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Abstract—High performance computing (HPC) servers aim
to meet an increase in the number and complexity of tasks
and, consequently, to address the energy efficiency challenge. In
addition to energy efficiency, it is essential to manage lifetime
limitations of power-hungry components of servers (e.g., cores
and cache), hence avoiding server failure before its lifetime
period. Traditional approaches focus on either using hybrid
caches to reduce the leakage power of traditional static random-
access memory (SRAM) cache, and thus increase the energy
efficiency, or the trade-off between the lifetime and performance
of multi-core processors. However, these approaches fall short in
terms of flexibility and applicability for HPC tasks in terms of
multi-parametric optimization including quality-of-service (QoS),
lifetime reliability, and energy efficiency. As a result, in this
paper we propose COCKTAIL, a holistic strategy framework
to jointly optimize the energy efficiency of multi-core server
processors and tasks performance in the HPC context, while
guaranteeing the lifetime reliability. First, we analyze the best
cache technology among traditional SRAM and resistive random
access memory (RRAM), within the context of hybrid cache
architectures, to improve the energy efficiency and manage cache
endurance limits with respect to tasks requirements. Second, we
introduce a novel efficient proactive queue optimization policy to
reorder HPC tasks for execution considering their end time and
possible reliability effects on the use of the hybrid caches. Third,
we present a dynamic model predictive control (MPC)-based
reliability management method to maximize task performance,
by controlling the frequency, temperature, and target lifetime
of the server processor. Our results demonstrate that, while
consuming similar energy, COCKTAIL provides up to 60% QoS
improvement when compared to latest state-of-the-art energy
optimization and reliability management techniques in the HPC
context. Moreover, our strategy guarantees a design lifetime
longer than 5 years for the whole HPC system.

Index Terms—HPC servers, hybrid cache, reliability manage-
ment, endurance-aware cache selection, proactive queue opti-
mization, dynamic MPC.

I. INTRODUCTION

H IGH-performance multi-core processors have been mas-
sively deployed in recent years due to a rapid growth in

the number and complexity of high performance computing
(HPC) tasks. Consequently, there has been an increase in the
number of HPC servers, ramping up the energy consump-
tion [1]. In this context, an approximate power breakdown
shows that multi-core processors contribute to 40% of the
overall power of a HPC server [2]. Then, among processor
components, the increase of the last level cache (LLC) size for
better performance represents over 44% of the total power of
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a processor [3], [4]. A static random-access memory (SRAM)-
based LLC has larger capacity and area [5] than L1 and L2
cache hierarchy. This causes the traditional SRAM LLC to
suffer from a high leakage power, encompassing over 43%
of the total leakage power, while the L1 and L2 caches only
consist of 11% and 12% of the total leakage power [6], respec-
tively. Therefore, the LLC and core components are becoming
the key factors to consider for energy and lifetime reliability
(processor aging) management in HPC infrastructures.

To reduce the overall energy consumption of multi-core
processors, non-volatile memory (NVM) is a promising tech-
nology rather than traditional SRAM for LLC due to its near-
zero leakage power [7]. Indeed, few different types of NVM
technology are available, such as, resistive random access
memory (RRAM), spin-transfer-torque magnetic random ac-
cess memory (STT-MRAM), and phase-change random access
memory (PCRAM). Although these NVM options combine the
benefits of SRAM (i.e., speed) with more data storage density
and less leakage power, they can only sustain few days of
operation in intensive HPC tasks due to its limited number
of temperature-dependent endurance [7]. Hence, a promising
approach to address the shortcomings of both SRAM and
NVM-based LLC is to exploit hybrid cache technologies
(joint SRAM and NVM) at the architecture level [7], [8].
Unfortunately, state-of-the-art techniques mainly target NVM
reliability improvements by considering different hardware
design alternatives and miss the exploitation of software-level
techniques to compensate at run-time the dynamic effects of
different types of HPC workloads.

Recently, several studies have started to evaluate underlying
reliability issues at the hardware level, such as, electromigra-
tion (EM), stress migration (SM), time-dependent dielectric
breakdown (TTDB), thermal cycling (TC) and negative bias
temperature instability (NBTI), in the context of workloads
executed on multi-core processors [9], [10], and consequently
propose new reliability-aware methods to control the operating
temperature, which has a significant effect on overall reliabil-
ity [11]. However, although the use of thermal management
schemes [12] can indirectly help reliability, its use and the
related studies do not attempt a joint optimization of system
reliability driving the multi-core HPC architectures and con-
sidering tasks quality-of-service (QoS) (i.e., execution time),
particularly in a dynamic scenario.

To attain the highest QoS and energy savings together
with enhancing system reliability, there is a need to com-
bine hybrid cache management with task-awareness manage-
ment through dynamic voltage and frequency scaling (DVFS)
for complete multi-core HPC platform. However, previous
techniques tackle these objectives separately, either boosting
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task performance by appropriately increasing core frequency
and temperature [13], or focusing on lifetime reliability by
controlling the increased chip temperature [11]. Indeed, a
major challenge in integrating reliability management with
performance- and energy-aware problems is that the tasks’
performance (i.e., QoS) is largely affected by the dynamic
temperature and endurance restrictions of different compo-
nents of a server processor (i.e., cores and cache). Thus, the
overall optimization of the whole system on performance,
reliability, and energy efficiency remains an open challenge
as it requires a deep assessment of the previous techniques.
More importantly, system-wide optimization requires dynam-
ically changing the optimization goals during run-time to
meet the system constraints and considering the trade-offs
across these optimization objectives. These trade-offs represent
opposite effects: when the performance of the HPC server
is increased, the frequency level and, accordingly, the power
consumption of the processor increase, thus leading to a
high operating temperature and subsequently reducing the
lifetime reliability of the system exponentially. Therefore, it
is essential to introduce a co-optimization method to reach a
balance between performance and reliability objectives. From
the cache perspective, the same trade-off exists. A hybrid cache
architecture consumes less energy than the traditional SRAM
architectures; while RRAM suffers from limited endurance
cycles (i.e., reliability issue). Therefore, we propose a holistic
strategy, i.e., COCKTAIL, that accounts synergistically for
all these aspects (i.e., performance, reliability, and energy
efficiency) in the HPC context. More precisely, the specific
contributions of this work are as follows:

• We introduce COCKTAIL, a multi-COre Co-optimization
frameworK with proacTive reliAbILity management that
maximizes task performance and server energy efficiency,
while guaranteeing the expected design lifetime in highly
dynamic environment.

• We propose an endurance-aware cache selection method
for the hybrid cache architecture to fully exploit the ben-
efits of different cache technologies (i.e., high endurance
of SRAM and high energy efficiency of RRAM) and
managing their lifetime limitations.

• We propose a dynamic model predictive control (MPC)-
based reliability management to set cores DVFS level ap-
propriately and maximize task performance, while utiliz-
ing the CPU lifetime deposits efficiently. We also present
a proactive queue optimization method to improve overall
tasks QoS with respect to their end time constraints.

• Our results demonstrate that COCKTAIL can reach simi-
lar results in terms of energy consumption when com-
pared to other state-of-the-art reliability- and energy-
aware methods, while ensuring a lifetime longer than
5 years for the power-hungry components of a server
processor. Moreover, COCKTAIL improves QoS by up
to 60% and reduces tasks congestion and overdue time
by up to 80% when compared to conventional approaches.

The remainder of this paper is organized as follows. Sect. II
reviews related work. In Sect. III, we provide an overview of
the problem description and target scenario. Sect. IV describes

the used system modeling for multi-core server processors. In
Sect. V we introduce our proposed proactive reliability-aware
method. Sect. VI and VII present the experimental setup and
results, followed by the conclusion in Sect. VIII.

II. RELATED WORK AND BACKGROUND

We divide the previous research in two categories: 1)
energy-efficient hybrid cache techniques and 2) system reli-
ability management.

A. Energy-Efficient Hybrid Cache Techniques

SRAM-based caches are the default standard for server de-
sign due to their performance. However, this technology is not
suitable for future energy-efficient servers design because of
its high leakage power consumption [8]. In this context, recent
studies resort to NVM technologies, such as RRAM, STT-
MRAM, and PCRAM. Nevertheless, these caches significantly
suffer from lower endurance (i.e., shorter lifetime) [14].

In order to alleviate this problem and address energy-
reliability trade-offs, hybrid cache architectures (i.e.,
SRAM+STT-RAM and SRAM+RRAM) are promising
solutions, as studied in previous works [8], [15]. These
solutions target NVM as the main LLC for most occasions
to reduce cache power consumption, and use SRAM for
performance compensation when necessary. In this case,
they can benefit from the advantages of both techniques,
namely performance and energy efficiency. Nonetheless,
NVM technology suffers from the limited endurance cycles;
thus, endurance- and reliability-aware management remain an
open challenge for the hybrid caches.

Prior studies propose different reliability management
schemes to avoid NVM failures during its design lifetime [8],
[16]. Chen et al. [8] use a fixed access threshold in hybrid
cache design to decide when to power on/off SRAM cache.
When powering off the SRAM, they can save unnecessary
leakage power consumption. However, this technique does not
consider lifetime reliability management for NVM, leading
to potential failure associated with setting an inappropriate
threshold and using NVM cache frequently. Thus, Beiji et
al. [16] introduce an endurance-aware RRAM memory man-
agement method. They firstly build an endurance model for
RRAM memory to get runtime endurance information for
each memory bank. Then, they reduce the access frequency
to the banks with lower endurance. In this case, different
memory banks can share a similar endurance profile and
system lifetime can be guaranteed. Nevertheless, this approach
does not consider a reliability management for hybrid cache
design (e.g., SRAM+RRAM) such that its benefits become
limited in terms of performance for HPC tasks.

B. Server Reliability Management

Server reliability management techniques aim to find a
balance between performance and reliability constraints. To
control the reliability, temperature is the main factor greatly
affecting system lifetime, and thermal management is an ef-
fective strategy to guarantee the lifetime period of a computing
server [12], [17]. One universal approach to ensure CPU
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design lifetime is to throttle CPU frequency to decrease tem-
perature, keeping it below a certain threshold (e.g., 343.15 K
= 70 °C). This limits performance, and can impact tasks’ QoS.

In addition, a recent study demonstrates that high system
temperature is not a direct reason for CPU failure [9]. It is
actually induced by other different failure mechanisms, such
as EM, SM, TDDB, TC, and NBTI. Srinivasan et al. [10] intro-
duce a unified reliability model for microprocessors consider-
ing all these failure mechanisms. With this fine-grained model,
we can quantify the system’s reliability information, making it
possible to better manage the CPU lifetime at runtime. In this
direction, one approach [13] first deposits the cores lifetime
during the period of low temperature and workload. Then, it
consumes the stored lifetime deposit to boost performance in
the period of heavy workload. Another direction is to increase
the lifetime of CPU by limiting the system temperature and
performance [11]. By using reliability model and lifetime
information, the above methods can optimize performance or
lifetime. However, these approaches fall short in presenting an
efficient method to address the energy-performance trade-offs
along with a temperature-dependent lifetime reliability control.

To control the CPU temperature, different DVFS-based
management methods have been proposed in HPC con-
texts [18]–[21]. Basireddy et al. [18] present a workload-aware
runtime energy management technique for efficient DVFS
control. Then, Singh et al. [19] propose an adaptive resource
allocation approach to optimize both QoS and energy for
HPC data centers. However, these methods do not consider
thermal and reliability management for the whole system.
On the other hand, other studies [20], [21] consider perfor-
mance, thermal and reliability in state-of-the-art heterogeneous
multi-processor architectures. Nonetheless, these works do not
consider the use of hybrid cache architectures and advanced
control methods to set the DVFS level appropriately in very
dynamic scenarios considering the different and variable re-
liability effects on resistive and main SRAM technologies.
Therefore, some works [17], [22] propose MPC-based meth-
ods that try to reach a fixed target temperature by setting DVFS
appropriately. Nevertheless, they degrade the performance of
tasks to reduce CPU temperature.

In this paper, we propose to jointly incorporate a reliability-
aware MPC-based method and a hybrid cache management
in a multi-core server processor to address the reliability-
performance trade-offs by dynamically changing the target
temperature limit with respect to tasks requirements. To the
best of our knowledge, COCKTAIL is the first to address all
these aspects together in a holistic framework.

III. PROBLEM DESCRIPTION

In this section we provide a description of the overall
scenario, the system we optimize, and the main assumptions
taken. Fig. 1 illustrates the proposed scenario and strategy,
including inputs and outputs. The goal of the proposed strategy
(i.e., COCKTAIL) is to co-optimize task QoS, energy effi-
ciency, and lifetime reliability of a multi-core server processor
using a hybrid cache architecture (SRAM+RRAM).

In our system, when a task arrives, it is first sent to the tasks
queue (queue). Then, we choose the next task from the queue
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Fig. 1. Overall diagram of the proposed scenario and framework, i.e., COCK-
TAIL, including Proactive Queue Optimization, Endurance-aware Cache Se-
lection, and Dynamic MPC-based Reliability Management blocks.

at the current system time (tsys) for being executed on the
processor (when the current task finished). At each time (tsys),
only one task runs on the server. In order to improve the tasks
QoS, the Task Queue Management block takes all the tasks
information (i.e., arrival time, amount of time required for
being processed on server - burst time, and expected end time)
and tries to re-order the tasks sequence in queue to reduce the
number of overdue tasks (i.e., surpassing expected end time).

After determining the tasks order for execution from current
system time (tsys), we select the first task (head of queue) as
the next task and adjust the system parameters (i.e., cache se-
lection and cores frequency) based on its characteristics (e.g.,
number of accesses to LLC and required power consumption)
to finish the task. Our goal is to achieve the best energy
efficiency and performance, while maintaining the lifetime
reliability of the whole HPC system.

In this work, we consider a hybrid cache architecture
to combine the advantages of different cache technologies
(SRAM and RRAM). SRAM provides higher speed for the
writes but at the cost of higher leakage power consumption,
while RRAM technology is more energy efficient but suffers
from limited endurance (numbers of write cycles) [14]. Hence,
for each task, we choose the cache (between SRAM and
RRAM), at each time (tsys) during the task execution time,
to reduce the energy consumption, while guaranteeing the
expected design lifetime of RRAM. Given task and system in-
formation (number of needed writes to RRAM-NRRAM

write , RRAM
cache temperature-TRRAM , and endurance model) during the
task execution time, we compute the lifetime deposit of RRAM
cache to optimize the operation of caches at runtime.

From the cores perspective, for each task, we try to find
the best DVFS for the cores, maximizing the task QoS (per-
formance) while satisfying the cores lifetime constraints. We
assume each core has its own frequency, thus, fcores contains
information for all the cores of the processor. In addition,
during the task execution time, we adapt the cores’ frequency
using a dynamic MPC-based method to dynamically control
the temperature and achieve the best performance (maximum
allowed power consumption for cores with respect to the
lifetime deposit). For a time slot (tslot ), we estimate the system
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idle time ratio (i.e., system idle time during a time slot divided
by tslot ) in order to better use the lifetime deposit of the cores
for that time slot (efficient lifetime deposit distribution among
all the tasks). To propose a solution to both the cache selection
and cores reliability-performance management, we need to
accurately model the system.

IV. SYSTEM CHARACTERIZATION AND MODELING

In this section we first detail the type of tasks tackled in this
paper. Then, we describe all the models needed for energy,
performance, temperature and reliability management of a
multi-core server processor with a hybrid cache architecture.

A. Task Characterization

For our target HPC tasks, we consider QoS in terms of
execution time to measure the performance of each task. We
compute the burst time of the task (tburst ), when the task runs
on the server at maximum performance (highest frequency).
However, tburst can be degraded to t̂burst by lowering the
CPU frequency to enhance energy efficiency and temperature-
dependent reliability management of the server processor.

To compute t̂burst , we first measure and profile each task’s
total number of instructions (insttotal) and instructions per
cycle (IPC) information per core using perf tool [23]. Then,
we calculate the total number of instructions per second (IPS)
executed by all the cores as: IPS = IPC ·∑Ncores

i=1 fi, where Ncores
is the number of cores and fi is the frequency of the ith

core. In this case, each core can get its own frequency level
(i.e., fi). In our approach, we first assume that the execution
of the task starts from tstart and the number of remaining
instructions (instrem) is insttotal . Then, at each time step (i.e.,
1 second), we update the remaining instructions for the task
as: instrem = instrem− IPS. Finally, at time tend , all the needed
instructions of the task are finished (i.e., instrem ≤ 0), and then
t̂burst = tend − tstart . Moreover, if there are already some tasks
in the queue, the task needs to wait (twait ) until it is ready
for execution. Therefore, total execution time of the task is
texe = t̂burst + twait and, accordingly, the QoS degradation is
computed as QoS = texe/tburst , achieving its highest value of
’1’, when there is neither waiting nor performance degradation.

In addition to execution time (texe) that should be minimized,
end time constraint is another metric that also quantifies the
performance of tasks. The system should guarantee that tasks
finish before their expected end time limits (i.e., tend). This pro-
vides a margin for our strategy to play with frequency scaling
and task queue optimization, while meeting the expected end
time thresholds of the tasks (i.e., texe ≤ tend). Otherwise, we
consider the task that texe > tend as an overdue task.

B. Hybrid LLC Architecture

Recently, most designers and manufacturers focus on
SRAM. While SRAM has been designed to meet the perfor-
mance goals and provide a wider working temperature range
(i.e., long lifetime period), it suffers from high leakage power
and low energy efficiency. On the contrary, NVM technologies,
such as RRAM, offer low leakage power consumption (higher
energy efficiency) with more density (higher data storage
capacity than SRAM), but at the expense of at least four

orders of magnitude less endurance capabilities. Therefore,
in this paper, we consider a hybrid cache architecture (i.e.,
SRAM+RRAM). The detailed specifications and characteris-
tics of both technologies have been introduced in Table II in
Section VI-A2.

C. Server Processor Power Characterization

As introduced in Section I, we consider in our model the
two main contributors to the overall power consumption of
the server processor: 1) CPU power (core power) containing
8-core (Ncores = 8) power consumption and 2) uncore power,
which includes all components outside the core region, like
LLC, memory controller, and IO subsystems.

1) Core Power: In our work, power profiling is performed
on a homogeneous multi-core processor with identical cores.
Therefore, each core maintains the same power value under
a fixed frequency, when executing a task. For each task, core
power consumption, including static and dynamic power, is
measured as a function of frequency levels, ranging from 1.2
GHz to 3.5 GHz (16 levels). We obtain the power traces per
task for each frequency level for an Intel Xeon E5 platform us-
ing running average power limit (RAPL) interface [24]. Then,
we use a linear model (i.e., considering the same power usage
for all the cores) to compute each core power consumption
at each frequency. In this case, we characterize power traces
for each task per core with respect to its individual frequency
information. This is a common methodology we have adopted
from similar previous studies [22], [25].

2) Uncore Power: For traditional SRAM cache, prior work
[25] considers the worst-case power consumption as a constant
value. Nevertheless, in this paper for hybrid caches, the leak-
age (as shown in Table II in Section VI-A2) and dynamic LLC
power model for each technology was extracted by measuring
a 16 MB capacity (the same size for both technologies),
using NVSim simulator [26]. We also empirically measure
the worst-case memory controller and IO subsystem power
consumption overhead of the processor package (i.e., Intel
Xeon v4 platform).

D. Server Processor Thermal Model

For our target multi-core HPC platform, we extract the
thermal model using the 3D-ICE simulator [27]. This thermal
model provides temperature information for our reliability
model, and it is integrated with dynamic MPC to enable cores
reliability management.

The extracted thermal model mainly consists of three ma-
trices: G, C, and B, indicating thermal resistance, thermal
capacitance, and power injection matrix of the processor,
respectively. Power injection matrix (B) contains the power
distribution of the processor (the floorplan can be found
in [28]). Therefore, the processor thermal model can be
expressed as follows:

GT (t)+C
dT (t)

dt
= BP(t) (1)

where T (t) is the temperature distribution of the processor at
time t, and P(t) is the power consumption values of processor
components obtained by the server power characterization,
when running one task.
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TABLE I
KEY PARAMETERS FOR RELIABILITY MODELING OF THE CORES

Parameter Description Value
Ea Activation energy 0.9 eV
kB Boltzmann coefficient 8.62 eVK−1

Tvapor Vapor deposition temperature 500 K
q Coffin-Manson exponent 2.35

As we measure the power values in a discrete time (time
instance), we discretize the thermal model using Backward
Euler method, as follows:

T (k) = AT (k−1)+BdP(k) (2)

where T (k) and P(k) are discretized version of T (t) and
P(t), and A and Bd are extracted from G, C, and B matrices,
respectively. Indeed, T (k) includes temperature information
for the whole processor. We select the parts of interest using
following equations:

Tcores(k) = LcoresT (k), TRRAM(k) = LRRAMT (k) (3)

Using the matrix Lcores and LRRAM , we obtain the temperature
distribution for cores (Tcores) and RRAM cache (TRRAM),
respectively.

E. Reliability Modelling of The Server Processor

In this section, given the thermal model, we define the
lifetime reliability models for two components: 1) Cores and
2) RRAM cache.

1) Cores Reliability Model: We take into account five main
failure effects for cores based on previous works [10], [29],
[30], as follows:

MT T FEM ∝
exp( Ea

kBTcores
)

(V f α)CEM
(4)

MT T FSM ∝ |Tvapor−Tcores|−CSM exp(
Ea

kBTcores
) (5)

MT T FT DDB ∝ (
1
V
)a−bTcores exp(

X + Y
Tcores

+ZTcores

kBTcores
) (6)

MT T FTC ∝ (
1

Tcores−Tamb
)q (7)

MT T FNBT I ∝ [ln(
cn1

1+2e
cn2

kBTcores

)− ln(
cn1

1+2e
cn2

kBTcores

− cn3) ·
Tcores

e −cn4
kBTcores

]
1
β

(8)
where MT T FEM , MT T FSM , MT T FT DDB, MT T FTC, and
MT T FNBT I represent mean time to failures (MTTFs) under
the effects of EM (transport of material), SM (caused by
mechanical stress), TDDB (caused by gate oxide breakdown),
TC (caused by core temperature variations), and NBTI (in-
creasing the transistors threshold voltage), respectively. In Eqs.
4-8, V, f , and α indicate voltage, frequency, and activity
factor of the cores, respectively. The other main parameters
with their values are summarized in Table I, and the fitting
parameters (i.e., CEM , a, X , etc.) are extracted from the
previous work [10].

Finally, we use the industry standard sum-of-failure-rates
(SOFRs) model [10] to incorporate all the five reliability
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Fig. 2. Relationship between the maximum endurance and temperature of
RRAM cache.

concerns, as follows:

MT T Fcores = (∑
1

MT T Fsingle
)−1 (9)

where MT T Fsingle represents each aforementioned lifetime
reliability model (i.e., EM, SM, TDDB, TC, and NBTI).

2) RRAM Reliability model: Cache reliability model is
defined based on the endurance. Each technology has its own
endurance that can be measured in terms of the total number of
write cycles. In our hybrid cache architecture, SRAM has an
endurance of 1E16, while RRAM endurance is around 2E10
cycles at 300 K [14].

Previous work [16] showed that the maximum endurance of
RRAM (endu) is dependent on its operating temperature (i.e.,
TRRAM computed by the thermal model), as follows:

endu(TRRAM)≈ (cr1TRRAMe
Ea

kTRRAM )cr2−1 (10)

where cr1 and cr2 are material-dependent constants, which
are 8.99E-3 and 4, respectively. Fig. 2 shows the relationship
between the maximum endurance and temperature of RRAM
cache based on Eq. 10.

V. COCKTAIL - MULTI-CORE CO-OPTIMIZATION
FRAMEWORK WITH PROACTIVE RELIABILITY

MANAGEMENT

In this section we introduce our proposed strategy,
i.e., multi-COre Co-optimization frameworK with proacTive
reliAbILity management (COCKTAIL), which consists of
three main blocks: A) proactive queue optimization, B)
endurance-aware cache selection, and C) dynamic MPC-based
reliability management.

A. Proactive Queue Optimization

In order to improve the QoS of the executed HPC tasks,
we propose a proactive queue optimization method, which
is based on the shortest job first (SJF) approach [31], [32].
Different from the traditional first come first served (FCFS)
approach [33], which strictly follows the order of tasks arrival
time, SJF reorders the tasks queue by bringing the shortest
job (job with the minimum burst time) to the head of queue
for execution. However, SJF sends tasks with the longest
execution times to the end of the queue, leading to a significant
QoS degradation for these tasks. In addition, SJF does not take
into account the waiting time of the tasks in the queue that
can violate the expected end time limits (i.e., overdue tasks).

In order to alleviate drawbacks of SJF, our method considers
both burst time and end time limit of tasks, as shown in
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Algorithm 1: Proactive Queue Optimization
Input : Current system time (tsys), Tasks queue (queue) and

information: burst time (tburst ) and end time (tend)
Output: Selecting next task (tasknext ) for execution

1 if queue is empty then
2 System is idle;
3 else
4 taskurgent ← Find tasks with tend − tsys < tburst ;
5 if taskurgent = Null then
6 taskshortest ← Find the task with shortest tburst ;

/* Proactive Action */
7 tsys next ← tsys + taskshortest .tburst ;
8 taskurgent ← find task with tend − tsys next < tburst if

taskshortest is being selected;
9 if taskurgent = Null then

10 tasknext ← taskshortest ;
11 else
12 tasknext ← taskurgent ;
13 end
14 else
15 tasknext ← taskurgent ;
16 end
17 end

Algorithm 1. The system is idle when the tasks’ queue (queue)
is empty (lines 1−3). Otherwise, we first find tasks (taskurgent ),
which breach their end time limits (tend) with respect to the
current system time (tsys) and burst time (tburst ) (line 4). If
there is no taskurgent (lines 5−14), we perform a proactive
action for selecting the next task (tasknext ), while avoiding the
overdue tasks. For this purpose, we first select the shortest task
(taskshortest ) from the queue (line 6). We check the possible
existence of urgent tasks if this shortest task is being executed
(line 7−8). If there is any urgent task, we move it to the
head of queue; otherwise, the selected shortest job is the best
candidate for being executed (lines 9−13).

Fig. 3 shows the efficiency of our proposed method versus
SJF to guarantee the expected end time thresholds. According
to Algorithm 1, our proactive queue optimization method
brings task 4 before 5 to execute, avoiding the overdue task.
Although other methods [32], [34], [35] take into account
the end time constraints of running tasks, they fall short
in prioritizing the tasks for executions that breach their end
time limit in the future due to making a short-sight decision.
Besides the end time limit, overall QoS (i.e., execution time)
is another metric that also indicates the tasks’ performance.
In this context, slack-based methods [36] guarantee the end
time limit by executing the tasks with the lowest slack times.
However, they neglect the overall QoS of the system because
a shorter task may suffer from a longer waiting time. On the
contrary, our proposed proactive queue optimization method
aims to improve the overall QoS of the system while guaran-
teeing the end time limit of the tasks.

B. Endurance-Aware Cache Selection

Based on Eq. 10 and Fig. 2, the endurance of RRAM
cache exponentially decreases by increasing the temperature
compared to its baseline operating temperature (i.e., 300 K =
26.85 °C). Hence, in order to manage the lifetime of RRAM,
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Fig. 3. SJF versus proactive queue optimization.
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Fig. 4. Acceleration factor with temperature variations of RRAM.

we need to consider the effect of different temperatures on
maximum endurance. Therefore, we introduce an acceleration
factor, as follows:

fa f (TRRAM) = endu(300K)/endu(TRRAM) (11)

Fig. 4 illustrates the acceleration factor of RRAM at differ-
ent temperature with respect to its nominal value at 300 K
(endutotal). We use this factor to compute the endurance
consumption (enduconsumed) as the function of number of
writes (NRRAM

write ) to the RRAM cache (i.e., enduconsumed =
fa f (TRRAM) · NRRAM

write ). In this case, for temperatures higher
than (300 K), the acceleration factor would be higher than
’1’, leading to a higher endurance consumption for a specific
number of writes to the RRAM.

Using the nominal endurance value (endutotal) and en-
durance consumption (enduconsumed), we propose a cache
selection method based on the reliability banking technology
management mechanism [13]. In reliability banking technol-
ogy mechanism, the main goal is to use endutotal during
a system design lifetime, which is selected to be 5 years
in our case. Hence, we define an endurance consumption
rate (endulimit = endutotal/(design li f etime = 5 years)) that
describes the average consumption rate of RRAM during five
years. This consumption rate limit (endulimit ) guarantees the
operation of RRAM for this specific period.

Then, in our proposed method, as shown in Algorithm 2,
we try to select a cache between RRAM and SRAM for
the system, while ensuring the RRAM cache endurance limit.
We have an endurance deposit “account” (endudeposit ) for the
RRAM cache and it will receive “salary” of endulimit in every
management time. If endudeposit is larger than 0 (i.e., positive
saving), RRAM can maintain reliability larger than its design
lifetime. Consequently, we select the RRAM cache option
for energy efficiency, while respecting its lifetime limit (lines
1−2). In addition, RRAM cache experiences an endurance
consumption (“expenditure”) of enduconsumed (line 3). Oth-
erwise, in case of endudeposit < 0, we select SRAM cache
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Algorithm 2: Endurance-Aware Cache Selection
Input : Acceleration factor ( fa f ), RRAM temperature

(TRRAM), and task write number (NRRAM
write )

Output: Cache selection between RRAM and SRAM
1 if endudeposit > 0 then
2 Select RRAM cache;
3 enduconsumed ← fa f (TRRAM) ·NRRAM

write ;
4 else
5 Select SRAM cache;
6 enduconsumed ← 0;
7 end
8 endudeposit ← endudeposit +(endulimit − enduconsumed);

(lines 4−5). In this case, there is no endurance consumption
for RRAM cache when SRAM cache is selected (line 6).
After selecting the cache, the net endurance saving in each
management time is computed as endulimit − enduconsumed .
Finally, we update the endudeposit with respect to the net
endurance saving, and save it for subsequent tasks (line 8).

The power overhead of our proposed cache selection method
is negligible from the software perspective due to the use of a
low-overhead rule-based policy. From the hardware perspec-
tive, the overall energy consumption reduction can be achieved
by introducing the hybrid cache architectures (i.e., hardware
design and managing its operation) instead of current cache
management implementations (e.g., data migration) [7], [8].

C. Dynamic MPC-Based Reliability Management

In this section we propose a dynamic MPC-based reliability
management method to improve the task performance. Thus,
we split this method in two parts: 1) cores reliability manage-
ment and 2) dynamic MPC for frequency scaling.

1) Cores Reliability Management: Similarly to endurance-
aware cache selection method, we use a reliability banking
technology method for cores. We consider a core lifetime
deposit “account” (li f etimedeposit ) and a “salary” as nominal
lifetime consumption rate (li f etimelimit ), in each management
time. We compute the net lifetime saving as li f etimelimit −
li f etimeconsumed , where li f etimeconsumed (i.e., lifetime con-
sumption) is obtained by cores temperature-dependent relia-
bility model presented in Section IV). Our proposed relia-
bility management method aims to give the opportunity for
increasing task performance (i.e., reducing execution time),
while keeping the cores li f etimedeposit always above 0.

In the following subsection, we propose a dynamic MPC-
based method to control the temperature and reliability deposit
of cores by setting an appropriate frequency level, while
maximizing task performance.

2) Dynamic MPC: Traditional MPC controllers [17], [22]
consider the maximum allowed temperature for the processor
(383.15 K = 110 °C), when the lifetime deposit is still positive.
However, setting this temperature threshold uses the deposit
lifetime for a limited number of tasks. Thus, for the rest of
tasks in a certain time, the performance would be sacrificed
due to the reliability management (control deposit by temper-
ature).

Fig. 5 shows the lifetime deposit and consumption rates
of the cores with respect to the different operating tempera-
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cores.

ture, obtained by the reliability model and reliability banking
mechanism. Based on the analysis, temperature 343.15 K
(i.e., 70 °C) is the nominal temperature that converges to the
nominal lifetime limit (li f etimelimit ). Moreover, although the
lifetime reliability is exponentially consumed by increasing the
cores temperature, we cannot get an exponential performance
improvement.

We find that the most efficient way is to set the temperature
limit dynamically according to the system status (i.e., active
and idle ratio). Fig. 6 shows the performance improvement of
the system (capability of increasing cores frequency) for three
different system idle ratios under different temperature limits.
We assume that the system consumes the lifetime deposit
during the active times for maximizing the performance, while
it increases the deposit during the idle times (lowest possible
temperature due to the lowest frequency). As the idle time
ratio increases from 17% to 45%, the best temperature limit
increases from 348.15 K to 353.15 K (i.e., 75 °C to 80 °C) to
gain higher performance (higher frequency). This is because
the lifetime deposit is consumed by a shorter activity period
(lower load). Thus, we can increase the consumption speed of
lifetime deposit by increasing the temperature of the cores.

Based on the aforementioned analysis, our method computes
the lifetime consumption rate limit dynamically with respect
to the active times of the system, as follows:

li f etimedyn
limit =

li f etimedeposit

(1− ratioidle) · ttotal
(12)

where li f etimedeposit , ttotal , and ratioidle are current lifetime
deposit, total time, and idle time ratio of the system under
a reliability management time, respectively. Eq. 12 assumes
that li f etimedyn

limit uses all the li f etimedeposit for the next time
slot, while achieving the best performance. In order to model
realistic scenarios, as ratioidle is unknown for the next time
slot, we use a last-value predictor to estimate this parameter.
The last-value predictor assumes that the idle ratio of the next
time slot is exactly the same as current slot. However, due
to the prediction error, especially when the predicted value
is higher than the real one, we consider a correction factor
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Algorithm 3: Dynamic MPC-Based Reliability Manage-
ment Method

Input : Current cores power (P(k)), cores temperature
(Tcores), and system idle ratio (ratioidle)

Output: Cores frequency ( fcores)
1 li f etimeconsumed ← Lifetime consumption computed by the

reliability model and Tcores;
2 li f etimedeposit ← li f etimedeposit+ (li f etimelimit−

li f etimeconsumed);
/* Dynamic MPC */

3 T target
cores ← Compute dynamic target temperature according to
ratioidle and li f etimedeposit ;

4 ∆P← Cores power adjustment obtained by MPC;
5 P(k+1)← P(k)+∆P;
6 fcores← Find the best frequency level w.r.t. the power

characterization and P(k+1);

(γ < 1) for li f etimedyn
limit (i.e., γ · li f etimedyn

limit ).
Given the li f etimedyn

limit , reliability, and lifetime deposit and
consumption rate models (Fig. 5), we first find the target cores
temperature (T target

cores ) for the next control phase. Then, we build
a MPC controller [17], [22] to find the power budget for the
cores and, consequently, cores frequency based on the current
cores temperature (Tcores) and T target

cores .
For our MPC controller, as presented in Algorithm 3, we

first define the target temperature distribution over Np steps
into the future (prediction horizon Np) as:

Ttarget = [T target
cores , ...,T target

cores ] (13)

Furthermore, the predicted cores temperature (Tp) in MPC
controller is defined as:

Tp =V T̂ (k)+Φ∆P (14)

where matrices V and φ are extracted from the processor
thermal model, presented in Eq. 2. T̂ (k) is represented as
[∆T (k);T (k)], where ∆T (k) = T (k)− T (k− 1). ∆P (power
adjustment) is the control knob for the future Nc steps (control
horizon) and computed by minimizing the cost function as:

F = (Ttarget − T̂ (k))T (Ttarget − T̂ (k)) (15)

As a result of minimizing cost function F , we get:

∆P = (ΦT
Φ)−1

Φ
T (Ttarget −V T̂ (k)) (16)

The last step for MPC controller is to update the power
consumed by the cores for the next time, i.e., P(k + 1) =
P(k) + ∆P (only the first control horizon of ∆P is used in
receding-horizon mechanism), that tracks the target temper-
ature distribution. Finally, P(k + 1) is sent to the processor
DVFS controller for finding the best frequency level ( fcores)
that meets the updated power.

D. The COCKTAIL

In order to effectively solve the performance-reliability, and
energy efficiency trade-offs for the whole system, COCKTAIL
combines all the proposed methods. First, the endurance-aware
cache selection method maintains the reliability of the hybrid
cache, while contributing to the energy consumption reduction
of the system due to the efficient management of the RRAM

cache. Second, the dynamic MPC-based reliability manage-
ment method utilizes the additional power budget provided
by the hybrid cache and lifetime deposit of the cores to
improve the tasks’ performance, while guaranteeing the cores’
temperature-dependent reliability constraint.

VI. EXPERIMENTAL SETUP, SCENARIOS AND
COMPARISON METHODS

A. Experimental Setup

1) Server configuration: We use a Supermicro SuperBlade
server that consists of 8-core (Ncores = 8) Intel Xeon E5-2667
v4 CPU with 16 frequency levels varying from 1.2 GHz to
3.5 GHz, and 256 GB of memory. The memory subsystem
comprises L1 instruction and data cache both of 32 KB and a
dedicated L2 of 256 KB per core (floorplan in [28]).

2) Hybrid LLC Characteristics: We consider a hybrid
cache architecture (i.e., SRAM+RRAM) with the capacity of
16 MB for each technology and without increasing the LLC
area in the floorplan. The characteristics of both technolo-
gies have been compared and shown in Table II, obtained
by NVSim simulator [26] for a 16 MB cache size. In the
simulator, we tuned the parameters of the general purpose
model in accordance with previous work [37].

In this work, we assume that the SRAM cache does not
have an endurance restriction that is higher with respect to
the other components of the HPC system. Indeed, the SRAM
cache with an endurance of 10E16 can sustain a lifetime period
of longer than 15 years in the worst case (i.e., for memory-
write-intensive workloads), which is drastically larger than the
design lifetime of an HPC server (i.e., 5 years). However,
under the same setting, RRAM cache with an endurance of
2E10 is sustained for a period of 1 year, when its operating
temperature is 300 K = 27 °C; and the lifetime of RRAM
decreases to 1 month once its operating temperature increases
to 350 K = 77 °C.

3) Task Description and Simulation Framework: To simu-
late realistic scenarios, we use the SPEC CPU 2017 benchmark
suite [38], which consists of HPC tasks (applications). We
collect the tasks power and performance statistics (i.e., power,
burst time, and LLC read/write accesses) running on the target
server under different frequency levels using RAPL [24] and
perf [23] tools, respectively. Fig. 7 shows how the read/write
ratio varies for each task, enabling the benefits of dynamic
cache selection. Also, we used the obtained power, perfor-
mance, thermal, and reliability models (Section IV) to co-
optimize the operation of the whole HPC system by exploiting
an in-house high-level simulation tool written in MATLAB,
where we coded all the algorithms used in this paper.

TABLE II
CHARACTERISTICS OF 16 MB SRAM AND RRAM CACHE

SRAM RRAM
Area (mm) 11.64 1.37
Read Latency (ns) 5.82 2.71
Write Latency (ns) 3.00 20.93
Leakage Power (W) 5.15 0.83
Endurance (Cycles) 10E16 10E6-10E12
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Fig. 7. Different applications (tasks) read and write data to the LLC.

Finally, we fix the control time step for our proposed man-
agement methods to 1 second. We perform our experiments for
a simulation time (scenario time) of 3×107 seconds (i.e., 347
days), splitting it into 300 time slots (i.e., tslot is 105 seconds)
for computing the arrival tasks and system idle time ratio
(ratioidle). These time values have been chosen to avoid the
possible random effects of different workloads and methods.
The execution of this 3×107 seconds of simulated time was
carried out in 80 minutes on a system equipped with a 6-core
Intel i7-8700 CPU@3.2GHz and 16GB of memory, for the
whole scenario time of 3×107 seconds.

B. Scenarios

In order to create different system idle times, we use a
Poisson distribution defined by the parameter λ , as previously
done in our related works in the literature [1], [39]. As a result,
the number of tasks that arrive in the system at each 1 second
during a time slot can be tuned by λ . Then, we use a uniform
distribution to assign the specific benchmarks to the arrived
tasks. More specifically, a random number from 1 to 23 (23
SPEC benchmarks) is generated by the uniform distribution to
assign one benchmark to one task. In this work, we consider
two different scenarios for our experiments.

1) Scenario I - Static λ : In this scenario, λ is fixed for
all the simulation time slots. We evaluate the effectiveness
of our proposed strategy under four different λ values (i.e.,
4E − 4, 5E − 4, 6E − 4, and 7E − 4). According to Poisson
distribution, λ controls the average number of arrival tasks in
each time slot, i.e., the higher the λ , the higher the number
of arrival tasks is. Therefore, choosing the different values
for λ can affect the idle time in each time slot. Furthermore,
the idle time is also dependent on the benchmark suite and
the execution time of the applications on the server. Based
on our experiments with SPEC CPU 2017 benchmarks, when
λ = 4E−4, the system idle time ratio is around 45% with an
average of 40 tasks per time slot, while for λ = 7E−4, the idle
time ratio is around 4% with an average of 70 tasks. Table III
summarizes this information for the different λ values.

2) Scenario II - Dynamic λ : In a general scenario, the
server load varies during a full day, i.e., high-load during the

TABLE III
AVERAGE IDLE TIME AND NUMBER OF TASKS FOR DIFFERENT λ PER TIME

SLOT

λ Average idle time
per time slot

Average number of
tasks per time slot

4E−4 45% 40
5E−4 32% 50
6E−4 17% 60
7E−4 4% 70

day (large λ ), and lower during the night (small λ ). Therefore,
we investigate the efficiency of our method for a dynamic
scenario, where λ changes every time slot (i.e., tslot ).

C. Comparison Methods and Metrics

In this work we compare COCKTAIL against seven differ-
ent state-of-the-art reliability and energy optimization methods
for HPC systems. All approaches consist of a task queue
optimization and cores (in addition to cache) reliability man-
agement policy to cover all the possibilities and combinations,
as shown in Table IV.

1) Reactive Method (Reactive) [11]: This reliability man-
agement method sets a hard lifetime threshold based on
the nominal lifetime of the cores (i.e., li f etimelimit ). Once
current lifetime consumption (li f etimeconsumed) goes beyond
the threshold, it reduces cores power consumption to stay in
the safe area. Otherwise, it increases power until reaching the
threshold limit. This approach ignores the hybrid cache reli-
ability management, and uses only SRAM cache technology
for performance goals. Moreover, since this method does not
provide any task queue management, we consider the FCFS
method for executing the tasks.

2) Reactive Method with Hybrid Cache (Hybrid Reac-
tive) [8]: This approach proposes an energy-efficient tech-
nique for hybrid cache architectures (i.e., SRAM+NVM). This
method sets a threshold for the number of write accesses to the
cache. If the number of writes exceeds the threshold, SRAM is
used to reduce stress of NVM. Otherwise, SRAM is powered
off to save the energy. To adapt this method to our work, we
define the threshold based on the RRAM’s endurance limit
(i.e., endulimit ) and its design lifetime. However, this approach
does not consider cores reliability management. Therefore, we
combine the hybrid cache management with reactive method
to control the energy, performance, and reliability of the whole
HPC system.

3) FCFS+Static MPC: In order to show the advantage
of advanced control policies, we implemented a static MPC-
based method [17], [22] for cores reliability management. In
this method, we consider a fixed target cores temperature (i.e.,
T target

cores = 373.15K = 100°C). MPC tries to reach this target
temperature if the cores lifetime deposit is available. Also,
we combine this static MPC-based method with our proposed
endurance-aware cache selection technique (EAC) and FCFS
queue management for executing the tasks.

4) FCFS+Dynamic MPC: To evaluate the impact of cores
reliability management, we consider the same FCFS and
cache selection methods in FCFS+Static MPC jointly with our
proposed dynamic MPC-based reliability management policy.

5) Proactive Queue Optimization with Static MPC
(PQ+Static MPC): For a further comparison with
FCFS+Static MPC, we replace the FCFS management
by our proposed proactive queue optimization to investigate
its impact on task performance.

6) Proactive Queue Optimization with Hybrid Cache and
Dynamic MPC (PQ+Hyb+MPC): This method indicates the
effectiveness of our jointly proposed queue optimization and
dynamic core management techniques with the same hybrid
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TABLE IV
COMPARISON METHODS WITH THEIR POLICIES

Queue Cache Core

Methods FCFS PQ SRAM Hybrid EAC Reactive
(Rea)

Static
MPC

Dynamic
MPC

Reactive X X X
Hybrid Reactive X X X
FCFS+Static MPC X X X
FCFS+Dyn. MPC X X X
PQ+Static MPC X X X
PQ+Hyb+MPC X X X
PQ+EAC+Rea X X X
COCKTAIL X X X

cache management technique compared to Hybrid Reactive
approach. Moreover, this method illustrates the efficiency of
our proposed cache selection policy solely in comparison with
COCKTAIL.

7) Proactive Queue Optimization and our Endurance-
Aware Cache Selection (EAC) combined with Reactive core
management (PQ+EAC+Rea): This method shows the bene-
fits of our dynamic MPC-based core management technique
solely when compared to COCKTAIL.

We compare these methods in terms of energy consumption,
average and worst-case QoS, number of overdue tasks, and
overall overdue time, while guaranteeing the lifetime reliability
of the system. We define average and worst-case QoS in
terms of the average and worst-case execution time of the
tasks, running on the server over the whole simulation time.
Moreover, overdue tasks are those tasks that violate their
expected end time limits during the experiment time.

VII. EXPERIMENTAL RESULTS

A. Scenario I - Static λ

Fig. 8 to 15 show the cores temperature, lifetime deposit
and consumption, cache selection decision, and total power
consumption, with λ = 7E − 4, for different methods. We
start by considering a limited simulation time and only one
λ case to better show the behavior of different methods. We
highlighted the most relevant comparison points by drawing
rectangles in figures and adding numbers in a circle that
indicate to which figures this trace should be compared to.
For instance, in Fig. 9, there is a red rectangle for endurance
deposit with a number 8 inside the circle to show the main
differences of Hybrid Reactive method from Fig. 8 (i.e.,
Reactive Method). Also, as the power traces of all the methods
are different, we did not highlight them in the figures.

As shown in Fig. 8, Reactive method keeps cores tempera-
ture below a limit (343.15 K = 70 °C). This is due to a fixed
lifetime threshold for cores to guarantee the lifetime longer
than 5 years. The highlighted area in the temperature subplot
represents each task running on the server. This method only
uses SRAM cache technology to meet the performance goals
at the expense of higher leakage power consumption. On
the other hand, Hybrid Reactive method (Fig. 9) provides
better energy efficiency than Reactive because of selecting
RRAM cache for some tasks, while guaranteeing the RRAM
endurance constraint. The main difference between Hybrid
Reactive and Reactive methods is endurance deposit subplot in

Fig. 8 and 9. Reactive method always uses SRAM cache (red
background color), while Hybrid Reactive method represents
the usage of energy efficient RRAM (green background color).
FCFS+Static MPC method (Fig. 10) uses the core lifetime
deposit to maximize the overall task QoS (performance) with
higher core power consumption because of the increased
core frequency. However, the total energy consumption of the
system is controlled by selecting the RRAM more frequently
than Hybrid Reactive, leading to similar energy consumption,
while still maintaining an endurance deposit larger than 0.

FCFS+Dynamic MPC, as shown in Fig. 11, determines a
dynamic target temperature with respect to the lifetime deposit
and system idle time ratio, which is T target

cores = 352.15K (i.e.,
79 °C) in this scenario. This gives the opportunity to better
distribute the lifetime deposit among all the tasks in a time slot.
Therefore, FCFS+Dynamic MPC improves the overall QoS
(for all the executed tasks) compared to FCFS+Static MPC
that uses the deposit for a limited number of tasks. The main
difference between FCFS+Static MPC and FCFS+Dynamic
MPC can be seen from subplots of temperature and lifetime
deposit in Fig. 10 and 11. PQ+Static MPC method reduces the
number of overdue tasks compared to other approaches due to
using proactive queue optimization method. For instance, as
shown in Fig. 12, it executes the task 9 before 8 to meet its
expected end time limit.

Compared to PQ+Hyb+MPC (Fig. 13), COCKTAIL bene-
fits from the proposed endurance-aware cache selection pol-
icy (EAC), providing higher energy efficiency (larger green
area). This is because PQ+Hyb+MPC uses a conservative
endurance consumption limit. To evaluate the effect of cores
reliability management, COCKTAIL attains better QoS than
PQ+EAC+Rea (Fig. 14) thanks to our dynamic MPC-based
core management policy. As a result, COCKTAIL (Fig. 15)
integrates the advantages of all these methods to increase the
efficiency of HPC systems. To be more precise, Fig. 16, 17,
and 18 solely show the specific effects of each proposed policy,
including queue optimization, cache selection, core reliability
management, on cache endurance deposit, core temperature,
and core lifetime deposit compared to other state of the arts.

Table V shows the results for Reactive method under
different λ values. With the increase of λ (less idle time),
energy consumption, average QoS, total overdue tasks and
time all increase due to the higher number of executed tasks
in a time slot. For λ = 7E − 4, tasks occupy the server
(almost zero idle time) over the whole time slot, leading to
higher number of overdue tasks in the presence of reliability
management. As a result, the average QoS is degraded by
4x when compared to λ = 6E−4. For better comparison, we
evaluate the efficiency of different methods (improvements) for

TABLE V
RESULTS FOR REACTIVE METHOD UNDER STATIC λ USING ALL THE

BENCHMARKS

λ 4E-4 5E-4 6E-4 7E-4
Energy (J) 1.2E9 1.4E9 1.5E9 1.7E9
Average QoS 2.5 3.3 6.5 31.8
Worst-case QoS 44.0 36.4 90.7 249.0
Overdue tasks (#) 1453 2830 7035 16320
Overdue time (s) 2.8E6 6.6E6 3.9E7 4.7E8
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Fig. 8. Reactive method.

8

Fig. 9. Hybrid Reactive method.

9

Fig. 10. FCFS+Static MPC.

10

Fig. 11. FCFS+Dynamic MPC method.

10

Fig. 12. PQ+Static MPC method.

15

8,9

Fig. 13. PQ+Hyb+MPC method.

15

Fig. 14. PQ+EAC+Rea method.

8,9

Fig. 15. COCKTAIL.

different metrics compared to Reactive method, as a baseline.
According to the results in Table VI, Hybrid Reactive

method achieves up to 6% energy savings than Reactive
method. In addition, Hybrid Reactive provides up to 33%
and 39% average QoS and overdue time improvements, re-
spectively. This is because with leakage power savings from
RRAM cache, the processor has room for increasing the cores
power. Hence, it results in further performance improvement
under the same temperature limit, especially in tasks conges-

tion situation (higher λ ). However, Hybrid Reactive is conser-
vative in reliability management, always keeping the lifetime
deposit positive. FCFS+Static MPC uses the endurance-aware
cache selection method that obtains higher energy savings for
cache, and it also uses MPC to boost performance. The cache
energy savings with higher temperature threshold for the cores
given by MPC (maximum allowed cores temperature 373.15 K
= 100 °C, which is higher than nominal temperature for
lifetime management) brings better performance than Hybrid
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Fig. 16. Endurance deposit comparison of differ-
ent cache management methods.

Fig. 17. Temperature comparison of different
scheduling and core management methods.

Fig. 18. Lifetime deposit comparison of different
core management methods.

TABLE VI
HYBRID REACTIVE, FCFS+STATIC MPC, PQ+STATIC MPC, FCFS+DYNAMIC MPC, PQ+HYB+MPC, PQ+EAC+REA, AND COCKTAIL

IMPROVEMENTS (%) COMPARED TO BASELINE (REACTIVE) UNDER STATIC λ USING ALL THE BENCHMARKS

Hybrid
Reactive

FCFS+Static
MPC

PQ+Static
MPC

FCFS+Dynamic
MPC PQ+Hyb+MPC PQ+EAC+Rea COCKTAIL

λ (xE−4) 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7
Energy (%) 6 5 3 2 -1 0 2 3 -1 1 2 3 -2 -1 1 2 -3 -2 0 1 7 6 4 3 -2 -1 1 2
Average QoS (%) 4 5 9 33 12 11 14 43 23 27 31 47 24 24 28 48 30 34 39 41 17 24 30 47 31 36 42 52
Worst-case QoS (%) 2 4 7 18 4 6 10 24 59 26 10 24 12 9 27 29 66 23 20 23 59 26 10 25 66 28 23 30
Overdue tasks (#) (%) 4 8 7 9 16 14 13 14 49 50 35 21 43 37 27 18 63 63 46 20 46 49 34 21 65 65 50 26
Overdue time (s) (%) 10 13 16 39 22 22 24 51 73 77 51 54 59 52 47 56 85 84 64 48 71 76 51 55 86 86 69 60

Reactive, while reaching almost similar results in terms of total
energy consumption than Reactive method.

Differently from FCFS+Static MPC, PQ+Static MPC ex-
ploits the proposed proactive queue optimization method to
further improve QoS and reduce the number of overdue tasks
with the same energy consumption. In order to investigate the
efficiency of our dynamic MPC method compared to static
MPC, our results demonstrate that FCFS+Dynamic MPC pro-
vides less overdue time without the usage of proactive queue
optimization method compared to FCFS+Static MPC. This is
due to finding the best temperature threshold with respect to
the system idle time ratio and distributing the lifetime deposit
among the all executed tasks. In addition, our results show the
higher efficiency for dynamic MPC compared to Reactive and
our endurance-aware cache selection method (EAC) to Hybrid
in terms of QoS and overdue tasks by comparing COCKTAIL
with PQ+EAC+Rea and PQ+Hyb+MPC, respectively. Finally,
COCKTAIL combines the benefits of proactive queue opti-
mization and endurance-aware cache selection, together with
dynamic MPC-based reliability management to co-optimize
the system efficiency, while ensuring the system lifetime
longer than 5 years, as shown in Table VI.

In summary, COCKTAIL obtains significant improvements
on average QoS (up to 52%), worst-case QoS (up to 66%),
overdue tasks (up to 65%), and overdue time (up to 86%)
compared to the Reactive method, while consuming almost
the same energy (i.e., up to 2% improvements) over all the
time slots. In addition, our proposed method (i.e., COCKTAIL)
outperforms the other methods, providing better trade-offs in
all performance metrics. This is because COCKTAIL uses
energy saved by the hybrid cache and lifetime deposit to effi-
ciently boost the tasks’ performance (i.e., better average and
improving the worst-case QoS). Thus, it achieves better overall

energy efficiency (i.e., performance/power) compared to other
state-of-the-art techniques. Moreover, it has the capability of
reordering tasks to reduce the number of overdue tasks and
final penalty time in executed tasks.

B. Scenario II - Dynamic λ

In this scenario, we generate different λ values for each time
slot during the whole simulation time. Similar to Scenario I,
we first show the results of Reactive method (baseline) for
different metrics in Table VII. Then, we compare the different
methods with respect to the baseline, presented in Table VIII.

Based on the obtained results, the Hybrid Reactive method
achieves the highest energy savings, but at the cost of the
lowest QoS. Then,PQ+Static MPC, FCFS+Dynamic MPC,
PQ+Hyb+MPC, and PQ+EAC+Rea provide better perfor-
mance than Hybrid Reactive and FCFS+Static MPC, thus
highlighting the benefits of proactive queue optimization,
endurance-aware cache selection (EAC), and dynamic relia-
bility management, individually or by any combination of two
methods, on the QoS. Finally, COCKTAIL outperforms all the
methods by reaching the best overall performance.

C. Corner Cases Analysis for Memory-Intensive and Non-
Memory-Intensive Scenarios

In order to evaluate the memory-bounded tasks’ behavior
and their overheads on the LLC, we build two new experiments
for memory-intensive and non-memory-intensive tasks. Based

TABLE VII
RESULTS FOR REACTIVE METHOD UNDER DYNAMIC λ USING ALL THE

BENCHMARKS

Energy Average Worst-case Overdue Overdue
QoS QoS tasks (#) time (s)

1.4E9 9.6 224.2 6344 1.1E8
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TABLE VIII
IMPROVEMENTS OF DIFFERENT METHODS IN COMPARISON TO THE

BASELINE (REACTIVE) UNDER DYNAMIC λ USING ALL THE BENCHMARKS

Energy
(%)

Avg
QoS
(%)

WC
QoS
(%)

Overdue
tasks (#)
(%)

Overdue
time (s)
(%)

Hybrid Reactive 4 18 23 6 27
FCFS+Static MPC 1 28 35 12 40
PQ+Static MPC 1 35 35 27 46
FCFS+Dyn. MPC 0 54 64 32 75
PQ+Hyb+MPC -1 56 62 43 75
PQ+EAC+Rea 5 35 36 27 47
COCKTAIL 0 60 64 47 80

on the different benchmarks’ read and write accesses to the
LLC (as shown in Fig. 7), we select four non-memory-
intensive tasks (i.e., exchange2, nab, namd, and povray) and
four memory-intensive tasks (i.e., lbm, cactusBSSN, mcf, and
omnetpp) for each experiment under the dynamic scenario
(i.e., Section VI-B2), respectively. Table IX shows the results
for the baseline method (i.e., Reactive) for both memory-
intensive and non-memory-intensive scenarios. Then, Table
X and XI show the improvements of the different methods
compared to the baseline.

According to Table X, the hybrid cache architecture
achieves higher energy saving for non-memory-intensive tasks,
when compared to the mixture of all tasks’ scenario (i.e., Table
VIII). The reason is that the energy-efficient RRAM cache is
selected more often by the system when a low load (write
access) is imposed on the LLC by the tasks. Therefore, the
PQ+EAC+Rea method gives the best energy reduction (i.e.,
6%), and the COCKTAIL outperforms all the methods by
reaching the best overall performance (higher performance
with similar energy consumption) due to using the additional
power budget obtained by the cache management to increase
the cores’ frequency.

For memory-intensive tasks, Hybrid Reactive method
achieves no performance improvement compared to the base-
line, as shown in Table XI. This is due to the usage of

TABLE IX
RESULTS FOR REACTIVE METHOD UNDER DYNAMIC λ FOR MEMORY- AND

NON-MEMORY-INTENSIVE SCENARIOS

Memory Energy Average Worst-case Overdue Overdue
Intensive QoS QoS tasks (#) time (s)
No 1.4E9 5.9 130.5 5537 2.8E7
Yes 1.4E9 3.9 53.6 4471 2.2E7

TABLE X
IMPROVEMENTS OF DIFFERENT METHODS IN COMPARISON TO THE

BASELINE (REACTIVE METHOD) UNDER DYNAMIC λ FOR THE
NON-MEMORY-INTENSIVE SCENARIO

Energy
(%)

Avg
QoS
(%)

WC
QoS
(%)

Overdue
tasks (#)
(%)

Overdue
time (s)
(%)

Hybrid Reactive 5 17 27 14 34
FCFS+Static MPC 3 22 32 20 41
PQ+Static MPC 3 27 35 25 54
FCFS+Dyn. MPC 1 37 33 39 61
PQ+Hyb+MPC 1 38 27 44 66
PQ+EAC+Rea 6 26 35 24 54
COCKTAIL 1 41 35 47 71

TABLE XI
IMPROVEMENTS OF DIFFERENT METHODS IN COMPARISON TO THE

BASELINE (REACTIVE METHOD) UNDER DYNAMIC λ FOR THE
MEMORY-INTENSIVE SCENARIO

Energy
(%)

Avg
QoS
(%)

WC
QoS
(%)

Overdue
tasks (#)
(%)

Overdue
time (s)
(%)

Hybrid Reactive 3 0 1 0 1
FCFS+Static MPC -2 7 4 7 11
PQ+Static MPC -2 10 4 11 27
FCFS+Dyn. MPC -2 28 31 30 58
PQ+Hyb+MPC -3 30 29 34 68
PQ+EAC+Rea 4 8 5 7 27
COCKTAIL -2 31 31 37 70

SRAM cache, when a high load (write access) is imposed
on the LLC. In this case, there is no room (additional power
budget) for the cores to increase their frequency. Thus, energy
savings only occur during the idle times of the system.
Despite the lack of advantage in using the hybrid cache for
the memory-intensive tasks, COCKTAIL still outperforms all
methods by reaching the best overall performance thanks to
the proposed proactive queue optimization and dynamic MPC-
based reliability management methods.

D. Latency Overhead Analysis for The Different Cache Archi-
tectures

According to Table II, the write latency in the SRAM cache
is 7x lower than RRAM, while the read latency in RRAM
is 2x lower than SRAM. Therefore, RRAM cache is faster
than SRAM when read accesses mainly go to the LLC. In
addition, most of the benchmarks have more read accesses
than write accesses to the LLC based on the detailed performed
profiling (Fig. 7). Hence, this situation gives us an opportunity
to compensate the write latency overhead of RRAM during the
read access times.

In the proposed endurance-aware cache selection method,
the endurance deposit of RRAM quickly decreases when a lot
of write accesses imposed on the RRAM. Therefore, the oper-
ating cache changes to SRAM for reliability and performance
concerns. For the memory-write-intensive benchmarks, in the
worst case, the hybrid cache architecture uses the SRAM cache
and behaves the same as the SRAM-only architecture. That
is, the hybrid cache architecture outperforms the traditional
SRAM architecture for the tasks with the higher number of
read accesses to the LLC.

In this work, we analyzed the latency overhead of the hybrid
and SRAM-only architectures according to the latency pre-
sented in Table II and the time periods of using different cache
technologies obtained by our proposed cache-selection method
in a dynamic scenario (i.e., Section VII-B). The results show
that the hybrid cache architecture achieves 9% less latency
overhead than the SRAM architecture. This is because, first,
the number of read accesses of most workloads to the LLC
is higher than their write accesses. Second, during the write-
intensive access periods, the operating cache is switched to
SRAM for performance and reliability concerns, thus avoiding
the large write latency of the RRAM.

For the corner cases analysis on memory-intensive and non-
memory-intensive workloads’ scenarios (i.e., Section VII-C),
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our proposed strategy (i.e., COCKTAIL) achieves 8% and 25%
cache latency reduction (i.e., better task execution time) for
memory-intensive and non-intensive scenarios, respectively,
compared to the SRAM-only architecture.

VIII. CONCLUSION

In this paper we have proposed COCKTAIL, a holistic
strategy framework to jointly optimize the energy efficiency
of multi-core server processors and tasks performance in the
HPC context, while guaranteeing system lifetime reliability.
In COCKTAIL we have integrated for the first time in liter-
ature, a novel proactive queue optimization and endurance-
aware cache selection method, together with dynamic MPC-
based reliability management policy for server processors
with hybrid cache architectures (integrated SRAM and RRAM
technologies). We have compared our framework with the
state-of-the-art temperature-dependent reliability and energy
optimization techniques for HPC systems, and the experi-
mental results have shown that COCKTAIL provides up to
60% QoS improvement. Moreover, our strategy guarantees
the design lifetime for the whole system, when running very
diverse sets of HPC tasks.
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