will be. In other words, the more deterministic the environment is assumed
to be, the more surprising an observation that lies far from current belief will be. For the
SPE, we followed the implementation of Daw et al. (2011a); Glascher et al. (2010) - see
Supplementary Material subsection 4.4.4 for the algorithm - where the SPE mediates a
simple delta-rule and there is no free parameter for the stochasticity of the environment.
The SPE-mediated algorithms can be interpreted as maintaining the assumption that the
environment is fairly stochastic, i.e. ¢ = 1, and approximating the transition probabilities
with the mode of the posterior belief. We empirically found that the closer to 1 the o is,
the more similar the SPE and Spr signals are.

Fig. 4.8 depicts the SPE from Hybrid Actor-critic and the Sgg from Surprise Actor-critic
binary for two representative participants, in time and with respect to each other. Note,
that the resulting value for the fitted stochasticity o for Surprise Actor-critic binary was
2.35, meaning that the environment was perceived as stochastic by most subjects. We can
empirically see that Spr is approximately an increasing function of the SPE. Hybrid Actor-
critic integrates all observations, whereas Surprise Actor-critic binary ignores the more
surprising ones. Therefore, as time passes by, the beliefs of the two learning algorithms
grow different, which leads to larger differences between the two learning signals towards
the end of the experiment.
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Figure 4.8 — SPE versus Sgr. SPE and Spp signals of Hybrid Actor-critic and Surprise
Actor-critic binary respectively, for two representative participants (A and B). The graphs
on the left column depict the evolution of the two signals in time. The graphs on the
right side show the two signals with respect to each other for any given time point. The
theoretical curve corresponding to Equation 4.52, with C' = 1/|S|, where |S| = 7 the
number of states in our task, is plotted in red. We can empirically see that Sgp is
approximately an increasing function of the SPE.
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5] Contributions

My thesis lies in the intersection of theory, computational modelling and experiments,
in order to study model estimation via surprise and its contributions to reinforcement
learning.

I developed a surprise-based adaptive algorithm (particle filter) and by means of simu-
lations I showed that it performs better than alternative approximate approaches and
more robustly across tasks. Together with Alireza Modirshanechi, I showed that many
existing model learning approaches exhibit the same surprise modulation in their update
rules (Chapter 2). I, then, coupled the particle filtering model learning approach with a
reinforcement learning agent, and I investigated via simulations the scenarios in which
surprise adaptation can be beneficial for reward-based tasks (Chapter 3). Next, I sought
to detect signals of model learning and model-free reward-based learning in human brain
signals and behaviour. To this end, I designed and implemented, together with Dr. Marco
Lehmann, a multi-step task that dissociates reward learning signals from model learning
ones at the level of brain BOLD responses. I conducted the fMRI experiments, analyzed
the data, and developed an approximate Bayesian surprise-based algorithm that imple-
ments outlier detection, as well as hybrid model-free and model-based algorithms with
surprise modulation. I extended previous fMRI findings on model-free and model-based
learning in a multi-step scenario and reported evidence for a model-free Actor-critic
architecture as the most likely model of human behaviour, with possible contributions
from model estimation (Chapter 4). In a separate project, I designed and implemented,
together with Dr. Marco Lehmann, a behavioural and pupillometry experiment that

studies fast learning in humans via eligibility traces (Appendix).
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Conclusion

In this thesis, we went from adaptive model estimation in theory and simulations, through
model estimation applied to reinforcement learning agents, to reward learning with and
without model estimation in humans. We have already discussed our results, as well as
possible next steps, for each project individually. Here, we summarize and discuss the
findings of this thesis collectively and provide some ideas and speculations for future
research.

Starting from theoretical arguments, we have shown that Bayesian inference entails a
surprise measure which has an intuitive interpretation and is a common feature of many
learning methods. Our work brings under the same umbrella different approaches of
varying accuracy, computational complexity and biological plausibility. Next, we studied
model estimation contributions in reinforcement learning tasks, in artificial agents and
in humans. In the first case, we used a similar generative model as for the pure model
learners and investigated the benefits of accurate model estimation in reward performance.
In the second case, we were interested in dissociating brain signatures of model-free and
model-based learning. We, thus, used a different set-up where surprising events were
a handle to differentiate the dynamics of learning signals. We showed that Bayesian
inference leads in this case to the same surprise measure we found earlier and an outlier
detection algorithm. We developed hybrid reinforcement learning algorithms that use
this outlier detection mechanisms in their update rules. In BOLD responses, we found

signatures of model-free learning, as well as model estimation signals.

The common line in this thesis has been how surprise and model estimation manifest in
learning performance and in the brain. When the goal is estimation accuracy per se, we
have seen that surprise-based learning can give rise to higher performance. When the goal
is to obtain reward, however, the role of surprise and accurate model estimation depends
more on the situation. In our simulations and experimental results, we have detected
influences of surprise in performance and in brain signals, respectively, in environments
involving sudden changes that directly affect the selection of the next action: the blocking
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Chapter 6. Conclusion

of a passage in the case of simulations and a jump to some other state in the experiment.
Surprise implies “unexpectedness”, which in turn implies the existence of an expectation;
something is perceived as surprising when an agent has formed a belief about the world.
In an environment exhibiting deterministic periods, marked by sudden changes, such the

real world, surprise has a stronger and important effect.

We see interesting extensions of our work, both in terms of theory and experiments.
On the theory side, it would be an exciting continuation to develop algorithms that
utilize multiple types of surprise, at multiple levels, i.e. for both change-point and outlier
detection, and investigate how these signals may interact. Equally exciting would be
the simultaneous online estimation of the environment’s hyper-parameters and the study
of the inductive biases that may be necessary to this end. On the experimental side, it
would be fascinating to test experimentally if the “Bayes Factor Surprise” is present in
the brain and to design experiments that could differentiate among the surprise-based
algorithms we considered, both in behaviour and in neural signals. For model estimation
in reward-based tasks, the investigation of more scenarios would be insightful, such as
continuous changes in the reward values, and more complex environments with different
degrees of volatility in different parts. Our motivation with our fMRI experiment has been
to study human learning and brain signals in a multi-step, more complex and presumably
more realistic scenario. Our task is, however, still far from realistic situations encountered
by biological agents. The design of experiments involving tasks that are closer to real life
will be a crucial step in understanding the learning schemes that animals and humans
may employ.
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N A ppendix

A.1 One-shot learning and behavioral eligibility traces in
sequential decision making

Marco Lehmann, He Xu, Vasiliki Liakoni, Michael Herzog, Wulfram Gerstner, and Kerstin
Preuschoff.

Published in: Elife, 2019.
(Lehmann et al., 2019), doi: 10.7554 /eLife.47463

Abstract

In many daily tasks, we make multiple decisions before reaching a goal. In order to learn
such sequences of decisions, a mechanism to link earlier actions to later reward is necessary.
Reinforcement learning (RL) theory suggests two classes of algorithms solving this credit
assignment problem: In classic temporal-difference learning, earlier actions receive reward
information only after multiple repetitions of the task, whereas models with eligibility
traces reinforce entire sequences of actions from a single experience (one-shot). Here, we
show one-shot learning of sequences. We developed a novel paradigm to directly observe
which actions and states along a multi-step sequence are reinforced after a single reward.
By focusing our analysis on those states for which RL with and without eligibility trace
make qualitatively distinct predictions, we find direct behavioral (choice probability) and
physiological (pupil dilation) signatures of reinforcement learning with eligibility trace
across multiple sensory modalities.

Author contributions

MP, VL, MH, KP and WG conceived the project and designed the experiment.
MP and VL implemented the experiment.

MP and VL ran the pupillometry experiments.

HX and ML ran the EEG experiments.

ML analyzed the behavioral and pupil data.
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HX analyzed the EEG data.
MP, HX, VL, MH, KP and WG discussed and interpreted the results.
ML, HX, KP and WG wrote the manuscript.
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