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Abstract

We propose a framework to find optimal price-based policies to regulate markets
characterized by oligopolistic competition and in which consumers make a discrete
choice among a finite set of alternatives. With this framework, we can include general
discrete choice models available in the literature to capture heterogeneous consumer
behavior. In our work, consumers are utility maximizers and are modeled according to
random utility theory. Suppliers are modeled as profit maximizers, according to the
traditional microeconomic treatment. Market competition is modeled as a
non-cooperative game, for which an ε-equilibrium solution is sought. Finally, the
regulator can affect the behavior of all other agents by giving subsidies or imposing
taxes to consumers. In transport markets, economic instruments might target specific
alternatives, to reduce externalities such as congestion or emissions, or specific
segments of the population, to achieve social welfare objectives. In public policy,
different agents have different individual or social objectives, possibly conflicting, so
value judgements are used to compare monetary and non-monetary objectives. We
present a mixed integer optimization model to find optimal policies subject to supplier
profit maximization and consumer utility maximization constraints. Then, we propose
a model-based heuristic approach based on the fixed-point iteration algorithm that
finds ε-equilibrium solutions for the market. Numerical experiments on an intercity
travel case study show how the regulator can optimize its decisions for different policy
instruments and for different objective functions.

Keywords: equilibrium, regulation, discrete choice modeling
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1 Introduction

Public intervention in transport markets can be motivated by several phenomena. For
decades it has been acknowledged that transport markets are often the source of negative
externalities, two well-known cases of which are pollution and congestion. Policies to
address these issues include road pricing (Button and Verhoef, 1998; Anas and Lindsey,
2011), taxes on fuel or on vehicle purchase (Fullerton andWest, 2002) and creation of low
emission zones (De Borger and Proost, 2013; Cullinane and Bergqvist, 2014), among
others. More recently, much attention is given to the contribution of the transport
sector to the increase of greenhouse gas emissions which are a leading cause of climate
change (IPCC, 2014). Solutions that include a carbon tax are frequently proposed to
reduce the negative impact of mobility on the environment. From a social perspective,
a public entity might want to intervene in a transport market to incentivize mobility
under certain circumstances. Indeed, improving mobility is often regarded as a means
to increase economic output and enhance access to job opportunities or other activities
(Van Goeverden et al., 2006; Guzman and Oviedo, 2018). Additionally, many transport
markets, alike other network industries such as energy and telecommunications, are
natural monopolies where suppliers benefit from large economies of scale and consumers
place greater value on large networks than on small ones (Farsi et al., 2007).
Public intervention can take many forms. In this work, we look at regulation.
Regulation is defined as an indirect public intervention aimed at orienting actors
towards some welfare goals (Ponti, 2011). In this context, regulation can be seen as a
middle way between a command-and-control approach and a pure market
competition approach. Regulation can take various forms, which are generally framed
within competition and antitrust laws that exist at local, national and international
level and determine how a regulator can influence the market. One common approach
to regulation is the use of economic instruments such as subsidies and taxes, which are
the focus of this work.
In this paper, we propose a framework to find optimal policies to regulate oligopolistic
transport markets where demand is modeled at a disaggregate level using discrete
choice models, according to random utility theory. In markets characterized by
imperfect competition between suppliers and by heterogeneous consumer demand,
regulation affects the strategic decisions of suppliers, which in turn are influenced by
the preferences of the customers and by the decisions of their competitors.
In the literature there exist methodologies for both discrete choice-based welfare
optimization and competition modeling with welfare-maximizing regulator. However,
to the best of our knowledge, contributions that can be classified in the former
category do not explicitly account for strategic interactions between suppliers, while
works belonging to the latter category do not allow for differentiated policies based on
a disaggregate demand function. Therefore, we integrate the existing literature by
proposing a methodology that accommodates discrete choice models into a
game-theoretic framework of regulated competition.
Our approach allows to exploit an estimated discrete choice model and include it by
means of simulation in a model of regulated competition featuring heterogeneous
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demand, multi-product offer by suppliers and price differentiation. Only a few
assumptions are made about the demand and the specification of the discrete choice
model, in order to accommodate advanced choice models, such as mixtures of logit,
multivariate extreme value models or hybrid choice models. The use of models that
capture complex disaggregate choice behavior allows the regulator to account for
product differentiation and consumer behavioral heterogeneity at the individual level,
and therefore to better tailor its policies based on tradeoffs between different agents.
The remainder of this paper is organized as follows. Section 2 provides a literature
review on social welfare approaches and on their use in presence of discrete choice
models of user behavior and of imperfect competition. Section 3 presents our discrete
choice-based optimization model for regulated competition. The model can be
integrated in an algorithmic framework that finds ε-equilibrium solutions for the
market. Section 4 illustrates numerical experiments performed on a case study
representing an intercity travel market. Finally, Section 5 concludes the paper and
provides directions for future research.

2 Literature review

Welfare economics is generally understood as the problem of achieving a social
maximum derived from individual desires by comparing and ranking different social
states (Arrow, 1951). Similarly, social choice theory aims at creating a framework that
explores normative principles to support policy design and evaluation (Hausman
et al., 2016).
If we accept the postulate that interpersonal comparisons of utilities are meaningful,
then value judgements are required to define a relation between utilities of different
individuals and to aggregate them into a mathematical formula measuring social welfare.
The necessity and the appropriateness of comparing gains of certain individuals with
losses of other individuals when evaluating economic policies are central in the seminal
works by Pareto (1906), Bergson (1938) and Samuelson (1948).
Pareto (1906) proposes an ordinal approach to utilities and rejects the idea of welfare as
an aggregation of individual cardinal utilities. In this approach, social states can only
be compared in terms of preference and indifference relations for each individual. Then,
a state is a Pareto-improvement over another state if and only if at least one individual
is better off and, at the same time, no individual is worse off. Kaldor (1939) and Hicks
(1939) propose weaker efficiency conditions by relying on hypothetical compensations
which could be transferred from individuals who are better off to those who are worse
off to move from an initial state to a Pareto-improving state, without imposing any
distributional condition.
Bergson (1938) and Samuelson (1948) take a different point of view and introduce the
concept of an individualistic social welfare function. Such function should allow the
comparison of the utilities of different individuals and should take a form chosen
according to ethical value judgements, which are to be agreed upon by society based
on some sort of ethical assumptions. Later studies further develop these concepts by
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looking at the interdependencies between an individual’s social welfare function,
representing ethical preferences, and her own utility function, representing personal
tastes (Harsanyi, 1955; Sen, 1977), and formalize interpersonal comparability through
social welfare functionals (d’Aspremont and Gevers, 2002; Sen, 2017).
Social welfare functionals are flexible enough to incorporate many approaches to
public policy, allowing not only descriptive but normative analyses. Indeed, in the last
decades the study of social welfare has expanded to include subjective well-being,
distributional preferences and intergenerational equity as criteria to be considered
during the decision-making process (Fleurbaey, 2009; Adler and Fleurbaey, 2016). In
particular, the issue of climate change has been included in social welfare studies
through the concept of social cost of carbon (SCC), defined as the monetary value of
the damage caused by emitting one more unit of carbon at some point of time
(Nordhaus, 1994; Pearce, 2003; Stern et al., 2006). The SCC is typically derived from
integrated assessment models which require an assumption on the future path of CO2

concentration in the atmosphere. The range of SCC estimates available in the
literature is quite broad and is dependent on the values of the parameters used in each
study, the most important of them being the marginal utility of consumption, the
social discount rate assigned to future generations, and the equity parameter that
assigns higher weight to the worse-off when computing the social welfare function
(Adler et al., 2017). Nevertheless, this indicator is central in shaping climate policy
and is extensively used within cost-benefit analyses.

Welfare economics uses social welfare functions to aggregate individual consumer
behavior, which is generally modeled as the choice of a bundle of continuous goods
subject to a budget constraint. Complementing the continuous case, the theory of
discrete choice modeling was developed to model behavioral situations in which an
agent makes a choice from a finite set of discrete alternatives (Ben-Akiva and Lerman,
1985). Discrete choice models account for consumer behavioral heterogeneity at the
disaggregate level. As such, these models allow for complex and precise
representations of individual behavior by means of utility functions that capture
tastes and socio-economic characteristics.
Small and Rosen (1981) discuss how conventional methods of applied welfare
economics can be generalized to handle random utility models of discrete choices. The
authors recognize that welfare judgments are of paramount interest when analyzing
taxes and subsidies in some markets for which discrete choice models are used. They
conclude that welfare effects can be derived directly from micro data using the utility
functions, avoiding the explicit use of aggregate demand functions, which are not
normally obtained in closed form. In particular, consumer surplus can be expressed in
different forms depending on the random term distributional assumptions. One of
these forms is the log sum metric, utilized in the case of multivariate extreme value
distribution. Batley and Ibáñez (2013) analyze the assumptions underlying the
approach by Small and Rosen (1981). In particular, they show that the consumer
surplus measure requires income effects of price and income changes to be equal to
zero, thus excluding the possibility to have heterogeneous marginal utilities of income,
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which causes path dependence. Notwithstanding this limitation, the literature on
welfare measurements using discrete choice models has largely followed the
Marshallian framework, as noted by Hess et al. (2018). Alternative approaches that
account for non-constant marginal utility of income rely on the Hicksian compensating
variation (Hau, 1985; Jara-Díaz and Videla, 1990; McFadden, 1995; Morey et al., 2003;
Batley and Dekker, 2019). However, both analytical and simulation-based methods
come with a substantial computational burden, and this is the main reason for their
limited use in practical applications to date. Finally, another method to account for
different marginal utilities of income is proposed by Hau (1986), who modifies the
approach by Small and Rosen (1981) to incorporate explicit value judgements by
assigning distributional weights to segments of the population. The methodology is
then use to carry out a transport infrastructure cost-benefit analysis where the
population is stratified by income.
In prescriptive studies, we encounter some works whose goal is to design optimal fares,
taxes or subsidies using a model of discrete choice. De Borger (2000) presents a model
to determine a welfare-optimal two-part tariff under logit model of discrete choice,
subject to budgetary constraints and distributional preferences. The fixed and the
variable component of the tariff mimic the choices of ownership of a vehicle and
quantity of consumption in terms of traveled kilometers. The expected value of the
maximum utility for the logit model is obtained using the log sum welfare measure,
interpreted as consumer surplus up to a constant, as in Small and Rosen (1981). It is
shown that this methodology can be generalized to other classes of discrete choice
models, for which there is no closed-form solution for the objective function, but no
information is provided about computational tractability. A similar approach is
followed in De Borger and Mayeres (2007), where nested constant elasticity of
substitution utility functions are used. Borndörfer et al. (2012) propose a non-linear
formulation to optimize fares on a public transport network. The demand functions
take into account spatial heterogeneity in terms of origin-destination pairs and are
based on a logit model to compromise between model accuracy and computability.
Various objective functions are proposed to allow for the maximization of revenue,
profit, demand, user benefit and social welfare.

The discrete choice literature dealing with welfare issues shares the assumption that
consumers are the only agents who react to welfare-maximizing policies through their
demand function. This assumption is realistic when studying a monopolistic market,
but it is limiting when studying a regulated oligopolistic market where suppliers have
market power and have objectives that conflict with those of the regulator. Indeed, in
the latter case the outcome is determined jointly by all decision-makers, and the
strategic behavior of firms in oligopolies is usually modeled using game theory
(Fudenberg and Tirole, 1991; Osborne and Rubinstein, 1994). Relevant streams of
literature that combine oligopolistic competition with social welfare analyses include
the study of mixed oligopolies, that is, markets in which public enterprises interact
with private firms to improve resource allocation in an imperfectly competitive market
(De Fraja and Delbono, 1989; Cremer et al., 1991), and the study of network
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industries (Shapiro, 1998). However, none of these works incorporates discrete choice
models of behavior.

To summarize, the literature review reveals that (i) discrete choice-based welfare
analyses do not explicitly consider possible strategic interactions between suppliers,
and (ii) game-theoretical competition models featuring a welfare maximizing public
entity use aggregate demand functions that do not allow for heterogeneous policies.
With our work, we present a comprehensive market model that integrates discrete choice
models into a game-theoretic model of regulated competition, where the regulator aims
to optimize a cardinal social welfare function which admits interpersonal comparisons
of utility. In this context, the added value of the discrete choice model is twofold. First,
it allows to generate a more precise representation of demand by modeling behavioral
heterogeneity at the individual level. Secondly, it allows to develop policies that leverage
on disaggregate demand models to target specific segments of the population.

3 A framework for regulated competition with discrete
choice models

We consider a regulated competitive market where a number of different products are
offered to a population by two or more suppliers that have market power.
On the demand side, let N represent the set of heterogeneous consumers (or groups of
consumers), who are assumed to be utility maximizers, and let I indicate the discrete
and finite set of alternatives available in the market. Utility functions Uin are defined
for each consumer or group of homogeneous consumers n ∈ N and alternative i ∈ I in
accordance with random utility theory, accounting for the socio-economic characteristics
and tastes of the individual and for the attributes of the alternative.
On the supply side, let K represent the set of suppliers and let Ik ⊂ I indicate the
subset of alternatives controlled by each supplier k ∈ K. We impose that ∪k∈KIk ⊂ I,
in order to allow customers to leave the market without purchasing. We assume that
each supplier solves a discrete choice-based optimization problem, modeled in the form
of a mixed integer optimization problem, aimed at finding the strategy that maximizes
its profits. We define as Sk the set of strategies that can be selected by supplier k. A
strategy consists in a vector (or bundle) p of decisions about all prices pin, potentially
differentiated for each (class of) consumer n ∈ N and alternative i ∈ Ik.
The decisions of the suppliers affect the utility functions U of the consumers, whose
deterministic part V can be generically expressed as

Vin = βpinpin + qin, (1)

where βpin is a pre-estimated parameter of the discrete choice model and qin is the
scalar product of the vectors of all the exogenous variables of the choice model and the
corresponding pre-estimated parameters.
The peculiarity of our approach is the use of discrete choice models to inform the
suppliers’ strategic behavior. Pacheco Paneque (2020) and Bortolomiol et al. (2019)
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provide a detailed discussion of the challenges associated with the integration of
discrete choice models within mixed integer optimization models and within market
equilibrium models and propose some methodologies to overcome them. In particular,
Pacheco Paneque (2020) presents a mixed integer linear formulation which
accommodates a discrete choice model of demand by relying on simulation to draw
from the distribution of the error term of the utility function. Bortolomiol et al.
(2019) introduce an algorithmic framework to find ε-equilibrium solutions of
oligopolistic markets where demand is modeled at the disaggregate level using discrete
choice models.
Next, we build on the aforementioned works to design a modeling framework that
includes the role of the regulator. The regulator uses economic instruments, that is,
subsidies and taxes, to influence the behavior of the other agents, thus modifying the
equilibrium outcome of the market. In a general case, we assume that the regulator has
a budget B which is available to finance some policies.
The policies set by the regulator affect the price paid by consumer (group) n for
alternative i, which in return affect both the utilities Uin of the consumers, and the
profits of the suppliers. Prices can be decomposed as

pin = rin + tin, (2)

where rin is the revenue made by the supplier in case of purchase and tin is the tax or
the subsidy set by the regulator. If tin > 0, then a tax is imposed on the purchase of
alternative i by customer n. If tin < 0, then a subsidy is offered for the same purchase.
Then, we can write an optimization problem from the point of view of the regulator,
whose goal is to maximize a social welfare function (SWF) at equilibrium. Equilibrium
conditions require that no market agent has an incentive to deviate from the current
status.
Let us now look in detail at the different components of the modeling framework.

3.1 Constraints

Three sets of conditions need to be enforced to model the common behavioral
assumptions about consumers and suppliers: (i) utility maximization conditions; (ii)
profit maximization conditions; (iii) equilibrium conditions. On top of them, other
problem-specific constraints can be defined to model specific market features.

3.1.1 Utility maximization

Concerning utility maximization, we apply the simulation-based linearization approach
proposed by Pacheco Paneque (2020). A set R of independent draws are extracted from
the known error term distribution of the discrete choice model for each n ∈ N and
i ∈ I, corresponding to different behavioral scenarios. For each scenario r ∈ R, the
drawn error term parameter ξinr is included in the utility function as follows:

Uinr = Vin + ξinr, (3)
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and consumers deterministically choose the alternative with the highest utility. The
expected maximum utility, corresponding to the utility of the chosen alternative, is
equal to

EMUnr = max
j∈I

Ujnr. (4)

Then, we can define the binary variables Pinr to express the probability of n choosing i
in scenario r as

Pinr =

{
1 if Uinr = EMUnr,

0 otherwise,
(5)

Expressions (3-5) can be included in a mixed integer linear optimization model through
the following set of constraints:

Uinr = βpin(rin + tin) + qin + ξinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (6)

Uinr ≤ EMUnr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (7)

EMUnr ≤ Uinr +MU(1− Pinr) ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (8)∑
i∈I

Pinr = 1 ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (9)

Pinr ∈ {0, 1} ∀i ∈ I, ∀n ∈ N, ∀r ∈ R. (10)

Over a sufficiently large number of draws, we obtain the choice probabilities

Pin =

∑
r∈R Pinr

| R |
(11)

and the expected maximum utilities

EMUn =

∑
r∈R EMUnr

| R |
. (12)

Numerical experiments by Pacheco Paneque (2020) show that good approximations of
the choice probabilities and of the expected maximum utility can be obtained with a
fairly low number of draws.

3.1.2 Profit maximization

The profit maximization problem of each supplier can be expressed through the
following mixed integer linear optimization model:

max
pk

πk =
∑
i∈Ik

∑
n∈N

θnPinrin, (13)

s.t. constraints (6-10). (14)

In (13), rin is the revenue obtained from the sale of product i to consumer n (see
Equation 2), Pin is the probability that consumer group n chooses alternative i ∈
Ik (see Equation 11), and θn is the size of group n, i.e. the number of individuals
with homogeneous socio-economic characteristics. The supplier optimization problem
constitutes lower-level optimization constraints for the regulator optimization problem.
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3.1.3 Equilibrium conditions

Consistently with Bortolomiol et al. (2019), we use ε-equilibrium conditions to identify
stationary states of the system in which no competitor can increase its profit by more
than 1+ε times its current payoff by unilaterally changing its strategy. Formally, let us
consider a market state S = (p, t), which is defined by the strategies pk of all suppliers
k ∈ K and the vector of all taxes (or subsidies) tin set by the regulator. Let us define as
πk(S) the expected profit of supplier k in state S and as πmaxk (S−k) the expected profit
obtained by supplier k when best responding to state S−k, defined by the strategies of
the regulator and all suppliers except k. Then, S is an ε-equilibrium if

πmaxk (S−k) ≤ (1+ ε) πk(S) ∀k ∈ K. (15)

In the algorithmic framework that is outlined in Section 3.3, these equilibrium
conditions on the suppliers’ objective functions are verified by means of a heuristic
based on fixed-point iterations.

3.1.4 Problem-specific constraints

Other problem-specific constraints can be integrated in this mixed integer
formulation. For instance, many competition laws impose that the taxation or
subsidization of products sold by competing suppliers must be fair, meaning that no
competitive advantage must arise due to the intervention of the government in the
market. On the supplier side, constraints can be included to ensure that demand for
an alternative does not exceed capacity. This can be achieved by means of exogenous
priority rules that simulate the arrival process of customers, as shown in Binder et al.
(2017). With this technique, it is also possible to model price differentiation strategies
based on the time of booking. On the consumer side, price bounds can be set to define
limits for price discrimination across different population groups. All these sets of
constraints reduce the feasible set of solutions in the optimization problems of the
regulator and of the suppliers. Their effect in terms of computational time and
resulting equilibrium is generally problem-dependent. In the case study presented in
Section 4, we show how our modeling framework can integrate some of these strategic
constraints. Other constraints, including capacity constraints and the related
congestion effects, come with additional integrality constraints or non-linearities,
which require the design of ad-hoc algorithms to be tackled (Pacheco Paneque, 2020).

3.2 Objective function

The objective of the market regulator is to maximize a cardinal social welfare function
(SWF). We assume that this function takes into account all or some of the following
components: (i) expected maximum utilities of the consumers; (ii) expected profits of
the suppliers; (iii) market externalities; (iv) cost of policy implementation. To allow
for comparability of different terms, it is necessary to monetize all values that are
measured in non-monetary terms.
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Expected utilities As shown in (12), individual expected maximum utilities can be
derived directly from the discrete choice-based optimization model, thanks to the
simulation technique used to linearize the utility functions of the consumers
(Pacheco Paneque, 2020). The utility functions must be converted from preference
space into the equivalent formulation in willingness-to-pay space, as discussed by
Train and Weeks (2005). We consider linear income effects, thus adhering to the
assumption outlined by Batley and Ibáñez (2013) under which the framework by
Small and Rosen (1981) is consistent with economic theory. This means that
consumer surplus can be obtained by dividing the expected maximum utility by a cost
coefficient βp, which needs to be constant across all alternatives in the choice set and
corresponds to the constant marginal utility of income.
This component of the SWF can then be written as follows:

SWFU =
∑
n∈N

θn
EMUn

βp,n
. (16)

Expected profits The sum of the expected profits of the suppliers can also be
obtained directly from the discrete choice-based optimization model. The expected
profits of supplier k are defined in equation (13), so the sum of the expected profits is
simply

SWFπ =
∑
k∈K

πk. (17)

Externalities In transportation, externalities can be generally expressed as a function
of demand, which is itself a derived from the choice probabilities, as follows:

di =
∑
n∈N

θnPin. (18)

In the case of environmental externalities, we may approximate CO2 and other emissions
to a linear function of demand:

SWFE = −
∑
i∈I

cidi, (19)

where di is the demand for alternative i and ci is a parameter representing the monetized
cost of emissions per person choosing alternative i, which can be expressed as

ci = `i · ei · SCC, (20)

where li is the distance traveled if alternative i is chosen [km], ei is the CO2 emissions
produced per unit of distance when traveling with alternative i [ton/km] and SCC is
the social cost per unit of carbon emission [monetary unit/ton].
In the case of negative externalities caused by road congestion, it is well-known that
a non-linear relation exists between traffic volume and total travel time, which also
affects the utility of the users. This requires a fixed-point iteration approach to be used
in order to reach lower-level user equilibrium.
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Public budget The monetary impact of the policy for the regulator is given by the
difference between the taxes that are collected and the subsidies that are handed out
from and to consumers, and is therefore conditional on their choices. We can write

SWFR =
∑
i∈I

∑
n∈N

θnPintin, (21)

which can be expressed as the sum of products of the binary variables Pinr, whose
relation with Pin is defined in (11), and the continuous variables tin. This expression
can be linearized using big-M constraints. Notice that SWFR can be bounded by a
budget constraint.

To summarize, expressions (16), (17), (19) and (21) capture different parts of social
welfare which are relevant in policy-making for regulated competition. They can be
integrated in a unique objective function, or alternatively they can be treated as
different objectives in a multi-objective optimization problem. The resulting mixed
integer optimization model that maximizes a given SWF as a function of the taxation
and subsidization chosen by the regulator can be written as follows:

max
t

SWF(t, r) (22)

s.t. −Ms
in ≤ tin ≤Mt

in ∀i ∈ I, ∀n ∈ N, (23)

t ′
in = tin +Ms

in ∀i ∈ I, ∀n ∈ N, (24)

0 ≤ γ ′
inr ≤ (Ms

in +Mt
in)Pinr ∀i ∈ I,∀n ∈ N,∀r ∈ R, (25)

t ′
in − (Ms

in +Mt
in)(1− Pinr) ≤ γ ′

inr ≤ t ′
in ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (26)

−Ms
in ≤ γinr ≤Mt

inPinr ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (27)

γ ′
inr −M

s
in − (Ms

in +Mt
in)(1− Pinr) ≤ γinr ≤ γ ′

inr −M
s
in ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (28)

∑
i∈I

∑
n∈N

∑
r∈R

γinr ≤ B (29)

πk = max
rk

∑
i∈Ik

∑
n∈N

θnPinrin ∀k ∈ K, (30)

s.t. Uinr = βpin
(rin + tin) + qin + ξinr ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (31)

Uinr ≤ EMUnr ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (32)

EMUnr ≤ Uinr +MU(1− Pinr) ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (33)∑
i∈I

Pinr = 1 ∀i ∈ I, ∀n ∈ N,∀r ∈ R, (34)

Pinr ∈ {0, 1} ∀i ∈ I, ∀n ∈ N, ∀r ∈ R. (35)

The objective function (22) maximizes the social welfare function defined by the
regulator. Constraints (23) impose that the subsidies and taxes set by the regulator
respect the given bounds. Constraints (24) define the non-negative variables t ′in by
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means of a transformation. Notice that the parameters Ms
in and Mt

in, which are upper
bounds representing the maximum possible values for the subsidies and taxes, are
necessary for modeling purposes and appear in constraints (24-28). This is needed to
linearize the product of the binary choice variable Pinr and the continuous variable tin,
which is done in constraints (25-28). More specifically, constraints (25-26) say that
each auxiliary variable γ ′inr is equal to t ′in if Pinr is equal to 1 and is equal to 0 if Pinr is
equal to 0, while constraints (27-28) say that γinr is equal to the product Pinr · tin.
Constraint (29) ensures that the budget of the regulator is respected. The expressions
30 represent the objective functions of the lower-level problem, enforcing the profit
maximization condition on all suppliers. Finally, constraints (31-35) are the utility
maximization constraints (6-10).

3.3 Model-based heuristic framework

We propose a model-based heuristic approach based on the fixed-point iteration
algorithm to solve the problem described in Sections 3.1 and 3.2. From model (22-35),
two mixed integer linear optimization models are derived: the supplier’s profit
maximization model (30-35), where the regulator’s decisions as well as the prices of all
other suppliers are fixed, and a modified regulator’s welfare maximization model
(22-29)+(31-35) where all supply prices are fixed and the optimization constraints
(30) are not enforced. Algorithm 1 presents the pseudocode of the proposed solution.
Starting from an initial state S = (p, t), the fixed-point iteration algorithm works as
follows. First, the regulator solves model (22-29)+(31-35) to find t∗ which maximizes
the SWF given p, and the expected profits πk(S) are computed for state S∗ = (p, t∗).
Then, each supplier solves model (30-35) given t∗ and p−k to find the potential
increase in profits obtained by best responding to state S∗. If the equilibrium
conditions are satisfied for all suppliers, then S∗ is an ε-equilibrium solution for the
problem. Finally, state S is updated to reflect best response solutions before restarting
with a new iteration. Checks can be made to track visited states and diversify the
search of the solution space within the algorithm. The algorithm can be terminated
based on predefined stopping criteria, such as number of ε-equilibrium solutions found
or number of iterations.
Notice that, when using demand functions based on general disaggregate choice models,
which are highly non-linear and non-convex, there is no pure equilibrium existence
condition for the resulting problem, and no analytical method can be exploited to find
a pure equilibrium solution. More generally, the existence of a ε-equilibrium solution
cannot be proved for any given ε. The threshold value ε can be tuned during the
execution of the heuristic algorithm, for instance if no ε-equilibrium solution is found
within a given time or number of iterations.

4 Case study

In this section, we illustrate the model-based algorithmic framework presented in Section
3.3 on a case study for which a non-trivial discrete choice model of demand is taken
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Algorithm 1: Algorithmic solution
Input : A set I of alternatives

A set K of suppliers
A heterogeneous population
An estimated discrete choice model of consumer behavior

Output: A list E of ε-equilibrium solutions

1 E← ∅
2 Define an initial state S = (p, t)

3 repeat

4 Solve regulation model (22-29)+(31-35) to determine t∗ that
maximizes the SWF

5 Define S∗ = (p, t∗) and calculate πk(S∗) for all k ∈ K

6 for k ∈ K do
7 Solve supplier model (30-35) to find pk that

maximize expected profits given S∗−k and obtain πmaxk (S∗−k)

8 if πmaxk (S∗−k) ≤ (1+ ε) πk(S
∗) ∀k ∈ K then

9 S∗ is an ε-equilibrium solution of the problem
10 Add S∗ to list E

11 Update S = (p∗, t∗), where p∗ is a vector of best response strategies pk for
all k ∈ K

12 until stopping criterion is satisfied

13



Alternative 0 1 2 3 4 5

Mode Car IC Air Air HSR HSR
Endogenous No No Yes Yes Yes Yes
Operator - - 2 2 1 1
Dep - 23:00 7:30 9:30 4:30 8:30
Arr - 9:00 9:00 11:00 10:30 14:30
TT 12h 10h 1h30’ 1h30’ 6h 6h
WT - - 1h 1h - -
Access - 0-60’ 30-60’ 30-60’ 0-60’ 0-60’
Egress - 0-30’ 30-60’ 30-60’ 0-30’ 0-30’
Price 120 e 60 e p2 p3 p4 p5
Tax/subsidy - tIC tAIR tAIR tHSR tHSR

Table 1: Attributes of all scheduled services for the analyzed problem instance.

from the literature (Cascetta and Coppola, 2012).

4.1 Data

We consider a competitive intercity travel market connecting two cities in a typical
morning period. The distance between the two cities is assumed to be 1200 km,
independent from the travel mode. The market is served by an airline, a high-speed
rail company and an intercity train company operating under public service
obligations. Additionally, we include the possibility that customers use a private
means of transport, which is modeled as an opt-out alternative. We endogenously
model the pricing strategies of the airline and of the high-speed rail operator, which
must decide on the prices at which to sell tickets for each scheduled departure time.
The price of the intercity train and of private transport are assumed to be fixed and
exogenously given. We also endogenously model the policies of the regulator, which
decides on taxes or subsidies that lead to a welfare-maximizing outcome.
Table 1 shows the supply data used for the tests. Travelers can choose among six
different alternative services to go from origin to destination within a given time
period. Car and intercity train alternatives are modeled as exogenous options, i.e. all
their attributes are assumed to be parameters of the problem, while high-speed rail
and air alternatives are modelled endogenously, that is, the two competing operators,
each controlling two alternatives, strategically choose their prices in response to the
conditions of the market. The attributes that are included in the customer utility
functions for the different alternatives are cost, in-vehicle travel time, waiting time,
access time to and egress time from terminals, early or late arrival at destination with
respect to the desired arrival time of the traveler.

Furthermore, we generate a synthetic population of 1000 travelers for the given OD
pair. Individuals are characterized by a trip purpose (business or other), an income
level (high or low), and a specific origin location (urban or rural) which leads to
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Group (n) Size (θn) Trip purpose Reimbursement Income Origin

1 350 Other - Low Rural
2 332 Other - Low Urban
3 37 Other - High Rural
4 39 Other - High Urban
5 9 Business No Low Rural
6 24 Business Yes Low Rural
7 16 Business No Low Urban
8 68 Business Yes Low Urban
9 5 Business No High Rural
10 30 Business Yes High Rural
11 21 Business No High Urban
12 69 Business Yes High Urban

Table 2: Contingency table for the synthetic population according to socio-economic
characteristics.

different access times to terminals. For the sake of the experiments, we assume that
business travelers have a desired arrival time at destination between 9:00 and 12:00,
which follows a non-uniform distribution: 50% of them desire to arrive between 9:00
and 10:00 (peak period), the rest between 10:00 and 12:00. Furthermore, we assume
that all non-business travelers are indifferent to arrival time. The following demand
patterns are to be mentioned: there is a higher proportion of high income and
business travelers among urban travelers than among rural travelers; a part of
business travelers are reimbursed and are therefore less price sensitive. We categorize
the synthetic population in 12 groups of consumers, each having homogeneous
socio-economic characteristics. Table 2 represents the contingency table of the
synthetic population.
The discrete choice model is derived from Cascetta and Coppola (2012), where a nested
logit model is estimated from a RP/SP survey dataset collected in Italy at the national
level. Table 3 illustrates the parameters used in our experiments. Two separate sets of
parameters are considered for business trips and other trip purposes. Additionally, the
cost parameters are mode-specific and interact with income, producing different values
of travel time savings, which are reported in Table 4. Two nests µHSR and µAir capture
the correlation between the scheduled services of the high-speed train operator and of
the airline. Non-starred values are taken as such from Cascetta and Coppola (2012).
The βcostcar parameter for reimbursed business customers is derived by assuming that
the ratio between the values of travel time of reimbursed and non-reimbursed business
travelers by car is the same as by train. We have introduced an additional distinction
between high income and low income travelers. This is done in order to test scenarios
where government intervention is targeted to specific segments of the population. We
have arbitrarily assumed that βcost parameters of non-reimbursed business travelers and
of other travelers from Cascetta and Coppola (2012) apply to our low income segment
of the population. βcost parameters for high income customers are derived by assuming
that the ratio between the values of travel time of high income and low income customers
is the same as in the SAMPERS long-distance model developed in Sweden and reported
in Börjesson (2014).
We remark that the dataset used for the experiments and the derived results are

15



β Business travelers Other purpose travelers

µAir 1.086 1.106
µHSR 1.190 1.333
Travel time (min) -0.0133 -0.0054
Access/egress time (min) -0.00555 -0.0103
Early schedule delay (min) -0.00188 -0.00677
Late schedule delay (min) -0.0130 -0.00617

Reimbursed High income Low income High income Low income

Cost car (euro) -0.0222* -0.0296* -0.0527 -0.0228* -0.0405
Cost Air (euro) -0.0109 -0.0113* -0.0201 -0.0109* -0.0194
Cost IC (euro) -0.0158 -0.0212* -0.0377 -0.0097* -0.0172
Cost HSR (euro) -0.0120 -0.0160* -0.0284 -0.0144* -0.0256

Table 3: Model coefficients derived from Cascetta and Coppola (2012).

Value of Travel Time Reimbursed High income Low income High income Low income

Car (euro/h) 35.88* 26.95* 15.14 14.24* 8.00
Air (euro/h) 73.21 70.67* 39.70 29.73* 16.70
IC (euro/h) 50.51 37.68* 21.17 33.54* 18.84
HSR (euro/h) 66.50 50.02* 28.10 22.53* 12.66

Table 4: Values of travel time

hypothetical and do not represent real scenarios that are related to choices made by
existing high-speed rail operators.

4.2 Numerical experiments

The framework described in Section 3 allows to model various policies and answer
questions about the strategic behavior of all agents at equilibrium. Common regulatory
policies include price-based instruments such as taxes and subsidies, but also other
instruments such as emission allowances. With respect to demand, we can look at
the effect of taxes and subsidies on the choices and the utilities for the population
as a whole and for specific segments. With respect to supply, we can look at the
changes in the pricing strategies and at the effect of regulation on profits. With respect
to regulation and welfare, we can look at multiple objective functions to understand
tradeoffs between environmental objectives, public expenditures and consumer utilities.
We now illustrate how the framework allows to investigate some of these policies and
to analyze their welfare effects.

4.2.1 Single objective optimization: emissions

We initially consider a single-objective optimization problem where the regulator’s goal
is the minimization of the total emissions produced by the travellers, which can be
obtained by means of subsidies, taxes, or a combination of the two. For this analysis,
we assume that emissions can be directly derived from the modal choices of the demand,
even though the schedules, and therefore the actual vehicle emissions, are assumed to be
exogenously given. The following mode-specific CO2 emissions per passenger kilometer
are taken from the 2014 estimates derived by European Environment Agency (2020):
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244 g/pkm for air, 101 g/pkm for road, 28 g/pkm for rail. In Tables (5-13), the results
of the benchmark scenario, that is, without any regulation, are indicated in the first
row (experiment 0).

Taxation First, we assume that taxes are the only possible policy instrument for
the regulator. Several tax caps are tested with a range from 0 e to 50 e per ticket.
Table 5 shows ε-equilibrium prices, taxes, supplier revenues and emissions for all tax
caps. As expected, total emissions tend to decrease when the tax on flights increases,
although non-linearly, due to the strategic behavior of the two operators. In particular,
the airline operator tends to decrease prices p2 and p3 for tax levels between 20 e and
30 e in order to retain its market share. For higher tax levels, the strategy changes
and air prices are increased again, targeting lower market shares and higher margins.
Finally, notice that for the high tax scenarios, the high-speed rail operator does also
increase its price r4 on the business peak alternative, as a consequence of the decreased
price competitiveness of the air alternatives. Table 6 reports aggregate and disaggregate
modal share, showing that the modal shift resulting from taxation occurs predominantly
among low income and non-business travelers. For instance, if we compare the base
scenario with the scenario where a 50 e tax is set on air tickets, the air modal share
in the high income segments decreases from 51.4% to 45.1%, while in the low income
segments it decreases more sharply from 53.0% to 36.5%. Table 7 shows market shares
at the alternative level, highlighting the importance of arrival time among business
customers, who largely ignore offpeak alternatives that do not match their schedules,
irrespective from the level of market intervention.

Subsidization A similar analysis is performed by considering subsidization instead
of taxation. Subsidies are set between 0 e to 50 e per ticket. At this stage, they
are assumed to be financed through an unlimited budget. The ε-equilibrium results
are presented in Tables 8, 9 and 10. We can see that rail subsidies yield results that
are generally not too dissimilar to an equivalent aviation tax in terms of equilibrium
prices (net of regulation), emissions, market shares and supplier revenues. This seems
reasonable, since price enters the utility function linearly. The main difference between
taxation and subsidization consists in the budget required to implement the two policies.
In the case of taxation, the government gains the taxes of the air travelers who pay tAIR.
In the case of subsidization, the government pays out the subsidies tIC and tHSR to the
rail travelers.

Revenue recycling Finally, we examine the scenario where the regulator does not
have any budget available to implement its policies. As a consequence, the subsidies that
are handed out to a subset of the consumers are to be collected in the form of taxation
from another subset of consumers, following a revenue recycling approach. Here, we
also use the disaggregate information about the travelers to set differentiated policies
for two groups of consumers, based on their income category, that is, high income (H)
and low income (L). Again, several tax caps are tested with a range from 0 e to 50
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Air Prices HSR Prices Regulation Revenues Tax rev. Emissions

# ε r2 r3 r4 r5 tIC tAIR tHSR πAIR πHSR B tCO2

0 0.020 113.59 101.61 78.19 85.32 0.00 0.00 0.00 56697 28619 0 173.25
1 0.019 121.78 93.73 77.56 78.04 0.00 10.00 0.00 50497 30841 4747 159.79
2 0.020 112.31 86.78 78.29 81.63 0.00 20.00 0.00 46471 31241 9403 158.61
3 0.025 108.00 85.55 77.85 77.73 0.00 30.00 0.00 41304 32539 12872 148.33
4 0.026 119.31 101.78 107.97 83.52 0.00 40.00 0.00 45319 38270 16079 143.47
5 0.025 114.80 100.75 108.76 84.56 0.00 50.00 0.00 41429 40007 18918 136.97

Table 5: ε-equilibrium solutions, revenues and emissions for different tax caps.

Total modal share Modal share high inc. Modal share low inc. Modal share business Modal share others

# Car Air Rail Car Air Rail Car Air Rail Car Air Rail Car Air Rail

0 0.035 0.527 0.438 0.068 0.514 0.418 0.027 0.530 0.443 0.044 0.561 0.395 0.032 0.516 0.452
1 0.035 0.475 0.490 0.070 0.473 0.457 0.027 0.475 0.498 0.044 0.529 0.427 0.033 0.457 0.510
2 0.035 0.470 0.495 0.070 0.472 0.458 0.027 0.470 0.504 0.044 0.522 0.434 0.033 0.454 0.514
3 0.040 0.429 0.531 0.070 0.453 0.477 0.032 0.423 0.545 0.047 0.501 0.453 0.037 0.406 0.557
4 0.047 0.408 0.545 0.082 0.469 0.449 0.038 0.392 0.569 0.061 0.524 0.415 0.043 0.371 0.587
5 0.047 0.383 0.570 0.082 0.451 0.467 0.039 0.365 0.596 0.062 0.513 0.426 0.043 0.341 0.616

Table 6: Aggregate and segmented modal shares at ε-equilibrium for different tax caps.

Market shares business Market shares others

# Car IC Air1 Air2 HSR1 HSR2 Car IC Air1 Air2 HSR1 HSR2

0 0.044 0.002 0.397 0.164 0.379 0.015 0.032 0.108 0.223 0.293 0.203 0.141
1 0.044 0.004 0.354 0.176 0.406 0.016 0.033 0.121 0.170 0.288 0.213 0.176
2 0.044 0.004 0.358 0.164 0.414 0.016 0.033 0.132 0.179 0.275 0.218 0.164
3 0.047 0.004 0.345 0.156 0.432 0.016 0.037 0.148 0.160 0.246 0.219 0.190
4 0.061 0.006 0.368 0.156 0.390 0.020 0.043 0.191 0.169 0.201 0.140 0.256
5 0.062 0.006 0.362 0.151 0.399 0.021 0.043 0.205 0.155 0.186 0.150 0.261

Table 7: Segmented market shares for business and non-business customers at
ε-equilibrium for different tax caps.

e. Tables 11, 12 and 13 show that a combination of taxes on carbon-intensive modes
and subsidies on greener alternatives has higher effects on emissions than a tax-only
or subsidy-only approach. Notice that all the formulations proposed until now do not
consider consumer satisfaction and distributional effects within the regulator’s objective
function, even though these are relevant in policy-making to determine fairness and
acceptability across the population.

4.2.2 Combining objectives

Next, we show the results of experiments in which other indicators of social welfare
are considered alongside emissions in the objective function. This approach allows to
endogenously evaluate tradeoffs between different objectives of public policy.

Emissions and cost of policy In a subsidization context, we evaluate an objective
function that minimizes the sum of the cost of subsidies and the cost of emissions. The
latter component is dependent on the social cost of carbon (SCC), for which notable
divergences exist in the climate economics literature. Here, we test values ranging
between 50 and 500 euros per ton of carbon. The results are presented in Table 14.
We see that, in this instance, subsidies are not a cost-effective policy instrument if we
consider a SCC lower than 300 e/ton. Such high value is largely due to the fact that the
regulator must subsidizes all rail users, included those who would have chosen to travel
by train regardless of subsidies. Additionally, for high values of the SCC, the optimal
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Air Prices HSR Prices Regulation Revenues Subsidies Emissions

# ε r2 r3 r4 r5 tIC tAIR tHSR πAIR πHSR B tCO2

0 0.020 113.59 101.61 78.19 85.32 0.00 0.00 0.00 56697 28619 0 173.25
6 0.019 122.12 92.48 81.56 82.63 -10.00 0.00 -10.00 51820 31742 -4719 164.08
7 0.019 108.45 82.63 81.97 85.25 -20.00 0.00 -20.00 47033 32143 -9435 165.13
8 0.031 109.29 87.79 88.10 79.64 -30.00 0.00 -30.00 42267 36190 -16436 147.68
9 0.026 113.94 109.91 102.46 93.13 -40.00 0.00 -40.00 44163 43142 -23715 138.23
10 0.022 112.08 111.34 103.99 94.82 -50.00 0.00 -50.00 40145 48034 -30013 129.17

Table 8: ε-equilibrium solutions, revenues and emissions for different subsidy levels.

Total modal share Modal share high inc. Modal share low inc. Modal share business Modal share others

# Car Air Rail Car Air Rail Car Air Rail Car Air Rail Car Air Rail

0 0.035 0.527 0.438 0.068 0.514 0.418 0.027 0.530 0.443 0.044 0.561 0.395 0.032 0.516 0.452
6 0.035 0.491 0.474 0.068 0.484 0.448 0.027 0.493 0.480 0.044 0.536 0.420 0.032 0.477 0.491
7 0.029 0.498 0.474 0.060 0.498 0.443 0.021 0.497 0.481 0.038 0.542 0.421 0.026 0.483 0.491
8 0.029 0.430 0.541 0.057 0.465 0.478 0.021 0.422 0.557 0.038 0.517 0.446 0.026 0.403 0.572
9 0.029 0.394 0.577 0.058 0.443 0.499 0.021 0.381 0.597 0.039 0.502 0.459 0.026 0.359 0.615
10 0.028 0.359 0.613 0.053 0.409 0.538 0.021 0.347 0.632 0.036 0.469 0.495 0.025 0.324 0.651

Table 9: Aggregate and segmented modal shares at ε-equilibrium for different subsidy
levels.

Market shares business Market shares others

# Car IC Air1 Air2 HSR1 HSR2 Car IC Air1 Air2 HSR1 HSR2

0 0.044 0.002 0.397 0.164 0.379 0.015 0.032 0.108 0.223 0.293 0.203 0.141
6 0.044 0.004 0.356 0.180 0.401 0.015 0.032 0.112 0.170 0.307 0.213 0.166
7 0.038 0.005 0.368 0.174 0.401 0.015 0.026 0.113 0.185 0.298 0.214 0.164
8 0.038 0.006 0.361 0.156 0.423 0.017 0.026 0.148 0.160 0.243 0.196 0.228
9 0.039 0.006 0.372 0.130 0.436 0.017 0.026 0.183 0.169 0.190 0.201 0.232
10 0.036 0.007 0.358 0.111 0.471 0.017 0.025 0.174 0.160 0.165 0.220 0.257

Table 10: Segmented market shares for business and non-business customers at
ε-equilibrium for different subsidy levels.

solutions direct a higher share of subsidies to the low income group. These results
suggest that subsidization might be more suitable for markets where the "desirable"
modes have low initial market share and high potential modal shift due to high price
elasticities of the population segments targeted by the policy.

Emissions and utilities In a taxation context, we evaluate an objective function with
two components, capturing the cost of emissions and the monetized consumer utilities.
Since only differences in utilities matter, we consider the utilities obtained for SCC =
100 e/ton as benchmark. Table 15 shows the results. Similarly to the previous case,
for low values of the SCC, the component of the objective function capturing emissions
is outweighed by the component capturing utilities. For SCC = 300 e/ton and above,
the optimal solution imposes a maximum tax on the low income segment, which is more
sensitive to price changes. This results in low income travelers largely shifting from air
to train and car alternatives, with a notable decrease of utility for this group and a
consequent reduction in CO2 emissions. Obviously, such policy does not comply with
the basic requirements of equity and fairness that are necessary to make it acceptable.
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Air Prices HSR Prices Regulation Revenues Emissions

# ε r2 r3 r4 r5 tH
IC

tH
AIR

tH
HSR

tL
IC

tL
AIR

tL
HSR

πAIR πHSR tCO2

0 0.020 113.59 101.61 78.19 85.32 0.00 0.00 0.00 0.00 0.00 0.00 56697 28619 173.25
11 0.027 114.32 101.64 79.43 86.19 7.34 10.00 -10.12 -11.00 10.00 -6.72 47411 33249 150.20
12 0.028 105.78 79.79 88.36 82.72 8.54 20.00 -19.78 -10.87 20.00 -18.01 41042 35940 152.43
13 0.041 115.33 111.18 108.50 96.10 14.41 30.00 -16.16 5.16 30.00 -26.84 41781 47681 133.01
14 0.042 104.71 96.25 111.83 109.39 -35.61 40.00 -23.07 -0.64 40.00 -32.92 37396 49783 133.71
15 0.052 111.99 94.87 103.83 100.91 -47.76 50.00 -30.94 0.17 50.00 -28.82 32822 51577 119.42

Table 11: ε-equilibrium solutions, revenues and emissions for different tax caps and a
revenue recycling approach.

Total modal share Modal share high inc. Modal share low inc. Modal share business Modal share others

# Car Air Rail Car Air Rail Car Air Rail Car Air Rail Car Air Rail

0 0.035 0.527 0.438 0.068 0.514 0.418 0.027 0.530 0.443 0.044 0.561 0.395 0.032 0.516 0.452
11 0.035 0.438 0.528 0.065 0.451 0.484 0.027 0.435 0.539 0.042 0.507 0.451 0.032 0.416 0.552
12 0.034 0.447 0.519 0.064 0.460 0.477 0.027 0.444 0.530 0.042 0.515 0.443 0.032 0.425 0.544
13 0.045 0.368 0.587 0.078 0.442 0.480 0.037 0.350 0.614 0.055 0.479 0.466 0.042 0.333 0.625
14 0.045 0.371 0.585 0.075 0.428 0.497 0.037 0.357 0.606 0.054 0.471 0.476 0.042 0.339 0.619
15 0.044 0.316 0.640 0.070 0.350 0.580 0.037 0.308 0.655 0.054 0.387 0.559 0.041 0.294 0.666

Table 12: Aggregate and segmented modal shares at ε-equilibrium for different tax caps
and a revenue recycling approach.

Market shares business Market shares others

# Car IC Air1 Air2 HSR1 HSR2 Car IC Air1 Air2 HSR1 HSR2

0 0.044 0.002 0.397 0.164 0.379 0.015 0.032 0.108 0.223 0.293 0.203 0.141
11 0.042 0.005 0.366 0.142 0.432 0.015 0.032 0.156 0.184 0.232 0.233 0.162
12 0.042 0.002 0.356 0.160 0.424 0.017 0.032 0.134 0.160 0.265 0.201 0.209
13 0.055 0.005 0.358 0.121 0.445 0.017 0.042 0.162 0.160 0.173 0.195 0.268
14 0.054 0.005 0.343 0.128 0.455 0.017 0.042 0.177 0.154 0.185 0.222 0.219
15 0.054 0.009 0.279 0.108 0.533 0.018 0.041 0.179 0.130 0.164 0.248 0.239

Table 13: Segmented market shares for business and non-business customers at
ε-equilibrium for different tax caps and a revenue recycling approach.

Air Prices HSR Prices Regulation Objective function

SCC ε r2 r3 r4 r5 tH
TRAIN

tH
AIR

tL
TRAIN

tL
AIR

tCO2 SWFE SWFR

50 0.025 114.59 99.03 77.75 84.49 0.00 0.00 0.00 0.00 172.94 -8647 0
100 0.018 111.74 100.23 77.79 88.11 0.00 0.00 -0.12 0.00 175.25 -17525 -43
150 0.021 125.19 100.74 76.87 78.64 0.00 0.00 0.00 0.00 164.52 -24678 0
200 0.019 128.55 101.72 78.36 83.17 -0.05 0.00 -0.73 0.00 164.35 -32870 -286
250 0.021 111.57 99.55 77.52 88.68 -0.33 0.00 -0.99 0.00 174.28 -43570 -382
300 0.022 111.13 98.59 79.76 85.68 -2.30 0.00 -0.68 0.00 175.22 -52566 -433
350 0.020 109.63 97.27 80.81 89.17 0.00 0.00 -6.76 0.00 172.28 -60298 -2488
400 0.027 109.55 92.01 80.69 81.93 -5.43 0.00 -11.29 0.00 166.60 -66640 -4780
450 0.031 115.56 93.48 82.29 87.31 -2.88 0.00 -17.80 0.00 158.27 -71222 -7658
500 0.034 122.29 98.57 91.75 83.44 -8.54 0.00 -25.78 0.00 146.54 -73270 -12631

Table 14: ε-equilibrium solutions for an objective function that minimizes the sum of
the cost of subsidies and the cost of emissions, with different values of the SCC.

5 Conclusion

In this paper, we introduced a framework which exploits discrete choice models of
demand to find optimal policies to regulate oligopolistic markets. Using a disaggregate
representation of demand that captures demand heterogeneity allows to account for
product differentiation and consumer behavioral heterogeneity at the individual level.
The objective function is a social welfare function which can include measures of
individual utility and collective welfare.
The proposed framework is very general and requires limited assumptions on the
specification of the used discrete choice models. This means that it can accommodate
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Air Prices HSR Prices Regulation Objective function

SCC ε r2 r3 r4 r5 tH
TRAIN

tH
AIR

tL
TRAIN

tL
AIR

tCO2 SWFE SWFH
U

SWFL
U

50 0.029 117.76 100.79 78.29 83.65 0.00 0.00 0.00 0.00 170.68 -8534 -141 -303
100 0.024 113.77 103.21 78.80 80.44 0.00 0.00 0.00 0.20 170.30 -17030 0 0
150 0.028 127.45 102.00 83.75 80.34 0.00 0.00 0.00 1.21 166.30 -24945 -872 -2503
200 0.025 118.51 104.32 77.99 86.99 0.00 0.00 0.00 0.00 168.74 -33748 -291 -1242
250 0.047 119.92 117.54 95.96 82.30 0.00 0.00 0.00 6.00 162.09 -40523 -1558 -7036
300 0.020 98.90 95.99 106.37 82.05 0.00 0.00 0.00 99.90 119.09 -35727 -258 -22298
350 0.030 94.25 92.35 106.70 82.45 0.00 0.69 0.00 99.18 122.52 -42882 37 -21780
400 0.028 95.28 92.50 106.11 83.00 0.00 0.00 0.00 99.91 121.40 -48560 47 -21985
450 0.023 95.70 94.73 101.87 83.17 0.00 0.28 0.00 99.54 120.51 -54230 83 -21473
500 0.028 91.90 92.04 106.15 82.74 0.00 0.00 0.00 99.83 123.45 -61725 257 -21651

Table 15: ε-equilibrium solutions for an objective function that maximizes the
monetized consumer utilities minus the cost of emissions, with different values of the
SCC.

a large variety of choice models available in the literature. The use of disaggregate
demand models allows to design disaggregate policies that leverage on subsidization or
taxation to obtain desirable outcomes from economic, social and environmental points
of view.
The following research directions could be further investigated.
Decisions other than price could be included in the framework, both for the suppliers
and for the regulator. Examples are assortment, capacity levels and quality changes,
among others. Adapting the mathematical models is straightforward, if these variables
appear as linear or integer variables in the utility functions. However, these extensions
would come with additional computational complexity caused by the expanded solution
space. Consequently, the applicability of our framework to large-scale problem depends
on the capability to efficiently exploit the problem structure and find tight bounds or
ad-hoc algorithms to such hard combinatorial problem.
A fundamental issue in public policy is the aggregation of individual utilities into a
social welfare function. Different agents have different utilities and objectives that
conjugate individual and social welfare. Therefore, multi-objective social welfare
optimization problems cannot prescind from value judgements. In this work, we have
followed the Marshallian approach which assumes constant marginal utility of income.
However, even the ’neutral’ assumption that assigns the same value to a single
monetary unit, irrespective of the agent’s status, is a value judgement (Sen, 1999;
Fleurbaey, 2009). Our framework could be adapted to incorporate distributional
preferences in the social welfare function. Indeed, it is well-known that the
acceptability of any market-based instrument for public policy depends on the
perceived fairness of the instrument (Maestre-Andrés et al., 2019). Further research
could also be conducted to investigate how acceptability and perceived fairness can be
included in our framework.
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