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Abstract

This paper deals with the control of a two-degree-
of-freedom, laboratory-scale helicopter-like system
(termed the toycopter), where the aerodynamic force
is manipulated using the propeller speed. This sys-
tem can be shown not to be flat and thus classical
linearization techniques cannot be applied. However,
a low-order flat system can be obtained by (i) using
a high-gain feedback with suitable proportional gains
on the propeller speeds, and (ii) neglecting the inertial
cross coupling terms. The flatness can be exploited
to ensure precise tracking of reference trajectories and
good disturbance rejection.

1 Introduction

The design of controllers for highly nonlinear systems
often calls for methods based on first-order linear ap-
proximations. The performance can typically be en-
hanced with the use of several linear approximations of
the nonlinear system, using for example either multi-
model linear regulator synthesis or gain scheduling
[2, 5, 7, 12, 14, 15]. Following the same idea of ex-
ploiting the best prior knowledge given by the original
dynamics, it would be interesting to use nonlinear ap-
proximations rather than linear ones. It is the authors’
opinion that flat systems are good candidates for such
approximations since motion planning and stabilization
can be handled in an elegant and straightforward man-
ner despite their inherent nonlinear dynamics [3, 4].
Variants of this idea are found in [1, 6, 8, 9].

This paper considers the case study of a two-
degree-of-freedom, laboratory-scale helicopter-like sys-
tem (termed the toycopter), where the aerodynamic
force is manipulated using the propeller speed. Such a
system is nonlinear with strong couplings and is not flat
[11] [13]. This is due to the presence of cross-coupling
stemming from the way the aerodynamical force is var-
ied to control the system.

The system would be flat if the inputs were the pro-
peller speeds and if the terms proportional to the pro-
peller acceleration were absent. Thus, in order to meet
approximatly these requirements, high-gain feedback
loops are used so that the inputs control the propeller
speeds. In addition, when the terms containing the
propeller accelerations are neglected, the reduced-order
system is flat. Based on this flat approximation, a cas-
cade controller is designed that gives excellent trajec-
tory tracking and good disturbance rejection.

The paper presents a three-level cascade structure to
handle the control of the toycopter. The inner level,
which consists in high-gain controllers, is followed by
a linearizing controller and finally by outer controllers
that stabilize the system around the reference trajec-
tories.

The flat approximation is valid as long as the trajecto-
ries do not evolve too rapidly between the initial and
final positions. The dominant time constant depends
on the outer feedback loops. If the corresponding gains
are not too large, The speed of evolution of the system
depends on the external feedback. If the gains of this
feedback are not too large the method based on the flat
approximation is applicable.

Section 2 presents the setup and the model equations
used throughout the paper. The flatness analysis is
given in Section 3.1. A flat reduced-order model is
given in Section 3.2. Section 4 presents the three-level
cascade control scheme. Some of the limitations intro-
duced by the approximation used to obtain the cascade
structure are given in Section 5. Real-time experiments
and comparison with simulation are considered in Sec-
tion 6, and Section 7 concludes the paper.

2 Model of the Toycopter

The setup under study is a rigid body mechanical sys-
tem composed of two main links. The first link is posi-
tioned vertically and is articulated to the base through
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Figure 1: Helicopter model

a rotational joint, giving rise to the horizontal move-
ment of the toycopter (¢ coordinate). A second link,
termed the arm, is articulated to the first link through
another rotational joint permitting vertical movement
(1 coordinate). At both ends of the arm are mounted
DC-motors, each equipped with a propeller. These mo-
tors are mounted such that their axis of rotation points
in the direction of the movement they are actuating.
The main motor varies its speed w,, in order to control
the aerodynamical force generated along the v coor-
dinate, the rear motor varies its speed w, to control
the horizontal movement. Notice that, despite the fact
that there are as many actuators as desired direction of
movement, the system is nevertheless underactuated,
since more generalized coordinates than independent
actuators are present. This can be understood intu-
itively by saying that the motors have to control both
their speed and the coordinate corresponding to the di-
rection they are actuating. The center of mass of the
system is purposely not on the articulation between the
first and the second link, making the system unstable.
The system has 6 states {¢, b, @, @y Wi, w,-} and two
inputs, the voltages {u,,, u-} applied to the motors.
The system equations read:

I@bw + Ird-’r = Omwm ‘ W, ‘ *Crlwr | Wy | +
1
Ggsiny + G cosy + §Ic<,b2 sin(2¢) —

C’wq/./—klmwmgbcomp (1)

(Ip + Isin®(¢))p  +
= Cyw, |wr ‘ siny —

Lnwp, siny

Criwm | Wi | siny —

ICWP Sin(z'(/)) - Imwmlb cos ) —

Cop = Coposgn(9)

Imwm = Kmum - mem -

Lw, = Ko, — Fw,—Criw, | Wy ‘

The main terms in the model are discussed next.

(2)

lewm |Wm |

(3)
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e Aerodynamical effects. The propellers generate
torques that are proportional to the square of ro-
tation speed. Alongwith the main driving torques
(Cowm, | wm | and Crwy | wy |), the propellers
generate aerodynamical coupling due mainly to
air resistance (Criwm | wm | and Criw, | wy |).
The model given here differs from that in [11]
where the aerodynamical forces were considered
proportional to the propeller speeds.

e Inertial counter torques. These terms appear on
each rotational axis and are due to the reaction
torque produced by a change in rotational speed
of the rotor propeller system. I,.w, is a torque
along the 1 coordinate, and I,,w,, sin a torque
along the ¢ coordinate.

e Gravity effect. G5 and G, result from the center
of mass not being on the articulation.

e Coriolis and Centrifugal torques. Along the v
direction: Centrifugal torque %Iccpz sin(2¢) and
Coriolis torque I,,w, cos due to the change in
orientation of the kinetic momentum of the main
propeller rotor system. Along the ¢ direction:
Coriolis torque generated by the change of iner-
tia with respect to ¥, I.i¢ sin(2¢), and Coriolis
torque, Imwmd} cos v, due to the change in orien-
tation of the main propeller rotor system kinetic
momentum.

e Friction model along the two main axes. Presence
of viscous friction Cyt and C,¢ and Coulomb
friction Cuosgn(¢).

e Induced back electromotive force and motor vis-
cous friction. The motor equations are simple
first-order dynamics whose time constants de-
pend on the parameter F,, for the main motor
and F,. for the rear one. These parameters de-
scribe the joint effect of viscous friction and in-
duced voltage.

3 Flat Approximation of the Toycopter

3.1 Non flatness

Flatness is the property of a system to possess certain
outputs, called the flat outputs, which have the follow-
ing properties: (i) The number of flat outputs is equal
to the number of inputs. (ii) Given these outputs and
their derivatives, all states and inputs can be expressed
as a function of the flat outputs and a finite number of
their derivatives [3, 4].

Although regular helicopters are flat [10], it has been
shown in [11] that the toycopter has a defect of at most
one and, using [13], that this defect is exactly one. Thus
the natural outputs ¢» and ¢ are not flat outputs, since



the input appears already after two time differentia-
tions leaving two states w,, and w, that cannot be ex-
pressed as a combination of ¥, ¢ and a finite number of
their time derivatives. The presence of the input after
only two differentiations is due to the reactive torque
appearing when the propeller speed is varied.

One is tempted to try to control the toycopter through
the use of motor inputs to impose the desired acceler-
ation on both axes ¥ and ¢, since these inputs ap-
pear in the expression of ¢ and . The linearized
system around the equilibrium point (Z, %) where Z =
{4, b, @, @, Om, @y} and @ = {&yy,, 4,} can be ex-
pressed using the state variation Az = Z — z. The
linearised equations corresponding to (1), (2) can be
solved to obtain the input variation A, = Uy, — Um
and Au,. = u, —1u, resulting from a desired acceleration
of both axes At), and A@,. The homogeneous part of
the linearised equations corresponding to (3), (4) then
become

I, Aw,, = 2C.0.Aw, —2C10mAw, —
Imzch)s(@ Awpm,
s (0)
I.Aw, = 20C,0mAw, —2C 10, Aw, +
I, cos(¥) pAw,,

Using the numerical values given in Table 9 for all pos-
sible equilibrium points (Z, ), these dynamics are un-
stable. By redefinition of the output, it is shown in
[11] that the internal dynamics can be reduced to a sin-
gle dimension, and these dynamics are unstable. The
main obstacle in flattening the system is due to the in-
ertial counter torques and the particular structure of
the Coriolis/Centrifugal terms. Let us emphasize that,
according to [13], cancelling the internal dynamics with
specific outputs (the flat outputs) is impossible for this
system.

3.2 Flat approximation

The main problem in the control scheme of the previous
section was that the main motor was used as a primary
source of torque along the horizontal movement, which
goes against engineering intuition. It is then natural
to look for a scheme that uses the main propeller to
lift the system, and the rear propeller to turn it. Ex-
amining the model equations, it would be appealing to
impose the acceleration along the two main axes using
the propeller speeds, since then the propellers would be
used in a physically meaningful manner. For this pur-
pose, high-gain feedback is used to impose the motor
speeds.

F, C
Um = K—:iwm + Klmlwm | Wm | +6Bm (wmd - Wm)
(5)
E, r
(78 = Ewr + %:wr | Wy ‘ +6T‘(w7‘d - wr) (6)

The following approximation using 4 states {1, 1, @,
gb} and 2 newly-defined inputs {wq, wrq} will be used
to control the system. These inputs have received the
notation of a propeller speed with the adjunction of the
suffix d since they correspond to the desired propeller
speed. These inputs can also be seen as reference sig-
nals for the inner-level (high-gain) feedback loops on
each engine.

Iw/& = ChnWmd | Wmd | —Criwrd | Wrd | +

Gy Sinl[) + G cos1/~1 + %Icg'bg sin(21/~J) -

Cth + Lnwmap cos v (7)

(I, + I.sin®(¥))p = Crwra | wra | sineg —
Crn1Wmd | Wma | siny —
16121(;5 sin(24)) — Imwmdzz costh —
C<p¢ - Cwosgn(g.ﬁ) (8)

Due to the approximation, {7]1, 0, ¢, ¢ } differ from
the system values {u, ¥, o, ¢}, and the validity of
this approximation around an equilibrium point will
be justified in Section 5. Moreover, the flat outputs
of the reduced order model are the natural outputs ¢

and ¢. From the outputs ¢ and P, ¢ and ¢ are di-
rectly reconstructed, and the reduced state is a trivial
expression of the flat outputs and a finite number of
their derivatives. Equations (7) and (8) form a system
of two equations in two unknowns w,,q and w,q. Thus
the system is flat, since solving eqns (7) and (8) gives
the inputs as an expression of the output and a finite
number of their derivatives. Notice that the reduced
model can easily be checked to be controllable in the
first approximation around any equilibrium point as
long as ¥ # 0 modulo 7.

4 Control Structure and Motion Planning

4.1 Control Structure

The cascade control structure is depicted in Figure 2
and consists of (i) high-gain controllers (5) and (6)
with gains 3, and (,, (ii) a linearizing controller, and
(iii) outer controllers each with two repeated real poles
specified by, respectively K, and K,. The linearizing
controller is given by

wmd = /| gy [sign(gy)
wra = /| 9, Isign(gy)

with gy and g, defined as

1 .
gy = E—PGﬁm¢—G&%¢+GW
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Notice that ﬁd and ¢4 correspond to the input of the
linearizing controllers. The suffix d is introduced to
underline the fact that these inputs correspond to de-
sired angular accelerations. These two inputs should
not be confused with the angular accelerations of refer-
ence trajectories ¢. and .. The outer controllers are
given by Ya = e + sz(wc - IZJ) + Ki(i/)c - 1;[}) and
()bd = Sbc + 2Ktp<¢c - 90) + K?p((pc - 90)'

4.2 Motion Planning

The control strategy will be complete once the refer-
ence trajectories ¥, and ¢, are specified. In this paper,
polynomial expressions are used to plan the motion.
Since the equivalent system is a 2-2 chain of integra-
tors, it suffices to fix a polynomial of order 5 to set
the initial and terminal conditions. Since additional
smoothness is desired in the trajectory planification,
four extra derivatives per coordinate are added:

9 %

7/)c(t) = wc(to) =+ Z(¢c(tf) - wC(tO))aW <ttf_tt00>
9 i

et =t + Y(eultn) el (1710

ty —to =T is the transit time needed for the reference
trajectory to join the initial condition (.(to), ¢c(t0))
to the terminal conditional (pc(tr),%c(tr)). The
scalars a,; and a,; are obtained from these initial and
final conditions. Typically, the initial conditions are

1

measured on the system and the trajectory is computed
according to the desired terminal position.

5 Limitations due to approximation

The control scheme presented in Section 4.1 uses an
approximation that puts some limitation on the time
response of the controlled system. The main limita-
tion is on the gains of the outer controllers, since these
gains have a direct effect on the speed of the system
trajectories.

With the control scheme presented in Section 4.1, the
nonlinearities are easily taken care of. However, since
a cross coupling term was neglected to obtain the
reduced-order model, a careful stability analysis must
be carried out. For this, we will consider a simpli-
fied system corresponding to a nominal linear system
around a set point given by . for which the full anal-
ysis of the error system will be performed.

The linearized system around the operating point is
given by

I+ Ly = Chwm—Chur+G  (9)
I:;gb +Ipwm = Clw, —Chiwnm (10)
Iwm = Kpum — Frwn (11)

Lo, = Kyu,— Flw, (12)

Wlth C:;L - 20771, | Wme ‘7 01* = 207‘ | Wre |7 O;;’Il =
2Cvrnl | Wme |; C:l = 2Cr1 ‘ Wre |7 F:«L = Fm + 2Cvml |
Wie |, Ff = Fo +2C0 | wpe |, I} = 522~ + Losing,

and G = Ggsin(¢.) + Ge cos(th.) where wpe and wi.c
are the steady state values of the motor speeds. Notice
that most nonlinear terms vanish due the fact that the
system is taken around an equilibrium where both ¢
and 1/) vanish.



Redefining appropriately w;,q and w.q yields an er-
ror dynamics ¢é Fe with error vector e
[ ey €y ey €y er | and ey = Y. — Y, e, =
Ve — @, Em = Wme — Wi,y € = Wype — wy. The following
expressions are obtained after some algebraic compu-
tations:

€m

” N O I "
€y = —Ki,ew —2Kyéy + ﬂem + Eﬂer — L: er
B . I, m Cr
€p = *K§€¢*2K¢€¢+ I—*ﬂemf T;6m+17*€r
® ® ®
. AAC) * *
€m _ Cx 7¢ €m Cvm —Vrl
[er]lg(?ﬂ]_ﬁ{er}r[—cn Cx
C: c m T

-

|: 72[¢K§Z€w — 3]¢K§6w + QC:an,em + 2K¢Irﬂ€7~ :|

* 3 *
—2I}Kje, — 3I5K?2

The eigenvalues of the F matrix are all stable as long
as K, and K, do not exceed a prescribed bound. A
numerical application using the values in the appendixs
and the set point ¥, = 1.2 , §8,, = 6, = 8 = 17 shows
that instability occurs when Ky = K, = 3.0.

6 Real-time experiments and comparison with
simulation

6.1 Nominal case

Simulation of operation is given in Figure 3. The toy-
copter moves in the vertical direction while creating
only a small cross-coupling movement. Real-time mea-
surements are given in Figure 4. Notice that, due to
dry friction present on the horizontal axis, an offset
remains. It can be shown that the controller used out-
performs a standard PID controller.

6.2 Limitation due to approximation

It was shown in Section 5 that as long as the outer
loop gains do not exceed a prescribed value, stability
would be guaranteed (Figure 3) On the other hand,
when these gains are increased beyond a prescribed
level, instability occurs as shown in Figure 5.

7 Conclusions

In this paper, the case study of a helicopter-like, two-
degree-of-freedom, laboratory-scale setup was consid-
ered and a control structure based on a flat approx-
imation was proposed. A reduced order model was
obtained using the propeller speeds as inputs. A con-
trol structure for the full non-flat model was then pro-
posed. It consisted of the cascade of high-gain feedback
that reduces the initial system order and a linearizing
part based on this lower-order model. Since the origi-
nal nonlinear model had extra couplings that were ne-
glected in the process of obtaining the reduced-order

bp + 2K I Bem + 2C7 K ye,

- -~

-

b

3
Time [s]

0.2

Wm

250

100 \ 7

0

z Tin31e[s] ¢
Figure 3: Simulations for Ky = K, = 2.0, 8, = 3 =
17.0. The transient time T' = 4.5 [s].

model, stability had to be assessed by taking into ac-
count the neglected term. The result is an upper bound
on the gains of the outer controllers. These bounds
would not exist had the original system been flat. Fur-
thermore, the controller performed well with respect to
disturbance rejection. The proposed scheme, although
tuned for a particular system, seems promising as far as
to encourage the usage of flat approximation for com-
plex nonlinear dynamics.
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Figure 4: Real-time measurements. K, = K, = 2.0,
Bm = Br =10 and T = 4.5 [s].
Iy 40e-3 kg m* I, 6.7e-3 [kg m?
1. 31.7e-3 kg m?] || Cp, | 24e-3 [Nm
Cy 6e-3 [Nm s/rad] || Cp | 2e-3 [Nm s/rad
Cm | 3.6de-6 [Nm s®/rad] || C» 1.26e-6 Nm s?/rad
Cm1 | 3e-7 Nm s?/rad] || Cp1 | 1.6e-7 Nm s?/rad
I, | 2le-5 kg m?] || I, 54.4e-6 [kg m®
Frn 15e-5 [Nm s/rad] || F» 15e-5 [Nm s/rad
K | 4.3703 Nm/V] | K, | 4. 37e-3 [Nm/V
Gs -60e-3 [Nm] || G | -0.31 [Nm]
Table 1: Model parameters
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