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Introduction



Signal Processi

= Array signal processing is concerned with the sensing,
processing and estimation of random wavefields.

= Myriad of applications: acoustics, radio-interferometry, radar
and sonar systems, wireless networks, and medical imagery.

= Typical task: estimate the intensity field (variance).
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Spectral-based & Parametric Methods

= Two competing approaches:

— Spectral-based methods:
sequential scanning by
beamforming (MB, MVDR, AAR...).

< Parametric methods: estimate
parameters of a statistical model.

Intensity of

/" ith pixel

= Spectral-based methods are simple,

computationally attractive and et
generic. Limited accuracy for low
SNR or coherent signals. AT

= Parametric methods have excellent
performance but very intensive
computationally.
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Point Source Data Model and DOA

= Parametric methods are concerned with the pb of Direction of
Arrival (DOA) estimation.

= Point source model: (Q sources, L sensors)

ZSq exp[ j(n,,p,)} +n Vi=1,...,L,

<:>Y:A(p)$ + n cCh

< §=[S1, - ,Sq] ~ CNg(0,R), R € C%*Q positive
semi-definite,

— n=[ny, - ,n] ~CN.(0,0l), 0 > 0,nindependent of S,

— A(p) € C-*Qis the steering matrix,

< p={r,...,ro} C S? arethe unknown source directions,

< {p1,...,p.} C R? are the sensor locations.
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Stochastic Maximum Likelihood (SML)

= Stochastic Maximum Likelihood (SML) is the most famous
parametric method. Provides closed-form expressions for the
ML estimates of R, o, {r1,...,ro}.

= ForQ < LandA(p) full rank:
0o
Tr[P() }

L—0Q ’

= argmin {log ’A YR(P)A(P) + 6(p)Iy

(h) =

Q>

,p:{rl,...,rQ}CSQ}.

< 3 isthe ML estimate of E[yY"].

— Consistent estimates, asymptotically efficient (attain CRB).

< Estimation involves minimisation in (5%) of a highly
non-linear function (Newton method).
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SML is too Restrictive...

= SML is too computationally
intensive.

= SML requires Q < L: in some
applications Q ~ 106!

— Building arrays sufficiently large
is unrealistic.

= Modern arrays can make the point

source approximation break.

= Need a data model allowing to
handle extended sources.
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A Functional Data Model



Random Amplitude Function

= Random amplitude function: S = {S(r) : @ — C,r € S?}.
= From Huygens-Fresnel principle and Fraunhofer equation:

Y(p)) = /S s(r)exp <—j2;<r, p,-)> dr + n,.

A Functional Data Model 8/25




Sampling Operator ¢*

= Defining ¢;(r) := exp (j2m (r,p;)/\) , we can write
Y(p1) (S, #1) m
Y(pL) (S, é1) n
< Sample pathss,, : 52 — Cof Sarein H = £2(5?),
— ®* :H — Clisthe sampling operator.
- AssumingS to be Gaussian, we have Y ~ CN/(0, X)), where

n)j = ﬂ K(r,p) o¥(Ndi(p)drdp + o6, ij=1,...,L
G2 x G2

— k(r, p) = E[S(r)S*(p)] is the covariance kernel,
— Characterises S. When uncorrelated, the intensity function
I(r) = k(r,r) is enough.
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Data Model (Population Version)

= Using the sampling operator ®* and its adjoint ® we get:
Y=o, P + ol.
= 7.:H — Histhe covariance operator associated to x:

(Toh(r) = /S K p)f(p)dp, feH, res?

< Itis customary to write: k = vec(T).

T <. —"O'IL

cN
S —>m—>@—>®——>2
A Sampling Noise Corr.i A
on, -
T
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Data Model (Empirical Version)

= In practice X is estimated from N i.i.d. observations of ¥:
1 N
S=1> vy
i=1

» 3 follows a L-variate complex Wishart distribution:

NS 2 CW (N, T).

with density
fw) %exp (—tr (S7'W)), for W definite-positive,
X
0, otherwise.
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Sieved Maximum Likelihood




Likelihood Function

= We wish to construct ML estimates for x and o.
» Given the data 3 the negative log-likelihood function is given
by
¢ (,{, a\i) —Tr [(@*7;@ +ol) '] +1og [B*T® + o1y .

— Well-defined for any noise power o > 0.

* Infinitely many solutions! Indeed, take f € N(®*) = R(®)*.
Then, adding f ® fto 7, does not change ¢. Indeed,

" (T, +ff) @ =0 T,0+ & (fo f) @
= "7, @ + (0" ® ©*) (faf)
= T, ® + D@ D' f = D T, D.
=0
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Sieved Maximum Likelihood

= We need to constrain the
optimisation problem:

o
7

M
k= (U ®W)vec(R) = > Rj U@,
ij=1

& T = URU™,
= Maximum likelihood estimates of R, o are given by
R,6 = arg min Tr [(GRGH + aIL)_1 f)] +1log |GRG™ + o1, | .
RecC"
>0

— G = ®*V e C*Mjs the Gram matrix.

= This procedure is known as the method of sieves.
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Case 1: Known Noise Power

= Suppose o known. We need to have M < L and G full rank for
identifiability.
* Closed-form formula for R:
R =G [2 - a/L} (GT)H.
= The maximum likelihood of # is then given by

M
=Y Rjp®

ij=1

= (¥ ¥) vec (GT [ - o] (GT)H>

= (T @ v) [6' @ 6'] [vec() — ovec(n)]

Sieved Maximum Likelihood 15/25



Case 1: Known Noise Power (M = L)

= When M = L there is a nice geometrical interpretation.
= Indeed, on expectation we have:
E#] = (¥@V)[6'06 '] (2e®) k.
» The interpolation operator (U ® ¥) [G' @ G~ 1] is
consistent with (& @ ®)":
(@20) (Te0)[67' 967! =I..
= kishenceunbiased, consistentﬁand efficient estimate of the
oblique projection of k on R(V @ V).
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Case 2: Unknown Noise Power

= Suppose o unknown. We need to have M < [ and G full rank
for identifiability (one more parameter to estimate!).

* Closed-form formula for R and -
Tr (z: _ GGTi) p
A R—gh|o_s t

—— R G[E JIHG).
= Again, the maximum likelihood of # is given by

k= (¥ ®UT) [GT ® GT] {vec(fl) - avec(/L)} :

6—:

— No geometric interpretation in general.
— When M ~ [ then itis almost an oblique projection.
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On the choice of ¥

= Plenty of possibilities! Canonical choice:
U = oW, W e cHM,
= Convenient as Gram is computable analytically.
= Indeed, G = ®*®W = HW, where H € C-*! is given by:
(H)jj = 4m sinc(2r||pi — pjll2/N), ij=1,...,L.
» Choose M as minimising BIC(M) = —2{y + 2M? log(L).
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Comparison with SML

SML SiML
Type of sources Point Sources Arbitrary Sources
Nb. of sources Less than antennas Unlimited
Identifiability Steering matrix full-rank| Gram matrix full-rank
Statistical Efficiency Consistent, efficient Consistent, efficient
Computational Efficiency Very intensive Fast (Kronecker)
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Experimental Setup

= Extended source, no correlation.
= We image the intensity field:

L
I(r) =" Ripi(r)di(r).

ij=1

"

L = 300 antennas.

N = 2000 samples.

Algorithms: SiML, MB, MVDR, AAR.
Metrics: MSE, Contrast RMS.

bl
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(a) MB estimate. (b) MVDR estimate. c) AAR estimate.

Q@

(d) SiML estimate ) SiML estimate ) SiML estimate
(M = 15). (BIC selected ( = 296).
M = 101).
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Relative MSE (in %) RMS Contrast
MB 148 0.16
MVDR 79 0.2
AAR 71 0.16
SiML M=15|M=101|M=295|M=15|M=101 | M=295
22 53 46 0.15 | 0.18 0.15

(g) Relative MSE and RMS contrast scores.
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(h) Performance of the different algorithms for various SNR.
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Conclusion



Conclusions & Future Work

"

"

Conclusion

SiML generalises the SML to a wider class of signals,
Allows for arbitrarily shaped, possibly correlated, sources

Nice geometrical interpretation in the case of known noise
power.

Superior to state-of-the-art subspace-based methods, both in
terms of accuracy and contrast.

The tensor product structure makes SiML very
computationally efficient.

Derive SVD of 7z,
Derive distribution and confidence intervals for 7.
Investigate different W.
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