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Everybody has a capacity for a happy life.
All these talks about how difficult times we live in,
that’s just a clever way to justify fear and laziness.

— Lev Landau
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— Boris Vian
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Abstract

The beginning of the 215 century was marked by the advent of disruptive technologies,
which ushered an era of groundbreaking advances in fundamental sciences, carried by the
great pace at which computational capabilities spread and evolved. But the new century
also came with its fair share of challenges. Anthropogenic climate change brought issues
of sustainability in the production chemicals and food. The global improvement of life
expectancy and diagnostic methods also saw the increased incidence of illnesses for which
age is a risk factor, such as cancer and dementia.

These challenges share a connection to living matter, and understanding and improving
biology are two goals of systems biology and metabolic engineering. These fields provide
tools and methods that are suited to respond to the new requirements of chemical
production, food availability, and health and medicine through the understanding and
engineering of living cells. Engineered microorganisms are already used in the production
of both commodity and specialty chemicals, genetically improved crops are a possible
answer to the ever-increasing food demand, and new medical treatments rely on an
improved understanding and control of cellular idiosyncrasies.

Efficient engineering requires mathematical models. Over the last decades, the increasing
availability of full genome sequences and their translation into models of metabolism
enabled the emergence of a wide gamut of methods to describe the inner workings of the
cells we study. In particular, models of metabolism and gene expression (ME-models) were
the first formulation to account simultaneously for cell metabolism, and the expression
mechanisms translating genetic information into proteins.

In this thesis, I present a new, and improved, formulation for ME-models, and apply it to
elucidate the emergence of non-trivial elements of cell physiology. This new ME-model
formulation, ETFL, allows the integration of more experimental data than the previous
state of the art, while being more efficient than previously published equivalent methods.
Then, I show ETFL elucidates complex cellular behaviors. In particular, I demonstrate
the preferred consumption of specific carbohydrate by E. coli, or diauxie, is the result of an
optimal program of the cell towards growth, under the constraints of proteome limitation.
I show that ETFL can be adapted to elucidate the dynamics of the proteome in the
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Abstract

cell and the transition from one physiology to another. I also describe the construction
of a ME-model of a eukaryotic organism, S. cerevisiae, and how the model produced
can account for the emergence of overflow metabolism, or the Crabtree effect. Finally, I
build a model of human colon cancer, and present a formulation for ETFL that allows to
account for regulatory interactions in ME-models. I use the model to reproduce the known
mechanisms of action of the drug metformin, and show it has a dual, dose-dependent
action. I also show how such models can be used to predict potential mechanisms of
resistance against treatment. In a second part of this thesis, I present open source software
pieces I developed and contributed to, to promote open science.

This work outlines the potential for ME-models in systems biology, and shows how to
use them to elucidate complex cellular physiologies. The methods presented in this work
also show how these new and improved ME-models constitute a major step towards
systematic, integrated whole-cell modeling.

Keywords

Metabolism, Gene expression, Genome-scale models, ME-models, Data integration,
Constraint-based modeling, Dynamic models, Gene regulation, Drug mechanisms
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Résumé

Le tournant du 21°™€ siecle fut marqué par ’avenement de technologies disruptives &
lorigine de progres considérables dans les sciences fondamentales, et ce au rythme de
I’expansion et de ’évolution de la puissance de calcul & notre disposition. Mais le nouveau
siecle n’est pas arrivé seul : en son sillage, de nouvelles problématiques. Les changements
climatiques dus a 'Homme questionnent la durabilité de nos procédés chimiques et
agricoles. L’amélioration généralisée de ’espérance de vie et des méthodes de diagnostic
sont également la cause d’'une augmentation de l'incidence de maladies liées & 1’age,
comme différents types de démences et cancers.

Ces problématiques sont liées par leur rapport au vivant. Mieux comprendre la biolo-
gie pour 'améliorer, sont deux objectifs de la biologie des systemes et de 'ingénierie
métabolique. Ces domaines de la science nous procurent des outils pour répondre aux
nouvelles attentes dans les domaines de la chimie industrielle, ’agriculture, et la santé.
L’utilisation d’organismes modifiés fait maintenant partie de nombreux procédés chi-
miques, plusieurs plants génétiquement améliorés sont en développement pour répondre a
la demande croissante en denrées alimentaires, et de nombreuses nouvelles thérapies sont
tributaires d’'une compréhension et d’un contréle avancés de cellules spécifiques.

Une bonne ingénierie requiert une bonne modélisation mathématique. Au cours des
derniéres décennies, le nombre croissant de séquences génétiques et de modeles dérivés a
notre disposition ont alimenté un vaste écosysteme de méthodes décrivant le fonction-
nement intime des cellules vivantes. Parmi celles-ci, les modeles du métabolisme et de
I'expression génétique (ME-modeles) furent les premiers & formaliser les liens entre le
métabolisme d’une cellule et 'expression de ses genes.

Dans cette these, je présente une formulation nouvelle, améliorée des ME-modeles, et
I'utilise afin d’expliquer I’émergence d’éléments non-triviaux de la physiologie cellulaire.
Cette nouvelle formulation, ETFL, facilite 'intégration de plus de données expérimentales
que le précédent état de I'art, tout en étant plus efficace. Ensuite, je montre que ETFL
explique certains comportements cellulaires complexes. En particulier, je montre que la
consommation préférentielle de certains sucres, ou diauxie, par E. coli, est la conséquence
d’un programme optimal de croissance de la cellule sous contrainte d’un protéome limité. Je
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Résumé

décris également la construction d’'un ME-modeéle pour 'organisme eukaryote S. cerevisiae,
et comment ledit modele explique I'émergence d’un métabolisme excédentaire, aussi appelé
effet Crabtree. Enfin, je construis un modele de cellule humaine du cancer du célon, et
présente une extension de la formulation de ETFL permettant de modéliser certains effets
dus & la régulation cellulaire. A ’aide de ce modele, je reproduis l'effet de la metformine,
médicament préconisé dans le traitement du cancer du célon, et démontre un effet double
suivant son dosage. Je montre également comment utiliser ce type de modele pour prévoir
de potentiels mécanismes de résistance thérapeutique. Dans une seconde partie de ma
these, je présente plusieurs logiciels que j’ai congus, ou au développement desquels j’ai
participé. Ces logiciels sont libres, et leur code source est accessible a tous, afin de soutenir
une science plus accessible.

Ce travail met en exergue le potentiel des ME-modeles dans le domaine de la biologie des
systemes, et explique leur utilisation afin de comprendre certains aspects non triviaux de
la physiologie cellulaire. Les méthodes présentées dans cet ouvrage montrent également
que cette formulation nouvelle et améliorée des ME-modeles constituent un pas décisif
vers la construction de modeles cellulaires plus complets et exhaustifs.

Mots-clefs

Métabolisme, Expression génétique, Modeles a I’échelle du génome, ME-modeles, Intégration
de données, Modélisation sous contraintes, Modeles dynamiques, Regulation génétique,
Mécanisme d’action
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Introduction

In this first chapter, I introduce the context in which the research I will present is
inscribed. I first explain what systems biology is useful for, and the variety of problems
that it tackles. Since this thesis is at the boundary between several fields of science, |
also introduce important terms and basic language related to the different disciplines
connected to my research. Finally, I present the motivations of my research, and the
structure of this thesis.

An informal prologue

Systems biology, bioengineering, synthetic biology, computational biology, metabolic
engineering: all these terms describe different flavors with which to consider a key
scientific problem: understanding and engineering life. Far from Homeric chimeras or
Crichton’s Jurassic Park, understanding and engineering life is a significant challenge
of the 215 century. Understanding the human metabolism, and elucidating abnormal
processes giving rise to dementia or cancer for instance, are relying heavily on our ability
to study these systems with modern tools and methods. Sustainable food production is
also an important topic for the science of today and tomorrow, and engineering crops for
better resistance to the changing climate will be necessary to alleviate climate-induced
economic stress of populations. Finally, the transition from petrochemical to biochemical
sourcing of both commodity and specialty chemicals is of paramount importance to
minimize the anthropogenic impact on the planet and mitigate the influence of oil and
gas geopolitics.

The common anchor between all these topics is their relation to living matter, and
cells in particular. Human bodies contain tens of trillions of specialized cells, plants
are also multicellular organisms, and microorganisms have long been used for their
biochemical capacities, for instance in the fermentation of wine or cheese. A discipline
to understand and manipulate cellular behavior is metabolic engineering, a fairly recent
field whose inception is conventionally attributed to Prof. James E Bailey in 1991 (1) 2.
Metabolic engineering consists in altering the functions of a cell to fit a desired objective.

2Which technically makes it a millenial science.



Introduction

This objective can be the death of metastatic cells, the resistance to a plant virus, or
the production of a biochemical of interest. Metabolic engineering uses mathematical
models to understand and predict the response of cells to different perturbations. These
mathematical models benefit from computational formulations, that help represent in
stlico what happens in vivo. The variety of tools and methods developed in that regard
span the field of computational biology. Computational biology helps produce engineering
designs that can be implemented in living systems through synthetic biology. Synthetic
biology also includes the development of tools to engineer these living systems. Because
of the intricate nature of biology, successful engineering requires an inclusive view of
interactions and mechanisms between the cellular elements and the cellular environment.
This holistic view is a defining characteristic of systems biology.

In this thesis, I develop some new, and some improved computational tools for metabolic
engineering. In the majority of this work, I use methods from mathematical optimization
to model cells at the biochemical level. I model physical, chemical, and biological
phenomena with equations and inequalities, and show the resulting models allow to (i)
integrate experimental data to characterize observed cellular physiologies; (ii) elucidate
non-measurable cellular states underlying observed cellular physiologies; (iii) predict,
whenever experimental data are not available, cellular responses that are empirically
validated.

A side note: So are we talking about GMOs? Yes.

When talking to distant relatives, gathering with friends of friends, or meeting new people,
it is common to be asked the question “So what is your PhD about?”. An amusing social
experiment I have performed was to either answer something along the lines of “I build
models to help make biofuels and better understand cancer”, or “I build models to improve
GMOs”. As you can imagine, one perspective tended to be judged better than the other,
and yet both are technically correct. I think this reveals the important lack of context
given to non-specialists with respect to the subject of genetic modification.

High Andean cultures (Aymaras and Quechuas) already had bioengineers 5000 years ago;
the selective breeding performed by their farmers allowed them to acclimate crops and
livestock for a wide diversity of altitudes, up to 4500m (2). In the 19" century, Gregor
Mendel’s records on heredity in pea plants established the first foundations of modern
genetics and traits selection (3). The manipulation of the genome of our surrounding
living entities has been a part of the human culture since long ago. What changes here
is, rather than obtaining the desired changes through a reproduction/selection scheme,
modern genome editing techniques allow to directly perform in vitro the desired genome
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modification.

A full review of genome editing technologies and their impact is outside the scope of this
dissertation, and good reviews are available elsewhere (4, 5). However, I believe it is
our duty as scientists/engineers to allow the non-specialized population to access factual
information about this important controversial technology.

Industrial biotechnology is probably the field where the use of GMOs is the most common.
Examples include the industrial bio-production of artemisinic acid, an anti-malarial drug
precursor (6), and the production of isoprenoids — chemical compounds of interest for
biofuels, bioplastics, and material science (7, 8, 9, 10, 11). Other fields, such as health
and agriculture, present a context in which the use of genome editing can be problematic.
Genome editing of human cells is one of the most promising technology to treat hereditary
diseases, or even HIV (12). Recently, a gene therapy for age-related macular degeneration
(13, 14) has been approved for clinical trials. However, gene editing in humans also poses
the problem of artificial trait selection (5), and unintended side effects, including the
induction of cancer (15). GMO pest resistant crops reduce the use of pesticides and show
increased productivity (4, 16). They also out-compete non-GMO crops and reduce the
income of potentially smaller, independent producers.

This is but an extremely limited list of the potential applications and drawbacks of
the gene editing technologies, which might help in mundane discussions to go beyond
bipartisanship and arguments from authority.

Field-specific context and definitions

The quantitative description of biological systems requires mathematical formulations, and
their complexity calls for the use of computational methods (17). Metabolic engineering,
computational biology, and systems biology in general, find themselves at the intersection
of numerous scientific fields. In this section, I will provide a short digest of several
concepts from different disciplines that play a role in this dissertation.

The central dogma of molecular biology

The central dogma of molecular biology is a way to conceptualize the flow of biological
information.

Living matter stores information in biopolymers, long molecules made of several of
different monomers. All modern living organisms store their genetic information, or

3
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genotype, in deoxyribonucleic acid (DNA), a biopolymer composed of nucleotides. There
are four types of nucleotides (A,T,C, and G), and their sequence provides a quaternary
encoding of the genetic information.

DNA is read (transcribed) by an enzyme (RNA polymerase) into ribonucleic acid (RNA)
strands. RNA is also a biopolymer of nucleotides (A, U, C and G), and carries the
information to synthesize proteins.

Ribosomes read (translate) triplets of nucleotides into a sequence of amino acids, called a
polypeptide. Most organisms use a basis of 21 amino acids®. Because of the physico-
chemistry of amino acids, the polypeptides fold and combine each other into proteins.
Proteins can be composed of one or several polypeptides (complexes), and the proper
folding of the protein will determine its function. The protein profile of a cell is called its
proteome, and can be described in terms of concentrations of proteins.

Proteins are critical components to the functioning of cell, and their folding and spatial
configuration directly impacts cell physiology. For instance, changing the spatial configu-
ration of proteins is a key regulation mechanism in cells, used to activate or deactivate
certain parts of the metabolism. This dependency between shape and activity is also used
in anti-cancer treatments and disease resistance mechanisms in a wide range of living
organisms. On the other hand, misfolded proteins are involved in the onset Alzheimer’s
disease, and prion diseases such as Creutzfeld-Jakob disease. Proteins can have a catalytic
role, acting as facilitators of biochemical reactions, but also a structural role (for example
in sickle cell anemia or bacterial biofilms), or an information-transmission role (signaling
cascades, histocompatibility system for recognizing foreign elements in the body). The
proteins that catalyze reactions are called enzymes, and control the biotransformations
inside the cells, or their metabolism. The metabolism of a cell is responsible for how it
grows and evolves in its environment.

The chain of information from the DNA nucleotides to the synthesis of proteins constitutes
the gene expression mechanisms of the cell.

Finally, the observable traits of the cell, understood as a product of the information flow
from the DNA to the enzymes controlling metabolism, is called the phenotype of the cell.

The processes of DNA, RNA, and protein synthesis can also be altered by small molecules
or even RNA and proteins themselves. Proteins can also be altered after they are
synthesized, by post-translational modifications (PTMs). These include the binding of
small molecules on specific sites that will change the shape and function of the protein.

All these mechanisms in the cell require energy to be performed. An important energy
carrier is adenosine triphosphate (ATP), which is made of a nucleoside A (seen in DNA and
RNA) and three phosphate groups. By shedding phosphate groups, ATP can communicate

3Some organisms expand it to 23.
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energy to reactions, to increase the thermodynamic drive of biotransformations. In the
living systems we study here, ATP is generated through the metabolism of carbohydrates
(sugars). By oxidizing (burning) carbon compounds, the cell creates a gradient of potential,
which energizes the synthesis of ATP. This is called the electron transport chain, and
constitutes the source of energy for the living systems we study. Organisms that use
molecular oxygen (O2) to oxidize their carbon sources are called aerobic organisms, and
use the respiration pathway converting O9 into carbon dioxide (COg2). Some organisms
do not need oxygen. For example, S. cerevisiae can oxidize its carbon source using other
means, at the cost of a reduced efficiency, producing ethanol and CO9 as a byproduct.
Some organisms can also use minerals, and even uranium, to generate energy (18, 19).

Even this summarized view gives a glimpse of how complex, multilevel interactions are
important when considering biological problems, and why systems biology came to be.

Constrained optimization

Optimization is a discipline focused on using mathematical tools to find out how a process
can be improved to the limit, as well as the study of these limits. Optimization relies
heavily on mathematical formulations of the studied process, and in particular on the
design of an objective function which translates the desired traits into mathematical
properties. Constrained optimization, in particular, defines a problem using variables, or
the states of the system, and constraints, or the relationships between variables in the
system.

An important fraction of the methods I developed in this work are are focused on a special
type of constrained optimization: mixed-integer linear programming. Linear programming
is a subtype of constrained optimization, where the constraints and objective function
can be described as linear (but for real affine) functions of the variables. A typical linear
programming problem can be cast in the following manner:

minixmize fle
subject to a;—x +b; =0, i€ [1..N], (1)
cjx+d;, <0, je[l.M].

Here, a;,b;,cj,d;, f are real vectors of the dimension of x, our variable. f carries the
weights that define preferred components of = for the objective function. For instance,
this optimization problem can be used to describe the cost of production of finished goods,
where = defines the input and outputs materials, the equalities the non-accumulation of
materials, and the inequalities a cap on the material supply. In this context f defines the
costs associated to each material.
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Mixed integer linear programs are simply linear programs with variables taking integer
values, instead of real values. For example, baking a chocolate fondant requires eggs,
but one cannot consider putting 5/3' of an egg in a dough. Integer variables provide
a solution subject to the additional constraint that these variables must be integer. Of
course, it might mean that the new solution is suboptimal compared to its continuous
counterpart (the cake will be costlier, or less good depending on the objective function).
Integer variables are also useful to model binary conditions: in our culinary example, if
guest allergens are taken as additional variables, we can model the use of only gluten-free

flour if one or more guests are gluten-intolerant.

Solving these problems requires a solver, a piece of specialized software that implements
specially-designed solving methods. The use of integer variables requires specialized
solvers, and comes at a cost in solving speed.

There also exist non-linear solvers, which accept diverse forms of problems that do not
present a linear form. Unfortunately, the size of the biological systems we consider in this
research is a limiting factor in the use of non-linear solvers, as their complexity may result in
impractical long solving times. A part of this thesis discusses the (piecewise-)linearization
of a non-linear problem, and how it improves solving speed.

Modeling the cell at the level of metabolism and expression

Genome-scale models

The end of the 20th century saw the advent of whole-genome sequencing. One of the
main consequences of the new genomic era was the sudden availability of a wealth of
genetic information for different organisms. The genome of the ubiquitous bacterium
E. coli was sequenced in 1997 (20), that of S. cerevisiae (baker’s yeast) in 1996 (21), and
the Human Genome Project sequenced the first human genome in 2001 (22). The large
amount of data available from sequencing promoted the development of new methods to

model cells at the genome scale.

In particular, genome-scale models of metabolism (GEMs) that capture different levels
of the biology within the cell were developed from the sequencing of organisms. The
genetic sequence informs which enzymes, and therefore which reactions, are occurring in
the cell. From this information is reconstructed a metabolic network, which describes
the biotransformations happening in the cell, in terms of metabolites and reactions.
Additionally, the genetic information links most of the reactions to their related genes
using gene-protein-reaction association rules (GPRs). GPRs summarize the essentiality of
genes in the occurrence of a reaction. A gene may be essential for a reaction to happen, if
they code for a peptide that is a part of the only enzyme catalyzing the reaction. A gene
may also not be essential to the reaction, if several enzymes (isoenzymes) can catalyze
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the reaction. GEMs are also able to describe the growth and energy requirements of the
cell, as well as the localization of metabolites and reactions within the different biological
compartments (23), such as cytosol or mitochondria.

Genome-scale models have been reconstructed for more than 6000 organisms (24, 25, 26),
and are the main component to a wealth of techniques to elucidate metabolism in the
cell.

Constraint-based models of metabolism

GEMs hold a wealth of information that can be used to model the metabolism of cells.
In particular, flux balance analysis (FBA) is a constraint-based method programming
that aims at modeling the fluxes of the biochemical reactions in a system at steady state
(27, 28). FBA uses the information from GEMs on the reactions known to happen in a
cell, and which metabolite they consume or produce, and formulates a linear programming
problem. In this formalism, the variables of the FBA problem will be the net fluxes
through each reaction, and the constraints will be that the algebraic sum of the producing
and consuming reactions of the internal metabolites is equal to zero. These constraints
originate from the steady state assumption, and capture the non-accumulation of metabolic
intermediates in the cell. Additional constraints can be set for reactions whose flux is
known, either through monitoring of the growth medium, or by advanced techniques
such as 13C metabolic flux analysis (}*C MFA). Being a linear programming formulation,
FBA also assumes an objective function governs the cell. A typical FBA problem has the
following form:

maxqi}mize o
subject to  STwv =0, (2)
v<v<7T.

S is the stoichiometric matrix of the model, with each rows representing metabolites,
columns reactions, and each element the stoichiometric coefficient of a metabolite in a
reaction. v is the variable for which we are solving, and represents the reaction fluxes.
v and T represent boundaries on the reactions rates. Finally, f defines the objective
function. For instance, it has been shown the growth rates values predicted by FBA in
an F. coli model that adopts growth maximization as its objective match experimentally
measured growth rates (27, 29). Other objective functions that have been considered
include the minimization of ATP usage, or the minimization of the sum of fluxes (30), as
these objectives are associated to a reduced energy consumption by the cell.

It is important to note that the assumption that the cell physiology follows an objective is
reliant on the idea that the cell adopted this specific objective under selective pressure (31,
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32). Increased growth rate and reduced energy consumption, are competitive advantages
that favor the reproduction of single-celled organisms. However, these assumptions do
not always translate easily to more complex systems, such as multicellular organisms,
host-pathogen interaction systems, engineered microorganisms, or tumor cells; alternative
objective functions should be considered depending on the problem studied, as detailed
by Zomorrodi et al. (30).

Towards more biochemistry in the constraints

Due to its simplicity of execution, FBA has been widely adopted in metabolic engineering,
synthetic biology, and systems biology. Multiple methods have also been developed
to supplement it with more constraints, capturing physical, chemical, and biological
dependencies in the modeled organisms (33, 34). These additional constraints can both
improve the models ability to describe cell physiology, and allow to integrate more data
in models.

One noteworthy example is thermodynamics-based flux analysis (TFA) (35, 36), which
aims at adding thermodynamics constraints to enforce thermodynamically consistent
reaction directionalities. The method uses a mixed-integer formulation to enforce the
coupling between Gibbs free energy of a reaction (its thermodynamic drive), and the sign
of its net flux, or directionality. A reaction with a negative Gibbs free energy will have
a positive net flux, and vice versa. Because the TFA formulation introduces metabolic
concentrations as variables in the model, it also allows to integrate measurements of the
concentration of metabolites (metabolomic data), if it is available. TFA is explained
briefly in the methods of Chapter 1, and Chapter 5.

Another direction in which constraint-based models of metabolism have evolved is the
modeling of the biological layers underlying metabolism. In particular, resource balance
models add a total protein capacity constraint, as formulated in Beg et al. (37), and
were adapted to integrate protein concentration data (proteomics) by Sanchez et al. (38).
This addition allows to model the competition for a new resource: since a cell has a
limited size, it can only contain a limited amount of proteins — the proteome space is
limited. Modeling proteome limitation allows to model new physiologies, such as overflow
metabolism or diauxie. Overflow metabolism in S. cerevisiae is discussed extensively in
Chapter 3, and diauxie in F. coli in Chapter 2.

Even below the proteome layer, modeling the whole expression mechanisms of the cell
has garnered a lot of attention, giving rise to models of metabolism and expression
(ME-models) (39, 40). ME-Models, and their more recent refinement by Lloyd et al.
(41) were the first effort to integrate from the bottom-up the totality of the expression
mechanisms in the cell, from DNA replication to mRNA and protein synthesis, at the
genome scale. Since these models introduce variables to represent protein and RNA
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abundances, they also allow direct integration of proteomic and transcriptomic data.
Transcriptomic data are usually experimentally easier to obtain than proteomics, and
ME-models are a valuable tool in this respect, since their integrated formulation helps
elucidating genotype-phenotype relationships. However, the macromolecules (DNA, RNA,
proteins) introduce a non-linear term in the constraints of the optimization problem,
making it more challenging to solve. This topic is discussed in detail in Chapter 1.

Formulating together TFA and ME-models approaches holds the promise of a strong,
more holistic framework for multi-omics integration, as well as a robust method to explore
genotype-phenotype relationships. However, the combination of mixed-integer problems,
the non-linearity of ME-models, and the sheer size of the obtained models, make the joint
formulation a challenging endeavor. This will be the main topic of this dissertation.

Motivations

The fast rate of emergence of metabolic engineering applications, from health and food
to biochemicals, emphasizes the necessity to develop new models and methods to fuel the
fast leaps forwards the field must achieve to address the challenges of the 21"

(17, 42).

century

The first main theme of this thesis is to improve the current state of the art on models
of metabolism and expression, and provide new, more efficient methods to understand
and engineer cells in various contexts. In particular, providing new methods for data
integration is of paramount importance to improve both the interpretation of experimental
data and the accuracy of models. These models also pave the way to cell-specific modeling,
which is a keystone part of both industrial biotech and personalized medicine, and even
constitute a significant step towards whole-cell models, an overarching aim of systems
biology.

A second main theme in this work is to use the developed method to reproduce non-trivial
phenotypes, in agreement with experimental data, and with a minimal set of assumptions.
Moreover, understanding the emergence of genetic control on the cell metabolism as a
product of the evolutionary pressure on a system will be key to deciphering complex cellular
behavior, and ultimately engineering them. Specific examples include the interpretation of
overflow metabolism as an optimal behavior under resource constraints, or the emergence
of robust cellular control strategies to ensure growth optimality.

Both these themes further demonstrate the utility and predictive power of models. Many
variables of the model are not measurable in real systems or in real time, and the model
can fill the lack of data and provide insights on how these hidden variables behave.
The study of the feasible inner states of the system will also help implement successful
engineering strategies, either to improve the productivity of a biochemical production
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process, or the design of drug strategies against diseases.

Structure of the thesis
This thesis comprises two parts and seven chapters.

The first part focuses on the development of a new ME-model formulation that includes
thermodynamics, and its applications in several organisms. New constraint-based methods
are also detailed to simulate complex phenotypes.

Chapter 1 details a new MILP-based formulation of ME-models, called ETFL. The
formulation is then applied to an E. coli model, and used to simulate proteome-limited
growth. Several types of constraints are introduced, both in the general formulation and
for more specific cases.

Chapter 2 presents a dynamic formulation of cellular growth in a batch reactor, using
ETFL. The formulation is able to test and confirm our hypothesis that the phenomenon
of diauxie is explained at the proteome level, and account for different cell fates depending
on initial conditions. The formulation also introduces the use of Chebyshev centering for
finding a robust representative of the ME-model solution space.

Chapter 3 shows the the appearance of overflow metabolism and ethanol production in
aerobic cultures of S. cerevisiae, or Crabtree effect, is a consequence of optimal proteome-
limited growth. For this purpose, ETFL was used to produce the first ME-models of
yeast, and in general, of a eukaryotic organism.

Chapter 4 demonstrates the further uses of the ETFL framework to study cell-drug
interactions and signaling cascades. In particular, a ME-model generated from a tissue-
specific reduced model of a human colon cancer cell line is developed, and the impact of
the antidiabetic drug metformin on tumor growth is reproduced. We also show how such
a framework can be used to infer the emergence of resistance mechanisms to the drug,
and highlight two different growth-limiting actions of metformin that occur at different
doses.

The second part of the thesis consists on short chapters presenting software that I
developed and contributed to. All this software is openly accessible on online repositories.

Chapter 5 describes a an implementation of TFA in Python that I used in all the studies
described in this work.

Chapter 6 describes an algorithm to systematically reduce genome scale models around
subsystems of interest, based on pyTFA.

Chapter 7 describes a software package to generate and analyse symbolic kinetic models.

10
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These models can be automatically imported from pyTFA, and the package automatically
generates the expressions to perform, for instance, metabolic control analysis, full time
integration, or sensitivity analysis.

Finally, I conclude this dissertation with summarizing remarks and future perspectives of
this work.
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We mathematicans are all a bit crazy.
— Lev Landau

La science est surtout

une prise de conscience de plus en plus compléte
de ce qui peut et doit étre découvert.

— Boris Vian

A major part of the research I present in this thesis is related to better modeling cell
systems, using optimization. ME-models have been out for some time, and I even had the
chance to work for some time prior to my PhD with Joshua Lerman, who with Edward
O’Brien authored the first papers on ME-models. Yet, the adoption of ME-models is
not as widespread as that of genome-scale models of metabolism. Three factors explain
the limited adoption of ME-models as compared to metabolic models: (i) the overall
increased complexity of the models; (ii) their increased solving times; and (iii) the lack
of integration to mainstream pipelines. Item (i) is quite difficult to tackle, since in the
end there are only so many ways to describe the gene expression machinery. (ii) is also a
problem that I could not solve alone, as developing my own solver was well beyond the
scope of my thesis. (iii), however, was an issue within my technical reach.

Hence, to two initial motivations for which I developed this new ME-model formulation
were to make ME-models more accessible, and integrate them with other strong frame-
works, in particular thermodynamics-based flux analysis, a trademark technique from my



laboratory. Thus ETFL was born. By developing ETFL, I managed to deconvolute the
complicated formulation of models of gene expression and metabolism into smaller, simpler
elements, with a direct connection to the biochemistry of the cell. Additionally, the
transformation of the formulation we propose, using scaling methods and mixed-integer
programming, results in an improvement in the time needed to solve ME-models. To
some extent, ETFL managed to tackle the three points mentioned above, which I believe
will help make ME-models more accessible and transparent.

I applied ETFL to E. coli, S. cerevisiae, and even to a context-specific human model.
Along the way, I also adapted the formulation to model more than simply gene expression
and metabolism, devising a dynamic extension of ETFL and formulating methods to
model cell signaling interactions. Because of this, I like to think of ETFL as a new and
improved version of ME-models.

16
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Chapter 1. The ETFL formulation allows multi-omics integration in
thermodynamics-compliant metabolism and expression models

Pierre Salvy!, Vassily Hatzimanikatis!",

1 Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland

* Corresponding author: vassily.hatzimanikatis@epfl.ch

This first chapter details a new way of formulating genome-scale models of metabolism
and expression (ME-Models) for organisms. Indeed, efficiently accounting for mRNAs
and enzyme expression in genome-scale metabolic models has been challenging. Here,
I introduce a model formulation that simulates thermodynamic-compliant fluxes and
enzyme and mRNA concentration levels, that is more efficient than the previous state of
the art, and requires less specialized solving methods.

The chapter is adapted from P. Salvy and V. Hatzimanikatis, “The etfl formulation allows
multi-omics integration in thermodynamics-compliant metabolism and expression models,”
Nature Communications, vol. 11, no. 1, pp. 1-17, 2020. Vassily Hatzimanikatis and I
worked on the formulation, problem scaling, and designed the studies to perform. I
wrote all the code to implement the formulation, and the scripts to perform the studies.
I curated the data to make the models, made the figures, and set up the online code
repository. The latter includes a documentation I wrote, a continuous integration system

to verify the code portability, and several tutorials to reproduce the results.

All the code and documentation is available under the APACHE 2 license at:
https://github.com/EPFL-LCSB/etfl
https://gitlab.com/EPFL-LCSB/etfl

The content of this chapter is partially reproduced from the original article, with
the authorization from the publisher following the guidelines at https://www.nature.
com/nature-research/reprints-and-permissions/permissions-requests as found
on June 8th, 2020. In particular, it is specified: “Authors have the right to reuse their
article’s Version of Record, in whole or in part, in their own thesis. Additionally, they
may reproduce and make available their thesis, including Springer Nature content, as
required by their awarding academic institution.”
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1.1. Introduction

1.1 Introduction

Metabolic modeling, which helps making sense of the metabolism in a biological network,
is an important tool for engineering biocatalysts, with applications in biofuels, drug
design, microbial community analysis, and personalized medicine. Model accuracy is
instrumental to the success of these applications through an efficient engineering of the
host organisms. However, incorporating expression information into metabolic networks
poses a significant challenge, and most current models do not even attempt it—effectively
excluding an important network in biological systems that can drastically affect results.
In metabolic engineering, strains are modified and controlled at the genome level through
the transcriptome, and the effects are observed at the fluxome level, which accounts
for the range of metabolic reactions in an organism. In between these two levels is the
proteome that performs the biochemical transformations according to the genetic template,
though it is this middle step in the process that cannot yet be robustly and efficiently
incorporated into models of metabolic systems. Because of the complex interplay between
these different layers of control, understanding expression and incorporating this into
future models is key for improving metabolic engineering.

Classically, model-based strain design has relied on tools that use the DNA sequence of
an organism and homology with well-studied organisms to infer a network of metabolic
reactions that happen inside a cell of that organism, which is called a genome-scale
model (GEM). With current technologies and tools like metagenome sequencing (44),
it is possible to generate GEMs for hundreds of different species at a time. GEMs
are particularly amenable to flux balance analysis (FBA), which models metabolism
at the fluxome level using linear optimization techniques. However, plain FBA has
been known to predict biochemically unrealistic solutions like free high-flux cycles or
thermodynamically infeasible pathways. It also scales growth linearly with carbon uptake,
which is not observed at high-uptake fluxes. FBA also fails to capture growth-dependent
and protein-level effects, such as enzyme saturation or proteome-related limitations.
Hence, several efforts have been made to supplement FBA with additional constraints
to improve its predictive power. For example, thermodynamics-based flux analysis
(TFA) (35, 36) uses thermodynamic constraints to enforce thermodynamically consistent
reaction directionalities and to allow the integration of metabolomics. Resource balance
models add a total proteome capacity constraint, as formulated in Beg et al. (37), to
model the proteome-related limitations of the cell, as enzymes have to compete for the
constrained total amount of cellular proteins. Frameworks like GECKO (38) further
build on this resource balance idea and include flux constraints based on proteomics,
such as v < Vipar = keat [E] as well as a constraint on the total proteome mass. Finally,
metabolomics and expression models (ME-models) (39, 40) were the first to integrate the
entirety of the expression mechanisms of the cell from the bottom-up, including mRNA
and protein synthesis.

However, simultaneously accounting for all of these constraints is challenging because
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of the formulation of each method, as TFA models involve integer variables that yield a
mixed-integer linear program (MILP), whereas ME-models involve bilinear constraints
that require special optimization procedures and a high-precision (quad-precision) solver
(41, 45, 46). Mixing these methods would require the inclusion of integers in ME-models,
which is not straightforward and would lead to more complex mixed-integer non-linear
programs (MINLP) that are computationally intensive to solve. Additionally, the amount
of RNA and protein, the RNA and protein expression rates, and their stabilities are all
growth dependent (47), and including accurate representations of these variables leads to
even more complex, non-linear models. Meanwhile, although resource balance models
such as GECKO could theoretically be integrated into TFA or ME-models in the current
formulations, to the best of our knowledge, no link with TFA or ME-models has been
proposed. Therefore, the metabolic engineering community needs a common formulation
for these methodologies to build the most accurate models.

We investigated the development of such a framework and propose herein a unified
formulation for Expression and Thermodynamics-enabled FLux models (ETFL) that can
account for the above integration issues. To our knowledge, ETFL is the first formulation
that can account at the same time for expression, thermodynamics, and growth-dependant
variables. It is also the first to do so using common double-precision MILP solvers. In
ETFL, we address the compatibility of the formulations by expressing the growth rate
variable in bilinear products as a piece-wise constant function. We also address the issue
of solver precision by performing a scaling that reduces the range of orders of magnitude
of the variables. This reformulation allows us to transform the problem into a MILP,
which we can solve efficiently using common open source or commercial solvers. The
resulting model is then effectively able to directly integrate thermodynamic constraints
as well as expression constraints and growth-dependent parameters. In this model,
metabolite, enzyme, and mRNA concentration levels are explicitly defined to enable
fast and easy omics integration: metabolites through their log-concentration variables in
thermodynamics constraints, and enzymes and mRNA through their total concentration
variables in the expression constraint. Finally, we show an application of this framework
to a well characterized E. colimodel, iJO1366 (48).

Important assumptions are made to derive this formulation. The two most notables
ones are (i) we can neglect the dilution rate of metabolites, and (ii) the steady state
approximation holds. While these assumptions are commonly made in FBA, we discuss
them in details in the Supplementary Note 3, where we also assess their validity in a
context where macromolecules are taken into account. Briefly, these assumptions hold
because (i) the dilution rate of the metabolites is negligible in front of their synthesis and
consumption rates, and (ii) the dynamics of metabolism (including expression) are faster
than that of the environment of the cell.
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1.2 Results and Discussion

1.2.1 Formulation of the expression problem

ETFL is an ME-model implementation because it proposes a formulation that both
accounts for metabolism and expression constraints. ME-models do not aim to replace
kinetic models, but to account for the expression cost of making the enzymes that are
necessary to carry a biochemical flux. In ETFL, this includes the cost of peptide and
mRNA synthesis, as well as the competition for ribosomes and RNA polymerase in a
limited proteome.

To transparently account for expression mechanisms and increase the predictive power of
our models, we needed to derive the equations that could bridge the biochemistry with the
optimization problem that is ETFL. Here we present a summary of these equations, and
detail their derivation in the section Materials and Methods. We derived these equations
using assumptions similar to those used in the formulation of the GECKO (38) and
ME-model (39, 40, 41).

This formulation relies on derivations rooted in the biological mechanism of expression
and depends on a number of biochemical parameters related to the cell. In particular, the
mass balances of the macromolecules are expressed using concentration variables. Each
mass balance will yield an equation where the concentrations of the macromolecules will
be variables, thus effectively formulating a new constraint of the model and allowing us
to calculate concentration values by solving the model.

We can write the quasi-steady state mass balance for macromolecules as follows:

o —pdes @, =0, (1.1)

. . : . deg .
where * represents the indexing of the macromolecule, v3>" is the synthesis term, vy ® is

7

the degradation term, and p * G is the dilution term. The asterisk “ * 7 signifies the
product of two variables. The detail of the derivation is available in the Materials and

Methods.

Using this formalism, for each macromolecule we can define and link together a synthesis
flux, a degradation flux, and the macromolecule’s concentration. Knowing enzyme
concentrations allows us to bound the variables representing metabolic reaction fluxes
with their maximum catalytic rate according to the classical equation:

v < keat - E, (1.2)
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where kcat is the catalytic rate constant of the enzyme F with respect to flux v. The

7

dot product “ - 7 signifies here a product between a parameter value and a variable.
In this same fashion, we can also constrain the synthesis flux for the peptides, which
are then assembled into enzymes. Peptide synthesis is simply a metabolic reaction that
consumes energy (under the form of GTP) and charged tRNAs and produces a peptide
and uncharged tRNAs. The catalytic rate of the reaction is proportional to the maximum
ribosomal catalytic rate divided by the length of the peptide to be synthesized. The same
can be said about mRNA synthesis, which uses nucleoside triphosphates and is catalyzed
by the RNA polymerase. The constraints are explained in the Materials and Methods, in
which we detail a de novo derivation of the constraint set that describe the expression

problem.

The part of the matrix that has been added to the FBA problem to account for expression
has been termed the expression problem (EP). Although this initial formulation is bilinear,
we detail in the Materials and Methods section how we cast it to a MILP.

Biomass reaction synthesis and mass balance In FBA, the biomass reaction
is an artificial, lumped reaction that represents the consumption of metabolites in
proportion to the cell growth rate. This consumption reflects nucleoside triphosphate
(NTP) requirements for mRNAs, amino acid requirements for proteins, lipid requirements
for the cell wall, or metal ion needs. Biomass reaction inclusiveness depends on the
modeling assumptions made during the model curation process and can vary significantly
among models of the same species. The consumed amount of each metabolite is usually
estimated experimentally by measuring the the amounts of these metabolites in dried
cell mass. Because the stoichiometric ratios of metabolites in the biomass reaction are
fixed, the abundance of metabolites is the same for all growth rates. This simplifying
assumption, necessary in FBA, goes against experimental evidence. Neidhardt and Curtis
(47) report for instance that mRNA and protein mass ratios in the cell change with
growth rate.

Because ETFL has explicit expression requirements through transcription, translation,
and tRNA-charging reactions, it is possible to account for varying ratios of NTPs and
amino acids as the growth rate changes, an effect that is captured in experiments (47).
In this context, the approximation made in FBA can be written using ETFL terms:

Vaaj, pibiomass . gy ay pThATEINE, (1.3)
VYNTP, N € {T;C; G}, MR R Y vt (1.4)
JjeT
iomass ~ t j A !
A= A Y Uarh, VR (1.5)
jeT
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biomass

where v represents the biomass equation, and npbiemass is the participation of

metabolite m; in the biomass reaction. UETAQ/II is the growth-associated ATP maintenance
that is not linked to expression mechanisms. This includes, for example, phosphorylation
requirements (if not modeled in ETFL), polysaccharide synthesis, cofactor regeneration in
the biomass reaction, unmodeled organelle functions, and other ATP-hydrolyzing events

in the cell®.

For each metabolite participating in the biomass reaction, its associated expression is
obtained by equating the mass balance constraints in ETFL and in FBA. Hence, to avoid
accounting for the expression requirements twice (once through the biomass equation,
once through the EP), it is necessary to remove the participation of these metabolites
linked to expression from the biomass reaction.

Summary of the formulation Here we show the formulation of the constraints of
ETFL. For clarity, we use different indexing sets, each referring to a specific object in the
model. The definition of these, as well as that of the variables and the parameters, are
detailed in Table 1.1. The formulation of the following equations and an explanation of
the specific cases for RNA polymerase and ribosomes is discussed in details in the section
Materials and Methods.

4This paragraph and Eq. 1.5 have been added to clarify the original text from the published article,
which did not explicitly mention non-expression related growth-associated ATP
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Table 1.1. Indices, variables, and parameters used in the formulation.

Index letter type Refers to Set or unit
i index Metabolite T
aa; index Amino acid A
J index Reaction/Flux/Enzyme J
l index Gene/Peptide/mRNA L
s index Binary coefficient for growth discretization S ={0..[logy N1}
u index Binary coefficient for interpolation discretization U=1{0..N}
7 variable  Growth rate h—!
vji variable  j¥ net positive/negative biochemical flux mmol.gDW 1. h~!
E; variable  Concentration of the j** enzyme mmol.gDW !
F variable  Concentration of the I mRNA mmol.gDW !
P, variable  Concentration of the RNA polymerase assigned to the mmol.gDW !
1" mRNA
R; variable  Concentration of the ribosome assigned to the I** pep- mmol.gDW !
tide
o, variable  Concentration of the i'® uncharged tRNA mmol.gDW !
T, variable  Concentration of the i"* charged tRNA mmol.gDW !
’UltSl variable ~ Translation rate of the I*" gene mmol.gDW ! h~!
vfer variable  Transcription rate of the [*" gene mmol.gDW 1. h~!
e variable ~ Assembly rate of the j* enzyme mmol.gDW 1. h~1
pdcs variable  Degradation rate of the j** enzyme mmol.gDW 1. h~!
v?eg variable  Degradation rate of the I** mRNA mmol.gDW 1. h~!
vgg? reing variable  Charging rate of the i** tRNA mmol.gDW 1 h~!
kgaf parameter Forward/backward catalytic rate constant of the j* h—!
net biochemical flux
kéeg parameter Degradation rate constant of the j%* enzyme h!
kéeg parameter Degradation rate constant of the I mRNA h—!
771j parameter  Stoichiometry of the I** peptide in the j** enzyme (0]
Noas parameter ~Stoichiometry of the i amino acid in the [ peptide 0]
Ly parameter Length in amino acids (aa) of the I** peptide aa
Ly parameter Length in nucleotides (nt) of the I* mRNA b
L parameter Ribosome footprint size on mRNA, in nucleotides b
) parameter Ribosome occupancy [0]
0 parameter RNA polymerase occupancy [0]
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Metabolite mass balance

S-v=0 (FBA)
Catalytic constraints
+
]+ kgat E;j<0 (FCJ)
; k;gét <0 (Bcj)
Ezxpression mass balance
TS =0 (PB)
JjeJ
UfiNa, — UaRt =0 (RBirNaA,)
VI — 1% sk By =0 (EB;)
oier — deg —pxF =0 (MB;)
VGl Y, - vf“ —nxT, =0 (TBY,,)
lel
VRENE N il o — e T, =0 (TBZ.,)
el
oRRess 08 % DNA =0 (DBpNa)
Degradation fluxes
d
jeg kgieg ;=0 (ED;)
0 — Koy Fy =0 (MDy)
Expression constraints
LRNAP
e Cztm P <0 (TR1y)
l
tsl kjggi):
’Ul 7,28 1 S 0 (TR21>
l
Lnt
R — Lit F <0 (EX))
rib
Ly
P — DNA <0 (CNy)
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Total capacity

> Ri+ Ry — B, =0 (TC2)
leL
ZPZ + Pr — Ernap =0 (TC1)
lel
RF — (1 — p) Erib =0 (RR)
Pr — (1 —7) Ernap =0 (PR)
Macromolecule fractions
D OMW;-Ej =Y A PM(p) =0 (ICkny)
JjeT ueU
> MW - F =3 Ay R™(u) =0 (ICwmRrNA)
lel uel
MWpna - DNA — D™(u) =0 (ICpNa)
DNA Synthesis
. DNAPol3
ypmihests _ po;iprNAPolS <0 (DP)

l

Recovering the FBA problem In the ETFL formulation, enzyme synthesis is driven
by the coupling between FBA and EP through the catalytic constraints. To carry flux,
the cell needs to produce enzymes whose production will also use the metabolic resources
of the cell. If allocation constraints are enforced, the amount of protein and mRNA
synthesized must meet predefined mass ratios for the problem to be feasible. Hence, the
metabolic requirement terms for the expression machinery (amino acids and NTP) have
been removed from the biomass reaction and are accounted for in the tRNA charging
and transcription reactions. Thus, the FBA solutions can be recovered from the ETFL
formulation by the following routine:

Setting V7, kE 400,

cat —

I chargi .
Constraining Vaa;, vga, o & = rjgbiomass .y,

L ter;  _, Upi ss
Constraining VNTP;, >, VNI, = IRASEE - i,

If applicable, relaxing the allocation constraints,

If applicable, relaxing the thermodynamic coupling constraints.
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1.2. Results and Discussion

Table 1.2. Nomenclature of the models used in the study of E. coli iJO1366. EFL stands for Expression
and FLuxes, ETFL for Expression, Thermodynamics, and FLuxes, and the v- prefix indicates the inclusion of
growth-dependent parameters (see the section Discretization of mRNA and enzyme content)

growth-independent parameters | growth-dependent parameters

(-) thermodynamics EFL vEFL

(+) thermodynamics ETFL vETFL

1.2.2 Application: E. coli genome-scale model iJO1366

1JO366 (48) is a well-curated and well-studied GEM of E. colithat is closely related to
the GEM used in developing both ME-models iOL1650-ME (40) and 1JL1678b-ME (41).
Additionally, this model has been extensively applied in the literature and is aligned with
a variety of datasets that can be used for data integration. We wanted to subject the
model to classical studies that would highlight the power of ETFL, particularly as pertains
to proteome-limited growth, macromolecule concentration variability analysis, and gene
knock-out studies. We also wanted to assess the sensitivity of the model with respect to
the presence of thermodynamic constraints as well as growth-dependent parameters.

Thus, we first experimented with four different models using ETFL with or without ther-
modynamic constraints and growth-dependent protein/RNA /DNA allocation following
Table 2 as reported by Neidhardt et al. (47). The following Table 1.2 details the nomen-
clature used to refer to these different models. The features of the most constrained model
containing both thermodynamic and growth-dependent parameters, vETFL, are detailed
in Table 1.3. These four models were optimized for maximal growth at increasing glucose
uptake rates to assess their behavior with respect to excess substrate, which will show
the non-linearity of the relationship between growth and glucose uptake at high uptake
rates. A plateau in the growth rate was expected, which indicates a proteome-limited
phenotype that cannot be observed with FBA. We also subsequently subject vETFL to
a variability analysis and gene essentiality analysis, which will respectively show us the
flexibility of the model and its accuracy in predicting gene knock-out behavior.

Growth rate prediction To study the behavior of the model at different carbon
uptake rates, we simulated growth on a minimal medium with only glucose as a carbon
source, unlimited oxygen, and some essential inorganic compounds. This would allow
us to show that at a higher carbon uptake, the model would predict a limited growth —

unlike FBA that would predict an unlimited linear increase.

Figure 1.15 shows the predicted growth rate of the different (v)E(T)FL models described
in Table 1.2 with respect to the glucose uptake of the cell. As expected and in contrast to
current FBA models, all four models plateau after a certain uptake rate, which indicates

5This figure has been updated with the latest models for this thesis. As such, it differs from the figure
that was published in the original article.
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Table 1.3. Properties of the vVETFL model generated from iJO1366.

Growth upper bound z 3.5h1
Number of bins N 128
Resolution £ 0.0273h~"
Number of constraints 42992
Number of variables 33923
Number of species 3367
— Metabolites 1809
— Enzymes 563
— Peptides 475
— mRNA 475
— rRNA 3
— tRNA 21x2
Number of reactions 5157
— Metabolic 1542
— Transport 740
— Exchange flux 324
— Transcription 475
— Translation 475
— Complexation 563
— Degradation 1038
Number of metabolites AfG/" 1558
Number of reactions A, G ° 1786
Percent of metabolites AfG/O 86.1%
Percent of reactions ATGIO 78.3%
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a proteome-limited phenotype due to the limited capacity of the cells to make more
enzymes to metabolize the glucose. As discussed for the ME-models (40) and GECKO
(38) formulations, within the context of models accounting for protein usage, this is
caused by (i) the protein burden necessary to metabolize higher fluxes; (ii) the increased
demand in protein synthesis at higher growth rates; and (iii) for the models with allocation
constraints, the allowed protein and RNA mass ratio. We can see that models featuring
protein, RNA, and DNA allocation constraints (VE|T|FL) consistently predict a lower
growth rate than models without allocation constraints. This is expected, as the data
we input requires additional proteins and mRNA to account for non-metabolism-related
macromolecules. Models featuring thermodynamic constraints ([v|ETFL) also predict
a lower growth rate, consistent with the fact that thermodynamic constrain the model
to valid solutions whose flux is in the subspace of the FBA feasible space. The most
constrained model (VETFL) consequently has the lowest growth rate at any glucose
uptake. This is in accordance with published TFA results that eliminated biologically
infeasible flux profiles yielding non-realistic higher growth rates (35).

We summarize the constraint matrix of the EP of vETFL in Supplementary Table 1,
where each line represents a type of constraint and each column represents a type of
variable. The blocks of the matrix that are non-zero are colored, and these blocks directly
reflect the involvement of the constrained variables.

Modeling missing enzymes Although we initially focused on including only enzymes
for which we had all the necessary information (catalytic rate and peptide constitution),
we wanted to assess the robustness of our model when the missing enzymes were modeled
as well as check our model’s sensitivity to changes in the catalytic rate constants. Thus,
we additionally built three more models, based on vETFL, with the following properties:
(i) all the missing enzymes were estimated by averaging the properties of the known
enzymes based on the curation for the vVETFL 1JO1366 (333 amino acids long, average
k‘g;t = 172s71); (ii) all the enzymes (including the missing enzymes) but the ribosome,
RNA polymerase, and ATP synthase were assumed to have an average catalytic rate
constant kit = 172s7!; and, for comparison purposes, (iii) all the known enzymes of
vETFL except for the ribosome, RNA polymerase, and ATP synthase were assumed to
have an average catalytic rate constant of kit = 172571, For clarity, we will refer to
these models as (i) the model with estimated enzymes; (ii) the all-average model; and (iii)
the partial-average model. The ribosome, RNA polymerase, and ATP synthase were not
modified, as their catalytic rates directly and strongly affect the growth of the organism.
Any drastic change in these would make changes related to other enzymes negligible in

comparison.

Figure 1.1-b shows a comparison of the growth prediction for the model with estimated
enzymes (purple), all-average model(dark blue), and partial-average (light blue) models
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designed to account for the missing enzymes®. For a better comparison, we also reproduce
the VETFL results in orange on the same graph. An important feature to observ in the
figure is the maximal uptake rate, or the rightmost point to each curve. Depending on
the model, this point is higher or lower on the glucose uptake axis. The partial-average
model (light blue) shows a higher predicted maximal glucose uptake than all the other
models. Conversely, the all-average model (dark blue) shows a lower predicted maximal
glucose uptake than all the other models. The original vVETFL model (orange), and the
vETFL model with estimated enzymes (purple) show a stopping point in between these
two models with less information. This implies that enzymes with an influence on the
maximal glucose uptake are accurately accounted for in in the original vETFL model.
Additionally, since the vVETFL model (orange) has a lower maximal glucose uptake than
an equivalent model with average enzyme concentrations (the partial-average model, light
blue), then we can deduce that some limiting enzymes in the glucose metabolism have a
keat parameter lower than the average value of kit = 1725~ L. Similarly, the full-partial
model (dark blue) being more limited than the vETFL model (orange) hints that more
enzyme information could reduce further the maximal glucose uptake the model can
allow. The vETFL model with estimated enzymes (purple) shows an earlier plateau
than VETFL (orange), its less constrained counterpart. Finally, we observe that the
differences between these four models only appear at glucose uptake rates higher than
~9 mmolglc.DW_l.h_l, when the problem switches from being stoichiometry-limited to
proteome-limited. Thus, this experiment illustrates the robustness of the formulation in
predicting growth-limited phenotypes, but also the importance of well-curated catalytic
rate constants for modeling organisms grown in proteome-limited regimens.

These results demonstrate the capability of ETFL to predict different phenotypes depend-
ing on growth rate. ETFL is also amenable to hypothesis testing, as evidenced using
the models that estimate the missing enzymes. In particular, we showed with ETFL
that an uptake increase does not yield a proportional growth rate increase as with FBA
and that ETFL provides a maximal uptake rate that is unmodeled in FBA, thus more
effectively modeling growth-dependent biomass yield in E. coli. This allows for more
realistic predictions for phenotypes that are limited by the expression capabilities of the
cell as well as captures the variability of the biomass composition in different growth
regimens.

Variability analysis It is also possible to subject the model to a range of variability
analyses. These are routinely used in FBA to assess the flexibility of the system and in
TFA to find the ranges of allowed metabolite concentrations. In particular, we studied
the number of bidirectional reactions in the system. Bidirectional reactions are reactions
whose net flux can be either positive or negative. They are an indicator of the flexibility
of the system. One of the main results of TFA was to replace ad-hoc assumptions on

5The following analysis has been adapted from the original text to match the current models and
figure.
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Fig. 1.1. Growth rate with respect to glucose uptake for differently constrained models in the ETFL framework.
Legend in the same order as the height of the right-most point of each curve in each figure. a. Growth rate
predictions using the EFL, ETFL, vEFL, vETFL models (dark blue, light blue, purple, orange); b. Growth
rate predictions accounting for missing enzymes using VETFL (orange) and models (i)-(iii) (purple, light
blue, dark blue) representing different initial enzyme assumptions, with kca: values obtained from vETFL or
keas = 17257, and with/without inferred enzymes. Lines have transparency to better see overlaps.

the directionality of the reactions by thermodynamically-based directionality. We show
that adding enzymatic constraints with ETFL also reduces the number of bidirectional
reactions. The initial iJO1366 formulation with ad-hoc directionality assumptions shows
112 bidirectional reactions in FBA, under the constraint of a specific growth rate of
0.79h~! (TFA prediction). Once TVA is performed on the themodynamics-enabled model
of 1JO1366, the number of bidirectional reactions drops to 88. Finally, after the addition
of catalytic constraints, this number is reduced to 49 in the vETFL model.

We can extend the use of variability analyses in ETFL to explore the allowed proteome
and transcriptome. For example, we measured the admissible extreme concentrations
of each mRNA in aerobic growth conditions as described in McCloskey et al. (49) by
performing a variability analysis on the mRNA concentration variables. Fig. 1.2 depicts
the admissible peptide concentration upper and lower bounds, sorted by average, for
vETFL with a glucose uptake set to 12.5mmol.gDW~!1.h~!, which yields a proteome-
limited phenotype, according to our results in Fig 1.1a. It is important to note that
all peptides with a non-zero minimal concentration (most of the left of the figure) are,
by definition, essential peptides: These are always present at this uptake rate and are
hence necessary for the cell to grow at an optimum growth rate. The same study can be
performed for enzyme concentrations or even metabolite log-concentrations for models
with thermodynamics. This type of study is useful for comparing how the model performs
in relation to actual proteomics, transcriptomics, or metabolomics data. The method for
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Fig. 1.2. Concentration variability of peptide species, sorted by average peptide concentration (darker disc).
Lower bounds that were 0 were set to the accuracy of the solver, 107°. The horizontal line on the left side of
the figure represents ribosomal peptides, which is narrow due to their instrumental role in making the tightly
constrained amount of protein in the cell at a given growth rate. The vertical line in the middle represents the
dummy peptide, which accounts for unmodeled peptides (non-metabolic proteins and enzymes with missing
information) and therefore is used by the solver as a slack.

running these other types of variability analyses is exactly the same — only the variables
subject to the variability analysis are changed.

A specific usage of a variability analysis is the study of the allowed proteome (resp.
transcriptome) that is done by performing a variability analysis on the enzyme (mRNA)
concentration variables. This type of study can, for instance, be compared with transcrip-
tomics to check if the expression profile of an engineered strain corresponds to what is
expected in its corresponding model. A way to visualize the average allowed proteome
(transcriptome) is to use the average value of the variability of each enzyme (mRNA)
concentration as a feasible observation’. This observation is then plotted on a finite
area, which can be done using the online software Proteomaps(50, 51). This method and
software are often used by biologists to represent protein abundances in the cell, and using

the data from ETFL, we can generate similar comparative graphs that can help biologists

7Although there are no guarantees this point is part of the solution space, it remains a reasonable
approximation of the average cell phenotype. If needed, we can verify it satisfies the constraints of the
problem by imposing the concentration constraints and solving the obtained model. In case of infeasibility,
a relaxation problem can easily be formulated to find the ¢1-closest feasible point, in an approach similar
to the MOXA methods presented in the section Adaptation of FBA-based methods to ETFL
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analyze the variability in the different concentration variables using a visualization they

are familiar with.

Fig. 1.3 is an example of such a representation, graphed using the mRNA concentrations
corresponding to the solution represented by the dark dots in Fig 1.2 as an input. In
this figure, mRNAs are clustered using KEGG Gene Ontology (GO) annotations. GO
annotations form a tree describing the physiological role of genes, ranging from the least
specific (e.g. general metabolism) to most specific (e.g. araH gene). The area of each
(sub)cluster is proportional to the relative abundance of each (sub)group of mRNAs.

We used the mean of the variability analysis as the observation rather than a single
optimal solution because the optimality principle in LP only guarantees a unique global
optimum value and not a unique optimal solution. Moreover, solver heuristics give sparse
and extreme results (corners of the explored simplex), which do not accurately represent
the full extent of the considered solution space.

Essentiality analysis The ETFL framework can also analyze the essentiality of specific
genes by performing single gene knockouts. The growth of models with knocked-out
genes can then be compared to experimental data to assess the quality of the model as a

validation®.

We performed a gene essentiality analysis using in ETFL and compared it to the results
reported in the publication of iJO1366 by Orth et al. (48). We use the Matthew’s
correlation coefficient (MCC) as a metric for the quality of the prediction, which is
preferred over accuracy as it is not sensitive to the imbalance between the number of
essential genes and non-essential genes. The MCC reads like a usual correlation coefficient,
with 1 being a perfect correlation, -1 perfect anti-correlation, and 0 no correlation. We
used the essentiality data and conventions given in the supplementary material of Orth
et al.(48), as explained in Fig. 1.4-a and Fig. 1.4-b. The results are presented in Fig.
1.4-c,1.4-d, and 1.4-e, respectively for vETFL alone, vETFL supplemented by gene-protein
association rules, and vETFL with estimated enzymes.

The vETFL model contains 563 enzymes requiring 475 gene expressions. For these genes,
ETFL can perform a gene knockout analysis by setting their transcription rate to 0. The
genes that do not participate in enzyme synthesis cannot be represented in such a manner,

8This section and Fig. 1.4 have been adapted to reflect the state of the newest models, and as such
differs from the text and figure published in the published article. A major change is that subfigures
Fig. 1.4-c now shows the results limited to the genes that express a peptide that participates in the
composition of an enzyme. For the other genes, since the peptides they express do not participate in
enzyme compositions (mostly because of missing data), their knock-out by setting the translation rate to
0 would not impact growth and they would be classified as non-essential. Subfigure Fig. 1.4-d captures the
predictions of the model when the GPR is used for these genes that do not participate in the composition
of any enzyme. Subfigure Fig. 1.4-e captures the predictions of the model when missing enzymes are
estimated using the method detailed in the previous section.
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Fig. 1.4. Confusion matrices for gene essentiality studies. a. Conventions from Orth et al. (48) for gene
essentiality. TN is True Negative. FN is False Negative. FP is False Positive. TP is True Positive. The color
shading represents how good the classification is in the experimental class. Perfect classification should have a
strict red first diagonal, as shown on this example. b. Gene essentiality prediction for the FBA model iJO1366,
yielding a Matthew's correlation coefficient (MCC) of 0.69. c. Gene essentiality prediction for the genes
expressed in the VETFL model, yielding a MCC of 0.65. d. Gene essentiality prediction for the vVETFL model,
where genes without enzyme assignment were tested using gene to protein to reaction (GPR) associations
from the iJO1366 model, yielding a MCC of 0.61. e. Gene essentiality prediction for the vVETFL model with
estimated enzymes with all ke, = 172h7", yielding a MCC of 0.54.
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and are thus excluded from the analysis. On this reduced set of genes, ETFL performs
essentially as well as 1JO1366 (Fig. 1.4-b and 1.4-c), with a MCC of 0.65 (versus 0.69
for 1JO1366), which indicates a good correlation between model results and experiments.
Because of the strong difference in the size of the compared sets, direct comparison of
particular elements of the confusion matrix is difficult. We thus produced two additional
models, which account for the missing genes not represented in the expression problem of
vETFL.

The first model uses gene-protein association rules (GPRs) to perform the knoock-out on
genes not represented in vVETFL. GPRs are also what FBA-based essentiality analysis
uses. With this model, we represent the essentiality predictions for 1366 genes (Fig. 1.4-d).
The Matthew’s correlation coefficient, at 0.61, is slightly lower than that of the previous
model. Compared to iJO1366, we observe that this model predicts fewer false positives
(experimentally essential genes predicted as non-essential), which means critical processes
of the cell survival are better described. However, it also predicts more false negatives
(experimentally non-essential genes predicted as essential). This means that redundant
parts of the metabolism are lacking information and can be improved.

The second model was obtained by inferring enzymes from the GPRs, and setting their
catalytic activities to an average value of 172s~'. We are able to represent the essentiality
predictions of 1288 genes in this model (Fig. 1.4-e). The MCC yielded is worse (0.54)
than that of the previous models, mostly because of the high false positive rate (genes
predicted essential while being experimentally essential). However, the number of false
negatives (genes predicted essential while being experimentally non-essential) is lower
than in any other models. These results suggest that essential parts of the metabolisms
are catalyzed by enzymes that differ from the average enzyme used for the inference, likely
with a catalytic rate lower than 172s~!. Finally, changing the k.. value used for enzyme
inference will alter these numbers, with lower values (less efficient enzymes) increasing
the number of predicted essential genes, and higher values increasing the number of
non-essential genes. This an be understood as, at a given flux capacity, an enzyme with
a lower catalytic rate constant will need to be more abundant, and thus mobilize more
resources. Given the time needed to perform a gene essentiality analysis for a thousand
of genes (in the order of a day), we did not venture to generate a ROC curve.

A detailed interpretation of the differences between gene knock-out in ETFL and FBA is
discussed in Materials and Methods. The Supplementary Data provides more insights on
the mismatched between ETFL essentiality results and iJO1366 essentiality results, and
indeed shows that 87% of the mismatches are attributed to reactions without enzymatic
data®. A significant fraction of mismatches (54%) come from the subsystems for the
biosynthesis of lipids and cell envelope elements.

9These results are from the published article and were kept as such because they are still qualitatively
valid
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These results indicate that ETFL captures gene essentiality in well-characterized parts of
metabolism. We also showed that an hybrid essentiality analysis using GPRs can be used
without a significant degradation of the performance. Finally, inferring enzymes from
GPRs is another way to account for genes without enzyme data, and the catalytic rate
constant used for the inference is an important factor determining the essentiality of the
gene.

Sampling Sampling the feasible solution space of FBA is a common way to study
solution robustness and variability. Since there are often multiple FBA solutions at the
optimal objective value, representative solutions are often sought, and sampling is one way
to obtain them. However, because ETFL contains integer variables, it is not compatible
with traditional sampling methods in its current formulation. It is possible, though, to
make the model convex, and hence amenable to sampling, by fixing the integers to their
values at a given growth rate and, if applicable, TFA directionality. This will block the flux
directions as well as the growth-dependent parameters if TFA is performed. The resulting
model is then solely linear, and sampling can be performed with traditional techniques,
such as artificially centered hit and run (ACHR) (52), gpSampler (53), or optGpSampler
(54). Once it has converged, a sampling should provide a better representation of the
center of the solution space than the mean of the variability analysis.

1.2.3 Performance

For robustly reporting solution times of ETFL, we logged solving times each time a model
was optimized during the redaction of this article. In that respect, some observations
are the result of iterated optimizations, others from different optimization problems. In
particular, variability and gene essentiality analyses require thousands of optimizations.
We aggregated the solution times report the corresponding histograms, by model type, in
Fig. 1.5. We measured the following metrics of the performance data: (i) arithmetic mean,
(ii) geometric mean, and (iii) median. Although the distributions are not log-normal, it
is common to report the geometric mean as a measure of the center of the distribution
for comparison with other software (55, 56) , as it is more robust to outliers than the
arithmetic mean and more sensitive to unevenness than the median.

Using well-established MILP solvers (CPLEX (57), Gurobi (58)), we report a geometric
mean solution time of 7.47 s for vETFL, with 95% of the problems solved in less than
100 s on the test hardware. This is 3 orders of magnitude better than the reported
solution time for O’Brien et al. (40) (6 hours — 2 x 10* s) and between 1 and 2 orders of
magnitude better than the reported solution time for Lloyd et al. using cobraME (41)
(10 min — 6 x 10% s). It is worth noting that these vVETFL optimizations also include
thermodynamics constraints, which are absent of the other two formulations.
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Table 1.4. Characteristic completion run times for several types of studies in the VETFL study of iJO1366

Study type (VETFL) vETFL characteristic run time (h)
Growth curve (Fig. 1.1) 1
Enzyme VA 1.5
mRNA VA 2-3
Gene essentiality 24
50-points dETFL (see Adaptation of 1

FBA-based methods to ETFL)

It is also important to state that although cobraME has an improved solution time over
the original ME-model formulation, the formulation trades inequalities in the expression
problem for equalities, and hence disregards a whole (non-growth optimal) part of the
solution space that might contain physiological phenotypes. In particular, catalytic
constraints become equalities, and the flux carried by reactions is set to be proportional
to the amount of available enzyme instead of being upper-bounded by it. This gives
less flexibility to the cell and prevents the representation of transient phenotypes. As
an example, a cell that has been growing on a carbon source (e.g. glucose) will have
a proteome suited to utilize this carbon source. However, once exhausted, it will need
to reallocate its proteome to a new carbon source (e.g. lactose). In this transient state,
some enzymes related to the first carbon source metabolism (e.g. glucose transporters)
will carry no flux. In this case, cobraME would predict no flux, and also no enzyme
concentration. In constrast, ETFL would allow for non-utilized enzymes and avoids such
trade-offs, which is also crucial for accurately integrating proteomics data.

Such performance enhancements allow studies that would have been excessively time
consuming using prior ME-model formulations. We show in Table 1.4 a list of typical
completion times for common studies thats require multiple optimizations to be carried
out.

Finally, ETFL relies on solver-specific MILP algorithms and heuristics, which also means
that great variability in performances can be observed depending on the solver parameters.
We provide tuned presets for different tasks (gene knock-out, variability analysis, growth
maximization) with the package, and recommend that users run their own solver tuning
if long run times are observed. We witnessed an up to 10X increase in performance using

such tuning.

1.2.4 Adaptation of FBA-based methods to ETFL

The ETFL formulation is amenable to further kinds of analyses. Leveraging both the
explicit expression constraints and the MILP nature of the problem, we present several
possibilities for future studies using ETFL:
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Growth-dependent parameters It has been reported that several other parameters,
such as the ribosome transcription rate constant ki, are growth dependent (47). Although
such dependency is not taken into account in the presented results, it is possible to account
for this by (i) discretizing kyjp, following the method used to discretize the mRNA and
protein content of the cell, and (ii) using Petersen’s linearization scheme (see Materials
and Methods) on the product kyjp, * Fyjp. Other parameters that can be transformed in
this way include, but are not limited to, the RNAP transcription rate constant kirans,
free ribosomes, and the RNAP ratios p and 7.

Omics integration Explicit mRNA and enzyme concentrations allow the direct inte-
gration of absolute or relative proteomics and transcriptomics by changing the bounds of
the corresponding variables in the EP. An additional gauge constraint will be needed for
relative data. Previous transcriptomic integration methods, such as REMI (59), iMAT
(60), GIMME (61), or MINEA (62), can also be adequately reformulated for ETFL.
Metabolomics can still be integrated using TFA (35, 36).

Minimization of adjustment In its original article, the hypothesis behind the Mini-
mization of Metabolic Adjustment (MOMA) method is that the metabolic fluxes of an
organism subject to a gene knock out show a minimal change compared to the metabolic
fluxes of the wild-type organism (63). The underlying hypothesis is that the enzyme
distribution and assignments remain the same except for the knocked-out gene. With
ETFL, it is possible to directly compute a Minimization of Protein Adjustment (MOPA)
by reformulating the objective function as a Minimization of Expression Adjustment
(MOXA):

min Y ||B;— B, pe{o1} (MOPA)
jeJ

where |[-[|, is either the Manhattan norm (p = 1, ¢;-norm) or the Euclidean norm
(p = 2, fe-norm), which will require a MIQP solver. In the same fashion, it is also
possible to formulate a (weighted) Minimization of mRNA Adjustment (MORA) or even
a Minimization of eXpression Adjustment (MOXA) using the following formulations:

min Y _||F - F|, pe{0,1} (MORA)
lel

ming- Y ||E;j - Ef|| +(1=0)-)> [F—F[, pe{0.1},0€[0,1] (MOXA)
JET lel

Parsimonious analysis Parsimonious FBA (pFBA)(53) was developed to address the
high fluxes of some of the solutions given by FBA. Although this concern is addressed in
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ETFL by the combined actions of the EP and thermodynamics, pFBA can be adapted to
ETFL to study an organism under parsimonious constraints. For example, it is possible
to reformulate it into a parsimonious expression problem to find the minimal expression
level required to meet a growth target using objective functions similar to MOPA, MORA,
and MOXA. It is also possible to turn the problem around to consider the allowed
enzyme amounts under minimal flux constraint obtained by pFBA to assess the metabolic
flexibility of an organism.

Dynamic ETFL (dETFL) Dynamic FBA (dFBA) (64) is a method that uses FBA to
predict the dynamics of a biological system represented with a stoichiometric model. In its
original static optimization approach (SOA) formulation, a FBA problem is solved at each
time step. The value of boundary fluxes of the FBA problem are updated at each iteration
with values produced with a kinetic law, such as Michaelis-Menten glucose uptake and
oxygen diffusion. Because ETFL allows direct access to enzyme concentrations, it is
possible to use the latter to reformulate dFBA in its SOA. The original SOA approach
uses ad-hoc constraints on the absolute flux change at each time step. However, in
ETFL, it is possible to bound flux changes indirectly by bounding enzyme and mRNA
concentration changes in the EP. Effectively, this approach allows the movement from
ad-hoc constraints to physiological constraints.

Use in kinetic frameworks Often, kinetic frameworks require a reference flux distri-
bution as an input. ETFL can provide such a distribution, with an increased accuracy as
compared to FBA.

1.2.5 Building an ETFL ME-model for other organisms

Building an ETFL model from a genome-scale model follows a detailed procedure, for
which a SOP is provided in the Supplementary Note 2. In this procedure, it is the
quality of the input data that will determine the accuracy of the model. A well-curated,
elementally balanced model is a critical prerequisite. Since ETFL is essentially adding
constraints to the FBA problem, it is important as well to ensure the feasibility of the
initial model.

In ETFL, and ME-models in general, catalytic constraints are what links the metabolism
to the expression problem. Because of this, the accuracy of the ETFL reconstruction is
J

“at- ouch information

also heavily dependent on the quality of the catalytic rate constants k
is not always easily accessible. Hence, we recommend to at least manually curate the
catalytic rate constants of the key parts of metabolism, namely (i) ATP synthase, (ii)
RNA polymerase, (iii) ribosome. We also advise to pay attention to the pathways of the

main carbon source metabolism, as small catalytic rate constants can heavily throttle
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the rest of the metabolism. For missing catalytic rate constants, a placeholder value
can be used. O'Brien et al. (40) used k!

)+ = 65571 which is close to the median of

the values used in the present study. In our comparison with inferred enzymes, we used

kgat = 172571, which is the arithmetic mean of the data we gathered.

Another key component for catalytically constraining the model is to have quality enzyme
composition information. Indeed, marking an enzyme as a monomer instead of a dimer
halves its synthesis cost. A good source for this information is MetaCyc (65), and
literature. As explained in the previous paragraph, special attention should be given to
the ATP synthase, the RNA polymerase, the ribosome, and the enzymes of the main
carbon pathway. Macromolecule degradation rates are less critical and can be averaged.
Growth-dependent protein, RNA, and DNA ratios drastically improve the quality of the
model, as they allow to account for the expression activity that is related to non-metabolic
proteins.

In the construction of a model for another organism, approximating parameters based on
values from an FE. colimodel should be done with care. Similarly to gap filling and the
use of template reactions, conserving parameters across close species is helpful; however,
conserving parameters across a large phylogenetic distance is erroneous. An example
is the ribosome translation rate, which can vary by one order of magnitude between S.
cerevisiae and E. coli.

Finally, great care should be taken with respect to the units. Different conventions are
used across sources. Parameters for which this has been observed include catalytic rate
constants, molecular weights, and concentrations.

1.3 Conclusion

ETFL is a framework which implements expression and thermodynamic formalism using
mainstream double-precision MILP solvers. This could not be previously accomplished
using state-of-the-art ME-models, which use specialized quad-precision solvers and do
not support integer variables. The formalism itself is based on the explicit and direct
relationship with the underlying biochemistry and provides a way to incorporate growth-
dependent variables using MILP linearization techniques. These new growth-dependent
variables provide a finer modeling of expression because they consider phenotypic dif-
ferences in different growth regimens, which is key for accurate modeling. ETFL can
also compute explicit mRNA and enzyme concentrations as well as perform direct -omics
data integration. In this, ETFL complements and extends FBA capabilities by using
explicit relationships in lieu of the typical assumptions on the relationships between the
transcriptome, proteome, and fluxome. This explicit accounting of expression mecha-
nisms provides a finer level of control and a more relevant prediction of gene-editing
outcomes. ETFL is robust to missing data, as missing enzymes and their composition
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can be approximated using average enzyme characteristics. Because of this and its opera-
tional similarity with classic FBA-related analyses, ETFL can be efficiently integrated
in standard model-based pipelines. For this intent, we provide in the Supplementary
Note 2 a standardized procedure to produce ETFL models from genome scale mod-
els. For example, metagenome-based genome-scale reconstructions such as published
by Magnusdéttir et al. (44) can be directly fed to the framework to generate models
for each of the 773 bacteria they identified. Integration with platforms like KBase (66)
can also be envisioned to automatically draft ETFL reconstructions parametrized by
curated organism-specific data. In a more general way, ETFL can assess the allowed
expression profiles of any biological system amenable to genome-scale modeling, such
as in the metabolic engineering of biocatalysts, microbial communities, drug design, or
personalized medicine.

1.4 Materials and Methods

1.4.1 Preliminaries, Conventions, and Notations

The mass balances of the macromolecules in ME-models is written with respect to their
concentration variables. If we assume the cell is growing at a specific growth rate u, we
must assume that the volume of cell within which the mass balance is considered varies.

The mass balance of a macromolecule G will be written:

dmg dv. dCq
ame _ el 1.
a e TV (16)
= o™V, —vB -V, (1.7)

where Cg is the concentration of the macromolecule C in the cellular volume V., for a
g

total mass mg in the cell, produced at a rate v} and degraded at a rate vge .
We next combine equations 1.6 and 1.7 and divide by V. (necessarily non-zero) to write

the time derivative of the concentration Cg:

dCG _ m Udeg B i d‘/c .

a ¢ G V.odt

Ce. (1.8)

By definition, v%déf = p is the specific growth rate of the cell (under the assumption of
constant cell density p.), and the term p - Cg is called the dilution term, or vgﬂ, as per
Fredrickson’s work on formulating growth models (67). It is a common assumption that

the concentrations inside the cell remain time invariant (quasi-steady state assumption),
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effectively yielding the constraint:

YR Udeg . i dVe )

Ca =0. (1.9)

It is also understood from the formulation of the FBA that adding a new reaction to the
system, such as:

vj 7774/1 — 77%3, (1.10)

results in adding terms to the mass balances of A and B :

d[A] ;
d[B] ;

The further extension of this to reactions of n reactants to m products is trivial.

Several parameter values are taken from the BioNumbers database (68). When used, we
specify their identification number as well as the original source from which the value was
reported. Finally, we will represent products between a parameter value and a variable
by the symbol “ - 7 and products between two variables by the symbol “ * ”.

Hereafter, we propose a detailed top-down approach to formulate the constraints being
built for ETFL, starting from the metabolite network and moving down to RNA synthesis.
The general organization for each macromolecule is to write down its mass balance, apply
assumptions, and then detail its synthesis and consumption mechanisms.

Metabolites From FBA, the mass-balance relationship for metabolites can be written
as:

S-v=0. (FBA)

For the rest of the formulation, it is necessary to split the net flux v from each reaction
into its forward net component and backward net component:

vj :v;f—fuj_, vj,vj_ZO. (1.13)

Biochemical reactions are catalyzed by enzymes. Each enzyme (Enz;) of concentration
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E; can catalyze a flux v; subject to the enzyme capacity constraint, which is a function

of its forward and backward catalytic rate constants kg;{ and kzlc;:

The distinction between the bounds of the forward and backward net fluxes is important,
as some enzymes have different catalytic activities depending on the direction of the flux.

1.4.2 General constraints for enzymes

Each enzyme Enz; is represented by its total concentration, the variable E;. It is subject

to mass balance, which can be written:

d .
B = o — o o, (1.16)

which reads under quasi-steady state assumption (QSSA):

d
v — 05 — ke By =0, (EB;j)

where v3™ is the formation rate of the enzyme by the assembly of its constituent peptides,

J
’U;ieg is the degradation rate, v}iﬂ is the dilution rate, and p is the growth rate of the cell.
The formation rate of the enzyme describes the assembly of free peptides, hence it is

necessary to add the peptide assembly reaction to the stoichiometric matrix:

F anj - Pep; = Enz;, (1.17)
lel

where nlj is the stoichiometric coefficient of peptide Pep; for the formation of the complex

of enzyme Enz;. This reaction is assumed to happen spontaneously by default.
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We model the degradation reaction of the enzyme in the following manner:

4 :
v;®® 1 Enzj + L3 - HoO — Z Moa, - 384, (1.18)
aa; €A

where ngal. is the number of aminoacids aa; in the enzyme. It is obtained from the
composition of the constituent peptides. For this degradation reaction, the rate is known:

U;ieg B kéeg L =0, (EDJ)

where kgeg is the degradation rate constant of the enzyme. The reaction is added to the
model and the equation ED; is added as a constraint.

1.4.3 Constraints specific to Ribosomes

Like any other enzyme, ribosomes verify the mass balance:

asm deg

vy — Ugn — Mok By, = 0. (E'Biip)

FE.q1, denotes the total quantity of ribosomes in a cell. It accounts for R;, the ribosomes
assigned to the translation of Pep,, as well as the free ribosomes in the cell, Rp.

The ribosome differs from other enzymes in that it takes ribosomal peptides rPep; as well
as ribosomal RNA rRNA; for its assembly. Hence, its assembly reaction is:

vEP Z nﬁl:’epl -1Pep; + Z US%NAZ -TRNA; — Rib. (1.19)
lel lel

As explained earlier, the stoichiometric coefficients n'® will appear in the mass balances
of each of the compounds of the reaction. This reaction is also assumed to happen

spontaneously by default

When ribosomes are degraded, their constituting amino acids and ribonucleotides are
recovered:

vif s Rib+ LI -HO = > mi caai+ Y it NMP (1.20)
aa; €A NeAU,G,C
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The degradation rate is constrained in a manner similar to the constraint ED;.

Finally, we can then write the total ribosome capacity constraint:
> Ri+ Rp — Exp = 0. (TC2)
lel

If we know the ratio p of occupied vs free ribosomes, we can enforce it:
Ry — (1 —p) Eyp = 0. (RR)

1.4.4 Constraints specific to RNA Polymerase

RNAP is an enzyme, and hence it also satisfies mass balance:

de;
VRNAP — Urnap — M * Ernap =0, (EBRNAP)

where Ernap is the total amount of RNAP, which also accounts for free RNAP Pr. Its
synthesis and degradation follow equations similar to other enzymes:

de,
VRNAP — Urnap — M * Ernap =0, (EBRNAP)

with the same conventions as in Eq. EB;. As for a generic enzyme, RNAP is assembled
from free peptides, which adds the peptide assembly reaction to the stoichiometric matrix:

URNAP Z nENAP . Pep, — RNAP, (1.21)
lel

again with the same conventions as in the section General constraints for enzymes. This
reaction is also assumed to happen spontaneously by default. The degradation reaction
is also modeled similarly, with the same conventions:

U?S\%AP : Enzj + L7 - HyO — Z Mo, - a8;. (1.22)
aa; €A

The degradation rate is constrained in a manner similar to the constraint ED;.

Additionally, the total capacity of RNAP follows a capacity constraint similar to that of
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ribosomes:

Z P+ Pp — Egrnap = 0. (TC1)
lel
As we did with the ribosomes, if we know the ratio of occupied RNAP, 7, we can enforce
it:

Pr — (1 — 71') Ernap = 0. (PR)

1.4.5 Constraints for Peptides

The peptide concentrations obey the mass-balance equation:

d : d ,
aPepl = st — Z v — % — ol (1.23)
JeT

We assume in the current model that the protein assembly rates are much faster than
dilution and degradation, and thus simplify this mass balance to:

d tsl j s
%Pepl =" — an] 05, (1.24)
JjeJ
which, under QSSA, can be written:
sl — Z nlj 05 = 0. (PB))

JjeJ
In this context, the peptides are treated just like regular metabolites in the system. This

assumption in PBj can be relaxed without a loss of generality by introducing a dilution
and a degradation term, thus introducing a bilinearity.

The synthesis of peptides consumes charged tRNAs, which are subsequently uncharged
during the current peptide synthesis by a ribosome. The process consumes 2 GTP and
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releases 2 GDP and 2 Pi per amino acid:

ofts S g, tRNASrEed 4 o2 (GTP + H0)
aa; €A
> Pep,+ Y 1, - tRNAUChaged L g8 (GDP 4 Pi+ H'),
aa; €A

(1.25)

where aa; denotes the i amino acid, niai its stoichiometric coefficient (count) in the
sequence of Pep;, tRNAJ, =~ the (un)charged tRNAs for each amino acid, and L{* =
Y ancA néai is the length of the amino acid sequence of Pep;.

As explained in the section Preliminaries, Conventions, and Notations, this reaction adds
a supplementary term in the mass balances of the metabolites (GTP, GDP, Pi, H,O, H"),
the peptide, and the tRNAs (see Constraints specific to tRNAs for the latter). This term
is what connects the expression requirements to the metabolic network defined in the
FBA.

The peptides are the product of a translation reaction that is catalyzed by a ribosome.

As we did with the catalytic constraints for general biochemistry reactions, we can apply

the ribosome maximum catalytic rate as an upper bound to its translation rate vltSI:

w Fear
v> — %Rl <0, (TR2y)
l
where k2P is the maximum ribosomal translation rate constant (10 — 12aa.s~* for E. coli,

BioNumbers ID [BNID| 100059 (69)), L#* is the amino acid length of the peptide [, and
Ry is the concentration (in mmol.gDW 1) of ribosomes assigned to the translation of this
peptide. This way, the ratio R;/Pep; is effectively the number of ribosomes, or average
polysome size, translating the peptide I.

1.4.6 Constraints for mRNAs

During the translation, an mRNA is read to produce a peptide. mRNAs are subject the
same mass-balance constraints:

ofT = — o Fy =0, (MBy)

where Fj is the total concentration of the I'* mRNA (mRN A;), vldeg is its degradation

rate, and v}cr is its transcription (synthesis) rate. Fj is variable that represents the
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concentration of (mRN A;). The transcription reaction is modeled as follows:

v gL ATP 4+l -UTP 41 - CTP + - GTP 126)
— (nlfl—knb%—nb—knb) PPi+mRNA;. '

Again, the stoichiometric coefficients will appear in the mass balances of each of the
metabolites and macromolecules involved. The transcription process is catalyzed by RNA
polymerase (RNAP). For each transcription of mRNA, we can put an upper bound on

the transcription rate vltcr in the same way as for translation:

RNAP

k
Vi — %Pz <0, (TR1;)
l

where LI is the length in nucleotides of the mRNA sequence, k};IEAP is the catalytic rate
constant of RNAP (85nt.s™! for E. coli, BNID 100060 (69)), and P; the concentration of
RNAP assigned to the transcription of this mRNA.

We must also take into account the relationship between ribosome assignment and mRNA
concentration. On each strand of mRNA;, there can be only a finite number p; of
ribosomes translating at the same time. This number is given by the ratio of the footprint
size of the ribosome L2 and the length of the mRNA strand L. This effectively yields
the number of ribosomes that can be present at the same time on a given mRNA strand:

nt

=4
~ rnt
Lrib

(1.27)

For E. coli, L is approximately 20 nm (BNID 102320 (70), 100121 (71)), which amounts
to approximately 60 base pairs (the length of a nucleotide is approximately 0.3 nm;
BNID 103777 (72)). From there we can get the additional constraint:

Ry < p - F, (1.28)
Lt

R, — ot F; <0. (EX))
rib
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We consider the following degradation reaction for mRNAs:

v mRNA; — 7'y - AMP + 1}, - UMP + nl, - CMP + 7l - GMP. (1.29)

And, again, we know the degradation rates:
08 — kleg - Fy = 0. (MDy)

1.4.7 Constraints specific to rRNAs

rRNAs are used in the ribosome assembly reaction. According to the definition of vZ3™ in

the Constraints specific to Ribosomes section, their mass balance can be written:

d T m d; dil
T PRNA] = 0 = v;fna, — Uib" — VR, — UFRNA,- (1.30)

We neglect their dilution and degradation under the hypothesis that free rRNAs are
scarce and stable (73). Thus, their mass balance in the model reads:

ter asm __
UyRNA; — Urip = 0- (RBrNa,)

The degradation reaction is the same as for mRNA, and is part of the total degradation
of the ribosome.

1.4.8 Constraints specific to tRNAs

Since tRNAs are relatively stable molecules (73), we neglect their degradation. Let T

aa;

(resp. Ty,,) represent [tRNAZ;fharged} (resp. [tRNAgg?rged]). Then, we can write the

following constraints:
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hargi 1 1
&T;ai =0= _v;a?rgmg + Z Naa; * U;S e T;aiv (131)
lel
d , .
T S Ry (12)
lel
—ogEE 1N "l oft — px T, =0, (TBia,)
lel
U;gju“ging - Z néai ' ’Ults1 2 Tgai =0. (TB;ai)
leL

tRNAs are produced with a charging reaction and consumed by peptide synthesis. We
use the following charging reaction:

Ucharging . aa; + tRNA;;Charged + ATP + 2H2O

aayg
' 1.33
— tRNAGRarged 1 AMP + 2HT. (1:33)

By default, this reaction is assumed to happen spontaneously, but catalytic constraints
can be applied if the adequate catalytic rate constants and enzyme compositions are
known. Once again, the stoichiometric coefficients of each reactant will appear in the
stoichiometric matrix in the column corresponding to this reaction.

1.4.9 Reformulation of the bilinearity of the problem

The main issue with the EP formulation presented previously lies in the continuous
bilinear terms that describe the dilution of the macromolecules, G, € {E;} U {F;} U
{tRNAgg?)Charged}. We use x as a placeholder for the indexing of G. Using previous
notations for the synthesis, degradation, and growth rate:

o — pdee _ G, = 0. (1.34)

In this state, the dilution term is bilinear, and the formulation requires a bilinear solver or
potentially a mixed-integer bilinear solver if thermodynamics are to be added. The original
ME-model formulation has similar terms as we are presenting here (39, 40). As such, its
recent adaptation in Lloyd et al. (41) uses the two-level iterative algorithm SolveME (45)
that requires a dedicated non-linear solver. In this fashion, iterative approaches which
try to sequentially improve a value of the growth are a way to deal with the bilinearity.
We present instead a MILP approximation of the problem that makes it compatible
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and solvable with mainstream MILP solvers in a single optimization formulation. We
achieve this through the discretization and linearization of the bilinear products. This
operation can be understood as locally approximating the bilinear problem by several
linear subproblems and choosing the best approximation.

Using a MILP approximation rather than an iterative scheme has two clear advantages.
First, it allows to simulate growth-dependent parameters (such as RNA /Protein mass
ratios) with guarantees on convergence and global optimality directly inherited from the
MILP nature of the problem. In the case of parameters that are monotonically-increasing
or decreasing with respect to growth rate, guarantees exist, such as showed in SteadyCom
(74). However, in the case of non-monotonically increasing or decreasing parameters with
respect to the growth rate, such guarantees are harder to prove, and thus MILP provides
a strong framework to explore them, with global optimality guarantees and enumeration
of alternative solutions. Second, by displacing the solving complexity to the solver, it
also allows us to rely on the latest advances in MILP solving, which is a very dynamic
field, with new solver releases every 6 to 12 months.

1.4.10 Approximation of the growth rate

In ETFL, we approximate the growth rate p in bilinear products with a piecewise-constant

0" order approximation). A zeroth-order approximation is an approximation

function z (
by a piecewise-constant function. If fi is piecewise-constant, then the product i * Gy is
piecewise-linear. This can be represented in a MILP form, and allows us to transform
the continuous bilinear terms into mixed (integer x continuous) bilinear terms. This
simplifies the problem, as these mixed bilinear terms can be linearized in a MILP setting
using the Petersen linearization scheme (75), a particular case of the Glover linearization

scheme (76) that was previously used in metabolic engineering by Hatzimanikatis et al.
(77, 78).

Let 77 be an upper bound to u, (p, N)€N?,p < N. We can approximate u with the

Oth

following order approximation:

(1.35)

Q
=)
Il
=
==

Vue0,m, u

With this notation, % is, in fact, the resolution of the approximation. NN is the number
of bins in which y has been discretized, and p allows to choose which bin is selected in
the solution. For the linearization of the problem, we will need to express p using only
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binary variables. To this effect, we can perform its binary expansion:

[logy N

p= > 24, (1.36)
s=0

where [logy N denotes the smallest majoring integer to logs N, and d, € {0,1} is 8
digits from the right of the binary notation of p.

The model needs two more constraint to ensure that u € [ﬂ — R+ %] and that p does
not exceed N, which would result in 1 > 7

|'10g2 N 1
0< ) 2°-6,<N (1.37)
s=0
P D
_E <t 1.38
N SH-BS (1.38)

As an example, let us consider modeling an organism whose growth rate does not exceed
Pmaz = 2.3 h~!. To do this, we can set = 2.5 > [bmae- Let us choose a resolution of
0.25h~!, which gives N = 10. Then, logsN ~ 3.32, and [log, N] = 4. A growth rate
w = 1.4 will be approximated by:

P
10’
ﬁ:(60><20—|—51><21+52><22—|—53><23+54><24)-

=15=6

=)

Sl=l

ﬁ:(0x1+1x2+1x4+0x8+0x1®-§i

The values of &5 are obtained by the solver upon optimization. This example is illustrated
in Fig. 1.6-a. To maximize the resolution of the model, and minimize the associated
computational cost (under the form of 3 additional constraints for each lineariation to be

performed, see Petersen linearization in Methods), the user should ideally choose N as a
power of 2.

MILP solvers use a variety of algorithms and heuristics to solve MILP problems. In this
case, the difficulty lies in the fact that the EP and the FBA are almost independent and
linked through a limited number of equations and variables. Even though the automated
solving methods of the solver might seem obscure to a human, we thought useful to
provide a human-understandable heuristic for solving a formulation such as ETFL. It
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might prove useful in the case where one needs to find an initial non-optimal solution,
which sometimes greatly improve solver performances. Thus, conceptually, a heuristic for
solving an ETFL problem would be:

1. Solve the FBA for u

2. Select the corresponding, closest ji

3. Apply it to compute dilution values

4. Solve the EP with fixed dilution

5. Apply the catalytic constraints to the FBA

6. Recalculate the FBA under catalytic constraints

7. I ¢ {ZZ:I: %}, go back to 3, else, end.

1.4.11 Linearizing the bilinearity

In the previous derivation, we replaced the growth rate variable by a discrete number of
acceptable values. We can approximate the continuous product p * G, which represents
the dilution, as follows:

TEYERESITEY M (1.39)
[logy N1 98
ixGe= Y & 0s% G, (1.40)
r=0

The product d; * G is then still bilinear, but one of its variables is binary. Assuming a
constant M > G, We can use Petersen’s linearization theorem (75, 76) to replace the
product ds * G with a single nonnegative variable 27, as described in the section Petersen
linearization.

Because of the binary expansion, the complexity of the model grows only as O (logy, N) =
(@) (10g2 %), where € = 1/N is proportional to the resolution of the approximation (which
is £). This means that the linearization part of a model with a resolution of 0.01 h~*
is only around twofold bigger than that of a model with a resolution 0.04h~!, while

resolution has been improved fourfold.

1.4.12 Petersen linearization

After discretization of the growth rate, the dilution term for the macromolecule G, will
consist of a sum of products of the binary variables J; and the continuous variable Gj.
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We can use the Petersen linearization scheme (75) to transform this product into an
equivalent system of one new variable and three new constraints:

25 = 05 % Gy,
{G*+M-5S—M<zi<M-6s,
%< G ’ (1.41)
Gy+ M- 65—z <M,
= zi— M- 65 <0,
zi — G, <0.

With this method, we can directly reformulate generalized mass balances as described in
Eq. 1.34 for mRNAs, enzymes, uncharged tRNAs, and charged tRNAs:

d [logy N 98
ut =t Y S =0, (EB'j)
r=0
[logy N s
vfr — v?eg — Z Nﬁ- z; =0, (MB)
r=0
) [logy N 98
—gEE L N ko = Y NE - Zas =0, (TB'4a,)
aa; €A r=0
[logy N1 98
hargi 1 —
VRAEE = D a0 = D G Fa = 0. (TBz,)

And we get the additional linearization constraints:

[logy N 98
r=0
— [logy N] 98 I
" <= Zag< 2
oN = H Z:(:) Nt =0oN (GC)
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1.4.13 Discretization of mRNA and enzyme content

Since growth has been discretized, it is now possible to also directly discretize other
growth-dependent parameters of the problem, regardless of whether they are in a linear
or non-linear relationship with growth. This is a direct consequence of the formulation
of ETFL, which allows some flexibility in the modeling assumptions of the user. As an
example, we described the relationship between growth and protein and mRNA mass
ratios, P™ and R™, in the cell as reported in Neidhardt et al. (47). This relationship
is described in the formulation section as constraints ICg,, and IC,rna. We thus aim
to approximate the non-linear function P™(u) (resp. R™(u)) over the interval [0, 7]
with a piecewise-constant function P (resp. }/?E) We perform this approximation
by interpolating and discretizing the protein ratio and mRNA ratio as functions of the
growth rate so that:

Pm=3" P, (1.42)
uel

Rm ="\, R, (1.43)
ueU

where P]" = P™(u p%) (resp. R = R™(u p%)) A are binary variables, and only
one can be active at a time, since we are choosing exactly one value per function. To
enforce this behavior, we used a special ordered set constraint of type 1 (SOS1):

S OMW; B = > A P =0, (IC1)
jeTJ ueU

S MW - F =3 ARy =0, (1C2)
lel ueU

Z Ay = 1. (SOS1)

uel

P™ and R™ are growth-dependent, interpolated protein and RNA mass ratios (in g.g™!).
Given a growth rate, they define the relative mass of the cell that is protein or RNA. MW,
represents the molar weight of the corresponding enzyme or RNA, and this their product
with macromolecules concentrations (in mmol.ggDW 1) will result in mass ratios as well,
in grams per gram of dry cell weight. The first two constraints enforce equality between
the interpolated data and the model production. The last line is the SOS1 constraint
that forces only one of the A, to be active.

Additionally, it is necessary to have the integer index of A, equal to the index of the
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growth rate. This is obtained through the constraint:

ud =Y 25 =0. (EQI)

uel lel

The first term represents the growth integer index (which discrete value of fi to use for
choosing P)"), and the second represents its binary expansion (which discrete value of 11
to use for u). The constraint makes sure they are equal.

Imposing such mass ratios requires the addition of a dummy mRNA as well as a dummy
protein to represent the part of the transcriptome/proteome that is either missing from
the expression model or altogether unrelated to metabolic function. We use average
amino acid frequencies and GC content to model this. Explicit interpolation functions
can also be used, such as the growth-dependent functions given in Pramanik et al. (79).

The simultaneous use of catalytic constraints on metabolic reactions (Eq. FCj, BC;)
and maximal enzyme load (Eq. IC1) effectively implements allocation constraints like in
GECKO (38), although in ETFL, the enzyme concentrations are also directly linked to
the metabolism. In GECKO, the metabolic cost of building the enzymes is not taken
into account.

Fig. 1.6-b shows an example piecewise linear interpolation of the growth-dependent
protein mass ratio in E. coli according to Neidhardt et al. (47). The reported values (red
circles) are interpolated using a piecewise linear function (dashed line), which is then
discretized (full line). Using the integer constraints described above, the model can be
forced to display a protein content that corresponds to its growth. We apply the same
techniques to mRNA and DNA content.

1.4.14 Discretization of DNA content

To further increase the scope of macromolecules covered by the model, it is also possible
to add growth-dependent DNA content, as expressed in the constraint ICpya of the
formulation. DNA mass ratios at specific growth rates are reported in Neidhardt et al.
(47). We model the DNA reaction synthesis as follows:
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Fig. 1.6. Discretization example for specific growth rate and growth-dependent parameters. a. Discretiza-
tion of p into fi. The step approximation transforms the continuous interval [0,2.5] into the discrete set
{0,0.25,...,2.5}. b. Example of piecewise linear interpolation and discretization of the protein mass ratio
from Neidhardt et al. (47). Red circles represent the values reported. The dashed line is the piecewise linear
interpolation. The solid line is its discretization.

ppihesis (1 _ 4y PR dATP,
+ (1 — ) L AdTTP,
+ LR A dGTP,
+ Y LR A dCTP,

b .
— DNA + 2L A PPi,
where 7 is the GC content of the cell, and L%JNA is the total length in base pairs of the

DNA. As with mRNA; and Enz;, DNA has a mass-balance equation of the following
shape:

~ [DNA] = 0 = ofjd™™ — oo — uffeer, (1.44)
VA — v, — % DNA = 0. (DBpNa)

We consider that the DNA does not degrade, meaning the only source of DNA consumption
is dilution caused by the growth of the cell and k(li)elgA = 0. We then define the molar
weight of DNA MWpna and enforce the DNA mass ratio Dm as we did with both proteins
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and mRNA:

MWpna = (1 =) LR x (MWaarp + MWqrrp),

+’7L]]DDIT\IA (MWgaaTp + MWqctp), (1.45)
MWpna - DNA — Z Ay - Dm,, = 0. (IC3)
uel

If DNA is modeled, we can also include a catalytic constraint on its synthesis by DNA
Polymerase'®. We model the DNA Polymerase III holoenzyme according to the structure
reported by Kelman et al. (80), as a dimeric enzyme attached by a 7 scaffold to two
B clamps sliding on the DNA. We assume it synthesizes DNA at a speed of 1 kilobase
per second, according to the same source. The catalytic constraint on DNA synthesis is
hence:

. DNAPol3
A — %DNAPOB <0, (DP)
1

with v}y, the synthesis rate of the DNA, kEéYAPOI?’ the above-mentioned nucleotide
synthesis rate, L}Dp the length of the DNA in base pairs, and DNAPol3 the concentration

of DNA Polymerase in the cell.

1.4.15 Gene copy number and RNAP saturation

In the same fashion as we considered the saturation of a mRNA strand by ribosomes, we can
consider the saturation of gene open reading frames (ORFs) by RNA Polymerases'!. This
is important to account for the phenomenon of plasmid burden and RNAP competition
in recombinant organisms, as well as the effect of gene copy numbers on the transcription
capacity of the cell (81, 82).

For E. coli, the footprint size of the RNA Polymerase L\ p is approximately 40
nucleotides wide (BNID 107873, (83)). Similarly to Eq. EX), we can write:

L
P < T G, (1.46)

0This paragraph has been added in this thesis, to account for developments in the formulation
post-publication.

1This section has been added in this thesis, to account for developments in the formulation post-
publication.
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where we recall P is the concentration of polymerase allocated to the transcription of the
I*" gene, L™ the length of the ORF in nucleotides, and G, the concentration of ORFs of
the I** gene. The latter is exactly equal to the concentration of DNA times the number
of copies n; of the gene:

G; = n; - DNA. (1.47)
We can thus derive a constraint for each gene:

nt

-Pl_

Fa— ni - DNA <0. (CN))
RNAP

1.4.16 Expression constraints for genes without enzymes

The vETFL model has 475 genes out of 1433 that participate in the composition of
enzymes'?. The genes that do not participate in the composition of enzymes in the
model can either (i) still be used to generate transcription and translation reactions,
mRNAs, peptides, and the related constraints, or (ii) be ignored and solely used for their
gene-protein association rule. Option (i) is preferable if transcriptomics or proteomics
data are available, as the presence of the variable and constraints related to these genes
will improve the quality of the ’omics integration. Option (ii) is preferable in the absence
of transcriptomics and proteomics data, as it will reduce the number of equations in the
problem. Indeed, each gene that is expressed in the model is linked to the constraints
MB,, PBj, MD;, TR1;, TR2;, EX;, CNj, the associated linearization constraints (3
per macromolecule), and the associated variables. Thus, including genes without a
corresponding enzyme and without corresponding ’omics contributes significantly to the
growth of the problem, without increasing the accuracy of the model.

1.4.17 Scaling

A critical issue in the formulation of this problem is that the variables are different orders of
magnitude. Fluxes are typically between 1072 — 10! mmol.gDW~1.h~!, whereas protein
concentrations are around 1076 — 1072 mmol.gDW ! and mRNA concentrations are
1071 —107% mmol.gDW ~!. The relationship between these scales is given by the catalytic
rate constant of enzymes and expression machinery, which spans from 103 — 1064~!. In
particular, the ribosome rate constant for translation (~ 12 aa.s~! = 43200 aa.h~!) as well
as the RNA polymerase rate constant of transcription (~ 85nt.s~! = 306000 nt.h~!) are

12This section has been added in this thesis, to account for developments in the formulation post-
publication. The remark applies to the vVETFL model used in the graphs of this these, not the paper’s
vETFL model
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responsible for strong differences in the concentrations and fluxes between transcription-
and translation-related parts of the problem. Consequently, the constraint matrix becomes
ill-conditioned, and the solver has to operate close to, or sometimes beyond, its maximal
solving accuracy (usually around 1079 for commercial solvers such as ILOG CPLEX or
Gurobi).

To circumvent these limitations, we scale the EP, which will reduce the numerical difficulty
of the problem, using nondimensionalization. We create nondimensionalized variables by
dividing the variables of the initial problem by an estimated upper bound. For example,
by definition, macromolecule concentrations cannot exceed 1g.gDW !, and the following
constrains the transformed macromolecule variables between 0 and 1:

X
0X

X=""ox>sup(X) = 0< X <1 (1.48)

In this scheme, ox is an upper bound to X. In particular, if we consider ox to be the
concentration of 1g.gDW~!:

ox = 1g.gDW™,
1

1
—1geDW 1 x —— lg™
gg XMW(X)HIIHO g 5

1
= l.eDW ! 1.49

where MW (X ) denotes the molecular weight of the macromolecule in SI units (kg.mol~! =
g.mmol 1), and X represents the mass fraction of the molecule in the cell. We scale the
fluxes using a method derived from this, detailed in the supporting file Supplementary
Note 1. It is also possible to further refine this upper bound by performing a variation
analysis on X and re-generating a model using the newly estimated upper bound.

For the sake of clarity, all problem formulations will be kept in their dimensionalized form
in the subsequent equations although the implementation is in fact nondimensionalized.
The nondimensionalized problem is described further in Supplementary Note 1.

1.4.18 Advanced modeling

ETFL is amenable to modeling more intricate expression processes. A short selection of
these is detailed below.
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Enzyme-mediated complex assembly By default, all the peptides are assumed to
assemble spontaneously, without an enzyme. However, in the case of an enzyme-mediated
assembly, it is possible to limit the assembly rate by a catalytic constraint if needed, in a
fashion similar to Eq. 1.14. If we denote A the total concentration of assembling enzyme,

and k4

asm the catalytic rate constant of assembly, we can constraint v§*™ the assembly

rate of the j' enzyme:

V¥ < LA (1.50)

J asm

Enzyme activation and post-translational modifications Some enzymes require
to be modified in order to be active, and sometimes by metabolites of the cell. This can
be captured by adding a new species representing the active enzyme, and an activation
reaction transforming the inactive enzyme to the active form. If the metabolite M is
required to activate enzyme Enz; into Enz?, then the following activation reaction is
added to the model:

v;-wt : Enz; + M — Enz}, (1.51)

The mass balances of Enz; and M will be supplemented by a term —v2°*, and the mass

J
balance of Enz§ by —|—Uj-‘Ct. Finally, the catalytic constraint of the reaction v; catalyzed by

Enz; at concentration E]* shall be:

vj < kloy - E} (1.52)
This reaction can be catalytically limited if needed (see previous paragraph), and require
the participation of metabolites. Thus, ETFL allows to capture protein-metabolite
interactions.

Enzyme association It is also possible to model the partition between free enzymes
and associated enzymes. In that case, we simply need to operate the following adaptations:
(i) replace the E; term in any catalytic constraint by a new variable E7, which represents
the enzymes participating in the catalysis of the j** reaction; (ii) add a variable EJF which
represents the free enzymes of the system; and (iii) add the enzyme usage constraint:

Ej + B —E; =0 (EU;)

63



Chapter 1. The ETFL formulation allows multi-omics integration in
thermodynamics-compliant metabolism and expression models

Dilution and degradation assumptions In the current formulation, some species
have their dilution or degradation neglected because of high reactivity or slow degrada-
tion rate constants. This can be relaxed by simply editing the mass balance reaction
according to the assumption to be relaxed. In particular, enzyme-mediated degradation
can be modeled by adding suitable catalytic constraints on the degradation reactions.
Additionally, the dilution term for metabolites can be taken into account if needed, in a
manner similar to what Benyamini et al. describe in their method for FBA accounting
for dilution (84).

MILP-based gene knock-out strategies for strain design The ETFL formulation
of gene knock-out using an upper bound on the translation rate allows to directly formulate

lth

MILP-based gene knock-out strategies for strain design. Indeed, for each gene, we can

enforce the constraint:

oSt < M by, (1.53)

with vltSI the gene’s transcription rate, b; a binary variable and M a big-M constant. With
that kind of constraint, if b = 1, the gene is active, while if b = 0, the gene is knocked-out.
It is hence possible to formulate an objective function to optimize the number of KO

while fulfilling a metabolic objective, for instance.

Thermodynamic equilibrium of RNAP with promoters The binding of RNAP
to promoters is an event that follows thermodynamic equilibrium laws (85), and has been
successfully modeled before (81)!3. In particular, it is possible to take advantage of the
discretization method to model this equilibrium in ETFL.

Given the following binding reaction:

RNAPy + ORF, = RNAP,, (1.54)

where RNAPF is the free RNAP, RNAP; the RNAP bound to ORF;, the open reading

lth

frame of the I'" gene. We can write the binding constant Kp (86) of this reaction using

the previous notations for RNAP concentrations, and GG as the ORF concentration:

RNAPFr] [G]

_
Kp = RNAP] (1.55)

13This section has been added in this thesis, to account for developments in the formulation post-
publication.
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which gives the following bilinear constraint:

KB . [RNAP[} = [RNAPF] * [Gl] . (1.56)

However, we have seen that G; is equal to the gene copy number n; times the DNA
concentration, which itself has been discretized into Zuel/{ Ay - Dm,,. We can thus
approximate Eq. 1.56 in the following way:

Kp - [RNAP]] = n; - RNAPp] * > A, - Dmy,. (1.57)
ueU

This expression is a sum of linear variables and products of continuous variables by binary
variables, and as such can be linearized using the Petersen linearization scheme. This
method can also be trivially extended to ribosomes and their equilibrium with ribosomal
binding sites.

Thermodynamic equilibrium of RNAP with promoters and transcription fac-
tors Finally, a combination of the strategies detailed in the previous paragraph and
post-translational modifications can be used to model the interplay between RNAP and
a transcription factor such as the sigma factor 70, o79. We can model the activation of
the RNAP into its holoenzyme (holoRNAP) by o7¢ with the following reaction:

RNAP + 079 = holoRNAP, (1.58)

We can write the binding constant K% of this reaction using the previous notation system:

» _ [RNAP] [o70]
Kp = [holoRNA;O] ’ (1.59)

which gives the following bilinear constraint:

K% — m * [o70] = 0. (1.60)

The ratio of holoRNAP to RNAP can be found in publications such as Neidhardt
et al. (47), and discretized using the methods detailed previously. The product of the
discretized ratio and the concentration of 079 can then be linearized using the Petersen
transformation. This formulation can be easily adapted for ribosomes and molecules that
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bind the translation initiation complex.

Competition for the allocation of expression machinery Several biological sys-
tems are impacted by a competitive allocation of expression mechanisms'®. Plasmid
insertion in cells, for example, introduces exogenous genetic material that will also use
polymerases and ribosomes, or even transcription factors, to express its product. These
considerations can also be extended to parasitic interactions, such as viruses using the gene
expression machinery of the cell. Since polymerases and ribosomes are limited resources
of the cell that are necessary to its growth, their competitive usage will have a negative
impact on the cell replication, as shown by Peretti et al. (82). Using a combination
the methods detailed above, in particular thermodynamic equilibria for polymerases and
ribosomes, and polymerase saturation, it is possible to account for such competition. As
a result, the total capacity constraints of these molecules can be rewritten as follows:

Yo Xi+ Y X+ Xp— KXot =0, (1.61)
leﬁe“do ZIELEXO

where X, denotes the concentration of the macromolecule of interest (polymerase, ri-

endo ¢ set, of

bosome, transcription factor) allocated to the expression of the gene %, £
genes endogenic to the host system, £ is the set of exogenic genes from the foreign
genetic material, Xg is the concentration of free macromolecules, and Xio the total
concentration of the macromolecule. If binding constants are known, the thermodynamic
considerations mentioned above will add additional linear relationships between Xiqt,
Y icrendo X1y Y pepexo By, and Xp. To avoid over-constraining the model, it might be

necessary to relax FEq. 1.61 in favor of these linear relationships.

1.4.19 Thermodynamics-based constraints

Thermodynamics flux analysis (TFA) (35, 36) imposes constraints on a FBA problem
to couple reaction directionality to the standard free energy of reactions and metabolite
concentrations. We also introduce constraints that couple the sign of the Gibbs energy of
a reaction to its directionality through the use of integer variables and a mixed-integer
linear coupling formulation. This framework reduces the feasible flux space and improves
the predictive power of FBA by removing thermodynamically invalid flux profiles.

Considering ¢; is the concentration of ! metabolite, we define C; as its scaled logarithm

14 This section has been added in this thesis, to account for developments in the formulation post-
publication.
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with respect to cg so that in standard conditions cg = 1 M:

Vi, Cij=In () . (1.62)

We use the group contribution method (87) to directly calculate ATG;O, the Gibbs energy
in solution of the j** reaction. The calculated energy is the net change in the energies of
formation of the compounds, which is simply the algebraic sum of the bonds that are
broken and formed. This allows to minimize the estimation error of ATG;-O, as there is
no error coming from the groups that do not react. Hence, we obtain the additional

variables:

Ot < Gy < O™, (1.63)
ATG;?min <AGP < ATG;-C:maX, (1.64)
ArG;:miH = ATG; < ATG;',max' (165)

Some metabolites are not fully characterized, e.g. metabolites with -R groups such as
fatty acids, or metabolites attached to a Coenzyme A or acyl-carrier protein. In these
cases, the group contribution method allows to directly calculate the net change in the
standard Gibbs energy. Since these -R groups are often conserved in the reaction, their
contribution terms cancel out when calculating the Gibbs energy of the reaction.

The concentration variables are bounded by experimental measurements or physiological
assumptions, and the standard Gibbs energies are bounded by the measurement or
estimation error. Since the net flux of each reaction has already been split between
forward flux (vi) and backward flux (v; ), (see Eq. 1.13), we can directly add the

J
constraints described in (35):

AG;—RTY nlCi— AGP =0, (1.66)
=1
AG - K+ K-bf <0, (1.67)
—A.G; K+ K-b; <0, (1.68)
v — K-bS <0, (1.69)
vy — Kby <0, (1.70)
+ —
bi +b; < 1. (1.71)
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R denotes the ideal gas constant, T is the temperature in Kelvin, and 775 represents the
stoichiometry of the metabolite ¢ in the reaction j. K is a big-M constant (bigger than
all upper bounds), and b;t are binary variables. Eq. 1.66 defines the actual Gibbs energy
of the reaction as a function of its standard Gibbs energy and the scaled logarithms of
metabolite concentrations. Eq. 1.67 and Eq. 1.68 ensure that ATG; <0 < bj =1
and ATG; >0 <= b; = 1. These binary variables are used to block flux in Eq. 1.69
and 1.70 if the thermodynamics do not favor it. Finally, Eq. 1.71 is added to enforce
that only one direction is chosen.

1.4.20 Data

mRNA degradation rates constants kqeg were taken from Bernstein et al. (88). We
converted the reported half lives into rate constants using the classical relationship
k= %. Proteins were approximated to have a half life of 20h (BNID 111930, (89)).
Catalytic rate constants kgat were obtained from Davidi et al. (90) for homomeric en-
zymes. Complex formation reactions for non-homomer enzymes were taken from the
supplementary information of O’Brien et al. (40) and Lloyd et al. (41). EC numbers were
obtained from BiGG (91) and the iJO1366 publication (48). Their corresponding keat
values were assigned using conservative (max) values from SabioRK.

Homomer compositions were obtained from Davidi et al. (90). Other peptide compositions
of enzymes were taken from the supplementary information of O’Brien et al. (40) and Lloyd
et al. (41). Additional information was obtained from the Metacyc/Biocyc database (65,
92) using specialized SmartTables queries (93).

1.4.21 Model modification

The initial model was subjected to minor changes to accommodate for ETFL modeling.
In particular, we added:

e Selenocysteine as a metabolite.
e Cysteine to selenocysteine conversion as a pseudo reaction.

e Replacements for the tRNA metabolites and their charging reaction, as dilution
has to be considered.

We also modified the biomass reaction by removing its nucleotide and amino acid compo-
nents, since they are already taken into account by the expression problem as explained
in the section Biomass reaction synthesis and mass balance.
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1.4.22 Enzyme estimation

Given a reaction in the model, if no enzyme is supplied but the reaction possesses a gene
reaction rule, it is possible to infer an enzyme from it. The rule expression is expanded,
and each term separated by an OR boolean operator is interpreted as an isozyme, while
terms separated by an AND boolean operator are interpreted as unit peptide stoichiometric
requirements. The enzyme is then assigned an average catalytic rate constant and
degradation rate constant.

1.4.23 Essentiality analysis

The method for testing gene essentiality in FBA is to evaluate for each reaction the
gene-protein-reaction association rules (GPRs) containing the gene of interest. The GPR
is a boolean expression where the symbols represent whether a gene is expressed. OR
operators represent isozymes, and AND operators the assembly of several peptides in a
complex. To knock a gene out, its symbol in each GPR is simply assigned the value
False. The GPR of all reactions is subsequently evaluated, and the reactions whose GPR
evaluates to False are set to have a net flux of 0. Knocking a gene out in ETFL works
differently: we replaces GPRs with mass balances, and the direct interaction between gene
transcription, peptide translation, enzyme assembly, and metabolism. In this context,
knocking-out a gene is done by forcing its transcription rate to 0. Indeed, gene-reactions
relationships are conveyed directly through the direct contribution of the relevant peptides
either as components of the enzyme complex (AND operator in GPRs) or as isozymes
(OR operator). An advantage of this formulation is that it can be used in strain design
strategies to optimize directly for knock-outs in a single optimization problem.

If a knocked-out gene does not have enzyme associated with it (because of the lack of
composition or keat information), there will be no catalytic constraint associated with the
corresponding enzyme. The absence of catalytic constraint will prevent the reaction to be
knocked-out. Hence, because of the missing information, gene essentiality information will
be lost. An example is the essential reaction Sulfite reductase NADPH2 (SULR). iJO1366
provides a GPR describing a complex needing b2763 and b2764. The ETFL source (the
cobraME model and YeastCyc) could not provide the stoichiometry of the peptides to
form the complex, and thus no enzyme is associated to this reaction in the vETFL model.
iJO1366 correctly predicts the genes b2763 and 2764 as essential, but ETFL fails because
these genes are not associated to any enzyme. As more enzyme data is added to the
model, the false positive rate decreases, as we show in the section Essentiality analysis.

For increased performance, the essentiality analysis was cast into a feasibility problem.
We put a lower bound on growth equal to 10% of the predicted ETFL growth and set the
objective to 0. With this method, essential genes will cause the problem to be infeasible,
while non-essential genes will return a feasible solution satisfying at least 10% of the
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growth. This method achieved up to a 5-fold reduction in solving time on the most
complex models.

1.4.24 Hardware

Computations were done on a 64-bit Ubuntu 18.04.1 LTS (Bionic Beaver); 2 x Intel(R)
Xeon(R) CPU E5-2667 v3 @ 3.20 GHz (8 cores, 16 threads per socket); 4 x16 Go @ 2400
MHz RAM. Code was run on Python 3.6 on Docker (18.09.0) containers based on the
official python 3.6-stretch container, available on ETFL GitHub and ETFL GitLab.

1.5 Code availability

The code has been implemented as a plug-in to pyTFA (94), a Python implementation
of the TFA method. It uses COBRApy (95) and Optlang (96) as a backend to ensure
compatibility with several open-source (GLPK, scipy, ...) as well as commercial (CPLEX,
Gurobi, ...) solvers. We rely on the Python package Biopython (97) for transcribing and
translating sequences of nucleotides and amino acids.

The code used to generate the models is freely available under the APACHE 2.0 license
at https://github.com/EPFL-LCSB/etfl and https://gitlab.com/EPFL-LCSB/etfl.

1.6 Data availability

All the data used to conduct this study is available in the organism_data subfolder of
the repositories. Some of the data has been obtained from publications, for which all the
references are provided in the main text, and a copy has been included in our repositories
that mentioned above. The code also contains comments crediting the publications from
which datasets and values have been obtained.

S1 From biochemistry to constraints. Derivation and formulation. Step-by-
step formulation of the biochemistry, from catalytic constraints to transcription.

Supplementary Note 1 Nondimensionalization. Derivation and formulation.
Details on the variables and constraint transformations to scale the model.

Supplementary Table 1 Example EP constraint matrix. Representation of the
constraint matrix of the EP for a vETFL of iJO1366. Colored cells represent non-zero
blocks. Uncolored cells are zero blocks.
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1.6. Data availability

Supplementary Note 2 SOP for creating an ETFL model. Tips and Prerequi-
sites. List of required and optional inputs to transform a genome-scale model into an
ETFL model

Supplementary Note 3 Note on steady-state assumptions. Justification and
details. Detailed account of the assumptions made with respect to steady state and
dilution for ME-models

Supplementary Note 4 ETFL Optimization problem. Optimization problem
definition. ETFL bilinear formulation and integer-linearized formulation.

Supplementary Data Gene essentiality. vETFL vs iJO1366. List of mismatches
in the essentiality of genes between iJO1366 predictions and vETFL predictions.

Supplementary Note 5 Glossary Definitions. Details on technical terms relevant to
this interdisciplinary work.
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This second chapter is a nod to the French biologist Jacques Monod. Jacques Monod
discovered that, when several sugars are at its disposition, the bacterium E. coli consumes
them in a specific order — a behavior he called diauxie. Current computational models
need specific assumptions to be able to accurately reproduce this behavior. Using a
novel state-of-the-art modeling framework, I show diauxie can be explained simply as an
optimal behavior under constraints on the protein amount in a cell. The method allows a
dynamic description of the physiology of diauxie, at the proteome level. I validate the
model by reproducing experimental results, and successfully predict a diauxic behavior
on a growth medium containing two types of sugar, glucose and lactose. Finally, I claim
that the regulation mechanism inducing diauxie (the lac operon) is a control system to

implement growth optimality at the cellular level.

The chapter is adapted from the preprint P. Salvy and V. Hatzimanikatis, “Emergence of
diauxie as an optimal growth strategy under resource allocation constraints in cellular
metabolism,” bioRziv, 2020, which has been submitted as an article to a peer-reviewed
journal. Vassily Hatzimanikatis and I worked on the formulation, and designed the studies
to perform. I performed the literature search and data curation, with input and guidance
from Vassily Hatzimanikatis. I wrote all the code to implement the formulation, and the
scripts to perform the studies. I curated the data to make the models, and made the

figures.

All the code and documentation is available under the APACHE 2 license, in the subdi-
rectory work/detfl at:

https://github.com/EPFL-LCSB/etfl

https://gitlab.com/EPFL-LCSB/etfl

The content of this chapter is also available as a preprint on bioRxiv at
https://doi.org/10.1101/2020.07.15.204420.
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2.1. Introduction

2.1 Introduction

In his pioneering work on the growth of bacterial cultures, the French biologist Jacques
Monod (99) observed that the growth of Escherischa coli (E. coli) in a mixture of
carbohydrates followed two distinct exponential curves separated by a plateau — a
phenomenon he called diauxie. Hypothesized to allow optimal growth of the culture
(100), this cellular behavior corresponds to the sequential consumption of sugars, where
one sugar is preferentially consumed, and the second is consumed after depletion of the
first Although current optimality-based computational models can predict diauxie, these
lack a detailed description of protein dynamics during the phenomenon (101). Diauxie is
an evolved, complex behavior, and its occurrence is controlled by the regulation network
of the lac operon in E. coli (102, 103). The emergence of such a control mechanism is
the product of evolutionary pressure, and being able to fully elucidate its raison d’étre
in terms of cell physiology is an important milestone to understand and better engineer
the intracellular dynamics of bacterial growth. There is thus a need for a formulation
describing diauxie at the proteome level.

Genome-scale models of metabolism (GEMs) combine constraint-based modeling and
optimization techniques to study cell cultures (27, 104, 105). A key method for studying
GEMs is flux balance analysis (FBA) (28), which formulates a linear optimization problem
that employs stochiometric constraints through the mass conservation of metabolites given
their synthesis and degradation reactions. Under the typical steady-state and growth-rate
maximization assumptions, FBA models predict the simultaneous consumption of two
or more carbon sources to achieve the maximum possible growth (101). However, this
contradicts Monod’s observation of distinct, sequential phases of carbon consumption and
suggests that diauxie does not come from stoichiometric constraints.

To account for diauxie beyond stoichiometric modeling, we looked into other biological
features. In his review on catabolite repression, Ullmann (100) reports a remark from
Magasanik (106) on the limited size of the enzyme pools in the cell. Magasanik argues
that catabolite repression prevents the synthesis of specific enzymes, thus preventing a
surcharge of the cell proteome. Indeed, a cell has a physiological constraint on the amount
of enzymes it can contain, or proteome allocation constraint. It is reasonable to expect
that under such allocation constraints, the system will preferentially distribute its now-
limited catalytic capacity towards pathways utilizing the most efficient substrate/enzyme
combination. In this respect, it appears models that account for proteome limitation in
cells may be able to account for diauxie. Towards this end, the role of protein limitation
in diauxie was demonstrated by Beg et al. (37) with their formulation of FBA with
molecular crowding (FBAwMC). Their method correctly predicts the uptake order of five
different carbon sources in a batch reactor, using a proteome allocation constraint. In a
push towards more global models, models of metabolism and expression (ME-models)
(39, 40) include proteome allocation, but also gene expression mechanisms, a modeling
paradigm that is ideal for studying diauxie at the proteome level. ME-models also fully
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describe the requirements of enzyme synthesis, degradation, and dilution effects, as well
as mRNA and enzyme concentrations.

Since the diauxie is also a time-dependent phenomenon, we chose to complement ME-
models with a dynamic modeling approach. Dynamic FBA (dFBA) (64) is a generalization
of FBA for modeling cell cultures in time-dependent environments. In its original static
optimization approach (SOA) formulation, the time is discretized into time steps, and
an FBA problem is solved at each step. At each iteration, kinetic laws and the FBA
solution are used to update the boundary fluxes, extracellular concentrations, and cell
concentration, based on the amount of substrate consumed, byproducts secreted, and
biomass produced by the cells. We expected that the combination of a dFBA and
ME-models would yield a formulation that can describe diauxie at the proteome level.

However, we identified three major challenges in the conception of dynamic models of
metabolism and expression. First, while dFBA studies of metabolic networks can be
solved by common linear solvers, ME-models are non-linear by nature, and significantly
more complex. The new species and reactions introduced and considerations of the
interactions between enzyme expression and metabolism result in nonlinear problems
that are often 1-2 orders of magnitude bigger in terms of constraints and variables than
the corresponding linear (d)FBA problem. The increase in complexity is compounded
when iteratively solving an optimization problem. As a result, combining ME-models and
dynamic studies brings along difficulties that arise from the high computational cost of
solving multiple times, with different conditions, these large, non-linear problems. Second,
the use of iterative methods presents the additional challenge of alternative solutions,
which can span several physiologies. It is thus necessary to find, for each time step, a
suitable representative solution that will be used to integrate the system. This also poses
the problem of finding a set of initial conditions for the system. Third, the current state-
of-the-art models present limitations at the proteome level. Lloyd et al. (41) developed
an efficient ME-model for E. coli, and Yang et al. used it to formulate a dynamic analysis
framework (dynamicME) (107) similar to dFBA. However, the assumptions introduced to
alleviate the computational complexity of their model limit some aspects of the modeling
capabilities of their method (Supplementary Note S1). In particular, DynamicME forces
a strict coupling between enzyme concentrations and fluxes. However, a change in the
growth conditions will trigger a change in the proteome allocation to adapt to a new
metabolic state, or lag phase. During that time, it is expected that some previously active
enzymes will not be able to carry flux in the new conditions. Therefore, enzyme flux and
concentration will decouple, unless the enzyme composition of the proteome changes at
the same rate as the environment. As a result, the method cannot simulate lag phase
during glucose depletion and proteome reallocation.

Both dynamic models and models including gene expression mechanisms are important
components in the development of successful predictive biology (42). We propose a
dynamic method which tackles the challenges mentioned above and models diauxie at
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the proteome level. To this effect, we used our recently published framework for ME-
models, ETFL (43). The formulation of ETFL permits the inclusion of thermodynamics
constraints in expression models, as well as the ability to describe the growth-dependent
allocation of resources. ETFL is faster than previous ME-model formulations, thanks to
the use of standard mixed-integer linear programming (MILP) solvers (43). We herein
leverage ETFL for dynamic analysis, in a method called dETFL. It includes a method
based on Chebyshev centering to robustly select a representative solution from the feasible
space at each time step. The representative solution captures phenotypic and genotypic
differences between cells precultured in different media. (d)ETFL solves the problem of
computational accuracy lacking in previous models by performing a systematic scaling
of its constraints, eliminating the need for dedicated solvers. This allows models to be
solved efficiently, without resorting to a strict coupling of enzymes and fluxes. As a result,
whole-proteome reconfiguration during sugar consumption can be simulated, which will
enable the modeling of the lag phase in diauxie.

Herein we model the emergence and dynamics of diauxie arising at the proteome level.
We first propose a small conceptual model of a cell, with a limited in proteome, and
demonstrate its ability to predict diauxie under a minimal set of assumptions. Using the
dETFL method, we subsequently show these assumptions hold in E. coli, and reproduce
experimental results of bacterial growth. Finally, we apply the dETFL framework to
the growth of E. coli in a glucose/lactose mixture in a batch reactor, and demonstrate
that it robustly predicts diauxie as well as the preferential consumption of glucose over
lactose. Overall, dETFL offers a method to robustly survey intracellular dynamics of
cellular physiology under changing environmental conditions.

2.2 Results

2.2.1 Conceptual model for the emergence of the diauxie phenotype
from proteome limitation

We designed a simplified conceptual model, to illustrate diauxie from proteome limitations,
as described in Fig.2.1-a. The model includes both glucose and lactose as substrates, and
it is a simplified version of the E. coli metabolism based on four considerations:

(C1) The biomass carbon yield on glucose is slightly higher than that of lactose (108)

(C2) Glucose and lactose are taken up and converge to a common intermediate metabolite,
glucose 6-phosphate (G6P). Glucose is transformed into G6P by a glucokinase. The
lactose pathway (Leloir pathway) splits the lactose, a disaccharide, into its glucose
and galactose subunits. The galactose is then converted to G6P by a series of
enzymes.

(C3) The Leloir pathway requires one enzyme to split the lactose into glucose and
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galactose, four enzymes to convert galactose into glucose-1-phosphate (109, 110),
and one to convert glucose-1-phosphate into G6P; this bring the total to six enzymes
needed for the synthesis of two G6P, which is equivalent to three enzymes per G6P;

(C4) The molecular weight of the each each of the enzymes in the lactose pathway is
around 60-90 kDa (111), which is heavier than the 33 kDa glucokinase (Uniprot ID
ATZPIR)).

Based on these considerations, we devised a conceptual model of glucose and lactose
metabolism for E. coli. The model accounts for the consumption of the two substrates,
which both synthesize an intermediate metabolite that is then used to make biomass. We
thus made five modeling assumptions:

(A1) Glucose has a slightly higher carbon yield than lactose — based on (C1).

(A2) The glucose and lactose metabolism leading to the intermediate G6P are catalyzed
by two different enzymes — based on (C2).

(A3) The molecular weights of the enzymes are the same, and three times more enzymes
are required for lactose metabolism than for glucose metabolism — based on (C3).

(A4) The catalytic activities of the two enzymes synthesizing G6P are similar.
(A5) The variation of enzyme concentrations reaches a maximum at each time step.

(A6) The total enzyme amount in the cell is limited.

The mathematical formulation of the problem (Fig.2.1-b) involves one mass balance, one
conservation equation of the total enzymes, two inequalities that constrain the metabolism
for glucose and lactose as a function of the corresponding enzymes concentrations, and
two enzyme variation constraints. Due to total enzyme conservation, the two maximum
activity constraints are not independent. This constraint is similar to that found in other
approaches accounting for proteome allocation such as FBAwMC (37).

The conceptual model is able to predict diauxic behavior in our system. The model shows
the preferential consumption of glucose over lactose (Fig.2.1-d), controlled by a switch
in the proteome composition over time (Fig.2.1-c). The diauxic phenomenon is due the
fact that the system will invest all the (limited) enzyme resources into the metabolism
of glucose, which is both the highest yielding substrate ((C1), (Al)), and the one with
least enzyme requirements ((C3) and (A3)). As the glucose is depleted, the uptake flux is
reduced and the system gradually allocates part of its proteome for enzymes needed for
lactose metabolism. This gradual proteome reallocation corresponds to the observed lag
phase in an experimental system. While this conceptual model lacks catabolite repression
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Fig. 2.1. a. Conceptual model used for the preliminary analysis, where “glc” stands for glucose, “lcts” for
lactose. The catalytic efficiency of the enzymes are assumed to be the same. Three enzymes are assumed to
be necessary to produce the intermediate metabolite G6P from lactose, and only one enzyme is required from
glucose. b. Optimization problem used to represent the model. v are fluxes, E are enzyme concentrations, E°
are reference values, MW are molecular weights, p is the mass fraction of the cell occupied by the enzymes
we consider, Emaz is the maximal variation of enzyme concentration over time, and dt is the integration
interval. c. Enzyme content over time for the conceptual model growing on a mixed substrates. d. Changes
in sugar content of the batch reactor over time.

79



Chapter 2. Dynamic ME-models: Emergence of diauxie as an optimal
growth strategy under resource allocation constraints in cellular metabolism

mechanisms, it can still describe diauxie phenomenon from only the proteome capacity
constraint.

The lack of proteome limitation and enzyme catalytic constraints is why the original
FBA approach fails to predict diauxie, which leads to the simultaneous utilization of
both sugar substrates. However, another important constraint to accurately describe
the lag phase is the limitations on the rate of change in enzyme concentrations, without
which the proteome switch would occur instantaneously (see Supplementary Figure S9).
A cell needs time to adapt its proteome, and the limits on the rate of change of enzyme
concentrations represent the catalytic limitation of the cell to break down old enzymes
and synthesize new ones better adapted to the new conditions.

The conceptual model also allows for the study of the conditions under which the system
switches to lactose as a carbon source, and the identification of parameters responsible

for this behavior. If we note respectively for glucose and lactose, the specific growth rates
glc glc
biomass’® Ubiomass’

constants k:il;, ki‘;&s of enzymes at concentrations FEgc, Eics, then the preferred carbon

on each substrate v the carbon yields Yy, Yicts, and the catalytic rate

source will change to lactose if and only if:

glc lets
Ubiomass < Upiomass»
max max
Yolc - Ugle < Yicts * Vlets » (2.2)
glc max Icts max
Yglc ’ kcat " Hele < Yiets - kcat ’ Elcts : (23)

If the amount of available enzymes is represented by p, as a fraction of the total cell mass
(in g.gDW™!), and assuming different molecular weights MW g, the proteome limitation
constraint will be written:

MW g

glc

- Bge + 3MW g, - Biets = p- (2.4)

The maximal achievable values for the enzyme concentrations will be Ey* = p/ MW g,

and B0 = p/ (3MW g,,.). Replacing these values in Eq. 2.3 directly gives the condition

Yelo k‘lj%tts- MWEy. (2.5)
Yicts k%ai 3 : MWElcts

In our conceptual model, MW g,

= MWg,,., and we can simplify Eq. 2.5:

Yele ké?ts ' (2.6)
Yicts k‘gact
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This expression identifies the boundary in the parameter space that separates the prefer-
ential use of glucose versus lactose.

These calculations can be generalized for a more realistic model, by accounting for the
molecular weight of the enzymes and setting an adequate proteome fraction allocated to
carbon metabolism. In practice, the catalytic efficiencies of the glycolytic enzymes are
also higher than those of the Leloir pathway ((A3), see Supplementary Table S2), and the
Leloir pathway enzymes are heavier ((C4), (A4)) which favors glucose consumption even
more. Additionally, we did not consider the synthesis cost of the enzymes used to carry
the fluxes in each pathway. Taking such property into account would also strengthen the
preference towards glucose, as fewer enzymes are needed for its metabolism.

2.2.2 Diauxie in genome-scale, ME-models with thermodynamic con-
straints

Going beyond a conceptual model, we next used dETFL to model diauxie in a ME-model
of E. coli. This method allowed us to study metabolic switches in response to a changing
environment, under the aspect for intracellular enzyme and mRNA concentrations. To do
this, we studied how ME-models can describe diauxie in experiments where E. coli are
grown in two different conditions. Firstly, we investigated the growth of E. coli on glucose.
In this experiment, the cell exhibit overflow metabolism, or the secretion of acetate, even
under aerobic conditions. Experimentally, the bacterium reutilizes the secreted acetate
after glucose depletion, a form of diauxic behavior. This type of study was also used as
the first proof of concept for dynamic FBA (64) Thus, we first validated the dETFL model
by demonstrating its ability to model a first diauxic phenotype: overflow metabolism and
acetate secretion in the presence of excess glucose, followed by acetate reutilization on
glucose depletion. Secondly, we reproduced Jacques Monod’s experiment of the diauxic
growth of E. coli in an oxygenated batch reactor (99) with a limited carbon supply
made of a mixture of glucose and lactose. We aimed at reproducing the results shown in
the conceptual model on a model of a real organism, and characterize the intracellular
dynamics underlying the glucose/lactose diauxic behavior.

To conduct these studies, we used the E. coli model published by Salvy et al. that
is based on the genome scale model by Orth et al. iJO1366 (48), and was assembled
using ETFL. This model is significantly bigger than the conceptual model studied in the
previous section, with 5295 species, 8061 reactions and 578 enzymes. A summary of the
model is available in Table 2.1.

For the integration of the dynamic method, it is important to choose a time step that
respects the quasi-steady-state assumptions on which the FBA and ETFL frameworks
depend (43). We used a time step of 0.05h = 3min for the numerical integration, as
this is around ten times smaller than a typical doubling time for E. coli, and efficiently
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Table 2.1. Properties of the vVETFL model generated from iJO1366.

Growth upper bound & 3.5n1
Number of bins N 128
Resolution % 0.027h~1
Number of constraints 69323
Number of variables 50010
Number of species 5295
— Metabolites 1806
— Enzymes 578
— Peptides 1433
— mRNAs 1433
— tRNAs 21x2
—rRNAs 3
Number of reactions 8061
— Metabolic 1840
— Transport 733
— Exchange flux 330
— Transcription 1433
— Translation 1433
— Complexation 578
— Degradation 2011
Number of metabolites AfG/O 1737
Number of reactions A, G ° 1787
Percent of metabolites A fG/O 93.9%
Percent of reactions A, G ° 69.5%
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balances the integration approximation and solving time.

Diauxic growth on glucose and acetate We compared the accuracy of our compu-
tational modeling of diauxie to experimental findings. Specifically, we studied the diauxic
growth of E. coli on glucose using in batch reactors using experimental data published in
Varma et al. (27) and Enjalbert et al. (112). Previously, Varma et al. (27) used their
data to validate a stoichiometric model of E. coli in quasi-steady state, whereas the data
from Enjalbert et al. (112) was used to validate a population-based approach of dFBA
by Succuro et al. (113).

To reproduce the results of these two batch growth experiments, we applied constraints to
the uptake of glucose and oxygen in the dETFL model (see Materials and Methods). The
initial uptake rate of glucose is set to 15 mmol.gDW~!1.h~!. This value is characteristic of
a typical physiology for E. coli growing on glucose with excess oxygen (27, 64, 48, 113).

We also matched the initial concentrations of cells, glucose, and acetate are set to the
values of the experimental data. Oxygen transfer was considered free (no kinetic law on
uptake) in a first approximation, as done by Succuro et al. (113).

Our simulations agreed with the published experimental data. The temporal evolution of
the glucose and acetate concentrations in the simulated batch reactor agreed with both
the Varma and Enjalbert datasets, as shown in Fig. 2.2-a and 2.2-b, respectively. The
cell concentration and specific growth rate also follow a similar trend (Fig. 2.2-c and
2.2-d). Both of the simulations predict a first phase where the bacteria grow steadily on
glucose, which is sustained until glucose is depleted in the medium. During that time,
acetate is steadily secreted by the cell, due the overflow metabolism. When extracellular
glucose is depleted, the residual acetate is consumed by the cell. We observe a sharp drop
in the cell growth rate, and the simulation ends when no acetate is left in the medium.

We achieved these simulated curves with no fitting . The results are the predictions of
dETFL — given only the starting point of the simulation, and then aligning the curves
based on the time of glucose depletion to account for experimental lag phases. The
discrepancy between the simulation and the experiment data points can be attributed to
several factors. First, several simulation parameters, including the maximal uptake rate
for glucose, oxygen, and acetate, and the acetate maximal secretion rates, are reported
with a 50% variability between the Varma and Succuro studies. We chose a common set
of parameters that showed good qualitative agreement with both datasets. Changing
these parameters can alter the quantitative behavior of the model, but the models always
shows the same two phases. Second, variability in the experimental setup, including the
E. coli strain, can also account for the difference in the reported glucose uptake rate by
their respective authors. ME-models, and ETFL in particular, can account for the strain
variability if the genetic differences (gene knock-outs, enzyme activities, enzyme over-
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Fig. 2.2. Comparison of simulated and experimental data of glucose depletion over time (Varma and Enjalbert).
Simulated data represented by a solid line, experimental data by crosses. a. Temporal evolution of the
simulated extracellular concentrations of glucose, and acetate (full lines), versus experimental data (Varma
dataset) (crosses). b. Temporal evolution of the simulated (full lines) extracellular concentrations of glucose,
and acetate (solid lines), versus experimental data (Enjalbert dateset)(crosses). c. Cell concentration (full line)
and growth rate (dashed line) over time, simulation and Varma dataset (crosses). d. Cell concentration (solid
line) and growth rate (dashed line) over time, simulation and Enjalbert dataset (crosses). = Experimental
values were in optical density (OD600), and were linearly scaled to represent cell concentrations.
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expression) are known. Overall, these results show the dETFL framework for ME-models
is able to reproduce experimental measurements of glucose uptake, acetate secretion,
and biomass production in glucose-acetate diauxic growth. Our findings validate the
dETFL framework as a modeling method to study the batch growth of single organisms
or communities on multiple substrates and suggest its utility for investigating diauxie in
mixed-substrate media.

Diauxic growth on glucose and lactose Diauxic experiments show that, on a mixed
medium of glucose/lactose, E. coli will preferentially consume glucose first, and then
lactose (114, 115). Modeling the diauxic growth of E. coli with dETFL should capture
the lag phases and proteomic reconfiguration that are caused by the shift to a new
carbon source. Therefore, this is an ideal system to challenge the ability of ME-models
to describe the dynamic reorganization of the bacterial proteome. dFBA will always
predict simultaneous uptake of both carbon sources, since it includes no term associated
to the proteomic cost of their uptake. In contrast, ME-models describe the synthesis of
enzymes, and their contribution to the overall proteome. As a result, ME-models capture
the competitive allocation of the proteome to the transport of different carbon sources.

For reference, the pathways related to the glucose and lactose metabolism to G6P are
summarized in Fig. 2.3. The figure highlights the multiple additional steps involved in
the lactose pathway to form G6P, compared to the shorter glucose pathway.

To initialize the model for the simulation of diauxic growth, we first simulate the pre-
culturing in glucose by running the model with the same standard physiology as before,
with an uptake rate of 15 mmol.gDW~!.h~! for glucose, and no lactose initially present.
The model is subsequently run with these initial conditions on a mixture of glucose and
lactose, at the physiologically relevant concentrations of 1 mmol.L~' and 2mmol. L1,
respectively. The cell concentration is set at 0.05g.L~!. After this initialization step, we
ran the simulation according to the method detailed before.

The time evolution of the extracellular metabolite concentrations, cellular exchange fluxes,
specific growth rate, and total biomass of the culture exhibit four phases (Fig. 2.4). We
observe a first phase similar to the previous experiment, where glucose is taken up at
a rapid rate, until its depletion, with the simultaneous production of acetate through
overflow metabolism (Fig. 2.4-a and -b). During this phase, the growth rate is steady and
high (Fig. 2.4-c). Relative to glucose, lactose is taken up at lower rates (Fig. 2.4-a). In
the second phase, the specific growth rate decreases sharply while the proteome reallocates
its enzymes for lactose metabolism. We also observe a drop in acetate secretion during the
proteome switch and short period of acetate re-consumption. This is the lag phase, where
acetate is used as a carbon source while the proteome is reconfigured to metabolize lactose.
This reconfiguration shows a reduction of the total mass of enzymes that convert glucose
into G6P, and an increase in the total mass of enzymes responsible for the conversion of
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enzyme (in the lactose pathway).
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lactose to G6P (Fig. 2.4-d). The third phase is characterized by a peak in lactose uptake
and cell growth, followed by a decline as lactose becomes scarce. In the fourth phase,
when lactose becomes scarce, the residual acetate is being taken up instead of secreted.
Since it happens after lactose uptake falls below a low threshold, it indicates that lactose
consumption is preferred to that of acetate. More details on the time-dependent enzyme
concentrations of the glucose and Leloir pathways can be found in the Supplementary
Figure S3 and S4, respectively.

We next sought to assess the robustness of our diauxie prediction, and to determine whether
the delayed utilization of lactose was an artifact of the initial conditions used in the simula-
tion. We conducted a new simulation that included a preculture wherein the E. coli model
initially only had access to lactose, with an uptake rate of 5 mmol.gDW ~'.h~! Following
this preculture, we ran the simulation with identical initial conditions to previous experi-
ments in terms of glucose, lactose, and cell concentrations.

Over the course of this simulation, we observed the same four phases : (1) preferred glucose
consumption; (2) proteome switch with acetate uptake; (3) lactose consumption; and (4)
acetate reutilization. Initially, glucose is taken up at a significantly smaller rate than that
of the glucose preculture. The glucose uptake rate then gradually increases until glucose
depletion (Fig. 2.5-a and -b). Comparatively, the lactose uptake rate stays low while the
glucose uptake rate increases during the first phase of the experiment. The evolution
of the growth rate is similar to that of the previous experiment (Fig. 2.5-c¢). Though
the model was pre-cultured in lactose, the total amount of enzymes transforming lactose
decreases while glucose is available (Fig. 2.5-d). We observe a delay, close to the cell
doubling time, for initiating the utilization of glucose compared to the glucose-preculture
experiment. We attribute this delay to proteome switch, from a proteome optimized for
lactose consumption, to a proteome optimized for glucose consumption in this phase. In
the second phase, after glucose depletion, we also observe acetate reutilization, while
the enzymes needed for lactose conversion to G6P are resynthesized. In the third phase,
the proteome shifts again to accommodate lactose consumption. As a result, the lactose
uptake rate increases. In the final phase, acetate reutilization initiates again under scarce
conditions. More details on the time-dependent enzyme concentrations of the glucose
and Leloir pathways can be found in the Supplementary Figure S5 and S6, respectively.

These simulations show strong qualitative agreement with the experimental data, for both
the glucose and the lactose precultured conditions. In particular, Kremling et al. (115)
showed a similar evolution of extracellular concentrations with a two-phase consumption
of sugars. They also demonstrated that intracellular LACZ enzyme levels increase when
lactose is the sole substrate left, and decrease when glucose is consumed — even after
a lactose pre-culture (Fig. 2.4-d and Fig. 2.5-d). Interestingly, these agreements were
achieved without adjusting any of the parameters or settings of the original ME-model.
However, a key element for the consistency between the model simulations and the cellular
state is a robust accounting of the intracellular states (mRNA species, enzymes and
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fluxes) between consecutive time steps. This has been made possible by the use of the
Chebyshev centering of the cellular states in the dETFL formulation as detailed in the
Methods section.

Our results strongly suggest that diauxie in E. coli is an optimal growth behavior. Our
conceptual study suggests it is the consequence of the maximization of the cell-specific
growth rate under the constraint of a limited proteome. This optimal behavior of
privileging glucose consumption over lactose does not come from the pre-culturing step,
but instead from the optimality of the system itself under the constraint of proteome
allocation for sugar consumption. We performed additional studies and demonstrated
that this behavior is not due to differences in enzyme catalytic efficiencies between the two
pathways, as switching the kc,t values does not change the trend (Supplementary Figure
S10). Finally, we showed that the lag time observed in experiments is determined by the
proteome reallocation, and quantitavely predicted changes in the amount of enzyme for
each pathway.

2.3 Discussion

We devised both a conceptual model and a dynamic ME-model which reproduce a diauxic
behavior in F. coli, a phenomenon that cannot be captured with current state-of-the-art
models. From simulation, we determined that the preferential consumption of glucose over
lactose in E. coli is a combined effect of its limited proteome size, enzyme properties, and
substrate yield. Our model demonstrates, at the proteome level, the mechanisms of the
proteome switch between conditions, and provides a method to resolve the intracellular
dynamics of bacterial growth. In agreement with experimental observations, our model

predicts a diauxic behavior on a medium of mixed of sugars.

In our simulations, we observed lag phases concurrent with proteome switching. The
co-occurrence of the proteome reallocation and acetate reutilization suggests secreted
acetate can work as an energy reserve and help the cell adapt to changing environmental
conditions. The dETFL model was also able to capture different dynamic trajectories in
cell fates that were dependent on the pre-culture conditions.

The preferential consumption of one carbon source vs the other is the result of an optimal
trajectory of the system under the constraints of mass-balance, resource allocation
and thermodynamics. These constraints are directly connected to the chemistry of
the metabolic pathways in bacteria. Our conceptual model suggests that the diauxic
phenomenon might be controlled through the engineering of three aspects: (i) the specific
activity of enzymes (kcat), (i) the molecular weight of the enzymes, and (iii) the number
of steps involved in the substrate metabolism. The molecular weight and activity of
enzymes can be altered through protein engineering, and alternative chemistries from
heterologous pathways provide avenues for modifying substrate metabolism (116).
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While dETFL does not account for catabolite repression, it can quantitatively describe
the behavior of a cell operating under the influence of the lac operon. Our results imply
that the genetic circuits responsible for catabolite repression are evolved as a controller to
implement robust dynamic control of the optimal growth. In this regard, the catabolite
repression through the lac operon observed in wildtype E. coli can be considered as a
control system that ensures optimal growth of the organism. Under the selective pressure
of evolution, the system might have evolved the lac operon to preferentially metabolize
glucose in mixtures of sugars as it guaranteed an evolutionary advantage (faster growth)
compared to substrate co-utilization (103).

As a new approach, dETFL avoids the pitfalls of simplifying modeling assumptions used
in the current state-of-the-art computational models of metabolism and gene expression.
Because of this, dETFL is the first dynamic ME-model formulation that can model lag
phase and gradual proteome reconfiguration. However, despite these innovative findings,
there are still drawbacks to dynamic constraint-based models that need refinement. For
example, finding a good representative solution at each time step is extremely important.
Here, we used the Chebyshev ball approach, as it is a single linear problem that is com-
putationally simpler than other methods such as variability analysis or sampling. While
we have reduced the computational burden of ME-models enough to efficiently perform
iterative solving, there are new opportunities to further alleviate the computational cost
of simulations. Directions to explore include fixing the integer variables of subproblems
to reduce the NP-hardness of the model, and using quadratic programming, for instance,
to perform an ellipsoid approximation of the enzyme solution space. Additionally, system-
atically reduced models, where less important parts of metabolic machinery are omitted,
can also be used to reduce the complexity of the simulations (117, 118). With a reduced
computational cost of simulations, exciting new research targets are also within reach,
such as the dynamic effects of gene knock-outs or drug-induced changes in cell physiology.

The new computational formulations developed herein also offer new opportunities to test
other hypotheses that explain diauxie. Succurro et al. (113) postulated the the existence
of two subpopulations of E. coli, where one obligately consumes glucose, while the other
consumes acetate. Although the study of communities including thermodynamics-enabled
ME-models is, for now, a computational challenge, cross-testing the hypothesis we present
in this paper with a similar community-based context would certainly yield important
insights on the respective role of proteome limitation and substrate competition in the
emergence of diauxic behavior.

The inhibitory effect of glucose on certain parts of the metabolism is multiple, including
catabolite repression, transient repression and inducer exclusion (119). Moreover, more
complex regulation mechanisms are found in natural environments. For example, it
has been shown that, on its natural marine substate, the bacterium Pseudoalteromonas
haloplanktis evolved regulation mechanisms allowing simultaneous diauxie and substrate co-
utilization (120). Such high-order behavior might also have its origin in an optimal growth
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program, and finding the biochemical constraints responsible for it would yield valuable
insight on the optimal growth of organisms on complex media. In general, elucidating
the emergence of regulation mechanisms in the context of evolutionary pressure will
considerably increase our understanding and ability to engineer regulation systems, which
are ubiquitous in biology, from wild-type E. coli to cancer cells. dETFL is an important
step forward in this direction. Its use to uncover the optimality principles guiding the
emergence of cellular regulatory control systems is key to a better understanding and,
ultimately, mastery of metabolic engineering, be it applied to industrial hosts or the

development of cell-based therapies.

2.4 Material and Methods

2.4.1 Rate of change of fluxes

One of the important points in the original formulation of dFBA is that the rate at
which intracellular fluxes change is constrained. In the dFBA formulation, one imposed

constraint is:
v(z,t+ At) —v(z,t) < 0 At, (2.7)

where ©™?* . At is defined as the maximum change of flux between two time points.
However, we the relationship between flux and enzyme concentration, as well as the
dynamic mass balance, can be expressed in the following way (43):

v(z,t) < keatF, (2.8)
@ deg dil
dt

with all the rates strictly positive. From this, it directly follows that

B = o BT (2.10)
_Udeg _ ,Udll g E'vmax S ,Usyn’ (211>

where we can rewrite E™# in a two components, one strictly positive, and the other
strictly negative: E™ax — E'ffa" — E™ax_ Using expression relationships from ETFL, it is
hence possible to bound the maximal rate change of fluxes in a fashion that is compatible

with linear programming:
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E?ax S,Udeg + vdil’ (2-12>
B <o, (2.13)

These two constraints represent, respectively, the limitation in the decrease (dilution and
degradation) and increase (synthesis) of the enzyme concentration . We can rewrite these
in terms of dETFL variables:

t; t; n
0< E; — Ej < vjy - At, (dEP;)

t; t; deg dil
0< Bf — B < (v + o) - At (dEN;)

2.4.2 Variability in the estimation of macromolecule concentrations

A key element in ETFL is that macromolecule concentrations are an explicit variable in
the optimization problem. In dETFL, these concentrations are important because they
will constraint the feasible space for the calculation of next time step.

The formulation of ETFL relies on the approximation of the growth rate of the organism by
a piecewise-constant function in the dilution term of the mass balances of macromolecules.
This in turn allows the linearization of the bilinear term in the mass balances. However,
this approximation has an error, which is given by the resolution 7 of the discretization.
Given 1 the maximum growth rate of the model, and N the number of discretization
points, the resolution of ETFL is given by n = % We can easily obtain the resolution of
the estimation of a macromolecule concentration from this quantity.

The mass balance of a macromolecule X at concentration [X] under steady state assump-
tion is written in ETFL:

yr — SV _ Udeg _ Udﬂ, (2.14)
:'Usyn_kdeg'[X] — K [XL (2'15>
=0 2.16)

where v, v9¢8 and v4! are respectively the synthesis, degradation and dilution rates of
the macromolecule, mu is the growth rate, and kqeg is the degradation rate constant of
the macromolecule. In ETFL, p is approximated by @ = pn, with p € {0..N}. 7 is the
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resolution of this approximation, which means, at all times:

3

-1 (2.17)

e’\_
K [“ 2

57

From Eq.2.15, and the relationship given in (2.17), we can rewrite:

X] = (218)
B kdeg +p .
LSy LSy
_ < X< —— 2.19
kdeg"‘ﬂ"‘% [ ] kdeg_’_:u_g ( )

We use this expression to represent the incertitude on the macromolecules concentrations
at the previous time step, which is then used to constraint the current time step.

2.4.3 Backwards Euler integration scheme

At each time step, we operate an integration of the model between two time points. To
this effect, using a robust integration scheme is necessary to guarantee a solution quality
that is as good as possible. We chose to use a backwards (implicit) Euler integration
scheme given its ability to handle stiff problems (121). Usually, a drawback of implicit
schemes is that they require to solve an implicit equation to define the state of the system
at each time step. In contrast, explicit methods simply require to apply a defined set of
calculations (e.g. a linearized state function) on the current state. In our case, however,
there is little cost associated to using an implicit method rather than the explicit Euler
method, since we already need to solve a whole MILP problem to compute the solution
to the dETFL problem at each time step.

In this context, we can rewrite Eqs. dEP; and dEN; in their Euler-form:

0 < Ej(t:) — Ej (tiy1) < (”?eg (tirr) + 0§ (ti+1)> - At, (dEN )

0 < Ej (tiv1) — Bj () < 07" (tira) - A, (dEP;)

where E; is the concentration of a given enzyme at the previous time step, E; (tj11),
e
E; (t;) is a variable constrained around the value of the previous solution, as explained in

(tit1), v;leg (tiv1), v§" (tiy1) are variables of the dETFL problem in the next time step.

the previous section.
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2.4.4 Chebyshev center

One important issue when dealing with both (mixed-integer) linear optimization and
iterative solving is the multiplicity of solutions. Indeed, the optimality principle in LP
only guarantees a unique global optimum value for the objective, but not a unique
optimal solution for the variables. In fact, at each time point, there is most often a
(piecewise-)continuum of solutions (including flux values, macromolecule concentrations
...) that can satisfy a maximal growth rate, while describing different physiologies. For
example, two optimal states, using different pathways with a similar enzyme cost, will
yield different proteomes and associated fluxes. In addition, due to the constraints applied
on the rate of change of macromolecule concentrations, in each subsequent time point, the
proteome, transcriptome and flux values will be dependent on all the previous solutions.
Because of these two factors, each new realisation of the integration procedure might
yield different results.

An additional issue is that simplex-based solvers tend to give sparse and extremal results
(corners of the explored simplex), which do not represent accurately the full extent of
the considered solution space. Several methods can alleviate these issues, all based
on finding a good representative of the solution space. One first solution is to use as
observation the mean of the variability analysis, rather than a single optimal solution.
This however requires O(2n) optimizations to be carried out. Another way would be to
sample the feasible space, but the sheer size of dETFL models makes sampling impractical.
The Supplementary Figure S7 shows a 2-D example of the difference between these 3
approaches. The method we chose is to try to find the maximally inscribed sphere in the
solution space. The center of this sphere, called the Chebyshev center, can be found by
optimising a single linear problem if the solution space is a polytope(122). It is the case
in dETFL, as the problem is defined with linear inequality constraints.

In the case of a polyhedron defined by inequalities of the form aiTx < b;,x € R, finding
the Chebyshev center of the solution space amounts to solving the following optimization
problem:

maximize r
ra (2.20)
subject to @, x + [lai|,r < bi

This is similar to adding a common slack to all inequalities and maximize its size, which
maximizes the distance of the solution to the inequality constraints. However, not all
variables and constraints need to be considered in the definition and inscribing of this
sphere. In particular, we are interested in a representative solution for macromolecule
concentrations, which only play a role in a limited set of constraints. To this effect, we
define Z. and J., respectively the set of inequality constraints and variables with respect
to which the Chebyshev center will be calculated. Let us also denote £ the set of equality
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constraints of the problem, a;, ¢; respectively the left-hand side of the inequality and
equality constraints, and b;, d; their respective right-hand side. From there, we can define
the modified centering problem:

maximize 7r
, X

subject to W=,
aj v+ |1z, 0aill,m < b, Vi€, (2.21)
ajx<b;, VidI,
cxr=d VkeE,

where p* is the maximal growth rate calculated at this time step, r the radius of the
Chebyshev ball, x the column vector of all the other variables of the ETFL problem, 1 7,
has for j* element 0 if j € 7., else 1, and o denotes the element-wise product between
two vectors. Thus, |17, o a;||, is the norm of the projection of the constraint vector onto
J.. We show an example illustration in 3D in the Supplementary Figure S8.

For enzymes, for example, it is akin to making the model produce more enzymes than
necessary to carry the fluxes, while respecting the total proteome constraint. By maxi-
mizing the radius of the sphere inscribed in the solution space, at maximal growth rate,
we are effectively choosing a representative solution of the maximal growth rate feasible
space. We then use this solution as a reference point for the next computation step.

All simulations in this paper perform Chebyshev centering on enzyme variables at each
time step.
2.4.5 Initial conditions
Since dETFL is an iterative method, it is necessary to set an initial reference point (initial
conditions) from which the dynamic analysis will integrate over time. The initial solution
is set up as follows:

1. Set typical uptake fluxes for carbon sources and oxygen,

2. Perform a growth maximization using ETFL

3. Fix the growth to the optimum,

4. Find the Chebyshev center of the solution space.

The solution reported by the latter optimization problem is then used as a starting
solution for the dETFL analysis.
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2.4.6 Extracellular concentrations

At each time step, extracellular concentration are updated following a standard Euler
scheme, similarly to what is done in Mahadevan et al. (64). The extracellular concentra-
tions of glucose, lactose, and acetate, follow a system of ordinary differential equations:

d[ilc] —vge - X, (2.22)
d[ﬁd —tae - X, (2.23)
d|Lcts
[dt | e X (2.24)

We linearize this system into the following forward Euler scheme:

(Gle], 1, =[Glc], +vge-X - At, (2.25)
[Acl,, =[Ac], +vac -X - At, (2.26)
[Lets], = [Lets], + viers X - At. (2.27)

We use these linearized equations to update the extracellular medium after the solution
to each time step has been computed.

2.4.7 Model

The model used is the the vETFL model of iJO1366, presented in the original ETFL
publication (43). 15 additional enzymes were added to the model to properly account
for the protein cost of transporting glucose, lactose and galactose from periplasm to the

cytoplasm. A simplified metabolic map of the glucose, lactose, and galactose pathways to
G6P is shown in Fig. 2.3.

2.4.8 Kinetic information

The Michaelis-Menten parameter K gle — 0.015 mM for glucose was taken from the original
dFBA paper (64). The K = 1.3mM of for lactose was obtained from a study by Olsen
et al. on the specificity of lactose permeases (123). Details on the added enzymes are
available in the Supplementary Table S2. The Michaelis-Menten parameter VES = 15mM
was used similarly to previous work (64).
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Because of incertitude in the values found in the literature, Véf;f( was directly computed
from the catalytic rate constants of enzymes consuming periplasmic lactose (LACZpp,
LCTStpp, LCTS3ipp). Since ETFL gives access to enzyme concentrations, we can rewrite
J

the expression of VIS using catalytic rate constants [

max

e =3kl - 1B, (2.28)
jeL

where L is the set of periplasmic enzymes consuming lactose. Taking this into account

allows to replace the parameter V' by an explicit internal variable.

Acetate transport is assumed to be mostly diffusive (124), and its secretion rate was
bounded at 5 mmol.gDW~'.h~!, and its uptake to 3 mmol.gDW 1. h~!. These values are
of the same order of magnitude as in previous studies (27, 64, 113) Oxygen gas-liquid
transfer kinetic parameters are taken from Mahadevan et al. (64).

2.4.9 Implementation

The code has been implemented as a plug-in to pyTFA (94), a Python implementation
of the TFA method, and ETFL (43), an implementation of ME-Models accounting for
expression, resource allocation, and thermodynamics. It uses COBRApy (95) and Optlang
(96) as a backend to ensure compatibility with several open-source (GLPK, scipy) as well
as commercial (CPLEX, Gurobi) solvers. The code is freely available under the APACHE
2.0 license at https://github.com/EPFL-LCSB/etfl.

2.5 Supporting Information Appendix (SI)

Supplementary Note S1

Note on the DynamicME Assumptions

Supplementary Table S2

Properties of glucose and lactose transporting reactions and enzymes. Reaction names
from the original 1JO1366 model (48). Enzyme symbols adapted from Biocyc (65). kcat
values taken from Lloyd et al. (41).
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2.5. Supporting Information Appendix (SI)

Supplementary Figure S3

Enzyme levels of the glucose pathway, in the glucose/lactose diauxie experiment with
glucose pre-culture.

Supplementary Figure S4

Enzyme levels of the lactose pathway, in the glucose/lactose diauxie experiment with
glucose pre-culture.

Supplementary Figure S5

Enzyme levels of the glucose pathway, in the glucose/lactose diauxie experiment with
lactose pre-culture.

Supplementary Figure S6

Enzyme levels of the lactose pathway, in the glucose/lactose diauxie experiment with
lactose pre-culture.

Supplementary Figure S7
2D example the different schemes to find a representative point of the space: variation
analysis, sampling, or Chebyshev centering.

Supplementary Figure S8

3-Dimensional example of a Chebyshev center. The feasible space is denoted by the
polytope C. The Chebyshev center with respect to variables Ey and Fs is Xg, g,. It is
the center of the largest 2-D sphere on a plane parallel to (F1, E2) that is inscribed in C.
This sphere exists on the plane P, materialized in light blue.

Supplementary Figure S9

Enzyme composition of the conceptual model when no constraints are applied to the
rate-of-change of enzyme concentrations.

Supplementary Figure S10

Figure for the switched k.at experiments.
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This chapter details an important milestone in models of metabolism and expression. We
describe the first ME-model of a eukaryotic organism, S. cerevisiae, also known as baker’s
yeast. An important mechanism of S. cerevisiae physiology is its ability to perform
ethanol fermentation while being in an oxygenated environment, and in presence of an
abundance of glucose, also known as the Crabtree effect. Such behavior seems at odds
with the idea of optimal growth in stoichiometric models, because fermentation does not
appear necessary to the system’s metabolism, and yet each carbon lost as fermented
ethanol is carbon that does not participate in the biomass. We show in this chapter that
the Crabtree effects stems from the constraints on the proteome of S. cerevisiae, and that

our models quantitatively captures this effect without fitting experimental data.

The chapter is adapted from a manuscript in preparation. Vassily Hatzimanikatis, Omid
Oftadeh, and I designed the study and wrote the article. Omid and I wrote the code to
adapt ETFL to eukaryotic organisms. Omid Oftedeh ran the simulations and did the
enzymatic data curation. I provided Omid with methods and scripts I used to write
ETFL for E. coli, and helped him adapt them to his use case. Maxime Curvat, under the
supervision of Maria Masid Barcén and Ljubisa Miskovi¢, curated the thermodynamics
data for the yeast model. Maria Masid Barcén performed extensive quality control of the
annotations, and both Maria Masid Barcén and Ljubisa Migkovié¢ wrote the section on

thermodynamic curation.

All the code and documentation is available under the APACHE 2 license at:
https://github.com/EPFL-LCSB/yetfl
https://gitlab.com/EPFL-LCSB/yetfl
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3.1. Introduction

3.1 Introduction

Metabolic networks are the most widely studied and modeled type of biological networks,
with more than six thousand genome-scale metabolic models (GEMs) being reconstructed
for archaea, bacteria, and eukaryotes (24, 34). The GEMs are created by associating the
genes in an organism’s genome with enzymes and reactions in databases, which in turn,
enables the study of the the organism’s phenotype based on its genotypic information.

In particular, Flux Balance Analysis (FBA) is a constraint-based optimization technique
that allows to compute the metabolic flux of each reaction in a metabolic network by
formulating a linear programming problem and optimizing an objective function to select a
solution in the feasible space (28). The objective function is typically chosen to represent
biologically relevant objectives such as selection pressure (31, 32). Despite its wide
applicability, FBA is unable to predict some important features of metabolic networks.
Indeed, it has been found to predict biologically irrelevant solutions, including cycles
with unrealistically high fluxes (53), or thermodynamically infeasible solutions (35, 36).
Moreover, FBA is unable to account for limited catalytic capacity of the enzymes and
does not model the cellular expression system.

To improve FBA and and its modeling abilities, additional constraints that represent
biological phenomena, either from empirical or mechanistic evidence, have been introduced.
Thermodynamic flux analysis (TFA) (35, 36) was developed along this idea, and it enforces
the coupling of reaction directionality with the reactions’s Gibbs free energy to produce
thermodynamically feasible solutions. More importantly, it also enables metabolomics
data integration through the addition of variables representing metabolite concentrations.

The GECKO formulation (Genome-scale models with Enzymatic Constraints using Kinetic
and Omics data) adapts FBA to account for limited catalytic activity of enzymes by
including enzyme concentrations as variables to the constraint-based problem (38). The
method is able to capture a realistic maximum specific growth rate, proteome-limited
growth, and the occurrence of overflow metabolism, in S. cerevisiae (38). The introduction
of explicit enzyme concentrations as variables also enables the direct integration of
proteomics data. However, GECKO does not explicitly consider the cost of protein
synthesis. Instead, it assumes that a peptide’s share in a protein pool is proportional
to the inverse of its molecular weight. In this context, the molecular weight represents
the cost of the enzyme in terms of proteome allocation. However, the actual cost of
synthesizing the enzyme is absent from the formulation. Therefore, the method does not
account for the competition for amino acids, energy, and polymerizing enzymes between
different proteins, while all the latter phenomena play an important part in the expression
of genes.

Metabolic and Expression models (ME-models) form another class of constraint-based
models, which in addition to the metabolic and the catalytic constraints include the
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cellular expression system (39, 40, 43). ME-models can predict the concentration of
each mRNA and enzyme while considering its cost of synthesis and a total cellular
expression capacity. The original formulation of these models allows the integration
of proteomics and transcriptomics data. However, this same original formulation of
ME-models was incompatible with the integration of thermodynamics constraints, and
consequently metabolomics data could not be incorporated. The presence of bilinear
terms in the original formulation of ME-models warranted the use of special nonlinear
optimization procedures and high precision solvers (45, 46, 41). As a result, adding
thermodynamic constraints into ME-model formulations would necessitate solving a Mixed-
Integer Nonlinear Programming (MINP) problem. Indeed, thermodynamic constraints
from TFA require integer variables, making TFA a Mixed-Integer linear Program (MILP).

To address these issues, a new formulation for ME-models was recently proposed. The
approach, called Expression and Thermodynamics-enabled Flux models (ETFL)(43),
avoids bilinear terms by discretizing growth and solving locally linearized mixed-integer
problems instead of a MINP problem. Like previously published ME-models (40, 41), the
ETFL model was developed for E. coli. However, the ETFL formulation can readily be

extended to study eukaryotic organisms.

S. cerevisiae is one of the industrially most relevant organisms (125, 126), and it has been
widely used for biological and medical research studies (127). Because of its ubiquity
in metabolic engineering, several GEMs of this organism have been published over the
years (128, 129, 130, 131, 132, 133). Despite its industrial significance and the academic
interest around this microbe, so far no ME-model of S. cerevisiae has been developed.
This might be partly because eukaryotic organisms require additional considerations in
modeling the compartmentalized cellular expression system. Here, we propose a ME-
model for S. cerevisiae, yETFL, which is based on an extended ETFL formulation. The
model also includes a thermodynamic curation of its metabolites and reactions, and
can readily integrate metabolomic, proteomic, and transcriptomic data. The presented
methodological developments of ETFL also pave way for a generalized development of
ME-models for other eukaryotes.

3.2 Results and Discussion

3.2.1 Model description

Four ME-models of S. cerevisiae were constructed from the consensus Yeast8 model
published by Lu et al. (133). The models boundary fluxes are set to correspond to
a minimal medium, with only inorganic metabolites and a carbon source. A general
description of different yETFL models and their features is provided in Table 3.1, and

the nomenclature of the different models used is detailed in Table 3.2.
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Table 3.1. Properties of the vVETFL model generated from Yeast8.

Growth upper bound 1 0.75h1
Number of bins N 128
Resolution £ 0.0058h
Number of constraints 92429
Number of variables 66746
Number of species

— Metabolites 2689
— Peptides 1393
— mRNAs 1393
—~ rRNA 6
Number of enzymes

— Metabolic 1059
— RNA polymerases 2
— Ribosomes 3
Number of reactions

— Metabolic 2678
— Transport 1047
— Exchange flux 243
— Transcription 1393
— Translation 1393
— Complexation 1065
— Degradation 2458
Number of metabolites A fG/o 2433
Number of reactions ATG/O 3184
Percent of metabolites A fG/" 90%
Percent of reactions ATG/" 80%

yETFL comprises 1059 proteins coupled to 2588 reactions. Among these, we found the
catalytic rate constants (keq¢) for 943 enzymes. The catalytic rate constant of 39 enzymes
were approximated by the median k.. value in S. cerevisiae, and for 77 enzymes that are
associated with 167 transports we assigned arbitrarily high k..; value, to ensure that the
corresponding reactions are not catalytically constrained (see Materials and Methods).
Among all the proteins, there exist 107 complexes; the others are monomeric enzymes
composed of a single peptide.

3.2.2 Prediction of specific growth rate

A traditional test to assess the quality of a genome-scale model of metabolism is to predict
the maximal specific growth rate of the organism it models. However, FBA predicts that
the growth rate increases linearly with carbon uptake. In reality, however, the growth rate
reaches a plateau at high substrate uptake. Thus, the range in which FBA predicts correct
growth rates is limited. In particular, the finite proteome size of an organism is known
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Table 3.2. Nomenclature of the models used in the study of the S. cerevisiae model Yeast8. EFL stands for
Expression and FLuxes, ETFL for Expression, Thermodynamics, and FLuxes. The c- and v- prefixes indicates
the inclusion of constant or growth-dependent biomass compositions

growth-independent growth-dependent
biomass composition | biomass composition
(-) thermodynamics cEFL vEFL

(+) thermodynamics cETFL vETFL

for being a limiting factor in both growth rate and carbon uptake (37, 101, 134). Since
ETFL, and ME-models in general, account for gene expression capacity, including the

limited proteome and transcriptome sizes, it is able to predict proteome-limited growth

(39, 40, 43).

ETFL can model proteome (and transcriptome) limitation in several ways. The biomass
composition is directly tied to the size of the proteome and of the transcriptome, since
these two will account for mRNA and protein content in the cell. The study of models with
different biomass compositions thus entails the study of models with different proteome
and transcriptome sizes. Thus, we investigated the usage of both constant (cETFL) and
growth-dependent (VETFL) biomass compositions by simulating the maximal growth
rates predicted by our thermodynamically enabled ME-models at various glucose uptakes
(Fig. 3.1). In both cases and in contrast to FBA, the growth rate reached a plateau at
higher values of the glucose uptake rate, which is in accordance with the experimental
results by Van Hoek et al. (135). When glucose is in excess, higher fluxes require higher
amounts of enzymes. However, the limitations in the expression system and the catalytic
activity of enzymes prevent the growth rate from increasing further. High growth rates
also incur high dilution rates, which further increases the cost of carrying higher fluxes.
In particular, we observe a shift from glucose-limited growth to proteome-limited growth
at uptakes around 4 — 5mmol - g];\l,v -h™!. The maximum predicted growth rate with
cETFL was 0.46 h™!, while vVETFL predicted 0.42 h™!. These results agree with the
experimentally measured maximal specific growth rate in the literature that are commonly
in the range of 0.4-0.5 h=! for different strains in a minimal medium. (136, 137). We also
observe that the vETFL model grows faster than the cETFL model at low uptake rates;
the trend is reversed at higher growth rates. Since cETFL is extracted from the FBA
biomass composition, which is fixed at an average point, it is indeed expected that a
model with a better granularity captures lower requirements at low growth rate (increased
biomass yield, and hence, slope), and higher ones at high growth rate (decreased biomass
yield, and hence, slope).

We observe small discrepancies in the maximal growth rate between the experimental data
and the yETFL results for the glucose uptake rate ranging from = 4mmol - gB\lN -h7!
to &~ 12mmol - gg\l,v -h~!. A possible cause for these discrepancies might be the growth-
dependence of some parameters, such as the ribosomal elongation rate. To avoid over-
constraining the model, we used the highest reported values for ribosomal elongation
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rate, which usually occurs at the high growth rates (47, 138). Since our formulation
accounts for growth-dependent parameters, as soon as our knowledge about the variation
of these factors with growth rate is augmented, we can integrate this knowledge into
the formulation of yETFL. Another explanation of the difference might come from the
regulation system used by S. cerevisiae when transitioning from nutrient-limited growth
to proteome-limited growth. It is important to remember ME-models work under the
assumption of optimality (in this case, maximal growth rate), and that the cellular system
evolved under selection pressure to match this optimality. In this context, the regulatory
network of S. cerevisiae can be seen as a control system that pushes the metabolism
towards optimality, and deviations from model optimality in transition regions are simply

limitations of the regulatory system!S.
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Fig. 3.1. Growth rate of the yETFL models (orange and blue) and Yeast8 FBA (dashes) with respect to
glucose uptake. Experimental data (crosses) by Van Hoek et al. (135)

3.2.3 Gene essentiality analysis

A classic way to ascertain the accuracy of a GEM is to compare in silico gene knock-outs
with in vivo data from the Stanford Yeast Deletion datasets. In gene essentiality analysis,
we simulate the growth of an organism for each gene knock-out and compare the predicted
and experimental values using a confusion matrix, which describes true and false positives
(the cell grows without the gene) or negative (the cell needs the gene to survive). The gene
essentiality results for the metabolic genes are slightly improved in cEFL compared to the
FBA models (Fig. 3.2-b and -c). This shows that we were able to conserve the quality
of gene-reaction associations moving from the FBA to the ETFL formalism. Compared
to the FBA model, ETFL models include genes that correspond to RNA polymerases
and ribosomes, which is also why the amount of true negatives (the gene is essential

15This interpretation is an important topic of chapter 2
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and predicted as essential) is increased. The cETFL model predicted five essential genes
that were predicted as non-essential using FBA (Fig. 3.2-d). The increased number of
essential genes in the cETFL is due to the more restricted reaction directionalities after
the integration of thermodynamic constraints.

Experiment
Non-essential
FN

a) Prediction Essential
Essential

Non-essential

b) Yeast8 | Essential Non-essential -

% True Prediction

Essential 53 12 80
Non-essential 70
MCC =0.48 60
50
c) cEFL | Essential Non-essential 40
Essential 72 16 30
Non-essential 20
MCC = 0.50 20
10
d) cETFL | Essential Non-essential 0
Essential 74 19
Non-essential
MCC = 0.50

Fig. 3.2. Confusion matrices for gene essentiality studies. a. Conventions from used for gene essentiality. TN
is True Negative. FN is False Negative. FP is False Positive. TP is True Positive. The color shading represents
how good the classification is in the experimental class. Perfect classification should have a strict red first
diagonal, as shown on this example. b. Gene essentiality prediction for the FBA model Yeast8, yielding a
Matthew's correlation coefficient (MCC) of 0.48. c. Gene essentiality prediction for the genes expressed in
the cEFL model of Yeast8, yielding a MCC of 0.50. d. Gene essentiality prediction for the cETFL model of
Yeast8, yielding a MCC of 0.50.

3.2.4 Crabtree effect

Overflow metabolism a phenomenon in which organisms produce energetic carbon
compounds as byproduct of their growth in the presence of excess carbon substrate
(135, 139, 140) (98). Such behavior can seem surprising, as these carbon compounds
could theoretically still be used for biosynthesis, and their production directly decreases
the yield of an organism’s biomass synthesis — a seemingly competitive disadvantage.
Several hypotheses can justify overflow metabolism, a chief one among them being the
limited proteome capacity of a cell.(37, 101, 134)!6.  Overflow metabolism in yeast is
called the Crabtree effect: after a critical growth rate, which is strain-specific but usually

16This topic is also discussed in chapter 2.
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close to 0.3 h™!, the cells shift from pure respiration to a combination of respiration and
fermentation, in the presence of oxygen excess. Fermentation is an energy-producing
process that is less efficient than the aerobic respiration, but does not depend on the
presence of molecular oxygen. It also produces byproducts, under the form of COs and
ethanol in S. cerevisiae.

FBA is not able to predict the Crabtree effect unless some ad hoc changes are made in the
constraints or the objective function (101). Since yETFL considers both the limitations
in the catalytic capacity of the enzymes and the protein expression machinery, it is able
to predict the metabolic shift of overflow metabolism at higher growth rates (Fig 3.3). We
observe the simulation predicts at growth rates higher than 0.38 — 0.40mmol - gB\IN -h~!
the secretion of ethanol, and an increase in CO2 production, while Oy consumption is
reduced. The model showed good qualitative agreement with the experimental data from
Van Hoek et al. (135) in aerobic, glucose-limited chemostat fermentation. The vE(T)FL
models present an onset of Crabtree effect that is earlier than the one for the cE(T)FL
models (Fig 3.3). Since the VETFL model has a different (growth-dependent) proteome
capacity from that of cETFL (constant), it is expected that overflow metabolism does
not occur at the same glucose uptake.

Experimental data suggests the Crabtree effect should happen earlier than what the
models predict. We believe the late predictions of our models stem from the conservative
(higher) values chosen for the catalytic rate constants of enzymes (see Materials and
Methods). As such, less enzymes are needed to carry more flux, which pushes the point
at which the proteome capacity becomes limiting.

It is worth noting that yETFL was able to capture the occurence of the Crabtree effect
only by integrating experimentally measured parameters and without making ad hoc
modifications in the model or in the formulation. In particular, no proteomics were used
to show the onset of the effect, which stems purely from the stoichiometric and expression
constraints.

3.3 Conclusion

In this work, we developed a ME-model for a eukaryotic organism, S. cerevisiae. The
adaptation of the ETFL formulation required to consider compartmentalized expression
systems, with separate ribosomes and RNA polymerases. We validated the growth
predictions of the model against experimental data, and showed its gene essentiality
predictions are on par with the state-of-the-art FBA model of yeast. With a model that
represents and constrains the proteome of the cell, we were able to reproduce emergence of
the Crabtree effect, and observe the secretion of ethanol in aerobic conditions — without
actually integrating experimental data, as opposed to previous descriptions of the Crabtree
effect (38).
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Fig. 3.3. Comparison of experimental data from Van Hoek et al. (135) (crosses) and simulation results (lines)
for the Crabtree effect. Absolute exchange rates of glucose (orange), Oz (purple), CO2 (light blue), and
ethanol (dark blue) are shown. a. cEFL model. b. vVEFL model. c. cETFL model. d. vETFL model.

ME-models improve upon models of metabolism by considering the coupling between
metabolism and expression system. Such detailed description of the gene expression
mechanisms allows the elucidation of intracellular behaviors underlying cell physiology,
for instance the Crabtree effect in this work. Another advantage of ETFL is it allows a
direct extension of the model to other types of analyses. We studied here the Crabtree
effect in a steady state manner; yet understanding its emergence in a dynamic setting, as
done previously for the E. coli overflow metabolism (98) will yield valuable insights on the
optimality of the regulation mechanisms in yeast. Additionally, the ETFL formulation
also allows the integration of multiple types of data, such as proteomics, transcriptomics,
metabolomics, and fluxomics. Integrating experimental measurements from strains of
interest will also help better characterize their intracellular state, a crucial element to
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better understand and engineer cell lines.

The method presented here is readily adaptable to any eukaryotic organism for which a
well-curated GEM is available. The quality of the information about enzymes (catalytic
rate constants, composition) will change the quantitative predictions of the model, but
average or estimated values still provide an acceptable replacement, as long as key
enzymes such as ribosomes, polymerases, and ATP synthase are properly represented
(43). ETFL-based ME-models can always be improved as more experimental data become
available.

Eukaryotic organisms are extremely important in industrial biotechnology: S. cerevisiae is
a popular host organism for the bioproduction of fuels, specialty and commodity chemicals
(7, 8,9, 10, 11), and Chinese hamster ovary (CHO) cells are the main platform organism
used for the production of therapeutic proteins (141). The prevalence of these industrial
organisms drives a need for better models of the metabolism and gene expression. In this
context, the availability of eukaryotic ME-models will help improve the understanding
and engineering of industrial hosts, helping create ever more efficient and productive cell
lines.

Last, but not least, humans are also eukaryotes. Eukaryotic ME-models open the way
to models of metabolism and expression being used in health and medicine. Metabolic
models are already being used to elucidate the intracellular state of immune cells in
response to inflammation (142). ME-models have the capacity to integrate even more data
to represent tissue-specific models, and take into account their biochemical environment.
Their versatility makes them ideal candidates to study complex cell types, such as immune
cells at different stages, or cells in a tumor micro-environment.

3.4 Materials and Methods

3.4.1 Formulation of the ETFL model

yETFL is based on the ETFL formulation which was previously described in details in
Salvy et al. (43). The ETFL constraints can be divided into five main categories:

e Steady-state constraints: Enforce all metabolite and macromolecule concentrations
to be at steady-state. For metabolites, these constraints are the same as in FBA.

e Thermodynamic constraints: Couple the directionality of reactions with their Gibbs
free energy. These constraints are the same as in TFA.

e Catalytic constraints: Define upper bounds on the reaction fluxes based on the
enzymatic capacity of the associated enzymes.
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e Expression constraints: Model the synthesis of mRNAs, peptides, and proteins, and
constrain synthesis rates based on the limitations of transcription and translation
machinery.

e Allocation constraints: Determine the available amounts of DNA, RNA, and proteins
in the cell. The ETFL formulation allows modeling the growth-dependent abundance
of these macromolecules, if experimental data is available. Whenever the experi-
mentally measured abundance of these macromolecules during the growth is not
available, we assume that the ratio between these quantities is growth-independent,

an assumption also made in FBA.

Depending on whether we include thermodynamic constraints or not and the type of
resource allocation (either constant or variable), we developed four different types of
models (Table 3.2).

3.4.2 Ribosomes and RNA polymerases

To model the ribosomes and the RNA polymerases, information about their constituting
peptides (and ribosomal RNA) and catalytic rate constants is required. The previous
ME-models were constructed for bacteria (39, 40, 43), with one ribosome and one RNA
polymerase being sufficient to represent the cellular expression machinery. In contrast,
yeast being a eukaryotic organism, it features an additional mitochondrial ribosome and
RNA polymerase. To consider this complexity, we defined multiple RNA polymerases
and ribosomes in the model:

RINA Polymerase Similarly to the other eukaryotes, yeast has three different types of
nuclear RNA polymerases. However, most of the mRNA transcripts are transcribed by
RNA polymerase IT (143, 144). In yETFL, we implemented this nuclear RNA polymerase,
and we modeled that all the nuclear genes could be transcribed only by this enzyme,
similar to the previous work (43). For mitochondrial genes, we defined a mitochondrial
RNA polymerase characterized by its own composition and kinetic parameters (144).

Similarly, the mitochondrial genes were only allowed to be transcribed by this polymerase.

Ribosomes The structure of the cytosolic ribosomes in yeast contains four ribosomal
RNA (rRNA) molecules encoded by four different genes. In addition to these four rRNAs,
the cytosolic ribosomes contains 78 peptides encoded by 137 genes (59 peptides are
encoded by two alternative genes) (145). To account for these alternative ribosomal
peptides, we defined two cytosolic ribosomes: one ribosome was constructed by the first
set of peptides (designated with *A’ in their standard names) and the other one was
constructed with the alternative genes (designated with ’B’ in their standard names).
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We assumed both cytosolic ribosomes had the same elongation rate. A mitochondrial
ribosome was defined to translate mitochondrial genes. This ribosome is composed of by
two rRNAs and 78 peptides (146).

Data Collection

Genome-scale metabolic model The most recent GEM of S. cerevisiae, Yeast8 (133),
was used as a basis to construct our model. The following modifications to Yeast 8 were

made:

e Pseudometabolites defined for RNAs and proteins as well as pseudoreactions defined
for their synthesis were replaced by the explicit expressions for RNA and protein
synthesis, according to the procedure described in the supplementary material of
Salvy et al. (43).

e tRNAs and their reactions and were adapted into a formulation that accounts for
dilution effects according to the ETFL procedure. This is necessary as tRNAs are

species for which the dilution effect is not necessarily negligible.

e The biomass reaction was modified to account for growth-dependent composition,
as discussed in the section Modifying the growth-associated maintenance.

The latest published version of Yeast8 model, Yeast8.3.4, was obtained from GitHub as it
was provided by Laboratory of Systems and Synthetic Biology at Chalmers University
(https://github.com/SysBioChalmers/yeast-GEM).

Thermodynamic curation Information about the thermodynamic properties of reac-
tions allows us to integrate the available metabolomics and fluxomics data into models,
and to compute thermodynamically consistent values of metabolic fluxes and metabo-
lite concentrations that were not measured. We used the group contribution method
(GCM) (147), to determine the standard Gibbs free energy of formation in aqueous,
ionic environments(148) for 1092 out of 1326 (82%) unique metabolites from Yeast8. We
were not able to determine the thermodynamic properties for remaining 234 (17.6%)
metabolites, because: (i) 89 (6.7%) metabolites represented modeling species such as pools
of proteins, nucleotides, lipid chains; and (ii) 145 (10.9%) metabolites were with unknown
molecular structure or they contained structural groups for which the estimated standard
Gibbs energy of formation is unknown (e.g., Acyl Carrier Protein group). Using the
information about the standard Gibbs energy of formation of compounds, we estimated
the standard Gibbs free energy of reactions for 3184 out of 3991 (80%) reactions from
Yeast8.
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mRNA, Peptide, and Protein data The sequences for the peptides and mRNAs
were downloaded obtained from the KEGG database (149). Information about the
stoichiometry of peptides forming enzymatic complexes in S. cerevisiae was obtained by
combining available information in YeastCyc (65) and Complex Portal (150). Turnover
numbers (kcat) were retrieved from BRENDA database using functions provided by
GECKO (38).

3.4.3 Allocation data and constraints

We created the ETFL models with either a constant or growth-dependent biomass
composition. In the case of constant biomass composition (cE(T)FL), we used the
macromolecular fractions from the biomass reaction of the FBA model (Yeast8). The
mass fractions for different macromolecules were calculated using the following expression:

fk = Z niMWi- (3.1)

i€ Mj,

For each type of macromolecule M, (1;);c M, 1s the stoichiometric coefficients of metabo-
lites belonging to this macromolecule class in the biomass reaction, and MW, their
molecular weight. For example, to find the protein fraction fp.ot in the biomass, the
stoichiometric coefficients of individual amino acids were multiplied by their molecular
weight to find their mass fractions in the biomass. The sum of these amino acid ratios
indicates how much of the biomass is protein. By definition, the weight of biomass should
be 1 g (151, 152), which can be written:

i€reactants j€Eproducts

When generating an ETFL model, it is important remove protein and RNA metabolites
from the biomass equation to prevent double-counting of the metabolic requirements, since
the explicit mRNA and peptide synthesis reactions already account for their respective
participation in cell growth. In ETFL, we model the participation of macromolecules in

the cellular biomass composition as follows:

> MW, - E; =P, (3.3)
JjeJ
> MW, F, =R"™ (3.4)
lel
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In the above equations,where P™ and R™ are respectively the protein and RNA mass
fractions, in g/gpw, and E; and F represent the concentration of enzyme j and RNA [ in
mmol - gy, respectively. P™ and R™ can either be constant (cE(T)FL), or variable and
discretized (as in the vE(T)FL). J and L are the indexing sets of proteins and mRNAs
in the model.

To create a vE(T)FL model, it is necessary to know the fraction of each biomass compo-
nents at different growth rates. We gathered this information for the yeast by reviewing
the literature (135, 153, 154) (data available on the online yETFL repository, accessible
form the data availability statement). Since the data is usually reported for a few specific
growth rates, we resampled it using piecewise-linear interpolation, as prescribed in the
ETFL method (43).

Protein allocation Since all the cellular tasks of proteins are not considered in ME-
models, ETFL defines a generic protein to represent the part of proteome that is not
accounted for in the model, such as structural proteins, signaling proteins, or peptidoglycan
synthesis. To realistically account for enzyme participation in the proteome, we define ¢,
the ratio of proteins that are associated to a metabolic task to total protein content of
the cell. We use it to alter Eq. 3.3 and constrain further the enzyme pool of the cell:

> MW, Ej=¢-P™ (3.5)
JjeT

To find ¢, we used the latest protein abundance dataset for S. cerevisiae available in
PaxDB (155). In yETFL, this fraction is 0.55 g/gproteins-

DNA The growth-dependence of the DNA abundance in the cell was modeled as
proposed in the original ETFL formulation (43).

Carbohydrate, Lipid and Ions To consider the growth-dependence of the carbohy-
drates and lipids, we introduced the polymerization of lipids and carbohydrates in the
ETFL formulation. To this end, we first defined a metabolite pool for each of these
macromolecules. In Yeast8, each biomass component is attached to a pooling reaction
that transforms the sum of specific metabolites (e.g. all carbohydrate metabolites) into a
single metabolite pool (e.g. carbohydrate). The mass balance equation for these modeling
metabolite pools is the following:

biomass po

1
= w—mn; © Upool- (3.6)

Vi € {Carbohydrate, Lipid, lon},
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pool

Upool 18 the flux of through the pooling reaction, and n;

and nbiomass

i represent stoi-

chiometric coefficient of the modeling metabolite i in the pooling and biomass reactions,
respectively. When it is desired to model a growth-dependent stoichiometric coefficient in
the biomass reaction, the said stoichiometric coefficient can be redefined as a function of
1 and calculated as follows:

D uew) M X
Xm

ref i

Vi € {Carbohydrate, Lipid, lon}, n; = niref (3.7)

In this equation, niref is the stoichiometric coefficient of the pool ¢ in the biomass reaction.

rof P and X/"; are the mass fraction of component ¢ respectively in the original biomass
equation and its discretized mass fraction at the discretized growth state number u,
following notations from Salvy et al. (43). A, are binary variables activated one at a
time depending on the growth rate, and U is their indexing set. Because of A, and the
formulation of ETFL, only one term of the sum will be non-zero at a time. The growth-
dependent fraction X} /X% i behaves as a rescaling parameter of the stoichiometric
coefficient, and allows to have a growth-dependant contribution to the biomass reaction.

3.4.4 Modifying the growth-associated maintenance

The energetic cost of growth, including maintenance of the cell and polymerization of
the macromolecules, is quantified in genome-scale models with the growth-associated
maintenance (GAM) (156). In ETFL, we consider the energetic cost of protein synthesis
explicitly, and this cost should be removed from the GAM to avoid the overestimation
of energetic requirements in the polymerization of peptides. The peptide synthesis is
modeled as follows (Eq. 3.8):

oSk, - tRNAGE Lo (GTP + H0)
aa; €A (3 8)
—+ Pep,+ Y 1k, - tRNAUhrEed g 82 (GDP + P+ HY),
aa; EA

lth

where aa; is the i'" amino acid, néai represents its count in the [*" peptide Pep; and L is

the length of the peptide in amino acid. Since 2 mol of GTP are needed to attach 1 mol
of amino acid to the peptide (Eq. 3.8), and from the following interconversion reaction:

ATP + GDP — ADP + GTP, (3.9)
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1 mol of ATP is required to produce 1 mol of GTP, we can deduce that peptide poly-
merization requires 2 mol of ATP per 1 mol of amino acid. We also know that the
stoichiometric coefficients of amino acids in the biomass reaction of Yeast8 give informa-
tion on how much of of each amino acid is required to produce 1 g of biomass. From
there, we compute the total amount of amino acids (4.1 mmol - gg\l,v) required for the
production of 1 g of biomass. Altogether, the energetic cost of peptide synthesis amounts
to 2 x 4.1 = 8.2mmolarp/gpw, which we remove from the GAM.

3.4.5 Gene-protein-reaction coupling

Coupling the reactions in metabolic networks with their enzymes is the most important
step in the process of creating an ETFL model. Ideally, assigning enzymes to reactions
requires information about: (i) the dependency of reaction on organism’s genes which is
gathered as gene-protein-reaction rules; (ii) catalytic rate constants (k.q); and (iii) type
and stoichiometry of the peptides assembly into enzymes. Whenever we do did not have
access to all required information, we used the following assumptions (Fig. 3.4):

e We assumed similar composition for isoenzymes, if composition information for only
one of them was available. For example, if one of the isoenzymes is a dimer, the
other is also assumed to be a dimer.

e We assumed that monomeric enzymes catalyze reactions (i) that depend on a
single gene, and (ii) for which information about their enzyme composition was not
available.

e If an enzyme peptide composition is identified, either from databases or by approxi-
mation, but its catalytic rate constant was not found, we set it equal to 70.9 s~ 1,
which is the median value for catalytic rate constants in S. cerevisiae (38).

e While the reactions that transport a metabolite from one compartment to another
are associated with genes, their kinetic information is scarce. We set the catalytic
rate constant of the proteins that catalyze these reactions to an arbitrarily large
number. This ensures the gene-protein-reaction relationship is preserved, which is
important for gene essentiality analysis.

3.4.6 Gene essentiality analysis

We used gene essentiality analysis to assess the quality of yETFL. The ETFL formulation
enables single gene knockouts by blocking the flux through transcription reaction for each
gene. If the model does not meet a minimal growth requirement knocking out a gene, the
gene is considered to be essential. The predicted essential genes were compared against ex-
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Fig. 3.4. Workflow for the integration of enzyme data into the model. The enzyme composition for the
complex enzymes was found in YeastCyc (65) and ComplexPortal (150). The function matchKcats.m from
GECKO (38) was used to find catalytic rate constants.
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perimental data for S. cerevisiae obtained from the Stanford Yeast Deletion datasets(http:
//www-sequence.stanford.edu/group/yeast_deletion_project/downloads.html).

The culture medium was modified to a synthetic complete medium, as done by Lu et al.
(133) in their essentiality studies. The Matthew’s Correlation Coefficient (MCC) was
used as a metric to evaluate the quality of predictions for FBA and ETFL, because of its
robustness to the imbalance in the number of essential and non-essential genes. MCC can
take values from -1 to 1, where values of MCC close to -1 indicate predictions opposed to
the ground truth, 0 random predictions, and 1 perfect predictions.

3.4.7 Chemostat simulations

The results of this paper were obtained by simulating the cell growth as a function of
different carbon uptake rates. This allows to exhibit proteome-limited behavior and
overflow metabolism in the presence of excess glucose. For all simulations (save the
essantiality study, see above), the model was allowed to uptake glucose as a carbon source,
some essential inorganic compounds, and molecular oxygen, as described previously in

Sénchez et al. (38).

To capture the Crabtree effect, for different values of the growth rate ranging from 0.025
h=! to 0.41 h™!, we also followed the method used by Sénchez et al. (38):

1. Minimization of the absolute glucose uptake rate.

2. At fixed minimal glucose uptake rate, we performed parsimonious FBA, which
minimizes the total fluxes thorough the model (157).

3. We maximized the concentration of the modeling enzyme used to represent all the
enzymatic activity that is unaccounted for in our model.

Additionally, we performed Chebyshev centering on enzyme variables, according to the
method from Salvy et al. (98), to obtain a representative sample of the optimal space.

3.4.8 Code and Dependencies

The code was implemented in Python 3.7 and the commercial solver Gurobi was used to
solve the MILP problems. The code relies on the ETFL (43) and pyTFA (94) packages,
which use COBRApy (95) and Optlang (96). After publication, the code will be freely
available under the APACHE 2.0 license at https://github.com/EPFL-LCSB/yetfl and
https://gitlab.com/EPFL-LCSB/yetfl.
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In this chapter, I move away from industrial biotechnology to consider the applications
of computational biology in health and medicine. In particular, I consider the uses of
models of metabolism and gene expression to model cell-drug interactions in the case of
colon cancer. Building ME-models from human GEMs has been a long-sought goal in
computational biology, but it was only thanks to the recent publication of a systematic
reduction method by Maria Masid Barcén et al. (158) that I managed to generate a
working model. In this chapter, I build a ME-model from a tissue-specific, systematically
reduced human GEM generated using state-of-the-art methods (159, 160). I also develop
a formulation to account for signaling and regulation mechanisms in the cell, using ETFL.
I then use the formulation to create a model of interaction between a specific drug used
in the treatment of several cancers and a colon cancer cell. I show the resulting model
is able reproduce experimental results of decreased cell growth, in presence of the drug,
and show the corresponding metabolic and proteomic changes. The model also highlights
possible mechanisms of drug resistance the cell can use, and two growth-limiting actions
of metformin occurring at different doses. Finally, I propose ways to improve such models
to move towards personalized, context-aware models for personalized medicine.

This chapter is adapted from a manuscript in preparation. I designed the study, wrote
the code, and performed the studies. Maria Masid designed the reduced model, and
contributed significantly to its integration in the ETFL framework. Maria and I analyzed
the results. Maria Masid Barcén, Vassily Hatzimanikatis, and I wrote the manuscript.

Once a preprint is published, all the code and documentation will be available under the
APACHE 2 license at:

https://github.com/EPFL-LCSB/tech

https://gitlab.com/EPFL-LCSB/tech
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4.1 Introduction

An important challenge in the treatment of cancer is the emergence of drug resistance.
The plasticity of cancer cells and their strong mutation rate allows them to sometime
adapt their physiology and develop a tolerance to pharmacotherapeutic agents (161). Left
unchecked, this tolerance can cause the cancer to overcome its treatment(162).

Understanding how cells react to pharmaceutical stimuli is a key endeavor in drug design.
Moreover, understanding how they build up resistance against previously effective therapies
holds important insights on the design of more robust treatments. One explanatory
variable of the cells reaction, or lack of, to a given chemical is their capacity to adapt
on multiple biological levels, such as metabolism, gene expression, and global regulation
(161, 162). Yet, many dimensions of these cellular states are not readily observable, let
alone at a scalable level.

The necessity of tools to access the internal state of cells motivates the use of adequate
modeling methods (163). In particular, models of metabolism and gene expression (ME-
models) are able to capture the interactions between small molecules, metabolism, and
gene expression. A recent implementation of ME-models, ETFL (43), is also suited to
the integration of a several types of data, such as metabolomics, transcriptomics, and
proteomics. As such, ME-models appear to be an adapted tool to study the physiology of
cancer cells, and can flexibly integrate their variability into personalized, context-aware
models.

Cancer mechanisms include small-molecule-protein interactions, and the deregulation
of metabolism, proteome, and gene expression (164). An important component of
these deregulations is the multitude of signaling cascades that change cellular behavior
depending on the environmental conditions. In particular, several drugs used in the
treatment of cancer act on these signaling networks to short-circuit the proliferation of
malignant cells. One such drug is metformin, an ubiquitous drug for type 2 diabetes used
to control blood sugar levels. Metformin was recently repurposed in the treatment of
several types of cancers, occurring in liver, colon, pancreas, and bladder (165, 166).

Signaling is a keystone mechanism of cell biology, and yet state-of-the-art ME-models do
not account for it. We propose in this work a formulation for regulatory interactions, using
the ETFL framework for ME-models. We also model small-molecule-protein interactions,
and post-translational modifications such as protein phosphorylation. We develop an
implementation of a part of the regulatory network targeted by metformin and reproduce
its growth-limiting action on a reduced ME-model of colon cancer cell, and show the
occurrence of two modes of action at different drug doses. Finally, we highlight the
changes in cell metabolism, proteome and gene expression directly and indirectly caused
by metformin, and show these changes can be used to infer possible mechanisms of drug
resistance.
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The mechanism of action of metformin is multiple (167), and Fig. 4.1 reproduces here a
subset of its effects, also summarized below:

1. Non-competitive inhibition of the mitochondrial NADH:ubiquinone oxidoreductase,
Type I NADH dehydrogenase (respiratory complex I), curtailing ATP production;

2. Activation of AMP-mediated protein kinase (AMPK) by the changes in AMP:ATP
and ADP: ATP ratios in the cell;

3. Phosphorylation and inhibition of Acetyl-CoA Carboxylase (ACCOAC) by AMPK —
Lipid synthesis inhibited;

4. Activation of protein kinase A (PKA) through AMPK-mediated changes in cAMP

levels;
5. Phosphorylation and inhibition of pyruvate kinase (PYK) by PKA;

6. Concurrent repression of gene expression for phosphoenoylpyruvate carboxykinase
(PCK1) by AMPK, and expression activation by PKA, through the repression of a

repressor;

This is a simplified view of the multiple mechanisms with which metformin affects the cell.
Rena et al. (167) provide a more detailed account of the physiological effects of metformin
on the cell. We will use this simplified model, along with suitable modeling assumptions,
to integrate in a human colon cancer cell model the regulatory and metabolic effects of
metformin.

Metformin
NH NH

Respiratory complex |

l in mitochondrion
Fatty acid synthesis
AMPK \/—| (ACCOAC)
Phosphoenolpyruvate
carboxykinase
A (PCK1)
|
M /\ Pyruvate Kinase
PKA ——] Y

(PYK)

Fig. 4.1. Simplified mechanism of action of metformin on a human cell. AMPK: AMP-activated protein
kinase K.; PKA: Protein Kinase A; ACCOAC: Acetyl-CoA carboxylase; PCKI: gene of the cytoplasmic
phosphoneolpyruvate carboxykinase 1; PYK: Pyruvate kinase
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4.2 Results and Discussion

4.2.1 Experimental setup

We generated a context-specific model of a colon cancer cell by integrating exometabolomics
and exofluxomics data from Jain et al. (168) into a reduced human model (159, 160),
derived from the human model RECON3D (169). We subsequently generated a ME-model
from this metabolic model following the method detailed by Salvy et al. (43) (Table 4.1).

To integrate regulation mechanisms in the model, we considered the following assumptions:

e Metformin inhibits the respiratory complex I in a non-competitive manner (167);

e Metformin activates the expression of AMPK with Hill-type kinetics — however, in
vivo, changes in ATP concentration activate AMPK;

e AMPK phosphorylates ACCOAC with standard Michaelis-Menten kinetics;

e AMPK activtes PKA with Hill-type kinetics — however, in vivo, PKA is activated
by AMPK-mediated changes in cAMP concentration;

e PKA phosphorylates PYK with standard Michaelis-Menten kinetics;
e PCK1 expression is repressed by AMPK with Hill-type kinetics;

e PCK1 expression is activated by PKA with Hill-type kinetics — however, in vivo,
PKA represses a repressor of PCK1 transcription.

e The cell is not allowed to produce more enzymes thn the amount of the negative
control to compensate for enzyme inhibition.

e Enzyme inhibition through phosphorylation decreases the catalytic rate constant of
the enzyme a hundredfold.

The constraints used to model these assumptions are detailed in the section Materials and
Methods. To apply metformin to a model, we follow a special sequence of optimizations,
also detailed in the section Materials and Methods. The results present intracellular
fluxes, their variability, and intracellular enzyme concentrations of a representative optimal

solution.

4.2.2 Experimental results

To simulate the effect of metformin on the cell, we subjected the model to different
concentrations of metformin, from 0.1mM to 20mM. We also provide simulation values for

125



Chapter 4. Dose-dependent drug effect and resistance mechanisms in a
cancer model of metabolism and expression

Table 4.1. Properties of the vEFL model obtained from the colon cancer-specific reduced RECON3D.

Growth upper bound & 0.10 h—!

Number of bins N 64
Resolution £ 0.0016 h~*
Number of constraints 18696
Number of variables 13356
Number of species
— Metabolites 1037
— Enzymes 294
— Peptides 417
— mRNAs 417
— tRNAs 21x 2
- rRNA 3
Number of reactions
— Metabolic 917
— with enzymes 692
— Transport 464
— Exchange flux 373
— Transcription 417
— Translation 417
— Complexation 291
— Phosphorylation 3
— Degradation 711
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a control where no metformin is added, similarly to the in vitro and in vivo experiments
by Zhang et al. (170). Their results reprinted in Supplementary Figure 1.

The simulation predicts a decrease in cell specific growth rate as the concentration of
metformin increases (Fig. 4.2-a). The negative control initially grows at a specific growth
rate of 0.034 h™!, while the specific growth rate of the model in presence of 20mMm of
metformin is of 0.018 h™! We compare these results to those of Zhang et al. (170) on in
vitro and in vivo bladder cancer cells, and observe qualitative agreement on the decrease
of cell viability at metformin concentrations higher than 1mM (see their reprinted results
in Supplementary Figure 1). It is worth to note, however, that bladder cancer and colon
cancer are substantially different in their pathophysiology, and the comparison of our
simulated colon cancer results to in vitro and in vivo bladder cancer results mainly possess
a qualitative purpose.

The first component of the action of metformin is its inhibition of the NADH:ubiquinone
oxidoreductase respiratory complex I. This reaction is part of the respiratory system of
the cell, and uses NADH to transfer electrons to ubiquinone (coenzyme Q10), a necessary
cofactor in cellular respiration. The simulations show the feasible flux range of this
reaction decreases in magnitude as the metformin concentration increases (Fig. 4.2-b).
Since the size of the enzyme pool dedicated to the respiratory complex I can only be, at
maximum, that of the negative control, and the catalytic rate constant of the enzyme
is decreased by non-competitive inhibition by metformin, the maximal rate that the
reaction can carry decreases as a function of the metformin concentration. After 2 mm of
metformin, it is not optimal anymore to produce any amount of respiratory complex I
(Fig. 4.2-d). Indeed, protein synthesis requires amino acids and energy, which could be
used in other parts of the metabolism, rather than in the expression of an inactivated

enzyme.

The reduced activity of the respiratory complex I, in turn, impedes cofactor regeneration,
and has the direct effect of lowering the maximal ATP Synthase rate (Fig. 4.2-c). At 20
mM of metformin, the maximal ATP synthesis flux is at two thirds of its initial capacity,
which will impede cell growth.

The inhibition of the respiratory complex I can be compensated by the cell, using the
FADH2-dependent respiratory complex II which is also able to reduce Q10 (Fig. 4.3). In
particular, we observe its activation at 1 mm (Fig. 4.4-a), when the respiratory complex I
carries only 50% of its initial flux. Succinate dehydrogenase is also activated, oxidizing
succinate into fumarate to transfer electrons to FADH2, which finally reduces Q10 (Fig.
4.4-b). This activation of the pathway of the respiratory complex II is not triggered by
regulation, but comes from the maximization of the growth rate. It can be interpreted as
a condition to reach growth optimality, and thus shows a mechanism of adaptation the
cell can use to overcome one of the actions of metformin.
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At higher metformin concentrations (> 5mM), the compensatory effect of the respiratory
complex IT is reduced (Fig. 4.4-a), and the flux variability of ATP synthesis does
not change significantly (Fig. 4.2-c¢). This indicates that cellular respiration is not a
growth-limiting factor anymore.

The second component of the action of metformin is the activation of AMPK. According
to the model construction, at the same time as the metformin concentration increases,
AMPK synthesis follows, and we observe an increase in AMPK concentration in the
cell (Fig. 4.5-a). The AMPK activation follows a sigmoid shape, which is the result
of the Hill-type activation used to model it. This shows the model is able to present
characteristic dose-response curves, and can capture changes of metabolic and proteomic
states in presence of metformin.

An important effect of AMPK is the inactivation through phophorylation of Acetyl-
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Fig. 4.2. Specific growth rate, flux rates, and enzyme levels in the colon cancer ETFL ME-model, for different
metformin concentrations in mM. Fluxes have error bars that represent their variability at fixed growth rate, and
the vertical bars represent their rate at the Chebyshev center. a. Specific growth rate of cells as a percentage
of the specific growth rate of a cell without metformin treatment (negative control — left bar). The control
corresponds to a specific growth rate of 0.034 h™'. b. Flux (mmol - g5 - h™') through the NADH:ubiquinone
oxidoreductase, Type | NADH dehydrogenase (respiratory complex ). c. Flux (mmol - go4, - h™') through
the mitochondrial ATP synthase. d. Concentration of the mitochondrial complex | enzyme, in g/gpw.
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Fig. 4.4. Flux rates of reactions involved in the FADH-mediated respiratory process, at the Chebyshev center,
for different metformin concentrations in mM. a. Respiratory complex Il, transferring electrons from FADH2
to Q10. b Succinate dehydrogenase, which transfers electrons to FAD to form FADH2.

CoA carboxylase (ACCOAC) (Fig. 4.5-a,-c and -d). ACCOAC is responsible for the
transformation of acetyl-CoA into malonyl-CoA, a necessary precursor and monomer
element of fatty acids, which are responsible for the cell structure and energy storage.
Under a constraint for the total amount of ACCOAC, and the progressive inactivation of
its catalytic capacity, less lipids can be synthesized in the cell (Fig. 4.5-¢). The reduced
lipid synthesis directly impacts cell growth, since lipids are essential components of the
cell, involved in cell structure and energy storage. At higher metformin concentrations
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(> 5mM), the lipid synthesis becomes a growth-limiting factor, and explains why growth
continues to decrease even though the respiration of the cell is not decreasing anymore.
We thus observe clearly how two different mechanisms of action of the metformin cascade
contribute, at different concentrations, to the decrease of cell viability.

AMPK also activates PKA (4.5-b), continuing the cell signaling cascade. We observe that
PKA also adopts a sigmoidal dose-response curve to the increased AMPK concentration,
again according to the Hill-type kinetic law we used to represent it. However, we did
not observe any significant effect of PKA activation on its targets, PEPCK and PYK.
PEPCK and PYK do not appear to be essential to cell growth in this context-specific
model, and thus their fluctuation did not impact further the cell growth.
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4.3 Conclusion

We developed a ME-model for a reduced, context-aware human metabolic network,
and used it to model the effects of metformin on the metabolism, proteome and gene
expression of a colon cancer cell. We also developed constraints to expand the ETFL
formulation of ME-models to account for signaling interactions at the level of proteins
and gene expression. Our results show it is possible to include phenomena such as
post-translational modifications (phosphorylation), as well as enzyme inhibition and
activation, and gene expression regulation to models of metabolism and expression. With
these methods, we were able to show the model reproduces experimental results of the
action of metformin on tumor cells, and in particular, the growth-rate decreasing effect of
metformin. The model also presents characteristic dose-response curves for the signaling
proteins AMPK and PKA, and captures changes of metabolic and proteomic states in
presence of a drug. In addition to recapitulating already known mechanisms, we also use
the model to show the emergence of an optimal compensatory mechanism of the cell in
response of the competitive inhibition of the respiratory complex I (NADH-dependent)
is the rerouting of its flux to the respiratory complex II (FADH2-dependent). This
phenomenon was not modeled explicitly, but instead emerges from the model constraints,

thus illustrating the predictive power of our approach.

Metformin is a molecule that belongs to the class of biguanides, known for inducing
lactic acidosis (171). In parallel, the production of lactic acid via the Warburg effect is a
hallmark of cancer (164), and studying the effect of metformin on this phenomenon is
likely to yield important insights on toxic side effects of the treatment. Although we did
not pursue it in this study, a general analysis of the production of metabolic byproducts
will also be a key component of the in silico assessment of drug-cell interaction.

The integration of pharmacokinetics in ME-models allows the consideration of the effects
of biochemical stimuli on the metabolism, regulation, and proteome of the cell. This
internal cellular state is difficult to observe experimentally, and models help enrich the
missing information to better understand cell physiology. Thus, it is possible to use
metabolism and expression models to study drug action and eventually help in the design
of new drugs. In particular, the formulation used, optimizing for growth, proposes ways
in which the cell can overcome the drug-induced metabolic changes. It is amenable to
testing different drug candidates, and study the optimal fitness adaptation of the cell.
The model does not predict new signaling networks. However, it highlights what optimal
behavior the cell might adapt under selection pressure, and this optimality is likely to
be controlled by a regulation mechanism, in the same fashion as the lac operon controls
growth optimality in mixed media in E. coli'” (98). These insights are valuable to
design multipronged strategies to curtail the emergence of drug resistance, by anticipating
potential sources of resistance before it appears.

17This is the subject of chapter 2.
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One important hurdle in the future study of regulation-enabled ME-models is the size
and complexity of signaling networks. We used here a limited example, with interactions
only up to three steps from the signaling cascade activation. However, integrating more
complete, cell-scale regulatory networks, will require additional methods. MILP-based
representations of signaling networks, using binary logic, have been proposed (159).
Moreover, MILP-based ME-models such as ETFL can be expanded to include such
frameworks. Hence, one direct development is to integrate these two frameworks into
hybrid models, with quantitative modeling of the key signaling effectors of interest, and
MILP-based logic for the signaling pathways further away. Such integrated models will
further improve our understanding of the complicated behavior of cancer cells, and their
resistance mechanisms.

Finally, ETFL ME-models are highly suited to the integration of omics data, which
are increasingly abundant in the study of cancer (168, 172). We partially pursued this
feature in this study, with the integration of exofluxomics and exometabolomics. Going
further, integrating transcriptomics, metabolomics, or proteomics from a tumor biopsy
will directly allow to generate personalized, tissues-specific models, for several cell types.
Metabolic models are already being used to elucidate cell differentiation in the immune
response (142). The increased capacity of ME-models to integrate data is one step further
in the direction of models tailored for cell subtypes. The versatility of ME-models will
allow to tackle in a quantitative manner, for instance, cancer heterogeneity, a key element
in cancer physiology and drug resistance (173). Merged with other techniques, such as
community modeling, our formulation would yield a powerful tool to understand for
example cellular interactions with the immune system (174), tumor-microenvironment
interactionsklemm?2020interrogation, or higher-order pharmacokinetic effects (162).

4.4 Materials and Methods

4.4.1 Condition-specific cancer ME-models

The colon cancer model was obtained using the reduction procedure detailed in Masid et al.
(158, 160). The genome-scale model of metabolism used as a basis is RECON 3D (169),
which was then systematically reduced around subsystems of interest: glycolysis, pentose
phosphate pathway, citric acid cycle, serine, glycine, alanine and threonine metabolism, glu-
tamate metabolism, urea cycle, oxidative phosphorylation, ROS metabolism, arginine and
proline metabolism, purine metabolism, and pyrimidine metabolism. Exometabolomics
and exofluxomics data from NCI-60 colon cancer cell lines (168) were then used to
constrain the model in a context-aware manner.

The transformation of the model into a ME-model was done according to the standard
operating procedures detailed in the original ETFL paper (43). Extra constraints were
added to account for RNA Polymerase crowding, and gene copy number (see dedicated
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section). In particular, we accounted for an average of 400 copies per ribosomal gene
(175). Catalytic rate constants (kcat) were either estimated using an average value of 172
s~1 (43), or taken equal to E. coli values when the reaction was also present in the ETFL
model of iJO1366 (48, 43). Enzyme composition data was obtained from HumanCyc
(65, 176). Gene-protein-reaction association rules, corrected with data from Ryu et al.
(177), were used to estimate enzyme compositions when the information was partial.

4.4.2 ETFL

ETFL is an implementation and framework for ME-models, which allows modeling
expression- and thermodynamics-enabled flux models. ETFL is a top-down formulation
describing metabolites, macromolecules such as enzymes and mRNA, metabolic reactions,
and expression reactions. This formulation leverages macromolecular mass balances and
a liberalization scheme on top of a flux balance analysis problem (FBA) to describe
intracellular metabolic fluxes, expression fluxes, macromolecular concentrations, and
metabolite log-concentrations. The formulation and its equation are detailed in Salvy
et al. (43). The core of the formulation is based on (i) mass balances written for
macromolecules, including enzymes, mRNA, DNA, and tRNAs; and (ii) enzymatic
catalytic constraints on reaction rates. Given a macromolecule X, its mass balances is
written using a variable representing its concentration [X]. Under a quasi-steady state
assumption, we obtain the equation:

d )
C[lt ] — SUn _ gdeg _ ’Udll, (4.1)

= 0" — kaeg - [X] — - [X], (4.2)

where v3¥", v%9 and v¥ are respectively the synthesis, degradation and dilution rates of
the macromolecule, mu is the growth rate, and kg, is the degradation rate constant of
the macromolecule.

Enzymatic reactions, found throughout the metabolism of the cell but also in its expression
mechanisms (transcriptio, translation), are modeled using catalytic constraint of the form:

v < kR, (4.4)

where v is the flux through the said reaction, F the concentration of the catalyzing
enzyme, and k¢, its catalytic rate constant.
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4.4.3 Gene copy number and RNAP saturation

ETFL considers the saturation of a mRNA strand by ribosomes, but the original formu-
lation did not consider the saturation of open reading frames (ORFs) of DNA by RNA
polymerases.

For E. coli, the footprint size of the RNA Polymerase L p is approximately 40
nucleotides wide (BNID 107873, (83)). We assumed the human RNA Polymerase II
(RNAP) has a similar footprint. To express the limit on RNAP saturation of the ORF,
we can write:

nt

P <

e (4.5)
LﬁNAP

where we recall P, is the concentration of polymerase allocated to the transcription of the
I'™ gene, L™ the length of the ORF in nucleotides, and G; the concentration of ORFs of
the I*® gene. The latter is exactly equal to the concentration of DNA times the number
of copies n; of the gene:

G; =n; - DNA. (4.6)
We can thus derive a constraint for each gene:

nt
Ll

}?_
nt
LRNAP

-ny - DNA < 0. (4.7)

4.4.4 Incorporation of signaling pathways

Three types of mechanisms must be accounted for to model the action of metformin on
a colon cancer cell metabolism. In particular, metformin (i) performs non-competitive
inhibition of the mitochondrial respiratory complex I; (ii) activates the synthesis of
AMPK; and (iii) AMPK inactivates, through phosphorylation, ccetyl-CoA carboxylase
(ACCOACQ).

Upper limit on signaling compound concentrations Thomson et al. (178) report
the concentration of different elements of the MAPK signaling cascade in S. cerevisiae.
Concentrations range from nM to pM. To prevent the model from predicting physiologically
unrealistic profiles with high concentrations of signaling peptides, we added upper bounds
at 1 pM on the concentrations of AMPK and PKA.
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Non-competitive inhibition Non-competitive inhibition of an enzyme was modeled
using the following model:

_ kcat[E] . [S]
1+ /Kr Ky + (8]

(4.8)

where v represents the flux of the reaction being inhibited, [E] the concentration of
enzyme catalyzing the reaction, [S] the concentration of the substrate of the reactiom,
[I] the concentration of inhibitor, k., the catalytic rate constant, Kj; the Michaelis-
Menten constant, and K7 the inhibition constant. Since [S] is not always available for
characterization, and in accordance with the ETFL scheme, Eq. 4.8 is transformed in the
following inequality:

kcat [E]
v < T+ /K (4.9)
v< k., [E]. (4.10)

Finally, Eq. 4.10 shows competitive inhibition can simply be formulated as an alteration
of the kcat value in catalytic constraints of ETFL. This model was used for the non-
competitive inhibition of the respiratory complex I by metformin.

Signaling protein activation AMP-activated Protein Kinase (AMPK) and Protein
Kinase A (PKA) are two proteins that are activated during the signaling cascade provoked
by the intracellular presence of metformin. To model this activation, we chose a standard
Hill activation model, adapted to the ETFL formulation. In particular, the synthesis of
protein peptides is modeled in ETFL with the following constraint:

k
o — tLlj;‘ R <0, (4.11)

where Kirqns is the maximum ribosomal translation rate constant (10 — 12aa/s for E. coli
(69), estimated similar for humans), L** the length in aminoacids of the protein to be
transcribed, and R; is the concentration (in mmol - gB\IN) of ribosomes assigned to the
translation of this peptide.

To force the production of peptides, and thus of the protein of interest, we are interested
in finding a lower bound to the translation flux of the peptide I:
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FA]) <o, (4.12)

where f ([A]) is a function monotonically increasing with [A], the concentration of activator.
We model this function as the product of a hill activation, and a fraction of the total
ribosome translation capacity:

[A]"

o ktr
- OEG+[A]"

7 (14) L

- f - =22 [Rib] (4.13)

where [Rib] is the total ribosome capacity of the cell. n is the order of the Hill kinetics,
K 4 the Hill constant, and 0 < f < 1 a non-0 small coefficient representing how much
of the total ribosome capacity can be allocated to the specific translation. In this form,
the expression is built with the same homogeneity as a translation flux, as detailed
in ETFL. The first term of the product represents how activated the transcription is,
and the product of the second and third terms represents the maximal translation flux
allowed. The latter is itself a fraction of the total maximum translation flux in the
cell. Since the total ribosome concentration in the cell is indirectly constrained by its
growth-dependent protein requirements, we obtain a non-0 lower bound which will force
a translation response when the activator molecule is present.

We can combine Eq. 4.11, 4.12, and 4.13 to define an equality constraint on the fraction

of ribosomes R; allocated to the transciption of the I*" peptide:
[A]" :
R = = f - [Rib]. 4.14
= wnrar [Rib] (4.14)

Transcription activation The transcription of the phosphoenolpyruvate corboxyki-
nase (PEPCK) is activated by PKA. We represent this interaction with scheme similar to
that of the activation of signalling proteins, detailed above.

Transcription repression The transcription of PEPCK is also inhibited by AMPK.
We use a standard Hill repression model to reduce the efficiency of the transcription of
the PCK1 ORF by RNA polymerase.

According to the ETFL formulation, the transcription rate of the PCK1 ORF is limited
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by the catalytic efficiency of the RNA polymerase and its concencentration:

RNAP

UBGK1 < 7Lnt Ppcki, (4.15)
PCK1

where L is the length in nucleotides of the ORF, kRYAF is the catalytic rate constant of
RNAP (85nt/s for E. coli, BNID 100060 (69), assumed to be similar in humans), and P,
the concentration of RNAP assigned to the transcription of this mRNA. We can model
transcriptional repression by multiplying the catalytic rate of RNAP kRNAP by a factor

cat
f. Using the classical Hill inhibition formula, we obtain:

1

f= Wa (4.16)
kRNAP
vkt < T - [ - Peoka, (4.17)
Lcxa
er < ke P /RNAP _ RNAP 1 (4.18)
PCK1 L%tCKI PCK1, cat cat 1 + Ln .
K

where n is the order of the Hill kinetics, K 4 the Hill constant, Z is the concentration
of inhibitor. kBNAP is the new effective catalytic rate constant, after inhibition. Hence,
transcription inhibition can simply be modeled by an alteration of the catalytic rate
constant of RNAP in transcription reactions.

Enzyme inhibition by phosphorylation We model the inhibition of enzymes by
their phosphorylation using three assumptions: (i) Phosphorylated enzymes have their
catalytic rate constant reduced 100x; (ii) phosphorylation takes up one ATP, produces
one ADP and one proton, and is catalyzed by a phosphorylating protein; (iii) the lower
bound on phosphorylation follows Michaelis-Menten kinetics. Similarly to the protein
activation constraint, we seek to construct a lower bound on the phosphorylation flux
that will force the conversion on non-phosphorylated enzymes to phosphorylated ones:

f ([EA]) < Uphos (419)
E
() = IM Fghos [Eal, (4.20)

where [E4] is the phosphorylating enzyme, [E] the enzyme getting phosphorylated, K%, hos
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the Michaelis-Menten constant for this phosphorylation reaction, and ks the catalytic
rate constant of the reaction. The term vppes (resp. —vppes) is added to the mass balance
of the phosphorylated enzymes (resp. unphosphorylated).

If needed, it is also possible to limit the size of the phosphorylated and non-phosphorylated
enzyme pool, to prevent the model to produce solutions where the small enzyme catalytic
rate is compensated by a high enzyme concentration. In this case, the following constraint

is added:

[E]+ [Ep] < By, (4.21)

where [E] represents the phosphorylated enzyme concentration, and Ef, the size of the
assigned enzyme pool (constant). This additional constraint was used for the ACCOAC
and PYK enzymes.

Units Macromolecular concentrations in the cell are in mmol - gg\l,v, and kinetic param-
eters such as the Michaelis-Menten constant or the inhibition constant are concentrations
usually reported the units mM. We convert from one to the other assuming a density of
1.08 kg L™ ! for the cells (see Table 3, mammalian cells in Pertoft et al. (179)), and a dry-
ing ratio 0.5 gpw g~*. Thus, noting X, [mmol - g]S\lN] and X,, [mM] the concentrations
respectively per gram of dried cell and per liter, the conversion is the following:

Xog = Xeer -0.5-1.08 - 103, (4.22)

4.4.5 Representative solution

Fluxes were described using a variability analysis (VA). At fixed growth rate, the flux
through a reaction of interest is successively minimized and maximized. This allows to
obtain the range of feasible flux values at the specified growth rate. It is important to
look at the variability of a flux and not only at its value, because one optimal value for
the objective function can possess multiple solutions.

Perfoming a VA on enzyme concentrations would be impractical because of the presence
of a modeling enzyme, which represents the leftover fraction of proteins not directly used
for metabolic functions. It essentially acts as a slack variable on the protein allocation
constraint. Because of this slack, during the maximization phase of the VA, each enzyme
variable will deplete the slack and take the allocated space for itself. This artifact would
return a non meaningful solution, which would poorly represent the solution space.
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Instead, we propose to use Chebyshev centering, as used before in Salvy et al. (98). The
Chebyshev center is the center of the largest ball inscribed in a set of constraints. As
such, it is a good candidate to represent the center of the solution space.

The Chebyshev center, can be found by optimizing a single linear problem if the solution
space is a polytope (122), which is the case of ETFL problems. In the case of a polyhedron
defined by inequalities of the form aZT x < b;,x € R, finding the Chebyshev center of the
solution space amounts to solving the following optimization problem:

maximize 1
nH (4.23)
subject to  a; @ + |jaill, 7 < b;

This is similar to adding a common slack to all inequalities and maximize the its size,
which maximizes the distance of the solution to the inequality constraints. However, not
all variables and constraints need to be considered in the definition and inscribing of
this sphere. In particular, we are interested here in a representative solution for enzyme
concentrations, which only play a role in a limited set of constraints. To this effect, we
define 7, and 7, respectively the set of inequality constraints and variables with respect
to which the Chebyshev center will be calculated. Let us also denote £ the set of equality
constraints of the problem, a;, ¢; respectively the left-hand side of the inequality and
equality constraints, and b;, d; their respective right-hand side. From there, we can define
the modified centering problem:

maximize r
r, T

subject to W= pu*,
aj x4+ |1z, 0aillyr < b, VieZ, (4.24)
aj x <b;, Vidl,
cgr=d, Vkec&,

where p* is the maximal growth rate calculated at this time step, r the radius of the
Chebyshev ball, x the column vector of all the other variables of the ETFL problem, 1 7.
has for j* element 0 if j € J., else 1, and o denotes the element-wise product between
two vectors. Thus, |17, o a;||, is the norm of the projection of the constraint vector onto

Te-

For enzymes, for example, it is akin to making the model produce more enzymes than
necessary to carry the fluxes, while respecting the total proteome constraint. By maxi-
mizing the radius of the sphere inscribed in the solution space, at maximal growth rate,
we are effectively choosing a representative solution of the maximal growth rate feasible
space. We then use this solution as a reference point for the next computation step.
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Enzymes that are strongly constrained by other parts of the model are removed from 7.
In particular, AMPK, PKA, PCK2, ACCOAC (and its phosphorylated form), and PYK
(2 isoforms and phosphorylated forms) are not participating in the Chebyshev center
estimation.

4.4.6 Optimization procedure

The signaling cascade involves several steps where the concentrations of species will
influence the synthesis of others. In order to properly account for this, it is necessary
to optimize multiple times the model to successively update the concentration of all the

effectors until a quasi-steady state is reached.

The model modification subroutine, given a solution, to account for the signaling pathways
is the following:

e Set the metformin concentration;

e Update the lower bound on AMPK activation;

e Optimize the model for maximal growth;

e Fix the lower bound for the AMPK enzyme concentration;

e Update the lower bound on PKA activation;

e Optimize the model for maximal growth;

e Update the lower bound for the AMPK enzyme concentration;
e Fix the lower bound for the PKA enzyme concentration;

e Update ACCOAC phosphorylation by AMPK;

e Update PYK phosphorylation by PKA;

e Update PCKI1 transcription regulation by AMPK and PKA;
e Optimize the model for maximal growth;

e Fix the growth rate;

e Perform Chebyshev centering;

e Perform flux VA,

e Release growth rate;

e Release enzyme concentration bounds on PKA and AMPK;
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Table 4.2. Parameter values used in the regulation-enabled ME-model of colon cancer and their sources

Parameter Type Applies to Value Unit  Source

k;;’é"l Catalytic rate constant Respiratory complex I enzyme 275 s7t (180)

K ;Iﬂf;ltf Inhibition constant of metformin Respiratory complex I enzyme 1 mM  (181) & Cheng-Prusoff equation
EAMPK Catalytic rate constant AMPK (phosphorylating ACCOAC) 1.0 st (182, 183, 184)

KAMPK Hill activation constant AMPK activation by Metformin 1 mM  Assumed

nﬁMP K Hill order AMPK activation by Metformin 2 () Assumed > 1

EPEA Catalytic rate constant PKA (phosphorylating PYK) 1.0 s~!  Assumed similar to AMPK
KLKA Hill activation constant PKA activation by AMPK 1 x 1073 mM  Assumed

nEKA Hill order PKA activation by AMPK 2 () Assumed > 1

EPCKL Catalytic rate constant PCK1, cystosol 25 s7t (185)

K }ZCKl Hill activation constant PCK1 activation by PKA 1 x 1073 mM  Assumed

nZCKl Hill order PCK1 activation by PKA 2 () Assumed > 1

KIPCKl Hill activation constant PCK1 inhibition by AMPK 1 x 1073 mM  Assumed

nPeKl Hill order PCK1 inhibition by AMPK 2 () Assumed > 1

f Maximal fraction of ribosomes allocated to an activated enzyme 1 x 10~* () Estimated with control model
Efy accoac Maximal size of the enzyme pool (un)phosphorylated ACCOAC 5 x10™* g/gpw Estimated with control model
B¢ pvk Maximal size of the enzyme pool (un)phosphorylated PYK 1 x 1072 g/gpw Estimated with control model

e Repeat with the next metformin concentration.

Bold steps are those that involve an optimization to be run. We use this subroutine the
optimization flow to update intracellular concentrations for important effectors of the
signalling cascade, such as AMPK, PKA, and the activity of the respiratory complex I
and reaction reactions ACCOAC, PEPCK, and PYK.

The Chebyshev solution and the results of the VA are used to find representative solutions
at the end of the procedure. The figures shown in this article were all obtained after
Chebyshev centering and variability analysis.

4.4.7 Parameters

A number of kinetic parameters were used to model several mechanisms of the metformin
cascade. While some of them could be found using literature data, some had to be
assumed at physiologically relevant values. Table 4.2 summarizes the said parameters.

4.4.8 Data and code availability

All the data used in this study and the code to reproduce it will be freely available
under the APACHE 2.0 license at https://github.com/EPFL-LCSB/tech and https:
//gitlab.com/EPFL-LCSB/tech when a preprint of this article is online.
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Supporting information

Supplementary Figure S1: In vitro cell viability after metformin treat-
ment

Figure reprinted from Zhang et al. (170).
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A method is more important than a discovery,
since the right method will lead to

new and even more important discoveries.

— Lev Landau

Une solution qui vous démolit vaut mieux que n’importe quelle incertitude.
— Boris Vian

Here is a motto I made up: Science needs ART — Accessibility, Reproducibility, and
Transparency. I could also have gone with RAT or TAR, but these options seemed less
marketable. In any case, I think these three items are important tenets that separate
“good” from “less good”!® science. Alas, these tenets are sometimes challenged by the dull

practicalities of the world.

Accessibility has been a prominent problem in academia, where many laboratories would
publish results, but not the code used to obtain them. Another variant was “availability
upon request”, where authors could be contacted to obtain details on the implementation
of their research. Unfortunately, these interactions often ended up in rare responses from
the authors, or exchanges with a characteristic response time of a year.

The reproducibility crisis has not spared computational fields, which is something I always
found ironic. One would expect computer environments to be fully controlled, understood,

18T would like to avoid the word “bad”.



and reproducible from one instance to an other. Yet, any person who tried to run a
piece of code found in a derelict folder from a former collaborator would agree that it is,
unfortunately, seldom the case in academia. Lack of documentation, comments, but also
undocumented compilers and dependencies, are a few of the many hidden parameters
that should be controlled, but are often forgotten.

Finally, transparency is complicated to achieve in a competitive field where the fear of
being scooped is prevalent. It is required to say what we did, but if we can avoid to say
how we did it, the better.

Throughout my PhD, I used, developed and contributed to several pieces of software.
I also wanted my software to be ART. Fortunately, the recent emphasis of grants on
open-source software, open science, and efficient data management greatly helped in this
endeavour. In this respect, all the code, scripts, packages I developed are available online
on a variety of repository hosting services. I wrote documentation for my softwares, and
actively commented my code!®. All my work can be run in virtual machine containers,
for which I provide build files?°. Finally, all of the Python dependencies I used are listed
in each project directory, and most of them have version numbers attached.

This part highlights some software I have directly developed or contributed to. Some
already have a significant user base outside LCSB, and some I believe, have good potential.

Software releases are often published under the form of short application notes, that
highlight simple use cases and implementation in broad terms. The next chapters are
under such a format.

19Comments currently make up 40% of the roughly 50 000 lines of code used to generate the results I
present in this thesis.
20T used Docker as a container engine and provide a Dockerfile for each project.
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The following chapter discusses the open-source release of an important piece of software
we use in the laboratory, and on which most of my research relies. pyTFA and matTFA
are the first open-source, published implementations of the original thermodynamics-
based flux analysis (TFA) paper (35). PyTFA is a Python package, and matTFA its
MATLAB equivalent. PyTFA and matTFA add explicit formulation of Gibbs energies
and metabolite concentrations to models of metabolism, which enables straightforward
integration of metabolite concentration measurements. pyTFA has an active user base in
academia and industry. Users sometimes reach out for explanations or contributions to
the code.

This chapter is adapted from P. Salvy, G. Fengos, M. Ataman, T. Pathier, K. C. Soh,
and V. Hatzimanikatis, “pytfa and mattfa: A python package and a matlab toolbox for
thermodynamics-based flux analysis,” Bioinformatics, 2018. Georgios Fengos, Merig
Ataman, and I worked on the MATLAB code for matTFA. The three of us contributed to
the documentation. I led the project in which Thomas Pathier wrote the implementation
of the TFA constraints in Python for pyTFA, and I wrote all the pyTFA object-oriented
system of constraints and variables. We both contributed to the documentation of pyTFA.
Vassily Hatzimanikatis, Georgios Fengos and I designed the studies to perform. Georgios
Fengos, Meric Ataman and I curated the data. I made all the figures, and set up the
online code repositories which contain the code documentation. I continuously updated
pyTFA throughout my studies, fixing bugs, including user’s feedback, and making sure
the code was easily installable through Pypi, Python’s package repository. I also set up
a continuous integration system to verify the code portability, and several tutorials to
reproduce the results.

All the code and documentation is available under the APACHE 2 license at:
https://github.com/EPFL-LCSB/pytfa
https://gitlab.com/EPFL-LCSB/pytfa

and:

https://github.com/EPFL-LCSB/mattfa
https://gitlab.com/EPFL-LCSB/mattfa
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The content of this chapter is reproduced from the original article, with the authorization
from the publisher, under the license CC-BY-NC: “This article is available under the
Creative Commons CC-BY-NC license and permits non-commercial use, distribution and
reproduction in any medium, provided the original work is properly cited.”
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Abstract

Summary pyTFA and matTFA are the first published implementations of the original
TFA paper. Specifically, they include explicit formulation of Gibbs energies and metabolite
concentrations, which enables straightforward integration of metabolite concentration
measurements.

Motivation High-throughput analytic technologies provide a wealth of omics data
that can be used to perform thorough analyses for a multitude of studies in the areas
of Systems Biology and Biotechnology. Nevertheless, most studies are still limited to
constraint-based Flux Balance Analyses (FBA), neglecting an important physicochemical
constraint: thermodynamics. Thermodynamics-based Flux Analysis (TFA) in metabolic
models enables the integration of quantitative metabolomics data to study their effects
on the net-flux directionality of reactions in the network. In addition, it allows us to
estimate how far each reaction operates from thermodynamic equilibrium, which provides

critical information for guiding metabolic engineering decisions.

Results We present a Python package (pyTFA) and a Matlab toolbox (matTFA) that
implement TFA. We show an example of application on both a reduced and a genome-scale
model of E. coli, and demonstrate TFA and data integration through TFA reduce the
feasible flux space with respect to FBA.

5.1 Introduction

Constraint-based analysis on genome-scale metabolic models (GEMs) is a popular method
to study metabolism and cellular physiology. Flux Balance Analysis (FBA), in particular,
has been used to predict network-level behav-iors, such as specific growth rate, gene
essentiality, etc. The MATLAB-based COBRA toolbox (53) and its Python counterpart
COBRApy (95) are today the most popular tools to perform such studies, and offer an
intuitive interface to model GEMs using a linear programming formulation.

However, FBA-derived approaches often lead to flux distributions that are contradicting
with physiology and bioenergetics due to the lack of thermodynamic con-straints in their
formulation (186, 187). We present here an implementation of Thermodynamics-based
Flux Analysis (TFA) (35, 36), a framework to constrain GEMs or any metabolic network
with thermodynamics. This framework allows to reduce the feasible flux solution space and
eliminate thermodynamically-infeasible flux distributions, thus increasing the predictive

accuracy of these models.

Previous works have been based on (35) to embed thermodynamic information in GEMs.
However, they either require additional assumptions (188, 189), or calculate the ther-
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modynamics feasibility decoupled from the FBA problem (190). TFA integrates the
ther-modynamics feasibility in the same MILP problem as FBA, and can unbiasedly
account for all allowed thermo-dynamic profiles.

Our framework is provided under the form of a MATLAB toolbox as well as a Python
package. It supported the publication of several studies integrating metabolomics in
genome-scale models (191, 192, 193, 194, 195, 196)

5.2 Materials and methods

5.2.1 Embedding thermodynamic constraints

The first step towards building constraint-based models utilizing thermodynamics with
TFA is to ensure a proper thermodynamic curation of the model. In particular, TFA
requires the information on (1) Compartment-specific pH, ionic strength, and membrane
potentials; (2) Elemental and charge balance of every reaction; (3) Ay (G'°) the Gibbs
free energy of formation of metabolic compounds in aqueous phase, pH 7 and 0 Molar
ionic strength, all concentrations held at 1M, at 25°C. (1) is obtained from literature
data. If this is missing, data on phylogenetically close species can be assumed, if available.
(2) is dependent on the quality of the genome scale model used as an input. TFA will
however take care of adjusting the dominant protonation state of metabolites depending
on their pKa and the pH of their compartment. We then perform a correction according
to the Debye-Huckel equation (197) to adjust the energies to the relevant ionic strength in
the compartment. For (3), Ay (G°) can be obtained using literature data, or estimation
methods like group contribution method (87). If a metabolite does not have Ay (G°), the
reactions that include this metabolite in their stoichiometry will not be constrained with
thermodynamics. It is not possible to solely add a reaction A, (G°), as the Gibbs energy
needs to be linked to metabolite concentrations in order to propagate the thermodynamic
constraints throughout the network. The pKa of a compound can be calculated with
ChemAxon (198).

The Gibbs free energy of reactions are then transformed with respect to cellular physiology
by applying the transformation as proposed in (148), as well as in this context by (36),
using the given compartment-specific parameters: pH and ionic strength. Concentrations
are used directly to integrate quantitative metabolomics data into the model. Upon
thermodynamic curation of the model, we can formulate it as an MILP problem as
explained in the supplementary information and (36).

The different types of analysis that can be performed are detailed in the Supplementary
Information, and both packages include tutorials on how to perform them.
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Bi-directional reactions become unidirectional upon imposing thermodynamic constraints and datz
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Fig. 5.1. Variability analysis for reactions whose directions are not con-strained by FBA. By subsequently
adding thermodynamics constraints and concentration data, all the reaction directionalities are determined.

5.2.2 Implementation

The Python package pyTFA is built to integrate with COBRApy (95), and takes ad-
vantage of Optlang (96) for solver agnosticism and model operations. The MATLAB
implementation matTFA is built on top of The COBRA Toolbox (53). In the current
implementation, the code uses SEED IDs (199) to match metabolites with a table of
thermodynamic information taken from (87). It is also possible to input additional
Ay (G°) values manually.

5.3 Usage

The software packages come with a tutorial that demonstrates the effects of integrat-
ing thermodynamic infor-mation as well as concentration data. A reduced model of
Escherichia coli (117), as well as the genome-scale model (1JO1366, (48)) used for its
generation are provided. Figure 5.1 shows the output for a typical use case: A FBA
model is constrained with thermodynamics, and then additional concentration data is
added. Figure S1 illustrates that the more constrained the model is, the more reduced
the allowed ranges of fluxes are. Both packages detail how to reproduce this figure
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5.4 Conclusion

We propose the software package to add thermodynamic information to constraint-
based metabolic models. The resulting formulation is amenable to different types of
analysis with high value for the Metabolic Engineering and Systems Biology communities.
We demonstrated it with a case study of a reduced system for E. coli focusing on
glycolysis, as well as the original GEM. Our package is available for MATLAB, and
Python 3, on GitHub: respectively https://github.com/EPFL-LCSB/matTFA and https:
//github.com/EPFL-LCSB/pytfa.
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The following chapter discusses the open-source release of another key software we use
in the laboratory. redGEM (117) and lumpGEM (118) are methods for systematically
reducing the complexity of genome-scale models. Reduced models are necessary in certain
types of analysis where the computational complexity increases significantly with model
size. This includes for example kinetic studies, where several parameters of ordinary
differential equations must be estimated for each reaction in the model. Reduced models
are also useful to summarize metabolism around specific physiologies, and are used in
Chapter 4.

This chapter is adapted from a manuscript in preparation, P. Salvy, M. Ataman, G. Fengos,
B. Mouscadet, R. Poirot, and V. Hatzimanikatis, “A python implementation of the
metabolic network analysis and reduction algorithms redgem and lumpgem,” bioRziv,
2020. I led the project in which Romain Poirot wrote the implementation of the redGEM
algorithm, and Benjamin Mouscadet wrote the implementation of the lumpGEM algorithm.
Upon completion of the project, I continued writing the integration of the code to pyTFA.
The three of us contributed to the documentation. Meri¢ Ataman and Georgios Fengos
helped with valuable contribution in the discussion in the formalization of the method
and debugging of the code. Vassily Hatzimanikatis, Georgios Fengos, Meri¢ Ataman and
I designed the studies to perform. Georgios Fengos, Meri¢ Ataman and I curated the data
used in the example. I made all the figures, and managed the online repositories which
contain the code and its documentation. I wrote most of the manuscript, and Vassily
Hatzimanikatis, Georgios Fengos, and Meri¢ Ataman contributed to its editing.

All the related code and documentation is included in the pyTFA repository (94), under
the APACHE 2 license at:

https://github.com/EPFL-LCSB/pytfa

https://gitlab.com/EPFL-LCSB/pytfa
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6.1. Introduction

Abstract

Genome-scale metabolic models (GEMs) provide a wealth of information when it comes
to modeling microorganisms. They are key to effective and efficient metabolic engineering,
and are now the basis of multiple state-of-the-art workflows (104, 33). However, their
exhaustivity might come at the cost of increased computational complexity, underde-
termination, sloppy parameters and poorly constrained systems, which is a problem for
integrating data in studies such as for Metabolic Flux Analysis or kinetic modeling (201).
As such, it is common to employ reduced models in this kind of analyses. However,
reduced models often suffer from confirmation bias or selectivity bias, and might not
account for important properties captured by GEMs.

The redGEM /lumpGEM framework proposes systematic analysis and reduction algo-
rithms, using graph search and mixed-integer linear programming, to reveal the metabolic
capabilities of organisms as well as to minimize bias and maximize robustness and infor-
mation retention of reduced networks (117, 118). We propose here an implementation of
this framework, integrated with thermodynamics-based flux analysis, which is compatible

with state-of-the-art metabolic modeling software

6.1 Introduction

Genome-scale models are a cornerstone of modern computational biology. Their capacity
to capture the metabolic interactions as well as gene-protein-reaction relation-ships makes
them a powerful tool to investigate and engineer microorganisms. However, with advances
in genome sequencing technology and model reconstruction, these models tend to grow
ever-bigger as our understanding of the organisms they represent increases. For studies
like flux balance analysis (FBA) or thermodynamics-based analysis (TFA), model size
is not so much of an issue. But some types of analyses become quickly intractable as
their complexity grows exponentially with respect to the network size. In particular, for
kinetic modeling frame-works like ORACLE (202), which relies on parameter sampling
and matrix inversions, the generation of kinetic models based on GEMs is computationally
intensive for large GEMs such as the human cell model Recon3D (169), which features
more than 5 000 metabolites, 10 000 reactions, each of them harboring several parameters.

To alleviate the computational burden in such analyses, reduced models are often employed
(203, 204, 205, 27). However, their generation is usually done by either (i) ad hoc
reconstruction of the pathway of interest, or (ii) straight subnetwork extraction from a
GEM. These approaches are subject to systematic bias — Why choose this particular
reaction, and not the other one? — and fail to account for unintuitive aspects of the model
such as cofactor balance and alternative metabolic routes. These caveats are critical,
as flux balance will behave in drastically different ways if balancing mechanisms and
alternative pathways are omitted.
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The redGEM and lumpGEM (117, 118) algorithms were developed to respond to these
issues, and allow to systematically and robustly reduce a GEM while minimizing the
loss of information of the model, using a combined graph-theoretical and optimization
approach.

In this work, we present our implementation of the redGEM and lumpGEM algorithms.
The redGEM approach is not strictly focused only on the reduction of the stoichiometry
for the generation of highly condensed network, but aims also to preserve the constitutive
characteristics of metabolic networks. In particular, it retains synthesis routes for biomass
building blocks in the reduced network.

Our method is provided under the form of a Python sub-module of pyTFA (94), which is
a framework for thermodynamics-based flux analysis (TFA) (35, 36) and is compatible
with COBRApy (95), a widely used tool for constraint-based analysis of metabolic models.
The redGEM /lumpGEM framework was used to generate the backbone of kinetic models
used in several integrated metabolic engineering studies (206, 195, 207).

6.2 Materials and methods

6.2.1 Reduction and lumping

The lumpGEM /redGEM framework (117, 118) reduces a GEM in two steps: (i) it
calculates the n'"" degree of connectivity between groups of reactions (subsystems) of
interest, and (ii) collapses the remaining part of the metabolism in lumped reactions that
fulfill the metabolic requirements of the cell.

We use redGEM’s (117) breadth-first search (BFS) to calculate the n'" degree connections
that connect the studied subsystems, yielding the core reaction network. This core
reaction network will remain unchanged with respect to the original model, ensuring that
all local information embedded in it is conserved.

The second part of the framework uses lumpGEM (118) as a subroutine to analyze and
connect the resulting core network to the biomass reaction. Biomass reactants might be
far from the core reaction network. Hence, it is necessary to compute lumped reactions
that represent the subnetworks used for the synthesis of these biomass building blocks,
and connect the core reaction network to the biomass reaction. LumpGEM performs this
by using mixed-integer linear programming, to find sets of minimal subnetworks able to
synthesize each and every biomass building block.
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Table 6.1. Example lumped reactions. 3PG: 3-phospho-D-glycerate; AcCoA: Acetyl-CoA; Asp-L: Aspartate;
CoA: Coenzyme-A; CTP: Cytidine triphosphate; DHAP: Dihydroxyacetone phosphate; GLCN: D-gluconate;
PE160: Phosphatidylethanolamine (16:0); PEP: Phosphoenol Pyruvate; Pi: Phosphate; PPi: Pyrophosphate;
Q8: Ubiquinone-8; Q8H2: Ubiquinol-8

Compound Lumped reaction

L-asparate COs + NADPH + NHy + PEP — Asp-L + H"™ + NADP" + Pi

CTP ATP + GLCN + H2O + 3.0 NHy + PEP + Q8 — 9.0 ADP + CTP +
6.0 H" + 5.0 Pi + PPi + Q8H,

PE160 3PG + 16.0 AcCoA + 16.0 ATP + DHAP + 15.0 H" + 9.0 NADH +
20.0 NADPH + NHy — 16.0 ADP + COs + 16.0 CoA + 9.0 NAD" +
16.0 NADP" + PE160 + 15.0 Pi + PPi

6.2.2 Thermodynamics

The package includes the option to impose thermodynamics constraints throughout the
workflow, ensuring that only thermodynamically feasible subnetworks are computed. To
this effect, we include in the optimization problem the constraints from thermodynamics-
based flux analysis (TFA, (35, 36)).

6.2.3 Implementation

The code has been added as a submodule of the Python package pyTFA (Salvy, et al.,
2018), and is built to integrate with COBRApy (95). It takes advantage of Optlang (96)
for solver agnosticism and model operations.

6.3 Usage

The software packages comes with a tutorial example on the well-studied E. coli genome-
scale model 1JO1366 (48). In the tutorial we provide, the model is reduced around five
subsystems and their the first degree connections: Citric Acid Cycle, Pentose Phoshate
Pathway, Glycolysis/Gluconeogenesis, Pyruvate Metabolism, Glyoxylate Metabolism, and
Oxidative Phosphorylation. From 1807 metabolites spanning 2585 reactions, the reduced
model generated contains 371 metabolites spanning 599 reactions. Some examples of
lumped reactions obtained in the reduction are detailed in Table 6.1
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6.4 Conclusion

We propose the software package to systematically analyze and reduce constraint-based
metabolic models. The reduced models capture the variability of the parent models while
having a much-reduced complexity. The framework allows the use of thermodynamics
constraints. Because the method is based upon state-of-the art tools, it is easily integrable
into existing synthetic biology workflows. The reduced models are more amenable to
computationally heavy analyses, like kinetic modeling of MFA analysis. We provide a
fully detailed example reduction of the E. coli 1JO1366 (48), under aerobic conditions
and glucose feed. Our package is available for Python 3, on GitHub, as a subroutine of
pyTFA: https://github.com/EPFL-LCSB/pytfa.
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The following chapter discusses the use and open-source release of code we developed
to better accommodate kinetic models in our workflows. This software, SKiMPy, is
the product of long collaborative work with my colleagues Daniel Weilandt and Robin
Denhardt-Eriksson, with whom we set out to write an object-oriented framework to
handle kinetic models as easily as we handle GEMs in pyTFA. SKiMPy was used by
several PhD students and interns in our laboratory on a variety of projects, spanning
the dynamics of the Warburg effect in cancer cells to initial rate experiments and the
optimization of enzyme reaction mechanisms (data not published yet).

This chapter is adapted from a manuscript in preparation. I wrote the global architecture
of the package, and defined its paradigm with dynamic declaration of classes, and symbolic
handling of expressions. Daniel Weilandt and I worked on the interface to transform
GEMs and pyTFA models into SKiMPy models, and the modal analysis module. Daniel
Weilandt derived the kinetic expressions for the mechanisms, and refined the package
based on his usage during his research work, including faster compilation of functions into
machine code. Robin Denhardt-Eriksson wrote the general sensitivity analysis framework
and parameter resampling. Daniel Weilandt and Robin Denhardt-Eriksson both wrote
the (re)sampling and MCA modules. Daniel Weilandt generated the data presented in
this manuscript. Daniel Weiland, Robin Denhardt-Eriksson and I wrote the manuscript.
Expertise on ORACLE was provided by LjubiSa Migkovi¢. Vassily Hatzimanikatis and
Ljubisa Miskovié¢ edited the manuscript.

All the code and documentation is available under the APACHE 2 license at:
https://github.com/EPFL-LCSB/skimpy
https://gitlab.com/EPFL-LCSB/skimpy

162


https://github.com/EPFL-LCSB/skimpy
https://gitlab.com/EPFL-LCSB/skimpy

7.1. Introduction

7.1 Introduction

Large scale metabolic kinetic models have become a valuable tool to bridge the worlds of
computational biology and living systems. Such models are useful to understand and engi-
neer organisms, from industrial recombinant hosts to analyzing cell-pathogen interactions
and pharmacokinetics. Conventionally, those model rely on detailed information on the
kinetics of individual reaction happening in the cell. However, with the limited availability
of kinetic data, and the ever-growing amount of biological networks at our disposal, the
building of large-scale kinetic networks is confronted with critical uncertainties (201).
Additionally, parameters obtained from in vitro experiments are sometimes not correct to
describe kinetics in physiological environments, where the medium is not well mixed and
suffers effect from crowding (208, 209, 210). As a result, the fraction of available kinetic
data in models tends to decrease.

In this context, the development of parameter estimation techniques emerges as a necessary
tool to analyze the dynamic behavior of cellular systems. Different types of approaches
have been suggested to tackle this uncertainty. These fall in two main categories:
(i) parameter fitting to experimental data — these include genetic algorithms (211),
Bayesian inference (212), simulated annealing (213); and (ii) parameter sampling (202).
In particular, several methods building upon genome-scale models to generate large-
scale kinetic models have been proposed in the last years, using parameter sampling or
paramater fitting. Among them, the ORACLE workflow by Miskovi¢ et al. (202) has been
proven to be a useful tool to estimate parameters large scale kinetic models that are in
alignment with a steady state flux profile and thermodynamically feasible concentration
profile (191, 201, 206, 214). ORACLE marked an important achievement in the systematic
generation of large-scale kinetic models in computational biology.

We propose a Python framework for object-oriented kinetic modeling that capitalizes
on a symbolic formulation of kinetic laws — Symbolic Kinetic Models in Python, or
SKiMPy. This symbolic formulation allows models to be agnostic to the type of analyses
to be performed. Our proposed framework is compatible with both parameter fitting and
sampling methods, taking advantage of the modularity of its implementation. In particular,
the ORACLE method, metabolic control analysis (MCA), (total) quasi-steady state
assumption integration, parameter (re)sampling, and sensitivity analysis are implemented.

7.2 Material and Methods

7.2.1 Symbolic kinetic models

The ordinary differential equations describing a biochemical reaction network can be
derived directly from the mass balance of the IV reactants participating in the M reactions
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of the network:

dX;
Vi € Hl,Nﬂ, dtz :an] Vj(Xup)v (71>
j=1

where X; denotes the concentration of the chemical ¢, n;; is the stoichiometric coefficient
of reactant ¢ in reaction j and v;(X,p) is the reaction rate of reaction j as function
of the concentration state variables X = [X1, X5,...,Xy|" and the parameters p =
[p1,P2, -, pr] . The functions vj(X, p) are the given rate laws of their respective reaction.

Within this framework we distinguish between two different types of rate-laws: (i)
elementary rate laws that are based on molecular interactions; and (ii) apparent rate-laws
that phenomenologically describe the reaction rate. These apparent rate laws are strongly
dependent on the assumptions made on the mechanism of the reaction. For enzymatic
reactions it is commonly assumed that the enzyme quantity is conserved and the enzyme
complex concentration is in a quasi-steady state. These assumptions allow to simplify,
for each reaction, the elementary reaction rate laws to a single Michaelis-Menten rate law.
An overview of the implemented mechanisms and their respective assumptions is given in
Table S1 in the Supplementary Data.

7.2.2 Sampling steady state consistent parameter sets

Large-scale kinetic models often suffer from a lack of data to calibrate their parameters
(201). We approach the problem by sampling unknown parameters. In particular, for
the ith species concentrations [S;] as well as its Michaelis-Menten constant in the ;%
reaction K;&, we use the transformation proposed by Miskovi¢ et al. in the ORACLE
workflow (202):

o _Is1/xy (72)
TSRy |

This reformulation allows to replace the unbounded sampling of concentration ranges and
Michaelis-Menten constants by a sampling on the [0, 1] interval.

For every parameter sample the Jacobian of the dynamic system is calculated according
to the formulation proposed by Wang et al. (215). The inverse of the real part of the
eigenvalues of the Jacobian give the characteristic time constant of the envelope of the
response of the linearized system. Because of this, a Jacobian whose largest eigenvalue
has a positive real part will yield unstable models. Also, eigenvalues with a negative real
part too close to 0 will yield slow dynamics, potentially slower than metabolism. As a
result, it is necessary to subsequently filter the parameter sets to discard (i) unstable
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models and (ii) models with slow dynamics. This step might be limiting in some cases.
In our experience across different organisms and metabolic networks, from 30% to only
0.01% of the samples were stable models.

7.2.3 Serialization

We observed that the development of kinetic models was subject to iterative refinement, for
instance defaulting all the reactions to Michaelis-Menten mechanisms before implementing
Hill kinetics for known enzymes. This was often performed through the tedious editing
of undocumented spreadsheets without standards. To alleviate this issue, models are
serialized in the YAML format, a human-readable data serialization language which
retains the object specifications of SKiMPy. Refinements to the models can be done
through a simple text editor in a typed and controlled environment enforced by the YAML
specifications.

7.2.4 Implementation

SKiMPy is a Python package provides an object-oriented interface to construct the
symbolic expressions using the Python package sympy. SKiMPy also precompiles these
expressions into machine code using Cython. SKiMpy further integrates the SUNDIALS
ODE-Solver package (216) using the interface provided by the package ODES (217).

7.3 Usage

The software package comes with different tutorials demonstrating (i) how to build reaction
network with elementary and apparent reaction rate laws; and (ii) how SKiMpy can
be used in combination with an implementation of thermodynamics-based flux analysis
(pyTFA, (94)) to sample parameters following the ORACLE workflow.

As an example of SKiIMPy workflow to characterize a kinetic model, we provide a pyTFA
model of the core metabolism of E. coli, derived from Varma et al. (27). The TFA
model provides a steady-state solution that maximizes the cellular growth rate subject
to stoichiometric and thermodynamic constraints. The kinetic parameters of the model
were sampled using SKiMPy. In the next step, we perform an analysis of the basins of
attraction; therefore, one set of parameters is chosen and integrated for 100 different
initial conditions. These initial conditions are sampled to allow for concentration five
five-fold larger and five fold lower than the reference set (Fig. 7.1-a). Fig. 7.1-b shows
the euclidean distance of each perturbed model to the reference concentration. Some
perturbed samples revert to the original steady state, while others switch to a new steady
state. This clearly shows the existence of two steady states, and some perturbation
experiment allow the model to cross from one basin of attraction to another. Fig. 7.1-c
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Fig. 7.1. Different outputs from Skimpy. a. Violin plot of the distribution of the 100 sampled concentrations
for the metabolites in the model. b. Euclidean norm of the relative deviation of the 100 different resulting
perturbation experiments. Each line represents the norm of the relative change of concentration over time
versus the reference concentration. Orange lines converge towards the reference steady state, purple lines
towards a new steady state. c. Relative concentration deviation from the reference state, in a specific
perturbation experiment, with a highlight on the concentration of glucose 6-phosphate (G6P, light blue),
fructose 1,6-biphosphate (FDP, dark blue), ATP (yellow), NADH (orange) and CO2 (pink).

shows one particular perturbation experiment for which the concentrations of central
metabolites are singled out.

7.4 Conclusion

We developed a framework that is able to model biochemical systems in a fashion that is
agnostic to which type of analysis it will be subjected to. We show that such a model is
amenable to a range of studies, without additional transformation. We demonstrate its
usage on two models, one of which being a reduced genome-scale model. Such a tool will
be key in the development and analysis of large-scale kinetic models.
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Our package is available for Python 3 on GitHub (https://github.com/EPFL-LCSB/
skimpy) and Gitlab (https://gitlab.com/EPFL-LCSB/skimpy).
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Concluding remarks

Conclusions

Metabolic engineering is a young field with potential applications in important domains,
incuding health, food, and industrial biochemistry. The understanding and engineering of
living cells requires new tools, be it for whether human cells, plants, or industrial hosts
such as F. coli or S. cerevisiae are concerned. In this thesis, I provided a new framework
to design models of metabolism and gene expression (ME-models), as well as new methods
to analyze them. The methods I presented allow to (i) integrate experimental data to
characterize observed cellular physiologies; (ii) elucidate non-measurable cellular states
underlying observed cellular physiologies; (iii) predict, independently of experimental
data, cellular responses that are empirically validated. I also provided details on several
computational tools I have developed or contributed to, that can be used to deconvolute
and better model biological systems.

In the first part of this dissertation we explored a new formulation of ME-models, ETFL.
I derived the whole formulation from the cell biochemistry, and applied it to several
organisms. | showed the formulation allows to capture complex phenotypes emerging
from growth optimality, in particular under the constraint of proteome limitation. I also
provided a framework for the integration of proteomics, transcriptomics, and metabolomics
data in the models.

In Chapter 1, I tackled the problem of efficient ME-models accounting for thermo-
dynamics. I derived a full set of equations representing cellular metabolism and gene
expression, using biochemical knowledge, and provided a transparent bilinear formulation
for ME-models, ETFL. I then discretized the bilinear problem in piecewise-linear MILP,
and applied the formulation to a model of E. coli. The introduction of integers is also an
opportunity to integrate thermodynamic constraints to the model, using thermodynamics-
based flux analysis (TFA) (35, 36). The formulation provides a transparent way to
integrate proteomics and transcriptomics through the introduction of protein and mRNA
concentrations, and metabolomics through TFA. I showed the model accurately simulates
protein-limited growth, allows to calculate feasible proteomes and transcriptomes, and
that it captures well gene essentiality information. Finally, I also pointed out the solving
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performance of the problem is on par if not better with the state of the art.

In Chapter 2, I used ETFL to model the diauxic growth of E. coli in a batch reactor. I
first devised a conceptual model to show analytically that the sequential use of carbon
sources in a mixed carbohydrate medium is the result of an optimal program for growth
under the constraints of proteome allocation. Then, I set out to show the result generalizes
to genome-scale models. To do so, I designed a dynamic ME-model method (dETFL)
that accounts for time-dependent variation of enzymes and mRNA concentrations in
the cell. I then validated dETFL by simulating the growth of E. coli on glucose, and
showed that dETFL predicts acetate reconsumption, a diauxic behavior, in quantitative
agreement with experiments. Finally, I used the dynamic ETFL formulation to simulate
the growth of E. coli on a mix of glucose and lactose. I showed that, in accordance with
the conceptual model, the dETFL model predicts the preferred consumption of glucose
over that of lactose. I also showed that initial conditions change the cell fate, as cells
precultured in lactose will adapt their proteome to consume glucose first, and then glucose.
This allows us to postulate the regulation mechanisms of diauxie are an emerging control
system to ensure the optimality of the growth of E. coli.

In Chapter 3, we applied the ETFL framework to build the first genome-scale ME-model
of a eukaryotic organism, S. cerevisiae. We performed gene essentiality checks to validate
the model accuracy, and proceeded to show the model is able to reproduce the phenotype
of overflow metabolism. Indeed, under excess glucose, the model predicts fermentative
processes to happen, under the form of ethanol secretion (Crabtree effect). The model
also independently and quantitatively reproduces experimental data from fermentors,
validating the use of ETFL to model eukaryotic organisms in the context of industrial
biotechnology.

In Chapter 4, I built a ME-model from a context-aware reduced human model, for
a cell line of colon cancer. This is the first time a ME-model formulation has been
used on a human model. I supplemented this model with a method to implement a
partial signaling cascade in the context of ME-models, which is an important milestone as
signaling cascades are key components of cancer physiology. Using this method, I showed
the model is able to quantitatively reproduce the deleterious effects of the antidiabetic
drug metformin on tumor cell growth, and I showed in particular two different modes of
actions that limit cell growth at different doses. I also show that the model can be used
to find mechanisms of resistance that can be used by the cell to evade one therapeutic
action of metformin. The combination of context-specific reduced models and ME-model
formulation provides a powerful platform to create personalized, context-aware models of
metabolism and gene expression and regulation. Such models can be used to design and
evaluate drug treatments, and are a important milestone on the way towards personalized
medicine.

The second part of the dissertation provided details on my contributions in computational
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biology, under the form of software packages.

Chapter 5 detailed pyTFA and matTFA, two toolboxes (in Python and MATLAB) to
perform thermodynamics-based flux analysis (TFA) on genome-scale models of metabolism.
The code is provided with a documentation, tutorials, examples, and models ready to be
used. TFA is a method that greatly improves the quality of the solutions given by normal
FBA models (35, 36), and providing an open source implementation of the method is

valuable for the community of computational biology.

Chapter 6 described an implementation of the algorithms redGEM and lumpGEM
(117, 118), two important methods to systematically reduce genome-scale models around
pathways of interest. These methods allow the construction of models that still capture
an important fraction of the metabolism, but with a reduced number of reactions and
variables. Such reduced models play a vital role for analyses where complexity matters,
such as the construction of kinetic models (201, 186).

Chapter 7 finally described a framework to construct symbolic kinetic models, SKiMPy.
The models can be generated from genome-scale models or other types of biological
networks. Due to its symbolic formulation, SKiMPy is able to automatically transform
the specified kinetic system under a form suitable for different types of analysis, such as
metabolic control analysis, sensitivity analysis, or time integration. The easy handling
of kinetic models for several types of study is an important step towards the systematic
reconstruction of context-aware kinetic models of metabolism, an important goal for
systems biology (42, 201).

Outlook

Cellular systems are complicated. In this work, I propose some new, and some improved
methods to model cells at level of the metabolism and genome expression. Yet, the road
is still long, and there is still much to build and discover in metabolic engineering, and
systems biology in general.

In this dissertation we mostly looked at quasi-steady state models, and to some extent
an approximation of a dynamic formulation using quasi-steady state assumptions. Yet,
a lot of the physiology of the cell relies on transient responses, be it in cell signaling
(quorum sensing, immune response), or very literal cell physiology (muscular response,
neuron activation). Systems biology at steady state is extremely powerful for industrial
biotechnology and fermentation processes, but it is only the doorstep to a wider, wilder
field in which we only have rudimentary tools. An important milestone on the way to a
more sophisticated systems biology is whole cell models. Reduced, summarized models
have been successfully reproducing experimental data (81, 82, 211) , and even a whole
cell model of Mycoplasma genitalium was published (218). However, truly integrated
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genome-scale whole cell models are not common yet, for reasons that include the difficulty
of model building, the computational time, and the difficulties in integrating experimental
data (219). I believe that the ETFL formulation, with its systematic construction of
the genome expression system, improved computational efficiency, and facilitated ’omics
integration, is a step in the direction of accessible whole-cell models.

Models of metabolism and genetic expression have the potential to impact several im-
portant topics in systems biology. In the context of industrial biotech, ME-models and
methods derived from ETFL are of particular relevance.

ME-models for platform hosts in industrial biotechnology, such as E. coli, S. cerevisiae,
or Y. lipolytica, may provide a strong analysis framework do analyze experimental data
but also produce informed engineering decisions to improve the yield, productivity, and
health of the cells (220). The ability of ME-models to bridge genotype and phenotype is
key to properly interpret the effects of genetic engineering, and help decision-making for
the iterative engineering of these microbes.

The modeling of communities of microorganisms has garnered a lot of attention (74).
Synergistic interaction between microorganisms who have co-evolved might allow to bypass
many steps of otherwise painful microbial engineering, and they are the mechanisms
behind a fair share of today’s alimentation, including cheese (221), wine (222), or kefir
(223). The integration of (reduced) ME-models to the study of these communities may
be a way to better understand complex phenotypes arising from the trade-off between
shared resource allocation, and global ressource limitations — in other words, the price of
anarchy in winemaking.

Close to the subject of microbial communities is that of metagenome analysis. Progress
in metagenome sequencing now allows the systematic reconstruction of the genome-scale
models of hundreds of microorganisms in a single sample of gut microbiome (44). Using
the standard operating procedure I designed in ETFL, one could imagine also a systematic
ME-model reconstruction for each organisms in a metagenomic sample. Such models can
inform on the organisms in presence, how to cultivate them, and how to engineer ways to
change their interactions to durably modify gut microbiome.

We showed with dETFL that cellular genetic regulation could be understood as a control
system to ensure cell optimality with respect to its (hidden) objective function. Genetic
regulation is an important part of the cellular physiology, and constraint-based models
can help understand the complex, redundant and multi-layered interactions between
metabolism and gene expression. This interaction of paramount importance when dealing
with cancer tissue, for example, as one of the the hallmarks of the cancer cells is the
global deregulation of their metabolism and signaling pathways (164, 159).

Finally, in the context of health and medicine, easy integration of omics data in ME-models
will play an important role in achieving context-aware, personalized models of metabolism
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and expression, which can subsequently be used for personalized medicine. Each cancer is
different, and even the tumor micro-environment shows a strong heterogeneity (172, 224).
This heterogeneity can be accounted for with the efficient integration of data from biopsies
into our models. Other cellular systems from the human body are also of interest, such as
the differentiation of T-cells in immune responses. Metabolic studies of this phenomenon
already promise new insights on the mechanisms of immunity (142), and ME-models will
allow even better characterization of the genomic and metabolic states of T-cells. Deep
insights on the inner workings of immune cells have a strong value for research in the
context of immunity-related diseases, which includes several types of dementia, genetic
diseases, HIV, and cancers.

ME-models have more to say. Industrial biotechnology, food science, and health and
medicine are chief fields in which they have a voice, and it is clear their democratization
is important to tackle the challenges Systems Biology has to face in the 21" century.

It has been said that a “wise and imaginative perception and formulation of critical
questions and problems” was necessary for a successful integration of mathematical
approaches in biotechnology (225). This thesis attempted to deliver some imaginative
formulations, maybe even some clever tricks, to achieve higher levels of perception of
what happens inside the cell, in a multitude of contexts. Wits and imagination now need
to be scaled up, to tackle problems in systems biology of the next order of magnitude.
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The ETFL formulation allows multi-omics integration
in thermodynamics-compliant metabolism and
expression models
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Nondimensional Scaling

A critical issue in the formulation of this problem is the different orders of magnitude the variables belong to.
Fluxes are typically between 1073 — 101 mmol. gDW ~1.h™1. Protein concentrations are around 1076 —
1073 mmol. gDW ™1, and mRNA concentrations 1071% — 107% mmol. gDW ~1. The relationship between
these scales is given by the catalytic rates of enzymes and expression machinery, which span 103 — 106 h™1,
As a consequence, the constraint matrix becomes ill-conditioned and the solver has to operate close to, or
sometimes beyond, their maximal solving accuracy (usually around 10~° for commercial solvers such as
ILOG CPLEX or Gurobi)

In order to circumvent these limitations, we operate a scaling of the EP which will reduce the numerical

difficulty of the problem.

In particular, we consider nondimensionalization by upper bound as a method, which will also allow to reduce

the effective range of the variables seen by the solver.

Page 2 details the full bilinear EP formulation, before and after scaling. Page 3 introduces
nondimensionalization constants. Page 4 shows the relationship between original variables and scaled
variables. Page 5 summarizes upper bounds used for nondimensionalization, and the nondimensionalization

variables.
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Supplementary Table 1: Example EP constraint matrix.

FBA mass balances
Peptide mass balances
FRNA mass balances
Catalytic constraint
Translation
Translation capacity
Transcription
Transcription capacity

oupling

Enzyme mass balances
tRNA mass balances
MRNA mass balances
DNA mass balance
Degradation definition

Growth coupling
Growth discretization
‘AllocationConstraints

2862 562 1431 1431

1124]

37500 3986
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Standard Operating Procedure to construct an ETFL
model.

Summary checklist

Here is a summarized checklist of the material needed to turn a COBRA model
into ETFL:

e A working installation of ETFL
e A Cobra model with:

— Gene identifiers (IDs)

— All nucleotides triphosphates(NTPs), deoxynucleotides triphosphate(dNTP),
nucleotides monophosphate (NMP), aminoacids.

— (Optional) Gene reaction rules
e Gene sequences indexed by their gene IDs
e Peptide stoichiometry of enzymes
e Enzyme assigments per reaction.
e Enzyme catalytic rate constants:

— Forward

— (Optional) Reverse
e Enzyme degradation rate constants

e mRNA degradation rate constants

e (Optional) Free ribosomes ratio

e (Optional) Free RNA Polymerase ratio

e (Optional) GC-content and length of the genome

e (Optional) Average aminoacid abundances

e (Optional) Average NTP abundances

e (Optional) Average mRNA length

e (Optional) Average peptide length

e (Optional) Growth-dependant mRNA, peptide, and DNA mass ratios.

ETFL — Supp. Note 2 1/6
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Setup

Prerequisites

Make sure you have Git installed. Since ETFL is built upon pyTFA [1], we will
clone both repositories. In a folder of your choice, download the source code
from our repositories:

git clone https://github.com/EPFL-LCSB/pytfa
git clone https://github.com/EPFL-LCSB/etfl
# -- OR --

git clone https://gitlab.com/EPFL-LCSB/pytfa
git clone https://gitlab.com/EPFL-LCSB/etfl

Docker container (recommended)

We recommend the use of Docker containers as they provide a standardized,
controlled and reproducible environment. The ETFL Docker is built upon the
pyTFA Docker image. We recommend building it yourself as it is where your
solvers can be installed.

Downloading Docker

If Docker is not yet installed on your machine, you can get it from [here]

Building and running the Docker container

# Build the pyTFA docker

cd pytfa/docker && . build

# Build and run the ETFL docker
cd ../../etfl/docker

. build

. run

Solvers

For installing the solvers, please refer to the pyTFA documentation

Python environment
Alternatively, you can install ETFL using pip:
pip install etfl

Make sure your solvers are also installed in the same environment if you are
using a virtualenv or pyenv.

From COBRA to ETFL

ETFL models can be generated fairly easily from a COBRA model. In the
following subsections, we detail the required information to add expression con-
straints to a COBRA model and turn it into an ETFL model.

ETFL — Supp. Note 2 2/6
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Constraint-based model
You will need to start with a COBRA model including the following information:
e Genes and their gene ID (necessary to retrieve gene sequences)

e (Optional) Gene-protein rules: These are used to make approximated en-
zymes if peptide information is not enough

Additionally, you will need to build a dictionnary of essential metabolites
required in the model. It should follow this example structure (all fields manda-

tory):

dict(atp='atp_c',

adp='adp_c',
amp='amp_c',
gtp='gtp_c',
gdp='gdp_c',
pi ='pi_c' ,
ppi='ppi_c',
h20='h20_c',
h ='h_c' )

A dictionnary of RNA NTPs, DNA dNTPS, and aminoacids is also required,
of the type:

aa_dict = {'A': 'ala__L_c',
# ...
'W': 'val__L_c', }

rna_nucleotides = {
'utp_c',

'c': 'ctp_c'}

rna_nucleotides_mp = {
'ump_c',

'cmp_c'}

dna_nucleotides = {
't': 'dttp_c',

'c': 'detp_c'}

From genes to peptides

In order to build the transcription and translation, it is necessary to provide
ETFL with gene deoxynucleotide sequences. These will be automatically tran-
scribed in RNA sequences and then translated into aminoacid peptide sequences.
They must be fed to the function model.add_nucleotides_sequences in a
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dict-like object, indexed by gene IDs (model.genes.mygene.id property in CO-
BRA).
We suggest the following sources for obtaining such information:

o KEGG Genes
e NCBI Gene DB
e MetaCyc Gene Search

ETFL will automatically synthesize the correct peptides from the nucleotides
sequences. This is based on the Biopython package’s transcribe and translate
functions [2].

For each enzyme created by transcription, a degradation rate constant must
be specified. These can be obtained through literature search, or using an
average value.

From peptides to enzymes

A key part of the expression modeling is to properly represent the assembly of
enzymes from peptides. For each enzyme of the model, a stoichiometry of the
peptides necessary for its assembly is needed. These are stored as dictionnaries
in the Enzyme.composition property under a form similar to :

>>> enzyme.composition
{'b2868': 1, 'b2866': 1, 'b2867': 1}

The keys match the IDs of genes coding for the peptide, and the value
represent the stoichiometry of the peptide in the enzyme. These can be obtained
from litterature search or specialized databases. In particular, we used for this
paper the Metacyc/Biocyc database [3, 4], using specialised SmartTables queries

[5].

html-sort-ascending(
html-table-headers (
[(f,genes, (protein-to-components f)):
f<-ECOLI" "Protein-Complexes,genes := (enzyme-to-genes f)
1,
("Product Name", "Genes", "Component coefficients")),

D)

At this step, it is also possible to implement post-translational changes or
enzyme-specific mechanisms. The assembly reaction of peptides can be edited
like any normal reaction to include other metabolites, for example metal ions.

From enzymes back to the metabolism

Lastly, the enzymes must be assigned reactions and catalytic rate constants.
Several enzymes can catalyze the same reactions. COBRA models can take
this into account differently, usually having either (i) multiple reactions with a
simple gene reaction rule; or (ii) one unique reaction with several isozymes in
the gene reaction rule. Although not often applied consistently within the same
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model, these two formalisms are equivalent, and their ETFL counterparts will
also behave equivalently.
For each enzyme, the information needed is the (forward) catalytic rate
constant k:jm facultatively the reverse catalytic rate constant k_,, (set equal to
k., if none is given), and a degradation rate constant.
This is done by calling the function model.add_enzymatic_coupling(coupling_dict)
where coupling_dict is a dict-like object with reaction IDs as keys and a list
of enxyme objects as values:

cat

coupling_dict = {

#...
'AB6PGH': [ <Enzyme AB6PGH_G495_MONOMER at 0x7ff00e0f1b38>],
"ABTA' : [ <Enzyme ABTA_GABATRANSAM at 0x7ff00e0fda90>,

<Enzyme ABTA_G6646 at 0x7£ff00e0fd4e0>],
"ACALD' : [ <Enzyme ACALD_MHPF at 0x7ff00e0fdcf8>],
#. ..
}

The catalytic rate constants can be obtained from several databases, such
as:

e Rhea

e BRENDA
e SabioRK
e Uniprot

Several enzymes can be assigned to a reaction. ETFL will try to match the
gene reaction rule isozymes to the supplied enzymes. If the gene reaction rule
shows several isozymes while only one enzyme is supplied, the enzyme can be
replicated to match the number of isozymes in the gene reaction rule.

Given a reaction in the model, if no enzyme is supplied but the reaction
possesses a gene reaction rule, it is possible to infer an enzyme from it. The rule
expression is expanded, and each term seprated a by an OR boolean operator is
interpreted as an isozyme, while terms separated by an AND boolean operators
are interpreted as unit peptide stoichiometric requirements. The enzyme is then
assigned an average catalytic rate constant and degradation rate constant.

Growth-dependant parameters

Accounting for growth-dependent RNA and protein content requires additional
information. In particular:

o GC-content and length of the genome
e Average aminoacid abundances
e Average NTP abundances

o Average mRNA length
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e Average peptide length
o Growth-dependant mRNA, peptide, and DNA mass ratios.

These values are usually obtained through litterature search. All of the last
three ratios are optional, although using none defeats the purpose of accounting
for growth-dependant parameters.

Additional documentation

Example

We encourage the reader to look at the script used to generate the models with

which the paper’s results were generated, available in etf1/tutorials/helper_gen_models.py.
The data it takes in input has been generated in etfl/etfl/data/ecoli.py.

These are good examples to start from in order to make a custom ETFL from

a different COBRA model.
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Note on steady-state assumptions and dilution terms.

Flux balance analysis (FBA) is an important tool in metabolic engineering
to analyze the stoichiometric properties of living systems. Its success is partly
due to the simplicity of its formulation as a linear program, with a constraint
matrix of the form S-v = 0, where S is the stoichiometric matrix of the system
of interest, and v the biochemical fluxes carried by the reactions in the system.
This formulation is directly derived from the mass balance of the metabolites
inside the cell. The simplicity of this formulation stems from two important
assumptions: (i) in the mass balance of the metabolites, the dilution term is
negligible ; and (ii) the intracellular concentrations of the metabolites are at
quasi-steady state.

The main purpose of ME-models is to account for macromolecule synthesis
costs on top of a metabolic model. However, the macromolecular concentra-
tions are subject to different assumptions. In particular, when writing the mass
balances for the said macromolecules, the dilution term is not negligible any-
more. Furthermore, the quasi-steady state assumption applies on a different
timescale, since macromolecules synthesis rates are several orders of magnitude
slower than metabolic reactions.

Here we present three arguments to explain and justify the assumptions
made in ETFL and the form of the mass balance equations for metabolites and
macromolecules. We briefly discuss these arguments for the case of metabolites
and contrast them in the case of macromolecules, to study the validity of the
assumptions made in ETFL.

Preliminaries

The mass balances of biochemical species is written with respect to their con-
centration variables. If we assume the cell is growing at a specific growth rate
1, we must assume that the volume of cell within which the mass balance is
considered varies.

The mass balance of a compound X can be expressed both as the derivative
of the mass or the algebraic sum of its synthesis and consumption fluxes:

dmx dVv. dCx
TR )

=Sy -v-V,, (2)

where C'y is the concentration of compound X in the cellular volume V,, for
a total mass mx in the cell, and whose stoichiometry with respect to the fluxes
v is described by the row Sx of the stoichiometric matrix S.
We next combine equations 1 and 2 and divide by V. (necessarily non-zero)
to write the time derivative of the concentration Cx:
dCx T 1 dV.

WZSX-'vacdt-Cx. (3)
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By definition, V%d,;f“ = p is the specific growth rate of the cell (under the
assumption of constant cell density p.), and the term p-Clx is called the dilution
term, as per Fredrickson’s work on formulating growth models [6]. We can hence

write the general mass balance of a biochemical species in the cell as:

dCx

Cdt

In this equation, rates are in g/(L-h), and concentrations in g/L. If we
divide rates and concentrations by their respective molecular weight and the
mass of one liter of dried cells, their units become respectively mmol/(gDW - h),

and mmol/gDW. We will use the latter unit system in the rest of this note.

=8%-v—p-Cx. (4)

Intracellular fluxes and dilution

In FBA, the dilution term is omitted from the mass balance of the metabo-
lites. In ETFL, this term is also omitted for metabolites, but preserved for
macromolecules. We present here two arguments which support the fact that
the contribution of the dilution is negligible for metabolites, but not for macro-
molecules.

Orders of magnitude argument

The average metabolite concentration in the cells do not exceed 1072M =
10 mmol/L [7]. Assuming the cell has a density close to 1kg/L = 1000g/L,
and that 0.5 ~ 10°gDW/g of dry cells is obtained per gram of culture, we
derive that:

Intracellular metabolite concentrations are upperbounded by 10~2 mmol/gDW.

From typical FBA results and flux variability analyses, we can claim the
following:

Metabolic fluxes typically range from 10~2 to 10' mmol/(gDW - h).

These fluxes are higher close to the carbon uptake, in the central carbon
metabolism, and decrease in the more distant pathways.

One E. coli cell weighs 1pg. Using the previous constants yields a conversion
factor of 107% (mmolee)/gDW). The number of mRNA copies per cell per
transcript is in the order of magnitude 10° copies/cell (BNID 112795 [8]). This
amounts to a typical mRNA concentration of 1078 mmol,rna /gDW. Protein-
to-mRNA ratios are typically ranging from 102 to 10 proteins/mRNA (BNID
106254 [9]).

From this we can assert:

Intracellular macromolecule concentrations range from 10~8 to 10~* mmol /gDW.

There are in average 6.6 ribosomes per thousand base pairs per cell (BNID
107727 [10]), and the average transcript is around 1kb, with one copy per
transcript, which amounts to 10! mmol,,/(cell - transcript). The translation
rate per ribosome is 10aa/(s - ribosome) (BioNumbers ID [BNID] 100059 [11])
This gives an upper bound on the specific peptide synthesis fluxes of v**! ~
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1075 mmol/(gDW - h) Using the protein-to-mRNA ratio allows us to estimate
an upperbound on transcription rates from 1071 to 1078 mmol/(gDW - h).
This yields:

The typical macromolecule synthesis rate range from 1071 to 10~ mmol/(gDW - h).

An interesting intermediary case to consider is that of macromolecule monomers
(nucleotides for mRNA and amino acids for peptides). Under the assumption
that the typical protein is ~ 325 amino acids long (BNID 108986 [12]), the
average mRNA transcript is ~ 1kb, and there are ~ 10% different mRNAs and
peptides, we can derive typical monomer concentrations for each of the ~ 20
amino acids and 4 nucleotides. Thus, nucleotides have a typical concentration
of 1073 mmol,; /gDW, and amino acids have a typical concentration of 1073 to
10! mmol,,/gDW. We can then assert:

Macromolecule monomers have a typical concentration of 1073 to
10~! mmol/gDW.

Assuming that 50% of the glucose goes towards protein synthesis, and that
all the ~ 20 amino acids are synthesized in similar amounts at yields between
0.5 and 2.0 mol,,/molgic [13], the amino acid biosynthesis fluxes are one to
two orders of magnitude smaller than those of the central carbon metabolism.
Nucleotide synthesis is even smaller. From there, we can claim:

Monomer synthesis fluxes range from 1072 to 10~ mmol/(gDW - h)

The values we obtain for the elements of Eq. 4 are detailed in Table 3.
The table shows clearly that, in the case of metabolites, the dilution term is
negligible in front of the metabolic fluxes. It also shows that for macromolecule
monomers, which are further away from the central carbon metabolism, the
dilution term becomes comparable with the synthesis term. These orders of
magnitude are in agreement with the comprehensive discussion on the magni-
tude of pools, metabolic fluxes, and dilution terms for different metabolites in
the cell (including central carbon pathway and amino acids) featured in the
chapter 8.1 of the work by Stephanopoulos, Aristidou and Nielsen [14]. Finally,
the range of synthesis fluxes for macromolecules greatly overlaps with that of
their dilution term, which imposes taking the dilution into account.

Yield argument

‘We have seen before that the average amino acid yield per molecule of glucose
metabolised is between 0.5 and 2.0 mol,,/molgc [13]. The average protein is

Supplementary Table 2: Orders of magnitudes of the variables in presence for
the mass balance of metabolites.

Variable Order of magnitude
Metabolites ~ Monomers  Macromolecules
St-v | 1072-101 1072-10"' 107 -107°  mmol/(gDW - h)
p-Cx | 10731072 107* - 10¢ 1072 - 1074 mmol/(gDW - h)

Units
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made of ~ 325 amino acids (BNID 108986 [12]). This implies that the global
protein synthesis rate is at least 2 orders of magnitude slower than those of the
central carbon metabolism. Given approximately 103 different peptides, one
can expect specific peptide synthesis rates to be at their maximum 5 orders of
magnitude smaller than central carbon metabolism fluxes.

This estimation matches with the results presented in Table 3.

An additional note about accounting for dilution in FBA

Benyamini et al. [15] report on the results of FBA accounting for dilution terms,
a method called MD-FBA. Their results show a sensitivity in gene essentiality
analysis, especially for genes far from the central carbon pathways, and closer
to the biomass precursor pathways. In particular, the fluxes in which the di-
lution term has a significant impact are the fluxes close to the synthesis of the
macromolecule monomers.

This can be understood in the context of the order-of-magnitude argument
since breaking up the glucose to piece together biomass precursors further splits
the available carbon between the different precursors, thus reducing their syn-
thesis fluxes, which then become comparable to the dilution rate.

Taken to the extreme, this reasoning matches the yield argument made pre-
viously, where specific peptide synthesis fluxes will be several orders of mag-
nitude smaller that the central metabolism fluxes, making the dilution term
non-negligible.

Timescale analysis

Heineken et al.’s analysis of the pseudo-steady state hypothesis for biochemical
kinetics [16] provides a method to study kinetic equations using non-dimensionalization.
We adapt this method to Eq. 4 to derive a justification of the pseudo-steady
state hypothesis.

Let us assume that the general flux term v(t) can be written as the product
of a diagonal matrix of catalytic rate constants K and a function of concen-
tration of the compounds taking part in the reactions ®(C,t), with C(t) =
(Cx (t))xespecies- This product can represent, for instance, either mass action
kinetics, or Michaelis-Menten kinetics. We can hence rewrite Eq. 4:

dCX (t)

dt

In a Michaelis-Menten case, for example, the elements of the matrix K will
represent the catalytic rate constants kcq.

=S5 K- ®(C1) - p- Cx(8). )

Quasi-steady state assumption

‘We introduce the dimensionless variables:

Cx(1/k) (C,7/k)
T=kt, 2r)=—"—>,  ylr)=——"-, (6)

Co Co
where £ is an inverse time constant of our choice and ¢y is the average species
concentration, acting as a non-dimensionalization factor. We can rewrite Eq. 5:
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E = 5% (1K) ur) = o) = Pl )

dr

In Heineken’s words, if k is sufficiently large, 7 represents time vastly accel-
erated so that F(y, z,7) is held at a stable root of F(y, z,7) = 0 (which exists if
®(C,t) is sufficiently well-behaved, by following for instance Michaelis-Menten
kinetics [16]). This is the quasi-steady state assumption.

‘We must compare our choice of k to the inverse characteristic time of change
in physiology of our cells. Let us note the latter is not u, but rather the charac-
teristic time of change of the experimental properties, such as the concentration
of species in the culture medium. In an ideal continuous culture, this time should
be the whole observation time of the exponential growth, since cell physiology
in ideal culture conditions should not change.

The slowest k = kg0, we can choose is the ribosome transcription rate for
the average peptide. We have:

ktrans - ﬂ
Lea 325
This yields the characteristic time tsion = 1/ksion = 10~2h ~ 30s. As long
as the characteristic time of change in physiology is longer than the slowest mode
of our system, the steady state assumption holds. Since kg0, lowerbounds all
the other rate constants of the system, if the steady state assumption is valid for
ksiow, then the steady-state assumption is valid for all the other parameters and
variables of the system. We can then formulate the steady-state assumption:

k= keow = %3600 =~ 10 h~!. (8)

As long as the characteristic time of change of the physiology is
much longer than 30s, the steady-state assumption is valid for all
variables and parameters of the model.

Dilution rate

We can also use Eq. 7 to study the contribution of each term of the right-hand
side of the equation.
In a Michaelis-Menten case, we set k = k.q; and rewrite:

1 1 kcat
(35) =2t 00, ©)
1 €9
e @ keat - ©(C), (10)
€o v
= . 11
co Vinax (11)

with Kjs, Vinae the usual Michaelis-Menten constants, v the flux we are
studying, and we chose ey = E, the total concentration of the enzyme cat-
alyzing the reaction at quasi-steady state. Since v/V,,q, = 1 in terms of orders
of magnitude, and z = Cx/cy &~ 1 also, comparing the two right-hand side
terms of Eq. 7 is equivalent to comparing eg/co and pu/k.

In particular, if we consider X to be a metabolite, we can set k ~ 102571
10°h~!, a typical catalytic rate constant for metabolic reactions, and ¢y
1072 mmol/gDW and ey ~ 10~° mmol/gDW according to section , we obtain:

2
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€0 10-3 ~10-5
il U B LU (12)

The dilution term appears to be negligible for metabolites.

In the case of peptides, we must set k = k; ~ 102h~! (see Eq. 8). The
substrates of the translation are amino acids, hence ¢y ~ 1072 mmol,,/gDW
and the ribosome concentration is ep ~ 10~ mmol/gDW according to section .
This yields:

~10-2 102
CONIO , kNIO . (13)
The dilution term appears to be non-negligible for peptides. A similar rea-
soning can be performed for mRNA synthesis.
With this argument, we can recover the argument on the orders of magnitude
made in section , since comparing eg/co and p/k is equivalent to evaluating the
following quotient:

7= 6[)/6(] - Vinax
w/k - Cx’

If ¢ > 1, then the dilution term is negligible in front of the metabolic
fluxes. If ¢ < 1, then the dilution term is preponderent. Finally, if ¢ ~ 1,
then both terms need to be taken into account. We previously showed that,
for metabolites, the dilution term is almost always negligible in front of the
metabolic fluxes, a result which we recover in Eq. 12, where ¢ > 1. We also
showed previously that macromolecule dilutions are not always negligible in
front of their synthesis rates. We recovered this result for peptides, for which
we evaluate ¢ ~ 1 in Eq. 13.

(14)

Balanced growth hypothesis

The idea of balanced growth was introduced by Monod [17], and has been
refined further by Campbell [18]. Monod’s approach, based on Hinshelwood’s
work [19], explains that once past the lag phase, the cells reach a stable enzyme
composition:

“[...] the lag and acceleration phases represent essentially a process
of equilibration, the functioning of a regulatory mechanism, by virtue
of which a certain enzyme balance inside the cells is attained.”

Monod J., The growth of bacterial cultures

Campbell refines this definition in his work from 1957 [18] by the following
statement:

“[...] growth is balanced over a time interval if, during that interval,

every extensive property of the growing system increases by the same
factor.”

Campbell A., Synchronization of cell division
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Using this definition, and accounting for the fact that species concentrations
inside the cells are the quotient of the extensive factors mass (of the said species)
and volume (of the cell), we obtain directly that intracellular concentrations are
constant under the hypothesis of balanced growth. Campbell adds that this
approximation is well suited for a continuous culture, and is well approximated
in a batch reactor.
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ETFL Formulation

Conventions

Supplementary Table 3: Indices used in the formulation.

Index letter Indexed variables Indexing set
i Metabolite A
aa; Amino acid A
j Reaction/Flux/Enzyme J
l Gene/Peptide/mRNA L
s Binary coefficient for growth discretization S ={0..[log, N1}
u Binary coefficient for interpolation discretization U={0..N}
Supplementary Table 4: Variables used in the formulation.
Symbol  Variable Unit

1 Growth rate h—1!

’in 4 net positive/negative biochemical flux mmol.gDW~1.h~!

E; Concentration of the j** enzyme mmol.gDW !

F; Concentration of the [!" mRNA mmol.gDW 1

P Concentration of the RNA polymerase assigned to the I!» mRNA  mmol.gDW~!

Ry Concentration of the ribosome assigned to the I** peptide mmol.gDW 1!
Tan, Concentration of the i** uncharged tRNA mmol.gDW !
Tra, Concentration of the it" charged tRNA mmol.gDW !

’vl‘Sl Translation rate of the I** gene mmol.gDW~1.h~!
vfer Transcription rate of the I** gene mmol.gDW~1.h~!
V3 Assembly rate of the j*" enzyme mmol.gDW—1.h~!
U;’Cg Degradation rate of the j** enzyme mmol.gDW 1. h~!
vfeg Degradation rate of the I*" mRNA mmol.gDW 1 h~!

veharging  Charging rate of the i tRNA

mmol.gDW~1 h~!
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Supplementary Table 5: Parameters used in the formulation.

Symbol  Parameter Unit
kga:f Forward /backward catalytic rate constant of the j** net biochemical lux ~h~!
ké(g Degradation rate constant of the j** enzyme h—!
kd(g Degradation rate constant of the I** mRNA h!

i Stoichiometry of the I** peptide in the j** enzyme (0]
néal Stoichiometry of the i*" amino acid in the I** peptide 0]
L Length in amino acids (aa) of the I*" peptide aa
Ly Length in nucleotides (nt) of the I** mRNA b
th Ribosome footprint size on mRNA, in nucleotides b
p Ribosome occupancy 0]
T RNA polymerase occupancy 0]

Bilinear formulation

maximize m
v, B, F, R, P,T
subject to S-v=0,
f ~ KB <0, Vjed,
;- kL E; <0, VieJd,
vt — Z n v =0, VielL,
JjeT
Uiftna, — Ui =0, Ve L,
oI — v ,deg,H*Ev =0, VjeJ,
v — vy s _ i« =0, VleL,
charamg + Zn le — T;J17 =0, Vaa; €A,
lel
chargmg Zn ,Utal — T =0, Vaa; € 'Av
leL (1)
d .
v kéeg =0, Vjied,
K B =0, VIEL,
kRNAP
Vi — ‘ztm P <0, VieL,
wl ke
v — LC?“R] <0, VielL,
Ly
R, — LmFZSO7 Vie L,
rib
> R+ Rp — Ey, =0,
leL
> P+ Pr— Ernap =0=0,
lel
Ry — (1 —p) Ep = 0,
PF - (1 - W)ERNAP = 0
ETFL — Supp. Note 4 2/4
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Integer-linearized formulation

maximize n
wv, E,F R, P, T
subject to S-v=0,
v —kLTE; <0, VieJ,
vy — ki vjeJ,
v{”l — Z nt. ) vieL,
JeET
Uitna, — Ui =0, V€L,
V5 — u}i"’g —pxEj= vied,
Vet — 'Uldeg —puxF = VieL,
71)§gfrgi"g + Z T]éal . ’UltSI —pxTh, =0, Vaa; €A,
leL
oghersing _ 37l o= s TE, =0, Vaas € A,
leL
deg  1j ;
Vi — ke Ej =0, Vj€J,
U — ke, - F1 =0, VieL,
. KRNAP
yt -2 p<0, VieL, 2
vy LFt 1S U, ( )
ot
u* =R <0, VieLl,
L
R, — L—;“F <0, VieL
A R )
rib
ZRz + Rp — By, =0,
lec
ZPlJrPF*ERNAP:U:O-,
lec
Rp — (1= p) Ep =0,
Pp — (1 —7) Ernap =0,
STOMW; B =Y A P =0,
J€ET ued
SNMW B =Y AR =0,
lel ueU
MWpna - DNA — Z Ay - Dmy =0,
ueU
[see next page]
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maximize I
v, E,F,R, P, T

subject to [contd.]
[logy N1

> 24 <N,
s=0

~_ D
p—p< N
fi-n< L
N
=1,
ueld
Zun/\ufZQlwsl:O ,
ueld leL
Ej+M-5,—2 <M, VYjeJ, ©)
Z-M-5,<0, VjeJ,
Z;_EJSO% Vjej,
Fi+M-6;—2; <M, VieL,
2i—M-6,<0 , VieL,
7 —F <0, VieL,
Ty, +M-6s— 250 <M, Vaa; € A,
Zyal =M -0, <0, Vaa; € A,
Zgat =T, <0, Vaa; € A,
Ty, + M-6s— 250 <M, Vaa; € A,
zal =M -0, <0 , Vaa; €A,
o —Taa, <0, Vaa; € A
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ETFL Glossary

Big-M value A value that is systematically bigger than the other variables
in presence within an expression. Used with binary variables to model if-
type logical dependencies in an optimization problem. Often annotated M in
expressions.

Bilinear(ity) A function is said to be bilinear if it contains a product of two
of its variables. This term is called a bilinearity. A problem with a constraint
defined by a blinear function of variables is said to be bilinear. That is the case
in the non-linearized expression problem with the term y * E;, where both
and £ are variables of the problem.

Binary variable An integer variable whose value is constrained to 0 or 1.
Used to model if-type logical dependencies in an optimization problem. For
instance, they are used in TFA to enforce the statement “if the Gibbs free
energys of this reaction is negative, its net biochemical flux will be in its forward
direction”. Inclusion of binary variables in a LP problem make it MILP.

Discretization Process by which a continuous variable is replaced by a set of
representative discrete values it can take. We use it in ETFL to approximate u
and perform a linearization. Sampling is a type of discretization.

Linearization Process by which a non-linear function is approximated by a
linear approximant. In the case of ETFL, we discretize p to make the bilinear
terms p * E; (piecewise-)linear.

LP Linear program. An optimization formulation where a problem is defined
by a linear objective function, a set of linear equalities and a set of linear in-
equalities. FBA is a kind of LP.

MILP A LP with integer variables. The problem is then piecewise-linear, and
requires specific solving methods. When all the integer variables are fixed, a LP
is obtained. TFA is a kind of MILP.

Special Ordered Set of type 1 (SOS1) constraint A type of constraint
where a sum of binary variables has to be lower than or equal to 1. Useful to
model a choice between different possibilities.

Zeroth order approximation Approximation of a function using a piece-
wise constant function. The values of the zeroth-order approximation of the
function are a discretization of the space of values of the initial function.
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Supplementary note S1: Discussion on the as-
sumptions in DynamicME

Lloyd et al. [1] developed an efficient ME-model for E. coli, and Yang et al.
used it to formulate a dynamic analysis framework (dynamic-ME) [2] similar to
dynamic flux balance analysis (AFBA) [3]. However, in order to handle the com-
putational complexity of their model, they introduced a number of assumptions
which resulted in several limitations to their model. In particular, the following
items might be limiting:

The standard solving procedure uses a dedicated quad-precision solver [4]
and its assorted solving algorithm [5].

Moreover, an important assumption in this method is that the dynamic
algorithm approximates uptake fluxes bounds to be constant as long as
the substrate in question is not depleted, which is neglects the impact of
kinetic laws at different substrate concentrations.

It also assumes the proteome does not change during that time.

Additionally, the efficiency of their formulation comes from the use of
equality constraints between the metabolic fluxes and the catalytic avail-
ability of the enzymes.

As a result, these models cannot predict the presence of enzymes that
do not carry flux, as can be the case in a transition phase between two
phenotypes.

More importantly, this method does not tackle the problem of alterna-
tive solutions at a given time-step, and hence does not acknowledge the
possibility of different time traces depending on the solution choice.

Finally, this method does not allow modeling thermodynamics constraints.
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Supplementary Table S2

Reaction Reaction name Enzyme Symbol keat [s’l}
GLCabcpp  Glucose transport via the ABC system GLCt2pp-ABC_18 120.0
GLCt2pp Glucose transport via proton symport GLCt2pp-GALP 40.1
GLCptspp-157 134.5

GLCptspp  Glucose transport via PEP to Pyruvate PTS GLCptspp-164 139.2
GLCptspp-165 135.3

HEX1 Hexokinase (glucose:ATP) HEX1_GLUCOKIN 279
LACZpp [-galactosidase (periplasmic) LACZpp-EG12013 58.1
LACZ B-galactosidase (cytoplasmic) LACZ BETAGALACTOSID 211
LCTStpp_LACY 375

1 =4

LCTStpp Lactose transport via proton symport igg:tziggiggg o 2;(1]
LCTSt3ipp_B2170 35.2

. GALKr_G7096 38.0

GALK: Galactoldnase GALKr_GALACTOKIN 34.3
UGLT UDPglucose-hexose-1-phosphate uridylyltransferase UGLT_GALACTURIDYLYLTRANS 62.0
UDPG4E UDPglucose 4-epimerase UDPG4E_UDPGLUCEPIM 128
GALabcpp  Galactose transport via the ABC system gﬁi:zzgg:ﬁgg:ig ﬁgg
GALt2pp Galactose transport via proton symport GALt2pp-GALP 40.1

Table S1: Properties of glucose and lactose transporting reactions and enzymes.
Reaction names from the original 1JO1366 model [6]. Enzyme symbols adapted
from Biocyc [7]. keqr values taken from Lloyd et al. [1].
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Supplementary Figures S3-6: enzyme levels of
pathways depending on the preculture conditions
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Figure S3: Enzyme levels of the glucose pathway, in the glucose/lactose diauxie
experiment with glucose pre-culture.
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Figure S4: Enzyme levels of the lactose pathway, in the glucose/lactose diauxie
experiment with glucose pre-culture.
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Figure S5: Enzyme levels of the glucose pathway, in the glucose/lactose diauxie
experiment with lactose pre-culture.
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Figure S6: Enzyme levels of the lactose pathway, in the glucose/lactose diauxie
experiment with lactose pre-culture.
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Supplementary Figures S7-8: Chebyshev center-
ing

4o+
. + +
a. Sampling + Mean 0+
t o
+
+ +
b. Variation Analysis + Mean i + 5
I// \\\\
c. Chebyshev center: I E
\, /

Figure S7: 2-Dimensional representation of different schemes to represent the
solution space (gray polygon). The methods do not yield similar results (gray
dashed line through the figures). a. It is possible to sample solutions (blue
crosses) within the solution space, and take their mean (red cross) as a represen-
tative solution. The mean is still part of the solution space due to the convexity
of the problem. b. Variation analysis (successive minimization/maximization of
variables) allows to find the minimal bounding box (blue dashed lines) around
the solution space. The center of the box (red cross) is also in the solution space,
and can be used as a representative solution. c¢. The Chebyshev method finds
the largest topological ball (grayed area) that can fit in the solution space. The
center of the ball, or Chebyshev center (red cross) is also part of the solution
space and can be used as a representative solution.
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Ey

Figure S8: 3-Dimensional (E1, E»,v;) example of a Chebyshev center. The
feasible space is denoted by the polytope C. The Chebyshev center with respect
to variables Ey and Es is X, g,. It is the center of the largest 2-D sphere on a

plane parallel to (Ej,

E») that is inscribed in C. This sphere exists on the plane

P, materialized in light blue.
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Supplementary figure S9: Enzyme composition
of the conceptual model when no constraints are
applied to the rate-of-change of enzyme concen-
trations
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Figure S9: Enzyme composition of the conceptual model when no constraints
are applied to the rate-of-change of enzyme concentrations. a. Enzyme content
over time for the conceptual model on a mixed substrate. Glucose enzymes
in pink, lactose enzymes in blue. b. Content of the batch reactor over time:
Glucose (pink), lactose (blue).
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Supplementary figure S10: dETFL results with

switched k.,; between the glucose and Leloir path-
ways

C.
5
0
B
%
5 5
g
£
o
E -10
g
-15
== Glucose
== Lactose
== Acetate -20
0 1 2 3 4
d.oo14 tme [
0.012
g 0.01
Ed 2
& )
] 4 0.008
H E
£ o
S €
5 & 0.006
e &
0.004
0.002
0 1 2 3 4
time [h] time [h]

Figure S10: Results of the diauxic simulation with lactose-only preculture, and
switched keqt values between the glucose and Leloir pathways (resp. 37.7 s~ and
1355 !: a. Temporal evolution of the extracellular concentrations of glucose
(blue), lactose (orange), and acetate (green). b. Cell concentration (full line)
and growth rate (dashed line) of the culture over time. c. Exchange rates of the
cell, same colors as in subfigure -a. Positive exchange rates mean production,
negative exchange rates mean consumption. d. Mass of enzymes allocated to the
transformation of glucose (blue) and lactose (orange) in G6P. The dashed gray
line shows the levels of 3-galactosidase (LACZ) enzyme (in the Leloir pathway).
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Supplementary Figure S1: In vitro cell viability
after metformin treatment

Figure reprinted from:

Zhang T, Guo P, Zhang Y, Xiong H, Yu X, Xu S, et al. The antidiabetic
drug metformin inhibits the proliferation of bladder cancer cells in vitro and in
vivo. International journal of molecular sciences. 2013;14(12):24603-24618,

under the Creative Commons CC BY 4.0 license, as specified by the publisher
(https://www.mdpi.com/authors/rights)
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Figure 1. Metformin inhibits the proliferation of bladder cancer cells. (A) 5637 (a) and
T24 (b) cells (5 x 10° cells/well) were seeded in 96-well culture plates. After 24 h, cells
were treated with metformin (0, 2, 5, 10, 20 mM) for another 48 h. Cell viability was
measured by MTT assay. The results were expressed as percent of cell viability compared
with control (0 mM). Columns, means of three independent experiments; bars, SEs;
(B) 5637 (a) and T24 (b) cells (5 x 10 cells/well) were seeded in 12-well culture plates.
After treatment as in panel A, cell numbers were determined using a hemocytometer.
The results were expressed as percent of viable cells compared with control. Columns,
means of three independent experiments; bars, SEs; (C,D) 5637 (a) and T24 (b) cells were
treated with metformin (Met) at different concentrations for 24, 48 and 72 h. Cell
proliferation was measured by MTT (C) or cell count assay (D). Data, means of three
independent experiments; bars, SEs. * p < 0.05 versus control; ** p < 0.01 versus control.
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pyTFA & MatTFA: Supporting Note

11 Problem formulation

Thermodynamics Flux Analysis (TFA) adds constraints on top of a classic Flux Balance Analysis (FBA)
problem to couple reaction directionalities to thermodynamics constraints. In particular, the
formulation in (Soh and Hatzimanikatis, 2014) adds metabolite concentrations and Gibbs energy of
reactions, and couples the sign of the Gibbs energy of a reaction to its directionality.

These constraints aim to reduce the feasible flux solution space of the problem and increasing the
predictive power of the model. This methodology is used to perform Thermodynamics-based
Variability Analysis (TVA), a series of TFA maximization and minimization of the variables in the
model, such as reaction fluxes, to determine their allowable ranges and directionalities.

Given a model with specified reaction directionalities, it is possible to characterize the
thermodynamic states of the underlying physiology by sampling equilibrium displacements and
concentrations. We show here the formulation as proposed in (Soh and Hatzimanikatis, 2014):

FBA constraints Mass balance Sv=0
Flux capacity v<v<v

TFA constraints Gibbs energy of reaction ' ' m

&Y ArGy = Ay e Gy + Z lni,jﬂj
j=

Chemical potential W =06+ Af,errGj,O +RTInx;
Thermodynamic feasibility AGi—K+Kxz, <0
Coupling constraint v, —Kx*xz; <0

The TFA problem in the table incorporates thermodynamics-based constraints in the original FBA
problem in the two first equations.

For biochemical reactions, the transformed Gibbs free energy of the reaction i, A.G;, is a function of
the transformed Gibbs energy of the chemical potentials y; of the reactants j. If the reaction is a
transport of the compounds from one compartment to another, the Gibbs free energy of transport
A”ptGi’ is also considered, according to the formulation in Jol et al. (Jol, et al., 2010). A,.G/is
calculated in the third equation.

The chemical potential of the reactants is a function of the standard transformed Gibbs free energy
of formation of the compounds AfG]-’0 and the metabolite’s activity, as shown in the fourth equation.
Activities of the compounds can be expressed directly as concentrations, as we perform Debye-
Huckel correction (Debye and Hickel, 1923). Af,errGj'O is the estimated error in the energy of
formation.

K is a large (Big-M, K > max A.G;) value, and z is a binary variable. The two last equations enforce
the constraint A.G; < 0 & v; = 0. K should be chosen so that it is bigger by one or two orders of
magnitude than the maximal abs (A,.G;).

This formulation requires net fluxes to be non-negative. To do so, each reaction is separated in two:
a net forward and a net backward, and their net fluxes are associated in the following manner:

VUnet = Vforward — Vbackward
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In that form, the net forward and the net backward reactions are constrained to have non-negative
values. Additional constraints are applied to ensure that at most one of these two is active at a time.

1.2 Usage and Example: sampling thermodynamic displacements
We provide a reduced E. coli model made with the software presented in (Ataman, et al., 2017), as
well as the model it was generated from, iJO1366 (Orth, et al., 2011).

We can sample the natural logarithms of thermodynamic displacement In(I") for each reaction in
the genome-scale model.

In a reaction with one product P and one substrate S, the thermodynamic displacement can be
defined as such:

Seq P 1P
T PSS kegS
Seqr Peq are the concentration at equilibrium of the substrate and product according to the notations

in (Heinrich and Schuster, 2012). k., is the associated equilibrium constant. In that context, we can
also write the Gibbs energy of the reaction:

AG
RT

P
AG = AG®° 4+ RTIn (5)

AG_AG°+1 (P)
RT ~ rT ' \5

0
Since In (L) =4,

keq RT’
2—? 1P
e = EE
Hence,
AG
I' = eRT
Then:

AG | AG
' = eRT & I =—
e n(l) RT

and hence the directionality of a reaction is opposite to the sign of In(I").

It is possible to directly sample admissible thermodynamics displacements and calculated InT the
average thermodynamic displacement for each reaction. The thermodynamic displacements are
constrained because of their link to A,.G°, which is defined by metabolite concentrations. Thus,
admissible displacements depend directly on the concentration ranges.

It is also useful to sample directly admissible concentrations. As an example, here is a sampling
performed for cytosolic ATP using the methods provided with the package:
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25 05
log(ATP 3

Figure S 1: Example distribution of the sampling of admissible ATP concentrations

13 Further Analysis
Given an MILP model with thermodynamics constrains, it is possible to perform several kinds of
additional studies.

Thermodynamics-based Variability Analysis (TVA)

TVA can be performed on any variable of the model. These include metabolite concentrations,
reaction fluxes, Gibbs free energy of reactions, displacement from equilibrium.

Integration of metabolomics

Integration of metabolomics data is possible because the logarithmic concentration of metabolites is
a variable within the model. In particular, it is possible to perform Thermodynamics-based
Metabolite Sensitivity Analysis (TMSA) (Kiparissides and Hatzimanikatis, 2017), which allows to
define a priority list of metabolites to measure in order to constrain further the model.

Characterization of physiologies

By enumerating bidirectional reactions, and looking at the different solutions spanned by their
directionalities, it is possible to characterize the relationship between different flux and physiologies.
Additionally, it is possible to observe which reactions are operating close to or far from equilibrium.

Sampling

The resulting constraint-based model is amenable to sampling of any of its variables, such as
metabolite concentrations or thermodynamic displacements. pyTFA and matTFA can indeed call
COBRA’s sampling methods, Artificially-Centered Hit and Run (Schellenberger and Palsson, 2009) and
OptGpSampler (Megchelenbrink, et al., 2014). Given a physiology, this allows preparing data for
kinetic modeling methods, such as Metabolic Control Analysis-based ORACLE (Miskovic, et al., 2017;
Miskovic and Hatzimanikatis, 2010).

1.4 Data

Gibbs free energies of formation AG?

Gibbs free energies of formation can be obtained from various data sources, among them:

- Literature, e.g. (Jankowski, et al., 2008)

- eQuilibrator (Flamholz, et al., 2012)

- Databases (eg NIST)

- LCSB also provides support on obtaining these data upon request.
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(Glossary

Big-M value A value that is systematically bigger than the other variables in presence
within an expression. Used with binary variables to model if-type logical dependencies
in an optimization problem. Often annotated M in expressions.

Bilinear(ity) A function is said to be bilinear if it contains a product of two of its
variables. This term is called a bilinearity. A problem with a constraint defined by a
blinear function of variables is said to be bilinear. That is the case in the non-linearized
expression problem with the term p * E;, where both p and Ej; are variables of the
problem.

Binary variable An integer variable whose value is constrained to 0 or 1. Used to
model if-type logical dependencies in an optimization problem. For instance, they are
used in TFA to enforce the statement “if the Gibbs free energys of this reaction is negative,
its net biochemical flux will be in its forward direction”. Inclusion of binary variables in a
LP problem make it MILP.

Discretization Process by which a continuous variable is replaced by a set of represen-
tative discrete values it can take. We use it in ETFL to approximate u and perform a
linearization. Sampling is a type of discretization.

Eukaryote / eukaryotic organism Organisms whose genetic information is enclosed
by a membrane in a nucleus, as opposed to prokaryotes.

Fluxomics (exo) Experimental data accounting for biochemical reaction fluxes. Ex-
ofluxomics are for fluxes outside the cell.

Genotype The genetic information carried by an organism’s DNA.
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Knock-out (Gene) The action of silencing the expression of a gene. The organism
is then grown (or simulated) without the ability to express and use this specific gene.
This can be done experimentally through targeted gene editing, and wn silico by the
suppression of adequate reactions in which the gene participates.

Linearization Process by which a non-linear function is approximated by a linear
approximant. In the case of ETFL, we discretize ;1 to make the bilinear terms p * F;
(piecewise-)linear.

LP Linear program. An optimization formulation where a problem is defined by a linear
objective function, a set of linear equalities and a set of linear inequalities. FBA is a kind
of LP.

Metabolomics (exo) Experimental data accounting for metabolites concentrations.
Can be relative or absolute. Exometabolomics are for compounds outside the cell.

MILP A LP with integer variables. The problem is then piecewise-linear, and requires
specific solving methods. When all the integer variables are fixed, a LP is obtained. TFA
is a kind of MILP.

Omics General term to regroup several types of experimental data that can be gathered
from cellular cultures. These includes metabolomics, proteomics, transcriptomics, and
fluxomics.

Phenotype The observable traits of the cell, understood as a product of the information
flow from the DNA to the enzymes controlling metabolism.

Prokaryote / prokaryotic organism Organisms whos egenetic information is not
membrane-bound within the cytoplasm, as opposed to eukaryotes.

Proteomics Experimental data accounting for the concentrations of proteins in a cell.
Can be relative or absolute amounts.

Special Ordered Set of type 1 (SOS1) constraint A type of constraint where a
sum of binary variables has to be lower than or equal to 1. Useful to model a choice
between different possibilities.
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Transcriptomics Experimental data accounting for the concentrations of mRNAs in a
cell. Can be relative or absolute amounts

Zeroth order approximation Approximation of a function using a piece-wise constant
function. The values of the zeroth-order approximation of the function are a discretization
of the space of values of the initial function.
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