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Abstract

T
he recent generations of massive spectroscopic surveys aim at the ray collec-
tion from a multitude of cosmological targets in the course of observations.

For this purpose, astrobots are used to change the configuration of optical fibers from
one observation to another in relatively short periods of time instead of tedious man-
ual replacements. The dense formations of astrobots on focal planes enhance the
number of the potential targets to be observed. However, the safe coordination of
astrobot swarms is challenging. The more astrobots are coordinated, the more data
are sent to a spectrograph, thereby the higher the resolution of a resulted survey will
be. However, traditional collision-avoidance coordination strategies often give rise
to the partial convergence of astrobot swarms. Thus, this thesis focuses on the solu-
tions to the complete safe coordination of astrobots, particularly in the case of Sloan
Digital Sky Survey V. We increase coordination convergence rates not only by di-
rectly improving the state-of-the-art coordination solution but also by optimizing
target-to-astrobot assignments. Namely, we propose an optimal assignment scheme
which minimizes both the likelihood of collisions between astrobots and the effort
demanded to preform coordination in terms of the required time to perform coordi-
nation. We also propose a cooperative coordination method in which, given partic-
ular settings of astrobots and/or targets, each astrobot stops at its goal point when its
other neighboring peers have already reached theirs, as well. So, we derive a localized
completeness condition that, if sufficed, generates the trajectories which completely
coordinate an astrobot swarm in a guaranteedmanner. We also propose a logic-based
formally-verifiable supervisory coordination technique whose behavior is always safe
and complete without any need to simulation-based validations. Finally, we employ
machine learning tools to train models to predict the feasibility of complete coordi-
nation only according to initial and final configurations of astrobots and their targets’
projected locations on their focal plane. These models contribute to the identification
of those target-astrobot pairings which do not fulfill the completeness condition. So,
one may re-plan such ill-posed assignments before getting involved in potentially-
pointless completeness checking simulations. Our simulated and experimental tests
manifest the efficiency of the developed methods quoted above.

Keywords—astrobots, coordination, safety, collision avoidance, dark energy, massive
spectroscopic surveys, cosmology, machine learning, convergence prediction, artifi-
cial potential fields
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Résumé

L
es récentes générations de relevés spectroscopiques massifs visent à la collecte
de rayons à partir d’une multitude de cibles cosmologiques au cours des ob-

servations. À cette fin, les astrobots sont utilisés pour changer la configuration des
fibres optiques d’une observation à une autre dans des périodes de temps relative-
ment courtes au lieu de remplacements manuels fastidieux. Les formations denses
d’astrobots sur les plans focaux augmentent le nombre de cibles potentielles à ob-
server. Cependant, la coordination sûre des essaims d’astrobots est difficile. Plus les
astrobots sont coordonnés, plus le nombre de données envoyées à un spectrographe
est élevé, plus la résolution de l’enquête résultante sera élevée. Cependant, les straté-
gies traditionnelles de coordination d’évitement des collisions donnent souvent lieu
à la convergence partielle des essaims d’astrobots. Ainsi, cette thèse se concentre sur
les solutions à la coordination sécurisée complète des astrobots, en particulier dans
le cas de Sloan Digital Sky Survey V. Nous augmentons les taux de convergence de
coordination non seulement en améliorant directement la solution de coordination
de pointe, mais aussi en optimisation des affectations cible-astrobot. À savoir, nous
proposons un schéma d’assignation optimal qui minimise à la fois la probabilité de
collisions entre astrobots et l’effort requis pour préformer la coordination en termes
de temps requis pour effectuer la coordination. Nous proposons également une mé-
thode de coordination coopérative dans laquelle, étant donné les paramètres particu-
liers des astrobots et / ou des cibles, chaque astrobot s’arrête à son point de destination
lorsque ses autres pairs voisins ont déjà atteint le leur. Ainsi, nous dérivons une condi-
tion d’exhaustivité localisée qui, si elle est suffisante, génère les trajectoires qui coor-
donnent complètement un essaim d’astrobots de manière garantie. Nous proposons
également une technique de coordination de supervision formellement vérifiable ba-
sée sur la logique, dont le comportement est toujours sûr et complet sans avoir besoin
de validations basées sur la simulation. Enfin, nous utilisons des outils d’apprentissage
automatique pour former des modèles afin de prédire la faisabilité d’une coordination
complète uniquement en fonction des configurations initiales et finales des astrobots
et des emplacements projetés de leurs cibles sur leur plan focal. Ces modèles contri-
buent à l’identification des couples cible-astrobot qui ne remplissent pas la condition
d’exhaustivité. Ainsi, on peut planifier de telles affectations mal posées avant de s’im-
pliquer dans des simulations de vérification d’exhaustivité potentiellement inutiles.
Nos tests simulés et expérimentaux démontrent l’efficacité des méthodes développées
citées ci-dessus.

Mots clés—astrobots, coordination, sécurité, évitement des collisions, énergie sombre,
levés spectroscopiquesmassifs, cosmologie, apprentissage automatique, prédiction de
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Chapter 1

Preface

I

Publication Note

The material presented in this chapter is adapted from:

• Matin Macktoobian, Ricardo Araújo, Loïc Grossen, Luzuis Kronig, Mohamed Bouri, De-
nis Gillet, and Jean-Paul Kneib, Experimental Evaluation of Complete Safe Coordination of
Astrobots for the Sloan Digital Sky Survey V, Experimental Astronomy 51(1), pp. 77-94, 2021.

1.1 An Introduction to Astrobotics

1.1.1 Massive Spectroscopic Surveys and SDSS-V

D
ark energy studies [Joyce et al. 2016] have been revolutionized once the accelerated expansion of the
universe was observed [Schrabback et al. 2010]. In particular, the evolution of the universe, which

has been under intense scrutiny over the recent decades, is found to be correlated with the distribution of
darkmatter all over the cosmos. Adata-driven strategy to obtain the desired distribution requires abundant
mass-energy recording of the universe. Accordingly, the map of the observable universe is expected to
convey valuable information about the geometry and the evolution of the cosmos. Universe dynamics
vary to get expanded over time. Thus, redshift-based observation strategies effectively provide various
volumes of the space in the course of different cosmological era associated with the age of the universe.
In particular, the measurements of baryonic acoustic oscillations (BAO) [Seo et al. 2003] have already
shed light on the filament-void interactions of the cosmos [Forero–Romero et al. 2009]. So, BAO analysis
with respect to various redshift ranges is known to generate spectroscopic surveys which eventually yield
a significant repertoire of the cosmological data to investigate the universe’s evolution.

The dependence of spectroscopic surveys to redshift constitutes interactions between mass and energy
throughout the history of the universe during which one of them mostly dominates. Namely, low-redshift
surveys [Hamuy et al. 2006] extensively contributes to the study of dark energy, while high-redshift ones
[Takada et al. 2006] are often the target to investigate the universe when its radiation is dominated by
its mass. To be specific, the Anglo-Australian Telescope (AAT) [Blake et al. 2011] was used to generate
surveys associated with star-forming galaxies at lower redshifts, say, z < 0.8. Middle-range redshifts,
such as 0.7 < z < 2.2, have been widely taken into account by various instruments, e.g., SDSS telescope.
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(a) An SDSS-V astrobot
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Figure 1.1: A typical SDSS-V astrobot and overall focal plane (Figure 1.1c is reprinted from the SDSS wiki
[S. Consortium n.d.].)

The resulting baryonic oscillation spectroscopic survey [Dawson et al. 2012] is supposed to cover almost
1.4 million galaxies and quasars. High-redshift spectroscopic surveys (at 2 < z < 5) are of utmost
importance in the space-time inflation studies and dark energy observations, as studied by [Ferraro et al.
2019]. The combination of BAO analysis and redshift-space distortions [Scoccimarro 2004] seems to be
promising enough to evaluate General Relativity with respect to various cosmological scales [D. J. Schlegel
et al. 2019]. To this aim, massive spectroscopic surveys have to be planned which essentially include huge
numbers of optical fibers, multi-segment focal planes, and vast telescope apertures.
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Spectrograph Astrobot swarm Telescope optics Observational
targets

Figure 1.2: The multi-fiber spectroscopy operation process (partially reprinted from [Kronig 2020] with
permission)

Sloan Digital Sky Survey (SDSS) represents a family of spectroscopic projects aiming to the generation
of surveys using various observational technologies in different ground telescopes. Early 2000s witnessed
the first generation of these projects, i.e., SDSS-I [Zehavi et al. 2002]. This project, based at APO, cov-
ered various spectral bands using camera-based photometry. APO later hosted SDSS-II [Ivezić et al. 2008]
which yielded the first class of the multi-object optical spectroscopic surveys of the SDSS family. This
project exclusively used optical fibers to collect visible lights of its desired targets. Then, the researchers’
attentionwas shifted to near-infrared rays of targets which can also be captured by ground telescopes. Con-
sequently, SDSS-III [Alam et al. 2015] ended up with the APOGEE survey supported by a near-infrared
multi-object spectrograph at APO. The first three classes of SDSS projects were executed at APO in the
northern hemisphere. To cover data acquisition from the southern hemisphere, SDSS-IV [Bundy et al.
2014] collected spectroscopic data, based on a regime similar to its predecessors, at Las Campanas Obser-
vatory (LCO). This project extensively covered many surveys such as APOGEE-2 [Zasowski et al. 2017],
MaNGA [Wake et al. 2017], and the extended Baryon oscillation spectroscopic surveys [Dawson et al.
2016]. SDSS-V [Kollmeier et al. 2017] is about to conduct multi-object spectroscopic surveys in both
hemispheres, namely, using Sloan Foundation telescope at APO in the northern hemisphere [J. E. Gunn
et al. 2006] and the du Pont telescope at LCO in the southern hemisphere [Way et al. 2005]. Both types of
optical and near-infrared fibers are used in this project which will be fed into a pair of optical BOSS and
near-infrared APOGEE spectrographs. The resulting surveys are expected to extensively contribute to the
characterization of Milky Way galaxy.

Massive spectroscopic survey projects, see, Figure 1.2, such asDESI [Dey et al. 2019],MOONS [Michele
Cirasuolo et al. 2014], PFS [Takada et al. 2014], LAMOST [Cui et al. 2012], and in particular SDSS-V,
include hundreds to thousands of fibers to maximize the information throughout each observation in a
mission-wise manner. For this purpose, one may increase the aperture size of a host telescope to have
a larger focal plane, thereby covering larger number of fibers. Second, fibers have to be placed in more
dense formations to tile the area of the focal plane with higher observational resolution. However, fiber
multiplexing raises operational challenges. In particular, fibers have to point to different locations of their
fields from one observation to another. So, their reconfiguration needs to be performed in the available
spare time between consecutive observations. To hit this mark, fibers were manually replaced in early ver-
sions of the surveys using SDSS spectrograph [Smee et al. 2013]. However, given the gradual increment of
the employed fibers, robot fiber placement was taken into account in the case of AAT spectrograph. The
cited process was inefficient because of the lack of any parallelism in the coordination of fibers. Then, the
first generation of robotic coordination showed up in the case of fiber multi-object spectrograph (FMOS)
[Kimura et al. 2010], attached to LAMOST [G. Zhao et al. 2012], and MOONS [Cirasuolo et al. 2016]. The
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Table 1.1: The plan of the past, current, and future spectroscopic surveys (partially adapted from [Ferraro
et al. 2019])

Spectroscopic
instrument

Deployment
year

Number of
fibers Coordination

SDSS-I 1991 640 ManualBOSS 2009 1000
MOONS 2013 1000
DESI 2019 5000

Automatic
(robotized)

PFS 2020 2400
4MOST 2022 1624

MegaMapper

TBA

20,000
FOBOS 1800
MSE 3249

LSSTspec 8640
Spectel 15,000

presence of astrobots in the various massive spectroscopic surveys is expected to be noticeable, as stated
in Table 1.1.

1.1.2 Astrobots Characterization

1.1.2.1 Mechanical Specification

Each astrobot is a SCARA-like two-degree-of-freedom rotational-rotational robotic manipulator [Araujo
et al. 2020] which is sketched in Figure 1.1a. An optical fiber is mounted onto the astrobot such that its tip
is located at the end-effector of the astrobot, called ferrule. Rotational combinations of the astrobot’s arms
move the ferrule in the working space of the astrobot such that it can reach some targets corresponding
to a planned observation. Astrobots are located in a hexagonal formation to maximize the rigidity of the
overall focal plane. Various kinds of fibers exist in terms of their manufacturing technology and their
connections to spectrographs, such as monolithic fibers (SDSS-I and BOSS projects [Dawson et al. 2012]),
connectorized fibers (SDSS-V project), and plasma-fused fibers (as done for DESI project). A target may
technically be projected at any point on a focal plane [Pogge et al. 2020]. In the worst case, if a target is
projected exactly at the base location of an astrobot, a neighboring peer has to be able to access it. Thus,
the overall chain of the arms of each astrobot needs to be at least as long as the distance between its base
spot to that of its neighbors. Given1 an astrobot i associated with a swarm, let qi

b =
[

xi
b yi

b

]⊺
be the

coordinate of the astrobot’s base. This coordinate can be defined as a part of a universal frame attached to
the focal plane of its host telescope. Or, it can be simply a relative coordinate with respect to those of the
astrobot’s neighbors. The lengths of the links are denoted by l =

[
l1 l2

]⊺
. Then, one is interested in the

location of the ferrule, say, qi =
[

xi yi
]⊺

, as stated below, given the angular deviations of the astrobot’s

arms represented by θi and ϕi.

qi = qi
b +


sin(θi)

cos(θi)

sin(θi + ϕi)

cos(θi + ϕi)
 l (1.1)

1 Throughout this thesis, scalars and matrices are represented by regular and bold symbols, respectively.
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Figure 1.3: The overlapping areas in a typical neighborhood

The quoted parameters are depicted in Figure 1.1b. A typical spectrograph, which generates a survey
corresponding to the optical signals of an observation, is illustrated in Figure 1.1c. Figure 1.1d represents
the rotational motion of the arms of a typical astrobot.

The torque of each astrobot is a nonlinear function of various factors governed by the following law
[Kronig 2020].

J =

∫ t2

t1

(
τ − F− Ff − Ts

)
dt

θ̇t2 − θ̇t1
(1.2)

In the equation above, J is the total moment of inertial of an astrobot. The temporal range in the course of
which the formula represents the dynamics of torque is [t1, t2]. τ is the torque. F and Ff denote the force
of the motor and friction, respectively. Ts is the spring-reduction torque term. The rotational velocity of
end-effector at time t is θ̇t.

The larger the workspace of an astrobot is, the more targets may be potentially reachable by its ferrule
during each observation. So, the axes of each astrobot’s arms are slightly tilted rather than completely
straight. In this case, the radius of the stated workspace is larger than the area reachable by a straight
arrangement of arms. In the scale of an astrobot swarm, the accumulation of all such trivial tilts gives rise
to the significant expansion of reachable areas on focal planes.

Each astrobot is actuated by the technology of brushless DC motors according to which high sensor-
less repeatability is realized. The smallest available diameter of these motors is 2 mm, which is favorable to
manufacture miniaturized astrobots. These motors require complex control, and they don’t hold torque.
The precision positioning is the second important requirement of of astrobot coordination, after their
safety. In this regard, the maximum precision positioning of the SDSS-V astrobot model is 5µm.

The pitch of each astrobot, i.e., the overall length of its arms, has to at least reach the center of each
of its neighboring peers, so the whole area of their focal plane is reachable. Due to the dense formation
of astrobots, that relatively large pitch gives rise to the existence of some areas on a focal plane which are
reachable by more than one astrobot. The more astrobots may can reach an area, the more challenging the
coordination of those astrobots are because they may collide in those areas2. Figure 1.3 renders the critical
areas in a typical astrobot neighborhood which are prone to collisions.

2 Onemay argue about the usage of proximity sensors tomanage collisions. However, these artifacts occupy extra spaces in ferrule
areas. So, they by themselves pose more deadlock situations. On the other hand, miniaturized sensors are often expensive to be
used for large packs of astrobots.
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1.1.2.2 Communications and System Interface

Each astrobot uses a microcontroller on which a firmware controls the astrobot. This firmware is equipped
with a bootloader to change the different operational modes of an astrobot. It also allows error corrections
and motion command transfer from a path generator to astrobots. This firmware can calibrate motors and
detect both motor malfunctionalities and collisions in short ranges. Thanks to a syncline signal embedded
into this framework, one can broadcast control signals to all astrobots of a focal plane via a CAN bus. Thus,
astrobots simultaneously starts to move in a synchronized manner.

Control distribution is the most reliable and efficient strategy which has been used to govern multi-
agent systems [Hsu 1993; Tan et al. 2013]. In the case of astrobots, one first needs to plan the generation
of trajectories. This task is often very labor-intensive in view of desired computational resources because
collision avoidance and completeness seeking have to be taken into account for all of the astrobots of a
swarm. Thus, trajectories shall be computed on a central workstation according to a particular observation
as well as the initial configuration of the swarm. A workstation is connected to a spectrograph and the
instrumentation subsystems of the focal plane of a host telescope. Each trajectory encompasses two arrays
of data corresponding to each astrobot. Each array includes position-time tuples to determine the location
of each arm of the astrobot at any particular moment. These arrays are sent to an embedded supervisor
mounted on the astrobot via a set of CANbuses. Amicrocontoller buffers the trajectory of its astrobot prior
to its execution. The supervisor mainly governs two responsibilities. First, it buffers the trajectory arrays
and interpolates them to continuous signals to be sent to the astrobot’s motors. Second, the supervisor
microcontroller monitors the status of its astrobot to keep track of any illegal trajectory values which are
hazardous in view of safety.

A spectrograph only calls for the optical signals collected by astrobots at the end of each observation.
The spectrographmay lack any embedded register to first cash all signals sent by astrobots before their pro-
cessing. Then, a synchronized data transfer mechanism may be required to orchestrate the flow of the data
from the focal plane to the spectrograph. Another interface-related featuremay exhibit in the case ofmulti-
spectrograph telescopes. In particular, each spectrograph specially operates in a specific range of redshift,
either low [Meiring et al. 2011] or high redshift [Anderson et al. 2001]. However, not all observations as-
signed to a telescope necessarily correspond to a single redshift range. In this case, the telescope has to be
equipped with more than one spectrograph. Switching from one spectrograph to another requires mem-
ory reset of all astrobots and potentially their re-calibration. Thus, the communication protocol between
astrobots and their workstation needs to manage such high-level reconfigurations, as well. A more de-
tailed description about the specification of the communication and the interface subsystems of astrobots
are presented in [Hörler 2018].

1.2 Motivation

The more data one collects in the course of an observation, the higher the resolution of the resulted survey
will be. Observational astronomers are specially interested in such detailed surveys since these surveysmay
reveal more information regarding the distribution of dark energy associated with its particular observa-
tion. The maximum throughput of an observation is directly associated with the complete coordination
of all astrobots in the course of that observation. In this case, the optical rays of all of the targets that
observation are collected.

6



The convergence rates of astrobots in the first generations of robotized surveys were way behind com-
pleteness. Since any coordination has to guarantee collision-less motions of astrobots, the coordination
control problem of astrobots in indeed challenging in view of not only fulfilling the required safety but
also realizing the convergence of astrobots. In particular, a variation of navigation functions, say, priority-
based ones, were used for MOONS astrobots[Mathews et al. 2006; Makarem et al. 2014]. This method
could generally not completely coordinate massive swarms of astrobots. In this method, a noticeable pairs
or triplets of confronting astrobots were trapped in deadlocks when their targets were located behind one
of their confronting peers. So, they perpetually oscillated in such situations without any eventual conver-
gence to their target spots. Later, a revised version of the cited strategy was taken into account in which
a new automaton-based decision layer was added to the navigator of the algorithm [Tao et al. 2018]. This
layer directly resolves the deadlocks, which can not be handled by the main navigation function, based on
a priority-based set of criteria. Thus, convergence rate reached∼85%.

In this thesis, we seek the complete safe coordination of astrobots. To be specific, we take various
operational stages of a general observation-to-survey process into account in an algorithmic perspective.
Then, we propose new approaches in each stage which contributes to either the improvement of con-
vergence rates or reaching completeness. Figure 1.4 depicts the domains of the complete coordination
problem of astrobot swarms which are considered in this thesis. Section 1.3 briefly outlines the goals, the
underlying ideas, and the accomplishments associated with each domain. We also cite the publications
whose contributions have constructed the core of this thesis. The detailed description of the contributions
corresponding to each domain will be scrutinized in a separate part of this thesis. The organization of the
thesis, in terms of the dependencies between its various chapters, is expressed in Section 1.4.

Safe Complete
Coordination

Completeness

Prediction

Optimal
Target-to-
Astrobot

Assignment

Cooperative

Coordination

Figure 1.4: The domains of the safe complete coordination problem
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1.3 Research Goals and Contributions

1.3.1 Optimal Target-to-Astrobot Assignment

Target-to-astrobot assignment is an important operational stage in survey generations which determines
the initial and the final configurations of each astrobot in the course of its coordination. A class of strategies
have already been used to allocate astrobots to observational targets such as random assignment, drainage
algorithm [Morales et al. 2012], flow-based assignment [Blanton et al. 2003], target-based assignment
[Schaefer et al. 2016]. However, none of them is purposefully and efficiently designed to facilitate the co-
ordination planning of potential navigators toward reaching high convergence rates and even potentially
completeness.

To this aim, Part A of this thesis is dedicated to the presentation of novel target-to-astrobot assignment
methods. In particular, Chapter 2 illustrates an optimal technique which assigns targets to astrobots ac-
cording to the minimization of a particular cost function. The algorithm using this cost function seeks the
maximum spatial distribution of assigned astrobots in a swarm as well as the minimum coordination of
them to reach their targets. Thus, we observe that, should one use this strategy to handle target-to-astrobot
assignments, navigators’ coordination results in terms of the convergence rates and times of astrobots will
be much better compared to the results obtained by the methods cited above [Macktoobian et al. 2020a].

A subset of the astrobots of a particular focal plane may be even used in other domains such as space
debris tracking [Mehrholz et al. 2002] as a potential venue of astrobots usage. In such a scenario, the types
of targets are not longer all the same. In other words, we face a level of heterogeneity among those classes
of astrobots which are supposed to be used for different applications, e.g., a group for spectroscopic sur-
vey generations and another for the space debris tracking. Thus, Chapter 3 proposes a target-to-astrobot
assignment algorithm which takes various characteristics of such heterogeneous scenarios into account to
optimally allocate astrobots to desired applications [Macktoobian et al. 2019b].

1.3.2 Complete Coordination

Wealready noted that the former instances of navigation functions can, generally speaking, only coordinate
a subset of the astrobots of a ground telescope. Thus, Part B of this thesis focuses on new navigation
methods which provide completeness in the course of general coordination.

A disadvantage of navigation-function perspective in coordination control development for astrobots
is that the functional and safety verification of the coordination of an astrobot swarm are often checked
using intensive simulations. Namely, these swarms are so complicated that formally-verifiable methods
have not been found for them. To simultaneously fill this gap and achieve complete safe coordination
solutions, we model the coordination problem of astrobots as a reconfiguration problem [Macktoobian
et al. 2017] in the domain of discrete-event systems [Cassandras et al. 2009]. Thanks to the verification-
friendly nature of supervisory control theory [Wonham 2017b], Chapter 4 illustrates a procedure to syn-
thesize coordination supervisors for astrobot swarms whose logic-based behaviors are automatically safe
and completeness-preserving.

The supervisory control above quickly faces whatmost of the large-scale applications using supervisory
control theory eventually encounter: the curse of dimensionality. Once the number of astrobots increases,
the state/event size of a synthesized coordination supervisor intractably grows. So, finding coordination
paths of the closed behavior of the supervisorwould resembles searching for a needle in a haystack. Instead,
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we bring the notion of navigation functions into focus again. Various formulations of these mathemati-
cal artifacts have already been used in the navigation of different robotic systems including aerial vehicles
[Roelofsen et al. 2016; Roelofsen et al. 2017]. One observes that an astrobot is controlled by a specific
navigation function instance. In such a distributed framework, each priority-based navigation function
instance [Makarem et al. 2014] only cares about the convergence of its own astrobot in a selfish manner.
It implies that an astrobot which has already reached its target actually refuses to move anymore; even if it
has blocked the paths of some of its neighboring peers to reach their targets. In these scenarios, if the con-
verged astrobot slightly deviates from its equilibrium temporarily, its peers may cross over the deadlock
intersection of theirs toward their targets. Then, the astrobot may get again back to its desired spot. This
level of cooperativity and its insertion into the formulation of navigation functions is the subject of Chap-
ter 5. In particular, the resulting notion of cooperative artificial potential field [Macktoobian et al. 2019a;
Macktoobian et al. 2019d] is flexible enough to completely coordinate astrobot swarms in a majority of
observation scenarios. This formalism provides a completeness condition, based on the settings of targets’
positions and astrobots’ initial positions, to check the feasibility of complete coordination. If completeness
is not feasible, a simple procedure can be used to trivially modify the swarm settings to achieve complete-
ness. The applied simulations and experimental evaluations illustrate that incomplete coordination rarely
occur when cooperative artificial potential fields are used to coordinate astrobot swarms. However, even
in the presence of such partially-coordinated cases, incompleteness may be straightforwardly resolved in
just one or two rounds of parameter modification [Macktoobian et al. 2021b].

1.3.3 Completeness Prediction

Analytical methods noted in the previous section are computationally intensive, specially when onemoves
from small packs of astrobots to huge ones. In such cases, one has to employ a lot of time and computational
resources to check whether a particular setting of targets and astrobots may end up with their complete
convergence. If the answer is negative, then the same amount of time and resources have to be used after
each round of parameter modification. Thus, it is beneficial if one can first estimate a rough completeness
likelihood with respect to particular planned astrobot-target pairs. If the estimation is lower than a thresh-
old, one can simply ignore the setting without further verification simulations and immediatelymodify the
parameters of the swarm to reach a larger likelihood. Once the predicted convergence rate passes the min-
imum chance to reach completeness, one can verify it using simulations. Thus, Part C of this thesis exhibits
how machine learning algorithms may be used to obtain desired completeness predictions. The remark-
able feature of these algorithms is that they only need the target-astrobot pairing to evaluate completeness
likelihoods, whereas analytical methods indeed have to iteratively solve a multitude of coupled differential
equations in every step of a coordination. Thus, the computational benefits of convergence predictions are
notable.

Parity of an astrobot is the rotation direction of its second arm. This parameter may be either con-
strained, say, the second arm of an astrobot can only move in one direction, or variable, thereby, moving
in both directions. A constrained-parity astrobot is less flexible in terms of control, but easier to be pre-
dicted in terms of its convergence. In this regard, Chapter 6 introduces an algorithm based on the idea
of weighted k-NN classifiers [Macktoobian et al. 2020b], in which parities are assumed to be constrained.
The performance metrics of our classifier display its effectiveness in the correct prediction of converging
astrobots in ∼75% of applied tests. In the next step, we relax the constrained assumption by letting par-
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ities vary. This assumption drastically complicates convergence predictions. In particular, in the case of
variable-parity coordination, even a trivial change in the positional values of targets and/or astrobots may
flip a convergence result from successful to unsuccessful or vice versa. For this purpose, Chapter 7 reports
an SVM-based predictor which yields ∼78% accuracy in its convergence predictions [Macktoobian et al.
2020c].

1.3.4 List of Publications

The publications included in this thesis

The publications listed below constitute the majority of the content of this thesis. The first author of them,
i.e., the author of this thesis, defined their problem statements, developed their methods, performed ex-
periments to assess their underlying strategies, and wrote the manuscripts.

9. M. Macktoobian, F. Basciani, D. Gillet, and J-P. Kneib, Data-Driven Convergence Prediction of
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Press)
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1.4 Organization

This thesis has started with the current introductory chapter. Each of the next three parts includes the con-
tributions of one of the domains depicted in Figure 1.4. Our conclusions and remarks for future research
themes in this field are the subject of the last chapter, i.e., Chapter 8. The overall dependencies between
the chapters of the thesis are explicitly stated in Figure 1.5. In particular, Chapter 2 initiates the thesis
contribution in the scope of target-to-astrobot assignment. The terminology of this chapter is extensively
used in Chapter 3. Chapter 3 illustrates a potential application of astrobots to space debris tracking. So,
no other chapter depend on it. Chapter 4 and Chapter 5 both enjoy the contributions of Chapter 2, since
the optimal target-to-astrobot assignment is utilized in both supervisory and cooperative coordination
methods. The complete coordination problem is carefully explained inChapter 4. Chapter 5 also requires
those information, thereby depending on Chapter 4. Chapter 6 requires results of Chapter 5, say, coop-
erative coordination, as a means of data acquisition for its learning processes. Chapter 7 generalizes the
constrained parity idea of Chapter 6. Chapter 8 includes the final words corresponding to all of the quoted
chapters.
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Figure 1.5: The chapter dependencies in the thesis
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Part A

Target-to-Astrobot Assignment





Chapter 2

Optimal target-to-astrobot assignment

II

Publication Note

The material presented in this chapter is adapted from:

• M.Macktoobian, D. Gillet, and J-P. Kneib, Optimal Target Assignment forMassive Spectroscopic
Surveys, Astronomy and Computing 30, Article 100364, 2020.

2.1 Introduction

T
he target-to-astrobot assignment process may be extremely influential on the quality of the final co-
ordination process in terms of convergence rate and collision freeness. In this chapter, we posit

that the target-to-fiber assignment problem is a constrained and specialized derivation of the set-to-set
assignment problem [Cattrysse et al. 1992]. Thus, we review the classical solutions proposed to the latter.
We also describe how those potential solutions may not be properly applicable to our target-to-fiber as-
signment problem. In other words, we aim to justify the effectiveness of our constrained optimality idea
compared to former solutions to the set-to-set assignment problem. Since our strategy is established based
on optimization, we basically focus on the comparative study of the optimization-driven methods.

Classical optimization modeling based on constrained formulas have been studied for a long time,
see, e.g., [Fisher et al. 1986; Ross et al. 1977]. Most of the available schemes in this area often define
an optimization problem including a set of linear constrained to take the requirements of an assignment
problem into account in the course of optimization. Many applications have used this strategy including
optimal routing problem [Fisher et al. 1981; Cantor et al. 1974], resource scheduling in large-scale project
management [Balachandran 1976; Menesi et al. 2013], etc. The solutions to these problems have to be
recursively achieved because of the dynamic nature of their constraints. Thus, constraints are mostly de-
fined as inequalities. To do so, a procedure called LP-relaxation [Gavish et al. 1991; Sanghavi et al. 2011]
first replaces are linear equality constraints of a system to their inequality equivalents. The resulting set of
inequalities takes all dynamic complicated requirements into account at the cost of very time-consuming
recursive computations. Thus, a class of heuristics [Van Den Briel et al. 2007; Klose 1999] were designed to
improve the performance of traditional LP-relaxation-based methods. Despite the achieved performance
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improvements, a drawback of the heuristic LP-formulation is its degeneracy. Put differently, increasing the
system and the constraints set size (at the level of hyper-complex systems) yields inefficient computation
times tending to intractably grow. In terms of the requirements corresponding to our assignment problem,
thesemethods do not seem to be promising for a variety of reasons. First, the number of our constraints are
very smaller than those of existing in usual problems seeking LP-relaxation. Thus, transformations of our
requirements to inequalities do not provide any advantage compared to pure equality-based constraints.
Numerous recursions of LP-relaxation also seem to be unnecessary in the course of our problem since the
convergence to the optimal point of our two spatial constraints is in fact enough not to seek extra recursive
computations. Finally, LP-relaxation efficiently works if effective heuristics have already supported its for-
mulation. Since we plan to solve our optimization assignment in a localized perspective, local geometrical
interactions among astrobots are not so complicated that one has not to design specific heuristics for this
purpose.

The next step to improve LP-relaxation is constraint deleting [Ross et al. 1975; Ceselli et al. 2006].
Namely, one observes that not all constraints contribute to decision making process in all recursions of
optimization. So given a hypothetical constraint, the idea is its deletion as soon as it has no impact on the
function subject to minimization. Constraints deletion requires to identify the constraints to be deleted in
each optimization recursion. Thus, greedy methods emerged to modify the heuristics of LP-relaxations to
fulfill such requirement [Martello et al. 1992]. Constraint deletion is a trade-off in terms of computational
labor. In particular, one eliminates useless constraints in the course of the optimization algorithm, at the
cost of permanent execution of the greedy elimination detector algorithm. The constraint deletion notion is
implicitly taken into account in our optimal target-to-astrobot assignment idea. Namely, once an astrobot
is assigned to a target, it will be removed from the set of available astrobots to be allocated associated with
the next target. However, our implicit constraint deletion is fairly cheaper in a computational perspective
compared to the one applied to LP-relaxation. The LP-relaxation version adds a constraint (set) to the
whole process which is computationally more labor-intensive compared to what we do, say, removing one
astrobot from a list of available astrobots before starting the next target-to-fiber assignment round.

Next improvement applied to the optimized set-to-set problem formulation is dualizing constraints
[Fisher 2004]. This idea, known as Lagrangian relaxation [Geoffrion 1974], reduces the space which algo-
rithm has to search in each iteration. However, one can show that it does not improve the performance of
LP-relaxation when one faces an integer set-to-set optimization problem. One may note that our target-
to-fiber assignment problem is not inherently an integer optimization problem in view of its constraints
because our optimality criterion in general returns non-integer evaluations. Consequently, our strategy
does not require the duality idea proposed by Lagrangian relaxation.

Lagrangian decomposition [Jörnsten et al. 1986; Escudero et al. 2016; Baumann et al. 2014] is proposed
to transform a multi-variable set-to-set optimization problem to a set of single-variable ones aiming to
reduce the computational complexity of the solution seeking process. The effectiveness of this method
is only limited to those problems whose variables are independent [Karuppiah et al. 2008]. In contrast,
our problem statement includes positional variables composed of Cartesian coordinates. The definition
of two dimensional points does not simply authorize the detachment of a point’s coordinate components.
Moreover, the variable set of our assignment problem is restricted to only one type of spatial coordinates,
thereby encountering no computational bottleneck in their manipulations in the course of optimization.

Set-to-set assignment problem may be approximated to multiple knapsack optimization problems
[Dudziński et al. 1987]. If so, a noticeable simplification in optimization process shall be observed. How-
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ever, the conditions required for such approximation are not met in our problem statement. In particular,
this strategy assigns mutual weights to various elements of the domain set. Then given a pair of domain
items, an optimization procedure assigns a potential range set item to that pair element for which the
weight is the smallest compared to its other weights with respect to the remainder of domain set elements.
But our target-to-fiber assignment problem does not hold this condition. Namely, our domain set is a set
of independent observational targets without any mutual impact on each other. Even in the presence of
hypothetically defined mutualities, it is not clear how this idea would pave the way for simplifying and/or
improving our optimization procedure.

Pure heuristic solutions to the set-to-set assignment problem also exist. For example, evolutionary
computational algorithms are proposed to solve the problem in dynamic scenarios where both domain
and range sets may evolve in terms of their elements throughout assignment processes [Sethanan et al.
2016]. In a similar vein, parallel genetic algorithms [Y. Y. Liu et al. 2015] seem to be promising in consid-
ering some factors in dynamic scenarios, e.g., wider coverage of search spaces in the course of optimized
assignments. However, our specific problem statement is static in this viewpoint. Thus, the advantages of
differentially evolving methods are not noticeable in our problem’s case. The lack of inherent safety con-
trol mechanisms in some other interesting assignment methods like Hungarian algorithm makes them
inappropriate options to tackle our problem.

The set-to-set assignment methods specially designed for the purpose of assigning observational tar-
gets to fibers (or astrobots) were already discussed in the proposal in detail. To restate the main points, we
note that random assignment [Doeleman et al. 2009], drainage method [Morales et al. 2011], and target-
based strategy [Schaefer et al. 2016] do not take our optimality requirements into account. Flow-based
assignment [Blanton et al. 2003] is another scheme which solves the target-to-astrobot assignment prob-
lem as a network flow one. Themethod aims tomaximize the number of targets which have fibers assigned
to them. This strategy uses network flow graphs to solve the problem. Namely, it first identifies a set of
fibers which do not collide any other peers. Then, the set of unallocated fibers are taken into account to re-
solve collisions using a network flow graph. Thismethod is basically designed to address target-to-astrobot
assignment in non-robotic focal planes. In other words, however collisions among fibers are addressed by
the method, it may not be able to properly handle collisions among astrobots. In automatized focal planes,
collisions depend on real-time states of astrobots during coordinations. So in practice, it is unlikely to be
able to consider all potential collisions corresponding to numerous coordination solutions of a system of
astrobots in the assignment phase. Thus, modular perspective in decoupling assignment phase from co-
ordination phase may be more effective to avoid collisions and to find fast and safe coordinations during
coordination phases.

The spectroscopic survey generation is typically done in 3 phases. Namely taking a specific observa-
tion into account, one first has to assign each target of an observation to a specific astrobot of a planned
telescope (assignment phase). Then, the astrobots have to be coordinated to reach their assigned targets
such that no collision occurs during the coordination phase [Macktoobian et al. 2019d; Macktoobian et al.
2019a]. Finally, the collected spectroscopic signals are sent to a spectrograph to generate the map of the
observation (processing phase). Because of the complexity of the system and the dense placement of as-
trobots, the coordination phase is often challenging to be handled. In particular, one is interested in fast
collision-free coordinations whose convergence rates1 are maximized. Targets are heterogeneous in view

1 Given a set of astrobots, convergence rate is defined as the number of those which reach their desired position at the end of their
coordination divided by their overall number.
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of size and the distance from fibers. One may note that the assignment phase dramatically influences the
achievement of the quoted favorite coordination. Thus, any improvement of the assignment process may
directly contribute to the realization of safer collision-free and faster coordinations.

As already stated, each observation often requires a large number of objects to be assigned to a set of
astrobots [Macktoobian et al. 2019b]. So, a set ofmethodologies were proposed to handle assignments. For
example, random assignment simply assigns each target to a random unassigned astrobot. This method
takes no specific criteria into account, thereby being computationally plausible. However, the coordina-
tion phase may become very challenging because random assignment may assign some targets to a dense
neighborhood of astrobots. In this case, the coordination phase may struggle to simultaneously reach
proper convergence rates and avoid potential collisions between the astrobots. Flow-based assignment
[Blanton et al. 2003] was another scheme which solves the target-to-astrobot assignment problem as a net-
work flow one. The method aims to maximize the number of targets to which fibers are assigned. This
strategy uses network flow graphs to solve the problem. Namely, it first identifies a set of fibers which do
not collide any other peers. Then, the set of unallocated fibers are taken into account to resolve collisions
using a network flow graph. This method was basically designed to address target-to-astrobot assignment
in non-robotic focal planes. In other words, however collisions among fibers are addressed by the method,
it may not be able to properly handle collisions among astrobots. In automatized focal planes, collisions
depend on real-time states of astrobots during coordinations. So in practice, it is unlikely to be able to con-
sider all potential collisions corresponding to numerous coordination solutions of a system of astrobots
in the assignment phase. Thus, modular perspective in decoupling assignment phase from coordination
phase may be more effective to avoid collisions and to find fast and safe coordinations during coordination
phases. Later, the drainage algorithm [Morales et al. 2012] was proposed based on a tiling approach. This
method ensures that themaximumnumber of targets are observed in an observation. In particular, targets
are moved among various lists of unassigned astrobots each of which can observe a specific set of targets.
Finally, each target is assigned to the shortest list including observable targets. This method assimilates the
target-to-astrobot assignment ratio corresponding to the overall desired targets with respect to astrobots.
As a disadvantage, this strategy assumes no physical size for astrobots, thereby neglecting any potential
collisions between them.

Alternatively, target-based assignment method [Schaefer et al. 2016] assigns astrobots to targets in-
stead of targets to astrobots. The assignment ratio of this algorithm is improved compared to that of the
drainage algorithm. However, this method is computationally more intensive than the drainage algorithm.
The target-based assignment method seeks the ease of path finding, say, decreasing the occurrences of
collisions2 and deadlocks3 using a parity-based mechanism. In particular, each astrobot can rotate in two
different directions one of whichmay be less susceptible to collisions and deadlocks. Thus, onemay set and
vary parities associated with an astrobot set to find a parity set according to which the astrobots can con-
verge to a specific configuration with less colliding and deadlock issues. This method checks the existence
of conflicts at the assignment time. Thus, achieving the least collision-prone solution is not guaranteed.
Nonetheless, there is no guideline based on which one could set parities in a systematic way to achieve the
reported∼2%-3% improvement rate in assignment gain. Thus, none of themethods above simultaneously

2 A collision occurs when two neighboring astrobots violently strike against another.
3 A deadlock is a situation in which two neighboring astrobots, which blocks each other’s paths through their target spots, stop
moving at a location which is not their target spots. Each back-and-forth movement of such a pair of astrobots is counted as
one deadlock.
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(a) The blue astrobot fulfills the minimum coordination
criterion.

(b) The red astrobot satisfies the maximum distribution
criterion.

Figure 2.1: Optimization requirements evaluations in a typical assignment scenario. (As a patch of a typical
focal plane, the gray hexagons represent astrobots which have been already allocated, and the black circle
depicts their average coordinate. Two unallocated astrobots, i.e., the dark blue and red manipulators, are
confined to their corresponding hexagons. Each of the astrobots can reach the green circle representing
an unassigned target.)

minimizes both the required coordination and the occurrence of collisions and/or deadlocks.
In this chapter, we find an optimal solution to the target-to-astrobot assignment problem which min-

imizes the required coordination and maximizes the distance between assigned astrobots to minimize
collisions and/or deadlocks. In particular, we embed the quoted criteria into a cost function. Then, we
propose an algorithm which finds the optimal target-to-astrobot assignment assignments constrained to
the cost functionminimization. We show that our quadratic algorithm is computationally efficient enough
to solve the target-to-astrobot assignment problem associated with crowded astrobot sets.

Ourmethod improves the performances of both hybrid [Tao et al. 2018] and supervisory [Macktoobian
et al. 2019c] coordination approaches. In particular, hybrid coordination reaches higher convergence rates
using our optimal assignment strategy. The supervisory coordination, which seeks complete coordination
of an astrobot set, often suffers from computational complexity issues. To be specific, supervisory coor-
dination requires intensive computations to solve the completeness problem if the random, drainage, or
target-based algorithms are used in the assignment process. In contrast, we observe that optimal target-
to-astrobot assignment efficiently reduces the state space size of coordination supervisors. Put differently,
optimal target-to-astrobot assignment surpasses themethods quoted above to solve the coordination prob-
lem in a shorter time.

The remainder of the paper is organized as follows. Optimal target-to-astrobot assignment process is
presented in Section 2.2. In particular, a cost function is defined to address the requirements of the prob-
lem solution. Then, an algorithm is established to solve the problem. We also demonstrate the quadratic
complexity of our algorithm. Section 2.3 illustrates how our optimal assignment algorithm improves the
coordination results of both hybrid and supervisory methods. Section 2.4 summaries our accomplish-
ments.

2.2 Algorithm

In this section, we start by defining a cost function which takes the trade-off between the following re-
quirements into account.
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1. theminimumcoordination of the astrobotswhich reach a particular set of targets: each target should
be assigned to the astrobot whose initial ferrule’s coordinate is in the closest distance to the target’s
projected location on the host focal plane compared to the projected locations of the reminder of
the reaching astrobots. (see, Figure 2.1a)

2. themaximumdistribution of the astrobots which reach a particular set of targets: each target should
be assigned to the astrobot which is located at the farthest distance from the already-allocated as-
trobots. (see, Figure 2.1b)

We first define the “reachability relation” which specifies an astrobot reaching a particular target as below.

Definition 1 [Reachability Relation]. Let π and t be an astrobot and a target, respectively. Then, the reach-
ability relationR(π, t) holds if t is reachable by π.

Using the definition above, We also specify the set of all astrobots reaching a specific target as follows.

Definition 2 [Reachable Set]. Let P and t be a set of astrobots and a target, respectively. Then, RPt is the
largest subset of P whose elements reach t as follows.

RPt :={π ∈ P|R(π, t)}

:={iRPt |1 ≤ i ≤ |P|}
(2.1)

We are interested in a measure to represent the distance of a target from a set of astrobots. Thus, we
define the “average coordinate” associated with a batch of astrobots as below.

Definition 3 [Average Coordinate]. Given an index set I and a set of astrobots P := {πi|i ∈ I}, let
Q := {qi|i ∈ I} be the coordinate set corresponding to the end-effectors of P . Then, the average
coordinateQ associated with P is defined as below.

Q :=
∑

i∈I
qi

|I| (2.2)

Definition 4 [Projected Coordinate]. Given a target t, qt represents the projected coordinate of t on the
focal plane corresponding to the set of astrobots which can observe t.

Now we are set to mathematically formulate our requirements. In particular, we take the minimum
coordination criterion into account corresponding to a target t by assigning the astrobot πi ∈ iRPt to it
which minimizes the following subfunction

∥qi − qt∥2 . (2.3)

Furthermore, we consider the maximum distribution criterion for a target t by assigning the astrobot πi ∈
iΓPt to it which maximizes the following subfunction

∑
j∈J

∥∥qi − qj
∥∥

2 . (2.4)

Here J is an index set corresponding to the set of already allocated astrobots.
One may note that the maximum distribution criterion is computationally labor-intensive. So, we

present a lower bound for this criterion which is computationally more plausible.
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Proposition 1. Let P and t be a set of astrobots and a target to be observed, respectively. Given the average
coordinateQ associated with P , a lower bound for the maximum distribution criterion, i.e., (2.4), is∥∥qi −Q

∥∥
2 . (2.5)

Proof. According to the extended triangle inequality, we have

∑
j∈J

∥∥qi − qj
∥∥

2 ≥
∥∥∥∥∥∑

j∈J

(
qi − qj

)∥∥∥∥∥
2

, (2.6)

which gives ∥∥∥∥∥∑
j∈J

(
qi − qj

)∥∥∥∥∥
2

=

∥∥∥∥∥|J |qi − ∑
j∈J

qj

∥∥∥∥∥
2

=|J |

∥∥∥∥∥∥∥qi −
∑

j∈J
qj

|J |

∥∥∥∥∥∥∥
2

≥
∥∥qi −Q

∥∥
2 .

(2.7)

Thereby, proving the claim. ■

Therefore, a lower bound for the maximum distribution criterion, i.e., (2.4), is∥∥qi −Q
∥∥

2 . (2.8)

Thus, the overall cost function, the minimization of which simultaneously satisfies the both optimal crite-
ria, is as follows.

∥qi − qt∥2∥∥qi −Q
∥∥

2

(∀i : 1 ≤ i ≤ ∥RPt ∥) (2.9)

The optimal assignment solver (OAS) algorithm takes (2.9) into account to solve the target-to-astrobot
assignment optimization problem4.

Algorithm Optimal Assignment Solver (OAS)
Input:
P ▷ Astrobot set
T ▷ Targets set

Output:
Assigned target-astrobot tuples

1: Q← ∅
2: sort T based on the observation priorities in descending order
3: for each t ∈ T do
4: assign t to πi such that i = argmin

i

∥qi−qt∥2

∥qi−Q∥2

(∀i : 1 ≤ i ≤ ∥RPt ∥)
5: P ← P \ {πi}
6: Q← Q∪̇{πi} ▷ Symbol ∪̇ denotes disjoint union operation.
7: end for
8: return The assigned target-astrobot tuples

4 We sort targets based on their priorities so that those with higher priorities can be assigned to the astrobots which have higher
chances, in view of encountering less deadlocks, to reach those targets.
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Now, we demonstrate the quadratic computational complexity of the OAS algorithm.

Proposition 2.The computational complexity of the OAS algorithm is quadratic.

Proof. Let T and P be a set of targets and astrobots, respectively. Given n := |T | and k := |P|,
the sorting process can be executed in O(n log n), which is not the computational bottleneck of the
algorithm. Then, the loop has to check a subset of astrobots for each target. In the worst case, the
ith iteration of the loop has to check k− i + 1 astrobots with respect the ith target. Thus, the overall
number of loop operations is

nk− (1 + 2 + · · ·+ n) + 2 = nk− n(n + 1)
2

+ 2. (2.10)

In the worst case, we ideally suppose k = n to maximize the information obtained from an observa-
tion. It turns out that the complexity is O(n2). Thus, overall computational complexity of the OAS
algorithm is quadratic. ■

One may argue that the optimal target-to-astrobot solution above may be written in the formalism of
classical optimization problems. However, the constraints we have are nonlinear, so none of the efficient
tools of linear programming may be used especially when we have thousands of astrobots and targets.
Thus, we believe that in small-scale assignment tasks, classical optimization form of our solution may be
taken into account. But in the case of massive surveys, the optimality-criterion-based formulation is the
superior method.

2.3 Simulations

In this section, we observe how our optimal target-to-astrobot assignment method improves the perfor-
mance of the overall coordination of astrobot set in view of different measures. Our simulation parameters
are set based on the information of Table 2.1. The navigation tests are also based on the kinematic equa-
tions of astrobots explained in Chapter 1. As well, we consider no positional noise in the target-astrobot
coordinates since this assumption does not bring any insights into our desired comparisons. In particular,
we compare what our strategy achieves to those of the target-based assignment, known as one of the most
promising available assignment methods up to now. The target distributions are assumed to be random.
In particular, we use a circular uniform distribution specified as follows.

r2 ∼ U[0;
√

rmax]

θ ∼ πU[0; 2]
(2.11)

Here, rmax depends on the number of the astrobots in each test. So, the Cartesian coordinates of targets
are generated according to the following rules.

x := r sin θ

y := r cos θ
(2.12)

The number of the generated targets is the same as that of the astrobots, while all targets have to pass the
reachability criterion, say, each target has to be at least reachable by one astrobot.
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Figure 2.2: The convergence rate comparison between optimal and target-based assignments during hybrid
coordinations

We performed 50 simulated scenarios per each population5 of astrobots whose overall averages are
presented below. Major parameters of the simulation are specified in the Table 2.1.

The hybrid coordination [Tao et al. 2018] generally does not guarantee the complete coordination of
a typical astrobot set. Thus, the convergence rate is a measure to assess the effectiveness of a coordination
process. In particular, Figure 2.2 illustrates the convergence rates corresponding to various numbers of
astrobots. One observes that the hybrid coordination method yields higher convergence rates using our
optimal target-to-astrobot assignment method.

The number of deadlocks during a coordination process is correlated to the required time to reach
the coordinated configuration. Put differently, the less deadlocks occur in the course of coordination, the
faster the final coordinated configuration is achieved. In particular, Figure 2.3 depicts the decrement of
deadlocks during coordination when optimal target-to-astrobot assignment is taken into account.

The supervisory coordination [Macktoobian et al. 2019c] is also improved using the optimal target-

5 As Figure 2.2 illustrates, we consider various packs of astrobots whose populations are 63, 157, 241, 350, 400, and 500. In the
case of deadlock analysis and state space analysis, see, Figure 2.3 and 2.4, respectively, we have 500 populations each of which
includes a unique number of astrobots in the range [0, 500].

Table 2.1: The parameters applied to the simulations

Parameter Value

The length of the first arm 8 mm
The length of the second arm 17 mm
The width of the first arm 8 mm
The width of the second arm 4 mm
The ferrule size 1 mm
The maximum speed of the first arm’s actuator 30 rpm
The maximum speed of the second arm’s actuator 20 rpm
The time step of control command generation 10 ms
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Figure 2.3: The deadlock occurrences using optimal assignment during hybrid coordination
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Figure 2.4: The decrement of coordination supervisors’ state space size during supervisory coordination

to-astrobot assignment. Namely, a coordination supervisor is a finite state machine some of whose strings
are solutions to the complete coordination problem associated with a specific set of astrobots. Since the
solutions have to be found through the overall structure of a coordination supervisor, the state size of the
coordination supervisor significantly impacts on the time required to solve a complete coordination prob-
lem. In particular according to the Figure 2.4, the optimal target-to-astrobot assignment method resem-
bles the target-based one in view of the state space size of coordination supervisors if the overall astrobot
sets are not very populated. However, we observe that the optimal target-to-astrobot assignment method
surpasses the target-based counterpart regarding this factor when the number of astrobots is increased.

2.4 Conclusion

This chapter introduces a new method to improve the state-of-the-art target-to-astrobot assignment al-
gorithm based on an optimization perspective. In particular, the optimal target-to-astrobot assignment
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takes a cost function into account according to which the distribution density of assigned astrobots is lo-
cally decreased, thereby less frequent occurrences of deadlocks during coordination. We also minimize
the cost function seeking the target-fiber pairs whose Euclidean distance is as small as possible. Thus, the
overall coordination time is minimized. We also show that our optimization algorithm is efficiently scal-
able in quadratic time. The applied simulations represent the efficiency of the optimal target-to-astrobot
assignment scheme to improve the performances of both the hybrid and the supervisory coordination
techniques.
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Chapter 3

Heterogeneous Target-to-Astrobot
Assignment

III

Publication Note

The material presented in this chapter is adapted from:

• M. Macktoobian, D. Gillet, and J-P. Kneib, Heterogeneous Target Assignment to Robotic Fiber
Positioner Systems, in Australian and New Zealand Control Conf. (ANZCC), IFAC/IEEE, pp. 48-
53, 2019.

3.1 Introduction

T
he cited target-to-astrobot assignment approaches, quoted in the previous chapter, are only appli-
cable to the set of homogeneous targets. In particular, when all of the targets (for example, astro-

nomical objects) and their desired operations (for example, astronomical observations) are the same for
all astrobots, then one can use the quoted algorithms to resolve assignment processes. However, if various
subsets of astrobots are supposed to be used to handle different types of operations, then the algorithms
above shall not be applicable. For example, active space debris mitigation [Pirat et al. 2017] seeks the
strategies to detect space debris at long ranges. Since space debris radiate near-infrared waves, infrared
fibers [Kimura et al. 2010] can be used to detect them at the range of low earth orbit (LEO), which is an
interesting region in view of debris mitigation. As another motivation, the number of available fibers may
exceed the number of the desired targets to be observed. Thus, one would like to assign some of the free
fibers to another application such as space debris detection, as explained above. In this case, the assign-
ment procedure is heterogeneous, in that there are two classes of targets which are substantially different
and need to be treated differently in view of the fiber assignment procedure. Heterogeneous assignment
maximizes the operational capacity of the fibers of a telescope such that the fibers which are not assigned
to any observational target may be assigned to other targets corresponding to a secondary application.

This chapter proposes a multilinear-time algorithm to assign astrobots of a telescope to more than
one operational application. In view of our heterogeneous algorithm, the targets are classified into two
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categories: the observational targets which are often very far from the earth andmove very slow, so one can
consider them static; the second group include the targets which are relatively closer to the earth andmove
faster, so one takes them as dynamic targets into account. Since astronomical observations are the main
applications of astrobots, we divide observation targets to two groups of high-priority and low-priority
targets. The high-priority targets are assigned to fibers ahead of the dynamic targets. Finally, we assign the
low-priority targets to any remaining fiber which has not yet been assigned to either a high-priority static
or dynamic target. As we explain in detail further, our heterogeneous algorithm assigns the minimum
number of astrobots, called bundle, to a dynamic target which is necessary to detect it. Thus, our strategy
is optimized in view of bundle formation. In other words, minimizing the bundle size provides more
unallocated fibers to be assigned to static targets. Since our algorithm takes two partitions of low- and
high-priority static targets into account, it is flexible enough to manage the assignment completeness. To
be specific, if the astrobots assignment to dynamic targets is not satisfactorily complete, then one may
decrease the number of high-priority static targets to provide more available fibers to dynamic targets.
Overall, there is generally a trade-off between the complete assignment of fibers to static targets and those
of to dynamic ones.

The remainder of the chapter is organized as follows. Heterogeneous target-to-astrobot assignment
process is investigated in Section 3.2. Namely, Section 3.2.1 describes a bundle formation method to select
a minimal subset of available astrobots to each dynamic target. We use the bundle formation method to
propose our heterogeneous target-to-astrobot assignment algorithm in Section 3.2.2. We also show that the
algorithm is multilinear in view of computational complexity. Section 3.3 solves a heterogeneous target-
to-astrobot assignment scenario using our algorithm to illustrate its efficiency. We share our conclusion in
Section 3.4.

3.2 Algorithm

We start from a set of definitions based on which the problem statement of the heterogeneous target-to-
astrobot assignment is defined. Wewill also later use these definitions to develop our heterogeneous target-
to-astrobot assignment algorithm. We already noted that static targets refer to those whose movements
are negligible compared to the observation exposure times such as galaxies. Thus, the following definition
addresses the notion of “static target” based on the concept of exposure time.

Definition 5 [Static Target]. A target tS is a static target if its movements are negligible during the exposure
time required to observe it. Then, the set of static targets is represented by

TS := {ti
S|i ∈ I}, (3.1)

where I is an index set.

We partition the set of static targets to two disjoint sets based on their priorities. In other words,
the high-priority subset T H

S ⊆ TS includes those static targets whose observations are necessary during
a particular observation period. Put differently, an astrobot has to be assigned to each of those targets.
In contrast, the subset T L

S ⊆ TS denotes the targets whose observations may be postponed to another
observation period if there is currently no astrobot to be assigned to them. Thus, we have TS := T H

S ∪̇T L
S .

We also exploit the concept of exposure time to define the notion of “dynamic target” as follows.
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Figure 3.1: A typical bundle whose corresponding surface covers a specific area around a particular dy-
namic object

Definition 6 [Dynamic Target]. A target tD is a dynamic target if its movements are not negligible during
the exposure time required to observe it. Then, the set of static targets is represented by

TD := {tj
D|j ∈ J }, (3.2)

where J is an index set.

Then, the overall set of targets is T = TS∪̇TD.

Definition 7 [FreeAstrobot]. LetP be a set of astrobots. Then, an astrobot π ∈ P is free if it is not assigned
to any specific target.

In general, a single astrobot cannot efficiently detect a dynamic target since the target often moves too
fast, and the limited workspace of a single astrobot is not enough for this purpose. Thus to detect dynamic
targets, we construct bundles of astrobots which can collectively cover a desired area in which a dynamic
target moves.

Definition 8 [Bundle]. Let P be a set of astrobots. Then, B ⊆ P is a bundle if its astrobots shape a single
astrobots island.

Remark 1. The definition of free astrobot can be extended to define a free bundle which is a bundle whose
all astrobots are free.

Thus, we define the heterogeneous target-to-astrobot assignment problem as follows.

Problem 1. Denote by P a set of astrobots, and let TS be a set of static targets subject to some priority
specifications. Let also TD be a set of dynamic targets with some region specifications. Assign a

(i) free π ∈ P to each t ∈ TS;

(ii) free bundle B ⊆ P to each t ∈ TD.

In the following two sections, we solve the problem above.
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3.2.1 Bundle Formation

Suppose a bundle B whose base area isAB as depicted in Figure 3.1. Let also d denote the distance of the
bundle to a particular dynamic target. We are interested in the area around the target at the distance of
d which is observable by B. In other words, the field of view of B at distance d is of interest. We already
cited the tilted axes and the deviated ferrules of astrobots. Thus, the field of view of a bundle at distance d
encompasses a surface whose areaA is greater thanAB . Denoting the overall deviation by θ, the difference
betweenA andAB depends on both θ and d as follows

A = AB +F (θ, d), (3.3)

where the definition of the binary function F (·, ·) depends on the geometrical shape of the bundle. Each
pair of the arguments associated with F (·, ·) in fact corresponds to a particular dynamic target.

To form a bundle corresponding to a specific dynamic target, the area of the surface, i.e.,A, is known
because the area in which we are interested in detecting the target is a part of the solutions requirements.
Put differently,A is taken as a region specification into account associated with a specific dynamic target.
Thus, one selects some unassigned astrobots to shape a bundle with the minimum number of elements
which fulfills (3.3). As an example, we determine the function F (·, ·) for a particular circular bundle
geometry. Wewould like to find the radius of the bundle such that the surface area visible from the bundle’s
field of view will beA. Note thatA = π(r + x)2 where x = d tan θ. Thus, we have

A = π(r + d tan θ)2,

= πr2 + πd tan θ(2r + d tan θ),
(3.4)

which turns out that F (θ, d) = πd tan θ(2r + d tan θ).
We establish the bundle former (BF ) algorithm as depicted by Algorithm 2. To analyze the compu-

tational complexity of the BF algorithm, we first introduce the notion of “reachability relation” as below.

Definition 9 [Reachability Relation]. Let t ∈ T be a target. Given a set of astrobots P , let π ∈ P be a
positioner. Then, the binary reachability relationR(t, π) holds if t is reachable by π.

We use the definition above to define the notion of “reachable target set” as follows.

Definition 10 [Reachable Target Set]. Let T be an arbitrary set of targets. Let also P be a set of astrobots.
Then, the reachable target set PT with respect to T is defined as follows.

PT := {π ∈ P|(∀t ∈ T )R(t, π)} (3.5)

Lemma 3 also proves that the computational complexity of the BF algorithm is multilinear.

Lemma 3. Let TD andPTD be a set of dynamic targets and the set of astrobots which reach them, respectively.
Given |TD| := n and |PTD | := m, the computational complexity of the BF algorithm isO(mn).

Proof. Each astrobot can only be assigned to one dynamic target. Then in theworst case, each astrobot
has to be checked to be assigned to every dynamic target. Then, the number of applied tests is nm.
Therefore, the computational complexity isO(mn). ■
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3.2.2 Algorithm

In this section, we use the BF algorithm to propose our heterogeneous assignment algorithm. For this
purpose, we first complete the set of required definitions by introducing “complete reachability” and “crit-
ical reachability” relations.

Definition 11 [Complete Reachability]. Let P and T be a set of astrobots and a set of targets, respectively.
Then, the complete reachability relation C(P , T ) holds if the following formula is true.

(∀t ∈ T )(∃π ∈ P)R(t, π) (3.6)

Definition 12 [Critical Reachability]. Let π ∈ P be an astrobot. Let also t′ ∈ TD and t′′ ∈ T H
S be

a dynamic and a high-priority static target, respectively. Then, π is critically reachable, say, the ternary
relation K(π, t′, t′′) holds, if the following formula is true.

[π ∈ (Pt′ ∪̇Pt′′)] ∩ [|Pt′ | = 1] ∩ [|Pt′′ | = 1] (3.7)

Definition 13 [Critical Astrobot]. Let P be a set of astrobots. Let also TD and T H
S be a set of dynamic and

a set of high-priority static target, respectively. Then, critical astrobot set of P with respect to TD and T H
S

is defined as below.

PK := {π ∈ P|(∀t′ ∈ TD)(∀t′′ ∈ T H
S )K(π, t′, t′′)} (3.8)

Remark 2. A critical astrobot is the one which is the exclusive option to reach a pair of dynamic and high-
priority static targets. Since we are interested in the assignment of high-priority static targets ahead of
dynamic targets, our heterogeneous assignment algorithm is authorized to assign an astrobot to a dynamic
target only if that astrobot is not critical.

We present our heterogeneous target-to-astrobot assignment (HTA) algorithm as depicted in Algo-
rithm 3.

The algorithm in fact generates bundles of the largest possible set of astrobots which reach its desired
dynamic targets (Line 3). If the remaining astrobots fulfill the complete reachability requirements of all
high-priority static targets (Line 4), the algorithm assigns them to those targets properly (Line 5). Other-
wise, if the complete reachability is not achieved (Line 6), one implies that some of the assigned astrobots
to dynamic targets are critical. So, the algorithm excludes those critical astrobots by assessing the critical
reachability relation (Line 7). Then, the bundles are recomputed with a new restricted set of reachable

Algorithm 2 Bundle Former (BF )
Input:
TD ▷ Dynamic targets set
PTD ▷ Positioners set reaching dynamic targets

Output:
B ▷ Bundle set

1: for each t ∈ TD doB ← the smallest bundlewhose astrobots fill the areaAB = A−F (θ, d)
2: end for
3: return B
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astrobots which no longer includes any critical astrobot. One notes that the next attempt shall be success-
ful to assign at least one astrobot to each of the high-priority static targets. In end end, the remainder of
unassigned astrobots may be assigned to some low-priority static targets (Line 10).

Now, we show that the computational complexity of theHTA algorithm is multilinear.

Proposition 4. Let P , TD, and TS be a set of astrobots, a set of dynamic targets, and a set of static targets,
respectively. Given m := |P|, n := |TD|, and k := |TS|, the computational complexity of the HTA
algorithm isO(mnk).

Proof. To take the worst case into account, we assume the T L
S = ∅ which means TS = TH

S implying
that all of the static targets are high-priority in view of the assignment process. An upper bound for
the cardinality of auxiliary variableM is m = |P|. Additionally, according to the result of Lemma
3, bundle formation requires mn units of time. Checking the completeness condition requires the
iteration over both TD and TS sets, thereby mn units of time shall be spent. Thus, the assignment
process associated with high-priority static targets shall be done during mnk units of time. The loop
of the algorithm is executed one and two times in the best and in the worst cases, respectively. Since
we assumed that all static targets are high-priority, the loop is executed twice, and there is no low-
priority static target to which an astrobot is assigned. Therefore, the overall worst case computational
complexity of theHTA algorithm is

O(2(mn + mnk)) ≡ O(mnk). (3.9)

■

Algorithm 3 Heterogeneous Target Assigner (HTA)
Input:
P ▷ Positioners set
TD ▷ Dynamic targets set
TS ▷ Static targets set

Output:
Assigned astrobot-target pairings

1: M← PTD

2: do
3: P⋆ ← BF (M, TD)
4: if C(PT H

S
\ P⋆, T H

S ) then ▷ PK = ∅
5: P+ ← (∀t ∈ T S

H ) assign a π ∈ Pt \ P⋆ to t randomly
6: else ▷ PK ̸= ∅
7: M←M\PK ▷ Computing PK using the critical reachability relation
8: end if
9: while PK ̸= ∅

10: (∀t ∈ T S
L ) assign a π ∈ Pt \ {P⋆ ∪ P+} to t randomly.

11: return The assigned target-astrobot tuples
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Figure 3.2: The assignment results after the first iteration of the algorithm’s loop (The red and orange
astrobots correspond to the bundles of the first and the second dynamic targets, respectively. The crossed
astrobots are those which must be assigned to high-priority static targets.)

3.3 Simulations

In this section, we solve a heterogeneous target-to-astrobot assignment problem using the HTA algo-
rithm. In particular, we assume a focal plane including 91 astrobots. We also assume two dynamic targets
which are two hypothetical cubesat satellites [Pirat et al. 2017] operating for the purpose of active space
debris removal at the range of the LEO orbit. We take overall 20 static targets, say, galaxies to be observed,
12 of which are high-priority, and the others are low-priority. A normal distribution, similar to the one
used in the simulations of Chapter 2, is used to generate the relative locations of the static targets with
respect to the focal plane. We assume the the SDSS-V project [Macktoobian et al. 2019d] the length of
each of which is 350 mm. Furthermore, the vertical distance between the ferrule and the first axis of each
astrobot is 15 mm. Then considering the tilt rate of ∼0.35◦, the overall deviation of an astrobot’s ferrule
is ∼0.05 rad. We assume that all of the astrobots are identical, and the distance d associated with the first
and the second dynamic targets are 1200 km and 500 km, respectively. The radii of the surfaces around
the first and the second dynamic target are required to be 48 km and 12 km, respectively.

The evolution of the solution to the problem is as follows. The first iteration of the algorithm’s loop
assigns a bundle to each dynamic target. The bundles are depicted in Figure 3.2. In particular, the red
bundle and the orange bundle correspond to the first and the second dynamic targets, respectively. How-
ever, the crossed astrobots are those which have to be assigned to high-priority static targets. As the figure
illustrates, one of the orange astrobots is a critical one. Thus, the second iteration of the loop removes that
astrobots from the valid options to shape a bundle, thereby assigning it to the desired high-priority static
target. Note that this removal decreases the area of the surface corresponding to the second dynamic tar-
get, but it is unavoidable since the critical astrobot has to be assigned to the high-priority static target. The
second iteration of the algorithm is depicted in Figure 3.3. In this figure, the double crossed astrobots are
those which may be assigned to low-priority static targets. However, one observes that this potential as-
signment required two astrobots which has been already assigned to dynamic targets. Thus, the algorithm
neglects those two low-priority static targets, and the final result is illustrated in Figure 3.4.
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Figure 3.3: The assignment results after the second iteration of the algorithm’s loop (The red and orange
astrobots correspond to the bundles of the first and the second dynamic targets, respectively. The crossed
and the double crossed astrobots are those which must be assigned to high-priority and low-priority static
targets, respectively.)

Figure 3.4: The final results of the assignment process (The red and orange astrobots correspond to the
bundles of the first and the second dynamic targets, respectively. The crossed and the double crossed
astrobots are those which must be assigned to high-priority and low-priority static targets, respectively.)

3.4 Conclusion

Astrobots have already been used to generate the map of the observable universe. Space applications, such
as debris detection, can also benefit from these astrobots. This chapter presents an algorithmwhich assigns
the astrobots of a telescope to various types of targets, from observational to space operational ones. Thus,
not only a wider range of applications can be handled by astrobots but the overall information throughout
of a typical astrobots set is maximized since more astrobots are used at the same time.

One may note that astrobots may need various exposure times to collect signals from different types
of targets depending on their nature. So, the algorithm may be upgraded such that the distance between
astrobots batches corresponding to those heterogeneous targets whose exposure times are close to each
other will be maximized. Thus, a typical spectrograph can efficiently distinguish between the traces of the
objects corresponding to each of the intended heterogeneous applications.
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Chapter 4

Supervisory Complete Coordination

IV

Publication Note

The material presented in this chapter is adapted from:

• Matin Macktoobian, Denis Gillet, and Jean-Paul. Kneib, Supervisory Coordination of Robotic
Fiber Positioners in Multi-Object Spectrographs, in the 15th IFAC Symposium on Large Scale
Systems (LSS): Theory and Applications, pp. 61-66, 2019.

4.1 Introduction

M
odern astronomy aims to study the evolution of the universe using cosmological spectroscopy
[Mazets et al. 1982] surveys. Each survey is a map corresponding to a piece of the observable

universe. For this purpose, many projects, e.g., DESI [Aghamousa et al. 2016a; Aghamousa et al. 2016b],
MOONS [Michele Cirasuolo et al. 2014], etc., are carried out to develop telescopes equipped with spec-
trographs. Each spectrograph is connected to a set of astrobots. Each astrobot is assigned to a specific
galaxy in the sky corresponding to a particular observation. Then, the spectral information of that galaxy
is transferred to its spectrograph through the observing fiber positioner. To increase the throughput of
each observation in view of the collected information, one takes astrobot swarms into account. Optical
fibers are mounted in a particular area of their hosting telescope called focal plane. The favorite hexagonal
formation of astrobots shall be dense enough to mount as many as possible astrobots at the focal plane of
the hosting telescope [Hörler et al. 2018; Hörler 2018]. Since the target assignment to an optical fiber is
changed from one observation to another, an astrobot system is attached to each fiber to move it. Each as-
trobot is generally a rotational-rotational robot whose workspace overlaps with those of its neighbors. So,
the collision avoidance, the trajectory planning, and the completeness associated with a set of astrobots
are challenging. In particular, a set of astrobots is completely coordinated if all of its astrobots point to
their targets at the end of the coordination process corresponding to a specific observation. We seek the
complete coordination under the assumption that all of the target astrobots are assigned to some galaxies.

The current solutions to the coordination problem of astrobots lack general completeness. In particu-
lar, artificial potential fields [Macktoobian et al. 2013; Macktoobian et al. 2016] are used to plan collision-
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free trajectories for astrobots [Makarem et al. 2014]. The state-of-the-art solution [Tao et al. 2018] com-
bines a low-level artificial-potential-based navigator with a high-level state-machine-based decisionmaker
to handle deadlocks and oscillations. So, the astrobots with higher priorities are prioritized to be coordi-
nated. However, the complete convergence of all astrobots is not guaranteed. Supervisory control theory
and discrete-event systems are promising candidates by which we attack the complete coordination prob-
lem.

Discrete-event systems and supervisory control theory [Wonham 2017b] efficiently models and con-
trols event-driven complex systems, respectively. In particular, automatic reconfiguration [Macktoobian
et al. 2017] is addressed using supervisory control theory. Each configuration of a discrete-event system
exhibits a specific set of functionalities. The discrete-event system is reconfigured from one configuration
to another by activating a controllable reconfiguration event. Then, a supervisor is synthesized based on
the behavioral and the reconfiguration requirements of the discrete-event system. Then to execute the re-
configuration, the supervisor shall find a string of events from its current state to a target state at which
the reconfiguration event is eligible to occur. Backtracking forcibility technique [Macktoobian 2018] was
developed to find the set of all forcible paths from the current state to the target state.

The automatic reconfiguration of discrete-event systems and the coordination of astrobots are intrin-
sically similar in a systematic point of view. So in this Chapter, we seek a solution to the complete co-
ordination problem of astrobots using supervisory control theory and reconfiguration of discrete-event
systems. Our supervisory control approach models each astrobot as a rotational arm with only one DoF.
This assumption is based on a trade-off according to which the state size of the overall system remains
reasonably tractable in view of the supervisor computation and backtracking forcibility. On the other
hand, this assumption may limit the number of available solutions to the problem; yet our coordination
method is efficient enough to achieve the desired completeness. In particular, we model each astrobot and
its behavior as discrete-event systems. Then, we synthesize a supervisor, called coordination supervisor, to
control the overall behavior of the complex set of astrobots. We define the plant model and the specifica-
tions such that the marked state of the synthesized supervisor represents the complete coordination of the
system. Thus, the coordination problem is indeed reduced to finding forcible paths from the initial state
of the supervisor to its target state. One notes that the cited process is similar to the solution checking of
the reconfiguration problem briefly explained above. In other words, the complete coordination problem
seeks the reachability of a particular state corresponding to a coordination supervisor. For this purpose,
we propose an algorithm to realize the quoted completeness-checking process associated with a typical
coordination problem.

The remainder of this chapter is organized as follows. A brief review of the supervisory control theory
is represented in Section 4.2. Section 4.3 defines the complete coordination problem in the language of a
backtracking forcibility problem and proposes an algorithm to solve it. Section 4.4 includes an example to
illustrate how our algorithm practically solves a complete coordination problem. Our concluding remarks
are finally drawn in Section 4.5.
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4.2 Background

Supervisory control theory controls discrete-event systemsmodeled by the Ramadge-Wonham framework
[Ramadge et al. 1987]. A discrete-event system is formally represented by a generator, say,

G = (Q, Σ,D, q0, Qm), (4.1)

where Σ = Σc∪̇Σu is a finite alphabet of event labels, partitioned into the controllable event labels and the
uncontrollable ones; Q is the finite state set;D : Q×Σ∗ → Q is the extended partial transition function; q0

is the initial state; and Qm ⊆ Q is the subset ofmarked states. The closed behavior and themarked behavior
of G are the regular languages

L(G) := {s ∈ Σ∗|δ(q0, s)!},

Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm}.
(4.2)

Here δ(q0, s)! means that δ(q0, s) is defined.

A supervisory control function for G is a map

V : L(G)→ G (4.3)

in which

G = {κ ∈ Pwr(Σ)|κ ⊇ Σu} (4.4)

is the set of control patterns. ‘G under supervision of V’ is written as V/G. Given a sublanguage M ⊆
Lm(G) we define the marked behavior of V/G as

Lm(V/G) := L(V/G) ∩M (4.5)

V is a marking nonblocking supervisory control (MNSC) for the pair (M,G) if

Lm(V/G) = L(V/G). (4.6)

In practice, V is implemented by a supervisor representing the maximally permissive controlled behavior
Lm(V/G) subject to a generator specification, say S; we denote this computation by

V = supcon(G, S). (4.7)

For details see, e.g., [Ramadge et al. 1987]. Given a generator V, and states q, q′ ∈ QV, backtracking
forcibility analysis is taken into account as

Z := BFA(V, q, q′) (4.8)

which yields set of all forcible paths which reach q′ from q using backtracking forcibility [Macktoobian
et al. 2017].
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4.3 Completeness-Seeking Supervision

Each astrobot can rotate around its axis according to a specific number of discrete movements. In par-
ticular, given an astrobot π and its motion step size nπ , π rotates 360◦/nπ during each of its motion
steps. From now on, P denotes the set of all astrobots corresponding to a specific telescope. We define the
notions of “forward event” and “backward event” as follows.

Definition 14 [Forward/Backward Events]. Let π ∈ P be an astrobot with motion step size nπ . Then,
if the controllable forward event vπ (resp., the backward event wπ) is enabled, π rotates 360◦/nπ in a
clockwise (resp., counterclockwise) direction around its axis.

We also define counters corresponding to the number of the required movements to reach a target in
different directions as follows.

Definition 15 [Forward/Backward Counters]. Let π ∈ P be an astrobot with motion step size nπ . Given
a specific position at the motion space of π, the forward counter nπ

v (resp., the backward counter nπ
w)

represents the required number of clockwise (resp., counterclockwise) motion steps to reach the target
position from the current position of π.

In a hexagonal neighborhood around a specific astrobot, themaximum number of the astrobots which
may be involved in a colliding scenario to block each other is three. So, the relative priority of those typical
astrobots shall be defined in the language of events as follows.

Definition 16 [Priority Events]. LetN ⊂ P be a set of two astrobots around astrobot π ∈ P with which
construct a colliding scenario. Let also r(π) denote the relative priority of π’s target compared to those of
the astrobots ofN . Then, we define the following controllable events.

• if (∀π′ ∈ N ) r(π) < r(π′), then the controllable event lπ is exclusively enabled;

• if (∀π′ ∈ N ) r(π) > r(π′), then the controllable event hπ is exclusively enabled;

• otherwise, the controllable event mπ is exclusively enabled.
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Figure 4.1: The discrete-event model of a typical astrobot π with nπ = 3 (The astrobots indices are inten-
tionally omitted for the better readability of the figure.)
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We take some uncontrollable events into account to keep track of any potential colliding situation
around a typical astrobot as follows.

Definition 17 [Collision/Free Events]. Given astrobot π ∈ P , if a neighboring astrobot enters the safety
zone of π, uncontrollable collision event kπ occurs. In contrast, if all of the neighboring astrobots which
have resided at the safety zone of π leave that area, then uncontrollable free event eπ occurs.

We define the notion of an astrobot as a discrete-event system as follows.

Definition 18 [Astrobot]. Let π ∈ P be an astrobot. Given motion step size nπ , forward event vπ , back-
ward event wπ , forward counter nπ

v , backward counter nπ
w, priority events lπ , mπ , and hπ , collision event

kπ , and free event eπ , the generator Gπ associated with π is defined as a discrete-event system

Gπ := (Qπ
G, Σπ

G, δπ
G , q0

π
G, Qm

π
G), (4.9)

where

• Qπ
G :=

nπ⋃
j=0
{qj, q1

j , q2
j },

• Σπ
G := {vπ, wπ, lπ, mπ, hπ, kπ, eπ},

•

δπ
G := (∀j|0 ≤j ≤ nπ − 1){δ(qj, vπ) := qj+1,

δ(qj+1, wπ) := qj,

δ(qj, kπ) := q1
j ,

δ(q1
j , kπ) := q2

j ,

δ(q2
j , mπ) := q1

j ,

δ(q1
j , eπ) := qj,

δ(q2
j , hπ) = δ(q1

j , hπ) := qj+1,

δ(q2
j+1, lπ) = δ(q1

j+1, lπ) := qj}

∪̇{δ(q0, wπ) := qnπ ,

δ(qnπ , vπ) := q0},

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

• q0
π
G := a q ∈ Qπ

G according to the initial position of π,

• Qm
π
G := a q ∈ Qπ

G based on the target position of π.

Remark 3. We note that the occurrence of collision event kπ has to functionally preempt the other events
eligible at a specific state of Gπ .

Figure 4.1 depicts the generator corresponding to the discrete-event model of a typical astrobot π with
nπ = 3. Each forward (resp., backward) event moves π 360◦/3 in a clockwise (resp., counterclockwise)
direction. If no neighboring astrobot enters the safety zone of π, then it always remains in the scope
of the lower-level states of its generator, i.e., [0], [1], and [2]. Otherwise, it may encounter one or two
neighboring astrobots at its safety zone, thereby occurring kπ events at [0] and/or [1]. In the presence of
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only one colliding astrobot, if it leaves the safety zone of π, then the free event eπ occurs and π returns
to its normal state at the lower level of Gπ . If the colliding astrobot remains in the safety zone of π,
then the astrobot with the higher priority moves clockwise to its target, and the other one with the lower
priority moves in a counterclockwise direction. So, not only the collision is avoided, but the deadlock is
also handled. In the case of three colliding astrobots, there are three relative priorities. In particular, the
astrobots with the highest and the lowest priorities moves clockwise and counterclockwise, respectively.
Furthermore, the astrobot with the medium priority remains at its position. However, its colliding state is
changed since at least one of the other colliding peers goes far from it.

Now, we define the “specification” which determines the target position corresponding to a particular
astrobot.

Definition 19 [Specification]. Let π ∈ P be an astrobot. Then, considering forward counter nπ
v and

backward counter nπ
w associated with π, specification Sπ corresponding to π is defined as a discrete-event

system

Sπ := (Qπ
S , Σπ

S , δπ
S , q0

π
, Qm

π
S ), (4.20)

where

• Qπ
S :=

{nπ
v +nπ

w−2⋃
j=1

qj

}
∪̇{q0, qm},

• Σπ
S := {vπ, wπ},

•

δπ
π :=(∀j|0 ≤ j ≤ nπ

v − 2){δ(qj, vπ) := qj+1, δ(qj+1, wπ) := qj}∪̇

(∀j|nπ
v + 1 ≤ j ≤ nπ

w − 1){δ(qj, wπ) := qj+1, δ(qj+1, vπ) := qj}∪̇

{δ(qnπ
v−1, vπ) = δ(qnπ

w−2, wi) := qm}

(4.21)

(4.22)

(4.23)

• q0
π
S := q0,

• Qm
π
S := qm.

Figure 4.2: The initial and the target points corresponding to a typical astrobot π with nπ = 3 (the blue
and the red lines represent the arms of the depicted astrobot.)
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Figure 4.3: The specification corresponding to the Figure 4.2 (The astrobots labels are intentionally omitted
to improve the figure clarity.)

The specification corresponding to a particular astrobot in fact determines the paths via which the
astrobot reaches its target position from its current position in both clockwise and counterclockwise di-
rections. For example, suppose an astrobot π with nπ = 3. The initial and the target positions of π are
illustrated in Figure 4.2, and Figure 4.3 depicts its corresponding specification.

Now, we utilize supervisory control theory to generate a supervisor in which the solutions to the co-
ordination problem are embedded as depicted in Figure 4.4. In particular, we first compute the overall
model G of the astrobots system by synchronizing the generators corresponding to all of the astrobots.

G := ∥
π∈P

Gπ (4.24)

We also obtain the overall model S of the specifications.

S := ∥
π∈P

Sπ (4.25)

Then, we synthesize the coordination supervisor V.

V = supcon(G, (allevents(G) ∥ S)) (4.26)

The following theorem determines the role of a coordination supervisor in the definition and the solution
to the complete coordination problem associated with it.

Astrobots Targets

Motion discretization

Plant Specification

Supervisor synthesis

Coordination supervisor

Complete coordination checking

Input/Output

Operation

Figure 4.4: Completeness seeking via supervisory coordination
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Theorem 5. Let P be a set of astrobots modeled by {Gπ|π ∈ P} whose specifications are denoted by
{Sπ|π ∈ P}. Let V be a coordination supervisor synthesized to control G := ∥

π∈P
Gπ with respect to

S := ∥
π∈P

Sπ . Then,

(i) V has only one marked state;

(ii) G is completely coordinated at the marked state of V.

Proof. (i) By the definition, each element of {Gπ|π ∈ P} and {Sπ|π ∈ P} has only one marked
state. Then, according to the definition of the synchronous product operator [Wonham 2017b], each
of G and S has only one final state. Additionally, since allevents(G) includes only a single marked
state, allevents(G) ∥ S has also only one marked state. Since every generator argument of supcon
has only one marked state, we conclude that V possesses only one marked state, as well.
(ii) Each astrobot is exclusively reached at its target positionwhen its corresponding generator and the
generator of its specification reside at their marked states. Then, the marked states of G and S repre-
sent the states whose simultaneous occupancies indicate the reachability of all of their corresponding
astrobots. If V reaches its marked state, then the cited simultaneous occupancies are realized. There-
fore, G is complete when V resides at its marked state.

■

A supervisor always starts its supervision process from its initial state. So, the strings of events which can
forcibly reach the marked state from the initial state are in fact the solutions to the complete coordination
problem. Backtracking forcibility is a promising approach to find the forcible paths which reach one state
from another [Macktoobian et al. 2017; Macktoobian 2018]. Thus, the complete coordination problem can
be written in the language of backtracking forcibility as follows.

Definition 20 [Forcibility]. Let G be a discrete-event system. Given two states q, q′ ∈ QG and a string
s ∈ Σ∗G, if s forcibly reaches q′ from q, then the following ternary relation holds.

F (s, q, q′) (4.27)

Problem 2 [Complete Coordination]. LetG be a discrete-event system representing a system of astrobots,
S be the specification associated withG, andV be the coordination supervisor synthesized based them. Let

Algorithm Complete Coordination Checker (CCC)
Input:

V ▷ Coordination supervisor
Output:

Complete coordination feasibility

1: if BFA(V, q0V, qmV) ̸= ∅ then
2: return True
3: else
4: return False
5: end if
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q0V and qmV be the initial and the marked states of V, respectively. Subject to an appropriate specification
of forcibility, check whether the following completeness condition holds.

(∃s ∈ Σ∗V)F (s, q0V, qmV) (4.28)

We solve the problem above using the backtracking forcibility notion of supervisory control theory
as illustrated by the CCC algorithm. In particular, the completeness condition (4.28) is checked. BFA
function collects the forcible paths (if any) belonging to the marked behavior of V which forcibly reach
the marked state of V from its initial state. If the result is nonempty, then the complete coordination of the
desired system is feasible.

In the next section, we present an example whose completeness problem is assessed using the CCC
algorithm.

4.4 Example

We solve a complete coordination problem using supervisory control theory implemented in TCT soft-
ware [Wonham 2017a]. We consider three astrobots Gπ1 , Gπ2 , and Gπ3 as depicted in Figure 4.5 whose
initial states are [0], [6], and [6], respectively. The events of the astrobots are specified in Table 4.1 where
events with odd labels are controllable, and those with even labels are uncontrollable. Suppose the relative
priorities of the astrobots are the same as their indices. Specifications Sπ1 , Sπ2 , and Sπ3 are illustrated in
Figures 4.6, 4.7, and 4.8, respectively.

We compute the coordination supervisor V according to (4.26) whose marked state is [14]. Using
the CCC algorithm, we obtain the (shortest) forcible path Z = ⟨73, 10, 30, 15, 31, 81, 20⟩ from [0] to
[14]. In particular, V commands π1 to rotate in a counterclockwise direction by enabling ⟨73⟩. Then, π1

π3π2

π1

Figure 4.5: A coordination problem

Table 4.1: Event specifications of the example astrobots (the astrobots indices are intentionally omitted for
better readibility.)

Astrobot v w l m h k e

π1 71 73 11 13 15 10 40
π2 81 83 21 23 25 20 50
π3 91 93 31 33 35 30 60
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Figure 4.6: The generator of Sπ1

Figure 4.7: The generator of Sπ2

Figure 4.8: The generator of Sπ3

enters the safety zone of π3. So, the collision events ⟨10⟩ and ⟨30⟩ occur. Since π1 has a higher priority,
⟨15⟩ drives π1 to its target point in a clockwise direction. In contrast, π3 goes far from π1 to avoid any
collision by ⟨31⟩. So, π3 eventually reaches its target point. ⟨71⟩ initiallymoves π2 in a clockwise direction.
However, it enters the safety zone of π1, so ⟨20⟩ occurs, and π2 changes it direction which gives rise to its
convergence.

4.5 Conclusion

We report a supervisory-control-based solution to the complete safe coordination problem of astrobot
swarms. We illustrate how to model astrobots systems and their specifications as discrete-event systems.
We then generate a coordination supervisor in which the solution(s) to the problem were embedded. We
found the solution(s) using the backtracking forcibility. Thebehavior of this supervisor is straightforwardly
verifiable using SAT-solver tools, in contrary to the method based artificial potential fields which heavily
rely on simulations.
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Chapter 5

Cooperative Complete Coordination

V

Publication Note

The material presented in this chapter is adapted from:

• Matin Macktoobian, D. Gillet, and J-P. Kneib, Complete Coordination of astrobots for Massive
Spectroscopic Surveys, Journal of Astronomical Telescopes, Instruments, and Systems 5(4), Article
045002, 2019.

• Matin Macktoobian, Ricardo Araújo, Loïc Grossen, Luzuis Kronig, Mohamed Bouri, De-
nis Gillet, and Jean-Paul Kneib, Experimental Evaluation of Complete Safe Coordination of
Astrobots for the Sloan Digital Sky Survey V, Experimental Astronomy 51(1), pp. 77-94, 2021.

• Matin Macktoobian, D. Gillet, and J-P. Kneib, The Navigation of astrobots in SDSS-V Project:
Design and Implementation, in the 15th Conference on PhDResearch inMicroelectronics and Elec-
tronics (PRIME), pp. 85-88, IEEE, 2019.

5.1 Introduction

S
upervisory control theory [Ramadge et al. 1987]was used to seek complete coordination of astrobots
[Macktoobian et al. 2019c]. The major hurdle to use this approach is the curse of dimensionality

when the size of a astrobots system grows. Then, the required processing is not practically feasible to
find a complete solution. To be specific, the coordination of astrobots is challenging because any solution
to this problem has to fulfill some critical requirements in both spatial and temporal perspectives. In
particular, astrobots are often arranged in hexagonal formations, so each astrobot neighbors 6 other peers.
The on-time coordination of the astrobots set is desired after finishing a specific observation to point to
the objects of the next observation. Since each observation is extremely time-dependent, the coordination
of the system shall be executed in a limited amount of time between two successive observations. Thus,
the solution to the coordination problem of astrobots has to be both reliable against collisions and efficient
in view of performance.

The solutions to the trajectory planning and the collision avoidance problems directly depend on the
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number and the mechanical specifications of the used astrobots in a particular subproject of the SDSS
project. For example in the case of the “The Dark Spectroscopic Instrument” (DESI) [Aghamousa et al.
2016a; Aghamousa et al. 2016b] project, an artificial potential field (APF) approach is proposed to solve the
collision-free trajectory planning of astrobots. Thismethod uses a decentralized navigation function based
on the notion of artificial potential fields. In particular, the arms of the astrobots used in this project are
long enough to enter the workspace of any neighboring astrobots. However since the contentions are not
considerable, all the astrobots can converge to their target positions. In other words, the astrobots of the
DESI project compose a complete system. In contrast, the completeness is not realized in the case of ”The
Multi Object Optical and Near-infrared Spectrograph” (MOONS) [Michele Cirasuolo et al. 2014] project.
In this case, the length of the second arm of each astrobot is two times longer than those of the astrobots
of the DESI project. To solve the trajectory planning problem associated with the MOONS project, the
planning algorithm was modified [Tao et al. 2018] to take two subjects into account. First, not every
colliding situations is managed by the navigation function. So, a priority-based decision-making layer was
added to the decentralized navigation function to handle deadlocks and oscillations which could not be
handled by the navigation function. Based on this approach, the astrobots which are assigned to more
important objects are prioritized in the coordination of the system. Thus, some astrobots may not reach
their target at all. The algorithm cannot generally coordinate the system such that all astrobots reach their
target positions. In other words, the coordination problem is not complete with respect to the solutions of
this algorithm. Complete coordination leads to the collection of the full information which is planned to
be collected during an observation. However, no analysis has been yet applied to explore the conditions
based on which a solution to a coordination problem of astrobots is complete. Another coordination
method for SDSS-V project does also exist [Sayres et al. 2020]. This method coordinate astrobots in a
two-phase manner. In particular, to reach any general amorph configuration to another one, this strategy
first move astrobots to their fully-folded formation. Then, the second phase of coordination seeks the final
desired configuration. This method has some disadvantages. First, its two-phase coordination are taken
into account to minimize the conflicting scenarios between astrobots. However, one may note that such
two-phase coordination reach targets later than direct ones. So, we seek a coordination strategy which
directly reaches any configuration from any arbitrary initial one. Second, the method seems to improve
the convergence rates of astrobots compared to [Tao et al. 2018]. But, it does not claim to reach general
completeness. Alternatively, we establish a coordination method whose completeness may be formally
investigated. Thus, the cited gaps open an avenue for the potential modification of the current artificial-
potential-based coordination algorithm to realize the complete safe coordination of astrobots.

In this chapter, we formally analyze and solve the complete coordination problem associated with as-
trobot swarms. We obtain a completeness condition whose fulfillment guarantees the complete coordina-
tion. The remainder of the report is organized and follows. Section 5.2 establishes the global completeness
problem whose solution shall guarantee the convergence of all astrobots of a telescope. We then define
the local completeness problem corresponding to the convergence of an astrobot and all of its neighboring
astrobots. In particular, we take a distributed scheme into account to show that given a set of astrobots,
if all local completeness problems corresponding to neighboring region of the system are complete, then
the overall system is globally complete. Section 5.3 proposes a new class of artificial potential fields, i.e.,
cooperative artificial potential fields (CAPFs). The advantage of a CAPF compared to an APF is that the
attractive term of the CAPF considers not only the convergence of its own astrobot agent but also the con-
vergence of its neighboring astrobots. Thanks to the proved solvability of the global completeness problem
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based on the completeness of its local completeness problems, Section 5.4.1 obtains the required condition
for the solvability of the local completeness problem. Section 5.4.2 establishes a strategy for completeness
seeking when a system of astrobots is incomplete with respect to a particular set of parameter specifica-
tions of the system. In these situations, we indeed propose to modify the paramaters corresponding to
the specification of the system’s CAPFs and/or the definition of the desired observation to resolve the en-
countered incompleteness. Section 5.5 compares CAPF to APF in view of the properties of the navigation
process such as computational complexity and convergence time. We evaluate our accomplishments by
simulations in Section 5.6.1 and experimental validations in Section 5.6.2. Our concluding remarks are
finally drawn in Section 5.7.

5.2 From Local to Global Completeness

In this section, we define the global and the local completeness problems. We then show that the solvability
of a global completeness problem is equivalent to the solvability of all the local completeness problems
associated with it.

We first define the notions of “position”, “target position”, and ”equilibrium position“ corresponding to
an astrobot as follows.

Definition 21 [Position]. LetP be the set of all the astrobots associated with a telescope. Given an astrobot
πi ∈ P , qi :=

[
xi yi

]⊺
denotes the (planar) position of πi.

Definition 22 [Target Position]. Let P be the set of all the astrobots associated with a telescope. Given
an astrobot πi ∈ P , qi

T :=
[

xi
T yi

T

]⊺
represents the target position at which πi is planned to reach

according to a specific observation.

Definition 23 [Equilibrium Position]. Let P be the set of all the astrobots associated with a telescope.
Given an astrobot πi ∈ P , qi

⋆ :=
[

xi
⋆ yi

⋆

]⊺
represents the equilibrium position at which πi resides at the

end of the coordination process.

Definition 24 [Index Set]. LetN := {π1, · · · , πn} be the set of n astrobots. Then, IN is the index set of
N denoting the set of all the indices of the elements ofN as follows

IN := {arg
k

πk|∀πk ∈ N}, (5.1)

where arg(·) operator returns the index of its arguments.

Now we define the “global completeness problem” as follows.

Problem 3 [Global Completeness]. Subject to a set of astrobots P and its corresponding index set IP ,
determine whether or not the following relation holds.

(∀k ∈ IP )qk
⋆ = qk

T (5.2)

Because of the dense hexagonal arrangements of astrobots in a focal plane, the direct solution to the
problem above would be difficult. Instead, we define a local version of the completeness problem, and we
show that how the solutions to a set of local completeness problems end up with the solution to the global
completeness problem corresponding to them. For this purpose, we first define the notion of ”neighbor-
hood” with respect to a specific astrobot.
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Definition 25 [Neighborhood]. LetP be the set of all the astrobots associated with a telescope. Let πi ∈ P
be an astrobot. Given V i denoting the neighboring astrobots of πi, N i ⊆ P is the neighborhood with
respect to πi defined as follows

N i := V i
⋃̇
{πi}. (5.3)

The following definition establishes the “local completeness problem”.

Problem 4 [Local Completeness]. Let P be the set of all the astrobots associated with a telescope. Subject
to the neighborhoodN i ⊆ P with respect to an astrobot πi ∈ P , determine whether or not the following
holds.

(∀k ∈ IN i)qk
⋆ = qk

T (5.4)

Using the definition above, we establish the notion of “completeness relation”

Definition 26 [Completeness Relation]. Let P be the set of all the astrobots associated with a telescope.
Let alsoN i ⊆ P be a neighborhood with respect to the astrobot πi ∈ P . Then, ifN i is locally complete,
then the following relation holds.

C(Ni) (5.5)

As well, given the set of all neighborhoodsN corresponding to astrobots set P , ifN is globally complete
then C(N ) holds.

We prove the following property of the completeness relation which is subsequently used to show the
relationship between the notions of local and global completeness.

Lemma 6. Completeness relation is closed under countable union operator.

Proof. Let N i and N j be two locally complete neighborhoods with respect to astrobots πi and π j,
respectively, i.e., C(N i) and C(N j) hold. Then, the following two cases shall be mutual exclusively
considered.

• N i andN j are not adjacent to each other, say,

(∀π ∈ N i)π ̸∈ N j. (5.6)

Accordingly, there is no interaction between the quoted neighborhoods. So, the every astrobot
also reaches its target position after the unification of the neighborhoods. Therefore, the result-
ing union in complete.

• N i andN j are adjacent to each other, say,

(∃π ∈ N i)π ∈ N j. (5.7)

In a hexagonal arrangement of astrobots, the minimum and the maximum numbers of the
shared astrobotsa between two adjacent neighborhoods are 1 and 3, respectively. Considering
the minimum case, let π be the shared astrobot, so it is the exclusive astrobot which can po-
tentially disturb the overall completeness ofN i andN j. However according to the assumption
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of the completeness of both neighborhoods, π shall reach its target in view of both neighbor-
hoods. Thus, the unification of the neighborhoods is complete. The similar argument is valid
to justify the completeness of the unified system of complete neighborhoods where the number
of shared events is 2 or 3, as well.

■
a The maximum number of the shared astrobots varies with respect to the lengths of the astrobots’ arms. The reader finds
a thorough analysis of the cited relationship in [Hörler 2018].

Finally, the following theorem uses Lemma 6 to state how the local and the global completeness problems
are related to each other.

Theorem 7. LetN be the set of all neighborhoods to which the astrobots of a telescope are assigned. So, if all
neighborhoods are locally complete, then the overall system of the astrobots is complete, i.e.,

[(∀N i ∈ N )C(N i)]⇒ C(N ). (5.8)

Proof. By induction, we show that the proof is a consequence of Lemma 6. In particular, let k be the
number of the neighborhoods. Then, we have

• base case: k = 1, say, the astrobots set includes only one (complete) neighborhood. So, the
overall system is obviously complete.

• induction step: suppose the system with k = n is complete, i.e., C(
n⋃

i=1
N i) holds. We show

that the system with k = n + 1 has to be complete. In particular given complete neighborhood
N n+1, since the completeness relation is closed under countable union operator (see, Lemma
6), hence we have

C(
n⋃

i=1

N i) ∪ C(N n+1) = C(
n⋃

i=1

Ni ∪N n+1)

= C(
n+1⋃
i=1

N i),

(5.9)

which concludes the global completeness of the astrobots set.

■

we later (see, Section 5.4) analyze the completeness condition for local systems. Thanks to the result of
Theorem 7, if the conditions corresponding to the completeness of all of the neighborhoods are hold, then
the global system is also complete. In the next section, we rewrite the definitions of the local and the global
completeness problems in the language of artificial potential fields (APFs). Then, we revise the formulation
of the decentralized navigation function, used in priority-based coordinationmethod [Tao et al. 2018]. So,
the equilibrium of the new APF could represent the complete result of a coordination process. We then
uncover the condition for the existence of a solution to the local completeness problem.

5.3 Cooperative Artificial Potential Fields

In this section, we first explain our motivation to define a new type of APFs, called “cooperative artificial
potential field” (CAPF). In particular, we elaborate on the effect of an APF on the completeness of the
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coordination process. In particular, Section 5.3.1 clarifies our angle of attack to tackle the completeness
problem. Then, we formally introduce our proposed CAPF in Section 5.3.2. We also reformulate the local
and the global completeness problems using the notion of CAPF.

5.3.1 Motivation

The priority-based algorithm [Tao et al. 2018] uses a two-layer competitive architecture to solve the coor-
dination problem, as depicted in Figure 5.1.

Priority Coordination

Finite State
Machine

Artificial Potential
Field

Decision
Maker

Competitive
Navigator

Figure 5.1: The competitive control architecture of the priority-based coordination

Let λ1 and λ2 be positive constant weighting factors. Let also D be the radius of the collision avoidance
envelope in which the repulsive term is activated. d0 also represents the radius of the safety region around
each astrobot. Then, we define {

λ1 := λ1 ⊗ I2,

λ2 := λ2 ⊗ I2.

(5.10)

(5.11)

Thus, the definition of the reference APF used in [Tao et al. 2018] is represented as follows

ψ(qi) := λ1∥qi − qi
T ∥2

︸ ︷︷ ︸
attractive term

+λ2 ∑
j∈IN i\{i}

min
[
0,
∥qi − qj∥2 − D2

∥qi − qj∥2 − d2
0

]
︸ ︷︷ ︸

repulsive term

. (5.12)

One notes that the attractive term above exclusively takes the convergence of the astrobot πi into account.
So, the APFs corresponding to different astrobots in fact compete with each other because each artificial
potential field only cares about the convergence of its own affiliated astrobot. Since an astrobot does not
care about the convergence of its neighbors, this competitive manner of navigation potentially gives rise
to the incomplete coordination of the overall system of astrobots.

Instead, we propose a cooperative scheme based on which each astrobot not only seeks its own con-
vergence, but also cares about the convergence of its neighboring counterparts. Thus, the competitive
architecture can be modified based on this cooperative perspective as depicted in Figure 5.2.

5.3.2 Formulation

We embed a particular attractive term in the definition of the reference APF (see, Eq. (5.12)) to realize the
cooperation between neighboring astrobots to reach collective convergence to their target spots. Let λ3 be
a positive weighting factor corresponding to the cooperative attractive term. Let also qi

T (resp. q
j
T ) be the

target position of qi (resp. qj). Then considering

λ3 := λ3 ⊗ I2, (5.13)
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we define a CAPF into which a cooperative attractive term is integrated as follows.

ρ(qi) := λ1∥qi − qi
T ∥2

︸ ︷︷ ︸
attractive term

+ λ3 ∑
j∈IN i\{i}

∥qj − q
j
T ∥

2

︸ ︷︷ ︸
cooperative attractive term

+λ2 ∑
j∈IN i\{i}

min
[
0,
∥qi − qj∥2 − D2

∥qi − qj∥2 − d2
0

]
︸ ︷︷ ︸

repulsive term

(5.14)

The cooperative attractive term inserts extra dynamics to the reference APF to involve all astrobots of
a neighborhood in the convergence process. A rough guideline to set the value of λ3 is λ3 < λ1 for
two reasons. First, each CAPF instance should mainly focus on the convergence of its corresponding
astrobot. So, one selects a larger weighting factor for the main astrobot to insure that the main portion
of the attractive force of its corresponding CAPF comes from that astrobot. Second, λ3 in fact injects the
velocity profile of the neighboring astrobots to that of the main astrobot. Any large values corresponding
to those velocity profiles may give rise to abrupt motions imposed to the main astrobot. Such unwanted
and uncontrolled motions may not only damage the main astrobot’s actuators but also leave it vulnerable
to potential collisions.

We are interested in the conditions based on which a solution to a specific coordination problem is
complete. Thus, we formulate the local and the global completeness problems in the language of CAPF.
In particular, the equilibrium points for all astrobots in a neighborhood shall be their target points. Since
the astrobots exclusively stop moving at their target points, one needs to obtain the equilibrium points
corresponding to the derivative of CAPF as follows.

∇ρ(qi) =



2λ1(q
i − qi

T )+2λ3 ∑
j∈IN i\{i}

(qj − q
j
T )

(∀j ∈ IN i \ {i})∥qi − qj∥ ≥ D

2λ1(q
i − qi

T )+2λ3 ∑
j∈IN i\{i}

(qj − q
j
T ) + 2λ2 ∑

j∈IN i\{i}

(D2 − d2)(qi − qj)(
∥qi − qj∥2 − d2

0

)2

(∃j ∈ IN i \ {i})∥qi − qj∥ < D

(5.15)

Then, the control law below is proposed to be applied to the joints of the astrobot πi.

ui := −∇θi ,ϕi ρ(q
i) (5.16)

Now we can compose the CAPF-driven formalism of the local and the global completeness problems as
follows.

Problem 5 [Local Completeness (CAPF Derivation)]. Let N i be a neighborhood with respect to the as-
trobot πi where 2 ≤ |N i| ≤ 7. Then, the neighborhood is locally complete coordinated by a set of CAPFs

Complete Coordination

Finite State
Machine

Cooperative Artificial
Potential Field

Decision
Maker

Cooperatitve
Navigator

Figure 5.2: The cooperative control architecture of the complete coordination
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if the following differential equations are simultaneously solvable.

∇ρ(qi) = 0 for 1 ≤ i ≤ |N i| (5.17)

The global completeness problem is the generalization of the local completeness problem above as
below.

Problem6 [Global Completeness (CAPFDerivation)]. LetP be the set of all astrobots of a telescope. Then,
the overall system is globally complete coordinated by a set of CAPFs if the following differential equations
are simultaneously solvable.

∇ρ(qi) = 0 for 1 ≤ i ≤ |P| (5.18)

Remark 4. Each CAPF has one exclusive minimum because it is a smooth Morse function [Milnor 1963],
it is uniformly maximal on boundaries of a free space, and it has a unique minimum at a target point in its
free space [Makarem 2015]. Then, if Eq. (5.17) (resp., Eq. (5.18)) is solvable, then its solution is essentially
qT := [q1

T . . . q
|N i|
T ]⊺(resp., qT := [q1

T . . . q
|P|
T ]⊺).

In the next section, we find the conditions for guaranteed solvability of the local and the global com-
pleteness problems.

5.4 Completeness Analysis

The preceding section revealed that the solutions to all local completeness problems are the keys to deter-
mine whether the global completeness problem corresponding to those problems is solvable. Here Section
5.4.1 focuses on the required condition for the completeness of a neighborhood. Then, Section 5.4.2 dis-
cusses a procedure based on which completeness is sought regarding a system of astrobots which is not
complete according to a particular set of parameters.

5.4.1 Completeness Condition

We take a typical isolated neighborhood with the maximum number of astrobots, say, {πi|0 ≤ i ≤ 6}.
We also consider the maximum contention between the astrobots of the neighborhood. In particular, we
assume that two neighboring astrobots, e.g., π1 and π2, are at the collision zone of the central astrobot, i.e.,
π0. The remaining four astrobots are assumed to be residing at each other’s collision zones in a pair-wise
manner, say, π3 and π4, and π5 and π6. Figure 5.3 represents the configuration of the neighborhood,
in which the regions with the same color correspond to those astrobots which are suspected to collide
and to block each other’s movements. This scenario is the most collision-susceptible case to reach the full
completeness for the explained neighborhood.

According to Problem 5, we need to find the solutions which simultaneously fulfill the following set of
equations.

∇ρ(qi) = 0 for 0 ≤ i ≤ 6 (5.19)

54



π0

π1

π2

π3

π4

π5

π6

Figure 5.3: The arrangement of astrobots in a typical neighborhood subject to the maximum contention
(The regions with the same color correspond to those astrobots which are suspected to collide and to block
each other’s movements.)

Using Eq. (5.15), we expand Eq. (5.19) as follows.



∇ρ(q0) = 2λ1(q
0 − q0

T ) + 2λ3 ∑
j∈{1,2}

(qj − q
j
T ) + 2λ2(D2 − d2

0)∑
j∈{1,2}

q0 − qj(
∥q0 − qj∥2 − d2

0

)2 = 0

∇ρ(q1) = 2λ1(q
1 − q1

T ) + 2λ3 ∑
j∈{0,2}

(qj − q
j
T ) + 2λ2(D2 − d2

0)∑
j∈{0,2}

q1 − qj(
∥q1 − qj∥2 − d2

0

)2 = 0

∇ρ(q2) = 2λ1(q
2 − q2

T ) + 2λ3 ∑
j∈{0,1}

(qj − q
j
T ) + 2λ2(D2 − d2

0)∑
j∈{0,1}

q2 − qj(
∥q2 − qj∥2 − d2

0

)2 = 0

∇ρ(q3) = 2λ1(q
3 − q3

T ) + 2λ3(q
4 − q4

T ) + 2λ2(D2 − d2
0)

q3 − q4(
∥q3 − q4∥2 − d2

0

)2 = 0

∇ρ(q4) = 2λ1(q
4 − q4

T ) + 2λ3(q
3 − q3

T ) + 2λ2(D2 − d2
0)

q4 − q3(
∥q4 − q3∥2 − d2

0

)2 = 0

∇ρ(q5) = 2λ1(q
5 − q5

T ) + 2λ3(q
6 − q6

T ) + 2λ2(D2 − d2
0)

q5 − q6(
∥q5 − q6∥2 − d2

0

)2 = 0

∇ρ(q6) = 2λ1(q
6 − q6

T ) + 2λ3(q
5 − q5

T ) + 2λ2(D2 − d2
0)

q6 − q5(
∥q6 − q5∥2 − d2

0

)2 = 0

To compact the set of equations above, we define the following auxiliary function

Q(qα, qβ) :=
qα − qβ(

∥qα − qβ∥2 − d2
0

)2 ,

and the constant parameter below

ω := D2 − d2
0,
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which yield

∇ρ(q0) =2
[
λ1 λ3 λ3

] [
q0 q1 q2

]⊺
+ 2ωλ2

(
Q(q0, q1) +Q(q0, q2)

)
− 2
(
λ1q0

T + λ3(q
1
T + q2

T )
)
= 0,

∇ρ(q1) =2
[
λ3 λ1 λ3

] [
q0 q1 q2

]⊺
+ 2ωλ2

(
Q(q1, q0) +Q(q1, q2)

)
− 2
(
λ1q1

T + λ3(q
0
T + q2

T )
)
= 0,

∇ρ(q2) =2
[
λ3 λ3 λ1

] [
q0 q1 q2

]⊺
+ 2ωλ2

(
Q(q2, q0) +Q(q2, q1)

)
− 2
(
λ1q2

T + λ3(q
0
T + q1

T )
)
= 0,

∇ρ(q3) =2
[
λ1 λ3

] [
q3 q4

]⊺
+ 2ωλ2Q(q3, q4)− 2

(
λ1q3

T + λ3q4
T
)
= 0,

∇ρ(q4) =2
[
λ3 λ1

] [
q3 q4

]⊺
+ 2ωλ2Q(q4, q3)− 2

(
λ1q4

T + λ3q3
T
)
= 0,

∇ρ(q5) =2
[
λ1 λ3

] [
q5 q6

]⊺
+ 2ωλ2Q(q5, q6)− 2

(
λ1q5

T + λ3q6
T
)
= 0,

∇ρ(q6) =2
[
λ3 λ1

] [
q5 q6

]⊺
+ 2ωλ2Q(q6, q5)− 2

(
λ1q6

T + λ3q5
T
)
= 0.

The equations set above can be written as follows
∇ρ(q6)

∇ρ(q5)

∇ρ(q4)

∇ρ(q3)

∇ρ(q2)

∇ρ(q1)

∇ρ(q0)


︸ ︷︷ ︸
∇ρ(q)

=


0

0

0

0

2λ3

2λ3

2λ1

0

0

0

0

2λ3

2λ1

2λ3

0

0

0

0

2λ1

2λ3

2λ3

0

0

2λ3

2λ1

0

0

0

0

0

2λ1

2λ3

0

0

0

2λ3

2λ1

0

0

0

0

0

2λ1

2λ3

0

0

0

0

0


︸ ︷︷ ︸
Λ


q6

q5

q4

q3

q2

q1

q0


︸ ︷︷ ︸
q

+2ωλ2


Q(q6, q5)

Q(q5, q6)

Q(q4, q3)

Q(q3, q4)

Q(q2, q0) +Q(q2, q1)

Q(q1, q0) +Q(q1, q2)

Q(q0, q1) +Q(q0, q2)


︸ ︷︷ ︸
Ω

+


2
(
λ1q6

T + λ3q5
T
)2

(
λ1q5

T + λ3q6
T
)2

(
λ1q4

T + λ3q3
T
)2

(
λ1q3

T + λ3q4
T
)2

(
λ1q2

T + λ3(q0
T + q1

T )
)2

(
λ1q1

T + λ3(q0
T + q2

T )
)2

(
λ1q0

T + λ3(q1
T + q2

T )
)

︸ ︷︷ ︸
Θ′

= 0,

whose compact form reads

∇ρ(q) = Λq + 2ωλ2Ω + Θ′ = 0. (5.20)

The entries of Ω above include functionQ(·, ·)which is nonlinear. We note that both astrobots monoton-
ically head to their target points. So as an approximation, we linearize this function at the point whose co-
ordinates are the average of the target positions’ coordinates associated with the arguments of the function.
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Put differently, we linearizeQ(qα, qβ) at
[

qα
T +q

β
T

2
qα
T +q

β
T

2

]⊺
which is the closest point to both astrobots.

Thus, the Newton method gives the following approximation forQ(·, ·).

Q(qα, qβ) ≈ Q(qα
T , q

β
T ) +

∂Q(qα, qβ)

∂qα

∣∣∣∣( qα
T +q

β
T

2 ,
qα
T +q

β
T

2

)(qα −
qα
T + q

β
T

2
)

+
∂Q(qα, qβ)

∂qβ

∣∣∣∣( qα
T +q

β
T

2 ,
qα
T +q

β
T

2

)(qβ −
qα
T + q

β
T

2
) (5.21)

Taking the auxiliary constant parameters below into account

∆α,β = ∆β,α :=
qα
T + q

β
T

2
,

∆α
α,β = ∆α

β,α :=
∂Q(qα, qβ)

∂qα

∣∣∣∣(
∆α,β,∆α,β

),

∆
β
α,β = ∆

β
β,α :=

∂Q(qα, qβ)

∂qβ

∣∣∣∣(
∆α,β,∆α,β

),

(5.22)

(5.23)

(5.24)

(5.21) is simplified as below

Q(qα, qβ) ≈ Q(qα
T , q

β
T )− ∆α,β

(
∆α

α,β + ∆
β
α,β

)
+ qα∆α

α,β + qβ∆
β
α,β. (5.25)

Therefore, the linearized version of Ω, i.e., Ω⋆, is obtained as the following:

Ω ≈ Ω⋆ =


0

0

0

0

∆0
2,0

∆0
1,0

∆0
0,1 + ∆0

0,2

0

0

0

0

∆1
2,1

∆1
1,0 + ∆1

1,2

∆1
0,1

0

0

0

0

∆2
2,0 + ∆2

2,1

∆2
1,2

∆2
0,2

0

0

∆3
4,3

∆3
3,4

0

0

0

0

0

∆4
4,3

∆4
3,4

0

0

0

∆5
6,5

∆5
5,6

0

0

0

0

0

∆6
6,5

∆6
5,6

0

0

0

0

0


︸ ︷︷ ︸
∆


q6

q5

q4

q3

q2

q1

q0


︸ ︷︷ ︸
q

+Θ′′,

where

Θ′′ =


Q(q6

T , q5
T )− ∆6,5(∆

5
6,5 + ∆6

6,5)

Q(q5
T , q6

T )− ∆5,6(∆
5
5,6 + ∆6

5,6)

Q(q4
T , q3

T )− ∆3,4(∆
3
4,3 + ∆4

4,3)

Q(q3
T , q4

T )− ∆3,4(∆
3
3,4 + ∆4

3,4)

Q(q2
T , q0

T ) +Q(q2
T , q1

T )− ∆0,2(∆
0
2,0 + ∆2

2,0)− ∆1,2(∆
1
2,1 + ∆2

2,1)

Q(q1
T , q0

T ) +Q(q1
T , q2

T )− ∆0,1(∆
1
1,0 + ∆0

1,0)− ∆1,2(∆
1
1,2 + ∆2

1,2)

Q(q0
T , q1

T ) +Q(q0
T , q2

T )− ∆0,1(∆
0
0,1 + ∆1

0,1)− ∆0,2(∆
0
0,2 + ∆2

0,2)


.
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We replace Ω in Eq. (5.20) by its linear approximation Ω⋆.

∇ξ(q) =Λq + 2ωλ2Ω + Θ′ = 0

≈Λq + 2ωλ2Ω⋆ + Θ′ = 0

≈Λq + 2ωλ2(∆q + Θ′′) + Θ′ = 0

≈Λq + 2ωλ2∆︸ ︷︷ ︸
Γ

q + 2ωλ2Θ′′ + Θ′︸ ︷︷ ︸
Θ

= 0

(5.26)

Thus, we end up with

(Λ + Γ)q + Θ = 0. (5.27)

Now, we can analyze the solvability of the local completeness problem based on Eq. (5.27), called the
completeness equation. For a system of astrobots to be complete, this equation has be solvable, and its
solution has to be the target points corresponding to the astrobots of the system. In particular, a system is
complete if the following equation holds

qT = −(Λ + Γ)−1Θ; (5.28)

otherwise, it is incomplete.
The completeness equation asserts that the completeness of a system of astrobots depends on the pa-

rameters that are set by designers. Thus, modification of those parameters may resolve any potential in-
completeness. For this purpose, in the next section we propose a parameter modification process to search
for completeness encountering an incomplete system.

5.4.2 Completeness Seeking by Parameter Modification

As the completeness equation implies, the parameters which shape Λ and Γ directly influence on the com-
pleteness of system. Strictly speaking, parameter selections may give rise to incompleteness. So, one can
take two approaches into account to search for the parameters based on which the system is complete.
Considering an incomplete system with respect to a particular parameter specification, we modify entries
of Λ and/or Γ to search for the other parameter specifications based on which the system is complete.

Matrix Λ is structured by the attractive and the cooperative attractive terms of CAPFs. So, if a system
is incomplete, one can change the values corresponding the weighting factors of the cited terms. So, the
overall summation of the Λ and Γ might be invertible. Theoretically, there are infinitely many numbers
which can be attributed to the weighting factors. So, there is no upper bound for the number of the possible
parametermodifications corresponding to Λ. However, practical requirements constrain the scope of valid
selections. For example, large weighting factors strictly increase the velocity of astrobots. The resulting
high velocities may damage their motors and increase the possibility of collision when the astrobots are
very close to each other. Thus, a reasonable range for each weighting factor can be determined from which
new values are selected to modify the current values.

Matrix Γ also contributes to the completeness (on incompleteness) of a system based on its parameters.
Among all those parameters, the target positions extremely affect on the entries of the matrix. One may
note that, the target positions are defined based on each observation. In particular, some algorithms are
used to assign an object to each astrobot. For example, [Morales et al. 2011] handles the object-astrobot
assignments such that the number of the observed objects is maximized. We note that changing the tar-
gets assigned to the astrobots ends up with a new matrix Γ. So, such a parameter modification may resolve
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Figure 5.4: The parameter modification process

the system incompleteness. In contrast to the Λ modification, the maximum number of the possible tar-
get position modifications is bounded. As already quoted, a specific procedure assigns a target to each
astrobot according to a particular observation prior to the coordination. In particular, given n objects cor-
responding to an observation and m ≥ n astrobots1, the number of possible object-astrobot assignments
is P(m, n). However, every target cannot be observed by every astrobot because of the astrobots’ motion
limitations. Another option to modify Γ would be changing the value of the repulsive weighting factor,
i.e., λ2. However, manipulation of this factor is not recommended because of its critical role in the safety
of the system and its performance. In particular, decreasing the factor may jeopardize the full control over
movements of postioners when they are close to each other. In contrast, increasing the value of the fac-
tor can extremely increase the required time for completion of the coordination process. The explained
parameter modification process is schematically illustrated in Figure 5.4.

5.5 Discussion

Thecomputational complexity of the trajectory planning algorithmusing the reference APF isO(n)where
n represents the number of the astrobots to be coordinated [Makarem et al. 2014]. The substitution of
CAPF for APF does not adversely affect the computational complexity of the overall trajectory planning
algorithm applied to astrobots sets. To be specific, the added cooperative attractive term is a polynomial
similar to the attractive term of the algorithm. Thus, the linear-time computational complexity of the
algorithm is preserved.

1 We assume that an observation is planned such that all of its objects could be observed by the astrobots set. Thus, the number
of the astrobots should essentially exceeds that of those objects.
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Table 5.1: The convergence rate and the convergence time corresponding to test batch 1

Swarm population (#) 52 106 234 449 730 980

Converged astrobots (#) APF 50 90 196 382 621 844
CAPF 52 106 234 449 730 980

Convergence time (seconds) APF 14.8 36.3 89.7 173.2 317.6 386.9
CAPF 16.7 49.3 96.1 199.8 359.4 503.5

λ1 1 1 1 1 1 1
λ2 0.05 0.05 0.05 0.05 0.05 0.05

λ3 (specific to CAPF) 0.03 0.03 0.03 0.03 0.04 0.04

The added cooperative attractive term increases the agility of the movements in the course of coordi-
nation. However, this agility has to be compensated and attenuated in practice because abrupt movements
of astrobots may strengthen the collision possibility when they are close to each other. In other words, the
added cooperative attractive term does not necessarily improve the convergence time of the coordination
process. Furthermore, in some cases the convergence time might be even longer than that of correspond-
ing to the reference APF. In the case of the reference APF, each astrobot stops moving upon reaching its
target position. However, in the case of CAPF, an astrobot does not necessarily resides at its target spot
immediately after reaching it because the cooperative term induces more dynamics to settle the maximum
of the neighboring astrobots at their target points. Thus, an astrobot may temporarily pass its target to
open the way for the remainder of its peers to get closer to their targets. This behavior does not give rise
to endless oscillations since the high-level decision-making layer in fact handles these kind of scenarios.
Thus, using CAPF rises a trade-off between the completeness seeking and potentially longer convergence
time. The simulation results of the next section confirms this conclusion.

5.6 Results

5.6.1 Simulations

We modify the Python simulator developed in [Tao et al. 2018] according to our contributions. In partic-
ular, we substitute the reference APF [Tao et al. 2018] (see, Figure 5.1) with our CAPF (see, Figure 5.2).

We define two test batches. Each test batch includes six test scenarios each of which includes a spe-
cific number of astrobots as specified in the swarm population fields of Table 5.1 and 5.2. Furthermore,
each test batch owns a specific set of initial and target points corresponding to its astrobots. The initial
and target configurations are astrobots are either fully–folded or random2. The full specifications and the
resulting number of the converged astrobots and the convergence times associated with test batch1 and 2
are illustrated in Table 5.1 and 5.2, respectively. The graphical representations of the convergence rates
and the convergence times corresponding to test batch 1 and test batch 2 are illustrated in Figure 5.5 and
5.6, respectively.

We chose λ1 = 1, λ2 = 0.05, and λ3 = 0.03 for our tests. However, these values do not fulfill the
completeness condition corresponding to some of the test cases. So, we used the parameter modification
procedure as explained in Section 5.4.2. In particular, the 5th and the 6th test cases of both the test batches
cannot be completely coordinated by the quoted weighting factor parameters. These cases are highlighted

2 This randomness is on the same footage as those of the circular uniform distributions in Chapter 2 and 3.
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Figure 5.5: Visual illustrations of the convergence rate and the convergence time corresponding to test
batch 1. (a) The convergence rate corresponding to test batch 1. (b) The convergence time corresponding
to test batch 1.

in the last rows of Table 5.1 and 5.2. Thus, we modified λ3 value which ended up with the complete
coordination in those cases.

The results witness the completeness of the considered test cases using our cooperative navigator (see,
Figure 5.2) which indicates the efficiency of our approach. As discussed in Section 5.5, the imposed ne-
cessity of completeness to the overall coordination process practically gives rise to longer movements and
interactions between astrobots. So, the trade-off between the improved convergence rate and the longer
convergence time leads to the following conclusion: the available time between two consecutive observa-
tions may be shorter than the required time for the complete coordination of astrobots. In this case, one
has to use the competitive navigator (see, Figure 5.1).

5.6.2 Experimental Validation

5.6.2.1 Setup

Our hardware setup includes a miniature plate into which 19 astrobots are mounted as rendered in Figure
5.7. The relative distances between astrobots on this plate resemble those corresponding to the real focal
planes of both SDSS-V telescopes. Parameters characterization of astrobots used in our experimental tests
are described in Table 5.3. The sampling step can be manipulated as a degree of freedom in command
generation. Smaller step sizes may provide more smooth and accurate motions specially in the maneuvers
inwhich astrobots are so close to each other. On the other hand, very small step sizes increase the size of the

Table 5.2: The convergence rate and the convergence time corresponding to test batch 2

Swarm population (#) 54 114 250 481 773 1006

Converged astrobots (#) APF 52 105 228 434 675 889
CAPF 54 114 250 481 473 1006

Convergence time (seconds) APF 13.9 31.3 85.1 171.2 267 364.6
CAPF 14.7 41.8 99.7 194 303.6 547.9

λ1 1 1 1 1 1 1
λ2 0.05 0.05 0.05 0.05 0.05 0.05

λ3 (specific to CAPF) 0.03 0.03 0.03 0.03 0.04 0.04
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Figure 5.6: Visual illustrations of the convergence rate and the convergence time corresponding to test
batch 2. (a) The convergence rate corresponding to test batch 2. (b) The convergence time corresponding
to test batch 2.

Figure 5.7: The 19-astrobot setup of the applied experimental tests

command file bymany redundant entries. So, this trade-off has to bemanaged by trial and error according
to the cardinality of swarms of astrobots and their pitch. The specification of CAPF parameters may differ
from one coordination scenario to another because the completeness condition requires different setting
of parameters to be fulfilled. Thus, we elaborate on various settings of parameters and their impacts on the
convergence of the swarm in Section 7.4. The trajectories are generated byCAPF, running on an instrument
control system (ICS). The result is a YAML3 file representing two arrays of velocity data per astrobot each
of which is associated with the joint of one of the arms. The file generated by the coordinator includes two
arrays of positional data each of which corresponding to the extrapolated positions of one of the arms of
each astrobot. The time step from one entry two other one is 0.25s. So, the dynamics of motions are based
on variable speeds. Such variations do not jeopardize the safety of the system because of the collision-free
formalism of CAPF. The format of the entries of the YAML associated with astrobot i reads as follows.

i :

3 YAML, recursively standing for “YAML Ain’t Markup Language”, is a data-serialization language to configure files data storage
and transfer applications.
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a l pha : [ [ a lpha_1 , 0 . 2 5 * 0 ] , [ a lpha_2 , 0 . 2 5 * 1 ] , . . . , [ a lpha_n , 0 . 2 5 * ( n−1)]]
b e t a : [ [ be ta_1 , 0 . 2 5 * 0 ] , [ be ta_2 , 0 . 2 5 * 1 ] , . . . , [ be ta_n , 0 . 2 5 * ( n−1)]]

Here, n denotes the number of the steps, set by the coordinator, which yields to a desired coordination. A
real YAML file including the trajectories corresponding to an astrobots is as depicted in Figure 9.2. This
entry illustrates that the convergence time for the whole coordination was 12.25s. Another interesting
point is that the coordinator indeed generates speed signals. However, since the time steps are fixed, we
overall control position of astrobots.

The software architecture of the simulator coordinator is described in the appendix. The configuration
file associated with that specification is transferred from the ICS to a communication hub via an Ether-
net cable. The communication hub sends the trajectories to a bridge from which a CAN cable feeds the
trajectories to astrobots. Figure 5.8 depicts the described interconnections. In particular, the nominal
voltage and current required by the whole pack of astrobots are 23V and 3A, respectively, as the power
supply provides them to the astrobots. We generate trajectories of the astrobots on a PC running Linux
Manjaru. Then, we use the async-based Jaeger framework [S. Consortium n.d.] to transfer the trajectories
to astrobots via a CAN bus.

In Section 5.2, we noted that the completeness checking has be to done in a localized manner. The car-
dinality of astrobots in a neighborhood plays an important role in this analysis. In particular, full neigh-
borhoods, which include 7 astrobots, are more prone to partial convergences compared to incomplete
neighborhoods, i.e., those which are formed by less astrobots. So, we planned a radial placement of 19
astrobots as depicted in Figure 5.9. Each neighborhood is identified by its central astrobot. For example,
the left-hand-side (full) neighborhood of Figure 6.3a refers to that of astrobot #10, while the (incomplete)
right-hand-side one corresponds to astrobot #8.

We conduct our tests according to a real galaxy catalog. Namely, we take various partitions of the

PCPower supply
Ethernet-to-CAN 

convertor

Figure 5.8: The setup of the hardware interconnections in our experimental tests

63



1 2 3

4 5 6 7

8 9 10 11 12

13 14 15 16

17 18 19

A central neighborhood

1 2 3

4 5 6 7

8 9 10 11 12

13 14 15 16

17 18 19

A cicumferential neighborhood

Figure 5.9: The neighborhood types in the experimental focal plane. In a massive focal plane, the majority
of neighborhoods are central ones. Thus, the completeness condition, i.e., Eq. (5.27), was obtained based
on this critical case in [Macktoobian et al. 2019a].

eBOSS large-scale structure LRG catalog (data release 14) [Bautista et al. 2018]4. In the experimental tests,
we randomly select the targets, from the data entries of the catalog, whose projections are in the area of
the test plane. The targets are assigned to astrobots using the optimal target assignment method [Mack-
toobian et al. 2020a]. So, we obtain the best possible performance in terms of the minimum effort for
coordination and the maximum distribution of targets among astrobots to minimize the potential dead-
lock/collision situations. [Macktoobian et al. 2019a] reported extensive simulation results associated with
astrobot swarms whose cardinality are comparable to those of the SDSS-V telescopes. In this paper, we
expand those numerical simulations to even larger focal planes to illustrate the efficiency of CAPF in safe
completeness seeking in massive swarms of astrobots.

5.6.2.2 Parameters Impacts on Complete Coordination

In this section, we report the robustness of CAPF in achieving completeness. If a particular setting of pa-
rameters do not end up with completeness, the theory requires the modification of those parameters to
yield completeness. The intrinsic robustness of CAPF in achieving completeness is investigated through
1000 tests applied to the 19-astrobot bench. Accordingly, Figure 5.10 indicates that CAPF reaches com-
pleteness in 97.4% of the applied tests without any parametermodification. In other words, the cooperative
kernels of the CAPFs used in CAPF are efficiently sufficient to coordinate all of the astrobots given the ini-
tial configuration of the system and their targets. The results on the robustness notion may be extended
to larger focal planes. Namely, Table 5.4 illustrates the simulated robustness results corresponding a class
of massive focal planes. The first column of the modification rounds refers to the coordination which
are complete, thereby needing no modifications. The large numbers of this column relative to the other
columns per row exhibit the high performance of CAPF in achieving completeness without modifications
in the majority of situations. In this regard, one observes that even in the case of these extremely compli-
cated focal planes,∼97% of coordination scenarios are inherently complete. The completeness condition,
i.e., (5.27), is derived based on the local linearization of astrobot’s motions in neighborhoods. Thus, the
condition indeed approximates the completeness in a particular neighborhood. The quoted results echoes
the efficiency of CAPF in view of robustness in this viewpoint, as well. In particular, one observes that the
applied linear approximations do not severely undermine the coordination quality in terms of the required
4 The data model can be found at https://www.sdss.org/dr14/data_access/value-added-catalogs/?vac_id=eboss-large-scale-
structure-lrg-catalogs-dr14
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Table 5.3: Parameters of astrobots in the performed tests

Parameters Values

pack cardinality 19
length of first arm 7.4 mm
length of second arm 15 mm
rotational step size 0.1◦

temporal step size 0.25 s
pitch 22.4 mm

modification rounds. To specifically study the impact of parameter variation in completeness seeking, we
first note that the parameter Λ is exclusively a function of attractive weight λ1 and cooperative attractive
term λ3. On the other hand, Γ and Θ are extremely non-linear parameters which also include target posi-
tions. So, varying Λ may be preferred to Γ and Θ because of its more intuitive definition. Λ modification
can influence both safety and performance measures of a swarm. First, both constituents of Λ are attrac-
tive weights. So, increasing both of them may escalate the collision hazards because of the potential faster
motions of astrobots’ arms. Additionally, convergence time may inefficiently increase if one reduce both
of these weights because the whole attractive dynamics of the swarm diminish. Thus, given a variation step
δλ > 0, we modify Λ based on the following rules.

λ1 ← λ1 − δλ

λ3 ← λ3 + δλ
(5.29)

This update profile preserves safety by decreasing the dominant weight factor, i.e., λ1. The loss in the
performance is also relatively compensated by increasing the submissive factor, say, λ3. The smaller the
update step δλ is, the less safety is put in jeopardy. So, we report how effective the small variations of δλ

are in resolving incomplete coordination scenarios. According to Figure 5.10, only 26 scenarios were not
inherently coordinated with respect to initial system’s configuration. To resolve these issues, we define an
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Figure 5.10: The number of the required modification rounds to reach completeness in 1000 experimental
tests
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step array δλ whose entries represent potential updates steps to be used.

δλ := {0.001, 0.005, 0.01, 0.05, 0.1} (5.30)

Since we are interested in the smallest possible variation which fixes an incompleteness, the array is sorted
in ascending order. Then, we pick the entries and feed them into a problematic completeness condition.
If that new parameter does not resolve the intended incompleteness, the next one is picked to be tested,
and so on, to finally find a new parameter to meet the completeness condition. In Figure 5.11, we observe
that 22 out of 25 incomplete cases of the 19-astrobot bench are resolved using the smallest entry of the
step array, say, δλ[1] = 0.001. The second bar of Figure 5.11 indicates 2 cases which were handled not by
the first but by the second entry of the array. So, two modifications step have to be taken into account to
first check δλ[1] = 0.001 and then δλ[2] = 0.005. Overall, there existed only one case in which the first
two steps were not able to provide completeness but the third one. No incomplete scenario required larger
steps, say, the two last entries of the array.

5.6.2.3 Convergence Time

Coordination are in general conducted from one observation to another. For this purpose, there are two
approaches to reconfigure astrobots. The first strategy directly coordinates them from the configuration
of the latest observation to that of the upcoming one. This direct convergence is generally fast, but it
may be fairly challenging in terms of collision avoidance. Another scheme is a two-phase coordination in
which astrobots are first sent to their fully folded state in which θ = 0◦ and ϕ = 180◦. Then, they are
coordinated to their target configuration. The advantage of this strategy is that astrobots may encounter
less potential deadlock situations. However, this way of coordination is at the cost of longer times to reach
final coordination. This idea also implies more fluctuations thereby requiring more energy. So, in long
runs, astrobots may be more prone to amortization.

The convergence times of bothmethods associated with 1000 coordinated scenarios on the 19-astrobot
bench are represented in Figure 5.12. One notes that the direct coordination under the control of CAPF
are noticeably faster than those executed in the two-phase way. The completeness difference between the
two is trivial, in that the two-phase strategy had only achieved six complete coordination more than the
direct one. However, all these cases were compensated by only one modification round of parameters. The
corresponding samples are signified using dark vertical lines in Figure 5.12. So, CAPF is efficient enough
to simultaneously perform direct coordination and achieve high rates of completeness.

Table 5.4: The number of the required modification rounds to reach completeness in 1000 simulated tests

Population
Modification rounds

0 1 2 3 4 5

500 490 8 2 0 0 0

1000 973 19 6 2 0 0

3000 2910 66 15 8 1 0

5000 4803 122 64 14 5 2
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5.6.2.4 Target Distribution Influence on Completeness

In previous sections, we used optimal target assignment [Macktoobian et al. 2020a] which supplies the
maximum distribution of astrobots, i.e., their safety, and the minimum coordination, i.e., the minimum
effort and time, required to arrange them in a desired coordination. In this section, we illustrate that
quality of the coordination results of CAPF are even resilient to various target distributions. In the sections
above, whenever we wanted to supply some targets to coordination computations, we picked a random
subset of the targets available in the cluster galaxy catalog, presented by [Bautista et al. 2018], used in
this study. The only selection condition was the reachability of each of those targets by at least one of the
astrobots of our tests. In this section, however, we select targets in various unbalanced scenarios in some
of which the targets may be distributed in non-uniform fashion over our focal plane. Intuitively, if targets
are uniformly dispersed, it is more likely that each astrobot reaches more than one target. Thus, optimal
target assignment may enjoy more flexibility in terms of matching astrobots to targets. In contrast, a more
biased distribution of targets may degrade the quality of the optimal target assignment, thereby negatively
impact the coordination phase. Such biased distributions increase the density of targets in various spots
of a focal plane. So, the question is whether CAPF may have difficulties to deal with the coordination of
astrobots in such dense localities. The following results indeed investigate this question showing that the
sensitivity of the CAPF performance to the target distribution is not noticeable.

We first define a uniformly distributed set of targets in polar coordinate system (r f , θ f ) whose cen-
ter is assumed to be located at the base of the central astrobot of a swarm, which is astrobot #8 in our
experimental test bench.

θ ∼ U [−180◦; 180◦]

r2 ∼ U (0; r2
max)

(5.31)

In the equations above, U denotes a uniform distribution generator, and rmax represents the radius of the
focal plane which reads 44.8 mm in the case of our test bench.

Experimental test scenarios

22

 2
 1

 0  0

Modification steps

S
uc

ce
ss

fu
l c

om
pl

et
e 

ca
se

s

Figure 5.11: The number of the required modification steps to reach completeness in 1000 experimental
tests. The symbol δλ[1 : n] denotes that the entries 1 to n− 1 of the step array δλ could not resolve an
incompleteness but the nth entry does it. The first bar of this figure refers to δλ[1] stating that the majority
of incomplete cases were simply resolved using the first entry of δλ.
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Figure 5.12: Convergence times of 1000 tests on the experimental setup with respect to both coordination
strategies. The vertical black lines represent those scenarios which were complete in two-phase coordi-
nation. However, they were complicated enough to require one round of parameter modification to be
also complete in direct coordination. Given the minority of these cases (6 occurrences) compared to the
overall number of the tests, the direct coordination is the favorite approach.

We also take a bi-variate normal distribution into account such that the maximum concentration of
targets are around the center of the swarm, and the distribution radially degrades while one moves toward
the edge of the focal plane in any direction. The probability density function of this bi-variate normal
distribution, in Cartesian coordinate system, is defined as

N(x, y) ∼ 1
2π
√

1− c2
exp

{
− 1

2(1− c2)

[
x2 − 2cxy + y2]}, (5.32)

in which variances are assumed to be 1, and the correlation coefficient c equals 0.7.

These two distributions are applied to the galaxy catalog of targets as masks to filter those targets which
are placed in the patterns similar to the intended distributions. After performing 1000 direct coordina-
tion scenarios for each of the uniform and bi-variate normal distributions, the convergence time results
are obtained as depicted in Figure 5.13. In particular, the average coordination time corresponding to
bi-variate normal selection is slightly longer than that of the coordination associated with the uniform se-
lection. However, the performance of CAPF in the more crucial case (bi-variate normal selection) closely
follows the coordination speed of the less-problematic one (uniform selection). Furthermore, there was
only one coordination scenario which was not complete even after one round of parameter modification
in the crucial case, whereas it was fully achieved in the uniform case. Thus, we conclude that CAPF is
efficiently capable of yielding fast and safe coordination even in the case of biased selections of targets in
view of their spatial positions.

Figures 5.14b-5.14e illustrate the steps of a coordination process, governed by CAPF scheme 5.14a, in
which an initial amorph configuration is coordinated to a synchronized one5.

5 Recorded footage of the applied tests may be found at https://www.youtube.com/watch?v=MpXWvpz4h00.
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Figure 5.13: Convergence times of 1000 tests on the experimental setup with respect to both distribution
selections. Uniform selections of targets are simpler to be handled by the optimal target assignment be-
cause of the availability of themore pairing options between astrobots and targets. The faster convergences
of this selection class are shown in the figure. Nevertheless, the applied bi-variate normal selections’ con-
vergence times are noticeably comparable with those of the uniform selections. Given the fact that target
assignments and coordination under bi-variate normal selections are more challenging, we conclude that
CAPF is efficient under various potential distributions of targets.

5.7 Conclusion

This chapter studies the completeness problem corresponding to the coordination of robotic optical as-
trobots. In particular, we partition the complicated global completeness problem into a set of relatively
simpler local completeness problems. We propose a new artificial potential field by which the complete-
ness of an astrobot and its neighboring astrobots are cooperatively into account. Then, we find a complete-
ness condition for the local completeness problem, and we show that the simultaneous fulfillment of all
those conditions associated with a astrobots set in fact guarantees the global completeness of the overall
system. We also present a completeness-seeking procedure to modify a system’s parameters in case the
system encounters an incomplete coordination. We obtain the complete coordination at the cost of longer
coordination times compared to the required times using a common artificial potential field without co-
operation mechanism.

The experimental results illustrated how the algorithm is efficient in achieving completeness in various
settings of astrobots configurations and target assignments. We assessed the impact of parameter varia-
tions in resolving time-to-time incomplete scenarios by the minimum number of iterations and potential
hazards to the safety of astrobot swarms. In view of convergence time, we observed that our algorithm
can practically manage the safety through fast direct coordination. The robustness of our strategy con-
sidering various distributions of targets was also investigated. In particular, biased distributions of targets
whose coordinates are not uniform often make a coordination critical for traditional planners. However,
we validated the successful functionality of the proposed method in two uniform and bi-variate normal
distributions.
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(a)

(b) (c) (d)

(e)

Figure 5.14: Completeness seeking using CAPF strategy. (a) Control architecture. (b-e) A typical coordi-
nation process started from a random initial configuration to a synchronized one.
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Part C

Completeness Prediction





Chapter 6

Constrained-Parity Convergence Prediction

VI

Publication Note

The material presented in this chapter is adapted from:

• Matin Macktoobian, Francesco Basciani, Denis Gillet, and Jean-Paul Kneib, Data-Driven
Convergence Prediction of Astrobot Swarms, (Preprint submitted to IEEE Transactions on Au-
tomation Science and Engineering). (Under Review)

6.1 Introduction

I
n the previous two chapters, we developed supervisory and cooperative coordination methods to
achieve completeness in coordination of astrobots. We noted that the supervisory coordination

may become inefficient to be used in the case of very crowded focal planes. The cooperative coordination
also requires noticeable computational resources to check the completeness of each particular setting of
astrobots and the projected positions of their assigned targets on their focal plane. In other words, this
method, despite of its merit in completeness determination, is computationally so expensive that its real-
time application may not be always feasible if the available times between successive coordination are too
short. The convergence rate assessment of coordination may be done using numerical simulations of co-
ordination with respect to various observation settings. This procedure is useful for small and medium
surveys but not massive ones. Namely, convergence rate assessment requires the real-time solutions of
hundreds to thousands of interdependent differential equations corresponding to distributed navigation
functions of astrobots. Such analysesmay not be feasible in the case of tight observation schedules inwhich
the available times between observations (fairly less than ten minutes) are not long enough. In particu-
lar, the computation of trajectories for a massive astrobot swarm (e.g., including 6000 or beyond) takes
at least one minute. However, the prediction of a machine learning model requires some hundredths of
a second. Thus, convergence prediction is a promising approach to decrease the computational burden
in simulating inefficient coordination scenarios in view of their convergence rates. If such assessment is
possible, then inefficient coordination can be re-planned to those whose information throughput satisfy
surveys expectations. In particular, a coordination output directly depends on the target-to-astrobot as-

73

https://arxiv.org/pdf/2005.14703
https://arxiv.org/pdf/2005.14703


signments corresponding to its observation. One may revisit an assignment to yield better coordination,
thereby achieving higher convergence rates. Supervisory control was also employed to synthesize control
commands whose safety and completeness can be formally verified [Macktoobian et al. 2019c]. However,
this strategy also becomes inefficient because of the curse of dimensionality in the case of crowded astrobot
swarm.

To alleviate the cited problem, we instead use machine learning to predict the convergence of astrobot
swarm. Machine learning techniques have been partially contributed to the trajectory planning of multi-
agent systems. For example in [M.-Y. Su 2011], an anomaly network traffic identification problem is stud-
ied for autonomous vehicles. This problem conceptually resembles the collision avoidance aspect of our
prediction problem. In this method, the overall working space of the problem is so vast, yet the number
of the number of vehicles are relatively small. So, collision avoidance is not a critical issue in the assumed
sparse distribution of vehicles. In contrast, our convergence prediction problem indeed implies hazardous
interactions in dense formations of astrobots, thereby entailing considerable risk of collisions between
them. Additionally, our convergence prediction problem also features noticeable sensitivity to even trivial
spatial deviations of configurations in terms of convergence results. On that account, any potential dataset
representing our problem needs to encompass sufficient data to cover a wide range of similar configura-
tions. A similar study takes the idea of moving ranges into account to assess neighbors more effectively for
the vehicles in crowded urban areas [Lee et al. 2015]. Thepredictivemodel generated by this scheme relaxes
the structured assumption by allowing movements of uncertain objects. The aforesaid relaxation, though,
complicates the compliance with the safety requirements of this scenario. Instead, our problem enjoys
the fully structured dynamics of astrobot swarm. Namely, the extremely constrained dynamics of each as-
trobot does not exert any uncertain feature to the prediction problem. As another example, learning-based
strategies have been employed to predict trajectories of multi-agent systems in unconstrained or loosely
constrained systems. For instance, route prediction for ships was investigated [Duca et al. 2017]. This
study uses a variation of k-NN algorithm which exclusively models each ship as an isolated entity, say, in
the absence of any collisions with other peers.

Limited applications of machine learning in trajectory prediction of more complex swarms are also
reported. To give an instance, a class of aggregating behaviors in a self-organizing swarmwere the subject of
a prediction problem [Khaldi et al. 2018] using distance-weighted k-NN method [Jin 2019; Cataloluk et al.
2012]. The density metric of the swarm is modeled by hydrodynamical particle interpolation. This system
seeks predictions through fairly complicated movements scenarios. However, the goal is the classification
of collective behaviors while the involved non-interacting agents are subject to no collisions. Collision
freeness was interestingly taken into account in a coordination scenario using artificial potential fields
[J.-H. Chen et al. 2018]. This work is relatively comparable to what we seek in this paper, because the
coordination control of astrobots is based on a class of artificial potential fields. However, the prediction
application in this method is trivially concentrated on finding the closest point of an obstacle to a robot.
Put differently, this strategy only guarantees collision freeness between a single robotic arm and a human’s
hand. Thus, in the absence of other agents, the complexity of this scenario is significantly less than what
one encounters in the convergence prediction of astrobots.

The machine-learning-based behavioral predictions for multi-agent swarms have not been extensively
studied. In particular, a learning system can efficiently train a model of a system if one feeds the data
corresponding to all important features of that system. In the case of multi-agent swarms, these feature
sets are often so large that final models may not be applicable for various reasons. First of all, training a
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predictive model requires enough data representing the behavioral patterns of system. The more compli-
cated a system is, the more data of it one needs to effectively synthesize a predictor for it. The complexity
of multi-agent swarms then requires huge datasets exhibiting their behaviors. But such amounts of data
are often not available specially in the case of heterogeneous swarms. Moreover, a swarm system’s func-
tionalities are generally subject to many constraints whose presence may easily drive any learning model
of that swarm toward common machine learning issues like underfitting and overfitting. Accordingly, the
complete convergence of astrobots in the course of their coordination has not yet been efficiently resolved
for the swarms including thousands of astrobots. On the other hand, partial coordination may lead to
small convergence rates according to which the lack of enough data gives rise to the generation of the sur-
veys whose wealth of information and details are not sufficient. Thus, instead of questing after analytical
solutions to the completeness checking problem in more efficient ways, we shift our perspective to the
prediction of complete coordination. In this framework, we seek to compute some models based on the
data obtained from former coordination to predict the convergence rates of future ones in terms of some
particular features. For this purpose, we propose a prediction algorithm based on the idea of weighted
k-NN [Peterson 2009], given the relative simplicity and design intuitions which stems from the geomet-
rical formulation of k-NN-driven strategies. Subject to a set of astrobots assigned to their targets, our
method predicts whether or not each astrobot would successfully converge to its target spot. The applied
evaluations to simulated results using our scheme exhibit high performances in those predictions.

As the first solution to this problem, we propose a weighted k-NN-based algorithm which requires the
initial status of a swarm as well as its observational targets to predict its convergence. In this chapter, we
solve the constrained version of the prediction problem in which the motion direction of all astrobots of
a swarm, so-called parity, are fixed. This assumption makes the prediction more complicated as the as-
trobots dynamics are taken more restricted. However, as we later see, the results show how the cooperative
coordination is able to completely coordinate many scenarios even in the presence of constrained actuator.
Our algorithm learns to predict based on the coordination data obtained fromprevious coordination of the
desired swarm. Thismethod first generates a convergence probability for each astrobot based on a distance
metric. Then, these probabilities are transformed to either a complete or an incomplete categorical result.
One may note that a coordination process is a finite set of movements corresponding to each astrobot of
a swarm with respect to many functional and safety requirements. A formal convergence verification tool
has to check every single coordination step according to the control signals generated for each astrobot in
every step. However, the discussion presented in the previous sections clarified that such exact approach to
convergence analysis may be practically infeasible. Thus, among all steps of a coordination process, our al-
gorithmmerelyworks based on the first (i.e., initial) and the last (i.e., final) astrobots-targets configurations
of the process. Another challenge raises from the imbalanced nature of the data in our problem. Namely,
the convergence rate of large astrobot swarms generally varies between 65% ∼ 85% depending on their
populations. Thus, the number of the astrobots which converge is noticeably larger than those which don’t
converge. So, the data are inherently imbalanced. It is widely observed that imbalance data may adversely
impact the output of any naive machine learning algorithm which does not counteract against this issue.
The applied simulations of our algorithmwith respect to various populations of large astrobots manifest its
effectiveness in terms of various performance measures. In particular, the method is applied to two typical
swarms including 116 and 487 astrobots. It turns out that the correct prediction of successful coordination
may be up to 80% of overall predictions. Thus, these results witness the efficient accuracy of our predictive
convergence analysis strategy.
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The remainder of the chapter is structured as follows. We the specify the convergence prediction prob-
lem in Section 6.2. We particularly focus on the features according to which a data-driven solution to the
convergence prediction problem is indeed challenging. Section 6.3 comprises a weighted k-NN-based so-
lution to the cited problem. We then present detailed statistical analysis to express the credibility of our
algorithm in Section 6.4. We indeed apply our algorithm to two complex instances of astrobot swarms
which include 116 and 487 astrobots. In the end, Section 6.5 reflects our conclusions and discusses poten-
tial search ideas to improve our results in future.

6.2 Problem Statement

The more astrobots converge to their target spots, the more the throughout of the observation associated
with the targets will be. The current trajectory planners are not always able to achieve desired high conver-
gence rates [Makarem et al. 2016]. If a convergence rate is below a certain threshold, then its corresponding
final survey will not represent the expected quality. Thus, one has to assess the performance of a potential
coordination process in terms of its final convergence before its execution. The analytical [Macktoobian et
al. 2019a] and logical [Macktoobian et al. 2019c] tools to verify the results before their execution are often
computationally too expensive. In this regard, these methodsmay not be used in real-time scenarios when
the time slots available between observations are too short. The cited tools analyze every coordination step
to check the collision freeness of motions which eventually tend to final configurations of astrobots. How-
ever, in this research, we only take the initial configuration of astrobots and the locations of their targets
into account. We intend to predict whether or not a particular number of astrobots completely converged
in the course of an observation surpasses the minimum number of desired convergences. Then, if the pre-
dicted convergence rate is larger than the minimum expectation, we decide to let the trajectory planner
coordinate our swarm. Otherwise, we re-plan the unsatisfactory astrobot-to-target assignments to yield
better combinations.

The problem statement is graphically shown in Figure 6.1 in which we seek the synthesis of a predic-
tor to solve the problem. In particular, we prepare a dataset including many coordination scenarios with
respect to multitude of astrobot-to-target assignment pairings which had been already simulated and/or
executed. In this dataset, each astrobot in each pairing is labeled by 1 (resp., 0) if it finally reaches (resp.,
doesn’t reach) its target. The overall set of this results is called ground truth vector. We use these data to pre-
dict convergence rates using a weighted k-NN-based strategy. Since the number of converging astrobots is
often larger than that of those which doesn’t converge, our data are inherently biased. Such imbalance data
have to become balanced to make predictions reliable. We also only consider safe coordination scenarios
in our dataset.

6.3 Convergence Prediction Strategy

In this section, we elaborate on our convergence prediction algorithm, as shown in Figure 6.4. We first
compensate the imbalanced data issue using a set of vector weights applied to our data. Then, a distance
metric is defined to rank the astrobots neighborhoods with respect to a desired astrobot whose conver-
gence is intended to be predicted. A prediction probability is computed associated with each astrobot. We
then note that the prediction problem of each astrobot has to be essentially analyzed in its own neigh-
borhood. Thus, we localize the analysis which is mathematically equivalent to a particular normalization
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Figure 6.1: The schematic of the convergence prediction problem

Figure 6.2: The folded formation of astrobots representing their initial configuration

of the quoted prediction probabilities. Next, given a particular decision filter, we transform the obtained
probabilities to either of two categorical outcomes. Each of these outcomes represents the prediction of
our algorithm regarding the successful or the unsuccessful convergence of their corresponding astrobots.
We finally perform Monte Carlo cross-validation [Xu et al. 2001] to assess the reliability of the results of
our algorithm.

One notes that the coordinate associated with each astrobot’s initial configuration is fixed (see, Figure
6.2), and it does not impact the coordination phase. Thus, in the prediction process, we define the astrobot
vector π according to the location of its projected target on the focal plane of the swarm as follows.

π :=
[

xt yt

]⊺
(6.1)

Then, the configuration matrix P of a specific swarm P including n astrobots is indeed the accumulated
configurations of its constituting astrobots which is

P :=

[
xt1 xt2 · · · xtn

yt1 yt2 · · · ytn

]⊺
. (6.2)

The ground truth vector corresponding to P is gP. This vector represents the a posteriori information
regarding the convergence of its corresponding configuration stored in a dataset. The more configurations
exist in the dataset, the more representative the dataset is for its swarm. Since there are infinite number of
configurations associated with a swarm, it is impossible to accumulate any possible coordination scenario
in the dataset. However, the dataset has to be representative enough because changing the location of a
target for just some tenths of millimeters just may change a successful convergence to a deadlock situation
or vice versa. The dataset has to be divided into train and test partitions whose division proportion is
discussed in Section 6.4.
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6.3.1 Imbalanced Data Compensation

The family of k-NN algorithm is very sensitive to the local structure, i.e., the geometry, of data. We par-
ticularly enjoy this feature because the convergence prediction problem directly depends on geometrical
characteristics of astrobot vectors. As already noted, configuration matrices often include many 1s com-
pared to 0s because the majority of astrobots can be successfully coordinated using a swarm controller. So,
their dataset is imbalanced according to which k-NN-based algorithms do not properly work [Dubey et al.
2013]. There are two typical approaches to resolving this issue neither of which is effectively applicable to
our case. In particular, one may perform an oversampling (resp., undersampling) on the minority class
(resp., majority class). This approach is infeasible in our case because an oversampling on the minority
class requires the configurations whose ground truth vectors have more 0s than 1s. In the case of huge
swarms, such configurations are extremely rare, if not nonexistent. Even if one could find such configura-
tions, the next step would be the generation of a new group of targets which are very close to the targets of
that configuration. But, it would be so likely that many 1s are also generated, thereby essentially canceling
the purpose of oversampling. On the other hand, any undersampling needs to remove all the configura-
tions whose ground truth vectors include more 1s than 0s. However, it gives rise to the loss of valuable
information which are important for potential prediction cases.

Instead, we devise a vector of weights to enhance the impact of 0s in the ground truth vector of a
specific configuration. This strategy is similar to the idea of class confidence weights [W. Liu et al. 2011].
The difference is that we apply the weights to single astrobots, not to data samples, i.e., configurations.
Given a configuration Pi where i ∈ {1, 2, · · · , N}, assume that ground truth vector gP

i is associated with
it. We define frequency vector m and its complement, say, pseudo vector v as follows.

m := ∑
i

gP
i

v := N · 11×N −m

(6.3)

Then, the elements1 of weight vector w :=
⋃
i
wi read as below.

wi :=

mi if vi = 0
mi

vi
otherwise

(6.4)

Each element of w has to be applied to the 0s of a particular astrobot of the configuration. We apply dif-
ferent weights to different astrobots because those which are in total neighborhoods, i.e., surrounded by
6 astrobots, generally don’t reach their target positions as frequent as those which are in partial neigh-
borhoods configuration. So, the 0s of the astrobots in total neighborhood configurations have smaller
weights compared to those in partial neighborhoods. The notion of weight vector efficiently compensates
the problem of imbalanced data. However in our problem, the two classes have not the same importance.
In other words, we are more interested in the correct predictions of 1s rather than 0s in an operational
point of view. So, we tune the elements of weight vectors according to our prediction requirements using
two corrector coefficients α and β on which we elaborate in Section 6.4.

1 n-ary operator
⋃
i
(·)i constructs a vector of the operator argument.
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Figure 6.3: A typical probability localization scenario

6.3.2 Prediction Probability Computation

We define a distance metric to quantitatively compare various configurations with each other. Let T be
a test configuration, say, the one we are interested in predicting its convergence. Let also Pi be a train
configuration. We define distance metric ∆(·, ·) which later is used to find the close train configurations
to a particular test one as below2

∆(T , Pi) := ∑
j
∥Tj −Pi,j∥. (6.5)

Here, Tj and Pi,j corresponds to the jth columns (i.e., astrobots) of T and Pi, respectively.
Now, we select the k-closest configurations set, say, P T ,k ⊂ P , to T . The specification of k depends

on the size of the train dataset and the complexity of the intended swarm. Namely, it must not be too
small, otherwise there is some overfitting risk corresponding to the test configuration. On the other hand,
if it is too large, one may take some train configurations into account which do not resemble the desired
test one. So, it may lead to inaccurate predictions associated with some astrobots. Assume that function
sort(set, metric) sorts its set argument with respect to its metric argument in ascending order. Moreover,
fix function fetch(set, k) which returns the first k elements of its sorted argument set. Then, given a par-
ticular k, P T ,k is defined as follows.

P T ,k := fetch
(
sort
(
{Pi | Pi ∈ P }, ∆(T , Pi)

)
, k
)

(6.6)

Now, we use weight vector w, P T ,k, and its corresponding ground truth vector gP T ,k :=
⋃
i

gP T ,k

i to

compute the predictions corresponding to astrobots which converge to configuration T . One notes that w

has to be exclusively applied to the 0s in each element of wgP T ,k :=
⋃
i

wgP T ,k

i . Then, the result is weighted

ground truth vector whose elements are defined as below.

wgP T ,k

i :=

{
1 if gP T ,k

i = 1

wi otherwise
(6.7)

2 Unary operator ∥·∥ denotes the Euclidean norm of its vector argument.
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Thus, primary prediction probability vector Γ̂
P ,T with respect to test configuration T is given by

Γ̂
P ,T :=

( k

∑
i=1

gP T ,k

i

)
⊘
( k

∑
i=1

wgP T ,k

i

)
. (6.8)

Onemay alternatively plan to apply differentweights to each ground truth vectorwith respect to its distance
metric from a particular test configuration. However, it increases the risk of overfitting.

If one deals with very large astrobot swarms, the distance metric ∆ may not be reliable to assess the
similarity between two configurations. In fact, once the number of astrobots extremely increases, theremay
be some astrobots among the closest train configurationwhose targets are too far from their corresponding
ones in the test configuration. This may be problematic even in the case of small swarms. In the next
section, we mitigate this issue by localizing the derived prediction probability vector.

6.3.3 Prediction Probability Localization

The global neighborhood analysis of a large astrobot swarm is both inefficient and even problematic in
view of the final results. In particular, large swarms geometrically encompass a massive number of neigh-
borhoods. If one checks all available neighborhoods in the course of each lazy evaluation of the algorithm,
then the solution would never be obtained after a reasonable amount of time. On the other hand, not
all astrobots neighborhoods influence the coordination of a particular astrobot, but only those which are
its immediate neighbors. Thus, we have to localize the probability computations of the algorithm. In
particular, we perform a local analysis on the neighborhoods of each astrobot. Thereby, the algorithm is
exclusively applied to a number of small configurations which includes a maximum number of 7 astrobots.
By doing so, it would be less likely to have some astrobots the distances between whose targets and a test
configuration are high. For example, Figure 6.3a depicts a neighborhood of astrobots the magnitudes of
whose metric distances are reasonable as illustrated in Figure 6.3b.

Let P be a configuration of including n astrobots. We define neighborhoodmatrix νπ ⊂ P associated
with a typical astrobot π as the central entity of this neighborhood. The dimension of each instance of νπ

is 2 × r, where 1 ≤ r ≤ 7 denotes the number of the astrobots in the neighborhood. Thus, one has
to overall perform n local analyses. To do so, we introduce counter vector η whose dimension is 1× n.
Element ηi of η corresponds to the number of the neighborhoods to which the ith astrobot of the swarm
belongs. The elements of η are integers varying between 1 and 7. Thus, we yield neighborhood probability
vector Γ̃

νπ,T
with respect to neighborhood νπ whose elements are defined as follows.

Γ̃νπ,T
i :=

{
Γ̂νπ,T

i if πi ∈ νπ

0 otherwise
(6.9)

Now, given, Γ̃
νπ,T

:=
⋃
i

Γ̃νπ,T
i , final probability vector ΓP,T is computed as

ΓP,T :=
[
∑
π

Γ̃
νπ,T

]
⊘ η (6.10)

Finally, we need to transform these probabilistic entries to categorical 1s and 0s to represent successful
or failed convergences, respectively. For this purpose, given a decision filter q, we define the elements of
output vector Y :=

⋃
i

yi as below.

yi :=

{
1 if ΓP ,T

i > q

0 otherwise
(6.11)
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Figure 6.4: The flow of the convergence prediction algorithm

The last phase of our convergence prediction algorithm performs Monte Carlo cross-validation to as-
sess the credibility of the results. The rational behind preferring this method over k-fold cross-validation
is the computational efficiency of the former. Namely, Monte Carlo cross validation enjoys a property
that the proportional relation between train/test splits does not depend on the number of validation iter-
ations. Thus, one can perform a series of iterations which are not linked to the dimensions of train and
test datasets. The drawback of this method, though, is that some configurations may never be selected as
test configurations, whereas others may be selected multiple times. For this reason, it is necessary to put
a particular attention to the number of validation iterations. The choice of this number depends on how
large a typical test dataset is compared to its corresponding train one. In other words, the smaller the test
dataset is, the larger the number of iterations has to be.

6.4 Simulations and Results

In this section3, we illustrate how our algorithm efficiently predict the convergence of astrobots in massive
swarms. We first define our evaluationmeasures and performancemetrics. Then, we take two swarms into
account each of which is constituted by 116 and 487 astrobots. The latter is particularly similar to the case
of the astrobot swarm associated with the SDSS-V project [Kollmeier et al. 2017]. We also present some
hints regarding the value selections for the algorithm’s hyperparameters.

6.4.1 Performance Measures

Our performance measures are essentially defined based the following four notions.

3 The datasets used in this section, associated with the initial positions of astrobots, their targets, and their coordination results,
can be found in [Macktoobian n.d.]
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• A true positive (TP) is an astrobot which is predicted to converge (the predictor predicts 1), and it
actually converges to its target position (its corresponding ground truth element is 1).

• A false positive (FP) is an astrobot which is predicted to converge (the predictor predicts 1), but it
actually does not converge to its target position (its corresponding ground truth element is 0).

• A true negative (TN) is an astrobot which is not predicted to converge (the predictor predicts 0),
and it actually does not converge to its target position (its corresponding ground truth element is 0)

• A false negative (FN) is an astrobot which is not predicted to converge (the predictor predicts 0),
but it actually converges to its target position (its corresponding ground truth element is 1).

Accordingly, we take the standard rates of the above factors, i.e., TPR, FPR, TNR, and FNR, into account.
These values are reported in based on Figure 6.5. If a predictor yields good performance, its corresponding
confusion matrix has large values in its main-diagonal entries, indicating that the majority of samples have
been correctly classified.

From an engineering point of view, we are more interested in the correct predictions of positives (the
astrobots which converge to their target positions). It is because the information regarding the prediction
of these astrobots would be crucial to decide whether or not a coordination process should be executed
associated with a particular configuration of targets. On the other hand, the number of positives is much
greater than that of negatives. If the predictor always predicts 1, the TPR would be perfect. But, the
predictor does not indeed predict anything by completely neglecting 0s. So, we track the balanced accuracy
measure established as the average of the TPR and the TNR to better assess the predictive essence of the
algorithm. We also employ receiver operating characteristic (ROC) curves to illustrate the performance of
our predictor in the course of varying one of its hyperparameters.

We also take precision and F1 score (harmonic mean) into the consideration. The precision measure
is an index of how accurate the predictor is in predicting positives. Precision is an important measure
to look at when FPs have significant impacts on our problem. We intend to maximize precision through
minimization of FPs. F1 score indicates the trade-off between precision and TPR, say, recall. For example,
if we increase the TPR, we indeed increase the number of predicted TPs. However, we also increase the
number of FPs, thereby decreasing the precision. The bigger the F1 score is, the better the trade-off between
precision and recall is.

We include corrector coefficients α and β, as well. These hyperparameters are used to manually tune
the weight vectorw to obtain better accuracy rates with respect to positives and negatives. In particular, α

tunes thewis of the astrobots in total neighborhoods, while β does the same but for the astrobots residing
in partial neighborhoods. In all simulations, we take the decision filter q = 0.5.
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(d) k = 39

Figure 6.6: The confusion matrices of the 116-astrobot swarm

6.4.2 A swarm including 116 astrobots

Our complete dataset is composed of 10100 configurations, where the train and the test datasets include
10049 and 51 configurations, respectively. The algorithm iterations is set to 15. The confusion matrices
corresponding to various values of k are depicted in Figure 6.6. We observe that increasing k increases
and decreases the TNR and the TPR, respectively. It is reasonable since the more train configurations
we take into account for the computation of the output, the higher the likelihood is to consider the train
configurations whose astrobots don’t converge. The selection of k depends on how large the train dataset
is. The larger the train dataset is, the larger k may be. In this scenario, a proper k may be chosen in the
range of 10 to 50. If we increase k too much, the information about the targets locations of the closest train
configurations are no longer reliable.

It is also interesting to assess our performance indices for single astrobots. In particular, we obtain
the TPR, the TNR, and the balanced accuracy, on the basis of the number of each astrobot’s neighbors.
To do so, we take the average of the performances of the astrobots with a specific number of neighbors,
as rendered in Figure 6.7, where both corrector coefficients are 1. Namely, Figure 6.7a indicates that the
prediction accuracy bottleneck refers to the astrobots in total neighborhoods. Figure 6.7b illustrates how
the the balanced accuracy is improved in total neighbourhoods. On the other hand, the astrobots of partial
neighborhoods experience the decrement and the increment of the TPR and the TNR, respectively.
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(a) k = 13

(b) k = 39

Figure 6.7: The neighborhood analyses of the 116-astrobot swarm corresponding to two neighborhood
selections

Corrector coefficients are expected to impact the qualities of the cases in which total neighborhoods
are fairly abundant. In Figure 6.8, the confusion matrices of three different predictions are reported in
which corrector coefficients are varied. In this case, we simply keep their values the same to show the
overall effect of magnifying the weights of 0s. In all of the cases, we have k = 13. In particular, it is
evident that increasing the corrector coefficients leads to the increment and the decrement of TNR and
TPR, respectively, which is a direct effect of increasing the weight of the minority class.

To tune the hyperparameters, one may find Figure 6.9 very useful. Figure 6.9a illustrates that any
k > 21 is stable. Specially, k = 39 realizes the best predictive performance for this swarm. One may note
that the right choice of k directly depends on what factor is the main goal of the prediction to be improved.
For example, if we one would like to increase the balanced accuracy as much as possible, yet allow the
TPR to drop under 80%, then k = 39 seems to be the best choice. But, if the TPR has to be over 80%
with the maximum balanced accuracy, one may pick k = 13. The dynamical trends of the TPR, the TNR,
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(c) α = β = 1.05

Figure 6.8: The evolution of the confusion matrices of the 116-astrobot swarm given different corrector
factors

and balanced accuracy are also evident in Figure 6.9b in the course varying the two corrector coefficients
while fixing k = 13. So, since we are more interested in the correct predictions of the positives, k may
be chosen large to increase the TPR as much as possible, while assuring that the balanced accuracy does
not drop below a certain threshold. Moreover, Figure 6.9c shows the trends of the precision, the recall and
the F1 score for different values of k. Table 6.1 reflects the best results in the convergence predictions of
the 116-astrobot swarm. Finally, we can look at the ROC curve which visualizes the performance of our
predictor. Every point on the ROC curve represents the result of a prediction experiment using a different
value of α(= β) as shown in Figure 6.10. Here, we have k = 13.

6.4.3 A swarm including 487 astrobots

The qualities of the results in this case fairly follows the qualities of the 116-astrobots case. So, we observe
that our algorithm performance remains relatively acceptable even in the case of very complex swarms. To
support this claim, we consider a dataset including 10100 configurations, 10049 of which are used to train
the predictor and the remaining 51 ones are test configurations. The number of iterations are 15.

Confusion matrices of Figure 6.11 reiterate the point that larger k values give rise to the better pre-
dictions of the negatives. Figure 6.11c witnesses the decrement of the balanced accuracy compared to
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(a) α = β = 1 (b) k = 13

(c) α = β = 1

Figure 6.9: Accuracy measures for the 116-astrobot swarm

Table 6.1: The best prediction results corresponding to the 116- and 487-astrobot swarms

Swarm population K α β TPR(%) TNR(%) Balanced accuracy(%) Precision(%) F1(%)

116
31 1 0.9 79.3 64.7 72 91.51 84.97
39 1 0.85 88.44 63.23 71.83 91.4 85.57
39 1 1 77.2 68.51 72.85 92.22 84.04

487
39 1 0.9 79.94 60.73 70.33 89.51 84.45
51 1 0.88 80.20 60.97 70.59 89.52 84.61
51 1 1 78.23 63 70.62 89.78 83.61
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the 116-astrobot swarm. The reason is that the 487-astrobot swarm comprises more total neighborhoods
than the 116-astrobot swarm. The stability analysis of this case, similar to the previous case, also indicates
the variations of the accuracy rates with respect to the hyperparameters as shown in Figure 6.12. In par-
ticular, Figure 6.12a exhibits that the algorithm is stable for k > 21. Moreover, Figure 6.13a illustrates
the upper bound of the precision which is around 90%. Finally, we observe that the algorithm works on
this 487-astrobot swarm almost as good as the 116-astrobots one. Namely, Figure 6.13 exhibits the ROC
curve of the 487-astrobots case which is trivially closer to the random guess line compared to that of the
116-astrobot swarm.

6.5 Conclusion

The first solution to the convergence prediction of populated packs of astrobots is studied. We observe
that astrobot-to-target assignments provide a necessary feature subset of an astrobot swarm feature set to
reach ∼80% of accuracy in predicting the completely-converging set of the pairings. The k-NN nature
of the proposed algorithm makes the metric design process intuitive enough to exploit the geometrical
characteristics of astrobots and their neighborhoods. The presented strategy also enjoys a fairly restricted
number of hyperparameters. So, the design process is not only relatively straightforward but tuning pro-
cesses also require less computational resources.

Figure 6.10: The ROC curve associated with the 116-astrobot swarm
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(a) α = β = 0.95

Balanced Accuracy: 70.42%
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(b) α = β = 1.00

(c) α = β = 1.05

Figure 6.11: Two confusion matrices and a neighborhood analysis corresponding to the 487-astrobot
swarm

(a) α = β = 1 (b) k = 13

Figure 6.12: Accuracy measures for the 487-astrobot swarm
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(a)The variation of performance criteria in the case of the
487-astrobots scenario

(b) The comparative ROC curve evolution of both scenar-
ios

Figure 6.13: Further accuracy results associated with both swarms
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Chapter 7

Variable-Parity Convergence Prediction

VII

Publication Note

The material presented in this chapter is adapted from:

• Matin Macktoobian, Francesco Basciani, Denis Gillet, and Jean-Paul Kneib, Learning
Convergence Prediction in Astrobot Swarms, Journal of Astronomical Telescopes, Instruments,
and Systems. (In Press)

7.1 Introduction

T
he convergence prediction using machine learning seeks an estimation of the post-coordination sta-
tus of a swarm in view of those targets which can be reached. In this framework, we only take the

initial configuration of astrobots without engaging with the intricacies of their interactions in the course of
their coordination. Finally, if the estimated prediction is below a desired threshold, one simply switches to
another plan of target-to-fiber assignments. The first solution to this problem [Macktoobian et al. 2020b]
, as described in Chapter 6, proposed a weighted k-NN-based algorithm [Dubey et al. 2013] to predict the
intended convergences. Despite the promising accuracies obtained by this algorithm, there are drawbacks
which may be envisaged corresponding to this method. In particular, this algorithm is a lazy-evaluating
method which indeed does not generate any model out of its learning process. Thus, all geometrical com-
putations corresponding to every train data sample have to be done associated with every observation.
This computational issue may significantly slow predictions.

Categorical data cannot be properly embedded into the k-NN-based scheme because this technique
uses distance metric which is not applicable to categorical data in a straightforward manner. So due to this
pitfall, the k-NN-based strategy only considers a constrained version of the prediction problem in which
only spatial features of the locations of targets are taken into account. However, a more realistic and more
accurate model may be trained if one takes the critical categorical features of astrobots, such as parity, as
well. Namely, parity denotes the motion direction of the outer arm of an astrobot. The constrained case
solved by the k-NN-based approach assumed that the parities of all astrobots are the same. This assumption
is so restrictive in terms of decreasing the maneuverability of astrobots. In the sequel, swarm controllers
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may end up with very low convergence rates because of such extremely restrictive constraint. On the other
hand, relaxation of the fixed-parity assumption makes a prediction substantially more difficult because
even if one only toggles the parity of one astrobot of a swarm, the convergence of many astrobots may be
affected. In other words, the consideration of parity has to be efficiently managed to reach high prediction
accuracies. Accordingly, we seek a solution, based on the idea of support vectormachines (SVM) [Suykens
et al. 1999], to a generalized version of the convergence prediction problem in which categorical data,
particularly parity, can also be incorporated into the process.

The contributions of this paper are three-fold as follows. First of all, we obtain a prediction model
which can be simply evaluated for arbitrary coordination cases. Put differently, once our model is com-
puted according to a particular swarm, any test scenario associated with that swarm can be instantly eval-
uated. It is a notable advancement compared to the lazy evaluations of constrained scenarios handled by
the k-NN-based method. We observe that our SVM-based algorithm provides improved prediction per-
formance with respect to those of the k-NN-based strategy. Second, the k-NN-based scheme requires a
neighborhood analysis step to localize distance measurements in the course of evaluations. However, our
SVM-based predictor models each astrobot such that computations are inherently localized. So, one needs
no extra pre-processing to localize data before any learning phase. Third, we incorporate parity in our al-
gorithm using a normalization phase. In particular, we transform the categorical parity pair to a numerical
one whose variation resembles those of the spatial features of astrobots. Thanks to this formulation, no
feature exerts excessive impact on the prediction results by overriding the influences of other ones.

The chapter is structured as follows. Section 7.2 describes the synthesis of our SVM-based predictor in
the constrained case, say, when all astrobots have the same parity. The black processing path of Figure 6.4
represents the underlying steps of the constrained case. To be specific, we first define the computational
model of an astrobot, including its selected features, which is later used in the learning phase. We then
describe the necessity of scaling the features. A detailed treatment of the predictor synthesis process and the
applied cross-validation procedure are also discussed. Section 7.3 illustrates how the constrained algorithm
can be extended to a generalized one to cover parities, as well. Following the dotted red processing path
of the algorithm in Figure 6.4, once parity is normalized, a predictor can be synthesized according to the
formalism used to solve the constrained case. We apply our method to a 487-astrobot swarm to reflect the
efficiency of the synthesized predictor, in Section 7.4. Finally, Section 7.5 remarks our conclusion.

7.2 Constrained Convergence Prediction

7.2.1 Data Definition

In the constrained scenario, we assume that the parities of all astrobots are fixed and similar to each other.
Since each coordination starts from the folded formation of astrobots, similarly to the k-NN-based algo-
rithm, the data construction associated with the coordinate of each astrobot corresponds to the coordinate
of the projected location of the particular target assigned to it. Thus, given a fixed parity for all astrobots of
a swarm, the constrained data model of astrobot π that has n neighbors is defined as a collection of spatial
features as follows

πC :=
[

xt yt x1
t y1

t · · · xn
t yn

t

]⊺
. (7.1)

Here
[

xt yt

]⊺
denotes the target specification of π, and each vector

[
xi

t yi
t

]⊺
is associated with the

target coordinate of its ith neighbor. One observes the absence of any parity information in the data vector
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because it is fixed for all astrobots. Note that themodel above is basically including only one neighborhood.
Thus, one needs not to localize the data before being fed into any learning process, as the k-NN based
method requires. In our SVM-based strategy, given a data vector πC, the predictor exclusively returns
its evaluation regarding the convergence of the central astrobot π. So, to predict the convergence of n
astrobots of a swarm, one has to take n neighborhoods into account the central astrobot of each of which
is one of those n astrobots.

7.2.2 Feature Scaling

Before using data vectors to train any predictor, we have to scale the features of each data vector. Namely,
the target’s coordinates of different neighbors do not vary in similar ranges among all data vectors. So, there
is an intrinsic spatial offset in the features with respect to a particular astrobot. Such an offset has to be
removed not to synthesize biased predictors. Lack of feature scaling in the case of SVM-based predictors
makes the setting of their hyperparameters very complicated. Comparatively, the k-NN-based algorithm
does not require any feature scaling since the Euclidean distance metric applied to that method is relative
and localized. In contrast, we will later see that the quoted metric is used in the Gaussian kernel of our
SVM-based predictor. So, we have to take feature scaling into account. In particular, we use min-max
normalization [Han et al. 2011] to linearly transform the range of all data features to the interval [−1, 1].
This range not only removes the mean value of each feature one but also yields satisfying results in view of
the performance of synthesized predictors. Mathematically, the following formalism maps feature x to its
normalized counterpart x′ which varies in the cited range.

x′ :=
2(x−min (x))

max (x)−min (x)
− 1 (7.2)

Here, min (x) and max (x) operators return the minimum and the maximum values of the feature x,
respectively, associated with a data vector πC of a particular dataset.

One may note that the linear nature of the transformation above indeed preserves relative distances
between the targets of a particular neighbohrood. We generally assume a uniform distribution of targets
all over a focal plane. Thus, min-max normalization is a better option than Z-score normalization [Jain
et al. 2005] which is often particularly applicable to the data following Gaussian distributions.

7.2.3 Predictor Synthesis

It is unlikely that a linear boundary can generally solve the convergence prediction problem of an astrobot
swarm. Thus, we apply the kernel trick [Hofmann 2006] to our linearly inseparable data. In particular, we
map data vector πC

i to πC
′

i by the following kernel κ(·, ·), known as radial basis function [Murphy 2012],

κ(πC
i , πC

′

i ) := Φ(πC
i )

⊺Φ(πC
′

i ) = exp

(
−
∥πC

i − πC
′

i ∥2

2σ2

)
. (7.3)

Here, the kernel size σ determines the width of the Gaussian kernel.

The problem of predictor synthesis is equivalent to the solution of the optimization problem below. We
seek an optimal hyperplane which classifies the convergence of a particular set of astrobots into the class
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of 1s (resp., 0s) if they are predicted to reach their targets (resp., otherwise).

min
w,b,ξ

1
2

w⊺w + C0

N0

∑
i=1

ξ0
i + C1

N1

∑
i=1

ξ1
i

s.t. gj
i(wΦ(πC

i ) + b) ≥ 1− ξ
j
i , j ∈ {0, 1}

ξ
j
i ≥ 0, j ∈ {0, 1}

(7.4)

The boundary between the two classes is denoted by normal vector w. N0 and N1 are the numbers of
the samples in the classes of 0s and 1s, respectively. Weights C0 and C1 represent the miss-classification
penalties associated with the classes of 0s and 1s, respectively. Given miss-classification measure C , we
have

Cj := Cωj, j ∈ {0, 1}, (7.5)

where ωj is the class weight of the class j. The notion of class weight is also used to resolve the imbalanced
data problem. To balance the bias with respect to the abundance of majority class, i.e., 1s, compared to the
minority class, i.e., 0s, we apply the class weights to the class of 1s. For this purpose, one has to regulate
the hyperparameter ω1. In general, one may safely apply either a smaller weight to the majority class
or a larger one to the minority class. The quantities ξ0

i and ξ1
i are the slack variables corresponding to

the incorrect classifications of the ith samples regarding the classes of 0s and 1s, respectively. Due to the
complexity of our prediction problem, we use these variables to relax classification constraints and allow
miss-classifications of somedata samples. These values are larger than 0 only if their corresponding samples
are miss-classified. Moreover, the ground truth of the ith sample is encoded by complement-pair (g0

i , g1
i )

with respect to the classes of 0s and 1s, respectively. The ith astrobot is represented by πC
i , and kernel

function Φ(πi) maps every feature of πi into a higher dimensional space. b indicates the hyperplane
intercept. One observes that the term 1

2w⊺w is the inverse of the margin between the two classes. The
minimization of this term indeed gives rise to the maximization of the desired margin corresponding to
the predictor boundary. The setting of the cited hyperparameters are described in Section 7.4.

The optimization problem (7.4) is solved using the sequential minimal optimization algorithm [Platt
1998]. The obtained boundary hyperplane is built according to a subset of the data samples, i.e., support
vectors, which are the closest data points to the hyperplane. This linear hyperplane in the expanded space
is projected back to the original space as a nonlinear one. Once the hyperplane is found, we assign a new
test vector to one of the two classes of the problem. This assignment depends on the relative position of
the data vector with respect to the hyperplane model.

7.2.4 Validation

We employ k-fold cross validationmethod to check the performance of our algorithm. Namely, we synthe-
size a desire SVM-based convergence predictor using a train partition DT of a particular dataset D. Then, we
apply the algorithm to the second partition, say, a test partition DS, to assess the algorithm’s performance.
In this regard, we perform ⌊|D|/|DS|⌋ validation iterations. Thanks to thismethod, all elements of a dataset
are used both as a part of the train and test partitions in the end of a cross validation process. Moreover,
one may not use one data sample more than once, as it may happen in the Monte-Carlo cross validation
[Xu et al. 2001] applied to the k-NN-based algorithm. In each iteration, we take a different partition of D
as DS. We compute the average of the performance results obtained at the end of every iteration over the
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total number of k iterations, thereby obtaining the final results of the cross validation process. The value of
k depends on the ratio ⌊|D|/|DS|⌋. Decreasing the cardinality of DS increase the value of k and the required
time of cross validation completion. However, increasing the size of DS implies the usage of less samples
in the training phase. Thus, less training data may escalate the risk of underfitting in the course of the
SVM-based predictor synthesis. Section 7.4 illustrates our setting corresponding to this hyperparameter.

7.3 Generalized Convergence Prediction

In this section, we generalize our convergence prediction by adding parity to the features of each astrobot.
Put differently, according to this generalization, each astrobot’s parity may be different from those of other
astrobots. This parity relaxationmakes the convergence prediction process evenmore complicated because
various parities increase the nonlinear interactions of astrobots. In particular, such interactions give rise to
the grow of the potential deadlock and/or collision-prone scenarios. So, predicting the safety and eventual
completeness of any swarm initial configuration is evenmore challenging. Wedescribe how the generalized
version of our SVM-based algorithm efficientlymanages to predict the desired safe complete convergences.

7.3.1 Data Definition Generalization

The notion of parity denotes the rotation direction of rotation of the outer arm of a typical astrobot. Thus,
it is inherently classified as a categorical information, contrary to the continuous numerical values corre-
sponding to the remainder of an astrobot’s spatial features. In this section, we add parity information to
the constrained data vector of an astrobot (7.1) to obtain the generalized data vector as follows

πG :=
[

xt yt P x1
t y1

t P1 · · · xn
t yn

t Pn
]⊺

, (7.6)

in which P refers to the parity flag of the modeled astrobot π, and {Pi | 1 ≥ i ≥ n} denotes the parity
set corresponding to n neighbors of π.

The embodiment of categorical data into the k-NNpredictor is challenging because the distancemetric
defined in that frameworkmay not compare parities of astrobots in different configurations similarly to the
applied distancemeasurements to the spatial features. However, themetric of our SVM-driven predictor is
applied to the data in another computational layer in the kernel. Moreover, SVMalgorithmmore efficiently
deals with nonlinearities of astrobots’ data.

7.3.2 Parity Normalization

In addition to the min-max normalization applied to the spatial features (7.3), this section describes the
importance of parity normalization, as well. In particular, a categorical parity value is either 1 (resp., -
1) to represent clockwise (resp., counterclockwise) motions of outer arm of an astrobot. In view of the
optimization problem (7.4), parity data are processed as integer numbers. Thus, the range of their variation
has to be normalized such that they vary in amore-or-less similar variation range as those of the normalized
spatial features.

To efficiently normalize parity, we analyze the standard deviation corresponding to the spatial features.
Targets distribution is generated by a standard uniform distribution. However, one cannot simply yield
the desired standard deviation using ideal formula associated with standard uniform distribution, which
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Figure 7.1: Prediction accuracy per neighborhood type in the constrained scenario

(a) Unbalanced explained variance before parity normalization

(b) Balanced explained variance after parity normalization

Figure 7.2: Parity normalization impact on the magnitudes of data features
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Figure 7.3: TNR, TPR, and balanced accuracy dynamics with respect to average kernel size in the con-
strained scenario

is ∼0.577. Since the outer arm of an astrobot is longer than its first arm, the reachability requirement of
target-to-astrobot assignment requires that any generated target may be located outside of the focal plane
as long as the target is still reachable by at least one astrobot. The realization of the aforesaid condition
empirically requires that one computes the desired spatial standard deviation based on not the general
formula but the available data. If we take values -1 and 1 to represent various parities, then the parity
standard deviation is ∼1. It turns out that this encoding leads to a noticeable imbalance in view of the
data explained variance1. In other words, the parity pair (−1, 1) makes our SVM-based predictor biased
in relying more on the information given by parities compared to those of the spatial features, thereby
reducing the prediction quality of the final learning model.

We obtain the explained variance associated with the features of an astrobot with six neighbors using
principal component analysis, as depicted in Figure 7.2a. In this figure, the feature imbalance is obvious.
So, we need to scale parity values such that their resulting explained variance is fairly similar to that of the
spatial features. In particular, the analysis of the target’s distributions indicates that the standard deviation
of spatial features is ∼0.5. On the other hand, imbalance feature issue mandates that the parity standard

1 Explained variance is the ratio of the variance of a specific feature to the summation of the variances of all features of data.

Figure 7.4: TNR, TPR, and balanced accuracy with respect to average class weight in the constrained
scenario

97



deviation follows that of the spatial features. One notes that the parity pair (−0.5, 0.5) fulfills the quoted
conditions. Taking the planned parity pair into account efficiently scales the explained variance of all
features, as Figure 7.2b illustrates. We note that choosing parity pairs with smaller variation range, e.g.,
(−0.3, 0.3) leads to another issue. In particular, such pairs drive the predictionmodel to bemostly inclined
to the information of spatial features by taking less impact of parities into account on the prediction model
synthesis.

Once parities are normalized, one simply feeds all πG vectors to the optimization problem (7.4). The
resulting boundary is the prediction model that is the solution to the generalized convergence prediction
problem.

7.4 Results

In this section, we demonstrate the performance of our algorithm applied to a 487-astrobot swarm in both
constrained and generalized cases. This swarm resembles the one corresponding to the SDSS-V project
[Kollmeier et al. 2017]. We partition our dataset such that every time the test partition is 10% of the overall
dataset, thereby k = 10. We describe how our algorithm not only solves the constrained case with higher
performance compared to the k-NN-based algorithm but also efficiently solves the generalized case.

We synthesize an SVM model for each astrobot of the swarm. After the completion of each iteration,
we compute each of the average performancemetrics corresponding to each astrobot’s atomic performance
metric over the number of all iterations. Then, we obtain the performance metrics of the swarm by aver-
aging over those of all astrobots.

We fix C = 1, so two hyperparameters ω1 and σ have to be set for each astrobot. Such setting asso-
ciated with a particular astrobot critically depends on the cardinality of its neighborhood. Each astrobot
empirically possesses two to six astrobots in its neighborhood. Thus, the hyperparameter pair above has
to be determined for five various scenarios. For this purpose, we tune class weight ω1 and kernel size σ for
each neighborhood type by performing a grid search.

7.4.1 Constrained Scenario

In this scenario, we assume that the parities of all astrobots are the same. Each astrobot dataset comprises
10100 samples. We set the hyperparameters regarding two interesting cases. As Table 7.1 illustrates, case I
intends to simultaneouslymaximize balanced accuracy and keepTPRabove 75%. Case II seeks aminimum
TPR of 80% at the expense of the balanced accuracy decrement. One may note that, given either of the
cases, each hyperparameter varies in a relatively narrow margin with respect to the neighborhood type. In
otherwords, the prediction performance are fairly invariant to the variation of the hyperparameters around
some particular values. This feature is computationally very important in that one may simply consider
a single setting of each hyperparameter for all astrobots of a swarm regardless of differences among their
neighborhood types. In this regard, the prediction performancewould be sufficiently high, yet no extensive
grid search is done to tune hyperparameters based on their specific neighborhood types. The described
neighborhood-dependence of prediction accuracies is depicted in Figure 7.1.

The impact of the kernel size on the trade-off between TPR and TNR is illustrated in Figure 7.3. Ac-
cordingly, σ ≥ 0.8 provides TPR values over 80%. The variation trends of balanced accuracy and F1 score
with respect to the class weight ω1 are also rendered in Figure 7.4 and 7.5, respectively. The optimal trade-
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Figure 7.5: Precision, recall and F1 dynamics with respect to average class weight in the constrained case

off selections are those points at which the graphs intersect. The ROC curve represented in Figure 7.6
clearly depicts how our SVM-based algorithm is more efficient than the k-NN-based one. In particular,
the ROC curve of our algorithm is located farther from the random guess line compared to that of the
k-NN-based one. The overall report of the best prediction performance is reported in Table 7.1.

Figure 7.6: Comparative ROC curves corresponding to the constrained scenario

7.4.2 Generalized Scenario

We generalize the convergence prediction of the swarm studied in the previous section by randomly de-
termining the parities of its astrobots. Because of the more complexity of the generalized case compared
to the constrained one, we take 5000 extra samples per astrobots compared to the previous scenario, i.e.,
taking 15100 data samples into account. Table 7.2 includes the hyperparameter setting to achieve the best
predictions in two cases similar to the constrained case. Namely, the case I and II seeks the maximized
balanced accuracy and the maximized TPR, respectively.

The neighborhood analysis and the performance variation with respect to kernel size σ are depicted
in Figure 7.7 and 7.8. Performance dynamics regarding the variation of class weight ω1 are represented in
Figure 7.9 and 7.10. These trends interestingly resemble those of the constrained case. So, the sensitivity
of the prediction accuracy in terms of switching between the two scenarios is fairly robust. The complete
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Table 7.1: The best prediction results corresponding to the constrained case2

Case NT ω1 σ TPR(%) TNR(%) BA(%) Precision(%) F1(%)

I

6 0.277 0.86

75.7 69.4 72.5 91.12 82.68
5 0.216 0.90
4 0.167 0.86
3 0.167 1.47
2 0.179 0.84

II

6 0.317 0.82

80.3 62.6 71.45 89.96 84.88
5 0.256 0.86
4 0.207 0.82
3 0.207 0.98
2 0.219 0.80

Figure 7.7: Prediction accuracy per neighborhood type in the generalized scenario

trace of the performance metrics of the generalized case is reflected in Table 7.2. This table exhibits the
effective application of our SVM-based algorithm to incorporate the notion of parity in the convergence
prediction of the swarm.

The comparison of the predictive functionalities of the all the available algorithms, i.e., the constrained
k-NN-based algorithm, the constrained SVM-based algorithm, and the generalized SVM-based algorithm,
is illustrated in the ROC curve set of Figure 7.11. In particular, one observes that the constrained SVM-
based approach is more expressive than the constrained k-NN-based method. In other words, with the
assumption of fixed parities, the former has to be preferred to the latter. Moreover, the ROC curve of the
generalized SVM-based strategy is above that of the constrained k-NN-based one, but trivially below that
of the constrained SVM-based method. Comparatively, the generalized SVM-based algorithm deals with
the complexity of parity which is not taken into account by the constrained version. Nevertheless, it is not
an excessive cost in the performance reduction of the prediction by adding parity to predictions.

2 NT refers to neighborhood type which represents the number of the neighbors of an astrobot. BA designates balanced accuracy.
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Table 7.2: The best prediction results corresponding to the generalized case2

Case NT ω1 σ TPR(%) TNR(%) BA(%) Precision(%) F1(%)

I

6 0.290 1.55

75.1 66.6 70.8 90.3 82.0
5 0.250 1.55
4 0.200 1.17
3 0.140 0.99
2 0.110 0.99

II

6 0.330 1.42

79.7 60.5 70.1 89.4 84.3
5 0.290 1.42
4 0.240 1.05
3 0.180 1.09
2 0.150 1.09

Figure 7.8: TNR, TPR, and balanced accuracy dynamics with respect to average kernel size in the gener-
alized scenario

Figure 7.9: TNR, TPR, and balanced accuracy with respect to average class weight in the generalized sce-
nario
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Figure 7.10: Precision, recall and F1 dynamics with respect to average class weight in the generalized
scenario

Figure 7.11: Overall comparative ROC curves of both the constrained and the generalized scenarios

7.5 Conclusion

Astrobot swarms are populated extremely dense formations of specific manipulators whose collision-free
coordination are of utmost importance for astronomical operations. Cosmological operations often re-
quire that the number of fully coordinated astrobots is above a particular threshold. However, the con-
vergence rates achieved by the distributed controllers of astrobots can only be studied using intensive
simulations. The prediction of astrobots’ convergences has been already done in a constrained case using
a k-NN-driven strategy in which only spatial features of astrobots’ targets are taken into account. In this
chapter, we illustrate that the accuracy performance of our SVM-based algorithm is higher than that of
the k-NN-based one. Moreover, our algorithm also brings parity, say, the rotation direction of the outer
arm of an astrobot, into play, thereby generalizing the solution to the convergence prediction problem.
The comparative study of the performance results indicates that the parity addition to the formulation
only trivially reduces the quality of the prediction accuracy. So, one observes that the generalization of the
convergence prediction is efficiently realized.
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Chapter 8

Conclusions

VIII

Publication Note

The material presented in this chapter is adapted from:

• Matin Macktoobian, Denis Gillet, and Jean-Paul Kneib, Astrobotics: Swarm Robotics for
Astrophysical Studies, IEEE Robotics and Automation Magazine, 2021.

8.1 Highlights

W
e solve the complete safe coordination problem of astrobot swarms. In this regards, the target-to-
astrobot assignment problemwas studied noting the importance of this problem and its influence

on the quality of its subsequent coordination phase. We explain how the former solutions to this problem
do not particularly consider any criteria to ease coordination. We then established an optimal target-to-
astrobot assignment strategy to minimize both the coordination time and the collision likelihood between
astrobots. We yielded the latter by maximizing the distribution of allocated astrobots. Our quadratic
algorithm indeed effectively scales to crowded swarms of astrobots and observations. We observed the
efficiency of this method in terms of its functionality compared to the state-of-the-art scheme, say, target-
based target-to-astrobots assignment technique. In particular, using ourmethod, the number of deadlocks
during coordination by navigation-function-based coordinators decreases. The sizes of coordination su-
pervisors, synthesized by supervisory control theory, also shrinks.

We review the two leading candidate methods to safely and completely coordinate astrobot swarms,
say, the usage of cooperative artificial potential fields and supervisory control. One observed that co-
operative artificial potential fields elegantly seek global complete coordination of a whole swarm via the
accumulation of locally complete partitions of astrobots. This strategy leads to a local completeness con-
dition whose fulfillment has to be checked for every neighborhood of astrobots. The results exhibited how
this scheme is able to yield completely in the majority of scenarios. However, if the condition is violated in
a neighborhood, then the parameters of the target-astrobots pairing will be triviallymodified to resolve the
violation. On the other hand, the supervisory coordination strategy not only provides completeness but
also automatically synthesize the solution which require no safety and functional validations. To hit this
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mark, we enjoy the embodiment of functional and safety requirements of astrobots into the discrete-event
models of the supervisory control. Once a coordination supervisor is synthesized, the coordination prob-
lem indeed resembles the reconfiguration problem of discrete-event systems, whose solution is known.

The coordination problem of astrobot swarms is a complicated one in which many nonlinear interac-
tions exist in the dynamics of the whole system. However, we use machine learning techniques to predict
the result of the coordination associated with every astrobot of a swarm. Our strategies are reliably capable
of predicting convergence rates given various motion specifications of astrobots, saying both constrained
and variable parities. Thanks to these predictions, the likelihood of the complete convergence correspond-
ing to a swarm can be predicted before performing any intensive time- and resource-consuming simula-
tions. In particular, if the predicted convergence rate is lower than a desired threshold, then one may
modify the assignment pairings of the system and/or functional setting of astrobots to reach an estimation
over the convergence threshold. As the result, the coordination will end up with a configuration in which
the resolution of the generated survey fulfills its intended level.

Overall, we improved the convergence rate by twomeans. First, we planned target-to-fiber assignments
to ease coordination in view of both decreased convergence time and less deadlock-prone situations. Sec-
ond, we orchestrated coordination in localities where astrobots consider the overall convergence of their
localities, rather than merely their own convergence. We also used machine learning methods to synthe-
size some predictors which can roughly predict the convergence rate of a coordination scenario without
in the absence og its solution. If the aforesaid prediction is less than a minimum, then one plans another
pairings of assignments without wasting time on computing trajectories whose convergence rates are likely
to be unfavorable.

8.2 Future Directions

8.2.1 Distributed Target-to-Astrobot Assignment

The spectroscopic projects which have been so far defined belong to the class of massive surveys. The
number of targets in an observation corresponding to a massive survey roughly varies in the range of 500-
5000, e.g., [Flaugher et al. 2014; R. Ellis et al. 2012; Kollmeier et al. 2017]. Optimal target assignment
effectively manages the assignment process in the case of massive surveys. However, the next-generation
giant surveys, whose white papers [D. J. Schlegel et al. 2019; Mandelbaum et al. 2019; Newman et al. 2019]
have already been attracted much attention, include many thousands of targets and astrobots, say, around
20,000. In particular, optimal target assignment method may not be effective enough to be applied to giant
surveys because of a variety of the reasons. First, optimal target assignment takes minimum coordination
and maximum distribution requirements into account to perform the assignments. But in the case of ex-
tremely complex astrobot swarm of giant surveys, the cost function of the method may need to be revised
to consider additional requirements. For example, if one or more astrobots are malfunctioned for any
reason, then the coordination process may be adversely impacted in terms of the noticeable convergence
rate loss of functional astrobots. This issue may be (at least partially) resolved by assessing other assign-
ment options to minimize the negative influence of the cited malfunctions. To this aim, a key question is
whether target assignment can be revised to be performed in a real-time manner. One may even imagine
the development of adjustable focal planes which can be moved according to some degrees of freedom. So,
in the case of such undesirable occurrences, trivial adjustment of focal planesmay be helpful. Yet, the chal-
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lenge would be the dynamics consideration of the focal plane’s motions to update the set of the reachable
astrobots associated with an observation before and after each adjustment.

Second, the very large number of targets and astrobots involved in giant surveys may nullify the
quadratic-computational-complexity performance of optimal target assignment method. Namely given a
particular target, optimal target assignment algorithm iterates over all of the unallocated astrobots reach-
ing that target. However in the case of giant surveys, these reachable sets may be too large to be iterated in
one piece. As another related concern, some batches of targets may be concentrated on a relatively small
projection area of a focal plane. So, the reachable set associated with those targets may highly overlap each
other. Traversing very large reachable sets also decelerates the functionality of optimal target assignment
scheme. Hence, it would be beneficial to study the possibility of localized optimizations using heuristic
partitioning of both targets and astrobots sets.

In the sections below, we focus on the related research venues which eventually give rise to more
computationally-efficient coordination and completeness prediction methods.

8.2.2 Finite State Machine Reduction

Section 5.3 of Chapter 5 introduced a cooperative controller [Macktoobian et al. 2019a; Macktoobian et
al. 2019d] which successfully governs complete coordination. The hybrid aspect of the controller clearly
states the participation of a decision-making FSM in the controller formulation. As we already asserted,
this FSM is taken into account as a utility to cover the deadlock situations which cannot be resolved by the
planned CAPF. Despite the usefulness of the FSM, its presence adds another nonlinear layer to the overall
controller architecture. This layer indeed hides the fairly intuitive mapping which corresponds a CAPF
to its generated control law. We already noted that there is no formal verification method to assess the
credibility of the generated control signals. Thereby, the more layers a controller has, the more simulation
scenarios have to be run to assure the controller’s fine-tuned behavior. A key question is how the CAPF
formulation (5.14) can be revised so that it can also cover the functionality of the FSM.

The improvement of the verifiable supervisory solution [Macktoobian et al. 2019c] may also be the
subject of active research. For instance, the current scheme formulates the discrete-event model of an
astrobot as a one-degree-of-freedom artifact. This assumption implies that each astrobot has only one arm
whose length is the overall length of the arms of an actual astrobot. The size of the discrete-event model
of such a reduced astrobot is efficiently small to make synthesis computations fairly tractable. However,
the elimination of one degree of freedom in fact neglects many potential coordination solutions which
require the independent motions of both arms. On the other hand, naive formulation of both two degrees
of freedom gives rise to the curse of dimensionality issue in view of the state size of the overall system.
So, one may provide a guideline as to efficiently encode the kinematics of both two degrees of freedom to
discrete-event models. Astrobots coordination may also encompass temporal requirements. For example,
the deadlock scenarios can be more efficiently handled by a timer. In particular, once a deadlock occurs,
a timer starts to tick. Then as long as the timer has not yet run out, the CAPF continues manipulating the
velocity profiles of the parties involved in the deadlock case. The overflow of the timer would imply that
the CAPF cannot resolve the issue, so the FSM will instead be in charge of the deadlock handling. Owing
to the elegant formulation of timed discrete-event systems, one important area of further study ismodeling
astrobots using these temporal structures [Macktoobian et al. 2021a].
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8.2.3 Optimal Coordination

The supervisory coordination strategy clearly exhibited how an astrobots coordination problem can be
discretized with respect to the step-wise motions its astrobot’s arms. We also studied the critical role of
the forcible backtracking to find complete solutions. In view of the supervisory coordination, given a
particular astrobot, all of the event paths which fulfill both the safety and the completeness requirements
are the same. But one is logically more interested in the shorter solutions whose execution times are faster.
Thus, optimized trajectory planning through the discrete motion space of astrobots is of utmost interest.
The temporal efficiency of a path or its likelihood not to end up with a deadlock scenario can be reflected
by a weight. Then, the whole graph of trajectories with respect to an initial configuration may be traversed
to reach a target configuration using dynamic programming. The challenge would be encoding the whole
motion space of an astrobot swarm to an efficient graph structure. A potential candidate of such structures
may bemulti-dimensional graphs [C. Chen et al. 2009]. Namely at each backtracking step, the sub-graph of
each astrobot is backtracked one node while the neighboring astrobots can observe each other’s sub-graph.
Finally, once all agents ideally reach their targets spots, the optimal complete solution coordination of the
swarm is the set of parallel and/or sequential stepswhich had been backtracked in the problem’s sub-graphs.
Effective pruning strategies may also be useful for the early detection and deletion of undesired paths
before their involvement in the backtracking process. As another point, one observes that our proposed
method is straightforward to check the complete coordination feasibility for 1DoF astrobots. However, the
extensive discretization of the space motions of astrobots may give rise to intractably large discrete-event
systems. A future stream of research would be the usage of state tree structures to efficiently coordinate
extremely complex systems of astrobots. Furthermore, untimed discrete-event systems do not consider
any temporal requirements or constraints in the course of modeling and control process. Thus, one may
take timed discrete-event systems into account tomodel astrobots not to skip potential important temporal
characteristics of the system.

Astrobots and focal plane comprise many numerical parameters which specify their mechanical struc-
tures. These parameters are kept in particular configuration files which are used in the artificial potential
computations in cooperative controllers (see, Section 5.3). The impact of each parameter on the cited
potential calculations is not obvious. So, if one changes one parameter, there is not a direct way, except
intensive simulations, to observe how the change influences a coordination. Accordingly, each parameter
may be taken as a constraint, or objective, into account in view of coordination. Then, the constraints can
be directly applied to a model predictive controller. Constraints have to be defined in terms of the state
variables of an intended system. In the case of astrobot swarms, the state variables are position, velocity,
and deviation. Yet, not all of potential constraints can be directly written in terms of those state variables.
On this account, the derivation of a general formalism to automatic constraint generation for an astrobot
swarm is a pivotal step to develop model-predictive-based solutions to the coordination problem. Ad-
ditionally, collision avoidance and completeness have to be cast into cost functions [Macktoobian et al.
2021a].

8.2.4 Completeness Prediction

This research indeed takes only necessary positional features of swarms to predicate convergences. How-
ever, it is imperative to look for extra features which obtain better accuracies such as parity, i.e., the motion
direction of an astrobot. The current problem statement only considers the results of a coordination as the
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label of that coordination. It implies that our algorithm only predicts the feasibility of complete coordina-
tion, regardless of the real-time and the control challenges one may face to achieve them. So, a challenge
would be adding extra features to the label class. In that case, our algorithm may be extended to also
predict the efficiency of trajectories which may lead to complete coordination. Needless to say that such
feature expansion jeopardizes the computational efficiency of the prediction process as a trade-off. One
may also utilize neural networks to train predictors which may provide more accurate results. However,
neural networks include many hyperparameters whose proper setting may be challenging specially if one
would like to avoid computationally intensive grid searches.

An unexplored venue to potentially further improve our results would be the usage of convolutional
neural networks (CNN).The existence of hidden layers may provide novel ideas to perceivemore informa-
tion about the intermediate coordination steps from an initial configuration to a final one by exclusively
owning these two configurations. However, CNN-driven designs are often less intuitive than the designs
based on more geometrical approaches such as k-NN and SVM algorithms. Specially, planning the num-
ber of layers and the design of convolution computation and pooling operations are the challenges which
have to be overcome [Macktoobian et al. 2021a].
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Chapter 9

Appendix

IX

The simulator specification1

T
he software architecture of the simulator coordinator is illustrated in Figure 9.1.

•util.py This file contains a collection of shared functions and utilities.

•plotting.py This file contains a simple plotting interface, which uses a browser with SVG to present a plot
of points represented as either complex numbers or 2-vectors.

•path_generator.py This file generates trajectories based on specifications of robotic positioners and tar-
gets.

•pa_interface.py This file has to be run if one needs to with the graphical user interface of the software.

•pa_dnf This file includes the decision-making logic based on artificial potential fields and finite state
machines.

•pa_animate This file includes utility functionalities for animation outputs of the software.

•fps_shared This file is prototype module containing functions shared between the observation prepara-
tion software and the navigation software.

•call_path_analysis This file, as a wrapper, loads configuration and target files.

The I/O files of the software are introduced below.

•configuration.cfg This file includes all the information corresponding to the mechanical specifications
of robotic positioners and their focal plane.

•target.txt This file includes all the information corresponding to the targets to be observed.

•trajectories.yaml This file stores generated trajectories.

Here is the specification of the parameters which have to be set as a part of the configuration file of the
coordinator.
1 The software tools developed and used in this research can be found here: https://github.com/Matin-Macktoobian.
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Figure 9.1: The software architecture of the coordinator

•INS.POS.LENGTH1 This parameter specifies the length of positioner α arms in millimeters.

•INS.POS.LENGTH2 This parameter specifies the length of positioner β arms in millimeters.

•INS.POS.WIDTH1 This parameter specifies the width of positioner α arms in millimeters.

•INS.POS.WIDTH2 This parameter specifies the width of positioner β arms in millimeters.

•INS.POS.LOW1 This parameter specifies the lower travel limit of positioner α arm in degrees.

•INS.POS.HIGH1 This parameter specifies the upper travel limit of positioner α arm in degrees.

•INS.POS.LOW2 This parameter specifies the lower travel limit of positioner β arm in degrees.

•INS.POS.HIGH2 This parameter specifies the upper travel limit of positioner β arm in degrees.

•INS.POS.MINDIST This parameter specifies the closest fiber approach distance in millimeters.

•INS.POS.TOLER This parameter specifies the fiber positioning tolerance in micrometers.

•INS.POS.CURVRAD This parameter specifies the radius of curvature of focal plane in millimeters.

Astrobot avoidance zones consist of:

• a circle of diameter INS.POS.MINDIST centred at the fiber of the nth robotic positioner;

• a rectangle of length INS.POS.B1 and width INS.POS.WIDTH2;

• a small triangle of length INS.POS.TB2 and width INS.POS.TW1;

• a large triangle of length INS.POS.TB3 and width INS.POS.TW2;

• a datum actuator switch of length INS.POS.DL and width INS.POS.DW;

specifically

•INS.POS.B1 This parameter specifies the length b1 of collision avoidance rectangle in millimeters.

•INS.POS.TB2 This parameter specifies the length tb2 of collision avoidance rectangle in millimeters.
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•INS.POS.TB3 This parameter specifies the length tb3 of collision avoidance rectangle in millimeters.

•INS.POS.TW1 This parameter specifies the width tw1 of collision avoidance rectangle in millimeters.

•INS.POS.TW2 This parameter specifies the width tw2 of collision avoidance rectangle in millimeters.

•INS.POS.DL This parameter specifies the length d1 of datum actuator in millimeters.

•INS.POS.DW This parameter specifies the width 2× d2 of datum actuator in millimeters.

•INS.POS.SAFETY safety tolerance applied to avoidance zones in millimeters.

The following parameters have to be set for the nth acquisition camera corresponding to the grid of
robotic positioners.

•INS.ACQn.RFOCAL This parameter specifies the coordinate of the center of the nth acquisition camera
in millimeters.

•INS.ACQn.THFOCAL This parameter specifies the θ coordinate of the center of the nth acquisition
camera in millimeters.

•INS.ACQn.FOV This parameter specifies the field of view of the nth acquisition camera in millimeters.

•INS.ACQn.COLUMN This parameter specifies the column number of the nth acquisition camera.

•INS.ACQn.ROW This parameter specifies the raw number of the nth acquisition camera.

This coordinator uses a paritymechanism to indicate how a robotic armmay reach one particular target
position with different configurations depending on its degrees of freedom. Since a robotic positioner has
only two degrees of freedom , it has the maximum of two configurations by which the target position:
either by clockwise (Arg1 = 0, Arg2 = 1) or counter-clockwise (Arg1 = 1, Arg2 = 0) motions. Thus, parity
is given by a pair (Arg1, Arg2). The parity shall be indicated in the target file as explained below.

The target file, i.e., target.txt, corresponding to a particular observation has to be loaded using the
window of the graphical user interface, as well. The nth row of this file corresponds to the nth robotic
positioner which has already been assigned to a particular target. The coordinates are based on (r, θ)

polar coordination system on a focal plane. Given a hypotheical row i, the columns of the file are specified
as follows.

•The 1st column The r parameter corresponding to the ith positioner.

•The 2nd column The θ parameter corresponding to the ith positioner.

•The 3rd column The r parameter corresponding to the target.

•The 4th column The θ parameter corresponding to the target.

•The parity argument 1 The Arg1 value

•The parity argument 2 The Arg2 value

•The priority positioner This parameter is 0 (resp. 1) if the observation priority of the target is low (resp.
high).

113



Figure 9.2: A typical YAML file in which velocities are in radian per second and time stamp is in second.
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Figure 9.3: The trajectory evolution of the sample YAML file
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