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Abstract

In materials, the evolution of crack surfaces is intimately linked with the self-contact oc-
curing between them. The developed contact forces not only mitigate the effect of stress
concentration at crack tip but also contribute significantly to the transfer of shear and
normal stresses. In this paper, we present a numerical framework to study the simulta-
neous process of fracture and self-contact between fracturing surfaces. The widely used
approach, where contact constraints are enforced with the cohesive element traction sepa-
ration law, is demonstrated to fail for relative displacements greater than the characteristic
mesh length. A hybrid approach is proposed, which couples a node-to-segment contact
algorithm with extrinsic cohesive elements. Thus, the fracture process is modeled with
cohesive elements whereas the contact and the friction constraints are enforced through
a penalty-based method. This hybrid cohesive-contact approach is shown to alleviate any
mesh topology limitations, making it a reliable and physically-based numerical model for
studying crack propagation along rough surfaces.

Keywords: Penalty-based contact, Cohesive element, Friction, Finite Element Method

1. Introduction

Failure in materials is most often attributed to micro-cracking mechanisms in the ma-
terial. It has been well studied how the inherent presence of microscopic cracks and the
stress concentration around them leads to crack growth and coalescence [1]. The merging
of micro-cracks results in propagation of macro-cracks which finally lead to material fail-
ure. Depending on the local stress state, the micro-cracks may come into contact leading
to the development of residual stresses either due to friction, or due to the rough topology
of crack faces. Such residual stresses significantly influence the stress at crack-tip. Thus,
a holistic understanding of fracture mechanisms in material requires to model not only
micro-cracking but also the contact occuring between cracked surfaces.

One of the widely used numerical approach stems from cohesive zone models. In front
of the crack tip, there exists a small non-linear region where degradation of material takes
place, which is denoted as the fracture process zone. It is within this region that the local
micro-cracks initiate, propagate and coalesce (see Figure 1a). The cohesive zone models,
first introduced by Dugdale and Barenblatt [2] in the 1960s, idealize the fracture process
zone as a discrete interface (see Figure 1b) and the degradation behavior is defined by
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Figure 1: (a) Initiation, propagation and coalescence of micro-cracks in the fracture pro-
cess zone represented as lp (b) Idealization of crack and fracture process zone by cohesive
zone models. Γ+ represent the upper facet of a cohesive surface and Γ− represents the
lower facet of a cohesive surface. Γ represents a free boundary in the body (c) Cohesive
traction T as a function of crack opening δ for an extrinsic approach (d) Cohesive traction
law for an intrinsic approach.

the constitutive relation called the Traction-Separation Law (TLS) [3, 4, 5]. It relates
the cohesive traction T along the interface to the relative displacement δ between the
separated cohesive surfaces: T = f(δ). The TSL is controlled by the fracture energy Gc

required to create a unit area of fully developed crack (see Figure 1):

Gc =

∫ δc

0

f(δ)dδ (1)

Over the years, the cohesive zone models have been adopted in various numerical
frameworks, to simulate crack propagation [6, 7, 8, 9, 10]. With Finite Element model-
ing, interfacial cohesive elements are inserted in-between targeted finite elements. The
insertion follows two distinguishable approaches: the extrinsic [3] and the intrinsic [11].
In the intrinsic approach, the cohesive elements are pre-inserted at the onset of the sim-
ulation, whereas in the extrinsic approach, a cohesive element is inserted only when the
stress/traction along the interface exceeds the critical strength of the material. Fur-
thermore, the choice of insertion affects the Traction Separation Law. For an extrinsic
approach, the TSL is a monotonically decreasing function characterized by several pa-
rameters: the fracture energy Gc and the critical stress σc which triggers insertion (see
Figure 1c). For the intrinsic approach, the TSL is a non-monotonic function characterized
by three parameters: σc, Gc and δo, the crack opening at which the critical strength σc is
reached (see Figure 1d). The effective crack opening δ is defined as δ =

√
(β2/κ2)δ2

t + δ2
n

where δn and δt represent normal and tangential openings. The parameter β provides a
weighted coupling between normal and tangent modes, and κ becomes the ratio between
critical energy release rate under Mode-I and Mode-II loadings κ = Gc,II/Gc,I . In this
work, we employ extrinsic cohesive elements with a linear TSL which gives the cohesive
traction vector during a loading path:

T coh =

(
β2

κ
δtt+ δnn

)
σc
δ

(
1− δ

δc

)
(2)

where t and n are the tangent and normal vectors respectively, and where δc is the effective
crack opening beyond which complete decohesion occurs. During unloading, the TSL
follows a different path, which acknowledges δmax as the maximum opening displacement
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of all previous loading paths:

T coh =

(
β2

κ
δtt+ δnn

)
σc
δmax

(
1− δmax

δc

)
for 0 < δ < δmax (3)

which acknowledges irreversible damage.
Usually a penalty-based method is incorporated in the cohesive law to avoid interpen-

etration of facets (represented as Γ+ and Γ− in Figure 1b) when in compression [12, 7].
The normal contribution to the cohesive traction vector becomes

T n
coh = εnδnn for δn < 0 (4)

when δn < 0, and where εn is the penalty parameter. However, there are a few limitations
to such a method. As a pair of facets forming a cohesive element does not change over the
time, this facet-to-facet approach necessarily assumes small displacements, i.e. δ � h.
Such a restriction limits the refinement of finite element meshes, for instance when it is
required to represent small-scale surface features. It also requires the contact surfaces
to be planar [13], which excludes the topologies observed when a complex crack network
develops.

Over the years various approaches have been proposed to overcome the above men-
tioned difficulties. Snozzi et al. [5] employed an explicit enforcement of contact between
cohesive elements using a decomposition contact response method [14] which imposes
impenetrability condition directly on the displacements by conserving the linear and the
angular momenta of the bodies. However, such a approach does not incorporate the work
performed by contact forces and thus suffers from energy conservation problem [5]. Zhang
et al. [15] employed node-to-node penalty-based contact constraints on the cohesive ele-
ments, which are applicable only for small sliding displacements. In both the approaches,
the contact is enforced through cohesive elements which renders them incapable of han-
dling contact between a cohesive surface and another arbitrarily chosen free surface (see
Figure 1b).

The aim of this paper is to present a new framework that couples cohesive zone
modeling, representing fracture, and a contact algorithm to handle normal and frictional
contact conditions. For this purpose, we employ a node-to-segment contact algorithm,
with penalty-based constraints. The proposed approach allows for the correct treatment
of contact, even for large sliding displacements, thus alleviating the restriction on the
cohesive element size: h < δ is possible without compromising physical parameters. Fur-
thermore, by completely separating the contact treatment from the cohesive elements, the
proposed model allows to handle contact between the newly cracked surfaces with any
other free surface, such as pre-cracks, external or internal physical boundaries.

This paper starts in Section 2 by describing the methodology employed to couple a
node-to-segment contact algorithm with cohesive elements. We briefly discuss the penalty-
based contact formulation employed and describe its use together with the cohesive ele-
ments. In Section 3 we validate the proposed model by comparing with results obtained
with a Spectral Integral method. We compare the crack kinematics (crack tip position
and crack tip velocity) along an interface with and without friction. An excellent match
is shown between the results from the proposed numerical model and from the Spec-
tral Integral method. In Section 4 the effect of acknowledging accurately the contact
forces during crack propagation is investigated for a non-planar cohesive interface. We
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demonstrate that, for such a complex crack path, a small-displacement contact formula-
tion violates the Karush-Kuhn-Tucker contact conditions as soon as the cohesive element
size becomes comparable to the critical displacement. Finally, in Section 5 we conclude
our study by discussing some possible applications of the proposed model, especially in
modeling crack propagation along rough surfaces.

All the data and the simulation scripts used in this paper are available on Zenodo [16].

2. Coupling between cohesive elements and a contact algorithm
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Figure 2: (a) A point r on a deformable surface Γ1 is projected onto a surface Γ2 to
compute the gap g. ρ is the projection point and n is the vector normal to the surface Γ2

(b) A node from surface Γ1 in contact with surface Γ2. The contact traction at the node
i is T [i] and the interpolated tractions at the nodes of the connected element is T̃ [j] and
T̃ [j + 1]

Let us consider two deformable bodies Ω1 and Ω2 with their boundaries represented
as Γ1 and Γ2 (see Figure 2a). During the motion of the deformable bodies, portions of Γ1

and Γ2 may come into contact. A point r on Γ1 is considered in contact with Γ2 if the
distance to Γ2, i.e. the gap g, is zero. Once in contact, a point cannot cross the surface
Γ2 and thus, the following constraint is imposed on the surface points of Γ1,

g = (r − ρ).n ≥ 0 (5)

where ρ is the orthogonal projection of r onto Γ2 and n is the unit vector normal to
the surface, measured at the projection point ρ (see Figure 2a). A compressive pressure
N ≤ 0 develops where contact occurs to prevent surface penetration of Γ1 into the sur-
face Γ2. Such constraints may be viewed as Karush-Kuhn-Tucker(KKT) complementary
conditions:

g ≥ 0, N ≤ 0, N · g = 0 (6)

When a tangential traction develops along the contacting surface in the presence of fric-
tion, the tangential traction T t cannot exceed the critical friction stress according to
Coulomb’s friction law, which is proportional to the contact pressure N . Assuming a con-
stant friction coefficient µ, the slip motion has to be co-linear to the tangential traction:

||T t|| ≤ µ|N | and vρ = η
T t

||T t|| (7)
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where vρ is the tangential velocity of the projection point, and where η is the intensity of
the slip velocity, which can be viewed as a Lagrange multiplier enforcing the inequality
constraint of eq. (7). If a contacting point has a traction ||T t|| smaller than µ|N |, it sticks
to the contacting surface and η = 0. Otherwise η needs to be determined.

In this work a penalty-based method [17, 18] is employed to regularize the normal
and frictional conditions along the contact area. The normal traction N is modified
to be a linear function of the gap, and the frictional constraint of eq. (7) classically
becomes [19, 20, 21, 22]:

T n = εngn and vρ − η
T t

||T t|| = − 1

εt

dT t

dt
(8)

where the penalty parameters are noted εn and εt. For a Finite Element analysis, contact
occurs between discretized surfaces and therefore contact can be defined and detected in
different ways: node-to-node, node-to-segment or segment-to-segment. In this work, we
adopt the node-to-segment approach which, as the name suggests, implies that the contact
occurs between the nodes of a surface and the segments of another surface. Conventionally,
one surface is chosen as the slave surface and the other as the master. A slave node is
then matched with an element from the master surface. However, the choice of master
and slaves is not unique and may introduce a bias. Furthermore, in a complex crack
network with multiple branch sub-cracks and where self-contact could occur, it becomes
impossible to identify unambiguously two unconnected surfaces and to distinguish a slave
from a master. Therefore, in this work, we define a unique potential contacting surface
Γdet, containing all the free boundaries. The sets Ndet and Edet are the nodes and elements
discretizing this surface respectively. Henceforth, contact may occur between the nodes
in Ndet and the elements in Edet. Matching any node with an element is performed by
searching for the closest node-segment orthogonal distance:

arg min
e∈Edet

{
g = (r − ρe).ne

}
, r ∈ Ndet (9)

where ρe is the orthogonal projection of the node onto element e and ne is the unit vector
normal to the element e measured at the projection point ρe. For any node of index i
in Ndet, the discrete traction field T can be interpolated onto the nodes of the matching
element (see Figure 2b) to provide another measure T̃ . In order to disambiguate the
computation of nodal tractions, the average force between T and T̃ is assigned to every
node inNdet. Algorithm 1 summarizes the averaging process employed to compute contact
tractions along the nodes of Γdet, which is a classical resolution on contact traction[17].

Thanks to the generality of the contact algorithm described above, it can be applied
to the cohesive surfaces created during fracturing. Cohesive elements are inserted during
crack growth, and new facets are therefore exposed as free surfaces, as illustrated in
Figure 3a. Therefore with each cohesive element i introducing a pair of facets (Γ+

i , Γ−i ),
the set of potential contacting surface has to be extended:

Γdet =
⋃
i

{Γdet ∪ Γ+
i ∪ Γ−i } (10)

If all cohesive element facets are candidates to contact pairing, there is nothing pre-
venting to pair a node with the facets immediately connected to this same node (the
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Algorithm 1 Contact Traction algorithm

Compute slave traction at node r
1: for all i ∈ Ndet do . Loop over all nodes in Γdet
2: eclosest[i]← arg min{g = (ri − ρe).ne} . Orthogonally closest element to r

3: Computes T [i] from eq. (8).

Interpolate traction to the master nodes elements
4: for all i ∈ Ndet do . Loop over all nodes in Γdet
5: for all j ∈ eclosest[i] do . Loop over all the nodes of element eclosest

6: T̃ [j] = T̃ [j]−N j(ρ
i
)T [i] . N j is the jth shape function

Average contributions
7: for all i ∈ Ndet do
8: T [i] = (T [i] + T̃ [i])/2 . Average traction on ith node

orthogonal gap g between a node and an element connected to it is trivially zero). Hence,
the elements directly connected to the tested node are simply discarded.

Another misleading situation can arise when a node is closer to a facet element even-
though bulk matter is standing between them. This is illustrated in Figure 3b where a
node from a cohesive surface Γ+

1 may be paired with an element from surface Γ−2 , which
belongs to a different crack opening. Again such a facet needs to be discarded from the
list of candidates for pairing. By assuming a homogeneous discretization, two cohesive
surfaces have to be separated by the characteristic finite element length hmin. Therefore,
ignoring candidate elements at an orthogonal distance greater than hmin will prevent such
a wrong node-facet pairing. In Figure 3b are indicated with red crosses the elements that
cannot be paired with the node pointed by a red bullet.

A novel modeling aspect is introduced when a cohesive surface enters in contact with
another one: the contribution to tractions may come from both the TSL and the con-
tact penalty constraints. Figure 4 illustrates a typical mixed-mode loading of a cohesive
surface Γcoh and its facets Γ±. Let us consider two elements e1, e2 connected through the
cohesive element ce, which will initiate a crack upon normal loading as shown in Fig-
ure 4b. Under tangential loading, the two facets may eventually interpenetrate. When
contact constraints are enforced by the TSL, the traction forces issued from the direction
of the cohesive spring are unrelated with the actual surface geometries (see Figure 4c).
With the proposed algorithm, the element e1 is projected onto the surface Γ−, making
the contact and the frictional forces consistent with its topology, i.e. the normal (resp.
tangential) tractions are normal (resp. tangent) to Γ−. If the cohesive element is not fully
damaged (i.e δ < δc), the tractions computed from the TSL are superposed with contact
forces, as shown in Figure 4d. In order to clarify the physical origin of this statement, it is
important to realize that the cohesion between facets is due to connecting fibers/springs
which gradually damage from elongation. The critical elongation δc to achieve full rup-
ture is a characteristic of the material, a priori unrelated with the Finite Element mesh:
such fibers continue to create an opening resistance until full rupture, and this is to be
dissociated from contact forces preventing interpenetration of bulk parts. With the pro-
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Figure 3: Detection of master element surface when multiple cohesive surfaces exist. Γ1

and Γ2 are two cohesive surfaces growing simultaneously which can come in contact with
itself. The surface is discretized using finite elements. The slave node r is shown in red
and the elements connected are discarded as pointed with red crosses. The orthogonal
gap between master element and r must also be greater than the minimum element size
hmin. The shown projection ρ is the only one remaining valid.

posed approach, the stresses developing along a crack are not suffering from discretization
limitations.

The time evolution in this work will be controlled by a central difference time-integrator[23],
which is a modified Newmark-β time integration scheme. At the predictor stage, free sur-
faces are allowed to interpenetrate, leading to contact penalty forces, while the corrector
updates the velocities. The application of such a time integration scheme is known to be
unstable[17] when dealing with asymmetric contact constraints. This is a manifest of high
frequency oscillations initiating from contacting nodes which will exponentially increase
in magnitude. Over the years, various stabilization solutions have been proposed, for
instance by introducing local damping [24, 17] or by modifying the velocity/acceleration
update of contacting nodes [25, 26]. As the latter solution is applicable only for a node-
to-node contact algorithm, a kinetic energy damping acting only on the nodes involved
by contact constraints is used in the current work. High frequency oscillations can also
be created during the dynamic insertion of extrinsic cohesive elements (see Appendix A
for more details). Again a damping is introduced, for the nodes connected to such newly
inserted cohesive elements, in order to reduce the impact of such oscillations.

The above proposed hybrid numerical framework has been implemented with the open-
source Finite-Element library Akantu [7]. In the following section, we validate the pro-
posed numerical framework by studying the propagation of a crack along an interface
with and without friction.

3. Numerical validation

For the validation of the proposed model, we study the propagation of a crack along a
prescribed interface lying within an isotropic elastic body. We consider an infinite elastic
space with a finite center-crack of length 2a as illustrated in Figure 5a. The system is
quasi-statically loaded in mixed-mode: both a compressive loading (along y−axis) and a
shear loading (along x−axis) are applied. The compressive load is firstly increased for
a short duration of time before being maintained constant for the rest of the simulation
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Figure 4: (a) An intact cohesive surface Γcoh (shown in black). The finite elements e1 and
e2 are joined at the cohesive surface through a cohesive element. (b) The crack opens in
mode-I resulting in the formation of two facets Γ+,Γ−, connected by the cohesive element
ce represented as a red spring. (c) Upon horizontal displacement the element e1 crosses
Γ−. Contact constraints are enforced by the cohesive law (d) With large deformation
contact forces, provided per the proposed contact algorithm, the element e1 is projected
onto Γ−. Enforcement of contact and frictional constraints leads to tractions T at the
facet of the element e1. As the cohesive element ce is still active, forces T coh also act on
the element e1.

Isotropic body Cohesive interface
Elastic modulus, E 70 MPa Fracture energy, Gc 20 J/m2

Poisson’s ratio, ν 0.35 Critical strength, σc 0.4 MPa
Density, ρ 1230 kg/m3 Critical opening, δc 1× 10−4 m
Shear wave speed, cs 145 m/s β 1
Pressure wave speed, cd 240 m/s κ 1

Table 1: Material properties

(see Figure 5a). The shear load also ramps up to a maximum shear stress, chosen to
be greater than the critical stress value (σcrit =

√
GcE/πa(1− ν) [27]) necessary for a

crack propagation to initiate under Mode-II loading. The loading ramp applies for a total
duration T = 0.02 second as shown in Figure 5a. A detailed description and justification
for such a ramp function is provided in Appendix B. The material properties of the
elastic body and of the cohesive interface are listed in Table 1. The friction acting on the
interface is governed by the Coulomb’s law with the same static and kinetic coefficients.

3.1. Numerical setup: Finite Element method

This crack configuration is simulated with Finite Element simulations discretizing
finite spaces surrounding the crack (see Figure 5). The infinite body is emulated by
imposing time-dependent displacements ux(t), uy(t) on the boundaries. These are the
displacements resulting from a finite crack within an infinite space under mixed Mode-I
and Mode-II loadings [28, 27] due to far-field stresses σ∞xy(t), σ

∞
yy(t). For details please

refer to Appendix C.
Cohesive elements are dynamically inserted along the crack interface Γcoh during the

simulation. A linear TSL describes the crack interface cohesion (see Table 1). For this
study, the material parameters G,E, σc are chosen such that the fracture process zone
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Figure 5: (a) Schematic for an infinite body with a center-crack of length 2a. The far-
field compressive stress σ∞yy and shear stress σ∞xy are quasi-statically applied as shown in
the figure. A sub-section of dimension 4a × 2a and crack length 2a is considered for
Finite Element simulations. The physical boundaries of the center-crack are represented
as Γ1,Γ2. The cohesive interface where crack will propagate is represented as Γcoh. The
Dirichlet boundary conditions are applied along the outer boundary. (b) The space-time
representation of the damage is shown for µ = 0.3 and εn = εt = 300E. The blue region
represents the broken part, the green region represents the fracture process zone and the
yellow part represents the unbroken region.

lp = EGc/σ
2
c = 100δc = 4a/50 [29] which satisfies δc < lp < 4a. The lower limit δc < lp

ensures that an appreciable cohesive zone develops ahead of the crack while the upper
limit lp < 4a ensures that the cohesive zone remains small if compared to the domain
dimensions. Thus the displacement field applied on the boundary is expected to remain a
valid approximation. The fracture process zone must contain enough finite elements (at-
least around four [30]) to correctly capture the non-linear stresses nearby the crack tip.
To this end, a structured mesh consisting of bi-linear elements of uniform size (h = lp/10)
is employed.

In the problem described above, the potential contacting surfaces are Γ1, Γ2 and the
upper and the lower facets (Γ+

coh,Γ
−
coh) to be created during the crack propagation. Thus

it allows to define:
Γdet = Γ1 ∪ Γ2 ∪ Γ+

coh ∪ Γ−coh (11)

To enforce contact constraints along the potential contacting surface, various values of
the penalty parameter εn are considered while the frictional penalty εt is chosen equal
to εn. The system is solved using the explicit damping scheme presented in last section.
In principle the critical time step ∆tcrit is chosen based on the Courant-Freidrichs-Lewy
condition: ∆tcrit = αhmin

√
ρ(1− ν2)/E, where α is a security factor, hmin is the minimum

element size, E is the Young’s modulus of the material and ν is its Poisson’s ratio [31].
However, ∆tcrit also depends on the choice of the penalty parameter εn: enforcing contact
constraints through penalty-based methods decreases the stable time step [32, 33]. In this
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work, it is chosen according to [32]:

∆t = hmin

√
ρ(1− ν2)

E

√
2

1 + β +
√

1 + β2
, β =

εnhmin

EA
(12)

where A is the area associated with surface nodes. The nodes in contact or belonging
to a cohesive element are damped by velocity scaling to stabilize the simulation (1% of
velocity amplitude every time step).

Finite Element predictions of the proposed model will be compared with the ones
obtained with a Spectral Integral method [9, 10] available as an open-source software [34].
In the following section, we briefly describe the Spectral Integral method and the numerical
setup employed.

3.2. Numerical setup : Spectral Integral method

The Spectral Integral approach discretizes only tractions and displacements along the
interface between two semi-infinite continua, for which the elasto-dynamics are treated
implicitly. For a 2D isotropic solid, the tractions at the interface are governed by:

T±(x, t) = T∞±(t)− E

2(1 + ν)cs

∂u±

∂t
(x, t) + f±(x, t) (13)

where T∞±(t) corresponds to the far-field loading [σ∞xy(t) σ
∞
yy(t)]

T , u± corresponds to the

displacements of the upper(+) and the lower facets(−) of an interface and f± represents
history-dependent tractions. For a detailed description of the method, the readers should
refer to [9, 34]. Tractions and displacements are solved in a hybrid Fourier-Laplace space
(spatial-time) and therefore periodicity conditions apply on the spatial domain. The
infinite body problem described in Section 3 is emulated by considering a center-crack of
length 2a within a periodic domain of length 30a. Such a large domain ensures that the
periodicity does not spuriously affect the crack initiation and propagation. The interface
is discretized with regular element of size approximately equal to lp/10. An explicit time
stepping scheme is employed with a time step ∆tcrit equal to the one used for the Finite
Element simulations.

Similarly to the previously described Finite Element approach, the interface strength
is described by a linear TSL which couples normal and shear decohesion. After the
failure, the interpenetration between the facets of the interface is handled by matching
the normal displacements along the upper and the lower faces: this effectively sets the
gap as g = 0. Along the interface, a Coulomb friction law is employed with a simplified
Prakash regularization [35, 36]:

dσ̃yy
dt

=
1

t?
(σ̃yy − σyy) (14)

where σ̃yy is the regularized compressive stress while σyy is the instantaneous compressive
stress at the interface and t? is the regularization characteristic time. The justification
of this regularization can be found in the experimental work of [35] where it is shown
that frictional stresses cannot change instantaneously in reaction to sudden jumps in
the compressive stresses. The time t? quantifies the delay reaction of the frictional stress
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response (µ|σ̃yy|), which should eventually correspond to the Coulomb strength [37]. Thus,
the tangential traction along the interface is limited by the frictional stress given as:

||T t|| ≤ µ|σ̃yy| (15)

In the next section, we compare results for the crack propagation as predicted by
the FE approach and the Spectral approach. However, there are few conceptual dif-
ferences between the two approaches that must be taken into consideration. The TSL
employed in Spectral method, although similar to FE approach, does not acknowledges
the irreversible damage during unloading and therefore, requires the applied loading to be
monotonically increasing. Also, the response of frictional stress in the Spectral approach
is non-instantaneous to any change in compressive stress and therefore, the compressive
stress must not change drastically during the crack propagation. Still, the characteristic
time t? was chosen much lower than the loading ramp rate, so that it is not expected to
impact the measured results or the comparison with Finite Elements by any means. As
it will be seen, it stabilizes the progression of the crack, making Finite Element result
slightly more noisy. Taking these two things in considerations, we simulated the propa-
gation of crack under mixed-mode loading and the results are presented and compared in
the next section.

3.3. Validation results

The simulations are run for two different friction coefficients: µ ∈ [0, 0.3]. Normal and
frictional contact constraints are tested with penalty parameters εn = εt = 300E which
prooved to be sufficient to reach a convergence with respect to normal and tangential
tractions at the contacting interface. More results for εn = εt ∈ [100E, 200E] can be
found in Appendix D. Figure 5b shows a space-time diagram of the damage as predicted
by the finite element method (for µ = 0.3). The crack propagation initiates at t/T ≈ 0.6
and accelerates before reaching a steady-state velocity.

Foremost, we show the interpenetration that remains between the contacting surface
after the enforcement of constraints (for µ = 0.3). Figure 6a shows the space-time rep-
resentation of the interpenetration gap (g), which is evaluated from the upper crack face
(Γ1 ∪ Γ+

coh). Before the start of the crack propagation (t/T < 0.6), contact occurs only
along Γ1. Later as the crack propagates, the contact occurs across both Γ1 and Γ+

coh.
During the entire simulation, the maximum interpenetration value is quite small, below
0.004% of the crack size and therefore can be considered as an acceptable error in KKT
conditions.

In the presence of friction, tangential tractions develop along the contacting surface
which govern the relative motion of the contacting surfaces. Figure 6c shows the average
normal and tangential tractions (T̄ n and T̄ t) developed along the surface for µ = 0.3 and
εt = 300E. T̄ n is expected to saturate to the applied normal stress σ∞yy while T̄ t should
saturate to the corresponding frictional stress µσ∞yy. It can be seen that both the normal
tangential tractions converge to the expected values (indicated by horizontal dashed lines
in Figure 6c). Figure 6b shows the space-time representation of the ratio ||T t||/||T n||
along the contacting surface. At the beginning, the contacting surface sticks i.e the ratio
between the tangential traction and the normal traction is less than the friction coefficient
µ. As the load increases, the traction ratio increases and leads to a transition from sticking
to slipping when t/T ∼ 0.3 (shown as a white line in Figure 6b and as a vertical dashed
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Figure 6: (a) Space-time diagram for the interpenetration value g for the case: µ = 0.3
and εn = εt = 300E. The interpenetration value is below 0.004% of the crack length
at any time. The crack position is normalized by half of the crack length and the time
is normalized by the total time (b) Space-time diagram for the ratio between ||T t|| and
||T n|| for the case: µ = 0.3 and εn = εt = 300E. The white line represents the moment
when ratio is equal to the friction coefficient µ = 0.3. The contact surfaces are in slip
state above the white line. (c) Evolution of the average normal traction and the average
tangential traction along the contacting surface. The dashed horizontal lines represents
the expected values of the normal traction and the tangential traction at the interface.

line in Figure 6c). Thus, at the time of initiation the two surfaces are slipping and continue
slipping while the crack propagates.

Next, we compare the crack propagation obtained with Finite Elements to the Spectral
Integral method. Figure 7a shows the crack tip position as a function of time for two
different values of µ. For µ = 0, the crack propagation as predicted by the Spectral
method starts earlier than with Finite Elements. The delay in the initiation is believed to
be linked to the necessary time for stress waves to travel through the Finite Element body.
Indeed, for the Spectral Integral method the applied far-field stress is instantaneously
impacting the interface whereas for Finite element simulations some time is required for
the applied stress to redistribute in the body and reach the interface. The delay between
the two initiation events is ∆t/T = 0.017 which is close to the traveling time of a stress
wave from the top boundary to the crack tip (a/cdT = 0.021, where a is one-half of the
height of the domain and cd is the speed of the dilatation wave).

In the presence of friction, the residual tractions act in the direction opposite to the
shearing direction which reduces the Mode II stress concentration at the crack-tip. In
order to initiate the propagation, the net stress must be higher than the critical stress
(σcrit), therefore appearing as a delay in the crack propagation. In Figure 7a, such an effect
of µ onto the crack propagation is demonstrated. As expected both FEM and Spectral
approaches predict a delay of the crack propagation onset if compared to friction-less cases.
Dynamical effects again lead to an observable delay between FE and Spectral predictions
which is equal to the minimum time required for stress waves to traverse the half the
bulk domain. The slight differences between analytic and predicted delays (0.017T and
0.024T ) is believed to result from high frequency oscillations present in the cohesive zone
which cause small fluctuations of the critical stresses close to the crack tip (more details
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Figure 7: (a) Crack tip positions as a function of time for various values of friction
coefficient. The dotted lines (blue, red) show the predictions of the Spectral Integral
method. The vertical dashed lines show the minimum time required for the stress waves
to reach crack tip from the top boundary. (b) Crack tip positions after shifting the
Spectral Integral results from Figure 7a by a/cdT .

in Appendix A). For a better comparison, the crack tip positions predicted from Spectral
Integral are shifted by the analytical delay a/cdT = 0.021T in Figure 7b: the predictions
from both methods are matching well except for some details in the propagation front
velocity.
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Figure 8: (a) Crack tip positions after setting to a common origin. The dotted lines show
the predictions of the Spectral Integral method. (b) Crack tip velocities as a function of
time for different friction coefficients.

Shifting the crack positions to a common origin allows to compare the respective crack
tip velocities in Figure 8a and Figure 8b. The cracks predicted with FE are slower than
their Spectral Integral counter-part as visible in both Figure 8a and Figure 8b. This
must be due to the slight damping employed to stabilize the explicit time integration
scheme. Nevertheless, setting aside the delay observed in the crack propagation and the
slightly lower velocity, the FE predictions match particularly well the expected evolution,
with first a strong acceleration before reaching a saturation to the steady-state Rayleigh
wave speed, which is the thermo-dynamically admissible limit for Mode II cracks (with
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Isotropic body Weak Interface Strong Interface
Elastic modulus, E 7 MPa Fracture energy, Gw

c 20 J/m2 Gs
c 200 J/m2

Poisson’s ratio, ν 0.35 Critical strength, σwc 0.04 MPa σsc 0.4 MPa
Density, ρ 1230 kg/m3 Critical opening, δwc 1× 10−3 m δsc 1× 10−3 m

βw 1 βs 1
κw 1 κs 1

Table 2: Material properties

cr ≈ 0.93cs for the considered material properties). The crack tip velocities predicted
from our approach show fluctuations (see Figure 8b) believed to be caused by slight
interpenetration remaining between surfaces (see Figure 6a) which is further aggravated by
the oscillations from dynamic insertion of cohesive elements. The issue of interpenetration
between surfaces can be addressed by means of the augmented Lagrangian method [21].
It would require several iterations within each time-step to enforce constraints perfectly
and thus would become computationally costly especially in a multiple-cracks setting.
Because the presented results are mainly satisfactory, it was decided not to augment the
contact resolution.

Notwithstanding the slight interpenetration of the surfaces, the results from our hy-
brid approach show an excellent match with Spectral Integral results. The capability of
the hybrid approach to enforce contact between cohesive surfaces as well as pre-existing
surfaces is very well demonstrated in the above section. However, as mentioned earlier,
the potential of this work is when large relative displacement may occur. While a Spec-
tral Integral approach can produce accurate results in this case, it requires a flat interface
by construction. Next section will put our method to the test with a cracking interface
following a sinusoidal curve, and with large relative displacement of crack lips.

4. Influence of contact enforcement methods on crack propagation

This section scrutinizes the influence that the contact algorithms have on the crack
propagation. The hybrid cohesive-contact numerical model is compared with the more
common approach where cohesive elements also resolve for contact penalty. The aim is to
demonstrate that the presented hybrid approach can palliate numerical issues appearing
when the critical displacement is larger than the characteristic mesh size, i.e. h ≤ δc.
Similarly to the previous section, we consider an infinite isotropic elastic body with a finite
size center-crack of length 2a. The crack propagation is limited along a cohesive interface
Γcoh which now follows a sinusoidal path as shown in Figure 9a. The material properties of
the elastic body are given in Table 2, and the cohesive properties are chosen such that the
sinusoidal interface is weaker than the planar interface (Gs

c = 10Gw
c , σ

s
c = 10σwc ) so as to

initiate crack propagation along the sinusoidal interface first. Again the system is quasi-
statically loaded: tensile loading (along y−axis) and shear loading (along x−axis). The
tensile load σ∞yy(t) is applied for a short duration and is then maintained throughout the
simulation. The shear load σ∞xy(t) is increased throughout the simulation (see Figure 9a).
The maximum shear load is chosen to be greater than the critical strength of the strong
interface, in order for the crack to reach and start propagating within the strong interface.
The loads are applied for a total duration T = 0.06 second as shown in the Figure 9a.
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Figure 9: (a) Schematic of a infinite body with a center-crack of length 2a. The body is
loaded quasi-statically under far-field tensile stress σ∞yy and shear stress σ∞xy as shown in
the figure. A sub-section of finite dimensions 6a × 2a is considered with a crack length
of a and a sinusoidal path for crack propagation. The cohesive interface Γcoh is made
up of a weak interface (sinusoidal profile) and a strong interface (planar profile). The
sinusoidal profile follows y = λ/2 sin(πx/λ) with a wavelength λ = a/2. (b) Space-time
representation of crack propagation. The blue region represents the broken part, the green
region represents the fracture process zone and the yellow part represents the unbroken
region

4.1. Numerical setup

Similar to Section 3.1, a finite size sub-section from an infinite body is considered
(see Figure 9a) and the displacements, corresponding to the far-field tensile and shear
loads, are applied along the boundary.

A linear TSL is employed to describe the cohesive behavior between the two interfaces.
The cohesive properties are chosen such that the critical displacement is the same for the
entire cohesive interfaces and satisfies δwc = δsc = lsp/10. The fracture process zone sizes
for the strong and weak interfaces are lsp = 6a/75 and lwp = 10lsp respectively. A structured
mesh consisting of bi-linear elements of uniform size h = δsc is used for both cases. In
the above problem, the potential contacting surface is emerging after opening of the weak
cohesive interface and therefore, is defined as:

Γdet = Γ+
weak ∪ Γ−weak (16)

The contact penalty εn is chosen identical for the standard and hybrid cohesive methods.
An explicit Newmark-β time integration scheme is again employed, with the critical time
step ∆tcrit and the damping force chosen as in previous section.

4.2. Comparison results

Figure 9b shows the space-time representation of the crack propagation for the stan-
dard contact formulation. As expected the weak interface starts damaging first (at
t/T = 0.03 the initiation of cohesive zone in the weak interface) when Mode-I load-
ing is dominant (see loading curve Figure 9a). The crack propagation starts much later
at t/T ∼ 0.31 and continues along the weak interface before arresting when reaching
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(a) (b)

Figure 10: Snapshots of stress σy and stress contours around the crack interface for (a)
Default contact formulation for cohesive elements. (b) Proposed contact formulation for
cohesive elements. The snapshots are at time t/T ∼ 0.5. The stresses are normalized by
the critical strength of the strong interface.

the strong interface (x/a = 2.44). The facets of the weak cohesive surface become in
contact at t/T ∼ 0.33, leading to the development of residual stresses behind the crack
tip. Figure 10 shows the snapshots of the stress field σy at t/T ∼ 0.5 as predicted by
the standard cohesive-element model and the hybrid cohesive-contact model. As men-
tioned earlier, when contact tractions are handled with the TSL, the contact detection is
fundamentally facet-to-facet. The interpenetration is therefore checked between pairs of
facets, which are associated during the setup of the simulation. A sliding over a distance
larger than h across a non-planar topology may lead to faulty situations where the two
facets are physically distant from each other, but would still be accounted as in contact
by computing a negative opening δn. Figure 11c and Figure 11d illustrate this issue, by
highlighting elements connected to Γ± which were initially facing each other and therefore
forming a contact pair. After a substantial sliding they wrongly interact with each other
through the cohesive TSL by computing a negative δn, and leading to the development
of spurious tangential forces. Therefore it becomes possible that contact tractions do not
coincide with the contact areas, which violates the Kuhn-Tucker complementary condi-
tions. This appears as a spurious shift in the stress field, visible in Figure 10a, whereas
the accurate treatment of contact made with the hybrid approach is consistent as pre-
sented in Figure 10b. This is also illustrated in Figure 11a and Figure 11b where the
stress σy is plotted along one of the contacting areas. The shaded zone indicates where
cohesive facets are in contact, which again reveals that positive tractions are computed
in non-contacting regions with the standard formulation. Conversely, stresses and the
contact zone do coincide when employing our hybrid approach.

The improper treatment of contact affects the residual stresses developed behind the
crack tip. Figure 12 shows the average residual stress σ̄ developed along the shear direc-
tion, which was integrated over the length of the weak interface:

σ̄ =

∫
Γ+
coh
σ(x, y).n(x, y).exdA

1.44a
, a ≤ x ≤ 2.44a (17)

where σ is the stress tensor field, and n is the vector normal to Γ+
coh. The cohesive-contact

numerical model predicts a larger residual stress if compared with the hybrid approach.
This difference in residual stresses will aggravate for rougher cohesive-contact surfaces, as
it is the case for fractured concrete [38]. Furthermore, the lower residual stress predicted
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Figure 12: Residual stresses developed due to the contact between the facets of the weak
cohesive interface.

with the hybrid model leads to a lesser shear resistance, leading in turn to the earlier
propagation of the crack tip as seen in Appendix E. The above comparison highlights the
importance of KKT conditions on the crack propagation. Unlike the contact enforcement
with the cohesive law, the KKT conditions are always satisfied for our hybrid approach
and thus ensures a more accurate prediction of the crack behavior.

5. Conclusion

In this work, we presented a hybrid cohesive-contact approach to study the simultane-
ous process of fracture and of contact between fracturing surfaces. An extrinsic cohesive
element strategy is employed to model the fracture and a penalty-based method is used
to enforce contact and frictional constraints. This was motivated by the necessity to de-
scribe fracture for sliding displacements greater than the characteristic mesh length. We
validated the proposed model by comparing with the Spectral Integral method, which is
known to deliver accurate results for a planar interface[34]. The crack kinematics (tip
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position and velocity) predicted with the two methods match quite well for surfaces with
friction and without friction, which validated our approach in the case of a flat crack path.

Then it was shown that the traditional approach of enforcing contact constraints
through cohesive elements suffers from several limitations: the facet-to-facet strategy,
with contacting facets being paired during simulation setup, is independent of any relative
displacement. In the case where free surfaces are non-planar and/or when the sliding
displacement is larger than the characteristic element size, it leads to inaccurate contact
areas and contact tractions. The proposed hybrid-cohesive-contact method adopts a node-
to-segment contact detection which allows a correct enforcement of contact constraints
even at large sliding displacements and does not restrict the size of the elements, since
contact pairs are regularly updated. This allows for an arbitrary refinement, e.g. with
cohesive elements becoming smaller than the critical displacement. Separating the contact
resolution from the calculation of cohesive forces allows to study complex crack networks,
self-interacting by interlocking and friction mechanisms.

This study confirms that a correct resolution of contact constraints is crucial to achieve
an accurate modeling of fracture mechanisms. It is believed that the proposed model will
open the path to a more reliable and physically-based study of crack path roughness, where
fine elements are required to model small scale topological features. Rough surfaces issued
from fractures possess height variations which can be at the µ-scale, e.g. for PMMA [39],
concrete [38] and many other materials [40]. Furthermore, materials such as concrete or
PMMA have critical displacements in the order ∼ 10-100 µm [41, 42, 34]. This would
require the cohesive elements to be smaller than the characteristic length and would justify
an usage of our hybrid approach. The presented method would also allow to study the
propagation of cracks along surfaces with interlocking protuberances such as aggregates
and re-bars in concrete [43, 44, 45] or for bio-inspired sutures [46, 47]. These are forming
an active field of research, since interlocking mechanisms introduce a resistance to crack
propagation which can increase the effective material strength.
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Appendix A. High frequency oscillations in extrinsic cohesive elements

In extrinsic approach, the stresses from the adjoining elements are interpolated onto
the quadrature points of facets and if the stress at any one of the quadrature points
exceeds the critical stress, a cohesive element is suddenly inserted. The initial opening δ
at each quadrature point is computed from the quadrature point stresses:

δq =
σc
σq
δc, where σq = stress at quadrature point q (A.1)

In the case where there is a stress variation along the cohesive interface, the cohesive
element will have varying openings and tractions.

These opening oscilations characteristic of extrinsic cohesive elements are shown after
the sudden insertion due to a homogeneous tensile load. The displacements are slowly
imposed along the upper and the lower boundaries of the body as shown in Figure A.13a,
and the cohesive elements are inserted dynamically along Γcoh when the critical stress is
reached. Figure A.13b and Figure A.13c shows a snapshot after the cohesive insertion
of the variation in damage and normal opening along Γcoh. The 2% variation proves
the presence of oscillations along the cohesive surface, which also alters the interface
tractions (see Figure A.13d). Furthermore, the oscillations in coheisve opening and thus
in coheisve tractions results in variation in the stress fields (around 2%) along the surface
(see Figure A.13e).
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Figure A.13: (a) An elastic body loaded quasi-statically in Mode-I under plain strain
conditions. The material parameters are : E, ρ and ν = 0. The boundaries of the body
are constrained along x− axis. Various quantities computed along the cohesive interface
(b) Variation in damage along the cohesive surface (c) Variation in normal opening (d)
Variation in displacements along y−axis of the nodes at Γcoh (e) Variation in stresses σyy
along the cohesive surface

Appendix B. Quasi-static loading

In this study, since the quasi-static behavior is simulated by employing an explicit
time-integration scheme therefore the inertial effects needs to be minimized. This is
achieved by maintaining the ratio of kinetic energy to internal energy below 5% during
the simulation. As the dominant response of a quasi-static analysis is the first fundamental
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mode, therefore the loads are applied for a total duration 2T where T is the time period
for the first natural frequency of the model and 2 is the security factor. Furthermore,
the loads are increased as smoothly as possible to avoid any sudden propagation of stress
wave due to instantaneous loading. To achieve this, the total loading σ(T ) is divided into
n time steps (n = T/∆tcrit) and load at ith time step is given by the polynomial function:

σ(ti) = σ(0) + (σ(T )− σ(0))t3i (10− 15ti + 6t2i ), ti = i∆tcrit (B.1)

As the Finite Element simulations are displacement controlled, therefore displacements
corresponding to σ(ti) are applied at time step ti along the boundaries. Figure B.14 shows
the internal and the kinetic energies computed for the problems described in Section 3
and Section 4. As can be observed the simulations can be considered as quasi-static as
the kinetic energies are very small compared to the internal energies.
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Figure B.14: (a) Internal energy Eint and Kinetic energy Ekin for problem described in
Section 3. The energies shown are predicted with Finite Element simulations for µ = 0.3
and εn = 300E. (b) Internal energy Eint and Kinetic energy Ekin shown for problem
described in Section 4.

Appendix C. Mixed Mode : Full displacement field

Using principle of superposition, the stress field for mixed-mode loading can be com-
puted as [28, 27, 48]:

σxx = Reφ
′ − yImφ

′′︸ ︷︷ ︸
Mode-I

+ 2Reψ
′ − yImψ

′′︸ ︷︷ ︸
Mode-II

(C.1)

σyy = Reφ
′
+ yImφ

′′
+ σ∞yy︸ ︷︷ ︸

Mode-I

+−yImψ
′′︸ ︷︷ ︸

Mode-II

(C.2)

σxy = −yReφ
′′︸ ︷︷ ︸

Mode-I

+−Imψ
′ − yReψ

′′
+ σ∞xy︸ ︷︷ ︸

Mode-II

(C.3)

where

φ
′
=

σ∞yyz√
z2 − a2

− σ∞yy, ψ
′
= −i

σ∞xyz√
z2 − a2

+ iσ∞xy (C.4)

φ
′′

= (
1√

z2 − a2
− z2

√
z2 − a2

)σ∞yy, ψ
′′

= −(
1√

z2 − a2
− z2

√
z2 − a2

)σ∞xyi (C.5)
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Thus, the displacement fields at point (z = x + iy) computed from the superposed
stress state for a plain strain condition can be expressed as [28, 27]:

2µux = (1− 2ν)Reφ− yImφ
′︸ ︷︷ ︸

Mode-I

+ 2(1− ν)Reψ − yImψ
′
+ 2yσ∞xy︸ ︷︷ ︸

Mode-II

(C.6)

2µuy = 2(1− ν)Imφ− yReφ
′
+ (1− ν)yσ∞yy︸ ︷︷ ︸

Mode-I

+ (1− 2ν)Imψ − yReψ
′︸ ︷︷ ︸

Mode-II

(C.7)

The above displacement fields are adjusted to generate interfacial stresses similar to the
Spectral integral method. By the construction of Spectral Integral method, under mixed-
mode loading the compressive stress along the interface are always constant and equal
to the applied compressive stress σ∞yy (remains unaffected by the shear loading) and the
shear stress along the interface are representative of pure Mode-II loading. Thus, the new
displacements field applied along the boundaries are given as:

2µux = 2(1− ν)Reψ − yImψ
′
+ 2yσ∞xy (C.8)

2µuy = (1− ν)yσ∞yy (C.9)

Appendix D. Effect of penalty parameter

The problem in Section 3 is tested with different values of penalty parameters: εn =
εt = 100E, 200E, 300E. Here we present the effect of penalty parameter on the interpene-
tration value, the average normal traction and the average tangential traction. Figure D.15
shows the effect of penalty parameter on the interpenetration value along the contacting
surface at t/T = 0.6. With no contact tractions, i.e. εn = 0, the interpenetration can
reach a high 0.08% of the crack size. As εn is increased, the interpenetration reduces
drastically (< 0.02%) and reaching as low as 0.004% of the crack size for εn = 200E and
εn = 300E. As mentioned earlier, the interpenetration value will tend to 0 as εn → ∞.
Therefore, a convergence in interpenetration gap is hardly expected. However, as g → 0,
the normal traction must tends towards the applied normal stress. Figure D.15c and
Figure D.15d shows the convergence for the normal and the tangential traction for the
problem in Section 3. For εn = εt = 300E, the normal and the tangential traction are
converged to the expected values.

Appendix E. Effect of residual stresses on crack propagation

Improper treatment of contact also affects the crack propagation. Here we demonstrate
the crack propagation for the problem described in Section 4. Figure E.16 shows the
position of crack and cohesive zone tips for the cohesive-contact numerical model and the
hybrid cohesive-contact model presented in this paper. The tip positions are shown only
for the strong interface (for x/a ≥ 2.44).
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