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Abstract
The research community has been making significant progress in hardware imple-

mentation, numerical computing and algorithm development for optimization-based

control. However, there are two key challenges that still have to be overcome

for optimization-based control to be a viable option in the context of advanced

industrial applications. First, the large existing gap between algorithm development

and its deployment on platforms used by practitioners in industry. Second, from a

more theoretical viewpoint, the lack of robustness of certain approaches, which are

based on the unreasonable assumption that the model at hand perfectly represents

the object under investigation. This thesis addresses the aforementioned challenges

by establishing software toolboxes for automatic code generation, and proposing

a data-driven methodology to enhance the performance of real-time optimization

strategies during operation.

The first part of this thesis focuses on the efficient implementation of Model Pre-

dictive Control (MPC) based on first-order operator splitting methods. Because

of the cheap numerical operations associated with them, splitting methods are

favorable candidates for applications with limited computing power. We first identify

the computational bottlenecks and, subsequently, discuss their efficient deploy-

ment on processors, Field Programmable Gate Arrays (FPGA), and heterogeneous

platforms. For rapid prototyping and deployment, two code generation toolboxes

are developed: SPLIT and LAFF. These possess a high-level parsing interface for

MATLAB and yield optimized C code that can be directly used in a variety of FPGA

platforms. Features such as pipelining, memory partitioning, and parallelization are

automatically incorporated, not requiring users to have in-depth knowledge about

computer architecture and low-level programming. We then propose a framework

to a priori solve the co-design problem arising in splitting method-based MPC to

provide trade-offs between resources and latency. We provide analytical expressions

that can avoid the daunting and time-consuming task of exploring the design space

manually, thus reducing the final application development time.
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The second part of the thesis deals with learning plant-model mismatch using

Gaussian processes (GPs) in Real Time Optimization (RTO) schemes. Inaccurate

models, the presence of disturbances, and time-varying conditions typically lead

to the suboptimal operation of many plants. We use data-driven global surrogate

models in the form of GPs to cope with such problems and show better numerical

convergence and handling of noise effectively when compared to standard RTO

techniques. We moreover prove that GPs can be certified as probabilistic and

deterministic fully linear models, a key property to guarantee global convergence

of derivative-free trust region (DFT) methods. We then propose a novel DFT

methodology to incorporate noise, which requires less plant evaluations than other

alternatives. Finally, we conclude this work by performing experiments on a Solid-

Oxide Fuel Cell system.

Keywords: Model predictive control; Splitting methods; FPGAs; Co-design problems;

Code-generation; Embedded platforms; Real-time optimization; Gaussian processes;

Derivative-free trust region method; Fully linear model; Solid-Oxide Fuel cells
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Résumé
La communauté des chercheurs a fait des progrès significatifs dans la mise en

œuvre du matériel, du calcul numérique et du développement d’algorithmes pour

le contrôle basé sur l’optimisation. Toutefois, il reste deux défis majeurs à relever

pour que le contrôle basé sur l’optimisation soit une option viable dans le contexte

des applications industrielles avancées. Premièrement, l’écart important qui existe

entre le développement d’un algorithme et son déploiement sur les plateformes

utilisées par les praticiens dans l’industrie. Deuxièmement, d’un point de vue plus

théorique, le manque de robustesse de certaines approches, qui sont basées sur

l’hypothèse déraisonnable que le modèle en question représente parfaitement l’objet

étudié. Cette thèse aborde les défis susmentionnés en établissant des bôıtes à

outils logicielles pour la génération automatique de code, et en proposant une

méthodologie basée sur les données pour améliorer la performance des stratégies

d’optimisation en temps réel pendant l’exploitation.

La première partie de cette thèse se concentre sur la mise en œuvre efficace d’une

commande prédictive (MPC) basé sur des méthodes de séparation d’opérateurs de

premier ordre. En raison des opérations numériques peu coûteuses qui leur sont

associées, les méthodes de séparation sont des candidats idéals pour les applica-

tions dont la puissance de calcul est limitée. Nous identifions d’abord les goulets

d’étranglement en matière de calcul et, ensuite, nous discutons de leur déploiement

efficace sur les processeurs, les circuits logiques programmables (FPGA) et les

plates-formes hétérogènes. Pour le prototypage et le déploiement rapides, deux

bôıtes à outils de génération de code sont développées : SPLIT et LAFF. Celles-ci

possèdent une interface d’analyse de haut niveau pour MATLAB et produisent du

code C optimisé qui peut être directement utilisé dans diverses plates-formes FPGA.

Des fonctionnalités telles que le pipelining, le partitionnement de la mémoire et la pa-

rallélisation sont automatiquement incorporées, ne nécessitant pas de connaissances

approfondies des utilisateurs en matière d’architecture informatique et de program-

mation de bas niveau. Nous proposons ensuite un cadre permettant de résoudre à

priori le problème de co-création qui se pose lors de l’utilisation de méthodes de
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Résumé

fractionnement MPC, afin de fournir un compromi entre les ressources nécessaires

et la latence. Nous fournissons des expressions analytiques qui permettent d’éviter

l’exploration manuellement et fastidieuse de l’espace de conception, réduisant ainsi

le temps de développement final de l’application.

La deuxième partie de la thèse porte sur l’apprentissage de l’inadéquation système-

modèle en utilisant des processus gaussiens (GP) dans des schémas d’optimisation

en temps réel (RTO). Des modèles imprécis, la présence de perturbations et des

conditions variables dans le temps conduisent généralement à un fonctionnement

sous-optimal de nombreuses systèmes. Nous utilisons des modèles de substitution

globaux pilotés par les données sous la forme de GP pour faire face à ces problèmes

et montrer une meilleure convergence numérique et un traitement efficace du bruit

par rapport aux techniques RTO standard. Nous prouvons en outre que les GP

peuvent être certifiés comme des modèles probabilistes et déterministes entièrement

linéaires, une propriété clé pour garantir la convergence globale des méthodes de

régions de confiance sans dérivés (DFT). Nous proposons ensuite une nouvelle

méthodologie DFT pour intégrer le bruit, qui nécessite moins d’évaluations des

systèmes que les autres alternatives. Enfin, nous concluons ce travail en réalisant

des expériences sur un système de piles à combustible à oxyde solide.

Mots-clés : Commande prédictive ; Méthodes de séparation ; Circuits logiques

programmables (FPGA) ; Problèmes de co-création ; Génération de code ; Plates-

formes embarquées ; Optimisation en temps réel ; Processus gaussiens ; Méthode des

régions de confiance sans dérivés ; Modèle entièrement linéaire ; Piles à combustible

à oxyde solide
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Introduction and Outline

I was born not knowing and have had only a little time to change that

here and there.

Richard Feynman

0.1 Introduction and Outline

With the tremendous increase in computational power and the availability of powerful

algorithms, optimization-based control has gained significant attention since the

1980s. As a consequence of the efforts made by the community working on the

topic, considerable progress has been made both in hardware implementation and

in numerical computing. However, two key limitations still exist, which prevent

optimization-based control from becoming an appealing solution in advanced indus-

trial applications. First, a large gap between algorithm development and algorithm

deployment, especially on commercial embedded platforms accepted by industry.

Second, poor performance of solutions that strongly rely on models due to the

unavoidable mismatch between it and the physical plant under study. This thesis

aims to address these two challenges and is divided in two parts.

0.1.1 Embedded Optimization on Programmable Hardware

The first two chapters of the thesis focus on efficient implementation of first-order

operator splitting methods on embedded platforms. The advantage of splitting

methods is that they decompose the original optimization problem into subproblems,

which are computationally cheaper to solve than the original one. This feature makes

them ideal candidates for deployment on resource-limited embedded platforms. We

particularly focus on implementing splitting method-based model predictive control
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Introduction

on embedded platforms. Model predictive control is a control technique that targets

the minimization of a predefined cost function satisfying design constraints. We

first analyze the computational and memory requirements of numerical operations

involved in various splitting methods, and then examine the operations that represent

bottlenecks for deployment. Finally, we study different control problems and the

sparsity patterns arising from them, which is then exploited to achieve an efficient

implementation.

In Chapter 3, a code-generation toolbox called SPLIT is proposed. SPLIT is

an open source and free package that implements various splitting methods on

different embedded platforms. The toolbox supports code-generation for embedded

processors, Field Programmable Gate Arrays (FPGAs) and System on Chips (SOCs).

The toolbox enables users to rapidly prototype and deploy splitting methods without

getting lost in the numerous architectural details or their target hardware. To

that end, a high-level MATLAB interface is provided for parsing the problem.

The toolbox generates C-based code that is tailored to the hardware at hand,

exploring features such as pipelining, parallelism, and memory management. When

handling heterogeneous platforms, SPLIT also automatizes the procedure of sharing

computations amongst FPGAs and processors.

In Chapter 4, we present a framework for solving co-design problems a-priori. Our

approach yields closed-form expressions that accurately predict both latency and

consumed resources for FPGA-tailored C code. The a-priori aspect of it dispenses

with the need of synthesizing the code, one very time-consuming task. The central

idea is to break down the general algorithm in various fundamental blocks and

analytically compute the latency and resources required to execute each of these

operations. Next, we propose another code-generation toolbox: LAFF. As opposed

to SPLIT, LAFF is not limited to first-order methods and generates code only to

FPGA boards. Again, an easy-to-use high-level interface in MATLAB is provided,

enabling rapid prototyping without requiring knowledge about hardware description

languages. In contrast to existing tools, we solve a co-design problem that can

once more a priori estimate execution time and consumed resources, thereby saving

time, cost, and energy. The level of trade-off between algorithm execution time and

consumed resources can be entirely controlled by the user by varying a parallelization

level parameter. To show the efficacy of LAFF, we deploy linear Model Predictive

Control (MPC) on Field Programmable Gate Arrays (FPGAs) in different resource

scenarios.

2



0.1. Introduction and Outline

0.1.2 Gaussian Processes-Based Constrained Process Optimiza-

tion

In the context of real-time optimization of process systems, measurement-based

approaches allows for dealing with structural plant-model mismatch and parametric

uncertainties. Modifier-adaptation schemes are measurement-based and rely on first-

order corrections to the model cost and constraint functions so as to achieve plant

optimality upon convergence. However, first-order corrections rely crucially on the

estimation of plant gradients, which typically require additional plant experiments.

A real-time optimization approach is proposed in Chapter 6 importing non-parametric

tools from the machine learning community. Specifically, to both avoid plant-gradient

estimation and attenuate measurement noise, we propose to estimate the existing

mismatch via recursive Gaussian processes. We use real-time optimization data to

build Gaussian-process surrogate functions and, by doing so, higher-order correction

terms are possible. The application of the proposed scheme is illustrated via a

constrained variant of the Williams-Otto reactor problem.

Chapter 7 considers Gaussian Processes (GP)s as global surrogate models in

derivative-free trust-region methods. It is well known that derivative-free trust-region

methods converge globally—provided that the surrogate model is probabilistically

fully linear. We prove that GPs are indeed probabilistically fully linear, thus resulting in

fast (compared to linear or quadratic local surrogate models) and global convergence.

We draw upon the optimization of a chemical reactor to demonstrate the efficiency

of GP-based trust-region methods.

Chapter 8 has the following two contributions:

• A generalised and superior version of the derivate-free trust-region method:

We propose an algorithm–DMT– which relaxes the necessary convergence

condition of trust-region surrogate models: A fully-linear property. We prove

that DMT guarantees convergence to a neighborhood of a local optimum

solution. Our algorithm requires a less stringent condition on the surrogate

model and needs less certification checks compared with traditional methods.

Consequently, it can handle measurement noise better and shows faster

convergence in experiments.

• Certification of machine learning-based surrogate models: We prove that Gaus-

sian process-based surrogate models can be certified as fully-linear models, a

3
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key property required for convergence of trust-region methods. Since machine

learning based models are known to perform better compared with traditional

surrogate models in many applications, our work will enable combining them

with derivative-free methods while guaranteeing convergence.

Finally, we present in Chapter 9 the results of two experiments carried out on a

solid-oxide fuel cell. In the first experiment, we verified the strengths of GPs as

global surrogate models in the RTO context. In the second experiment, based on

practical observations, we propose and discuss a novel method to compute the

modifiers without perturbing the plant. Concluding remarks and possible future

investigations are given in Chapter 10.

0.2 Collaborations

Chapter 1 and 2 are based on the paper [1]. The contents of Chapter 1 are the

fruit of a collaboration with Dr. G. Stathopoulos. Chapter 3 is based on [2]. Chap-

ters 3 and 4 are based on a joint work with Dr. B. Khusainov and Dr. E. C. Kerrigan.

Chapter 5 to 9 are outcomes of a collaboration with Dr. T. de Avila Ferreira, Prof.

T. Faulwasser, and Prof. D. Bonvin. Chapter 6 is based on the article [3]. The

Solid-Oxide Fuel Cell experiments were performed at the GEM laboratory supervised

by Dr. J. Van Herle.
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1 Solving Model Predictive Control Problems

with Splitting Methods

I can’t go to a restaurant and order food because I keep looking at the

fonts on the menu. Five minutes later I realize that it’s also talking

about food.

Donald Knuth

The significant progress that has been made in recent years both in hardware imple-

mentations and in numerical computing has rendered real-time optimization-based

control a viable option when it comes to advanced industrial applications1. More

recently, the need for control of a process in the presence of a limited amount of

hardware resources has triggered research in the direction of embedded optimization-

based control. Many efficient high-speed solvers have been developed for both

linear and nonlinear control, based on either first order methods (FiOrdOs [4],

QPgen [5],[6], DuQuad [7], OSQP [8]), interior point (IP) methods (FORCES [9],

CVXGEN [10]) and active set methods (QPOASES [11]).

In this part of the thesis, we focus on systems with linear dynamics, giving rise to

convex control problems. We first briefly explore a family of first order methods

known as decomposition schemes or operator splitting methods. The abstract form

of the problem at hand is the minimization of the sum of two convex functions

subject to linear equality constraints, and can be written as

minimize f (z) + g(Lz) , (1.0.1)

1The material of this chapter was written with Dr. Giorgos Stathopoulos during a collaborative

work.
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with variables z ∈ Rn, where f and g are closed, proper convex functions and

L : Rn → Rp is a linear map. A splitting method can be applied to the above

problem after rewriting it as

minimize f (z) + g(y)

subject to Lz = y ,
(1.0.2)

by alternatively (or simultaneously) minimizing over y and z . Clearly, the solutions

of problems (1.0.2) and (1.0.1) are identical. Inequality constraints that might

appear are already embedded in one of the two functions in the form of indicator

functions, i.e., a membership function for a set C

δC(z) =

{
0 z ∈ C
∞ otherwise,

(1.0.3)

which is the reason why both f and g are considered to be extended-real-valued

functions (see [12, Section 3.1.2]). Formulations similar to the above have been

studied extensively and we can look for their roots in the method of multipliers [13],

[14], the Arrow-Hurwicz method [15], Douglas-Rachford splitting [16] and ADMM

[17, 18]. Decomposition of the original problem into simpler ones is beneficial when

distributed computation tools are available. This potential is already suggested

in the classical references [19] and [20]. It was not until recently, though, that

decomposition algorithms were indeed applied in modern engineering problems

(signal and image processing, big data analysis, machine learning, [21] and [22]), in

cases where off-the-shelf interior point solvers simply fail due to the large dimensions

involved. The thesis [23] provides a comprehensive description of the connection

of several splitting algorithms under a common framework. Finally, the book [24]

provides a mathematically rigorous introduction to operator splitting methods in

general Hilbert spaces.

The plethora of different approaches for solving problem (1.0.2) is partly a conse-

quence of the problem-dependent behavior of first order methods. This behavior

has both its pros and cons; on one hand, sensitivity to the problem’s structure and

data requires pre-processing and tuning of several parameters, a procedure that can

be cumbersome. However, it is exactly this procedure that gives the flexibility to

customize the solver to the problem at hand, and, in many cases, outperform general

purpose solvers by several orders of magnitude. Consequently, there are numerous

approaches, each of which can be less or more pertinent for the specific problem.

8



Mentioning some of the most important categorizations, we can solve either the

primal problem, the dual problem, or a primal-dual formulation. Regarding primal

approaches, the most popular one is the primal decomposition method [19, 25],

where the original problem is decomposed into a master problem and two subprob-

lems. The two subproblems have both local and shared (complicating) variables,

while the master subproblem manipulates only the complicating variables. Primal

decomposition works well when the complicating variables for the two subproblems

are few.

Dualization plays a crucial role in more complicated problems. It can be performed

by means of Lagrangian relaxations (dual decomposition [26–29]), augmented

Lagrangian relaxations [30–32], alternating minimization (Gauss-Seidel) augmented

Lagrangian schemes (ADMM), mixture of Lagrangian with augmented Lagrangian

schemes (AMA [33]), linearized augmented Lagrangians or approximate minimization

schemes [34, 35] and, finally, mixtures of alternating minimization with partial

linearization (PDHG [36–39] and several similar primal-dual schemes [40–42]).

Although it is well-established that splitting methods are quite beneficial when

applied to large-scale problems, their potential in solving small to medium scale

embedded optimization problems has not been studied so extensively. It was not

until very recently that the first works attempting to apply decomposition methods

in control problems started making their appearance [5, 6, 43–45]. Our purpose

is to study the behavior of such algorithms as solvers of control-related convex

problems of that scale, i.e., from tens to a few hundreds of variables. Our effort

focuses on identifying computational characteristics of these problems and how they

can be exploited when deployed on embedded platforms. Some of the questions

that we attempt to answer are:

1. What is the computational and memory complexity of splitting methods?

2. Given that a control problem has to be solved repeatedly (e.g., MPC), what

kind of numerical algebra should be used for efficiently computation?

3. What is the best way to deploy a splitting method on various platform, for

example, embedded possessors, Field Programmable Gate Arrays (FPGAs),

and System On a Chip (SOC)?

4. How can one automatize the procedure for deploying splitting methods on

different embedded platforms?
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5. What type of resources and computational units are required for fulfilling

real-time constraints?

In what follows we present three well-understood splitting algorithms, the Alternating

Direction Method of Multipliers (ADMM), the Alternating Minimization Algorithm

(AMA) and a Primal-Dual Algorithm (PDA), the most popular representative of

several primal-dual schemes that have been recently developed. These three meth-

ods come from different sides of the spectrum described above, but also hold very

strong similarities. Our choice is motivated from the fact that the methods are

analyzed and extended from several communities, and hence their properties are

well-understood.

1.1 Problem Formulation

We narrow the general formulation discussed in the previous section to our problems

of interest, which can, without loss of generality, be written as

minimize (1/2)z>Qz + c>z +
M∑
i=1

gi(Liz + li)

subject to Az = b ,

(P)

with variable z ∈ Rn and data Q ∈ Sn+, Li ∈ Rpi×n, li ∈ Rpi , A ∈ Rm×n and b ∈ Rm.

Here, Q ∈ Sn+ denotes Q is a positive-definite matrix. Defining R = R ∪ {+∞}, we

assume the following:

Assumption 1. The functions gi : Rpi → R are closed, proper, convex functions.

Formulation (P) is quite general and can describe any convex optimization problem.

The choice of the quadratic part (1/2)z>Qz + c>z and the equality constraints

Az = b being represented in an explicit way is motivated by the standard form of

control problems. The constraints are usually expressed through indicator functions

gi .

It is important to mention that the original formulation (1.0.2) involves two functions

in the objective, while in (P) we consider two groups of functions. The first group
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contains two functions expressed as

f (z) := h(z) + δD(z) , (1.1.1)

where h : Rn → R is defined as h(z) = (1/2)z>Qz + c>z and f : Rn → R. Note

that we use the indicator function

δD(z) =

{
0 Az = b

∞ otherwise.

to restrict h to the subspace spanned by the dynamics equation. The second group

constitutes of M functions gi(yi). By introducing slack variables yi = Liz + li , i =

1, . . . ,M, and subsequently concatenating the vectors and matrices associated with

the affine terms in the gi(·) functions as L = (L1, . . . , LM) and l = (l1, . . . , lM), we

can recast (P) as

minimize f (z) + g(y)

subject to Lz − y = −l ,
(1.1.2)

where g(y) =
M∑
i=1

gi(yi), g : Rp1 × · · · ×RpM → R. Thus we end up with the original

formulation (1.0.2). Note that it is possible to proceed with such a scheme because

the variables are still updated in two sequential turns, since all the yi updates occur

in parallel.

The splitting schemes we will discuss provide both a primal and a dual solution

to problem (P). However, their construction derives from several reformulations

of (P). In the following sections, we derive the dual problem to (P), a saddle

function reformulation, and then set the foundations for the derivation of the

splitting methods by means of the proximal operator acting on these three different

forms.

We note that the Lagrangian for (P) can be written as

L(x, y ;λ) = f (z) + g(y) + 〈λ, Lz + l − y〉 , (L)

where λ = (λ1, . . . , λM), λi ∈ Rpi are dual variables associated with the equality

constraints introduced above. Furthermore, for a closed, proper, convex function f ,

11



Chapter 1. Solving Model Predictive Control Problems with Splitting

Methods

its proximal operator prox f : Rn → Rn is defined as

prox ρf (x) := argmin
z

{
f (z) + (1/2ρ)‖z − x‖2

}
. (1.1.3)

The proximal operator firstly appear in the seminal work by Moreau [46, 47]. The

operator is evaluated at a given point x and looks for a minimizer that makes a

compromise between the minimizer of the function f and the point x .

We refer to proximal methods as being a family of abstract algorithmic schemes

that find a minimizer of a (sum of) convex function(s) by means of the proximal

operator. More details can be found in the recent survey [48]. The course notes [49]

also provide a detailed reference to the topic. Next, we present three algorithms

that will be deployed on embedded platforms.

1.2 Algorithms

1.2.1 Alternating Minimization Algorithm (AMA)

Algorithm 1.2.1 Alternating minimization algorithm (AMA)

Require: Initialize λ0 ∈ Rp and 0 < ρ < 2σf
‖L‖2

loop

1: zk+1 = argmin
z

f (z) +
∑M

i=1〈λki , Liz〉

2: y k+1
i = prox 1

ρ
gi

(
Liz

k+1 + li + λki /ρ
)
, i = 1, . . . ,M

3: λk+1
i = λki + ρ(Liz

k+1 + li − y k+1
i ), i = 1, . . . ,M

end loop

We present AMA in Algorithm 1.2.1 [33]. From the perspective of the Lagrangian

function, the first step of AMA is equivalent to the minimization of (L) with respect

to the z variable. The second step involves the minimization of the augmented

Lagrangian (AL), that can be expressed for problem (P) as

Lρ(z, y ;λ) = f (z) + g(y) + 〈λ, Lz + l − y〉+ (ρ/2)‖Lz + l − y‖2
2 . (AL)

Augmented Lagrangian functions have a long history in the optimization litera-

ture [32], [30]. Roughly speaking, minimization of the augmented Lagrangian

function instead of the classical one results in faster convergence due to better
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regularization of the problem through the quadratic term. The augmented La-

grangian minimization problem results in proximal steps that can be implemented in

parallel. In the end, a dual multiplier update ensures convergence of the algorithm by

enforcing consensus of the sequence of updates {Lzk + l} to {y k}. AMA converges

for 0 < ρ < 2σf
‖L‖2 , where σf is the strong convexity modulus of f .

1.2.2 Primal-Dual Algorithm (PDA)

In the context of large-scale convex optimization, the evaluation of the minimizer

of f , as it appears, e.g., in the first step of AMA, might be undesirably expensive.

This is, e.g., the case when f is a quadratic function with a dense Hessian, the

minimization of which would require the solution of a linear system of equations.

This motivated the development of numerous primal-dual algorithms that comprise

a sequence of evaluations of proximal operators, where the gradients and linear

operators involved in the steps are called explicitly without inversion.

Early works of this type involved two functions in the objective and could not exploit

potential regularity properties such as smoothness of the functions [38, 50]. Later

works expanded the previous ones to handle an extra (third) smooth function [39, 40],

and even to deal with inexactness in the evaluation of the proximal steps [41]. These

versions come under many different names, mostly referred to as the Vũ-Condat

algorithm. In this work, we adopt the name Primal-Dual Algorithm (PDA) to

describe a method that is generic enough to encapsulate most of the existing ones,

though suitable for our setting (Algorithm 1.2.2). The proposed algorithm is in line

with the recent scheme presented in [51]. Note that the function g∗(x) denotes

the conjugate of a convex function g(x).

Algorithm 1.2.2 Primal-Dual Algorithm (PDA)

Require: Initialize λ0 ∈ Rp and z0 ∈ Rn. Choose stepsizes τ, ρ > 0 such that
√
τρ

√∑M
i=1 ‖Li‖2 < 1− (Lh/2)τ

loop

1: zk+1 = proxτδD
(
zk − τ(∇h(zk) + L>λk)

)
2: λk+1

i = proxρig?i

(
λki + ρi(Li(2zk+1 − zk) + li)

)
, i = 1, . . . ,M

end loop

An important common characteristic of these methods is that they make use of

the information that f is the sum of a smooth and a non-smooth term, h and δD,

13



Chapter 1. Solving Model Predictive Control Problems with Splitting

Methods

respectively, as presented in (1.1.1). Consequently, a quadratic model is constructed

for f , i.e., f̂ (z) = δD(z) + h(zk) + 〈∇h(zk), z − zk〉 + (1/2τ)‖z − zk‖2
2, and is

minimized instead of the original function in the first pass. In contrast to AMA, the

cost and the dynamics are not lumped together in this case. The function h being

smooth, information about the Lipschitz constant of its gradient is incorporated

into the algorithm, typically resulting in faster convergence. The first step of

the algorithm involves the projection of the evaluated gradient iteration onto the

dynamics’ subspace, while the second step is composed of dual variable updates by

means of proximal operators that can be performed in parallel, as is the case for

AMA.

1.2.3 Alternating Direction Method of Multiplier (ADMM)

ADMM, presented in Algorithm 1.2.3, is probably the most popular of the splitting

methods, mostly due to its simplicity and the very few assumptions for convergence

in comparison to other splitting schemes [17, 18, 52]. It was rediscovered 30 years

later under a new name: split Bregman method [53]. In the case of ADMM, the

functions f and g need only be convex.

Algorithm 1.2.3 Alternating Direction Method of Multipliers (ADMM)

Require: Initialize y 0 ∈ Rp, λ0 ∈ Rp, and ρ > 0

loop

1: zk+1 = argmin
z

f (z) +
∑M

i=1〈λki , Liz〉+ (ρ/2)
∑M

i=1 ‖Liz + li − y ki ‖2

2: y k+1
i = prox 1

ρ
gi

(
Liz

k+1 + li + λki /ρ
)
, i = 1, . . . ,M

3: λk+1
i = λki + ρ(Liz

k+1 + li − y k+1
i ), i = 1, . . . ,M

end loop

Compared to AMA, ADMM only differs in the minimization of the augmented

Lagrangian function in the first step. This trait has the advantage that no stepsize

restrictions occur for ADMM, in contrast to AMA and PDA. On the other hand,

the augmented Lagrangian minimization complicates the first step by the addition

of a (possibly dense) quadratic form, even in the case that the original structure of

f allowed for a cheaper evaluation. This is not the case with AMA and PDA, where

the first step remains simple. We compare and summarize discussed three algorithms

in Table 1.1. It is also possible to enable different features for the listed algorithms:

acceleration based on Nesterov’s relaxation, preconditioning, termination criterion,
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and adaptive restart. We refer to [1] for details.

Strong convexity Stepsize restrictions Decouples variables

of linear constraints

ADMM no no no

AMA yes yes on f yes

PDA yes no yes

Table 1.1 – Comparison between three discussed algorithms.

1.3 Introduction to Model Predictive Control

Model Predictive Control (MPC) is a control technique that aims to minimize a

predefined cost function satisfying the design constraints. The cost function often

reflects the difference between predicted and desired trajectories of the system

states and inputs, while constraints capture physical limitations of the system. The

mathematical formulation for an MPC problem is:

minimize

N−1∑
i=0

(
x>i Qxi + u>i Rui

)
+ x>NQf xN

subject to xi+1 = Axi + Bui , for i = 0, . . . , N − 1 ,

xi ∈ X , for i = 0, . . . , N ,

ui ∈ U , for i = 0, . . . , N − 1 ,

xN ∈ Xf ,
x0 = x̂ ,

(1.3.1)

where the vector xi ∈ Rnx represents states, ui ∈ Rnu is the input vector, the matrix

Q ∈ Rnx×nx , Qf ∈ Rnx×nx , and R ∈ Rnu×nu are penalty matrices on states, the

terminal state and inputs. with appropriate dimensions. The matrix A and B are

state transition matrix and input matrix. The constraints on the states are (X ) and

inputs (U). The terminal constraint on states is denoted by Xf . x̂ is an initial state

and N is a prediction horizon.

An MPC controller requires the solution of an optimization problem (1.3.1) at

every sampling instant, which can be computationally intensive. This challenge can
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be addressed by using explicit MPC [54] where the solution map is precomputed

using multi-parametric programming. However, this approach quickly reaches its

limitation for high dimensional problems because it requires the storage of off-line

maps, leading to large memory demands. Therefore, for implementing MPC for

reasonably large problems, one needs to rely on solving optimization problems online.

Broadly speaking, there are two approaches to solve the optimization problem

online, using second-order or first-order methods. The limitation of the former case

is the requirement of solving a linear system online, which has a computational

complexity of O(n3). This can be a significant limitation for embedded control where

computational resources are limited. Since the computational compelxity of first-

order methods is O(n2), they have gained a lot of attention for embedded control

applications. Amongst the first-order methods, splitting methods are becoming

popular because it decomposes the original optimization problem into subproblems,

which are computationally cheaper to solve than the original problem.

1.4 Discussions on Splitting Methods Based Model

Predictive Control

From a first look to Algorithms 1.2.1, 1.2.2 and 1.2.3, several differences are already

visible. In terms of applicability, ADMM requires minimal assumptions in order to

work (convexity). The same holds for PDA (note that h can be set to zero in the

case of absence of a smooth term in the objective). AMA requires strong convexity

of f , which might seem, in principle, restrictive. However, in the framework of MPC,

and assuming a quadratic cost in terms of both states and inputs, i.e., z = (x, u),

with x being the concatenated (over a prediction horizon) state vector and u the

corresponding vector of the inputs, we can distinguish two plausible formulations

for which this holds:

1. The optimization problem is rewritten in terms of the control inputs only, i.e.,

the states are eliminated. In this case, f becomes strongly convex and the

dynamics equation Az = b vanishes. Then f (z) = z>Hz + r>z , for some

dense Hessian H, and the stepsize is upper bounded by λmin(H)/‖L‖2.

2. We have that z>Qz > 0 for z 6= 0 and Az = 0, i.e., positive definiteness

of Q in the nullspace of A (see [6, Proposition 33]). This translates into

positive definiteness of the objective (in both x and u), when restricted to
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the nullspace of the dynamics. In this case we can write the KKT system[
K11 K21

K21 K22

]
=

[
Q A>

A 0

]−1

. (1.4.1)

The KKT matrix is nonsingular, and hence the first step of AMA can be

solved by means of a linear system solve. The stepsize is upper bounded by

λmin(K11)/‖L‖2.

In conclusion, for a plethora of MPC problems involving regulation or tracking, all

three methods are potentially applicable.

Restrictions on the stepsizes hold for both AMA and PDA. There is an obvious

downside, but also an upside about this fact. The former regards the small stepsizes

that are required for convergence, especially if the matrices Q and L in (P) are badly

conditioned. The upside, though, is that the stepsize selection for AMA is made

easier in comparison to ADMM, i.e., the stepsize can be selected as the maximum

allowable one. The selection is trickier in the case of PDA, since the condition
√
τρ

√∑M
i=1 ‖Li‖2 < 1− (Lh/2)τ involves two stepsizes affecting one another.

Finally, there are several computational differences among the three algorithms. As

we mentioned above, augmented Lagrangian methods like ADMM tend to converge

faster than Lagrangian methods due to the extra regularity coming from the quadratic

term. This is more visible when the objective function does not involve a quadratic

term by construction. On the other hand, the augmentation term contributes with

a (possibly) dense quadratic form to an originally (possibly) non-dense objective.

Consider, e.g., a quadratic objective of the form h(x, u) = (1/2)x>Qx+(1/2)u>Ru,

where Q and R are diagonal. The first step of AMA would require the solution

of the KKT system (1.4.1), with K11 diagonal, while ADMM would densify the

matrix. Solving via the Schur complement would require inversion of K11 (see [12,

Appendix C, Example C.4]), which becomes costly in the latter case. Regarding

PDA, the first step requires a projection onto the dynamics’ subspace. Such a

projection can be written in closed form as

PD(p) = p + A>(AA>)−1(b − Ap) , (1.4.2)

where p = zk − τ(∇h(zk) + L>λk), and thus requires the inversion of AA>, with

A ∈ Rm×n as defined in (P). This operation is inexpensive if m << n. The A

matrix for a typical MPC problem is of size Nnx ×N(nx + nu). It thus makes sense
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to prefer such an inversion, especially if nu > nx . The fact that the matrix under

inversion is positive (semi)definite, allows for further offline manipulation, as we will

see in Chapter 2.

This short discussion reveals that a good choice depends mostly on two factors: 1.

Time investment for offline tuning and 2. the computational complexity of the first

step, which in all cases involves a linear system solve. We will elaborate more on

these aspects in the subsequent chapters.

This part of the thesis focuses on deploying splitting method based MPC on

embedded hardware. Chapter 2 analyzes computation and memory complexity of

splitting methods. We then compare various ways of deploying splitting methods

on processors. In Chapter 3 we introduce SPLIT, a code-generating toolbox, using

which we deploy splitting methods on embedded processors, FPGAs, and SOC

platforms. Following that, Chapter 4 discusses a priori solving co-design problem

for splitting methods based MPC.
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2 Deployment of Splitting Methods on Pro-

cessors

The trouble with programmers is that you can never tell what a

programmer is doing until it’s too late.

Seymour Cray

In this chapter we analyze the numerical operations involved in the splitting al-

gorithms. The primary goal is to identify the key operations which can result in

computational bottlenecks for the methods of interest. At a first glance, it is

easy to conclude that the first step of all the methods amounts to the solution

of a linear system, which is commonly the most computationally intensive part of

the algorithms. We will discuss in detail the structure of these linear systems and

present different tools and techniques to solve them. In addition, matrix-vector

product is another common operation which will be analyzed in detail. We propose

ways to perform both operations, making use of modern linear algebra packages

and support our findings with experimental results.

2.1 Linear System Solver for Splitting Methods

The requirement for solving a linear system arises in the z-minimization step of

AMA and ADMM (Algorithms 1.2.1 and 1.2.3). This is due to the fact that the

step can be expressed as an equality-constrained QP, thus it gives rise to KKT

conditions written in the form of a linear system [12, 55].
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AMA: Recalling the Lagrangian definition (L), the first step of Algorithm 1.2.1

reads:

minimize L(z ;λk)

subject to Az = b ,

with variable z and λk entering as a parameter. The first order optimality conditions

give rise to:

[
Q A>

A 0

][
z

ν

]
=

−c − M∑
i=1

L>i λ
k
i

b

 . (2.1.1)

ADMM: With the only difference from AMA being the minimization of the aug-

mented Lagrangian (AL), the first step of Algorithm 1.2.3 is:

minimize Lρ(z ; y k , λk)

subject to Az = b ,

expressed as the linear system
(
Q+ ρ

M∑
i=1

L>i Li

)
A>

A 0

[z
ν

]
=

−c − M∑
i=1

L>i λi − ρ
M∑
i=1

L>i (li − y ki )

b

 .

(2.1.2)

Clearly, the linear systems (2.1.1) and (2.1.2) have very similar structure, commonly

referred to as a KKT system. From now on we denote a general KKT system as[
K11 K>21

K21 0

][
z

ν

]
=

[
k1

k2

]
, (2.1.3)

where

K =

[
K11 K>21

K21 0

]
(2.1.4)

is the KKT matrix. For a typical MPC problem with horizon N, nx states and nu

inputs, (2.1.4) is symmetric and indefinite of dimension ((N+ 1)2nx +Nnu)× ((N+

1)2nx + Nnu)1. For the sake of clarity, we consider from now on that (2.1.4) is of

1Matrix A is not necessarily the dynamics matrix of the system, but any general equality constraint.
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dimension n × n, z ∈ Rn1, ν ∈ Rn2, where n1 + n2 = n.

We observe the following:

1. In the case of linear time-invariant (LTI) systems, the matrix (2.1.4) does not

change over the iterations of AMA. The same holds for ADMM, as long as the

penalty parameter ρ remains constant. Thus we can either precompute the

inverse or factorize (2.1.3) using an LDL> factorization. Alternatively, block

elimination can be used. The resulting matrices can be cached and reused

over the iterations. The interested reader can refer to [12, Appendix C] for a

quick guide.

2. When an adaptive penalty ρ is used, K11 varies over the iterations when

ADMM is used. In practice, this means that K11 cannot be prefactored.

When the dynamics equation has been suppressed (K21 = 0), one can use a

simultaneous diagonalization technique [56] to aleviate the complexity. Note

that, in AMA, a varying stepsize does not create any issue regarding the linear

system solve.

3. The sparsity of (2.1.3) depends, apparently, on the Hessian Q, as well as the

dynamics matrix A, in the original problem definition (P). One can expect

that Q is always block diagonal and generally sparse, while A has a banded

structure, with possible dense bands. In the case of ADMM, the sparsity of

the K11 block might be lost by the addition of
M∑
i=1

L>i Li . This is not the case

with AMA.

PDA: The need for solving a linear system comes from the first step of the algorithm,

where a projection onto the dynamics’ subspace has to be performed. We repeat

the explicit form of the solution, formerly given in Section 1.4:

PD(p) = p + A>(AA>)−1(b − Ap) . (2.1.5)

The matrix AA> ∈ S++ can be treated offline by means of a Cholesky factorization.

From Step 1 of Algorithm 1.2.2 one can see that the stepsize does not enter the

inversion.

However, since in the majority of the cases considered in control problems this equality constraint

will represent the dynamics, we refer to A = K21 as ‘dynamics matrix’ hereafter.
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2.2 Numerical Methods for Solving Linear Systems

It is evident that there are two important steps associated to the solution of the

linear systems arising in the three algorithms, namely (2.1.3) for AMA, ADMM

and (2.1.5) for PDA: Factor and Solve. In this section we discuss various methods

to perform these two steps. We consider the problem:

Kz = k , (2.2.1)

where K ∈ Sn×n. The matrix K refers either to the KKT matrix (2.1.4), or

K = AA>, encompassing both (2.1.3) and (2.1.5). The interpretation will be clear

from the context.

Numerical methods to solve (2.2.1) can be categorized in two families: (i) direct

solvers and (ii) iterative solvers. We focus on the first category, given the size of

our problems of interest.

In what follows we discuss different approaches for solving linear systems arising

from ADMM, AMA, PDA and their variants, using different linear algebra libraries

written for the programming language C. The purpose is to perform a comprehensive

comparison and identify which combination of approach and software package is

more suitable for a given problem. The approaches taken are: matrix inversion and

matrix-vector multiplication, factorization and forward-backward substitution, block

elimination, nullspace method and Riccati recursion. We analyze the computational

complexity by means of Floating Point Operations (flops), one flop being equal to

one addition, subtraction, multiplication, or division of two floating-point numbers.

Memory complexity is measured in terms of the amount of memory used to store

floating point numbers.

1. Precompute inverse: The computation of the inverse of K is performed

offline, with the drawback that, although (2.1.3) might be sparse, once invert-

ing, the sparsity is lost. Thus, the computational and memory complexities of

K−1k are O(2n2) and O(n2), respectively. The computational and memory

complexities for computing the inverse of the matrix (performed offline) are

O(n3) and O(n2), respectively.

2. Factor and solve: When the matrix K does not change between consecutive

solves (as is, e.g., the case where LTI systems are considered), it can be pre-
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factored. In this way, only the factors are used in the solve step, rendering the

operation much cheaper than inverting the matrix. The following factorizations

are possible:

• LU, LDL>, and Cholesky factorization: LU factorizes K as K = LU,

where L is lower triangular and U an upper triangular matrix. The cost

for an unstructured matrix is (2/3)n3 flops. It is advantageous to use

on banded matrices since it preserves the bandwidth [57, 58]. LDL>

is suitable for symmetric invertible matrices. The factorization cost

reduces to (1/3)n3 flops. An advantage against LU is that only the

storage of a lower triangular matrix L and a diagonal D are required. On

the downside, it does not preserve the (possibly) banded structure of K,

typically leading to additional fill-in. Finally, Cholesky is a special case of

LDL>, applicable to positive definite matrices. The matrix is factored as

K = LL>, at the cost of (1/3)n3 flops. It can be applied to factor K

when PDA is used.

• Since the factors resulting from the previous step are lower (and) upper

triangular matrices, the solve step can be performed using forward and

backward substitutions. The cost of a forward-backward operation for

an unstructured matrix is 2n2.

It is important to exploit sparsity when the factor and solve steps are performed.

Among available linear algebra packages for C, CLAPACK [59] performs these

operations treating the matrices as dense. Hence, the computational and

memory complexities for performing the factorization (offline) are O(n3/3)

and O(n2), respectively, while for the forward-backward substitution (online

step) O(2n2) and O(n2). On the contrary, SuiteSparse [60] uses a Com-

pressed Sparse Row (CSR) format to store the matrix elements, exploiting

the advantage of having few nonzero elements. The CSR format represents

the matrix by three vectors. The first vector contains integers representing

the number of nonzero elements in each row. The second (integer) vector

stores the indices at which nonzero elements are present in each row. The last

vector stores all the nonzero elements of the matrix. If the matrix is sparse

(which is indeed the case with (2.1.3)), then the computational complexity to

perform the factorization is much less than O(n3/3). The memory complexity

is also reduced to O(nnz + n), where nnz is the number of nonzeros in L.

The forward-backward substitution step ends up having computational and

memory complexities of (roughly) O(2nnz + n) and O(nnz + n), respectively.
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3. Block elimination: Block elimination is suitable for systems that have the

KKT form (2.1.3). The system is solved in two steps, namely z = K−1
11 (k1 −

K21ν) and Sν = k2 − K21K
−1
11 k1, where S is the Schur complement of K11

in K, given by S = −K21K
−1
11 K

>
21, and S can be factored using a Cholesky

factorization. However, since (2.1.3) is structured, exploiting this fact can

further reduce the complexity. It is interesting to analyze this in more detail,

following the same procedure as in [12, Section C.4].

Since we solve repetitively, there is once the factorization cost of K11, the

formulation of K−1
11 K

>
21, as well as the factorization of S, which costs (2/3)n3

2

flops. Subsequently, two solves are performed at each iteration with respect

to ν and z . Forward-backward substitution for z and ν cost O(n2
1) and O(n2

2)

flops, respectively, hence resulting in quadratic complexity in the horizon

length and the number of states and inputs.

If K11 is diagonal (see, e.g., AMA variants with diagonal Hessians in the cost),

the factorization cost for K11 is zero. Consequently, the total solve cost is

dominated by the solution of ν. If K11 is block diagonal, with blocks of size nx

and nu, the factorization can be performed for each block separately, resulting

in (2/3)
∑N

i=1(n3
x + n3

u) flops. The same holds for the z-solve step which can

be carried out in 2
∑N

i=1(n2
x + n2

u) flops.

4. Nullspace method: One significant drawback of block elimination is that

it assumes that the K11 matrix is invertible which need not always be the

case. The nullspace method can be used even in the case when K11 is not

invertible. We define H = (1/2)
(
K11 +K>11

)
. The requirement for using the

method is that ker(H) ∩ ker(K12) = {∅} (see [61] for more details). The

offline computation steps are:

(a) Find a particular solution ẑ such that K12ẑ = k2

(b) Compute the matrix Z such that K12Z = 0, i.e., the range of Z is the

null space of K12. This can be computed using, e.g., rank-revealing QR

or rank-revealing LU decomposition.

(c) Factorize K21K
>
21 and Z>K11Z for the linear system solves that will

follow.

Once the vector ẑ and matrix Z are computed, the rest of the calculations

are performed online as follows:

(a) Solve Z>K11Zy = Z> (k1 −K11ẑ). The vector K11ẑ can be precom-

puted offline. If the rank of K21 is n2, then the dimension of y is n1− n2.
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Assuming that the factorization of Z>K11Z has been performed offline,

the online computations require only forward backward solves, leading

to a computational complexity of O((n1 − n2)2), for the fully dense

factorization.

(b) Once y is computed, z of (2.1.3) is calculate using z = Zy+ẑ . This step

involves a matrix-vector multiplication and a vector addition, resulting in

a computational complexity of O(n1n2).

(c) Finally, ν is computed by solving the equation K>21ν = k1−K11z . Notice

that K21 is a rectangular matrix in most of the cases, thus one can

solve for ν if K21K
>
21 is full rank by using the left pseudoinverse ν =

(K21K
>
21)−1K21(k1 −K11z). Again, the factorization of K21K

>
21 can be

computed offline since K21 is fixed. Subsequently, the computational

complexity is O (n2
2) assuming the factorization is fully dense.

5. Riccati recursion: Suppose that the KKT system (2.1.3) we have examined

results from the minimization of a multistage cost coupled with the system’s

dynamics, expressed by the matrix A. Under the assumption that f is convex

quadratic in states and inputs, this fact allows for an alternative way to perform

the z-minimization step in both ADMM, AMA (and the variants), namely to

perform a Riccati recursion. This approach has been commonly considered

in the control literature, mostly due to its computational advantages that

arise in several cases (see [62–66] for details). This method has approximate

computational complexity N(6n2
x + 8nxnu + 2n2

u) and memory complexity

N(2n2
x + 3nxnu + n2

u/2). In the case of LTI systems the memory complexity

can be further reduced.

6. Custom solver: Finally, we created a custom solver for the sake of compari-

son with the aforementioned methods. The approach is based on exhaustive

code generation (see, e.g., [10]). The idea is to compute the LDL> fac-

torization in Matlab, and then explicitly write the entries of the matrix in

a generated C file. Subsequently, the data is loaded in C and used with

a custom forward-backward solver. A reverse-CutHill McKee reordering is

utilized to reduce the fill in L [60, 67]. The matrices L,D, L> are stored

explicitly, using a format similar to CSR, as opposed to SuiteSparse which

stores only L and D. Thus, for the forward-backward step the computational

and memory complexities are O(2nnz + n) and O(2nnz + n).

Table 2.1 summarizes the above discussion regarding the complexities. Looking

at the table, we can roughly state that, if one disregards SuiteSparse and the
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exhaustive code generation, the Riccati recursion beats by far the remaining

three approaches for moderate to long horizon lengths, since it is the only

one scaling linearly with the horizon. The block elimination and nullspace

methods are cheaper compared to matrix pre-inversion and CLAPACK because

they exploits the block diagonal structure of the KKT system. Finally, the

sparsity-exploiting methods (SuiteSparse and custom solve) scale linearly with

the horizon, but the computational complexity added by the remaining nonzero

elements after the factorization has been performed is, generally, unknown.

We can roughly say that the resulting lower triangular L matrix will have an

almost banded structure, but the width of the band is not known in advance.

Method Computational Memory

Inverse O (2n2) O (n2)

CLAPACK O (2n2) O (n2)

SuiteSparse O (2nnz + n) O (nnz + n)

Block elimination O (N2(nx + nu)2) O (N2(nx + nu)2)

Nullspace method O (N2nx(nx + nu)) O (N2nx(nx + nu))

Riccati O (N(6n2
x + 8nxnu + 2n2

u)) O (N(2n2
x + 3nxnu + n2

u/2))

Custom O (2nnz + n) O (2nnz + n)

Table 2.1 – Computational and memory complexities for online linear system solve.

The block elimination and nullspace methods perform on the KKT system (2.1.3),

hence the complexity is expressed in terms of nx , nu and N. The same holds for the

Riccati recursion, which operates in a special way. For the rest of the methods, n

can be either N(2nx + nu) for (2.1.3), or Nnx for (2.1.5).

2.2.1 Numerical Results

In this section we perform numerical experiments regarding the linear system solve

operation discussed before. The comparison involves only factor and solve methods,

namely matrix pre-inversion and matrix-vector multiplication, forward-backward

substitution with CLAPACK and SuiteSparse, as well as the custom solver. All

the experiments are performed on Mac OS with Intel core i7 2.8 GHz with 16GB

RAM. Since the comparisons do not involve any iterative methods, we consider a
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randomly generated multi-stage optimal control problem of the form:

minimize (1/2)
N∑
i=1

(
x>i Qxi + u>i Rui

)
+ (1/2)x>N+1QxN+1,

subject to xi+1 = Axi + Bui , i = 0, . . . , N

umin ≤ ui ≤ umax , i = 0, . . . , N

‖Fxxi‖2 ≤ fx , i = 0, . . . , N + 1

‖Fuui‖2 ≤ fu , i = 0, . . . , N .

(2.2.2)

The matrices Q and R are set to be the identity and the system is randomly

generated. The number of states equals the number of inputs. We vary the size of

the inputs (states) and also the horizon length as per Table 2.2.

nx 4 10 20 30 30 40

nu 2 5 10 15 15 20

N 4 10 10 15 20 20

Table 2.2 – Problem (2.2.2) instances of varying size.

The problem is created and parsed in Matlab, while the solve step is performed in C.

The results are illustrated in Figures 2.1, 2.2 and 2.3 for ADMM, AMA and PDA,

respectively. The time depicted is per algorithmic iteration, using four different

ways to perform the linear system solve, for increasing number of variables. The

upper yellow part of each bar plot is the time needed for the remaining operations

(proximal step, dual update etc.). The scale is logarithmic.

It is evident that, irrespective to the problem size, SuiteSparse and the custom

solver outperform CLAPACK and the pre-inversion approach. The main reason for

this is that the KKT system and its factors are sparse. Especially for the custom

solver, the explicit storage of LT (in contrast to SuiteSparse), allows for sequential

access of the memory or spatial locality, which is important for problems for which

the size of the data does not fit into the cache. Regarding the pre-inversion, once

inverted, the KKT matrix becomes fully populated, with obvious implications.

For the case of PDA, the trends are similar to ADMM and AMA. However, the size

of the linear system to solve is significantly smaller than in the other two cases. We

also observe that the remaining operations have non-negligible contribution in the

27



Chapter 2. Deployment of Splitting Methods on Processors
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Figure 2.1 – Computational load distribution per iteration of ADMM. The remaining

operations in yellow color refer to the remaining algebraic operations of the algorithm.

total iteration time.

2.3 Numerical Methods for Computing Matrix-Vector

Multiplication

Matrix-vector multiplication (matvec operation hereafter) is the most common and

the second most expensive operation from the computational viewpoint. In this

section we compare popular linear algebra packages that compute matvecs, analyse

their computational complexity, and illustrate timing results for varying sizes and

different sparsity patterns.

More specifically, we consider:

• forloops: In this naive approach, the matrix is treated as dense and un-

structured. Two nested for-loops are used to compute the matvec. The

computational and memory complexities are O(n2) and O(n2).

• BLAS: BLAS stands for Basic Linear Algebra Subprograms. It performs basic

linear algebra operations e.g., vector manipulation (addition, multiplication),

matrix-vector manipulation and matrix-matrix manipulation. BLAS considers

dense matvec operations, with corresponding computational and memory
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Figure 2.2 – Computational load distribution per iteration of AMA.
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Figure 2.3 – Computational load distribution per iteration of PDA.
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complexity of O(n2) and O(n2).

• SuiteSparse : SuiteSparse representes the matrices in CSR format, as we

already mentioned in Section 2.2. The matvec operation has computational

and memory complexities of O(nnz) and O(nnz).

• Custom methods : We perform exhaustive code generation for this

method [10]. The idea is to explicitly write the entries of the matrix in

a generated C file.

2.3.1 Numerical Results

Problem Formulation: Looking at all three algorithms and their variants, one

observes two matvec operations that are present in all cases: Lz and L>λ. We

thus restrict our analysis to these two operations, since they are the most common

and they both involve the same matrix, namely L. Since Li , i = 1, . . . ,M are the

linear maps that appear in the gi functions in (P), they mostly represent constraints

on states and inputs. These constraints also tend to be stage-wise, or, less fre-

quently, they couple more than one time stage, however almost always resulting

in a structured and sparse matrix L. If a condensed formulation of the problem is

considered (i.e., the constraints are expressed in terms of the control inputs only),

then possibly existing state constraints will impose a full, lower triangular structure

on L. To summarize, among the common cases, L can be a full lower triangular

matrix, in the worst case. Following this reasoning, to compare the aforementioned

approaches, we compute matvecs on a lower triangular banded matrix with varying

size and varying sparsity. To vary sparsity, we start with a diagonal matrix and

gradually fill in the matrix by adding bands until it becomes a completely filled lower

triangular matrix.

The results are depicted in Figure 2.4. The plotted times for a matvec operation

are in ns, using the (optimized) gcc compiler. Various matrix sizes are used, with

different sparsity percentages. The plotted curves regard diagonal matrix, 50%

fill-in as well as fully populated lower triangular matrix. When sparse matrices are

considered, the custom method beats all the others since all the entries of the

matrix are explicitly written. As expected, SuiteSparse follows closely, exploiting the

sparsity. As the matrix becomes gradually filled, SuiteSparse and the custom method

become costlier, while the solve time for BLAS does not change considerably, due

to the fact that irrespective of sparsity BLAS always treats the matrix as fully
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Figure 2.4 – Custom code generation performs well, but at the cost of very long

pre-processing periods. Once the matrices become half-full, BLAS (in orange)

clearly outperforms the alternatives, keeping an almost constant cost per solve,

regardless of the sparsity.

dense. Furthermore, it is worth noting that the code generation for the custom

method potentially takes too much time to execute, rendering it impractical for any

purpose (see Figure 2.5 and 2.6).

2.4 Conclusions

In this chapter, we analyzed numerical operations involved in implementing splitting

methods. We discussed computational bottlenecks for splitting methods. We

compared and recommended different algebra packages based on sparsity and

problem structure for efficient implementations.
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Figure 2.5 – Code generation for matvec operations of varying size (horizontal axis)

versus time (vertical axis). The matrices involved are fully populated (red) and 50%

populated lower triangular. The generation time increases polynomially.
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3 Deployment of Splitting Methods on Pro-

grammable Hardware

The cheapest, fastest, and most reliable components are those that

aren’t there.

Gordon Bel

Until now, we discussed deployment of splitting method based MPC on processors.

In this chapter we deploy splitting methods on FPGAs and System On Chips (SOCs).

We also propose a high-level code-generation toolbox—SPLIT—that enables rapid

development and deployment of splitting methods on various hardware platforms.

FPGAs are known for their deterministic guarantee on execution time and are

therefore a suitable candidate for achieving real-time guarantees. Furthermore, they

offer a better computation/power consumption ratio compared to microprocessors

or GPUs (Graphics Processing Units). FPGAs have various resources such as Digital

Signal Processors (DSPs) , Flip-Flops (FFs), Block Random Access Memories

(BRAMs), Look-Up Tables (LUTs), etc. The user interconnects these resources to

make Central Processing Unit (CPU) like units. The advantage is that circuit can be

tailored to the algorithm. Besides, this enables trading-off resources with exectution

time, i.e., less execution time can be achieved by utilizing more resources.

Historically, FPGAs are programmed using Register Transfer Level (RTL) languages

such as VHSIC Hardware Description Language (VHDL) or Verilog, but these

languages have a steep and cumbersome learning process which acts as a major

obstacle between conceptualization and deployment. Furthermore, it is tedious and

complex to maintain large projects. In conclusion, the challenge with RTL based

languages is that they are not appropriate for rapid prototyping and deployment

purposes.
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Figure 3.1 – Efficiency versus abstraction for FPGA programming languages [68].

To overcome the limitations of RTL languages, FPGA vendors and the software

community have explored the possibility of using high-level languages, e.g., C, C++,

OpenCL, MATLAB and LabVIEW because of their popularity and user-friendliness

(Figure 3.1). We refer to [69] for a listing and comparison among FPGA circuit

design tools. Usually, high-level languages increase the productivity of a programmer

and enables a structured approach for the handling of larger projects. Various

comparisons in details between high-level languages versus RTL can be found in a

recently published survey [70] and can be concluded as: while RTL languages beat

high-level languages–with a small margin–in terms of efficient usage of resources,

High Level Synthesis (HLS) requires only a third of the development time compared

to RTL and increases the productivity four times. Therefore, without a surprise,

HLS tools are gaining attention and popularity among hardware developers and

there are massive efforts to improve their efficiency.

The challenge with HLS (C/C++) code is that if the program fails incorporating

various FPGA features like pipelining, parallelism, memory accesses, etc, then FPGAs

lose their compute performance significantly [2]. That is why HLS toolboxes exploit

these features [71, 72]; however, they still rely on users for having insight about

FPGA’s architecture and programming. This is a limitation because not all potential

FPGA users have the necessary knowledge–especially in the control community.

This demands developing a toolbox for users, without having background knowledge,

interested in quickly prototyping and deploying their algorithms while exploiting

FPGA features.

Despite several efforts to deploy control algorithms on FPGAs (see survey [73]
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and [74–78]), little work is done developing high-level code-generation toolboxes

for control algorithms [2, 74]. Next, we will address this challenge with two main

contributions:

1. SPLIT, a high-level code generation toolbox, that facilitates rapid develop-

ment and deployment on embedded prosessors, FPGAs, and heterogeneous

platforms.

2. Analysis and novel methods for deploying splitting methods efficiently on

reconfigurable platforms.

3.1 Code Generation for Software using SPLIT

The purpose of SPLIT is to provide an easy-to-use open source and free toolbox

which saves time and effort for users deploying splitting methods on embedded

systems. The toolbox is written in a high-level language (MATLAB) and code

generation is tailored to a specific splitting algorithm. In this way the toolbox exploits

the problem structure for generating efficient C code. SPLIT can be used to target

an embedded general-purpose processor or it can also be used to deploy on pure

FPGAs or heterogeneous platforms. In this section, we will focus particularly on

deployment on general-purpose embedded processors and Section 3.3 is dedicated

for detailed discussions on code generation for FPGAs.

The toolbox supports three splitting methods as discussed in the previous chapters.

• Alternating Direction Method of Multipliers;

• Alternating Minimization Algorithm;

• Primal Dual Algorithm.

Since SPLIT has its own libraries it can be used as a library-free toolbox. The

toolbox also provides users an option to select different linear algebra libraries

discussed previously, like “SuiteSparse”[79], “BLAS” [80] and “LAPACK”[81].

Thus, depending on an application, a user can use SPLIT as library-free or with

a suitable library. Another strength of the toolbox is that it analyses the sparsity

pattern of the problem and recommends to the user a particular library or method.
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As discussed in Section 2.1, the computationally expensive operations for splitting

algorithms are solving linear systems and matrix-vector multiplication. We summarize

various ways to solve linear systems and computing matrix vector multiplications

using SPLIT in Table 3.1 and Table 3.2 respectively. Note that “Custom HW sparse”

and “Custom HW dense” are tailored for implementation on FPGAs and they are

explained in Section 3.3.

Library Sparsity Method Suitable for

Custom Sparse LDL Small sparse matrices

SuiteSparse Sparse LDL Large sparse matrices

CLAPACK Dense LDL Dense matrices

Table 3.1 – Different linear system solves supported by SPLIT

Library Suitable for

BLAS Dense matrices

SuiteSparse Sparse matrices

Custom software Small sparse matrices

Custom HW sparse Sparse matrices on FPGAs

Custom HW dense Dense matrices on FPGAs

Table 3.2 – Matrix vector multiplications supported by SPLIT

Before we discuss how SPLIT deploys splitting algorithms on FPGAs, we first

introduce reconfigurable and heterogeneous computing in the following section.

3.2 Reconfigurable and Heterogeneous Computing

Platforms

An FPGA is an array of relatively simple circuits, namely flip-flops (FFs) and

lookup tables (LUTs), that are connected to switch matrices (Figure 3.3 and 3.4).

Configuring switch matrices allows creating connections between and within logic

blocks so that the desired circuit is obtained. Modern FPGAs provide special purpose

units (e.g. dedicated memory blocks) that are more efficient from a silicon usage

and signal routing point of view, compared to general purpose FFs and LUTs [82].
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The key outstanding feature of reconfigurable platforms is customizability. Unlike

fixed architecture CPUs that have fixed logic for performing a predefined set of

operations, FPGAs allow synthesizing computational units with respect to a given

algorithm. Moreover, computational units can be connected directly to each other

to create data pipelines. The data storage subsystem is also flexible: memory blocks

can be partitioned and placed near the corresponding processing units so that each

block is processed independently.

However, the above-mentioned advantages often come at the price of certain

limitations. Firstly, an FPGA clock rate is often slower compared to CPU-like

architectures. Overcoming this limitation requires introducing a sufficient degree of

parallelism. Secondly, some algorithms cannot be efficiently mapped on hardware

due to data dependencies and/or resource consuming operations. In such cases it

might be useful to employ heterogeneous platforms, known as systems-on-a-chip

(SoCs), that incorporate both sequential CPUs and FPGAs (Figure 3.5). With a

heterogeneous computing approach, computationally heavy parts of the workload

can be accelerated on FPGA, while keeping the rest of the algorithm on CPU

to save computational resources. The SPLIT toolbox considers three options of

splitting the workload:

• Pure software implementation.

• Heterogeneous implementation: accelerating solving the linear system on the

FPGA and computing the rest on the CPU.

• Pure FPGA implementation.

A heterogeneous computing platform can be programmed in several ways. Con-

ventional approaches propose programming each subsystem using a dedicated,

often low-level, language and handling data transfer between subsystems manually.

Although low-level programming often leads to efficient realizations both from a

time and resource usage point of view, these benefits come at the price of high

implementation effort and hence long time-to-market. Model-based languages (e.g.

the Matlab HDL coder) on the other hand significantly reduce implementation

effort, providing flexibility of shifting the workload between different computational

subsystems and allowing quick closed-loop performance verification. Unfortunately,

the resulting circuit often cannot be considered as efficient. Using C-based inte-

grated development environments (e.g. Xilinx SDSoC) is a compromise between

design effort and implementation efficiency: although the whole computing system
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is programmed using a unified language, supplying the code with additional compiler

directives allows specifying low level details to satisfy given design constraints.

The SPLIT toolbox relies on a C-based approach and uses the Protoip tool [83]

to manage underlying projects (Figure 3.2). Protoip allows rapid prototyping of

optimization algorithms on FPGAs by providing processor-in-the-loop (PIL) test

facilities while abstracting low-level implementation details. PIL simulation allows

verifying controller performance by running optimization algorithm on FPGA and

simulating the plant on a desktop machine.

3.3 Code Generation for Hardware using SPLIT

We proceed to explain how SPLIT allows users to directly deploy an MPC controller

on FPGAs or on heterogeneous platforms. The flow for code generation for FPGAs

is illustrated in Figure 3.2. At the first stage of the design flow a user defines an

MPC formulation, as illustrated in Figure 3.6.
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Following this SPLIT generates hardware-oriented synthesizable code with synthesis

directives (e.g. pipelining, parallelization) that allow efficient mapping on hardware.

We classify all underlying computations for splitting algorithms into: scalar, vector-

vector and matrix-vector operations.
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1 s p l i t P r o b . c l e a r P r o b l e m ;

2 x = s p l i t v a r ( nx , N+1);

3 u = s p l i t v a r ( nu , N ) ;

4 x p a r = p a r a m e t e r ( nx , 1 ) ;

5 o b j = 0 ;

6 %% D e f i n e c o s t

7 f o r j = 1 :N

8 o b j = o b j + 0 . 5∗ x ( : , j ) ’∗Q∗ x ( : , j )+0.5∗ u ( : , j ) ’∗R∗u ( : , j )

9 end

10 o b j = o b j + 0 . 5∗ x ( : , N+1) ’∗Q∗ x ( : , N+1);

11 x ( : , 1 ) == x p a r ;

12 %% d e f i n e c o n s t r a i n t s

13 f o r j = 1 :N

14 x ( : , j +1) == A∗ x ( : , j ) + B∗u ( : , j ) ;

15 u ( : , j ) <= u u p p e r ;

16 u ( : , j ) >= u l o w e r ;

17 end

18 m i n i m i z e ( o b j ) ;

19 p r o b = s p l i t P r o b . g e n P r o b l e m ;

Figure 3.6 – An MPC problem defined using SPLIT in MATLAB

Scalar operations, e.g. computing Nesterov’s relaxation, do not require acceleration,

since computational complexity for these operations does not scale with the problem

size.

Vector-vector operations often can be accelerated by pipelining1 the loop that

iterates over vectors elements. For the simplest case, when consecutive iterations

do not depend on each other (e.g. element-wise addition), this is implemented by

supplying the source code with a pipelining directive. However, for some vector

operations pipelining cannot be implemented in a straightforward manner, which is a

consequence of read-write data dependencies. Consider the example of computing

a sum of vector’s elements (Figure 3.7 and 3.8).

With a software-oriented approach the next iteration of the main loop cannot

be started before finishing the previous iteration due to data reading and writing

dependencies, which applies restrictions on pipelining. Hardware-oriented code

computes partial sums of vector’s elements independently, which allows avoiding

undesirable data dependencies and creating an efficient pipeline. After the partial

accumulation is finished, the final loop accumulates the partial sums. According

1We will discuss pipelining and parallelism in details in Section 4.1.
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to the report from the synthesis tool (Vivado HLS), the FPGA implementation

of vec sum hw() is 4.75x faster compared to vec sum sw(). Note that the same

memory access pattern with the considered example holds for calculating vector

norms, vector-vector and matrix-vector multiplications, which is exploited by SPLIT.

1 // SW o r i e n t e d code

2 f l o a t v e c s u m s w ( f l o a t v e c i n [ 1 0 0 0 ] )

3 {
4 i n t i ;

5 f l o a t sum 0 ;

6 f o r ( i = 0 ; i < 1 0 0 0 ; i ++)

7 {
8 sum += v e c i n [ i ] ;

9 }
10 r e t u r n sum ;

11 }

Figure 3.7 – Software oriented C-code for calculating sum of vector elements.

1 // HW o r i e n t e d code

2 f l o a t vec sum hw ( f l o a t v e c i n [ 1 0 0 0 ] )

3 {
4 i n t i , j ;

5 i n t mask [ 2 ] = {0 , ˜ ( ( i n t ) 0 ) } ;

6 f l o a t sum p [ 8 ] = {0} ;

7 f o r ( i = 0 , j = 0 ; i < 1 0 0 0 ; i ++) // p a r t i a l a c c u m u l a t i o n

8 {
9 #pragma HLS DEPENDENCE v a r i a b l e =sum p a r r a y i n t e r d i s t a n c e =8 t r u e

10 #pragma HLS PIPELINE

11 sum p [ j ] += v e c i n [ i ] ;

12 j = ( j +1) & mask [ ( j +1) != 8 ] ;

13 }
14 f o r ( i = 1 ; i < 8 ; i ++) // f i n a l a c c u m u l a t i o n

15 {
16 #pragma HLS UNROLL

17 sum p [ 0 ] += sum p [ i ] ;

18 }
19 r e t u r n sum p [ 0 ] ;

Figure 3.8 – Hardware oriented C-code for calculating sum of vector elements.

Matrix-vector computations required for splitting methods can be classified into

dense matrix-vector multiplication, sparse matrix-vector multiplication and sparse
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forward/backward substitution. Dense matrix-vector multiplication essentially rep-

resents a set of vector-vector multiplications, which can be computed in parallel.

SPLIT allows trading off computation time against FPGA resource usage by chang-

ing the degree of parallelism, i.e. the number of rows processed in parallel. Regarding

sparse matrix-vector computations, SPLIT handles non-zero elements in a certain

order that allows avoiding data dependencies and hence opens possibility of pipelining.

This is achieved by scheduling, i.e. determining the order of processing non-zero

elements, offline, at code generation stage.

Once tailored C code with synthesis directives is generated, SPLIT uses the Protoip

toolbox for synthesizing the code and deploying the controller on FPGA. Using

Protoip on the underlying level allows quick prototyping of the algorithms on

hardware and closed-loop performance verification with processor-in-the-loop tests.

Note that the entire design flow is fully automated and no prior FPGA knowledge

is required from a user.

In this way, by just defining an MPC-based formulation in a high-level language

like MATLAB, users can deploy a controller on FPGAs or heterogeneous platforms.

This is the first free and open source toolbox that provides code generation and

deployment of an MPC-based controller on FPGAs or heterogeneous platforms.

3.4 Processor-in-the-Loop Experimental Results

In this work we use a Xilinx Zynq-7000 XC7Z020 SoC with dual-core ARM Cortex-

A9 and FPGA logic, which contains: 53200 LUTs, 106400 FFs, 220 DSP blocks

and 140 block RAMs with total capacity 4.9 Mb. A high throughput-oriented

AXI bus provides fast communication between the CPU and FPGA and hence

allows heterogeneous implementations of computationally intensive algorithms. We

consider the following optimal control problem for the rest of the section:

minimize

N−1∑
i=0

(
x>i Qxi + u>i Rui

)
+ x>NQNxN

subject to xi+1 = Axi + Bui , for i = 0, . . . , N − 1 ,

xi ∈ X , for i = 0, . . . , N ,

ui ∈ U , for i = 0, . . . , N − 1 ,

x0 = x̂ ,

(3.4.1)
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where the vector xi ∈ Rnx represents states, ui ∈ Rnu is the input vector, Q and R

are penalty matrices on states and inputs with appropriate dimensions. A ∈ Rnx×nx
is state transition matrix, B ∈ Rnx×nu is input matrix. We consider X , U are convex

sets for constraints on the states and inputs respectively. x̂ is an initial state and N

is a prediction horizon.

3.4.1 Software, Heterogeneous and Hardware Implementations

In this example, we randomly create predictive control problems of the form (1.3.1)

while varying number of states, inputs and horizon length as provided in Table 3.3.

nu nx N Dimensions

Problem 1 2 4 4 48

Problem 2 4 8 7 156

Problem 3 6 12 12 384

Table 3.3 – Generated problems with varying size

Parameter “Dimensions” in Table 3.3 represents the matrix size when solving a

linear system. We incorporate box constraints on inputs. The optimization problem

is solved using an accelerated version of AMA with single precision floating point

arithmetic. The goal is to compare and study the latency and resource usage for

implementation on an FPGA, heterogeneous platform and on a general-purpose

embedded processor. We consider the following five scenarios:

1. Implementation on FPGA with synthesis directives: In this case, all the

numerical operations are performed on an FPGA. The code generated by

SPLIT with synthesis directive is used. The latency is illustrated in Figure 3.9

as PL directive.

2. Implementation on FPGA without synthesis directive: In this case, all

synthesis directives are commented to compare and study efficiency of gener-

ated C code with directives by SPLIT. The latency performance is illustrated

in Figure 3.9 as PL.

3. Heterogeneous implementation: In this experiment, all the operations,

except solving linear systems, are computed on the embedded processor and
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the linear system is solved on an FPGA. This is because the computational

bottleneck for splitting methods is the solution of a linear system. Since the

matrix involved in solving the linear system does not change over iterations, it

is preloaded on the FPGA at circuit synthesis stage. Thus there is no online

memory communication for the matrix between the embedded processor and

FPGA. Heterogeneous implementation is also inherently supported by SPLIT.

The latency of this approach is illustrated in Figure 3.9 as SOC.

4. Software-based implementation of LDL: In this approach, all the numerical

calculations are performed using the onboard dual-core ARM Cortex-A9

processor. The linear system is solved using LDL factorization. In Figure 3.9,

this is denoted by SW LDL.

5. Software-based implementation of mat-vec: To compare the performance

of LDL factorization, we precompute the inverse of the matrix in the linear

solve and perform matrix-vector multiplication online. All the numerical

operations are computed using onboard embedded processor. For latency, see

Figure 3.9 with label SW invert.

For all considered scenarios the CPU clock frequency was set to 667 MHz, while the

FPGA was clocked at 100 MHz. We do not parallelize any operations on the FPGA

for this example to have a fair comparison with a pure software-based implementation

on an embedded processor. As illustrated in Figure 3.9, implementation on an

FPGA with synthesis directives has the least latency, followed by a heterogeneous

platform and a software implementation with LDL factorization. This shows the

trade-off between a pure FPGA-based implementation and a pure software-based

implementation. It is important to note here that an FPGA-based implementation

without synthesis directives has a higher latency than an LDL-based pure software

implementation. Since SPLIT is tailored to an algorithm, it performs synthesis

directives during code generation and thus is ready to deploy for end users. It is

also interesting to observe from Figure 3.9 that solving the linear system based

on precomputing the inverse in a software-based implementation has the worst

performance. We also note here that to make a library-free implementation, we apply

a custom LDL factorization, which exploits sparsity. Since the linear system solve

step has a sparse matrix, the factorization is sparse as well. Thus, the time taken

for a factorization-based solver is better than computing the inverse and performing

matrix-vector multiplication. However, due to lack of definite pattern in-fill, the

forward backward solve is not suitable for implementing on FPGAs. A heterogenous

implementation is a good trade-off between a pure FPGA implementation and
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Problem 1 Problem 2 Problem 3

PL directive 11.82 13.64 13.64

PL 11.82 12.73 12.73

SOC 2.27 2.27 2.27

Table 3.4 – DSP usage in %

Problem 1 Problem 2 Problem 3

PL directive 19.70 22.42 25.72

PL 19.67 21.49 24.74

SOC 3.51 3.27 3.34

Table 3.5 – LUT usage in %

implementation on an embedded processor. This is due to the fact the main

computational bottleneck is performed on the FPGA.

We summarize resources used in Tables 3.4, 3.5, 3.6 and 3.7. It is worth

noting that a synthesis directive-based implementation uses similar amounts of

resources as one without a synthesis directive, while offering much better latency. A

heterogeneous implementation uses less resources compared to a pure FPGA-based

implementation, while suffering in latency.

Problem 1 Problem 2 Problem 3

PL directive 7.54 8.86 11.76

PL 7.66 8.70 11.62

SOC 1.44 1.33 1.34

Table 3.6 – FF usage in %
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3.5. Conclusion

Problem 1 Problem 2 Problem 3

PL directive 2.68 9.82 50.53

PL 2.15 9.46 50.18

SOC 1.60 6.60 46.61

Table 3.7 – BRAM usage in %

3.4.2 Trade-off : Latency Versus Resources

In this example, we illustrate the trade-off between resource usage and latency.

We randomly generate an MPC problem of form (3.4.1) with 4 states, 2 inputs

and horizon length of 5 with box constraints on inputs. We solve the optimization

problem using an accelerated version of the alternating minimization algorithm and

implement on an FPGA. Varying the number of parallel processors for solving the

linear system allows trading off FPGA logic usage against latency (Figure 3.10). As

we increase parallelization, the latency improves (3x faster) at the cost of using more

resources. Selecting the number of parallel processors for a particular application one

has to keep in mind Ahmdal’s law, which states that overall algorithm parallelization

speedup is limited by the sequential part of the algorithm. This explains why after

reaching a certain point parallelizing computations does not improve performance.

3.5 Conclusion

This chapter presented a code generation tool for software, hardware and hetero-

geneous implementations of predictive control algorithms using operator splitting

methods. Experimental results confirmed that generating synthesizable hardware

tailored C-code allows achieving 3x to 11x speedup with hardware realizations com-

pared to pure software implementations. Moreover, it was shown that splitting the

workload between software and hardware allows achieving a compromise between

latency and computational resource utilization.
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4 Solving Control Co-Design Problems for

Splitting Methods

There are two ways to write error-free programs; only the third one

works.

Alan J. Perlis

In this chapter we solve a priori the co-design problem, i.e., a priori finding a trade-off

between execution time and utilized resources. For solving a co-design problem,

engineers usually rely on a heuristic approach [85, 86], meaning, recompiling the

program for different levels of parallelism. In the previous chapter, we solve a

co-design problem in a heuristic way (See Section 3.4.2 and Figure 3.10). However,

the challenge (besides requiring insight about FPGAs) is slow compilation time of

FPGA programs. Therefore, the heuristic approach is time-consuming and laborious.

We address this issue by providing closed-form analytical solutions that estimate

consumed latency and resources a priori, i.e., without performing any kind of FPGA

program compilation. In conclusion, the proposed framework helps an FPGA user

solving a co-design problem a priori, without the tedious procedure of the heuristic

approach. Furthermore, we propose the FPGA-oriented code-generation toolbox-

LAFF. The main difference between SPLIT and LAFF is that LAFF is a general

purpose tool while SPLIT is restricted to splitting methods. On the other hand,

LAFF only supports code generation for FPGAs, while SPLIT supports different

embedded platforms as discussed in the previous chapter.
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minimize f (z)

subject to g(z) ≤ 0

MATLAB interface

Tailored C-code for FPGAs

RTL generation

FPGA

Problem parsing

Code generation

Xilinx tools

Deployment

LAFF

Figure 4.1 – Workflow for algorithm deployment on FPGA using LAFF.

4.1 LAFF: a Code Generation Toolbox

Overview of the toolbox

LAFF is a code generation toolbox that enables users to define a target algorithm

in a high-level language, MATLAB. The MATLAB program is then parsed and a

hardware-oriented C-program is generated for optimal performance. The generated

C-program is tailored for the High Level Synthesis (HLS) tool provided by Xilinx.

This concept is illustrated in Figure 4.1 for an optimization algorithm. A code

snippet for parsing the gradient projection algorithm is provided in Figure 4.2. Note

the difference in parsing between SPLIT (Figure 3.6) and LAFF (Figure 4.2).

The generated C-code from LAFF is customized for hardware implementation

because it exploits the concepts of pipelining, parallelism, efficient memory access,

loop-unrolling, loop-flattening and fixed-point as well as floating-point arithmetic.

Moreover, like SPLIT, the proposed toolbox supports the ProtoIP toolbox, which
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1 s e t t i n g s . d a t a t y p e = ’ f i x e d ’ ;

2 s e t t i n g s . i n t e g b i t s = 5 ;

3 s e t t i n g s . f r a c b i t s = 1 2 ;

4

5 %% i n i t i a l s e t u p

6 l a f f i n i t ( i n p u t s , o u t p u t s , s e t t i n g s ) ;

7 %% W r i t e v a r i a b l e s

8 l a f f w r i t e d a t a ( ’ I H ’ , I H , ’ r e a l ’ ) ;

9 %% c h o o s e p a r a l l e l i s m l e v e l

10 P A R r e q u e s t e d = 5 ;

11

12 % b e g i n f o r g r a d i e n t p r o j e c t i o n

13 l a f f f o r l o o p b e g i n ( ’ i t r ’ , ’ m a i n l o o p ’ ) ;

14 % copy v e c t o r

15 l a f f c o p y v e c t o r ( ’ z p r e v ’ , ’ z ’ , n ) ;

16 % m a t r i x v e c t o r

17 laff MV MAC ( I H , P A R r e q u e s t e d , ’ y ’ , ’ z ’ , [ ] ) ;

18 % v e c t o r s u b t r a c t i o n

19 l a f f v e c t o r s c a l e a d d ( ’ t ’ , ’ z ’ , ’ l f ’ , n , 1 , −1 ) ;

20 % p r o j e c t i o n on box

21 l a f f b o x c l i p p i n g ( ’ z ’ , ’ t ’ , n , l m i n , umax ) ;

22 % v e c t o r s c a l i n g and s u b t r a c t i o n

23 l a f f v e c t o r s c a l e a d d ( ’ y ’ , ’ z ’ , . . .

24 . . . ’ z p r e v ’ , n , (1+ b e t a ) , −b e t a ) ;

25 %end f o r a l g o r i t h m

26 l a f f f o r l o o p e n d ;

27

28 l a f f e n d ;

Figure 4.2 – Gradient projection parser of LAFF in MATLAB

facilitates the deployment of the generated code automatically on FPGAs without

studying Xilinx tools. As LAFF supports communication between MATLAB and

FPGAs, users can access and analyze results obtained from FPGAs in MATLAB.

In what follows, we explain how Matrix-Vector (MV) and vector manipulations are

implemented in LAFF as well as SPLIT for exploiting various FPGA features.

Vector manipulations

First we analyze operations with O (n) complexity namely vector addition and

product.

Element-wise vector multiplication and addition: Consider the following opera-

tion,

z = x � y + w (4.1.1)

where x, y , z, w ∈ Rn and � represents element-wise multiplication. In C pro-

gramming, this is implemented using a loop with n iterations. Each iteration of
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the loop involves three data-read operations, one scalar multiplication, one scalar

addition and a data-write operation, as illustrated in Figure 4.3a. The horizontal

axis represents the number of clock cycles required to execute these operations,

which are 2, 5, 4 and 1, respectively. The Loop Iteration Latency (LIL) is defined

as the number of clock cycles needed to execute one iteration of the loop, and in

this case is 12. The total number of clock cycles required to multiply and add n

elements is 12n, known as Loop Latency (LL). The overall latency can be reduced

by exploiting the concepts of pipelining and parallelism introduced in the following

paragraphs.

Pipelining enables loops to execute in a concurrent manner, meaning that the

execution of the next iteration starts before the previous one ends. The number

of clock cycles required to begin the next iteration before finishing the previous

iteration is called the Initiation Interval (II). In Figure 4.3b, we illustrate pipelining

with the II equal to one clock cycle. This is the best-case scenario and, as we shall

discuss later, whether it is possible to achieve this best-case depends on the type of

operation involved and the writing style of the program. For the operation in (4.1.1),

the number of clock cycles required to execute all iterations is 12 + n − 1, lower

than without pipelining - 12n. We note that extra resources needed for pipelining

do not scale with the number of iterations.

The execution time of the operation in (4.1.1) can be significantly reduced by

computing each iteration in parallel as illustrated in Figure 4.3c. The bottleneck

with parallelism is accessing more than two vector-elements simultaneously because

a maximum of two elements can be accessed from a single Random Access Memory

(RAM). However, more than two elements can be accessed if the vector is partitioned

and its elements are stored in different BRAM on an FPGA (For example Xilinx’s

Zedboard has 280 BRAMs of size 18Kb). When all the iterations are computed in

parallel, the latency is equal to the LIL, i.e., the number of clock cycles required

for executing one iteration. However, the better performance in terms of latency

comes with a drawback that the parallel execution needs more computational units,

and therefore more resources.

Vector inner product: Consider an inner product operation:

a = x>y , (4.1.2)
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0 2 4 6 8 10 12 14

x1, y1 t ← x1 × y1 z1 ← t + w1 z1

Multiply AddRead Wr

(a) Sequential Computation of operation given z = x � y + w (equation (4.1.1)).

0 2 4 6 8 10 12 14 16

x1, y1 t ← x1 × y1 z1 ← t + w1 z1

II
x2, y2 t ← x2 × y2 z2 ← t + w2 z2

(b) Reducing latency using pipelining for z = x � y + w (equation (4.1.1)) .

0 2 4 6 8 10 12 14

x1, y1 t ← x1 × y1 z1 ← t + w1 z1

x2, y2 q ← x2 × y2 z2 ← q + w2 z2

(c) Reducing latency using parallelism for z = x � y + w (equation (4.1.1)).

0 2 4 6 8 10 12 14 16

x1, y1 t1 ← x1 × y1 a← t1 + a a

II
x2, y2 t2 ← x2 × y2 a← t2 + a a

(d) Illustrating read-write dependency for a = x>y (equation (4.1.2)).

Figure 4.3 – Different scenarios for computations on FPGAs.

where x, y ∈ Rn and a is a scalar. In C programming, this is computed using a loop

of n iterations with the i-th iteration computing a = a+xi ∗yi . Figure 4.3d illustrates

that the first iteration finishes computing a at the end of the 11-th clock cycle which
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makes the second iteration wait1 until the 11-th clock cycle before reading and

writing scalar a, forcing the Initiation Interval equal to 5. This phenomena is known

as read-write dependency. The total number of clock cycles for computing pipelined

vector inner-products is (n − 1)II + LIL. LAFF/SPLIT detects and overcomes the

read-write dependency problem by storing the results in buffers, and for the case in

Figure 4.3d, the proposed toolboxes use five scalar buffers to remove read-write

dependency giving a latency of LIL + n − 1 clock cycles.

Remark 4.1.1. LAFF/SPLIT supports various other O(n) complex operations, e.g.,

evaluating different indicator functions, computing norms, etc. We will not go

into detail about its efficient implementation because it uses the same concepts

discussed in this subsection. �

Matrix-Vector multiplication

The Matrix-Vector (MV) multiplication has O (n2) computational and memory

complexity. Next, we explain how the proposed toolboxes trade-off between latency

and resources by varying the level of parallelism. Due to this feature, users are not

restricted to the minimum latency or minimum resource consumption solutions.

The MV multiplication can be computed as a sequence of vector inner products

(Figure 4.4). In the previous subsection, we discussed the data read-write challenges

of a vector inner product. Note that, unlike row-wise access, the column wise-access

of matrix entries does not have read-write dependencies and needs buffer-vectors

only when the number of rows is larger than the Initiation Interval. Therefore

we process MV column-wise. Furthermore, it improves the execution time using

parallelism.

LAFF/SPLIT improves the MV latency by exploiting parallelism. First, the matrix is

partitioned row-wise (Figure 4.4b and 4.5) and each partition is stored in different

BRAMs. For parallel execution, one element of each partition gets multiplied with

a corresponding vector-element in the same clock cycle. For the example given in

Figure 4.5, the first iteration computes a11 ∗ x1 and a31 ∗ x1 simultaneously and then

the second iteration computes a21 ∗ x1 and a41 ∗ x1 simultaneously.

The first advantage of the proposed procedure is that matrix and vector elements

are accessed from memory only once. For example, once x1 is accessed, x2 is not

retrieved until all multiplication related to x1 is finished–resulting in memory efficient

1Note that the result is erroneous if the second iteration reads scalar a before 12-th clock cycle.
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(a) Sequential Matrix-Vector multiplication.

(b) Parallel Matrix-Vector multiplication.

Figure 4.4 – Sequential versus parallel Matrix-Vector multiplication [68].

access. The second advantage is that there is no read-write dependency as long

as the number of rows of each partition is larger than the Initiation Interval. In

case the number of rows in each partition is less than the Initiation Interval, buffer

vectors (denoted as y 1 and y 2 in Figure 4.5) are introduced and the final result is

computed by adding them. Thus, MV in proposed toolboxes is computed in four

steps, as listed in Algorithm 4.1.1 and illustrated in Figure 4.4.

Remark 4.1.2. If partitions cannot be done in equal size then all but the last

partition has the same dimensions. �

Remark 4.1.3. Varying the number of partitions of each matrix allows obtaining

the Pareto-optimal curve for trading-off between the execution time and utilized

resources. �
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Figure 4.5 – A parallel MV implementation in LAFF and SPLIT.

Algorithm 4.1.1 Matrix Vector multiplication steps in LAFF

Step 1: Partition the matrix and create buffer vectors

Step 2: Set buffer vectors to zeros

Step 3: Compute partition-wise multiplication

Step 4: If buffer vectors are used then add them

to compute the final product

4.2 Estimating Latency and Resource Consumption

In this section we provide a framework to a priori estimate the latency and the

consumed resources for operations involved in splitting methods. Therefore, saving

efforts of HLS programmers/users from performing laborious and time-consuming

HLS synthesis. One of the advantages of the proposed framework is that it can

be easily generalized and applied to other algorithms besides splitting methods. In

what follows, we explain a proof of concept about the proposed framework. Based

on this proof of concept, we provide closed-form expressions for estimating latency

and resources for matrix-vector product and vector manipulations in Appendix 4.5.1

and Appendix 4.5.2 respectively.
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Estimating Latency

We utilize the following four ingredients to estimate the latency:

1. Deterministic execution time: An FPGA needs a fixed number of clock

cycles to perform various operations, e.g., scalar addition and multiplication,

executing conditional statements, copying, entering and exiting a loop, etc.

We find clock-cycles for these various operations and utilize them as a building-

blocks to estimate the latency required for a complex operations.

2. Latency required by a single loop execution: A pipelined single loop with

n iterations needs (n − 1)II+LIL clock cycles where II is the loop Initiation

Interval and LIL is the Loop Iteration Latency as explained in Section 4.1.1. If

the loop is completely parallelized, then it needs LIL clock cycles to compute

the task.

3. Latency required by nested loops execution: Nested loop latency is esti-

mated using individual loop latency recursively.

4. Latency required by sequential and parallel function executions: For a

sequential execution of functions, the total latency is the sum of the individual

functions/operations. For a parallel execution of functions, the total latency

is the latency of the function with maximum latency.

Using the above ingredients, the latency required for any algorithm can be calculated

as illustrated in Appendix 4.5.

Estimating DSP usage

DSPs are used to compute addition and multiplication. The Number of DSPs

required to compute a scalar addition and multiplication are 2 and 3, respectively.

Pipeling the loop does not lead to any extra DSP usage, while parallelizing with

factor m leads to m times more usage of DSP units. Therefore, we estimate the

DSP usage of an algorithm based on a number of scalar additions and multiplications

incorporating the level of parallelism.
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Latency of scalar operations

Latency of a single loop

Latency of a nested loop

Latency of a function

Latency of an algorithm

Figure 4.6 – Building blocks for hierarchical computation of latency.

Estimating BRAM usage

BRAM is used as a memory to store the variables. As discussed earlier, FPGAs

have a set of small RAM, called as BRAM. The number of BRAMs required to

store an array with n elements and m bits precision is

Rbram = ceil
( n ∗m

BRAM size

)
, (4.2.1)

where “ceil(· · · )” is the ceiling operation. The size of a single BRAM depends on

the FPGA manufacturer and model of the FPGA. When an array is partitioned,

each partition is stored in different BRAMs and the number of BRAMs required by

each partition is calculated using equation (4.2.1).

Estimating FF and LUT usage

FFs and LUTs are used for storing all the temporary variables, iteration counters,

and operations like compare, increment and conditional statements. Consequently,
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for the same C program, it is usual to get a different utilization of FFs and

LUTs depending on the HLS tools used, the version of the tool and the type

of a FPGA. Therefore, accurately predicting their usage is challenging. LAFF

estimates conservatively utilization of FFs and LUTs by incorporating the fact that

the majority of FF and LUT consumption comes from storing temporary variables

and for creating addition/multiplication units.

4.3 A Co-Design Problem for Splitting Methods

As we discussed in the previous chapters, the numerical operations involved for

splitting methods are matrix-vector multiplications, vector clipping and vector-

addition respectively. We provide closed-form formulas for these operations in

Appendix 4.5 using which we address the following three questions:

1. Finding minimum latency for a given resources: What is the least achiev-

able latency given limited resources and how to achieve that? This question

arises when MPC problem needs to be solved on a given hardware as quickly

as possible.

2. Finding required resources for a given latency: What resources are needed

for achieving the targeted latency? This problem is relevant for a real-time

application and helps designers to choose the type of FPGA needed for their

applications.

3. Finding the minimum achievable latency: What resources are needed to

achieve the least possible latency? Since this problem gives the best possible

latency, a designer can decide whether the algorithm is capable of achieving

the targeted latency. We remind the reader that it is not possible to achieve

arbitrarily small latency due to Amdahl’s law [87]
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Finding minimum latency for a given resources

minimize
Pi

∑
i

Li (Pi)

subject to
∑
i

Rdspi (Pi) ≤ DSPs available,∑
i

Rbrami (Pi) ≤ BRAMs available,∑
i

Rf fi (Pi) ≤ FFs available,∑
i

Rluti (Pi) ≤ LUTs available.

(4.3.1)

Let the predicted latency and resources for the i-th numerical operation for splitting

methods be Li (Pi), Rbrami (Pi), Rdspi (Pi) R
f f
i (Pi) and Rluti (Pi) where Pi denotes

the opted parallelism level. The solution of the integer optimization problem (4.3.1)

determines the parallelism level of each operation to achieve the least possible

latency given the resource constraints. Note that the solution can also be used for

finding the number of maximum possible iterations to execute an algorithm, given

constraints on resources and sampling time. We note that in the scenario where

more than one algorithm needs to be deployed and run in parallel on the same

FPGA, problem (4.3.1) takes the form of problem (4.3.2), where superscript j is

used to denote the algorithm index. Formulation (4.3.2) is useful for applications

where resources are shared amongst different applications and algorithms. One

example is surveillance based drones where a controller and image-processing units

potentially share the same resources. In such cases, we are interested in solving the

following problem:

minimize
P ji

∑
j

∑
i

Lji
(
P ji
)

subject to
∑
j

∑
i

Rj
dsp

i (Pi) ≤ DSPs available,∑
j

∑
i

Rj
bram

i (Pi) ≤ BRAMs available,∑
j

∑
i

Rj
f f

i (Pi) ≤ FFs available,∑
j

∑
i

Rj
lut

i (Pi) ≤ LUTs available.

(4.3.2)
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Ball-Plate System using ADMM

Finding required resources for a given latency

For real-time embedded applications, where latency as well resources have paramount

importance, we are interested in finding the least amount of resources required for

achieving the targeted latency. In such applications, resources are limited and can

not be overused due to various constraints, e.g., available power onboard or shared

resources. The following formulations can be used to solve such problems:

minimize
Pi

∑
i

(
Rdspi (Pi) + Rbrami (Pi) + Rluti (Pi) + Rf fi (Pi)

)
subject to

∑
i

Li (Pi) ≤ Target Latency.
(4.3.3)

Finding the minimum achievable latency

Next, we consider a problem to achieve the least latency assuming no constraints on

resources, i.e., solving problem (4.3.1) without constraints (see problem (4.3.4)).

When control decisions are needed to be taken as fast as possible, Solving prob-

lem (4.3.4) helps a designer finding the least latency and resources required

minimize
Pi

∑
i

Li (Pi) (4.3.4)

Remark 4.3.1. The techniques proposed in Section 4.2 and 4.3 are not restricted

to splitting methods and can be applied to any identification or control problem

targeting FPGAs. �

4.4 Numerical Examples: Solving an MPC Co-Design

Problem for a Ball-Plate System using ADMM

In this subsection, we consider controlling a ball and plate system using MPC of

structure given in equation (4.4.1). The detailed problem description and parameters

used can be found in [88]. The system has two states, one input and the prediction

horizon equal to 15. Box-constraints are imposed on the states and input. This
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leads to 45 optimization variables. The MPC problem is solved using Alternating

Direction Method of Multipliers (ADMM) described as Algorithm 1.2.3. Note that

the first step involves solving a linear system of equations with dimension 75. This is

achieved by precomputing the matrix inversion. The second step of Algorithm 1.2.3

is an indicator function on a box-constraints. The third step is computed using vector

multiplication and additions. In total, one matrix-multiplication, one box-clipping

and four vector multiplications and additions are involved.

minimize
xi ,ui

N−1∑
i=0

(
x>i Qxi + u>i Rui

)
subject to xi+1 = Axi + Bui , for i = 0, . . . , N − 1 ,

xi ∈ X , for i = 0, . . . , N ,

ui ∈ U , for i = 0, . . . , N − 1 ,

x0 = x̂ ,

(4.4.1)

where the vector xi ∈ Rnx represents states, ui ∈ Rnu is the input vector, the

matrix Q =

[
100 0

0 10

]
and R = 1 are penalty matrices on states and inputs

with appropriate dimensions. A =

[
1 0.01

0 1

]
∈ Rnx×nx is state transition matrix,

B =

[
−0.0004

−0.0701

]
∈ Rnx×nu is input matrix. The constraints on the states (X ) and

inputs (U) are box constraints. They are defined as X := [−0.2, 0.01]× [−0.1, 0.1]

and U := [−0.0524, 0.0524]. x̂ is an initial state and N is a prediction horizon.

We consider three Xilinx FPGAs as reported in Table 4.1. All the experiments are

performed using Vivado-HLS 2017.4 with target clock frequency of 100 MHz. The

aim is to find the minimum latency, while ensuring the algorithm can fit on the

given FPGA board by solving the optimization problem given in equation (4.3.1).

We first a priori estimate latency for all operations involved with pipelining enabled

and without parallelization (see Figure 4.7). It is clear that the matrix-vector

multiplication, the first step of Algorithm 1.2.3, is the computational bottleneck.

Thus, the goal is to find a priori, an allowed parallelization level for matrix-vector

product. We report the suggested level of parallelization found a priori in Table 4.1.

We want to remind the reader, that this was achieved without any sort of deployment,

thus avoiding time-consuming synthesizing procedure. The suggested parallelization
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Resources

level was then used for generating C-code using LAFF. The results obtained in

terms of resources and latency are reported in Table 4.1 and Figure 4.8. It is evident

that the estimates obtained a priori are very close to given by Vivado-HLS. We also

conclude that for Artix XC7A12 and XC7A35, the limiting factor is the number

of DSPs and for Spartan XC7S2S, limited LUTs availability prohibits from further

parallelization.

Resources Artix-7 Spartan-7 Artix-7

XC7A12 XC7S25 XC7A35

Suggested Parallel-level 1 8 15

Latency (clock cycles) 6172 1052 826

DSPs-Used 17 52 87

DSPs-Available 20 80 90

DSPs-% 85% 65% 96%

BRAMs-Used 23 24 22

BRAMs-Available 40 90 100

BRAMs-% 46% 26% 22%

FFs-Used 2870 7952 12014

FFs-Available 20000 29200 41600

FFs-% 14% 27% 28%

LUTs-Used 4856 6949 16603

LUTs-Available 10000 14600 20800

LUTs-% 48% 47% 79 %

Table 4.1 – Suggested parallelization level for different Xilinx FPGAs and consumed

resources by Vivado-HLS for the synthesized program.

4.5 Appendix: Closed-Form Formulas for Estimating

Latency and Resources

In this section, we provide closed-form formulas involving latency and resource

estimations for linear algebra operations involved in the numerical examples.
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Figure 4.7 – A priori finding latency bottle-neck using the proposed framework.

4.5.1 Formulas for Matrix-Vector Product

Latency

The number of clock cycles for the matrix-vector product is computed as follows.

L1 = Column Size× Part Size + LIL,

L2 = Acc Size× Part Size ∗ PAR + LIL,

L3 = ACC Size× Part Size + LIL,

L = L1 + L2 + L3,

where Column Size, PAR, Part Size, LII is the number of columns, the number of

partitions, the number of rows in each partitions and the Loop Iteration Latency

respectively. The ACC Size is determined based on the number of buffer vectors.

BRAM consumption

The BRAM consumption for matrix-vector product represented by N bits is the

following:

Rbram = PAR× ceil

(
Column Size× Part Size× N bits

BRAM size

)
.
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Resources

(a) Comparision of latency given by the proposed framework with Vivado-HLS.

(b) Comparision of resources given by the proposed framework with Vivado-HLS. The

maximum available resources represented by horizontal line.

Figure 4.8 – Solving co-design problem a priori for the ball and plate system.
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DSP Resource consumption

Rdsp = PAR× (add + mul) ,

where add and mul is required DSP for a scalar addition and a scalar multiplication

which is two and three respectively for floating point arithmetic. It gets multiplied

by PAR because we unroll the loop.

FF and LUT consumption

As discussed in the Section 4.2, it is challenging to precisely estimate these two

resources because all the temporary variables, iteration counters, operations like

compare, increment and logic gates are created using FFs and LUTs. Moreover, the

resource utilization can vary depending on the tools and type of an FPGA. Here, we

present closed-form formula which overestimates consumption of these resources.

Rf f = 700 (PAR + 1) .

Rlut = 900 (PAR + 1) .

4.5.2 Vector-Vector Operations

The main three vector operations involved for the numerical example are (i) copying

a vector, (ii) scaling and addition of two vectors, and (iii) an indicator function on

box-constraints. We list closed-form estimation formulas for these operations in

Table 4.2. Resources are estimated by multiplying the length of vector by factors

reported in Table 4.3.

Operation Definition Latency (clock cycles)

length + LIL

Copy Vector y = x L = Length + 2

Vector Scale Add z = αx + βy L = Length + 13

Projection on Box y ∈ [lb, ub] L = Length + 6

Table 4.2 – Definition and latency for different Vector operations.
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4.6. Conclusion

Operation BRAM DSP FF LUT

Copy Vector 0 0 30 100

Vector Scale Add 0 5 700 900

Projection on Box 0 0 370 700

Table 4.3 – Multiplying factors for resource estimation of different Vector operations.

4.6 Conclusion

This chapter presented LAFF, a code generating tool that enables obtaining

hardware-oriented C-code directly from MATLAB. This optimized C-code can

then be readily synthesized using Vivado-HLS, helping control engineers to quickly

deploy their algorithms on FPGAs. Low-level knowledge is not required to achieve an

efficient implementation. Moreover, a framework to estimate latency and consumed

resources a priori for High Level Synthesis (HLS) is presented. The proposed

framework can save time and energy as it does not require to synthesize the HLS

program. In our realistic numerical case study, it is illustrated that the estimation

is accurate. We find the parallelization level that achieves minimum latency while

fitting the problem into different FPGAs.
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5 Gaussian Processes Based Data-Driven

Optimization

Noli, obsecro, istum disturbare (Do not, I entreat you, disturb that

(sand)).

Archimedes

5.1 Introduction and Outline

Increased computational power, ubiquitous availability of computational resources

and improved algorithms have driven steady research interest in Real-Time Optimiza-

tion (RTO) of uncertain processes. The core objective of RTO is to ensure system

operation, while meeting quality specifications and guaranteeing safe operation.

Competitiveness can be seen as the ability to reach this objective with a minimal

time and investment’s cost. Due to plant-model mismatch, purely model-based

optimization is often incapable of reaching plant optimality. Even with accurate

models, external disturbances may shift the plant optimum, which may result in

infeasibility and/or suboptimality. Hence, in order to ensure optimal operation, RTO

methods adapt the model-based optimization problem using process measurements.

The task of optimizing the performance of uncertain processes in a run-to-run or

periodic fashion appears in several application contexts such as repeated robotic mo-

tion tasks [89], airborne wind energy systems [90, 91], or batch-process optimization

[92, 93]. Interestingly, run-to-run performance optimization is roughly of the same

complexity as optimizing the steady-state performance under plant-model mismatch,

modulo the larger number of decision variables in the former problem. Hence it is

not surprising that several methods have been proposed to tackle different problem

variants—this ranges from iterative learning in predictive control [94, 95], robust
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and stochastic optimization [96], and extremum seeking [97, 98], and modifier adap-

tation (MA) of process systems via RTO [99, 100] to Derivative-Free Optimization

(DFO) [101, 102], data-driven control [103] and machine learning [104]. Common

to all the methods mentioned is that they deal with plant-model mismatch and that

they rely on feedback (or on sampling of unknown functions in the case of DFO

and machine learning).

This part of the thesis combines three main elements: (i) RTO (i.e. using process

feedback to optimize system performance despite plant-model mismatch), (ii) a

derivative-free trust region framework (trading off exploration and performance

improvement), and (iii) Gaussian Processes (GPs) as approximators of unknown

plant-model mismatch functions. In what follows, we briefly review the state-of-the-

art literature related to these three elements in the context of process optimization.

RTO for process optimization

The most commonly used RTO method in industry is the two-step approach, which

consists of repeated parameter estimation and optimization [105–108]. However,

in the presence of structural plant-model mismatch, this approach tends not to

converge to the plant optimum [109, 110].

Modifier adaptation (MA) is an RTO method that uses measurements to correct

the cost and constraint functions of the optimization problem [109, 111]. The

main advantage of MA is that, under suitable assumptions, it reaches optimality

upon convergence. Its drawback is that it typically requires estimates of the plant

gradients. Several MA precursors and variants are documented in the literature,

including early works [112, 113] and more recent results [109, 111, 114, 115].

Moreover, the link between so-called modifier adaptation schemes and trust region

methods has been explored in [116]. A detailed overview of the state of the art is

given in [115].

While the basic MA scheme relies on first-order corrections, the use of second-order

modifiers has also been proposed [117]. However, accurate Hessian estimation from

noisy data is rather difficult in practice. Recently, it has been proposed to locally fit

a quadratic function to plant data, with the plant gradients being obtained from

this local fit [118, 119]. However, the method depends heavily on the quality of the

first-order modifiers, that is, it still requires gradient estimation.
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Introduction to DFO based trust-region method

The set of DFO trust-region methods comprises established tools to optimize

unknown—or expensive to evaluate—objectives [102]. The pivotal idea is the use

of a local surrogate model, built at each iteration by evaluating the objective at

a number of sample points within the trust region. Probabilistic derivative-free

trust-region methods rely on randomized surrogate models [120, 121]. The key

advantage of using a probabilistic method is its ability to capture uncertainties

efficiently. This is indeed useful for noisy objectives and/or inaccurate models.

However, the key bottleneck of deterministic and probabilistic derivative-free trust-

region methods alike is twofold: (i) ensuring the quality of the surrogate model, and

(ii) guaranteeing a sufficiently large domain of validity. The former can be achieved

via complicated procedures for sample-set maintenance [102], while the latter calls

for global surrogate models.

The convergence of trust-region methods relies on the accuracy of the surrogate

model within the trust region. Intuitively speaking, the convergence mechanism

increases the sampling of the unknown function and decreases the trust-region

radius until the local surrogate model is sufficiently accurate in zeroth- and first-

order compared to the unknown function. This accuracy, which is defined as “full

linearity”, helps move in a decent direction. Global convergence of derivative-free

trust-region methods for deterministic and stochastic version is described in [102]

and [120], respectively. For a constrained-optimization case, global convergence

is provided in [122] and is proved by convexifying constraints. In this context, the

main challenge is the construction of a surrogate model by performing as few plant

evaluations as possible. Hence, if full-linearity can be certified, a global surrogate

model is usually preferred over local ones.

Introduction to Machine learning based surrogate modeling

At the same time, there is a recent and steadily growing interest in machine learning

techniques in computer science as well as in systems and control. This spans

{supervised, reinforcement} learning and data-driven function approximations by

deep neural networks [123] and GP [124, 125]. There exists a body of literature

on using machine learning for optimization, e.g., [125, 126]. In some cases, it is

possible to guarantee convergence to the global minimum of unknown functions. In

the machine learning community, Gaussian-process (GP) regression is a popular tool

for estimating unknown functions [125, 127]. A GP is a probabilistic, non-parametric
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modeling technique that can be interpreted as the extension of multivariate normal

distribution to infinitely many random variables. The main strength of GP regression

is its ability, using very few parameters, to capture complex unknown functions.

Due to its simplicity and effectiveness, GP regression is gaining attention in the field

of control, optimization and dynamical systems. For selected application examples,

the reader is referred to [128] and references therein.

Since GPs are excellent candidates to be used as global surrogate models, it is

natural to combine them with derivative-free trust-region methods. The idea, which

dates back to Conn’s book [102], was analyzed empirically in [129]. However, to

the best of our knowledge, it is yet to be shown whether GP can be certified to

be fully linear, which is key for guaranteeing global convergence of derivative-free

trust-region methods.

Outline and contributions

Chapter 6 proposes to use machine learning via GP in the context of RTO. More

specifically, process measurements are used to recursively estimate the plant-model

mismatch via GP. Put differently, we propose a variant of MA, whereby the usual

modifiers are replaced by high-order regression functions. Note that deep machine

learning has been used in the context of MA before. In [130], a feedforward decision

maker was designed to anticipate the effect of disturbances. The feedforward

terms, which are constructed from historical data and deep machine learning, can

improve the performance of the MA scheme by providing a better initial point for

the iterative scheme. In contrast, this work proposes to use machine learning via

GP to estimate the plant-model mismatch, that is, the complete modifier terms.

Our first contribution includes: (i) a simple way of introducing GP regression in the

MA framework, (ii) an illustration that high-order corrections can help reach plant

optimality despite the presence of measurement noise.

In Chapter 7 we prove that GPs can satisfy the probabilistic fully-linearity property

for a derivative-free trust region framework and present a necessary procedure for

this certification. Furthermore, using a GP as a global surrogate model leads to

fewer trust-region iterations, implying fewer plant evaluations. This has a clear

advantage over local surrogate models and other empirical local model correction

methods as illustrated in the numerical section.

In Chapter 8 by proving that a GP can also satisfy the deterministic fully-linearity
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property, we extend the results. Next, we propose a novel derivative-free trust-region

method to address limitations of the standard DFO based trust-region method. The

first limitation of the standard DFO trust region methods is that they require to

build a local surrogate model and check its accuracy multiple times in each iteration,

which is not desirable due to the fact that it leads to additional function/plant

evaluations to estimate gradients. Furthermore, the traditional DFO trust-region

approaches require more accurate gradients with shrinking of the trust region radius,

which is difficult to obtain in the presence of noise. In contrast to this, we will

explicitly avoid building and performing multiple checks of accuracy of a surrogate

model in each trust region iteration by defining suitable criteria for adaptive model

improvement. Moreover, we assume the process-measurements are corrupted by

noise. Thus, the proposed algorithm reaches to a neighborhood of an optimal

solution comparatively in a smaller number of iterations. Finally, we present results

of experiments on a Solid Oxide Fuel Cell (SOFC) system in Chapter 9.

Next we introduce Gaussian Processes, which are used as surrogate model in this

work.

5.2 Using Gaussian Processes for Global Surrogate

Modeling

Unlike parametric identification techniques, where data are discarded after con-

structing the model, GPs are kernel-based methods that use all available data (or

a subset thereof) to learn a map between input and output data. We will briefly

introduce GPs and refer to [125, 131] for further details.

Here, we are interested in approximating the unknown function f : Rn → R using

a GP. In the RTO context, the function f (·) can represent the plant steady-state

map, the constraints or the cost. In this study, given a set of plant inputs and

outputs, we are interested in approximating the mismatch between the true plant

map and its available model.

Consider the unknown function f : Rn → R, z = f (u) + ν, where ν ∼ N (0, σ2).

Using p available input-output pairs, the input-output data generated by f (·) are

Ū = [u1, u2, . . . , up] ∈ Rn×p and z̄ = [z1, z2, . . . , zp]T ∈ Rp×1. We use GP regression

to establish a relationship between Ū and z̄ and obtain a corresponding conditional
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distribution of the output z for a new query input point u, that is,

z |Ū, z̄ , u ∼ N (zm(u), zv(u)) , (5.2.1)

where the mean and the variance of z are:

zm(u) = cT
(
C̄ + σ2I

)−1
z̄ , (5.2.2)

zv(u) = κ(u)− cT
(
C̄ + σ2I

)−1
c. (5.2.3)

Here, C̄ ∈ Rp×p is a covariance matrix with the elements C̄i j = c(ui , uj), where

c(u) = [c(u, u1), c(u, u2), . . . , c(u, up)]T ∈ Rp×1, κ(u) = c(u, u), where c(·, ·) is a

covariance function labeled kernel. One example of a kernel is the auto relevance

determination squared exponential covariance function defined as

c(ui , uj) = σ2
f exp

(
−

(ui − uj)T Λ (ui − uj)
2

)
, (5.2.4)

where Λ = diag(λ1, λ2, . . . , λn), The parameters θ = [σf , λ1:n] ∈ Rn+1 are the

hyperparameters that need to be learned/estimated from the data {Ū, z̄} during the

training phase. Since the covariance matrix C̄ and the covariance vector c depend

on the hyperparameters θ and the inputs Ū, one can also write C̄ as C̄(θ, Ū). To

this end, consider M(θ, Ū) := C̄(θ, Ū) + σ2I and the log-marginal likelihood

L(θ, Ū, z̄) = −
1

2
z̄TM(θ, Ū)−1z̄ −

1

2
log|M(θ, Ū)| −

n

2
log2π.

Given Ū and z̄ , the parameters are learned by maximizing the log-marginal likelihood,

θ∗ = argmax
θ

L(θ, Ū, z̄). (5.2.5)

The above maximization problem is nonlinear and nonconvex in nature, for which de-

terministic as well as stochastic solution methods can be used. Thorough discussions

on these methods can be found in Chapter 2.4.2 in [128] for details. Moreover, we

refer to Chapter 7 in [125] and Chapter 2 in [128] for details regarding convergence

properties and rate of convergence.

In summary, a GP provides z that has a normal distribution for a query point u. The

mean and covariance function indicate how similar u is with the training data using
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the hyperparmeters θ∗. The GP can be used to compute the output distribution

of z with more weight on the nearest inputs. This way, the predicted output z

is influenced more by the nearby input-output pairs obtained from the training

data set. This flexibility is the main advantage of GP compared to fixed structure

input-output relationship based on parametric methods. Hence, GP models are able

to capture complex nonlinear input-output relationships through the use of only a

few parameters.

A first advantage of using GPs, as discussed in the previous paragraph, is that GP

models are able to capture complex nonlinear input-output relationships through the

use of only a few parameters. A second advantage is that, generally, they offer an

interesting trade-off between exploration and exploitation [125]. A third advantage,

particularly in a DFO setting, is the fact that GP constitute global surrogate models.

Finally, the mismatch between an unknown function and a GP can be bounded (in

probabilistic as well as deterministic sense) in terms of the number of samples—a

key instrumental property that we will rely on for proving global convergence of the

derivative-free trust-region framework.

The main drawback of GP is that the computational complexity grows as a cubic

function of the number of data points N, that is, the computational complexity is

O(N3) for computing zv(u) in (5.2.3). However, in the context of RTO of process

systems, this is not a major challenge as most systems have a large settling time.
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fier Adaptation for Real-time Optimization

An equation means nothing to me unless it expresses a thought of God.

Srinivasan Ramanujan

The optimization of the plant steady-state can be stated by the following NLP1:

min
u

Φp(u) := φ
(
u, yp(u)

)
(6.0.1a)

subject to

Gp,i(u) := gi

(
u, yp(u)

)
≤ 0 i = 1, ..., ng, (6.0.1b)

u ∈ U . (6.0.1c)

Here u ∈ Rnu are the decision (or input) variables; yp ∈ Rny are the measured

output variables; φ: Rnu × Rny → R is the cost function to be minimized; gi :

Rnu × Rny → R, i = 1, ..., ng, is the set of process-dependent inequality constraint

functions; and U is typically determined by lower and upper bounds on the input

variables, U = {u ∈ Rnu : uL ≤ u ≤ uU}. The subscript (·)p indicates a quantity

related to the plant.

Usually, since the steady-state input-output map of the plant, u ∈ Rnu 7→ yp ∈ Rny ,

is not precisely known, one relies on an approximation given by an available model.

That is, instead of tackling Problem (6.0.1) directly, one solves the following

1The material of this chapter was written with Dr. Tafarel de Avila Ferreira during a collaborative

work.
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model-based optimization problem:

min
u

Φ(u) := φ
(
u, y(u)

)
(6.0.2a)

subject to

Gi(u) := gi

(
u, y(u)

)
≤ 0 i = 1, ..., ng, (6.0.2b)

u ∈ U . (6.0.2c)

Due to plant-model mismatch and disturbances, the solutions to Problems (6.0.1)

and (6.0.2) are usually different. RTO aims at reaching plant optimality by iteratively

updating the model using plant measurements.

Remark 6.0.1 (RTO for dynamic processes). At first glance, the problem setting

outline above might look restrictive as it focuses on optimizing steady-state perfor-

mance. However, whenever one aims to optimize the performance of a repeated

(batch) process or of a periodic process,

ẋ = fp(x, v), x(0) = x0

one will typically start with an optimal control problem, which after applying direct

discretization techniques can be cast in a mathematically equivalent form to (6.0.1)

and (6.0.2). In this process inputs v(t) will usually be described by a finite number

of parameters p1, . . . , pnp using suitable basis functions (v(t) =
∑np

i=1 piµi(t)).

Now, consider some appropriate discretization of the ODE and set u ← p1, . . . , pnp ,

we see that also repeated/periodic dynamic problems can be cast in the setting

sketched above. In other words, the problem setting sketched above is quite generic.

�

6.0.1 Modifier Adaptation

MA uses first-order corrections in order to match the necessary conditions of

optimality of the plant upon convergence [109]. Input-affine terms are added to the

cost and constraint functions of Problem (6.0.2). The optimal inputs are computed

80



6.1. Using Gaussian Processes for RTO

by solving the following modified optimization problem [109]:

u?k+1 = argmin
u

Φ(u) + (λΦ
k )ᵀu (6.0.3a)

subject to

Gi(u) + εi ,k + (λGi
k )ᵀ(u − uk) ≤ 0 i = 1, ..., ng, (6.0.3b)

u ∈ U , (6.0.3c)

with

εi ,k = Gp,i(uk)− Gi(uk), (6.0.3d)

(λΦ
k )ᵀ =

∂Φp

∂u
(uk)− ∂Φ

∂u
(uk), (6.0.3e)

(λGi
k )ᵀ =

∂Gp,i

∂u
(uk)− ∂Gi

∂u
(uk). (6.0.3f)

The RTO iteration is denoted by the subscript (·)k . The zeroth-order term εi ,k

represents the differences between the plant values and the predicted values of

the constraints at uk , while the first-order modifiers λΦ
k and λGi

k correspond to the

differences between the plant gradients and the gradients predicted by the model at

uk . The optimal input u?k+1 may be filtered, as proposed by [109]:

uk+1 = uk +K(u?k+1 − uk), (6.0.4)

where K = diag(k1, ..., knu) ∈ Rnu , ki ∈ (0, 1], i = 1, ..., nu.

The main advantage of modifier adaptation lies in its ability to reach a KKT point of

Problem (6.0.1) upon convergence. However, the estimation of the plant gradients
∂Φp

∂u
(uk) and ∂Gp,i

∂u
(uk) at each RTO iteration is quite challenging.

6.1 Using Gaussian Processes for RTO

The main limitation of standard MA stems from the need to estimate plant gradients.

Typically, finite-difference approximations are used to compute plant gradients,

that is, the gradients are estimated based on additional plant runs with imposed

perturbations. Note that this becomes impractical when the input dimension is large.

Moreover, standard MA uses only first-order corrections to update the cost and

constraint functions. Here, we propose an MA scheme that uses GP to overcome

these difficulties.
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The main idea consists in replacing the zeroth- and first-order corrections used in

Problem (6.0.3) by a description of the plant-model mismatch obtained from GP

regression. Subsequently, we will rely on recursively adapted GP. Hence, for the

sake of compact notation, given some unknown function f , we write

zm = (GP)f
(
u, Ū, z̄

)
to denote the GP mean zm (see equation 5.2.2) obtained for the input u using a

GP regression of f based on solving equation 5.2.5 subject to the input-output data

Ū ∈ Rn×p and z̄ ∈ Rp×1. Since the output data z̄ is an implicit function of the

input data Ū, that is z̄(Ū), one can write zm = (GP)f
(
u, Ū, z̄(Ū)

)
. For simplicity

of notation, we can drop the set of output data z̄ as an argument of (GP)f and

simply write:

zm = (GP)f
(
u, Ū

)
. (6.1.1)

While the evaluation zm = (GP)f
(
u, Ū

)
is computationally cheap for fixed Ū and z̄ ,

one has to repeatedly solve Problem (5.2.5) when the data Ū and z̄ change through

acquisition of more data.

To this end, and considering equation 6.1.1, we use

(GP)(jp−j)
(
u, Ū

)
, j ∈ {Φ, G1, . . . , Gng}, (6.1.2)

to denote the GP approximation to the plant-model mismatch of the cost and

constraints, that is, the approximation to Φp −Φ and Gp,i −Gi , i = 1, ..., ng, based

on the data Ū and z̄ (whereby the later argument is again dropped for simplicity).

The superscript (jp − j) serves to identify the unknown function.

6.1.1 Proposed RTO Scheme

We suggest an RTO scheme based on solving the following NLP:

u?k+1 = argmin
u

Φ(u) + (GP)
(Φp−Φ)
k (u, Ūk) (6.1.3a)

subject to

Gi(u) + (GP)
(Gp−G)
i ,k (u, Ūk) ≤ 0, i = 1, ..., ng, (6.1.3b)

u ∈ U , (6.1.3c)
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GP based MA

(6.1.3)

Input filter

(6.0.4)

Plant at

steady state

Data

selection

GP regression

computation(5.2.5)
Run delay

k ← k + 1

-

uk+1

Uk+1

(jp−j)k+1

(GP)
(jp−j)
k

jp(uk+1)

j(uk+1)

Figure 6.1 – GP-based MA at the k th iteration to estimate the plant-model mismatch,

with j ∈ {Φ, G1, . . . , Gng}.

where the difference between the plant and the model of the cost and constraint

functions are modeled by (GP)
(Φp−Φ)
k ∈ R and (GP)

(Gp−G)
i ,k ∈ R, i = 1, ..., ng,

respectively. The superscript (Φp −Φ) indicates that the difference is between the

plant and the model of the cost functions. Similarly, the superscript (Gp−G) points

to the difference between the plant and the model of the constraint functions. Ūk

is the available input set at the k th iteration.

We may also filter the optimal input u?k+1 as in Eq. (6.0.4). Fig. 6.1 depicts the

MA scheme that uses GP to estimate the plant-model mismatch.

It is important to note that, in contrast to standard MA that uses zeroth- and

first-order correction terms to update the optimization problem, the optimization

problem is modified here by adding GP regression functions to the cost and constraint

functions such that the cost and constraint functions of the modified optimization

Problem (6.1.3) locally match those of the plant. Furthermore, we use a smooth

squared exponential kernel so that, if Problem (6.0.2) admits an optimal solution,

so does Problem (6.1.3). Hence, upon convergence, if the GP regression functions

locally approximate the plant-model mismatch well, Problem (6.1.3) will converge

to a KKT point of the plant. In addition, in order to avoid overfitting, we take into

account a finite number of points within a certain radius from the current operating

point (see the data selection block in Fig. 6.1). This way, the range of dimension

of the covariance matrix used for building the GP functions does not grow with the
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size of the data and is comparatively very small as we shall see in the next section.

Note that the marginal likelihood optimization problems (5.2.5) corresponding to

each GP regression can be computed in parallel.

6.2 Case Study: Williams-Otto Reactor

In this section, we apply both standard MA and GP based MA to the Williams-Otto

reactor [132]. This reactor is an ideal continuous stirred-tank reactor with the three

reactions:

A + B
k1−→ C, (6.2.1)

C + B
k2−→ P + E, (6.2.2)

P + C
k3−→ G. (6.2.3)

The reactants A and B are fed with the mass flowrates FA and FB, respectively.

The desired products are P and E, whereas G is an undesired byproduct. The

intermediate product C is also produced. Since it is assumed that the reaction

scheme is not well understood, the following two reactions have been proposed for

the model [133]:

A + 2B
k∗1−→ P + E, (6.2.4)

A + B + P
k∗2−→ P + E. (6.2.5)

The material balance equations for the plant and the model are given in [134].

The objective consists in maximizing the steady-state profit, while considering

constraints on the concentrations of the reactant A and of the byproduct G [135].

The optimization problem is expressed mathematically as follows:

max
FB,TR

J = PPXPF + PEXEF − PAFA − PBFB + 200,

s.t. g1 = XA − 0.12 ≤ 0,

g2 = XG − 0.08 ≤ 0, (6.2.6)

FB ∈ [4, 7],

TR ∈ [70, 100],
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Table 6.1 – Species prices for different scenarios.

Prices PP PE PA PB

Scenario I 1043.38 20.92 79.23 118.34

Scenario II 1073.25 25.92 94.18 95

where F is the sum of the reactant mass flowrates, F = FA + FB. Xi is the

concentrations of Species i . FB and TR are the decision variables. The feed flowrate

of Component A is kept constant at FA = 1.82 kg/s.

We solve the aforementioned optimization problem for the two price scenarios given

in Table 6.1. In Scenario I, both composition constraints are active at the plant

optimum, whereas in Scenario II only the constraint on composition G is active at

the plant optimum. We start with Scenario I and switch to Scenario II after 55

iterations. Two optimization schemes are compared :

• Standard MA as per Eq. (6.0.3). We consider 5 initial operating points that

are used to estimate the initial values of the first-order modifiers via linear

interpolation. The plant and model gradients are estimated via forward finite

differences and used in Eqs. (6.0.3e) and (6.0.3f).

• GP based MA as per Eq. (6.1.3). We consider the same initial operating

points as with standard MA. These points are used to find the hyperparameters

θ∗ of the GP regression. At each RTO iteration, the newly available data are

used to update the mean, the covariance, and the hyperparameters.

We assume that the plant cost Φp and the concentrations XA and XG are subject

to noise with zero mean and standard deviations σΦ = 0.5 and σXA = σXG = 0.0005

as proposed by [109] and [135]. We choose the rather low filter gain of 0.4 for all

diagonal matrix elements so as to easily enforce convergence. In GP based MA,

in order to avoid overfitting, we reject the data to compute the GP regression

functions if more than 10 points lie in a radius of 1 kg/s for FB and 10◦C for TR.

Hence, the dimension of the covariance matrix computed ranges from 20×20 to

25×25. Throughout this chapter, we use ARD squared exponential kernel and

GPML toolbox [125].

Starting the RTO from the initial conservative feasible point u0 = [6.9, 86]ᵀ, simu-

lations are performed for 120 iterations. Figs. 6.2 and 6.3 show the performance of

standard MA, while Figs. 6.4 to 6.5 show that of GP based MA. The first 5 points
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in light blue correspond to the 5 initial operating points. The remaining points in

dark blue are the plant evaluations needed for both standard MA and GP based MA.

The dashed green line represents the plant optimal values for Scenarios I and II.

Upon comparing Figs. 6.2 to 6.5, for the same level of noise, one can see that

standard MA oscillates around the optimum, whereas GP based MA converges to

the plant optimum of Scenario I in 7 iterations, and in about 4 iterations from

Scenario I to Scenario II. The lower plot of Fig. 6.3 shows that the constrained

concentration XG is violated several times. Similarly, the cost function and inputs

are significantly less noisy for GP based MA than for standard MA. This behaviour

can be explained by the fact that GP based MA deals with noisy measurements

better than standard MA. In standard MA, the noise is handled by the choice of the

step length perturbation for the finite-difference approach, whereas in GP based

MA the noise is absorbed by the GP regression computed at each RTO iteration.

Figure 6.6 compares the performance of standard MA and GP based MA in the

input space for both Scenarios I and II. The pink dot corresponds to the plant

optimum for Scenario I, whereas the green dot indicates the plant optimum for

Scenario II. The solid red lines represent the constraints XA = 0.12 and XG =

0.08. The dashed red lines are the contour lines of the plant profit for Scenario

I, while the black lines represent the plant profit for Scenario II. Although it takes

about 4 to 7 iterations to reach the plant optimum with standard MA for both

scenarios, the constrained concentration XG is constantly violated because of noisy

measurements. In contrast, GP based MA takes about 3 to 5 iterations to reach

the plant optimum, with the constraints being hardly violated. Furthermore, the

inputs are significantly less noisy with GP based MA than with standard MA.

6.3 Conclusion

This chapter proposed a RTO scheme that combines MA and machine learning via

GP. The approach, which estimates the plant-model mismatch using GP regression

functions, has been illustrated by means of the real-time optimization of the Williams-

Otto reactor. Simulations have shown that the proposed approach performs well

despite the fair amount of noise added to the measurements. A comparison between

standard MA and GP based MA indicated that the latter clearly outperforms the

former in terms of noise attenuation.
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Figure 6.2 – Standard MA applied to the Williams-Otto reactor. Evolution of the

cost and of the inputs FB and TR for the plant. Dashed green line: plant optimal

values. Light blue line: initial operating points. Blue line: evolution of the cost and

inputs.
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Figure 6.3 – Standard MA. Evolution of the constrained concentrations XA and

XG for the plant. Dashed green line: plant optimal values. Light blue line: initial

operating points. Blue line: evolution of the concentrations.
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Figure 6.4 – GP based MA applied to the Williams-Otto reactor. Evolution of the

cost and of the inputs FB and TR for the plant. Dashed green line: plant optimal

values. Light blue line: initial operating points. Blue line: evolution of the cost and

inputs.
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Figure 6.5 – GP based MA. Evolution of the constrained concentrations XA and

XG for the plant. Dashed green line: plant optimal values. Light blue line: initial

operating points. Blue line: evolution of the concentrations.
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Figure 6.6 – Comparison of input trajectories with standard MA and GP based MA.

Pink dot: plant optimum of Scenario I. Light green dot: plant optimum of Scenario

II. Blue line: evolution of standard MA. Green line: evolution of GP based MA. Red

line: constrained composition bounds. Light blue line: initial operating points.
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7 Probabilistic Derivative-Free Trust Method

using Gaussian Processes

Information: the negative reciprocal value of probability.

Calude Shannon

In the previous chapter, we proposed a variant of Modifier Adaptation (MA) and

showed its superiority over a traditional MA scheme. However, our proposed

approach was heuristic. In this chapter we show that our proposed heuristic variant

combined with a probabilistic derivative-free trust region method has a global

convergence property. To that end, we show Gaussian processes (GPs) provide a

property of probabilistic fully-linear models.

7.1 From Real-Time Optimization to Derivative

Free Optimization

In the previous chapter we showed that while Gaussian Processes (GPs) inspired

modifier adaptation is more robust to noise and requires fewer iterations for con-

vergence, our proposed method was heuristic. In this chapter, we prove global

convergence of GP based surrogate models using a Derivative-Free trust-region

framework.

To the end of leveraging Derivative-Free Optimization (DFO) based trust region

methods, we convert the constrained optimization problems (6.0.1) and (6.0.2)

into unconstrained ones using penalty functions; see [55] for a general discussion
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and [136] for Real-Time Optimization (RTO) applications. Consider

f (u) = Φp(u) +

ng∑
i=1

ψi(Gi(u)) + ψU(u),

where ψj are appropriately chosen penalty functions. To account for Remark 6.0.1

in our later developments, we will henceforth adapt the notation and consider the

decision variable x ∈ Rnx instead of u ∈ Rnu . Hence, rewriting f from above in

terms of x ∈ Rnx , and without significant loss of generality, we replace (6.0.1) by

min
x∈Rnx

f (x), (7.1.1)

with the unknown objective f : Rnx → R and the decision variables x ∈ Rnx . A

solution to (7.1.1) can be computed using DFO by sampling the unknown function

f and building a surrogate model. The samples are subject to additive noise and

therefore their distribution can be written as:

z = f (x) + ν where ν ∼ N
(

0, σ2
)
. (7.1.2)

Surrogate models usually depend (implicitly or explicitly) on a—yet to be specified—

number of past data points,

Dk = {(xk−l−1, zk−l−1), . . . , (xk , zk)}, (7.1.3)

where z(k) is a realization of the random variable z at time instant k . Hence, by build-

ing the surrogate model m : Rnx × R(nx+1)×l → R, the solution to problem (7.1.1)

becomes

xk+1 = arg min
x∈Rnx

mk(x), (7.1.4)

where the shorthand mk(x) := m(x,Dk) is used.

Let x ∈ L2(D,P;Rnx ) denote random variables and x := x(ω) ∈ Rnx their realiza-

tions, where L2(D,P;Rnx ) is the underlying Hilbert space of random variables with

finite variance.

In what follows, at each iteration k, we use the GP mean as a surrogate model,

that is,

mk(x) := zm (x,Dk) , (7.1.5)

where the notation zm (x,Dk) highlights that, for fixed hyperparameters, zm from
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(5.2.2) takes x as argument—via c̄—and depends on the data set Dk–via c̄ and C̄.

If the considered function samples obtained via (7.1.2) are indeed subject to additive

noise, the data Dk will contain l samples that correspond to realizations of random

variables. Hence, the uncertainty surrounding the data Dk induces the probabilistic

nature of the surrogate model and, consequently, the model available at iteration k

can be regarded as mk : Rnx → L2(D,P;R). Conceptually, its realization can be

denoted as mk := mk (ω). This point of view leads naturally to probabilistic DFO

methods.

7.2 Derivative-Free Probabilistic Trust-Region

Methods

A standard version of probabilistic derivative-free trust-region method is summarized

in Algorithm 7.2.1, cf. [120, 121]. The main idea is to approximate the unknown

function via mk(x) within a certain neighborhood of xk (a.k.a. the trust region).

Whenever the surrogate model fails approximating the original problem, then the

trust region is shrunk and the process repeated. Next, we recall the main points of

the convergence analysis given in [121].

Assumption 7.2.1 (Differentiability of f [121]). The unknown function f has

bounded level sets and the gradient ∇f is Lipschitz continuous with constant Lg. �

Assumption 7.2.2 (Noise with finite variance [121]). The additive noise ν observed

while measuring f is drawn from a normal distribution with zero mean and finite

variance. �

For the remainder, we define B(x ; ∆) as the ball of radius ∆ centered at x ∈ Rn.

Furthermore, Ck denotes the set of functions on Rn with k continuous derivatives

and LCk denotes the set of functions in Ck such that the kth derivative is Lipschitz

continuous.

Definition 7.2.1 (κ fully-linear model [121]). Consider f satisfying Assump-

tion 7.2.1. Let κ = (κef , κeg, ν
m
1 ) be a given vector of constants and let ∆̄ > 0 be

given. A model m ∈ LC1 with Lipschitz constant νm1 is a κ fully-linear model of f

on B(x ; ∆) if for all ∆ < ∆̄ and s ∈ B(0; ∆),

|f (x + s)−m(x + s)| ≤ κef ∆2, and (7.2.1a)

‖∇f (x + s)−∇m(x + s)‖ ≤ κeg∆. (7.2.1b)

93



Chapter 7. Probabilistic Derivative-Free Trust Method using Gaussian

Processes

�

The above definition is key in the convergence analysis for the case of probabilistic

surrogate models. The main idea is to show that these models have good accuracy

with sufficiently high probability [120]. Since derivative-free trust-region algorithms

sample and collect data at each iteration, let FMk−1 denote the realization of events

during the first k − 1 iterations of the algorithm. Now, we are ready to define a

probabilistic κ fully-linear surrogate model.

Definition 7.2.2 (κ fully-linear model with probability α [121]). A sequence of

random models {mk} is κ fully linear with probability α on {B (xk ,∆k)} if the events

Sk = {mk is a κ fully-linear model of f on B (xk ,∆k)}

satisfy the condition P
(
Sk |FMk−1

)
≥ α for all k sufficiently large. �

Next, we introduce Algorithm 7.2.1. The main idea is to build a surrogate model

within the trust-region radius and use it to compute a minimizer. As long as the

objective decreases sufficiently, accept the step and increase the trust-region radius,

otherwise decrease the radius and reject the step. The challenge stems from the

probabilistic nature of the surrogate model, in particular from the fact that the con-

fidence in the model is probabilistic. This hinders increasing the trust-region radius

significantly. Hence, it is important to have a relationship between the probability α

(confidence in the surrogate model) and γinc/γdec (increment/decrement of the

radius). This relationship reads [121]:

α ≥ max

1

2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

] , 1−
1− γdec

2
(
γ2
inc − γdec

)
 . (7.2.2)

Remark 7.2.1. A careful look at Step 1 of Algorithm 7.2.1 reveals that we need

to build a κ fully-linear model only for sufficiently large k. This allows having a

relatively inaccurate model at the beginning, thereby avoiding unnecessary sampling

as long as there is sufficient improvement.

Theorem 7.2.1 (Global convergence [121]). If Assumptions 7.2.1-7.2.2 are satisfied,

and α is chosen to satisfy (7.2.2), then {‖∇f (xk)‖} converges in probability to

zero. That is, for all ε > 0, limk→∞ P [‖∇f (xk)‖ > ε] = 0. �
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Algorithm 7.2.1 Derivative-Free Trust-Region Method [121]

Data: Initial model m0, initial point x0, and constants 0 < γdec < 1 < γinc ,

0 < η < β < 1, 0 < ∆0

and α ∈ (0, 1) satisfying (7.2.2). Set k =0.

1. Model building: Build mk , a κ fully-linear model with probability αk on

B(xk ; ∆k), for some αk ∈ (0, 1) such that αk ≥ α for sufficiently large k .

2. Step calculation:

sk := arg min
s:‖s‖≤∆k

mk(xk + s) (7.2.3)

3. Compute model decrement:

(a) If mk(xk) − mk(xk + sk) < β min {∆k ,∆2
k} then xk+1 = xk ; ∆k+1 =

γdec∆k and go to Step 6.

(b) Else go to Step 4).

4. Estimate improvement after plant evaluation: Evaluate

ρk =
F 0
k − F

sk
k

mk(xk)−mk(xk + sk)
. (7.2.4)

5. Trust region and step update:

• If ρk ≥ η, then xk+1 = xk + sk and ∆k+1 = γinc∆k .

• If ρk < η, then xk+1 = xk and ∆k+1 = γdec∆k .

6. Setting index: k = k+1 and go to Step 1.

At this point a pivotal question arises: how to build a κ fully-linear surrogate model

with probability α? Details of building and certifying a probabilistic local surrogate

model at each iteration—mainly via linear and nonlinear interpolation/regression—

are given in [120, 121]. Here, we aim at reducing the number of expensive plant

evaluations by constructing a global instead of a local surrogate model. For that,

we will use a GP as the surrogate model. We will also show how to certify a GP as

a probabilistic fully-linear model. This is still an open question, although GP have

been used in a derivative-free trust-region framework [129, 137].
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7.3 Certifying Gaussian Processes as Probabilistic-

Fully Linear Model

We certify that GPs are probabilistic fully-linear models. We remind the reader that

we use the GP mean as the surrogate model, that is, m(x) := zm(x).

Definition 7.3.1 (Reproducing kernel Hilbert Space [125]). Let H be the Hilbert

space of real functions f defined on the index set X. Then, H is called a reproducing

kernel Hilbert space ( RKHS) endowed with an inner product 〈·, ·〉 (and norm

‖f ‖H =
√
〈f , f 〉H) if there exists a function c : X × X → R with the following

properties:

1. for every x , c(x, x ′) as a function of x ′ belongs to H, and

2. c has the reproducing property 〈f (·), c(·, x)〉H = f (x).

�

The aim is to show that (7.2.1a) and (7.2.1b) hold with probability at least α when

the GP mean is used as a surrogate model. For this, the following two properties

are assumed about the mismatch function h(x) := f (x)−m(x).

Assumption 7.3.1 (Bounded RKHS norm [138]).

The unknown function f (x) has a known bounded RKHS norm ζ under a known

kernel c , that is, ‖f ‖c ≤ ζ <∞. �

Assumption 7.3.2 (Lipschitzness of the mismatch function). The mismatch func-

tion h(x) := f (x) − m(x) has Lipschitz continuous gradient with constant γlh.

Furthermore, the sequence xk generated by applying Algorithm 7.2.1 satisfies

‖∇2h(xk)‖ ≤ κbhh <∞, that is, the mismatch function has a bounded Hessian. �

Assumption 7.3.2 is not very strong and is a consequence of Assumption 7.2.1:

the unknown function f (·) has Lipschitz continuous gradient with bounded Hessian.
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Note that most of the practically used kernels (e.g. Matern, squared exponential)

have Lipschitz continuous gradients [125]. Before deriving the main result, we first

state that the distance between an unknown function and the mean is bounded by

the GP variance with some probability 1− δ.

Lemma 7.3.1 (Probabilistic bound on a mismatch function [138]).

Let Assumption 7.3.1 holds, δ ∈ (0, 1), and assume measurements are corrupted by

uniformly bounded noise. It follows that P
{
|m(x)− f (x)| ≤

√
β(N, δ)σz(x, N)

}
≥

1− δ. �

Here,
√
β(N, δ) depends on the number of samples N, the probability δ and the

RKHS norm ‖f ‖c , see [138] for details. If the unknown function f is sampled from

a GP, one can compute β in closed form [139]. We note that for highlighting the

dependence of β and σz on the number of samples and the probability δ, we simply

write them as β(N, δ) and σz(x, N).

Assumption 7.3.3 (Decrease of
√
β(N, δ)σz(x, N)). For a given value of δ ∈ (0, 1)

and N ∈ N, it holds that lim
N→∞

√
β(N, δ)σz(x, N) = 0. �

Remark 7.3.1 (Complexity analysis for σz(x, N)). An analysis of how fast σz(x, N)

should decrease when f is sampled from GP is given in [139]. The same reference

also provides a complexity analysis when f belongs to RKHS and squared-exponential

kernels are used. �

Theorem 7.3.1 (GP is κ fully linear with probability α). Let Assumptions 7.3.1-

7.3.3 hold. If 0 < ∆ < 6
γlh

(κeg − 2κef − κbhh), then there exists a positive integer

N <∞ such that, after N sampling steps, a GP can be certified κ fully linear with

probability α.

Proof. Following Definition 7.2.2, the goal is to prove that equations (7.2.1a)

and (7.2.1b) hold with probability at least α.

Let us start with equation (7.2.1a) and consider any point within the trust region,

that is, x ∈ B(xk ,∆k). Increased sampling will validate the probability bound in

Lemma 7.3.1. Upon performing N plant evaluations and applying Algorithm 1

in [138] with α ≤ 1− δ, the following holds with probability α for a given κef and

∆:

|h(x)| = |m(x)− f (x)| ≤
√
β(N, δ)σz(x, N) ≤ κef ∆2, (7.3.1)
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which certifies equation (7.2.1a) with probability α.

Next we turn to equation (7.2.1b) and take any x, xs ∈ B(xk ,∆k) such that

xs = x + s. Taylor’s expansions give:

h(x + s) =h(x) + s>∇h(x) + s>∇2h(x)s +O(s3)

|s>∇h(x)| =|h(x + s)− h(x)− s>∇2h(x)s −O(s3)|
≤|h(x + s)|+ |h(x)|+ |s>∇2h(x)s|+ |O(s3)|

≤|h(x + s)|+ |h(x)|+ |s>∇2h(x)s|+
γlh
6
‖s‖3 ,

where the first inequality comes from norm properties and the second using Lemma

4.1.14 in [140]. Substituting s := ∇h(x)∆
‖∇h(x)‖ by following Lemma 4.7 in [141] gives,

∆‖∇h(x)‖ ≤|h(x + s)|+ |h(x)|+ ∆2‖∇2h(x)‖+
γlh
6

∆3

∆‖∇h(x)‖ ≤|h(x + s)|+ |h(x)|+ κbhh∆2 +
γlh
6

∆3.

Here, the last inequality arises because of Assumption 7.3.2. As shown in the first

part of this proof, one can guarantee that |h(x + s)|, |h(x)| ≤ κef ∆2 with at least

probability 1− δ. Hence, the following holds with with probability at least (1− δ)2:

∆‖∇h(x)‖ ≤2κef ∆2 + ∆2κbhh +
γlh
6

∆3

‖∇h(x)‖ ≤2κef ∆ + ∆κbhh +
γlh
6

∆2.

Choosing δ such that α ≤ (1− δ)2 and combining the above with Definition 7.2.2

and (7.2.1b), it remains to show that, for a given κeg, the following criterion can

be satisfied:

2κef ∆ + ∆κbhh +
γlh
6

∆2 ≤ κeg∆.

Since 0 < ∆ < 6
γlh

(κeg − 2κef − κbhh), the above inequality is satisfied. Hence,

equation (7.2.1b) holds with probability at least α, which concludes the proof.

Remark 7.3.2 (Computing β and finding maximum σz(x)).
√
β(N, δ) is not a

function of x . However, we need to determine the maximum of σz(x, N) over x

within the trust region. This problem has been tackled rigorously in the machine

learning community, see [138] for details. However, for our application, one need

not explicitly compute these quantities. Another way to look at it is that one can

always choose arbitrarily large κef and κeg such that (7.2.1a) and (7.2.1b) are
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satisfied with probability at least α. �

Remark 7.3.3 (Condition on ∆ in Theorem 7.3.1).

The condition on the trust-region radius ∆ in Theorem 7.3.1 does not limit/restrict

the algorithm significantly. The reason is that one can choose arbitrarily large values

of κ. Moreover, the trust-region radius almost surely goes to zero [Lemma 4 [121]].

Hence, for any positive κ, the condition on the trust region is almost surely satisfied.

�

Using GP in the framework of Algorithm 7.2.1 yields almost sure convergence.

Moreover, it has two main advantages: (i) since GP approximates unknown functions

globally, one does not need to sample after each trust-region iterations as opposed

to standard trust-region approaches, where n and (n+1)2

2
data points are required

for linear interpolation and nonlinear polynomial-based regression, respectively. This

saves a significant number of plant evaluations; (ii) from an implementation point

of view, there is no need to build a model at each trust-region iteration. This is

due to the fact that the GP mean converges to the exact function in the limit, as

per Lemma 7.3.1 and for αk > α for sufficiently large k . In fact, to implement the

algorithm after a failed iteration, one simply needs to sample (not necessarily in

the trust-region radius) a few points. Hence, the computation of β(N, δ) and of

the maximal variance σz(x, N) mentioned in the proof of Theorem 7.3.1 can be

avoided. This obviously reduces the computational burden.

7.4 Case study: Diketene-Pyrrole Reactor

We consider the run-to-run optimization of a semi-batch reactor with 4 reactions:

A + B
k1−→ C, 2B

k2−→ D, B
k3−→ E, and B + C

k4−→ F. The involved species are A:

pyrrole, B: diketene, C: 2-acetoacetyl pyyrole, D, dehyroacetic acid, E: oligomers,

F: undesired by-product. The material balance equations for the plant read [142]:

ċA = −k1cAcB −
F

V
cA,

ċB = −k1cAcB − 2k2c
2
B − k3cB − k4cBcc +

F

V

(
c inB − cB

)
,

ċC = k1cAcB − k4cBcC −
F

V
cC,

ċD = k2c
2
B −

F

V
cD,

V̇ = F. (7.4.1)
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Parameter values and initial conditions are given in [142]. To mimic plant-model

mismatch, it is assumed that the last two reactions are not known to exist, thereby

leading to the following reaction model: A + B
k1−→ C, 2B

k2−→ D.

We are interested in computing the feed profile of species B so as to maximize

the amount of the desired product C at final time, while maintaining the final

concentrations of B and D below specified values. The dynamic optimization

problem can be written mathematically as:

max
F (t)

J := cC(tf )V (tf )

s.t. model equations (7.4.1) with k3 = k4 = 0, (7.4.2)

cB(tf ) ≤ cmaxB , cD(tf ) ≤ cmaxD , 0 ≤ F (t) ≤ Fmax ,

with the final time tf = 250 min, Fmax = 2× 10−3 L min−1, cmaxB = 0.025 mol L−1

and cmaxD = 0.15 mol L−1.

As illustrated in [142], the optimal feed rate has three parts, namely, a first arc with

F (t) = Fmax , a singular arc with 0 ≤ F (t) ≤ Fmax , and a third arc with F (t) = 0.

Accordingly, the input can be parameterized using three decision variables, namely,

π := [tm, ts , F̄ ]T , where tm represents the switching time between the first and

second arcs, ts the switching time between the second and third arcs, and F̄ the

assumed constant feeding rate during the second arc. The terminal constraints are

active in the optimal solution [142]. Note that solving the dynamic optimization

problem using the plant model (i.e., with k3 = k4 = 0) gives qualitatively the

same optimal solution (3 arcs, 2 active terminal constraints). However, open-loop

application of this solution to the plant, although feasible, yields a much worse

performance, namely, Jol ≈ 0.3874 mol compared to Jopt ≈ 0.5079 mol. In this

study, RTO will be used to drive the plant from its model optimum Jol to the

true plant optimum Jopt without knowledge of the plant model and using as few

measurements as possible (each measurement corresponds to running a separate

batch). Furthermore, the plant measurements are assumed to be corrupted with

additive zero-mean Gaussian noise with 5% standard deviation.

Problem (7.4.2) can be reformulated as an unconstrained NLP as per equation 7.1.1

by (i) reformulating the dynamic optimization problem as a static optimization

problem as illustrated in Appendix A in [143], and (ii) incorporating the constraints

as a penalty term in the cost function. The parameters of Algorithm 7.2.1 are

η = 0.5, γdec = 0.5, θ = 5 × 10−5, γinc = 1.2, and ∆0 = 15. GP learns the
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Figure 7.1 – RTO using surrogate models to represent plant-model mismatch. With

GP, plant optimality is reached within 5 iterations. Linear regression using global

data (LR1) does not reach plant optimality, while the linear regression using local

data (LR2) exhibits oscillatory behavior and violates constraints. The plant optimum

is denoted as Jopt.

mismatch between the plant and model costs. It is trained using 5 random points

around the model optimum. For comparison with GP, we use a linear surrogate

model which is proven to be fully linear [102, Chapter 2]. Note that a quadratic

surrogate model would require at least 10 data points for this case study. We

implement linear regression in two ways: (i) by training the regression model with

all available data (denoted as LR1 in Figure 7.1), and (ii) by training the regression

model with the last 5 data points (denoted as LR2 in Figure 7.1). The algorithm

runs for 20 batches.

Figure 7.1 shows the performance of learning and optimization using GP and linear

regressors, starting at the model optimum. GP converges to plant optimality within

5 batches. In contrast, LR1 does not reach plant optimality because of tradeoff

between the different operating conditions that are included in the training set. On

the other hand, LR2 reaches the neighborhood of the optimum, but it violates

constraints and exhibits oscillatory behavior. This case study shows that a local

surrogate model needs more data points compared to GP and can only capture

efficiently local behavior. On the contrary, GP can deal with different operating

conditions and is robust to noise. GP reaches plant optimality using all together 10

data points (5 training points and 5 experimental runs). Note that building a local
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quadratic surrogate model would require 10 data points. Furthermore, we refer

to [142] for a variant of this case study considering various RTO-based techniques.

7.5 Conclusion

In this chapter, we presented a convergence certificate for stochastic derivative-free

trust-region methods based on Gaussian Processes. This work is the first to show

that GP are indeed probabilistic fully-linear models. This in turn allows inferring

global convergence of trust-region methods in an almost surely sense. We have

demonstrated the efficacy of GP as surrogate models, drawing upon repeated

open-loop optimal control of a chemical batch reaction process.
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8 A Novel Deterministic Derivative-Free

Trust-Region using Gaussian Processes

I believe that mathematical reality lies outside us, that our function is to

discover or observe it, and that the theorems which we prove, and which

we describe grandiloquently as our “creations,” are simply the notes of

our observations.

G. H. Hardy

Until now, we have shown that Gaussian Processes (GPs) can be certified as a

probabilistic fully-linear model and therefore, global convergence proofs of proba-

bilistic derivative-free trust-region methods hold true for GPs. In this chapter, we

first certify that GPs also satisfy a deterministic fully linear property. Consequently,

global convergence of various deterministic derivative-free trust-region methods

can also be applied to GPs. We then propose a novel deterministic derivative-free

trust-region method that addresses limitations of the standard trust-region methods.

We prove the proposed algorithm’s convergence to a neighborhood of an optimum.

8.1 Derivative-Free Trust-Region Methods

Our goal is to attain a local minimizer of (7.1.1) by iteratively solving and updating

the surrogate problem (7.1.4) as discussed in the previous chapter. The conceptual

idea of the surrogate model mk is to learn the unknown function f locally or globally

depending on the type of surrogate model used. Next, we present a derivative-free

trust region method whose standard version is summarized in Algorithm 8.1.1, cf.

[102, Chap. 10]. Like its probabilistic counterpart, a deterministic trust-region

method approximates the unknown function via mk(x) within a certain neighborhood

of xk (a.k.a. the trust region). Whenever the surrogate model fails to approximate
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Algorithm 8.1.1 Derivative Free Trust Region Method [102]

Data: Initital model m0, initial point x0, and constants 0 ≤ η0 ≤ η1, 0 < γdec <

1 < γinc , 0 < µ, εc .

1. Critical step: if ‖∇mk(xk)‖ < εc and either

• the model mk is not fully linear; or

• the trust region radius satisfies ∆k > µ‖∇mk(xk)‖,
then

call model improvement algorithm to make it fully linear and ∆k ≤ µ‖gk‖
end

2. Step calculation:

sk := arg min
s:‖s‖≤∆k

mk(xk + s) (8.1.1)

3. Estimate improvement after plant evaluation: Evaluate

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
(8.1.2)

4. Model improvement: If ρk < η1, then either certify that and the model

mk(x) is fully linear or then call model improvement algorithm so that the

model m(x) is a fully linear model.

5. Trust region update:

• if ρk ≥ η1 then
∆k+1 = [∆k ,min {γinc∆k ,∆max}] and xk+1 = xk + sk

end

• if ρk < η1 and mk is fully-linear then
∆k+1 = γdec∆k and xk+1 = xk + sk

end

• if ρk < η1 and mk is not fully-linear then
∆k+1 = ∆k and xk+1 = xk

end

the original problem, then the approximation is improved (i.e., additional data points

(xk , f (xk)) are collected and the model is updated) before the process is repeated.

We emphasize that deterministic derivative-free trust-region works with a fully-linear
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model (Definition 7.2.1) instead of probabilistic fully linear model (Definition 7.2.2).

Next we recall the main points of the convergence analysis given in [102]. Given a

set L(x0) = {x ∈ Rnx : f (x) ≤ f (x0)} and a closed ball B(x ; ∆max) with radius ∆max

centered at x , the set L̃(x0) is defined as

L̃(x0) =
⋃
B(x ; ∆max); where x ∈ L(x0). (8.1.3)

Assumption 8.1.1 (Differentiability of f [102]). The unknown function f : Rnx → R
is continuously differentiable with Lipschitz continuous gradient in an open domain

containing the set L̃(x0) for all x0 ∈ Rnx . �

Assumption 8.1.2 (Fully linear model [102]). Let M denote a set of models

M = {m : Rnx → R | m ∈ LC1}

There exists a model function m in M, with Lipschitz continuous gradient and

corresponding Lipschitz constant νm1 such that m can be certified as a fully linear

model. �

Assumption 8.1.3 (Model improvement algorithm [102]). Given the model class

M there exists a model-improvement algorithm, i.e. an algorithm that in a finite,

uniformly bounded (with respect to x and ∆) number of iterations either

• establishes that a given model m ∈M is fully linear on B(x ; ∆); or that

• constructs a model m̃ ∈M fully linear on B(x ; ∆). �

Assumption 8.1.4 (f bounded from below [102]). Assume that the unknown

function f is bounded from below on L(x0); that is, there exists a constant κ∗ such

that, for all x ∈ L(x0), f (x) ≥ κ∗. �

Assumption 8.1.5 (Bounded Hessian of m [102]). There exists a constant κbhm

such that, for all x generated by the respectively considered algorithm ‖∇2m(x)‖ ≤
κbhm holds. �

Theorem 8.1.1 (Global convergence [102]). Let Assumptions 8.1.1–8.1.5 hold.

The application of Algorithm 8.1.1 implies

lim
k→∞
‖∇f (xk)‖ = 0

�
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8.2 Certifying Gaussian Processes as Fully-Linear

Models

In this Section, we present a certificate for GP as a fully linear model. We remind

the reader that throughout this chapter we use the mean of GP as a surrogate

model:

m(x) := E (z(x)) . (8.2.1)

The following lemma, similar to Lemma 7.3.1, bounds the mismatch between the

mean of GPs and the unknown function in a deterministic manner.

Lemma 8.2.1. [Deterministic bound on mismatch between mean and an unknown

function [144]] Given Assumption 7.3.1 and bounded measurement noise, the

following holds

|zm(x)− f (x)| ≤ β0.5zv(x),

where zm(x) and zv(x) are defined in (5.2.2) and (5.2.3), respectively. �

Here, β0.5 depends on the number of samples, RKHS norm ‖f ‖c . See [144] for

details.

Remark 8.2.1. Lemma 7.3.1 and Lemma 8.2.1 bind the mismatch in a probabilistic

and a deterministic way respectively. For Lemma 7.3.1, the unknown function f (x)

belongs to a distribution of functions, while for Lemma 8.2.1, f (x) is a function

lying in a set whose elements have known bounded norm. The set of functions

fitting in the data is reduced in size with each new data point. �

Theorem 8.2.1. Let Assumptions 7.3.1-7.3.3 hold. If 0 < ∆ <
6
γlh

(κeg − 2κef − κbhh), then there exists a positive integer N < ∞ such that,

after N sampling steps, a GP can be certified to be a fully linear model.

Proof. This is straight forward adaptation of Proof for Theorem 7.3.1 when com-

bined with Lemma 8.2.1.

Remark 8.2.2. Although we certify GP as a fully linear model, our proof mechanism

can be extended to other machine-learning regression tools as well. In doing so,

there are two ingredients required:

• Assumption 7.3.2.

106



8.2. Certifying Gaussian Processes as Fully-Linear Models

• Bounded and known mismatch between an unknown function and a surrogate

models. This is already proved for RBF [145] and NN [146].

Therefore, our work can also be used to certify other machine learning based

surrogate models as fully linear model. �

8.2.1 Challenges with Derivative-Free Trust-Region Methods

In what follows, we discuss two challenges with Algorithm 8.1.1 because they

potentially lead to numerous evaluations of the unknown function f . In the context

of RTO, a high number of plant evaluations are undesired and expensive, if not

prohibitive.

C1 Noise sensitivity: The more the trust-region radius shrinks, the more accurate

zeroth and first-order evaluations are required by the fully-linear model. For

noisy measurements, this scenario is not realistic. Furthermore, in an RTO

setting, where each function evaluation means an application of xk to a

physical system, the first-order sensitivities are difficult to obtain from a rather

small number of usually noisy measurements.1

We will address this issue by proposing the notion of an ε-linear model. The

advantage of an ε-linear model is that it allows the gradients to be noisy.

Contrary to the requirement of fully linear models, we will utilize the fact

that as long as our current model mk(x) provides a descent direction of the

unknown function f (x), there is no need for a precise gradient estimation,

avoiding an excessive number of plant evaluations.

C2 Checking full linearity of the model frequently: Observe that Steps 1), 4)

and 5) of Algorithm 8.1.1 needs either fully-linear certification of the current

model mk(x) or a construction of a fully linear model. This requires additional

plant evaluations, which in the context of RTO implies experiments/input

applications on a real process.

We will address this challenge by proposing a novel algorithm that avoids

frequent certification of full linearity.

1The gradient of the plant can be estimated from measurements using data-driven techniques

[100].
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8.3 Proposed Algorithm: Derivative-Free Machine-

Learning based Trust-Region Method (DMT)

8.3.1 ε-Linear Models

We propose a class of ε-linear surrogate model for incorporating noisy gradients.

Definition 8.3.1 (ε-linear model). Consider a function f : Rn → R satisfying

Assumption 8.1.1. A model m ∈ M is called ε-linear on B(x ; ∆) if there exists

positive constants ε1, ε2, κef , κeg and νm1 such that for any x ∈ L(x0) and ∆ ∈
(0,∆max ] the following holds for all s ∈ B(0; ∆)

|f (x + s)−m(x + s)| ≤ ε1∆ + κef ∆2, (8.3.1a)

‖∇f (x + s)−∇m(x + s)‖ ≤ ε2 + κeg∆. (8.3.1b)

�

Comparing Definition 7.2.1 to Definition 8.3.1, notice that the latter is more general

as it allows error in gradient and function value evaluations via ε1 and ε2, which

refers to Challenge C1 discussed in Section 8.2.1.

Assumption 8.3.1 (Model improvement algorithm). Given the model classM there

exists a model-improvement algorithm, i.e. an algorithm that in a finite, uniformly

bounded (with respect to x and ∆) number of steps

• either establishes that a given model m ∈M is ε-linear on B(x ; ∆); or that

• computes a model m̃ ∈M ε-linear on B(x ; ∆).

�

Fundamentally, one has to ask at this point, which approaches to learning of

surrogate models comply with Definition 8.3.1 and Assumption 8.3.1. We will

discuss this later in Section 8.3.3, while next we turn towards a variant of Algorithm

relying on ε-linear models.

8.3.2 Proposed Algorithm

We now turn to the proposed method (Algorithms 8.3.1a, 8.3.1b and 8.3.1c).
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Algorithm 8.3.1a Derivative-free Machine learning based Trust region algorithm
(DMT)

Data: Initital model m0, initial point x0, and constants

0 < η1, β, ε1max , ε2max ,∆threshold , εgrad magnitude, 0 < γdec , γεdec < 1 < γinc , γεinc , and

εaccuracy ∈ (0,
(1−η1)εgrad magnitude

4
).

Result: Find a point xsol such that ∇‖f (xsol)‖ ≤ β

1. Critical step:

(a) if ‖∇mk(xk)‖ ≤ εgrad magnitude then

• set εki = εaccuracy , i = 1, 2

• Improve the model by sampling

end

(b) if ∆k < ∆threshold then

• εki = max {γεdecεki , εaccuracy} , i = 1, 2

• Improve the model by sampling

end

(c) if ‖∇mk(xk)‖ < 2νm1 ∆kεk2
or ‖∇mk(xk)‖(1− η1)− 4εk1

≤ 0 then
call Algorithm 8.3.1b

end

2. Step calculation: sk := arg min
s:‖s‖≤∆k

m(xk + s)

3. Estimate improvement after plant evaluation: ρk = f (xk+sk)−f (xk)
mk(xk+sk)−mk(xk)

4. Incorporate the plant evaluation: update the model mk with a new point

xk + sk

5. Trust region update: Apply Algorithm 8.3.1c for computing xk+1 and ∆k+1

6. Termination:

if εki ≤ εaccuracy , i = 1, 2 and ‖∇mk(xk)‖ ≤ εgrad magnitude then
xsol = x and terminate

else
k = k + 1 and go to Step 1

end
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Algorithm 8.3.1b Model improvement for small gradients.

Result:

Improved model mk(xk) such that either of the following holds true:

• ‖∇mk(xk)‖ ≥ 2νm1 ∆kεk2
and ‖∇mk(xk)‖(1− η1)− 4εk1

> 0

• εki ≤ εaccuracy , i = 1, 2 and ‖∇mk(xk)‖ ≤ εgrad magnitude

1. Improve the accuracy:

εki = max {γεdecεki , εaccuracy} , i = 1, 2

2. Reduce the trust region radius:

if ‖∇mk‖ < 2νm1 ∆kεk2
then

∆k = γdec∆k

end

3. Improve the model by sampling

4. Termination condition:

if either of the following holds true:

• ‖∇mk(xk)‖ ≥ 2νm1 ∆kεk2
and ‖∇mk(xk)‖(1− η1)− 4εk1

> 0 or

• εki ≤ εaccuracy , i = 1, 2 and ‖∇mk(xk)‖ ≤ εgrad magnitude
then

return mk(xk) and terminate

else
go to Step-1

end
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Algorithm 8.3.1c Trust region radius update.

Result:

Updated radius ∆k+1 and new-point xk+1 by accepting or rejecting the step.

• Case(i)- accepted model step:

if ρk ≥ η1 then

1. xk+1 = xk + sk

2. ∆k+1 = [∆k ,min {γinc∆k ,∆max}]
3. if ∆k+1 ≥ ∆threshold then

εki = εimax , i = 1, 2

end

end

• Case(ii)- rejected model step:

if ρk < η1 then

1. xk+1 = xk

2. ∆k+1 = γdec∆k

end
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As explained in Section 8.2.1, our goal is to keep moving in a descent direction

without frequently certifying the surrogate model. Consequently, we aim to avoid

unnecessary evaluations near the present iterate. We explain this by comparing with

Algorithm 8.1.1. Both algorithms differ in Steps 1, 4 and 5:

• Step 1: Algorithm 8.1.1 checks and certifies full-linearity, on the other hand

Algorithm 8.3.1a has three steps.

Step 1a and Step 1b: Once the trust region radius shrinks below some thresh-

old value (∆threshold) or the model gradient is below threshold (εgrad magnitude),

only then it improves the surrogate model.

Step 1c: This step guarantees that model accuracy is improved and trust-

region radius is decreased for moving towards the neighborhood of an optimum.

Essentially, Step 1 in Algorithm 8.3.1a acts like a “tuning knob” to trade-off

aggressive versus cautious exploration behavior. If the user prefers cautious

behavior like in the traditional approaches, then larger values of ∆threshold ,

εgrad magnitude, and γεdec and a smaller value for εaccuracy should be set. This

choice quickly triggers model and accuracy improvement, very similar to Step 1

of Algorithm 8.1.1. On the other hand, by setting smaller values of ∆threshold ,

εgrad magnitude, and γεdec and a larger value for εaccuracy leads to infrequent

calls of the model improvement part.

• Step 4: The only difference is that Algorithm 8.1.1 calls for model improve-

ment, while Algorithm 8.3.1a simply incorporated the new point and updates

the model.

• Step 5: When ρk ≥ η1: The iteration is successful and we reset the accuracy

(see Step 5, case (i) in Algorithm 8.3.1a). This essentially means that after a

model step is accepted, we do not need a very accurate model as long as the

current model provides a descent direction.

When ρk < η1: Unlike Algorithm 8.1.1, Algorithm 8.3.1a does not call

immediately for model improvement. Instead, it decreases the trust region

radius and it tries to continue without sampling.

To sum up, Algorithm 8.3.1a aims to call for model improvement only near a

local optimum point or when a surrogate model is extremely inaccurate. This

addresses Challenge C2 of (too) frequent checks for model accuracy mentioned in

Section 8.2.1. Another feature of the proposed work is that it allows the user to
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control how close to optimal the final solution shall be. This depends on εaccuracy .

Thus, for the same value of η1 and γdec , the proposed algorithm allows several

performance-speed-accuracy trade-offs which traditional approaches do not offer.

Remark 8.3.1. Note that, for the sake of readability, we have set the accuracies

ε1 and ε2 to be the same (Step 6 of Algorithm 8.3.1a). However, one can choose

them to be different. The same holds true for γεdec . �

Remark 8.3.2 (An intuitive explanation for the convergence). The following cases

are possible:

• The current point is not in the neighborhood of a local minimum:

The model gradient points to a descent direction and gives sufficient

decrease: This is the simplest case, and the algorithm moves to the new

point.

The model gradient points to an ascent direction or does not give a

sufficient decrease: In this case, we will have failed trust-region iterations.

This leads to shrinking of the trust-region radius ∆k . After ∆k is below some

threshold value ∆threshold , we reduce εk1
, εk2

, and thus we keep improving2 the

surrogate model accuracy until we find a descent direction.

• The current point is in the neighborhood of a local minimum: For this

case, we have two possibilities again- (i) accurate model gradient and (ii)

inaccurate model gradient.

Accurate gradient: In this case, the step size will be small or zero. Following

this, we make the model more accurate (see Step 1 Algorithm 8.3.1a).

Inaccurate gradient: If we move because of model inaccuracy, then this

leads to failed iterations (moving along ascent direction); consequently, reduces

the trust-region radius below ∆threshold . Hence, eventually this case triggers

model improvement (see Step 1 of Algorithm 8.3.1a). �

While the above has highlighted many appealing features of Algorithm 8.3.1a, now

we turn to convergence properties.

Theorem 8.3.1 (Termination in a finite number of iterations). Let Assumptions

8.1.1, 8.1.4–8.3.1 hold. Then Algorithm 8.3.1a terminates after a finite number of

2By “improvement” we mean to sample the plant i.e. take measurements from the system and

improve the surrogate model accuracy.
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iterations, i.e. after finitely many iterations it holds that εki ≤ εaccuracy , i = 1, 2 and

‖∇mk(xk)‖ ≤ εgrad magnitude.

Theorem 8.3.2 (Global convergence in a neighborhood of a first-order critical

point). Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. Then for any β > 0, Algorithm

8.3.1a terminates after a finite number of iterations with ‖∇f (x)‖ ≤ β.

The proofs for both results are given in the Section 8.5.

8.3.3 Constructing Gaussian Processes as ε-Linear Surrogate

Models

At this point the crucial question of how to certify ε-linearity of a given surrogate

model is addressed. First, it is important to note that any fully-linear model is

ε-linear as well. The ε-linear model allows one to sample from a larger trust region

compared to a fully linear model3. In [102], details of how to build a local surrogate

model—mainly via linear and nonlinear interpolation/regression—at each iteration

and how to certify full linearity are discussed. In principle, the same procedure can

be used to certify them as ε-linear.

In what follows, we provide a certificate for GPs to be an ε-linear model.

Theorem 8.3.3. Let Assumption 7.3.1 and 7.3.2 hold. If 2ε1 < ε2 then there exists

a positive integer N <∞ such that after N sampling steps, the GP is certified as

an ε-linear model.

Proof. See Section 8.5.

Remark 8.3.3. Since an ε-linear surrogate model incorporates a noisy gradient, it

enables using surrogate models capturing noise. See also Remark 8.2.2. �

8.4 Conclusions

In this chapter, we provided certificates for GPs to be fully- and ε-linear. We

proposed a novel algorithm that allows noisy measurement. The proposed algorithm

3Consider that the current trust region radius is ∆k and thus to satisfy full linearity, one needs to

sample all the points with in the radius ∆k . On the other hand, for ε-linear case one can sample

data from radius ∆k +min{k−1
eg εk2 , k

−1
ef εk1}. This helps to efficiently recycle past data points.
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avoids unnecessary plant evaluation and has gurantee to reach in the neighborhood

of a local optimum.

8.5 Appendix: Proofs

In Subsection 8.5.1, we show the convergence property of the proposed Algorithm

based on ε-linear model. We derive certification of GP as a surrogate model in

Subsection 8.5.2.

8.5.1 Convergence Properties of the Proposed Algorithm

First, we recall a technical lemma.

Lemma 8.5.1 ([121]). If the model mk(x) has a Lipschitz continuous gradient with

Lipschitz constant νm1 , then

mk (xk)−mk (xk + sk) ≥
‖∇mk(xk)‖

2
min

{
‖∇mk(xk)‖

2νm1
,∆k

}
for all sk computed from Step 2 Algorithm 8.3.1a.

Lemma 8.5.2 (Trust-region radius for a successful step). Given Assumption 8.1.1,

Definition 8.3.1 and let M be a class of ε-linear models. If

∆k ≤ min
{
‖∇mk(xk)‖

2νm1
,
‖∇mk(xk)‖(1−η1)−4εk1

4κef

}
,

then ρk ≥ η1 and Step 2 of Algorithm 8.3.1a is accepted.

Proof. Note that Step 1 of Algorithm 8.3.1a either terminates or guarantees

‖∇mk(xk)‖(1 − η1) − 4εk1
> 0. Now using the definition of ρk (Step 3, Algo-

rithm 8.3.1a),

ρk − 1 =
f (xk + sk)− f (xk)

mk(xk + sk)−mk(xk)
− 1

=
f (xk + sk)−mk(xk + sk)

m(xk + sk)−mk(xk)

−
f (xk)−mk(xk)

m(xk + sk)−mk(xk)
.
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Using norm properties, we obtain

|ρk − 1| ≤
∣∣∣∣ f (xk + sk)−mk(xk + sk)

m(xk + sk)−mk(xk)

∣∣∣∣
+

∣∣∣∣ f (xk)−mk(xk)

m(xk + sk)−mk(xk)

∣∣∣∣
Using Definition, 8.3.1 we obtain

|ρk − 1| ≤
εk1

∆k + κef ∆2
k

|m(xk + sk)−mk(xk)|

+
εk1

∆k + κef ∆2
k

|m(xk + sk)−mk(xk)| .

Next, we apply Lemma 8.5.1

|ρk − 1| ≤
εk1

∆k + κef ∆2
k

‖∇mk(xk)‖∆k
2

+
εk1

∆k + κef ∆2
k

‖∇mk(xk)‖∆k
2

=
4 (εk1

∆k + κef ∆2
k)

‖∇mk(xk)‖∆k

=
4 (εk1

+ κef ∆k)

‖∇mk(xk)‖

Substituting ∆k ≤
‖∇mk(xk)‖(1−η1)−4εk1

4κef
leads to |ρk − 1| < (1− η1), and therefore,

ρk > η1.

Now, we show that the trust-region radius for Algorithm 8.3.1a converges to zero.

The skeleton of the proof is the same as for Algorithm 8.1.1 (Lemma 10.9 [102]).

Observe that both Algorithms have the same trust-region management (see Step

5). The proof is different only due to Step 1, where Algorithm 8.1.1 ensures

‖∇mk(xk)‖ ≥ min {εc , µ−1∆k}, while Algorithm 8.3.1a ensures ‖∇mk(xk)‖ ≥
min { 4εk1

(1−η1)
, 2vm1 ∆skεsk 2

}. This way, the following proof is the straight adaptation

of Lemma 10.9 in [102].

Lemma 8.5.3. Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. For Algorithm 8.3.1a, if

k →∞, then ∆k = 0.

Proof. We consider three cases:

(i) Finite number of successful iterations

(ii) Infinite number of successful iterations
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(iii) Mix of successful and unsuccessful iterations

Case (i) Consider all the iterations after the last successful iteration. The only

possibility to increase the trust region radius is accepting a new point, i.e., when

Step 5 case (i) of Algorithm 8.3.1a is invoked. Notice that Algorithm 8.3.1b never

increases the ∆k . Since there are no more successful iterations, Step 5 case (i)

of Algorithm 8.3.1a is not invoked. This means that there are only unsuccessful

iterations reducing the trust-region radius, see Step 5 case (ii). Hence, ∆k is always

reduced and hence as per Step 5 case (ii) Algorithm 8.3.1a converges to zero.

Case (ii) Let S be the set of indexes of successful iterations (in this case infinite)

and sk ∈ S. When infinitely many successful iteration occur, then by definition Step

3 Algorithm 8.3.1a, ρsk ≥ η1 for a sufficiently large sk . Substituting for ρsk leads to

f (xsk )− f (xsk + dsk ) ≥ η1 [msk (xsk )−msk (xsk + dsk )] ,

( Next using Lemma 8.5.1 )

≥
‖∇msk (xsk )‖

2

min

{
‖∇msk (xsk )‖

2ν1

,∆sk

}

Due to Step 1 Algorithm 8.3.1a, we have ‖∇msk (xsk )‖ ≥ min { 4εsk 1

(1−η1)
, 2vm1 ∆skεsk 2

}.
Since the function f (x) is bounded from below and because all iterations are

successful, the left-hand side of the above inequality must go to zero. Therefore,

the right-hand side must be zero because it is non-negative. Note that εsk 2
and εsk 1

will never reach zero due to Step 6 of Algorithm 8.3.1a and Step 2 of Algorithm

8.3.1b. Thus, the only possibility for the right-hand side to be zero is when the

radius ∆sk goes to zero.

Case (iii) Mix of successful and unsuccessful iterations: Let k /∈ S be the index of

an iteration after the first successful iteration sk . Recall that the trust-region radius

can only be increased when the iteration is successful (Step 5 Algorithm 8.3.1a).

Therefore, ∆k ≤ γinc∆sk . In case (ii), we proved that as ∆sk → 0. Hence,

∆k → 0.

Remark 8.5.1. In the proof of Lemma 8.5.3, it seems paradoxical that if there

are infinitely many successful iterations, and if at each successful iteration, the

trust region radius is either increased or kept at ∆max (see step 5 case(i) in
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Algorithm 8.3.1a), then how is it possible that ∆sk goes to zero? The answer

lies in Step 1 Algorithm 8.3.1a, which ensures ‖∇msk (xsk )‖ ≥ 2vm1 ∆skεsk 2
by calling

Algorithm 8.3.1b. Note that the gradient decreases because f is bounded from below.

Therefore infinite number of successful iterations makes ‖∇msk (xsk )‖ decreasing

and consequently ∆sk . Thus, it is Step 2 of Algorithm 8.3.1b which leads ∆sk to go

to zero despite all successful iterations.

Lemma 8.5.4. Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. Algorithm 8.3.1b termi-

nates in a finite number of iterations.

Proof. We consider the following two cases:

(i) ‖∇mk(xk)‖ > εgrad magnitude

(ii) ‖∇mk(xk)‖ ≤ εgrad magnitude

Observe that there are two termination conditions (Step 4, Algorithm 8.3.1b).

We will use the first termination condition to prove the first case and the second

termination condition for the second case.

(i) ‖∇mk(xk)‖ > εgrad magnitude: We assume that the Algorithm never terminates,

hence, ‖∇mk‖ < 2νm1 ∆kεk2
. Since the trust-region radius is also decreasing (Step

2 Algorithm 8.3.1b), for large enough finite N, there exists ζ > 0 so that for all

k > N,

0 < 2νm1 ∆kεk2
≤ 2νm1 ζεk2

< ‖∇mk(xk)‖,

which contradicts the assumption.

Next, we need to show that 0 < εk1
< ‖∇mk(xk)‖(1−η1)

4
. By definition

εaccuracy ∈
{

0,
(1−η1)εgrad magnitude

4

}
,

(see input data of Algorithm 8.3.1a). Step 1 of Algorithm 8.3.1b ensures that in a

finite number of iterations 0 < εk1
≤ εaccuracy ,

εk1
≤ εaccuracy <

(1− η1)εgrad magnitude
4

<
‖∇mk(xk)‖(1− η1)

4
.

(ii) ‖∇mk(xk)‖ ≤ εgrad magnitude : We show that the second termination condition of

Step 4 Algorithm 8.3.1b is satisfied. Observe that the case condition ‖∇mk(xk)‖ ≤
εgrad magnitude holds by assumption.
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Because Step 1 always reduces εki , for exist N, so that for all k > N, εki ≤
εaccuracy , i = 1, 2.

Next, we prove that if the norm of the model-gradient is non-zero, then the

trust-region radius remains strictly positive.

Lemma 8.5.5. Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. For Algorithm 8.3.1a, if

there exists κ1 such that ‖∇mk(xk)‖ ≥ κ1 > 0 for all k, then there exists κ2 > 0

such that ∆k ≥ κ2.

Proof. We prove this by contradiction. Note that ∆k is reduced in Step 5 of 8.3.1a

and Step 2 of Algorithm 8.3.1b. We know from Lemma 8.5.4 that Algorithm 8.3.1b

terminates in a finite number of iteration, and therefore, the only possible way

for ∆k → 0 is that Algorithm 8.3.1a never terminates and due to Step 5 of

Algorithm 8.3.1a the radius ∆k is shrunk. However, if ‖∇mk(xk)‖ ≥ κ1 > 0 and

∆k = 0, then according to Lemma 8.5.2, the step is accepted. This contradicts our

assumption.

Lemma 8.5.6. Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. For Algorithm 8.3.1a,

there exists positive integers k,N <∞ such that ∆k < ∆threshold , ∀k ≥ N.

Proof. The result is a direct consequence of Lemma 8.5.3.

Lemma 8.5.7. Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. For Algorithm 8.3.1a,there

exist positive integers k,N < ∞ such that such that εk1
= εaccuracy , and εk2

=

εaccuracy∀k > N.

Proof. The result is a direct consequence of Lemma 8.5.3 and Step 1b of Algorithm

8.3.1a.

Proof of Theorem 8.3.1

We recall that Lemma 8.5.4 shows that Algorithm 8.3.1b terminates in a finite

number of iterations. So the only remaining possibility is that Algorithm 8.3.1a

never terminates. We use a contradiction for the proof.

Among the two necessary conditions for termination (see Step 6), the first ter-

mination condition is satisfied in a finite iterations due to Lemma 8.5.7. There-

fore, the only possibility for Algorithm 8.3.1a never terminates is ‖∇mk(xk)‖ >
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εgrad magnitude. In that case, it follows from Lemma 8.5.5 that there exists κ > 0

such that ∆ > κ > 0 for all the iterations. This, however, contradicts Lemma 8.5.3.

�

The following Corollary is a direct consequence of Theorem 8.3.1.

Corollary 8.5.1. Let Assumptions 8.1.1, 8.1.4–8.3.1 hold. For Algorithm 8.3.1a,

there exist positive integers k,N < ∞ such that ∀k > N, ‖∇mk(k)‖ ≤
εgrad magnitude.

Proof of Theorem 8.3.2

Using (8.3.1b) and norm properties, we can write

εk2
+ κeg∆k ≥ ‖∇f (xk)−∇mk(xk)‖ ≥ ‖∇f (xk)‖ − ‖∇mk(xk)‖. (8.5.1)

Moreover, we know from Theorem 8.3.1 that the algorithm terminates in a finite

number of iterations. Therefore, the termination condition εk2
≤ εaccuracy and

‖∇m(k)‖ ≤ εgrad magnitude are satisfied for k large enough. Substituting in 8.5.1,

‖∇f (xk)‖ ≤ ‖∇mk(xk)‖+ εaccuracy + κeg∆k

‖∇f (xk)‖ ≤ εgrad magnitude + εaccuracy + κeg∆k︸ ︷︷ ︸
β

.

This concludes the proof. �

Remark 8.5.2 (Arbitrarily close to the critical point). We observe that Lemma 8.5.3

gives ∆k → 0. Now, by arbitrarily reducing εgrad magnitude and εaccuracy , the gradient

‖∇f (xk)‖ can be made arbitrarily close to zero.

8.5.2 Certifying Gaussian Processes as ε-Linear Models

Proof for Theorem 8.3.3

Proof. We need to show that (8.3.1a) and (8.3.1b) hold.

We first consider for (8.3.1a). For a given ε1, εef , and ∆, we can find ζtmp > 0

such that ζtmp ≤ ε1∆ + εef ∆2. Since with the increasing sampling the bound of
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Lemma 7.3.1 concludes, the following holds true:

√
βzv(x) ≤ ζtmp ≤ ε1∆ + εef ∆2.

In this way, one can certify (8.3.1a).

Next we turn to (8.3.1b). For ease of notation we define h(x) = f (x)−m(x). Now

using Taylor expansion,

h(x + s) =h(x) + s>∇h(x) + s>∇2h(x)s +O(s3)

|s>∇h(x)| =|h(x + s)− h(x)− s>∇2h(x)s −O(s3)|
≤|h(x + s)|+ |h(x)|+ |s>∇2h(x)s|+ |O(s3)|

≤|h(x + s)|+ |h(x)|+ |s>∇2h(x)s|+
γlh
6
‖s‖3 ,

where the first inequality comes from the norm properties and the second using

Lemma 4.1.14 from [140]. Substituting s = ∇h(x)∆
‖∇h(x)‖ by following Lemma 4.7 in

[141] gives,

∆‖∇h(x)‖ ≤|h(x + s)|+ |h(x)|+ ∆2‖∇2h(x)‖+
γlh
6

∆3

∆‖∇h(x)‖ ≤|h(x + s)|+ |h(x)|+ ∆2κbhh +
γlh
6

∆3.

Here the last inequality arises by applying Assumption 7.3.2. By model improvement,

we can guarantee that |h(x + s)|, |h(x)| ≤ ε1∆ + κef ∆2,

∆‖∇h(x)‖ ≤2ε1∆ + 2κef ∆2 + ∆2κbhh +
γlh
6

∆3

‖∇h(x)‖ ≤2ε1 + 2κef ∆ + ∆κbhh +
γlh
6

∆2.

Combining the above with definition of perturbed linear model 8.3.1b, we need to

show that for a given ε2 and κeg the following criterion can be satisfied:
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2ε1 + 2κef ∆ + ∆κbhh +
γlh
6

∆2 ≤ ε2 + κeg∆

For any 2ε1 < ε2, ∃∆ > 0 such that the above equality is satisfied. Thus one can

certify GPs as an ε-linear models.

122



9 Experimental Results - Gaussian Process

Based Real-time Optimization of Solid-

Oxide Fuel Cells

Science is built up of facts, as a house is built of stones; but an

accumulation of facts is no more a science than a heap of stones is a

house.”

Henri Poincaré

9.1 Introduction

Renewable energy generation is the need of the hour due to climate change and

global warming. Fuel cell technologies are competitive alternatives because a

fuel cell system is capable of producing electricity 50% cheaper than the current

market prices reaching efficiencies of about 60% at 0.3 W/cm2 [147]. For safe

and sustainable operations, it is crucial that fuel-cells adhere to safe operating

conditions, while achieving the maximum efficiency for a changing power demand.

Although a plethora of works have modeled Solid-Oxide Fuel Cell (SOFC) systems,

plant-model mismatch, degradation, and disturbances prohibits them from reaching

optimal operating conditions. For this reason, data-driven optimization methods

become an appealing candidate for dealing with these challenges.

The experimental set-up in this study consists of an SOFC short-stack developed by

SOLIDpower, a pre-reformer and two electrical heaters as illustrated in Figure 9.1.

All the mentioned elements are assembled inside of a high-temperature furnace at

780◦C. The degraded stack is at the end of its lifetime and is composed of six planar

anode-supported cells that have an active area of 80 cm2. An end-of-life system

has purposefully been selected as it has an I-V (current-voltage characteristic curve)

curve steeper and its cell potential is significantly lower, consequently, a shortened
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Figure 9.1 – SOFC Flowsheet. The blue and red variables represent inputs and

outputs, respectively.

operating constraint window. Under those circumstances, this system is more

difficult to be operated from a practical point of view. The cells are concatenated

vertically and compressed between a gas-diffusion layer and metallic interconnector

plates. The cathode chambers, which allow operating temperatures of 650◦C

to 850◦C, are made of (La,Sr)(Co, Fe)O3, while the anode consists of Ni-YSZ

(nickel/yttriumstabilized-zirconia). The electrolyte, which is a thin barrier layer,

consists of YSZ and CGO (Gadolinium-doped ceria).

The purpose of the pre-reformer in these types of setups is to convert natural gas

(methane) and steam into syngas, which is a mixture of gases primarily composed of

hydrogen and carbon monoxide. In this study, the methane is partially reformed in

the pre-reformer and the remaining fuel is reformed in the stack. The pre-reformer

is a shell-and-tube reactor whose operating temperature ranges from 400◦C to

500◦C in order to ensure partial fuel reformation in the pre-reforming. This is due

to the fact that fuel reforming is a highly endothermic process and does not allow

the stack temperature to reach very high values, which can happen as the reaction

that enables electricity generation is exothermic. .

The stack mainly performs two tasks: internal reforming, that is, converting unre-
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Figure 9.2 – Scheme of a solid oxide fuel cell [148].

acted methane into hydrogen and generating electricity due to an electrochemical

reaction (Figure 9.2). The set-up under consideration has 6 fuel-cells assembled in

the stack. In order to achieve the desired voltage, the stack is polarized using an

exogenous current. The current ionizes hydrogen (H2) and oxygen (O2), and due

to electrochemical reaction power and heat is produced. The produced power is

quantified as Pel = 6UcellI. As mentioned earlier, the stack under consideration is

degraded and at the end of its life.

Inputs and Constraints: In this work, we consider three inputs: Methane flow-rate

(qCH4
), air flowrate (qair), and current (I). The constraints are listed in Table 9.1. We

define fuel utilization (ν) as the ratio between I and qCH4
. The Ratio between qair and

qCH4
is called as air-excess ratio (λair) [149, 150]. The minimum cell voltage (Ucell)

is set to prevent the system from further degradation. To avoid excess heating, qCH4

and I are constrained. The fuel utilization ν is bounded conservatively to 0.75 for

preventing fuel starvation. The constraint on λair prohibits steep thermal gradients.

Temperatures constraints (Tfuel, Tair-out, Tair-diff) are set for avoiding material damage

and mechanical stress to the system, where Tair-diff is the temperature difference

between the incoming and outgoing air temperature.

For any electric power (Pel), our objective is to maximize efficiency (ηel) defined as:

125



Chapter 9. Experimental Results - Gaussian Process Based Real-time

Optimization of Solid-Oxide Fuel Cells

Constraint Lower bound Upper bound

I [A] 0 50

qCH4
[L.min−1] 0.144 0.900

qair [L.min−1] 15 50

λair [-] 4 -

ν [-] - 0.75

Ucell [V] 0.7 -

Tair-out [◦C] 680 800

Tfuel [◦C] 680 800

Tair-diff [ ◦C] - 100

Table 9.1 – Operational constraints of SOFC system.

ηel =
Pel

qCH4
LHVCH4

, (9.1.1)

where LHVCH4 is lower heating value of methane and is a constant. We also include

the cost for inlet air (δair ∝ q2
air) [151] and Therefore, the optimization problem is

formulated as:

max
u

Φ(u) := ηeffic − δair

subject to

Pel(u) =P Sel ,

0 ≤I ≤ 50[A],

0.144 ≤qCH4
≤ 0.9[L.min−1],

15 ≤qair ≤ 50[L.min−1],

λair(u) ≥4,

ν(u) ≤0.75,

Ucell(u) ≥0.7[V],

680 ≤Tair-out(u) ≤ 800[ ◦C],

680 ≤Tfuel(u) ≤ 800[ ◦C],

Tair-diff(u) ≤100[ ◦C],

(9.1.2)

where u = [I, qCH4
, qair] and P Sel is the setpoint for the power demand.
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9.2 Learning Plant-Model Mismatch using Gaussian

Processes

We aim to use formulation (6.1.3) to learn the plant-model mismatch using the

mean of a Gaussian process (GP). To this end, we use the model proposed in [150].

The model is a rather simple lumped model that encompasses the chemical reactions,

and the mass and energy balances. The data is collected every 15seconds.

We learn four output quantities (thus four GPs): Ucell, Tfuel, Tair-out, and Tair-diff.

Since, the model cannot provide the fuel inlet temperature, we learn the difference

in inlet-outlet fuel temperature (Tair-diff) based on measurements only. We train

GPs using 12 data points listed in Table 9.3. Observe that most of the points

are in a conservative-region, consequently, with rather low efficiency. The last

point represents the application of the model optimum inputs at 100W to the

fuel-cell system. We provide plant-model mismatch values used for GP training in

Table 9.2. Throughout this chapter, we use ARD squared exponential kernel and

GPML toolbox [125]. We do not need to learn a GP for Pel as Pel is computed

based Ucell and I, which is an input.

Ucell Tfuel Tair-in Tair-diff

[V] [ ◦C] [ ◦C] [ ◦C]

0.0115 -9.1911 6.2949 11.9700

0.0421 0.3161 9.5109 9.7400

-0.0153 -14.6000 4.4822 12.8300

0.0083 -24.4761 -0.4344 13.6700

0.0642 -9.4020 4.2882 9.6400

0.1323 1.2222 7.3288 8.5117

0.0684 -4.9394 7.3885 10.6213

0.0392 -27.0135 -1.4172 14.6544

-0.0237 -20.6120 2.2518 15.8117

0.1076 4.1172 9.0314 8.8191

-0.0044 -14.0413 6.3870 14.6972

0.0763 0.0957 8.6444 9.5320

Table 9.2 – Plant-Model mismatch for training data given in Table 9.3.
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Global Surrogate Model

9.3 Experiment 1: Real-Time Optimization using

Gaussian Processes as a Global Surrogate Model

In this experiment, we consider the formulation given in (6.1.3). We consider the

following three electrical power setpoints:

Pel =


100 W

130 W

70 W

We apply Algorithm 8.3.1a without incorporating constraints in a penalty function,

i.e. we solve the constrained problem. This was the chosen approach because (i)

as shown in Figure 7.1, the penalty functions can violate the constraints. Since the

system was significantly degraded, meeting constraints was a priority. (ii) Usually,

the optimum of SOFC systems tend to be at the intersection of active constraints.

Therefore, barrier constraints may not let the system reach the optimum.

We begin the experiment by applying the model optimum at 100 W to the plant

(Figure 9.3). It can be observed that the upper bound of the fuel utilization is

reached at the first iteration. The optimizer pushes the system to reach high values

of ν so as to increase the system efficiency. Although the data used to learn the

GPs are quite conservative in terms of efficiency, the system reaches 103 W in

the first iteration and 101 W in the second. The efficiency of the degraded cell is

close to 55%. Even though, Ucell is noisy, GPs are robust and drive the plant to the

preset power of 100 W.

When the power setpoint is changed to 130 W, the inputs given by the first RTO

iteration already delivers 130 W with 49% efficiency. Ucell hits the constraints and

consequently prohibits ν from reaching its maximum. The change in power setpoint

to 70 W also is achieved within one or two iterations. The “dip” on the system

efficiency during the transition between electrical power setpoints are due to the

fact that inputs are consecutively applied in order to not violate constraints on ν

and λair. Note that we wait for the SOFC system to reach the steady state before

applying the next input. In addition, the RTO iteration frequency changes according

to the time the system takes to settle.
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We reach a neighborhood of all tested electrical power setpoints in one to two

iterations. For this specific setup, the standard steady-state RTO method takes

3 to 4 iterations to reach plant optimum, and an input filter equal to 0.6 (60%

filtered) is applied [150]. Input filtering is commonly used in standard RTO so

as to avoid constraint violation. However, input filtering was not applied for the

GP-based RTO approach as it inherently has more information from the system due

to plant data collection and it relies on global surrogate models. The advantage of

GP-based RTO over standard RTO approaches is the fact that the former performs

higher order corrections of the constraint and objective functions, whereas the latter

makes zeroth- and first-order corrections.
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Global Surrogate Model

(a) Real-time optimization using Gaussian processes: cell voltage, cathod temperature,

anode temperature, current, methane, and air flowrates vs. time.

(b) Real-time optimization using Gaussian processes: efficiency, power, fuel utilization,

and air-excess ratio vs. time.

Figure 9.3 – Real-time optimization using Gaussian processes as a global surrogate

model.
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9.4 Experiment 2: A Variant of Modifier Adapta-

tion Technique using Gradients of Gaussian Pro-

cesses

In this experiment, we propose and test a variant of a Modifier Adaptation (MA)

scheme. We perform the second experiment according to formulation (6.0.3).

To this end, zeroth- and first-order modifiers ε and λ are computed as per equa-

tions (6.0.3d), (6.0.3e) and (6.0.3f). In the RTO settings, generally, plant gradients

are computed using finite-difference method, and hence perturbing the plant. The

settling time of the plant is in the range of 30 minutes to 1.5 hours. Therefore,

computing plant gradients experimentally should be avoided.

Our idea is to compute the first-order modifiers analytically using the gradient of the

GP-mean. This is due to the fact that the GP learns the mismatch between the plant

and the model, see (6.1.2). In this way, we estimate the plant gradient experimentally

without having to perturb each input separately. Therefore, computing the gradient

of (6.1.2) gives us modifiers. In this experiment, we consider the following two

electrical power setpoints:

Pel =

{
100 W

70 W

Observe that modifiers (6.0.3d). (6.0.3e) and (6.0.3f) are computed at the current

point. Furthermore, only the zeroth and the first-order information of the GP is

being used. This limits the information of GPs to be local. Therefore, we expect

a local surrogate model type behavior and that is indeed the case, see Figure 9.4.

We again start the experiment by applying the model optimum at 100 W to the

plant. We take more iterations to reach a neighborhood of the optimum. However,

it is important to note here that due to further plant degradation, GPs needed to

learn more information from the plant as the training data used is not accurate.

We suspect that due to this reason, the second iteration (for 100 W) and the

fourth iteration (for 70W), the plant goes to a lower efficiency and then goes back.

Nevertheless, we expect similar or slightly better behavior if the plant had not been

degraded.

Although convergence is slower than the previous experiment, the results are, if not
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better, as promising as well established steady-state RTO methods. The advantage

of the proposed method over standard RTO approaches is the fact that the former

computes plant gradients from GP functions, whereas the latter relies on finite

differences, which take n+1 (where n is the number of inputs) perturbations in

order to estimate the plant gradients.
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(a) Real-time optimization using Gaussian processes: cell voltage, cathod temperature, anode

temperature, current, methane, and air flowrates vs. time.

(b) Real-time optimization using Gaussian processes: efficiency, power, fuel utilization,

and air-excess ratio vs. time.

Figure 9.4 – Real-time optimization using gradients of Gaussian processes.
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9.5 Analysis and Assessment of Optimality

Three inputs are used to steer the SOFC system to optimal operation: current,

fuel and air flowrates. The current is the optimization variable that most impacts

the electrical power, whereas the stack temperatures are mostly affected by the air

flowrate. On the other hand, the fuel flowrate impacts the stack temperature, due

to internal reforming, and is the input responsible for pushing the fuel utilization to

its high values, consequently, forcing the system efficiency to increase. Therefore,

it is common to expect that the SOFC efficiency is achieved when (1) the highest

value of fuel utilization is reached, (2) the demanded electrical power is regulated

by the current and (3) the minimal amount of air flowrate is obtained so as to not

violate the system temperature bounds.

An optimality assessment is performed in this section for the experimentally tested

electrical powers.

Fuel utilization is at its maximum value of 0.75 and the air flowrate is at its minimum

at 70 and 100 W. This suggests fuel utilization would be violated by decreasing

the amount of fuel flowrate, and efficiency would decrease if the fuel flowrate was

increased (see equation (9.1.1)). For the air flowrate, decreasing its value is not a

possibility as it is at its lower bound and increasing it would lead to suboptimality.

Any alteration of the current would cause a setpoint deviation for the electrical

power. Note that decreasing the current, the fuel utilization also decreases, thus

reducing the efficiency. And the fuel utilization upper bound would be violated if

the current was increased. As an alternative, one could attempt to keep the same

fuel utilization by increasing simultaneously the current and fuel flowrate. However,

besides decreasing the electrical efficiency of the system, the electrical power would

deviate from its setpoint. One could also decrease the current and the fuel flowrate

aiming at maintaining the same fuel-utilization value. In this case, the electrical

efficiency of the system would be improved, but a violation of the electrical power

equality constraint would be observed.

Since no change on the optimization variables would lead to better performance

and still remain feasible, the aforementioned arguments suggest that the SOFC

system is at a local optimum at both 70 and 100 W.

Cell potential is at its lower bound at 130 W. Owing to the fact that an increase of

the fuel utilization reduces the cell potential value, one cannot increase the current

or decrease the fuel flow rate without decreasing even more the cell potential and,
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consequently, violating its constraint. Additionally, as mentioned before, an increase

of the fuel flowrate would incur in suboptimality. And, a current decrease would

remove the system from its power setpoint at 130 W. Similarly to 100 W, one

could simultaneously increase the current and fuel flowrate while keeping the same

fuel utilization, but as the current has a stronger impact on the cell potential,

the cell potential constraint would be violated. And, if current and fuel flow rate

are decreased, although the fuel utilization would remain the same, the equality

constraint on the electrical power would be violated. Note that the current has

a larger impact on the cell potential than the remaining optimization variables.

Despite the air flowrate having lower effect on the cell potential compared to the

fuel flow rate or the current, the air flowrate can cause cell potential changes. A

reduction of the air flowrate causes a decay on the cell potential, which would,

consequently, violate its lower bound. Whereas an air flowrate increase would cause

a decrease of the system efficiency.

The above reasons suggest that the system is also locally optimal for the power of

130 W.

9.6 Conclusion

In this chapter, we performed experiments on a solid-oxide fuel cell system. We

used Gaussian Processes (GPs) as a surrogate model. Amongst two performed

experiments, in the first we validate our proposed idea to use GPs to correct the

plant-model mismatch. Our proposed approach required one or two iterations to

achieve the setpoint with high efficiency. In the second experiment, we proposed a

new variant of Modifier Adaptation (MA) that computes modifiers analytically and

therefore, avoids expensive computations of plant gradients. Despite continuous

deterioration of the plant, the proposed approach achieved power setpoints with

high efficiency.
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10 Conclusions and Perspectives

One never notices what has been done; one can only see what remains

to be done.

Marie Curie

10.1 Embedded Optimization on Programmable

Hardware

In this part, we focused on deploying Model Predictive Control (MPC) on embed-

ded platforms using operator splitting methods. We first analyzed the numerical

properties of splitting methods and argued that they are appealing candidates

for small to medium scale embedded control applications. Solving linear system

and matrix-vector multiplications are the computational bottlenecks for splitting

methods. In Chapter 2, we presented different ways of efficiently deploying splitting

methods on processors. To that end, we also used various modern linear algebra

packages. We then focused on deployment of MPC on Field Programmable Gate

Arrays (FPGAs) and heterogeneous platforms in Chapter 3 and Chapter 4. First,

various techniques were presented for efficient deployment on reconfigurable plat-

forms and next we presented a code generating toolbox - SPLIT. By performing

hardware-in-the-loop experiment, we showed that FPGAs outperform embedded

processors and heterogeneous platforms in terms of execution time. In the more

complex case of limited resources, we discussed how operations could be distributed

between FPGAs and heterogeneous platforms. We also showed that, if a C program

does not exploit various FPGA features, embedded processors outperform FPGAs

in terms of execution time. Finally, we solved a co-design problem with a priori
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guarantees, avoiding the laborious task of exploring the design space. We also

developed a second toolbox - LAFF - having more general capabilities in terms of

algorithms for FPGA targets.

There are numerous open challenges and opportunities when it comes to the

deployment of control laws on embedded platforms. First and foremost, it would

be desirable to make the deployment process even easier for FPGAs. Typically,

even if all computations are performed in hardware, soft processors have to be

instantiated to handle the communication tasks between the FPGA and the external

world. Interfacing the two modules is far from trivial and still has to be done by

the end user. Xilinx’s tools SDSoC and SDAccel are steps in this direction, but

only support a limited number of chips as of now. OpenCL is another promising

language that could be explored for FPGAs, processors and heterogeneous. For

the co-design problems, results obtained by exploring the design space should be

compare with “roofline” modeling, which in the field of computer science is used to

quantify the best “theoretically” possible performance for an algorithm. From a

control perspective, comparing the Riccati recursion with linear solvers on FPGAs

would also be interesting. Finally, we pose two theoretical questions that still need to

be answered: How can one ensure that no overflow errors will occur when applying

splitting methods? And is there a way of establishing the stability of splitting

algorithms under arithmetic errors for general convex constraints?

10.2 Gaussian Processes Based Constrained Process

Optimization

In the second part of the thesis, we combined three research areas: (i) Gaussian

processes (GPs), (ii) real-time optimization (RTO) and (iii) derivative-free trust

region methods. These topics were introduced in the context of process optimization

in Chapter 5. In Chapter 6, we proposed a novel modifier adaptation technique

where we learned the plant-model mismatch using GPs. We showed in a case study

that our proposed approach converged faster and was more robust against noise

compared with standard RTO techniques. In Chapter 7, we discussed probabilistic

derivative-free trust-region method and proved that GPs enjoy the probabilistic

full-linearity property. These proofs enabled GPs to be combined with probabilistic

derivative-free trust-region methods with guarantees of global convergence. Since

GPs are global surrogate models, fewer plant evaluations are required compare to

local surrogate models. Consequently saving plant operation cost and coping with
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changes in operating condition quickly. In Chapter 8 we proved that GPs are also

deterministic fully linear, and hence can be coupled with deterministic derivative-free

trust-region methods as well. We then pointed out a limitation of derivative-free

trust-region methods and addressed two main challenges: frequent model checking

and handling of noise. We proposed a novel algorithm – DMT – and showed its

convergence to a neighborhood of an optimum. We finally showed superiority of GPs

as global surrogate models by performing experiments on solid-oxide fuel cells. We

converged to an optimum of different power setpoints within one or two iterations,

outperforming standard RTO methods. In the second experiment, we proposed

a variant of the modifier adaptation technique where computing plant gradients

by perturbation is not required as GPs give the required gradient for computing

modifiers.

There are at least two interesting future directions in the RTO domain related to this

work. (i) Constrained derivative-free optimization: As discussed in Chapter 9, incor-

porating constraints in the penalty function is not ideal when process optimization.

Therefore, it is necessary to develop robust derivative-free trust-region methods

that can handle constraints in a more direct fashion. This is currently an active

area of research and a good starting point is the work [152]. (ii) Introducing the

ε-linear definition allowed us to handle noisy measurements. Nevertheless, further

developing the field of derivative-free trust region methods under different noise

models is still needed. Moreover, the use of other machine learning-based global

surrogate models in RTO and derivative-free optimization is still to be investigated.
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Non-differentiable Functions. Springer-Verlag New York, Inc., 1985.

[29] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

[30] ——, Constrained Optimization and Lagrange Multiplier Methods (Optimiza-

tion and Neural Computation Series). Athena Scientific, 1996.

[31] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,”

SIAM journal on control and optimization, vol. 14, no. 5, pp. 877–898, 1976.

[32] ——, “Augmented Lagrangians and applications of the proximal point algo-

rithm in convex programming,” Mathematics of Operations Research, vol. 1,

no. 2, pp. 97–116, 1976.

[33] P. Tseng, “Applications of a splitting algorithm to decomposition in convex

programming and variational inequalities,” SIAM Journal on Control and

Optimization, vol. 29, no. 1, pp. 119–138, 1991.

145



Bibliography

[34] G. Chen and M. Teboulle, “A proximal-based decomposition method for

convex minimization problems,” Mathematical Programming, vol. 64, no.

1-3, pp. 81–101, 1994.

[35] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Alternating proximal

algorithms for weakly coupled convex minimization problems. Applications to

dynamical games and PDE’s,” Journal of Convex Analysis, vol. 15, no. 3, p.

485, 2008.

[36] M. Zhu and T. Chan, “An efficient primal-dual hybrid gradient algorithm for

total variation image restoration,” UCLA CAM Report, 2008.

[37] E. Esser, X. Zhang, and T. F. Chan, “A general framework for a class of

first order primal-dual algorithms for convex optimization in imaging science,”

SIAM Journal on Imaging Sciences, vol. 3, no. 4, pp. 1015–1046, 2010.

[38] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex

problems with applications to imaging,” Journal of mathematical imaging

and vision, vol. 40, no. 1, pp. 120–145, 2011.

[39] L. Condat, “A primal–dual splitting method for convex optimization involving

lipschitzian, proximable and linear composite terms,” Journal of Optimization

Theory and Applications, vol. 158, no. 2, pp. 460–479, 2013.

[40] P. L. Combettes and J.-C. Pesquet, “Primal-dual splitting algorithm for

solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum

type monotone operators,” Set-Valued and Variational Analysis, vol. 20, no. 2,

pp. 307–330, 2012.

[41] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving

cocoercive operators,” Advances in Computational Mathematics, vol. 38,

no. 3, pp. 667–681, 2013.

[42] R. I. Bot, E. R. Csetnek, and A. Heinrich, “On the convergence rate im-

provement of a primal-dual splitting algorithm for solving monotone inclusion

problems,” arXiv preprint arXiv:1303.2875, 2013.

[43] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for

optimal control,” IEEE Transactions on Control Systems Technology, vol. 21,

no. 6, pp. 2432–2442, 2013.

146



Bibliography

[44] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parame-

ter selection for the alternating direction method of multipliers (ADMM):

quadratic problems,” IEEE Transactions on Automatic Control, vol. 60, no. 3,

pp. 644–658, 2014.

[45] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection

algorithm for embedded linear model predictive control,” IEEE Transactions

on Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[46] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un espace

hilbertien.” Comptes Rendus de l’Académie des Sciences (Paris), Série A, vol.

255, 1962.
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