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Array Signal Processing
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Array signal processing is concerned with the sensing,
processing and estimation of randomwavefields.
Myriad of applications: acoustics, radio-interferometry, radar
and sonar systems,wireless networks, andmedical imagery.
Typical task: estimate the intensity field (variance).



Spectral-based & Parametric Methods
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Two competing approaches:
↪→ Spectral-basedmethods:

sequential scanning by
beamforming (MB, MVDR, AAR...).

↪→ Parametric methods: estimate
parameters of a statisticalmodel.

Spectral-basedmethods are simple,
computationally attractive and
generic. Limited accuracy for low
SNR or coherent signals.
Parametric methods have excellent
performance but very intensive
computationally.



Point Source Data Model and DOA
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Parametric methods are concerned with the pb of Direction of
Arrival (DOA) estimation.
Point source model: (Q sources, L sensors)

Y(pi) =
Q∑

q=1

Sq exp
[
−2πj
λ

⟨rq, pi⟩
]

+ ni ∀i = 1, . . . , L,

⇔ Y = A(ρ)S + n ∈ CL.

↪→ S = [S1, · · · , SQ] ∼ CNQ(0, R), R ∈ CQ×Q positive
semi-definite,

↪→ n = [n1, · · · , nL] ∼ CNL(0, σI), σ > 0, n independent of S,
↪→ A(ρ) ∈ CL×Q is the steeringmatrix,
↪→ ρ = {r1, . . . , rQ} ⊂ S2 are the unknown source directions,
↪→ {p1, . . . , pL} ⊂ R3 are the sensor locations.



Stochastic Maximum Likelihood (SML)
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Stochastic Maximum Likelihood (SML) is the most famous
parametric method. Provides closed-form expressions for the
ML estimates of R, σ, {r1, . . . , rQ}.
For Q < L and A(ρ) full rank:

σ̂(ρ̂) =
Tr

[
P⊥A(ρ̂)Σ̂

]
L− Q

, R̂(ρ̂) = A(ρ̂)†
[
Σ̂− σ̂(ρ̂)I

]
A(ρ̂)H,†,

ρ̂ = argmin
{
log

∣∣∣A(ρ̂)R̂(ρ̂)A(ρ̂)H + σ̂(ρ̂)IL
∣∣∣ , ρ = {r1, . . . , rQ} ⊂ S2

}
.

↪→ Σ̂ is the ML estimate of E[YYH].
↪→ Consistent estimates, asymptotically efficient (attain CRB).
↪→ Estimation involves minimisation in (S2)Q of a highly

non-linear function (Newtonmethod).



SML is too Restrictive...
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SML is too computationally
intensive.
SML requires Q < L: in some
applications Q ∼ 106!
↪→ Building arrays sufficiently large

is unrealistic.
Modern arrays canmake the point
source approximation break.
Need a data model allowing to
handle extended sources.
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AFunctionalDataModel



Random Amplitude Function
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Random amplitude function: S = {S(r) : Ω → C, r ∈ S2}.
FromHuygens-Fresnel principle and Fraunhofer equation:

Y(pi) =
∫

S2

S(r) exp
(
−j

2π

λ
⟨r, pi⟩

)
dr + ni.



Sampling Operator Φ∗
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Defining φi(r) := exp (j2π⟨r, pi⟩/λ) ,we can write

Y =

 Y(p1)
...

Y(pL)

 =

 ⟨S, φ1⟩
...

⟨S, φL⟩

+

 n1
...
nL

 = Φ∗S+ n.

↪→ Sample paths sω : S2 → C of S are inH = L2(S2),
↪→ Φ∗ : H → CL is the sampling operator.
Assuming S to be Gaussian, we have Y ∼ CNL(0,Σ), where

(Σ)ij =
x

S2×S2

κ(r,ρ)φ∗i (r)φj(ρ) drdρ + σ δij, i, j = 1, . . . , L.

↪→ κ(r,ρ) = E[S(r)S∗(ρ)] is the covariance kernel,
↪→ Characterises S. When uncorrelated, the intensity function

I(r) = κ(r, r) is enough.



Data Model (Population Version)
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Using the sampling operatorΦ∗ and its adjointΦwe get:

Σ = Φ∗TκΦ + σIL.

Tκ : H → H is the covariance operator associated to κ:

(Tκf)(r) :=
∫

S2

κ(r,ρ)f(ρ)dρ, f ∈ H, r ∈ S2,

↪→ It is customary to write: κ = vec(Tκ).



Data Model (Empirical Version)
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In practiceΣ is estimated from N i.i.d. observations of Y:

Σ̂ =
1

N

N∑
i=1

yiyHi .

Σ̂ follows a L-variate complex Wishart distribution:

NΣ̂ d∼ CWL(N,Σ).

with density

f(W) ∝

{ |W|N−L

|Σ|N exp
(
−tr

(
Σ−1W

))
, forW definite-positive,

0, otherwise.
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Likelihood Function
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Wewish to constructML estimates for κ and σ.
Given the data Σ̂ the negative log-likelihood function is given
by

`
(
κ, σ|Σ̂

)
= Tr

[
(Φ∗TκΦ+ σIL)−1 Σ̂

]
+ log |Φ∗TκΦ+ σIL| .

↪→ Well-defined for any noise power σ > 0.

Infinitely many solutions! Indeed, take f ∈ N (Φ∗) = R(Φ)⊥.
Then, adding f̄⊗ f to Tκ does not change `. Indeed,

Φ∗ (Tκ + f̄⊗ f
)
Φ = Φ∗TκΦ+ Φ∗ (̄f⊗ f

)
Φ

= Φ∗TκΦ+
(
Φ̄∗ ⊗ Φ∗) (̄f⊗ f

)
= Φ∗TκΦ+ Φ∗f⊗ Φ∗f︸ ︷︷ ︸

=0

= Φ∗TκΦ.



Sieved Maximum Likelihood
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We need to constrain the
optimisation problem:

κ =
(
Ψ̄⊗Ψ

)
vec(R) =

M∑
i,j=1

Rij ψ̄j ⊗ ψi,

⇔ Tκ = ΨRΨ∗,

Maximum likelihood estimates of R, σ are given by

R̂, σ̂ = arg min
R∈CM2

σ>0

Tr
[(
GRGH + σIL

)−1
Σ̂
]
+ log

∣∣GRGH + σIL
∣∣ .

↪→ G = Φ∗Ψ ∈ CL×M is the Grammatrix.
This procedure is known as themethod of sieves.



Case 1: Known Noise Power
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Suppose σ known. We need to haveM ≤ L and G full rank for
identifiability.
Closed-form formula for R̂:

R̂ = G†
[
Σ̂− σIL

] (
G†
)H
.

Themaximum likelihood of κ̂ is then given by

κ̂ =

M∑
i,j=1

R̂ij ψ̄j ⊗ ψi

=
(
Ψ̄⊗Ψ

)
vec

(
G†

[
Σ̂− σIL

] (
G†
)H

)
=

(
Ψ̄⊗Ψ

) [
Ḡ† ⊗ G†

] [
vec(Σ̂)− σvec(IL)

]
,



Case 1: Known Noise Power (M = L)
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WhenM = L there is a nice geometrical interpretation.
Indeed, on expectation we have:

E[κ̂] =
(
Ψ̄⊗Ψ

) [
Ḡ−1 ⊗ G−1

] (
Φ̄⊗ Φ

)∗
κ.

The interpolation operator
(
Ψ̄⊗Ψ

) [
Ḡ−1 ⊗ G−1

]
is

consistentwith
(
Φ̄⊗ Φ

)∗:(
Φ̄⊗ Φ

)∗ (
Ψ̄⊗Ψ

) [
Ḡ−1 ⊗ G−1

]
= IL2 .

κ̂ is hence unbiased, consistent and efficient estimate of the
oblique projection of κ onR(Ψ̄⊗Ψ).



Case 2: Unknown Noise Power
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Suppose σ unknown. We need to haveM < L and G full rank
for identifiability (one more parameter to estimate!).
Closed-form formula for R̂ and σ̂:

σ̂ =
Tr

(
Σ̂− GG†Σ̂

)
L− M

, R̂ = G†
[
Σ̂− σ̂I

] (
G†
)H
.

Again, the maximum likelihood of κ̂ is given by

κ̂ =
(
Ψ̄⊗Ψ

) [
Ḡ† ⊗ G†

] [
vec(Σ̂)− σvec(IL)

]
.

↪→ No geometric interpretation in general.
↪→ WhenM ≃ L then it is almost an oblique projection.



On the choice of Ψ
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Plenty of possibilities! Canonical choice:
Ψ = ΦW, W ∈ CL×M.

Convenient as Gram is computable analytically.
Indeed, G = Φ∗ΦW = HW, where H ∈ CL×L is given by:

(H)ij = 4π sinc(2π∥pi − pj∥2/λ), i, j = 1, . . . , L.

ChooseM as minimising BIC(M) = −2ˆ̀M + 2M2 log(L).



Comparison with SML
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SML SiML
Type of sources Point Sources Arbitrary Sources

Nb. of sources Less than antennas Unlimited

Identifiability Steering matrix full-rank Gram matrix full-rank

Statistical Efficiency Consistent, efficient Consistent, efficient

Computational Efficiency Very intensive Fast (Kronecker)
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Experimental Setup
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Extended source, no correlation.
We image the intensity field:

Î(r) =
L∑

i,j=1

R̂ijψi(r)ψ̄i(r).

L = 300 antennas.
N = 2000 samples.
Algorithms: SiML, MB, MVDR, AAR.
Metrics: MSE, Contrast RMS.



Results
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(a) MB estimate. (b) MVDR estimate. (c) AAR estimate.

(d) SiML estimate
(M = 15).

(e) SiML estimate
(BIC-selected
M = 101).

(f) SiML estimate
(M = 296).



Results
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MB
MVDR
AAR

M=15 M=101 M=295 M=15 M=101 M=295
22 53 46 0.15 0.18 0.15

RMS Contrast
0.16
0.2
0.16

SiML

Relative MSE (in %)
148
79
71

(g) Relative MSE and RMS contrast scores.

(h) Performance of the different algorithms for various SNR.
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Conclusion



Conclusions & Future Work
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SiML generalises the SML to a wider class of signals,
Allows for arbitrarily shaped, possibly correlated, sources
Nice geometrical interpretation in the case of known noise
power.
Superior to state-of-the-art subspace-basedmethods, both in
terms of accuracy and contrast.
The tensor product structure makes SiML very
computationally efficient.

Derive SVD of Tκ̂,
Derive distribution and confidence intervals for Tκ̂.
Investigate differentΨ.
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