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Abstract

In this paper, the on-line optimization of batch reactors under parametric uncertainty is considered. A method is presented that
estimates the likely economic performance of the on-line optimizer. The method of orthogonal collocation is employed to convert
the differential algebraic optimization problem (DAOP) of the dynamic optimization into a nonlinear program (NLP) and deter-
mine the nominal optimum. Based on the resulting NLP, the optimization steps are approximated by neighbouring extremal pro-
blems and the average deviation from the true process optimum is estimated dependent on the measurement error and the
parametric uncertainty. The true process optimum is assumed to be represented by the optimum of the process model with the true
parameter values. A back off from the active path and endpoint inequality constraints is determined at each optimization step
which ensures the feasible operation of the process. Based on the analysis results the optimal structure of the optimizer in terms of
measured variables and estimated parameters can be determined. The method of the average deviation from optimum is developed
for the fixed terminal time case and for time optimal problems. In both cases, the theory is demonstrated on an example. © 1998
Elsevier Science Ltd. All rights reserved

Keywords: Batch reactor; On-line optimization; Parametric uncertainty; Structural decisions

Notation J;  measurement sensitivity matrix at EOT i
k  reaction rate constant, (I/(mol min))

A;  sensitivity matrix of optimal input variables at nsg number of super-elements

EOT i 4 parameter vector
B;  sensitivity matrix of optimal input variables at P;  permutation matrix

EOT i Py least squares projection matrix
¢ concentration, (mol/1) g  permutation vector to eliminate inputs not applied
C; objective function sensitivity matrices to the process
D; sensitivity matrix of parameter estimates at EOT i Q  least squares objective function weighting matrix
E;  sensitivity matrix of parameter estimates at EOT i (square root of inverse of measurement error cov-
f  nonlinear function or probability density function ariance matrix)
f feed rate to semi-batch reactor, (I/min) r reaction rate, (mol/(1 min))
F  system of nonlinear equations of collocated t time

dynamic system ty  final batch time, (min)
F;  sensitivity matrix of optimal input variables at #  manipulated variable vector

EOT vg  holdup in the reactor, (1)
g nonlinear constraint functions W least squares objective function weighting matrix
G; constraint sensitivity matrix at EOT i (square root of inverse of parameter uncertainty
H; constraint sensitivity matrix at EOT i covariance matrix)

x  state variable vector
output variable vector
probability
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vector of constraint back offs

perturbation variable around nominal optimum
vector of normally distributed measurement error
vector of normally distributed parameter uncer-
tainty

average deviation from optimum

vector of approximation coefficients of input vari-
able profiles

vector of approximation coefficients of state vari-
able profiles

o  standard deviation

¢  economic objective function

W constraint covariance matrix
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Subscripts

e estimated
i variable or variable sensitivity at EOT §

Superscripts

variable or variable sensitivity in the past at EOT i
* optimal value
- estimate, i.e. p is an estimate of p

1. Introduction

A wide variety of products in the chemical industries
are produced in batch mode. Due to disturbances during
operation and uncertainties in process parameters, such as
reaction kinetic parameters, there is a danger of producing
unsatisfactory batches where the product or safety spe-
cifications are not met and path or endpoint constraints
are violated. Additionally, it is desired to operate the
process maximizing an economic objective function,
such as the yield of the desired product. These issues can
be tackled using model-based optimization techniques.

One approach is based on robust optimization stra-
tegies, where an optimal operating policy is determined
off-line, while considering the parameter uncertainty.
Alternative strategies include expected value optimiza-
tion, where the expected value of the objective function
under uncertainty is optimized, rather than the objective
function dependent on the expected value of the uncer-
tain parameters which is aiso called nominal optimiza-
tion [1,2]. This approach improves on the nominal
approach but can still be suboptimal or yield unsa-
tisfactory batches if the optimum or the constraints are
very sensitive to the uncertain parameters. Another
option is risk-conscious optimization, where the risk of
making an unsatisfactory product is minimized [2].
Although this approach guarantees satisfactory batches
for a high probability, it usually yields an economically
suboptimal operating policy [2]. Since ali these strategies
do not make use of information from the process during
its operation, an alternative is the batch-to-batch

improvement using tendency models [3,4]. A tendency
model is a so-called grey box model where an approx-
imate model is developed using the available informa-
tion of the process. The process information might not
be complete as is the case for rigorous or white models
[3]. The process is optimized by collecting process data
during the operation of the batch and using this infor-
mation to improve the modelling of the process. The
updated model is then optimized and the optimal input
trajectory is applied to the next batch. This batch-to-
batch improvement is repeated until a reliable model of
the process is obtained. Another approach to the
improved operation of batch processes is on-line opti-
mization. Process information is acquired on-line, by
measuring one or more process variables, and used to
determine an improved operating policy for the rest of
the batch. Two approaches can be distinguished. The
first option consists of deriving an analytical optimal
feedback law, which determines the optimal inputs
dependent on the current states of the system, as pro-
posed by Rahman and Palanki [5]. Every time new state
estimates are obtained, the new optimal input policy is
given by the analytical feedback law. The drawback of
this method is that the analytical feedback laws may be
quite complex expressions for bigger systems. One
alternative is to obtain the improved input profile
through numerical reoptimization of the process model,
as reported by Ruppen et al. [6]. The state and control
variables are parametrized by polynomials, thus trans-
forming the differential optimization problem into an
algebraic one, which can be solved using successive
quadratic or linear programming methods. This results
in the following on-line optimization scheme which
consists of two steps, as depicted in Fig. 1. In a first
step, the process model is identified or updated by esti-
mating the state variables and/or a set of parameters
using past and present process measurements. The
updated model is then optimized with respect to the
manipulated variables and a new optimal input trajec-
tory over the remaining time horizon is determined.
This sequence of an estimation and optimization step is
referred to in the following as an Estimation-Optimiza-
tion-Task, EOT [6]. The first part of the calculated input

L uncertainty/disturbances

Process

past and present past and present

inputs measurements
Estimation Estimation-
&paramctcr/slatc estimates | Optimization-
future inputs Task, EOT

Optimization

Fig. 1. General structure of an on-line batch optimization system.
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trajectory is applied to the process until a new EOT is
carried out at some future point in time. Since after each
EOT only the first part of the calculated input trajectory
is applied to the process, the strategy is similar to the
moving or receding horizon principle of model pre-
dictive control [7]. The difference is, however, that the
size of the prediction horizon during the on-line opti-
mization of the batch process changes at each EOT
because the batch process is a discontinuous process
and its operation is only considered until the final batch
time. Another similarity to model predictive control is
the closed-loop feedback structure of the on-line opti-
mizer. On-line optimization as described above can also
be referred to as a nonlinear model predictive control, If
the EOTs are carried out very frequently, it resembles
conventional feedback control [6]. However, this is
usually not possible due to the nonlinearity of the
models used for estimation and optimization. Their
evaluation is in general too time consuming to obtain a
frequency of operation similar to linear feedback con-
trol or model predictive control algorithms based on
linear models.

The purpose of this paper is to analyse the economic
performance of a given structure of an on-line optimi-
zation system, as shown in Fig. 1, in order to design an
on-line optimizer for a particular application. The
structure is defined by the estimated parameters and the
measurements taken for estimation. Based on the ana-
lysis results, the structure with the best economic per-
formance can be chosen for implementation. The
nonlinear problem is approximated and an analytical
expression is derived, which gives an estimation of how
close to the true process optimum the process can be
operated in the presence of different error sources. The
organization of the paper is as follows. The next section
gives a brief description of the solution of dynamic
optimization problems using the method of orthogonal
collocation. Following that, the theory of the method of
the average deviation from optimum is described in
some detail for both fixed terminal time and time opti-
mal problems. Thereafter, the method is demonstrated
on two examples. Finally, some conclusions complete
the paper.

2. Method of orthogonal collocation

Since in batch processes the dynamic behaviour is
dominating and usually no steady-state is reached, the
objective function needs to be optimized with respect to
the dynamic model equations:

min @(x(1).

s.t. % = flx,u, p, ), x(ty) = X0 1)
glx,u,p, 0 <0.

The state variables are denoted by x, u are the control
inputs and p the uncertain process parameters. The
objective is the minimization of some function of the
states at the final time, t;, and/or the final time itself.
Since besides the dynamic model equations, f, very often
a set of algebraic path and endpoint inequality con-
straints, g, is present, this problem is called a differential
algebraic optimization problem, DAOP.

The solution of this problem via the Hamiltonian [8]
results in the solution of a two-point boundary value
problem, TPBVP. These problems are numerically
expensive to solve due to the explicit integration of the
system at every iteration. Algebraic path and endpoint
constraints and discontinuities in the input variables
complicate the solution of the problem further.

One method that circumvents the numerically expen-
sive integration of the system and allows the easy
incorporation of algebraic path and endpoint con-
straints and discontinuities in the inputs is the method
of orthogonal collocation {9,10]. In this method, the
system is solved and optimized simultaneously. This is
achieved by converting the DAOP into a nonlinear
algebraic optimization problem, NLP. The conversion
into an NLP consists of two steps: parametrization and
discretization. In the first step, the state and input vari-
able profiles, x and «, are approximated by polynomials
parametrized by £ and v:

K K,

X)=XE0=Y & [ )
=0 k=0,;"X%f T txk
W) = U, ) = Zull']t f“" 3)

Due to the initial conditions for x, the degree of the
polynomial approximating x should be at least one
higher than the degree of the polynomial approximating
u. In the second step, the dynamic model equations are
discretized and the residual equations are enforced on a
finite number of collocation points in order to obtain a
finite dimensional problem:

R(E, v, tx,i) = X(Sv v, tx,i) '—,f(é-’ v, Ptx,i) = 0’

4
i=1,...,K,. @

The collocation points, ¢, ;, are chosen to be the roots of
an orthogonal Legendre polynomial of degree K, [9].
Together with the algebraic path and endpoint inequal-
ity constraints the DAOP (1) is converted into the fol-
lowing NLP in & v and # which can be solved with
standard NLP solvers, e.g. sequential quadratic pro-
gramming (SQP) methods:
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min (£, v, 1) 5)
Evir

sit. R(E v, b)) = X(E, v, tx;) — flE, v, p, 1)) =0, Y1y,
g(E, van tu,i) f Os Vtu,i-

In this approach, the dynamic model equations are
considered as algebraic equality constraints which only
need to be satisfied at the final solution, but not at every
iteration during the optimization. This is also referred
to as an infeasible path method.

Usually the input and state variable profiles are
approximated by piecewise polynomials on a number of
finite elements. This can be seen in Fig. 2, where the
time domain is partitioned into several finite elements
denoted by FE. This improves the approximation of
sharply changing profiles, where a global approximation
would require a very high degree of the approximation
polynomial. Furthermore, super-elements (SE) are
introduced which allow the definition of discontinuities
in the input variables, see Fig. 2. In this case, the con-
tinuity conditions for the input and state variable pro-
files at the boundaries of the finite elements and for the
state variable profiles at the boundaries of the super-
elements are added to the equations of the NLP (5). A
detailed description of the method of orthogonal collo-
cation can be found in the two papers by Cuthrell and
Biegler [9,10].

3. Average deviation from optimum

Due to the different error sources which are present
during on-line optimization, such as measurement
errors and parametric uncertainties, the optimizer will
usually not predict the true optimum, but there will be a
deviation from the same. Therefore, the performance of
an on-line batch optimization system depends on the
available measurements together with their quality and
the amount of uncertainty in the process parameters.
For continuous processes, the method of the average
deviation from optimum [11,12] was developed in order
to estimate the likely economic performance of a given
structure of an on-line optimization system. In this

X

SE SE t

Fig. 2. Piecewise approximation of input and state profiles on finite
elements and super-elements.

paper, the method of the average deviation from opti-
mum is extended to the dynamic optimization of batch
processes under uncertainty. It estimates the economic
performance of an on-line optimization system by ana-
lysing how close to the true optimum it is possible to
operate the process. The plant-model mismatch is
assumed to consist only in the uncertain parameter
values and no structural mismatch is present. The true
process optimum is then assumed to be given by the
optimum of the process model with the true parameter
values. The performance of on-line optimization can be
compared against off-line optimization and the eco-
nomic benefit of on-line optimization identified. Also,
the relative performance of different on-line optimiza-
tion systems, involving for example different choices of
measured and manipulated variables or different esti-
mated parameters, may be compared. The error sources
are described by a normally distributed measurement
error, &, with given standard deviation o, and a nor-
mally distributed parameter uncertainty around a nom-
inal value, n, with given standard deviation o,. The
normally distributed error sources » and £ have zero
mean and it is assumed that there is no covariance
among n and e. Furthermore, non-random measure-
ment errors such as sensor biases or failures are not
considered here.

In the analysis which follows it will be assumed that
the optimization using orthogonal collocation is carried
out with respect to piecewise constant, equally dis-
tributed input variables, see Fig. 3. This implies that the
inputs are approximated by a zero order polynomial on
equally distributed super-elements with one finite ele-
ment defined on each super-element. The state variable
profiles are approximated by first or higher order poly-
nomials in order to give a good approximation of the
system. Furthermore, the different EOTs are carried out
at the discontinuities in the input variables. At these
points in time, measurements are taken to update the
estimates of a set of parameters. With the updated
model parameters the process model is optimized and a
new optimal input trajectory is determined over the
remaining time horizon. The first element of the calcu-
lated input moves is then applied to the process until at
the next discontinuity another EOT is carried out and

r\ u

Fig. 3. Input profile and EOTs.
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new optimal input variables are determined for the
remaining super-elements in the future.

In the following sections, the method of the average
deviation from optimum is derived for the optimization
of batch reactors with a fixed final time, and for time
optimal problems, where the objective is the minimiza-
tion of the final batch time.

3.1. Fixed terminal time problems

With a specified final batch time and assuming that
the dynamic model equations, f, and inequality con-
straints, g, are not explicitly dependent on the time ¢, the
DAOP (1) reduces to:

min o(x(1))
s.t. x = flx,u, p), x(to) = Xo (6)
gx,u,p) <0

In a first step towards the analysis, the nonlinear pro-
cess model is optimized using the nominal parameter
values. The nominal parameter values are the parameter
values, around which the normally distributed uncer-
tainty in the process parameters is defined. It is assumed
that the plant-model mismatch consists only in the
uncertain parameters and no structural modelling error
is present. The method of orthogonal collocation is
employed in order to obtain the nominal optimum.

3.1.1. First and second order approximation

Since the method of the average deviation from opti-
mum is based on an approximation of the nonlinear
problem, a first and second order perturbation model
around the nominal trajectory is obtained from the col-
located system. Due to this representation of the pro-
blem, both the estimation and the optimization steps
can be solved analytically and the effect of the error
sources can be mapped through the estimation and
optimization steps in order to analyse their effect on the
optimizer performance. The required perturbation
model is obtained from a second order Taylor series
expansion of the objective function, ®, with respect to
the approximation coefficients of the input variables
and the uncertain process parameters after the equality
constraints representing the collocated dynamic model
equations are met. The set of the active path and end-
point inequality constraints, g, at the nominal optimum
is linearized with respect to the inputs and uncertain
parameters:

1 1
80 = Cidu+ 8pTCrou + -2-5uTc33u + Cydp+ EapTcsap

(7
8¢ = Gop + Hbu =0 ®)

In this formulation, §p is the perturbation variable of
the uncertain process parameters around the nominal
parameter values. Similarly, du is the perturbation vec-
tor of the piecewise constant input variables around the
inputs at the nominal optimum. The process variables
which are measured for the parameter estimation at
each EOT are linearized with respect to the uncertain
process parameters:

8y = Jép &)

More details about the calculation of the first and sec-
ond order perturbation model are given in Appendix
A.lL

3.1.2. Least squares parameter estimation

The following minimization problem is solved in
order to obtain estimates of the uncertain process par-
ameters:

rr;;n 8y: — 897 QT Qu8y: — 89))

+ (‘Sﬁi,e - sﬁo.e)TWeTWe (8ﬁi,e - 8ﬁ0,e) (]O)
s.t. Sﬁ, = J,-,eaﬁ,-,e
Syi = J,8p + &

The past model outputs are represented by §3;, while 8y;
is the vector of all the measurements collected in the
past with normally distributed measurement errors ¢;.
The matrix J;, is the appropriate submatrix of J;
according to the estimated parameters, 8p;.. The objec-
tive function is weighted with the covariances of the a
priori parameter uncertainty and the measurement
error. Since it is assumed that there is no covariance
among 7 and &, the matrices W, and Q; have the inverse
of the standard deviations of the parametric uncertainty
and the measurement error on the main diagonal,
W, = diag(o;') and Q; = diag(o;!). In contrast to the
parameter estimation of continuous processes, where
prior information about the uncertain parameters is
usually neglected, the a priori estimate of the uncertain
parameters, 87 ., is taken into account in the estimation
objective function. Due to the linearization in Eq. (9),
8Py is zero as it represents the perturbation variable
around the nominal parameter value, which is equal to
the a priori estimate of the uncertain parameters.
Because of this incorporation of a priori knowledge of
the uncertain parameters into the parameter estimation
problem, the covariance of the error in the parameter
estimates can never be bigger than the covariance of the
a priori uncertainty, regardless of the quality of the mea-
surements. By considering the vector of all past measure-
ments, this formulation allows the representation of the
parameter estimates dependent on the measurement
error and the a priori parameter uncertainty, which is
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necessary for the analysis of the average deviation from
optimum. Introducing the normally distributed para-
meter uncertainty, 8p = 7, gives the following solution
for the parameter estimate at EOT i:

8pi = DiW" + EiQie; 11

with
-1
PQi,e - ((Qt’Ji,e)TQiJi,e + WZWe) (Qt’Ji,e)T

PoiQid;
Di:‘[ Q,OQ I]W—l

P
a= %]

The location of the zeros in the matrices D; and E; indi-
cates the parameters that are not estimated. The estima-
tion problem can be equivalently reformulated in a
recursive manner which can also be interpreted as a spe-
cial case of the state estimation problem using a Kalman
filter [13]. This is necessary in an on-line implementation
of the algorithm, where it is not desired to store all past
measurements, but update the current parameter estimate
with every new measurement coming in during the opera-
tion of a batch. This also represents a main difference to
the ‘one-shot’ strategy of the steady-state parameter esti-
mation of continuous processes, where each set of mea-
surements at different times contains the same amount of
information and only the current set of measurements is
used to estimate the uncertain parameters [12,14].

3.1.3. Optimization and back off from active inequality
constraints

At every point in time, where an EOT is carried out,
the optimal piecewise constant input variables over the
remaining time horizon until the end of the batch are
calculated using the current parameter estimates. In
order to prevent the process constraints from being
violated, once the calculated inputs have been applied to
the process, some conservatism is introduced into the
optimization in the form of a back off from the active
inequality constraints.

For the analysis, the optimization step at each EOT is
approximated by the solution of the following neigh-
bouring extremal problem. It is obtained from the first
and second order perturbation model of the objective
function (7) and active inequality constraints (8) by
considering the remaining degrees of freedom for opti-
mization in the future at EOT i

. . - 1
min Cj8u; + 8 TCodu; + 8] Cbu; + Eau,.Tc,»gau,»
U

s.t. 8gi(Bus, 80, 8p)) = Gidp; + Hidia (12)
+ Hibu; + ;=0

The vector 8u; is the vector of the remaining piecewise
constant inputs in the future at EOT i and &iz; is the
vector of the inputs, that were applied to the process in
the past:

Su; = [Bu(i + 1), ..., su(nse))”
S = [Su(), ..., Su(d)]”

Since the estimation of the state variables of the process
is not considered in the parameter estimation step, the
deviation of the state variables from their nominal
values at EOT i is taken into account implicitly by
including the past input variables, 8%;, as a constant
parameter vector into the optimization problem at EOT
i. The sensitivity matrices Cy, Cp, Cp and Cj are the
appropriate submatrices of the sensitivity matrices of
the objective function in perturbation model (7), C;, C3
and Cs, according to the remaining piecewise constant
inputs in the future and the applied inputs in the past,
see Appendix A.1.2. Constant terms in the objective
function which do not give a contribution to the opti-
mization are ignored. A back off, 8;, from the active
inequality constraints is introduced into the optimiza-
tion at every EOT to ensure the feasible operation of the
process.

This QP can be solved analytically in the reduced
space and gives the following optimal inputs, dependent
on the back off introduced, the current parameter esti-
mates and the past inputs applied to the process:

51«!? = A;B; + B,'5]3,' + F:81; (13)

Choosing a partition of H; = [H; Hp] such that H,
is square and nonsingular gives the following matrix
definitions:

Z;=[1—- Hy'Hp)
Si=—2(27Caz) ' 2T

1
Ai=—(I+ SiCB)[ (;1 :I

B; = (S;Ch + A,G))
F; = (S,Ch + 4:H))

There is no contribution from the first order quantities,
Ci to 8u} since the perturbation model was obtained
around the nominal optimum. Note that only the first
element of §u; is applied to the process, since at the next
discontinuity in the inputs a further EOT is carried out
and the input profile is recomputed over the remaining
time horizon. This implies that the vector of the inputs
applied to the process in the past, 8u;, consists of the
first elements of each solution vector of the past EOTs.
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Each of the past inputs is itself dependent on the pre-
vious inputs, corresponding to Eq. (13). This expression
can be rearranged in terms of past back offs and para-
meter estimates considering Eq. (11). Thus, the input
moves, that are applied to the process during on-line
optimization with n EOTs, are a function of the set of
back offs at the different EOTs, 8, and the set of para-
meter estimates, 8p:

du* = 8u*(Bo, ..., Bn, 8P, - -

-+ 8pn) = 8u"(B, 3p) (14)

The derivation of the last equation and the correspond-
ing matrix definitions are given in Appendix A.1.2.

The back off, 8;, in Eq. (12) is introduced in order to
try to ensure that the process constraints are not vio-
lated when the calculated input moves are applied to the
process. The basic idea of the back off is shown in Fig. 4.
The true process optimum often lies on a boundary of
the feasible region defined by one or more active path or
endpoint inequality constraints. Due to the uncertainty
in the parameters and the measurement errors it is unli-
kely that the optimization will predict the true optimal
input variables which would operate the process exactly
on this set of active constraints. Dependent on the error
sources the suboptimal input variables might cause a
violation of the process constraints once they are
applied to the process. Therefore, some conservatism is
introduced into the optimization by considering a back
off from the active inequality constraints. This back off
tries to accommodate all the possible error sources and
keep the variation of the process constraints due to
uncertainty and measurement errors inside the feasible
region of the process, while still operating as closely to
the constraints as possible, Fig. 4.

As opposed to the concept of back off for the steady-
state optimization of continuous processes, where the
necessary back off remains constant for a fixed set of
active constraints [11,12], the back off during batch on-
line optimization is time-varying due to the inherent
dynamics of the estimation and optimization of the
batch process, see Fig. 4. It is recomputed at every EOT

i
constraint variation

EOT EOT EOT

Fig. 4. Back off from active inequality constraints.

and decreases, the more confidence in the uncertain
parameters is gained. Its size is determined by examin-
ing the variation of the process constraints when the
inputs calculated during the optimization are applied to
the process:

Gidp + H;dii; + Hisu!(B:, 8pi, id;) < 0 (15)

Using the expressions for the optimal inputs, Eq. (13)
and the corresponding matrix definitions, the back off
may be calculated as a function of the confidence in the
uncertain parameters:

Gi(8p — p) < Bi (16)

Since the a priori parameter uncertainty and the para-
meter estimates are normally distributed and the
dependencies are all linear, the variation in the active
process constraint functions is also normally dis-
tributed. Introducing the equation for the parameter
estimates (11), the variance of the process constraints
can be determined dependent on the standard devia-
tions of the a priori parametric uncertainty and the
measurement error;

Vi = G(W' = D)W — D) GT + GEETGT (17)

The variance of the individual constraint functions is
given by the diagonal elements of the covariance matrix
W,;. For a probability of % of not violating an indi-
vidual constraint, the vector of back offs is given by the
following expression, dependent on the vector of var-
iances of the individual constraints, diag(W,,;):

Bi = V2,/diag(W, )erf ! 2a — 1) (18)

It should be noted that there is an &% probability of not
violating each individual constraint, but a smaller
probability of not breaking any constraint.

During on-line optimization of continuous processes
the number of degrees of freedom for optimization (i.e.
the set points for the regulatory structure) remains con-
stant. This is not the case for the optimization of the
batch process, since at each EOT the process is opti-
mized with respect to the remaining piecewise constant
inputs in the future and this number decreases towards
the end of the batch. If at a particular EOT there are
more active path and/or endpoint inequality constraints
than there are degrees of freedom for optimization, the
process cannot be reoptimized. Instead, it needs to be
run in open loop until enough degrees of freedom are
available again or the end of the batch is reached.
Otherwise, the optimization does not have enough
degrees of freedom to back off from all active path/
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endpoint inequality constraints and the necessary back
off cannot be determined for ali the active inequality
constraints. This means in particular for the case with
more than one endpoint constraint, that the process is
run in open loop with respect to the last few inputs and
the actual benefit of on-line optimization is gained as
long as the number of remaining inputs in the future is
higher than the number of active endpoint inequality
constraints.

3.1.4. Integration of the deviation from optimum

Similar to the calculation of the inputs during the on-
line optimization, the true optimum input variables can
be determined by minimizing Eq. (7) subject to Eq. (8)
dependent on the normally distributed parametric
uncertainty, ép = n:

5u*(8p) = Bép = Bn (19)

Partitioning H = [H; H,] with H, being a square and
nonsingular matrix, B is given as:

7= [—HI—IHz]
1

S=-2(27C:2)"' Z7

H—I

B= (sc{—(1+ scs)[ (; :'G)

The expressions for the inputs calculated during the on-
line optimization at each EOT, Eq. (14) and the true
optimum inputs, Eq. (19) can be introduced into the
second order perturbation model of the process objec-
tive function, 8®, Eq. (7) and the deviation of the cal-
culated from the true process optimum can be
determined:

3D (su*(8p), 8p) — 8D(8u* (B, 8p), 3p) (20)

This deviation is then integrated with respect to the
distribution functions of the parametric uncertainty and
the measurement error and an analytical expression for
the average deviation from optimum for the on-line
optimization with » EOTs is obtained:

0= ro Jm [3(su*(8p), 5p)

20 J-e @1)
—~ 80(8u*(B, 8p), 3p) | AAmAe)dedn
= O(B, g;, oy, 1) (22)

The average deviation from optimum for off-line opti-
mization, where the optimal input profile and the
necessary back off are determined off-line considering

the a priori uncertainty in the process parameters, is
dependent only on the a priori parameter uncertainty
and the necessary back off at the beginning of the batch,

Bo:
Oofr-iine = Q(ﬂo, G,,) (23)

The exact expressions for the average deviation from
optimum for on-line and off-line optimization are given
in Appendix A.1.3.

3.2. Time optimal problems

Time optimal problems, where the only objective is
the minimization of the final batch time, have the fol-
lowing form:

i o
s.t. x = flx, u, p), x(t9) = xo
glx,u,p)<0

24)

In this case, one or more conditions which are repre-
sented by a subset of the inequality constraints g need to
be reached in the minimum possible time. This subset of
the constraints represents the so-called terminal condi-
tions, which define the moment when the terminal time
17 is reached.

3.2.1. First and second order approximation

The time optimal problem (24) is solved with the
nominal parameter values, in order to obtain the nom-
inal optimum, and a first and second order perturbation
model around the nominal trajectory is derived. How-
ever, the perturbation model needs to be obtained in a
different manner than in the fixed terminal time case.
The reason is that the input variables u do not directly
affect the terminal time, #. The terminal time is only
affected by changes in the terminal conditions, i.e. the
appropriate subset of the constraints g, which are in
turn dependent on the input variables, «. Therefore, a
second order Taylor series expansion of the objective
function with respect to the piecewise constant inputs
and the uncertain parameters can only be obtained
through the terminal constraints.

In a first step, the entire set of path and endpoint
inequality constraints, which are active at the nominal
optimum, is linearized with respect to the piecewise
constant inputs, , the uncertain parameters, p, and the
final batch time, #:

:
5g = [HH,,][ 6;] +Gop=0 (25)
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While the matrices G and H are obtained as in the fixed
terminal time case, the calculation of H, is not as
straightforward. The reason is that with changing #; the
locations of the discontinuities in the input variables, ¢,
change, since the piecewise constant inputs were
assumed to be equally distributed, see Fig. 5. The cal-
culation of the sensitivity matrix of the active con-
straints with respect to the final time, H,, is described in
Appendix A.2.1.

In the case of more than one active constraint, the
vector of the piecewise constant inputs, su, and the
matrix H need to be partitioned according to the
dimension of 8g, such that [H, H, ] is a square matrix:

[‘f;‘;] = —[H, H,) ™' (Hi8u) + Gép) (26)

The second order sensitivities of the final time, t5, are
determined from the last row of the previous equation
by perturbing du; and 8p and calculating the finite dif-
ferences of the perturbed first order quantities. The
result is the following second order approximation of
the objective function:

1
8tf = Ci1éuy + spTC25u1 + §3ulTC35u1
- @7
+ C4ép + Eap Csép

Note that the minimization of 8¢ represents an uncon-
strained QP in the reduced space of the remaining
degrees of freedom 8u;, after the active inequality con-
straints including terminal conditions are met. This is
due to the fact that the dependence of the terminal time
on the input variables can only be obtained through the
terminal constraints. After solving Eq. (27) with respect
to du;, the remaining input variables can be determined
from Eq. (26).

As in the fixed terminal time case, the measurements
are linearized with respect to the uncertain parameters,
3y = J8p. This implies that the parameter estimates are
obtained in the same way as for fixed terminal time
problems.

S

Li L tit) % t

Fig. 5. Change of the switching times in the inputs with changing final
time.

3.2.2. Optimization and back offs from active inequality
constraints

Since it is not always possible to obtain full informa-
tion about the state of a system, it is very difficult to
decide when the terminal conditions of the batch are
reached and the batch can be stopped. Additionally,
measurement errors represent an error source, even with
all the states measured. Therefore, also in the time
optimal case, a back off from the active inequality con-
straints is introduced into the optimization at each
EOT, which ensures that the batch reaction is not stop-
ped before the endpoint specifications are met.

The minimization of Eq. (27) represents an uncon-
strained QP which is due to the fact that the objective
function was obtained through the terminal constraints.
This implies that the back off needs to be considered at
an earlier stage during the derivation of the second
order objective function. For that purpose, the back off,
B, is introduced into the linearized equation of the con-
straints, Eq. (25):

sg = [HH,] [ (‘;Z } +Gép+ B (28)

This equation is then rewritten according to Eq. (26):

8 _
[ sl:;] = —[Hy H,] ™ (H18u1 + Gop + B) (29)

The second order sensitivities are determined according
to the approach that was taken previously, and the fol-
lowing second order perturbation model of the problem
including back off from the active inequality constraints
is obtained:

1
8ty = C1duy + 8p” Cyuy + —2—3u1TC36u1 + Cydp
1
+38p"Csdp + CoB+ B Créuy + 'Coép  (30)
|
+ EﬂTC9ﬁ

At each EOT the process is reoptimized and the optimal
inputs are determined over the remaining time horizon.
The sensitivity matrices in Eq. (30) are partitioned
according to the remaining degrees of freedom for opti-
mization until the end of the batch,
Suy = [Buy(i+ 1), ..., 5us(my)]”, and the inputs applied
to the process in the past, 8iy = [8u(1), ..., 8y ()]
The subsequent, unconstrained QP is obtained at EOT
i, where the necessary back off from the process con-
straints appears in the objective function:

rg‘in Cinduy + 8p7 Coduy + ity Coduy
3]

1, , (31
+ 'Z“au,'] Ciaduy + ﬂj Crrduy



70 I.D. Perkins et al.{Journal of Process Control 9 (1999) 61-78

The definitions of the sensitivity matrices in the neigh-
bouring extremal problem (31) at EOT i are given in
Appendix A.2.2. The analytical solution of the above
unconstrained QP is:

8uy = A;fi + Bidp; + Fiduy (32)
with

4 =—C3'C

B, = —Cg‘C,g

Fi=-C5'C}

The contribution of the first order quantities Cj; is zero,
since the perturbation model was determined around
the nominal optimum. Similar to the fixed terminal time
case, the expression for the optimal inputs, 8u};, can be
rearranged dependent on the past back offs and par-
ameter estimates:

81} = 815 (Bo, - - -, Bns 8P0s - - - » 8Pn) = 8ul(B, 8P) (33)
The derivation of the last equation and the necessary
matrix definitions are given in Appendix A.2.2. The
corresponding optimal values for 6u; and &7 can be
obtained from Eqgs. (29) and (30), respectively.

The size of the necessary back off at EOT i is deter-
mined by analysing the variation of the active process
constraints, when the calculated inputs are applied to

the process:

8

dg = Hilau:l +ﬁi15ﬁi1+[H2 H,f][ 3[} :| +Gép <0 (34)

The corresponding optimal values of éu; and é7; are
both obtained from the linearized constraints, Eq. (29):

dut - . ,
[;;;2]-_—«[H2 H,)  (Hoduly + Haditn +Gopi + ) (39)

Introducing Eq. (35) into Eq. (34), the back off from the
active inequality constraints at EOT i is dependent on
the confidence in the uncertain parameters, as it is in the
fixed terminal time case, Eq. (16):

Gi{(ép — 8p;)) < Bi (36)

The calculation of the size of the necessary constraint
back off is then along the lines of Egs. (17) and (18).

3.2.3. Integration of the deviation from optimum

In order to calculate the average deviation from
optimum, the true optimum input variables need to be
determined by minimizing Eq. (27) dependent on the
normally distributed parametric uncertainty, ép = n:

5u}(sp) = Bép = Bn (37

The matrix B is given by B = —C5!CJ. The true mini-
mum final batch time is then obtained from Eq. (27)
with the true optimum input variables introduced. The
final batch time that is achieved in reality is given by Eq.
(30) with the predicted optimal inputs duj(B, 3p) intro-
duced:

1
8t; = Crduf + spT Crdu} + —2~8u’,‘TC36u’f + Cadp

1
+ 5apTcsap + CoBn + BLCrul + BT Cyép (38)

1 7
+§ﬁ" CoBs

The back off, B,, in the objective function represents the
necessary back off at the last EOT n. The deviation of
the achieved final batch time from the true minimum
final time is integrated with respect to the distribution
functions of the parametric uncertainty and the mea-
surement error. This gives an analytical expression for
the average deviation from optimum for the on-line
optimization with n EOTs, dependent on the set of back
offs, 8, and the standard deviations of the parameter
uncertainty, o,, and the measurement error, o,:

oo J‘” J°° (613 (813 (3p). &p)

- (39)
— 817 (5u; (B, 8). 8p., Ba) | AnAe)dedn
= @(ﬂ, U,,,an,n) (40)

The average deviation from optimum for off-line opti-
mization is only dependent on the a priori parameter
uncertainty and the necessary back off from the active
path and endpoint inequality constraints at the start of
the batch:

Oofr-tine = ®(ﬁ0’ Un)~ (41)

The exact expressions for the average deviation from
optimum for on-line and off-line optimization are given
in Appendix A.2.3.

4. Examples

In this section, the method of the average deviation
from optimum is demonstrated on two examples. The
first example is a second order dynamic system with
fixed final time. After that, the time optimal operation
of a semi-batch reactor is considered.
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4.1. Fixed terminal time case

In a batch reactor, the substance P is produced from
the raw material R with an undesired side reaction to
byproduct W:

REPREB W

The temperature dependence of the reaction rates is
described by an  Arrhenius type equation:
ki = kg exp(— FE%) The objective is to find a temperature
profile such that the product yield is maximized at the
end of a given reaction time [15]. With a constraint on
the concentration of the component R, the optimization
problem can be formulated using the following dimen-
sionless model:

max x(tr=1)

s.t. X1 = —(u+ pu)x1, x1(0) = 1 (42)
)i:z = UX, )CQ(O) =0
x1(8) > 0.2.

The dimensionless variables are given by x; = cg/cgo,
xy = cpfcre and u = k;. The ratio of the activation
energies of the two reactions is E»/E; = 2. The only
uncertain parameter is kg, or in the dimensionless for-
mulation p = ko, /k3, with a nominal value of py = 0.5.

4.1.1. Nominal optimum

Since the method of the average deviation from opti-
mum is based on a perturbation model around the
nominal optimum, the problem is optimized with the
nominal parameter value using the method of orthogo-
nal collocation. In order to be able to carry out enough
EOTs during on-line optimization without having a too
high frequency of execution, the time axis is divided into

144 |
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0.2}

o . ) s . L . . L . )
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time

Fig. 6. Input variable profile at nominal optimum.

four super-elements with one finite element on each
super-element. The inputs are piecewise constant on the
four super-elements. An accurate representation of the
dynamic system is obtained by approximating the state
variable profiles by quadratic polynomials on each finite
element. The optimal input profile is shown in Fig. 6.
Fig. 7 shows the approximated state variable profiles at
the nominal optimum together with the collocation
points. In the same graph, the state variable profiles of
the system are plotted, where the dynamic model equa-
tions are integrated with the optimal input variables. As
can be seen, the approximation is quite accurate. The
nominal optimum gives a product yield of
xz(tf) = 0.5349. The inequality constraint on the first
state variable becomes active at the final time.

4.1.2. Optimization analysis

In the following, the method of the average deviation
from optimum is employed in order to estimate the
performance of an on-line optimizer and compare this
performance against off-line optimization. The para-
meter uncertainty is assumed to have a standard devia-
tion of o, = 0.2. Two on-line optimization scenarios will
be analysed, where either the first or the second state
variable is measured, each with a standard variation of
the measurement error of o, = 0.01.

The average deviation from optimum gives the results
shown in Table 1. Both on-line optimization schemes
perform significantly better than off-line optimization,
which shows an average deviation from optimum of
© = —0.0524. Thus, there exists an economic benefit of
employing an on-line optimizer. However, when com-
paring the two on-line optimization scenarios, it can be
seen that the process can be operated closer to its true
optimum when the first state variable is measured. In
this case, the on-line optimization shows an average
deviation from optimum of ® = —0.0069, compared to
® = —0.0198 with the second state measured. This is

1
0.8
[oX:1
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0.6
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0 0.1 0.2 03 0.4 0.5 06 0.7 [¢X:] 09 1
time

Fig. 7. Approximated and integrated state variable profiles at nominal
optimum.
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Table 1

Analysis results

Optimization Measurement A e
Off-line — — —0.0524
On-line X1 0.01 —0.0069
On-line b 0.01 -0.0198

also illustrated in Fig. 8, where the necessary back offs
from the active endpoint inequality constraint at each
EOT for the two on-line optimization schemes are
shown. Measuring x; gives more accurate parameter
estimates, so that the back off at each EOT decreases
more than in the case when x; is measured. Thus, the
process can be operated closer to the constraint and
therefore closer to the optimum.

4.2. Time optimal case

The average deviation from optimum for the time
optimal case is demonstrated on the production of 2-
acetoacetyle pyrrole from pyrrole and diketene in a
semi-batch reactor in the minimum possible time [6).

Ruppen et al. [6] investigated both a simple and a
detailed model of the reaction system. However, for the
case of continuous feed addition, the simple model
proved to be adequate and the performance was at least as
good as the performance of the more detailed model [6].

Therefore, the simple model with the following reac-
tions is considered here:

P+DS Pau
p+D 5 DHA
p& oligomers
PAA+D S F
(DHA+D 5 G)

0.1
e
A

0.1 .
v . X2 measured

000F  \
008} . °.
007} N

006} N

back off

L x1 measured
0.05 o
0.04- e
0.03f RN

0.02f S~al

0.01 n .\ 1 " : L )
0 0.1 0.2 043 0.4 0.5 0.6 0.7 08

time

Fig. 8. Necessary back off at different EOTs.

In this reaction system, pyrrole is denoted by P,
diketene by D, pyridine which acts as catalyst by X,
2-acetoacetyl pyrrole by PAA and dehydroacetic acid by
DHA. The substances F and G stand for by-products.
The reaction rates are;

rp4q = kacpcp
2
rpHa = kpcp
ro =kocp

re = Kkrcpaacp

Assuming constant density of the components and iso-
thermal operation results in the following reaction
model, where the last side reaction producing by-pro-
duct G is neglected. The dilution of catalyst is con-
sidered by normalizing the rate constants with respect to
the reaction volume. This is not implemented for the
rate constant ko, since the rate of oligomerization is
also promoted by other intermediate products [6]:

dCD kA kD ) kF
——=——-cptp—~2—cp—kocp ——cpaacp

dr VR VR VR (43)

+ ;f; (enr— ep)

dep  ky4 S

dar = ;—]—;CPCD - GCP (44)
de k k

5;“ = iCPCD - iCPAA cp — - CPAA (45)
depua _kp S

ar ;}; D ";CDHA (46)
dVR
e “

The concentration of diketene D in the feed stream is
represented by cpr. The manipulated input variable is
the feed rate, f(1/min), of diluted diketene. The nominal
values of the kinetic parameters and the initial condi-
tions are given in Table 2. These values are taken from
Ruppen et al. [6] and are used here for the theoretical
analysis.

With the necessary endtime specifications and a path
constraint on the feed rate, the optimization problem
can be written as follows:

Table 2
Nominal model parameter values and initial conditions
Parameters Initial conditions
k4 0.0531/(mol min) ¢po 0.09mol/l
Kp 0.1281/(mol min) cp 0.72mol/1
ko 0.028 l/mm CPA40 0.1 mol/l
kg 0.003 1/(mol min) CpHAD 0.02 mol/l
cpf 5.82mol/l YRo 1.01
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min ¢
Ly 4

s.t. dynamic model equations (43) — (47)
CpAA (tf)VR(tf) > 0.42 mol (48)
CDHA(I.‘) <0.15 mo]/l
CD(tf) < 0.025 mol/1
fH=0

A detailed description of the diketene chemistry, the
modelling of the reactor and the experimental set up of
on-line optimization can be found in the work of Rup-
pen et al. [6].

4.2.1. Nominal optimum

The first step towards the analysis is the determina-
tion of the nominal optimum. The dynamic model
equations in DAOP (48) are collocated on eight equally
distributed super-elements with one finite element per
super-element. Thus, a sufficient number of EOTs can
be carried out at the input discontinuities in order to
obtain satisfactory economic benefit during on-line
optimization. The state variables are approximated with
quadratic polynomials, while the input variables are
specified as piecewise constant. The resulting NLP is
then solved using the nominal parameter values and
initial conditions given in Table 2. The input and state
variable profiles at the nominal optimum are shown in
Figs. 9 and 10 respectively. Due to the high number of
super-elements, the approximation of the system is quite
accurate, as can be seen in Fig. 10, where both the
approximated and integrated state variables profiles are
plotted. The terminal time at the nominal optimum is
tr = 138.62 min. Besides the endpoint constraints, the
path constraint on the feed rate becomes active in the
last super-element.

0.2r
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0.18f
0.14}
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Fig. 9. Input variable profile at nominal optimum.

4.2.2. Optimization analysis

In order to demonstrate the analysis of the on-line
optimization, it is assumed that the uncertain process
parameters are the two rate constants k4 and kp. The
uncertainty is described as normally distributed with the
standard deviations o,, = 0.003 and o3, = 0.007. In
the following, three different structures of the on-line
optimizer are analysed and their performance is com-
pared against off-line optimization. The different struc-
tures are characterized by the selection of the
measurement which is used to update the estimates of
the uncertain parameters. For that purpose, it is
assumed that one or more state variables can be mea-
sured on-line. The alternatives consist of measuring
either one of the concentrations cp,cp or cpsqq. The
standard deviation of the measurement error is assumed
to be 1% of the approximate average nominal value of
the corresponding state variable, see Fig. 3. Since the
three terminal constraints and the lower bound on the
feed rate in the last super-element are active at the
nominal optimum, the process has to be run in open
loop with respect to the last four inputs. This is neces-
sary for the optimization to have enough degrees of
freedom at the last EOT to back off from the four active
inequality constraints. The system is collocated on eight
super-elements which implies that four EOTs are carried
out during on-line optimization.

The analysis results are shown in Table 3. Off-line
optimization shows an average deviation from optimum
of ® = —47.56 min. Implementing an on-line optimizer,
where the diketene concentration, c¢p, is measured, does
not improve this result significantly. In this case, the
average deviation from optimum is © = —39.05 min.
However, a much better operation of the reactor can be
obtained when either the pyrrole concentration, cp, or
the acetoacetyle pyrrole concentration, cpy4, is mea-
sured. Both options show a substantial improvement

[a) o o
o 405
0
0 50 100 150 0 50 100 150
04 0.2
b E
o g ot
do2 <
0
[ 50 100 150 0 50 100 150
12 time [min}
1.1
1
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Fig. 10. Approximated and integrated state variable profiles at nom-
inal optimum.
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Table 3

Analysis results

Optimization Measurement A ®
Off-line — — —47.56 min
On-line cp 0.001 —39.05min
On-line cp 0.005 —23.22min
On-line Cpaa 0.003 ~17.72min

against the off-line optimization result, where measuring
cpaq gives the least average deviation from optimum
with ® = —17.72 min, compared to ® = —23.22 min
when ¢p is measured.

5. Conclusions

The method of the average deviation from optimum
allows the estimation of the economic performance of a
given on-line batch optimization system. This perfor-
mance can be compared against off-line optimization
and the economic benefit of on-line optimization iden-
tified. Different on-line optimizer structures can be
compared and the structure with the best performance
can be chosen for implementation. Furthermore, the
analysis method returns the necessary back off from the
active path and endpoint inequality constraints at each
Estimation Optimization Task EOT in order to ensure
the feasible operation of the process.

The method of the average deviation from optimum
has been developed for two classes of problems. In the
first case, the terminal batch time was fixed, while the
theory was also derived for time optimal problems. In
both cases, the theory has been demonstrated on an
example.

Appendix A. Mathematical derivations and matrix
definitions

In this section, some details of the mathematical
derivation of the method of the average deviation from
optimum are presented, both for fixed terminal time and
time optimal problems.

A.l. Fixed terminal time problems

A.1.1. First and second order approximation

The linearization of the objective function, &, and the
active inequality constraints, g, in Eq. (6) is performed
at the nominal optimum of the collocated dynamic sys-
tem. With the approximation coefficients of the input
profile, v, and the state variable profile, £, (see Section 2)
the linearization of the objective function is given by:

50 =225 +9‘;—’ss (49)

The objective function is a function of the state vari-
ables at the final time and is not directly affected by the
approximation coefficients of the state and input vari-
ables in the first finite and super-elements. They affect
the objective function at the final time only through the
dynamic system equations, x = f{x, #, p) which appear
as equality constraints in the NLP after the discretiza-
tion of the problem. Therefore, all the information
about the dynamic system in the collocated problem is
given by the equality constraints, namely the discretized
dynamic system equations and the continuity conditions
at the boundaries of the finite elements and super-ele-
ments. For a perturbation in the piecewise constant
input variables the following relationship must hold,
where F represents the equality constraints correspond-
ing to the discretized system equations and continuity
conditions:

ES +—E8$ 0 (50)

Since the number of equations in F is equal to the
dimension of the vector & (the behaviour of the dynamic
system is determined for given input variables), the last
two equations can be combined to give the linearization
of the objective function with respect to the piecewise
constant inputs:

b A “aF ,

The linearization of the objective function with respect
to the uncertain parameters and the linearization of the
active algebraic path and endpoint inequality con-
straints are performed in the same way. The second
order quantities are obtained by taking finite differences
from the perturbed first order sensitivities. This gives
the following first and second order perturbation model
of the collocated problem around the nominal optimum:

1 1
8 = C1du + 8pT C2du + E&Fqsu + Cadp + §5pTC58p
(52

3g =Gép+ Héu=0 (53)

In this formulation, 8p is the perturbation variable of
the uncertain process parameters around the nominal
parameter values. Similarly, 8u is the perturbation vec-
tor of the approximation coefficients of the piecewise
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constant input variables around the inputs at the
nominal optimum, where ngg is the number of super-
elements defined on the time horizon:

8v=238u= [Su(l)T(Su(Z)T- : ~5u(nSE)T]T (54)

A.1.2. Optimization at EOT i

The neighbouring extremal problem at EOT i

approximating the optimization step has the following
form:

. o T 1
min Cy du; + 87 Cdu; + 8it! Cinbu; + iau,f Cduy;
;i

s.t. 8g(du;, 8it;, 8p;) = G;8p; + H,8it; + Hidu; + B; = 0
(55)

The sensitivity matrices of the objective function are
obtained from C;, C; and C; (see Eq. (7)) in the fol-
lowing manner where 7, is the dimension of the uncer-
tain process parameter vector, n, = dim(8p):

Cio = [Ci(1, R)civr, . nse
C12 = [C2(i’ k)]j:l,..A,np;k=i+1,.‘.,n55
C-'Q - [C3(j’ k)]j:l,...,i;k=i+],...,nsg

Assuming that the n,.; active path constraints, which
are in the past at EOT i, correspond to the first np;
rows of 8g (with n, = dim(8g)), the sensitivity matrices
of 8g; can be written as:

Gi = [G(]’ k)]j:n‘,cy,+l,...,nc;k=1,...,np
H; =[H(j, k)]

=npe i +1,.. 0 k=i+1, ... .15

}_Ii = [H(]’ k)]j:npc,i+l,...,nc;k=1,.‘.,i'

The analytical solution of the neighbouring extremal
problem at EOT i is given by the following expression,
see Eq. (13):

Su;’ = A;8; + B;5p; + F;di; (56)

Note that only the first element of 8u; is applied to the
process, since at the next discontinuity in the inputs a
further EOT is carried out and the input profile is
recomputed over the remaining time horizon. This
implies that the vector of the inputs applied to the pro-
cess in the past, i;, consists of the first elements of each
solution vector of the past EOTs:

qoaus
) q18uf
8u; = A;pi + Bidp; + F; : (57)

qi18u;_
This is accomplished by multiplying each solution vec-

tor of past inputs with a vector g; which deletes the
input moves not applied to the process. The vectors

g,/ =0,...,i—1, have the following form, where the
dimensions of ¢; are a function of j, dim(g;) = ngg — j:
=[1 0 ... 0
qj [ ] (58)
RSE—j

Note that each of the past inputs is itself dependent on
the previous inputs, corresponding to Eq. (57). This
expression can be rearranged in terms of past back offs
and parameter estimates considering Eq. (11):

suf =Y KB+ Lydp;
=0 =l (59)

i i i
=Y KB+ LiDWn+Y  LyFQs
Jj=1 J=1

The matrices K;; and L; are obtained in the following
iterative manner:

K= A, (60)
0

Kiion = : 61

(i-1) 0 (61)
gi—1A4i-1

— K1y .

Ki‘ = (i-1y ], f I, i—1 62
Y l:qi—lFi—lK(i——l)j J<tj# (62)

Kj=FiKy, j<i (63)

The matrices L; can be determined in the same way
with A; replaced by B;. Thus, the input moves, that are
applied to the process during on-line optimization with
n EOTs, are a function of the set of back offs at the
different EOTs, 8, and the set of parameter estimates,

3p:
goduy
q18u}
Su* = . = u*(Bo, ..

-,ﬁnv‘sﬁ(ﬁ "'1aﬁn)

: (64)
Gnduy

= 8u*(B, 3p)
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A.1.3. Average deviation from optimum

The deviation of the predicted from the true process
optimum is integrated with respect to the distribution
functions of the parametric uncertainty and the mea-
surement error in order to obtain the average deviation
from optimum. The expression for the average devia-
tion from optimum for on-line optimization with »
EOTs is given below:

® = > > 3@ (5u*(8p), &
j J_m[ (64 (5p). 5p) o

— 80(8u*(B, 8p), 3p)lfin)fie)dedn
= (W TC,BW") +%tr(W‘TBTC33W‘1)

N
-3 [CIP,-Ri + %RiTP,-T C3PiR; + tr(W™TC,PiN))
=0

1 1
+5r(NTPICPIN) +) 5 tr(MiT. PICyPMy)
J=1

+ 2 ZI: tr(MijT"PiTcﬁipiMik)]
)

- zn: i [RiTPiTC3PjRj + tr(NTPTC3PN))
par el

! J

+ 2 ) r(MEPTC:PM;) |

k=1 I=1

(66)
with
i
R = Z 17
=0
i
N;=Y LD,
J=0

The summations start at { = 0 indicating the beginning of
the batch before the first EOT is carried out, because also
in the first time interval, a back off needs to be introduced
due to the uncertainty in the process parameters. This
implies of course that Dy = Ey = 0. The permutation
matrices P; are introduced to account for the fact that
only the first element of the calculated input vector at
EOT i, 8u; (B;, 8p;, 8u;), is applied to the process.

The average deviation from optimum for off-line
optimization, where the optimal input profile and the
necessary back off are determined off-line considering
the a-priori uncertainty in the process parameters, is
given by the following expression.

Outt-ne = tr(W-TCBW") + te(W-TBC;BW)

1
— C1Aofo — 3 B AYC3 400
(67)

Since no reoptimization is carried out, the whole input
profile calculated off-line is applied to the process and
no permutation matrix is necessary, i. . Py = L.

A.2. Time optimal problems

A.2.1. First and second order approximation

In order to obtain a first and second order perturba-
tion model of the time optimal problem (24) at its
nominal optimum, the entire set of path and endpoint
inequality constraints, which are active at the nominal
optimum, is linearized with respect to the piecewise
constant inputs, «, the uncertain parameters, p, and the
final batch time, ¢

ou

5g = [HH,[][ 5 tf] +Gop =0 (68)

While the matrices G and H are obtained as in the fixed
terminal time case, the calculation of H, is not as
straightforward. The reason is that with changing # the
locations of the discontinuities in the input variables, ;
change, since the piecewise constant inputs were
assumed to be equally distributed, see Fig. 5. The sensi-
tivity matrix of the active constraints with respect to the
final time, H,, can be obtained as follows (note that
tiy1 — 1 is strictly speaking independent of i due to the
equal distribution of the super-elements):

_dg - dg  d
where
g dg ax(r)
o ax(t;) ot (70)
and

% _ 3 ax(y)
aty ox(t) o

(71)

The sensitivities (3x)/(df) are obtained from the model
equations f(x, u, p), while the sensitivities (3g)/(dx) can
be determined from the collocated problem using the
appropriate approximation coefficients of the state
variables.
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In the case of more than one active constraint, the
vector of the piecewise constant inputs, 8, and the
matrix H need to be partitioned according to the
dimension of 8g, such that [H2H, ] is a square matrix:

5141
8¢ =[HiHH,]| du» | +Gép=10 (72)
3tf

Assuming that [H H,f] is of full row rank, there always
exists a partition such that [H» H, ] is nonsingular and
the last equation can be rewritten as shown below:

[‘;‘g] =—[H, H,,]‘I(H,aul + Gép) (73)

If [H H,f] is not of full row rank, then two or more of
the constraints are linearly dependent. In this case, the
linearly dependent constraints are affected by the inputs
in the same way. The singular rows which correspond to
the linearly dependent constraints can be removed until
[H H,| has full row rank. Taking the last row of the
previous equation gives the following linear expression
for the final time with respect to the inputs and the
uncertain parameters:

Sl‘f = C1éu; + Cadp (74)

The second order sensitivities are determined by per-
turbing éu; and ép and calculating the finite differences
of the perturbed first order quantities. This gives the
following second order approximation of the objective
function:

1 1
8ty = Cy8uy + 8pTCrduy + EéulTC33u1 + Cydp + E(SpTCySp
(75)

A.2.2. Optimization at EOT i

In order to obtain the neighbouring extremal problem
at EOT i, the sensitivity matrices C;, C;, C3 and C; in
Eq. (30) are partitioned according to the remaining
degrees of freedom for optimization until the end of the
batch, Su;y = [8uy(i+1),...,8u(n,)]" and the inputs
applied to the process in the past, 8&1; = [duy(1), ...,
ur ()7

vvvvv ul

.....

The subsequent, unconstrained QP approximates the
optimization step at EOT i

min Cy8uy + 8T Cabuiy + 8iay Cduyy
Uil

| ] (76)
+ ~2—5u£ Cizduy + B; Cnduy
The analytical solution is:
dujy = A;Bi + Bibp; + Fiduy an
qodug)
. q18uj,
= A;B; + Bi8p; + F; : (78)
qi-lsua_l)l

The vectors g;,7 =0, ...,7— 1, are defined as in Eq. (58)
with the appropriate dimensions according to duj.
Similar to the fixed terminal time case, the expression
for the optimal inputs du; can be rearranged dependent
on the past back offs and parameter estimates:

i

i
Sup =Y Kifi+ ) Lybp;

- .
i ’ il i (79)
=D Kb+ Y LiDWn+ Y LiEQje;.
=0 j=1 =1

The matrices K;; and L; are defined as in Eqgs. (60)-(63)
dependent on A; and B;, respectively. Thus, the optimal
input variables, that are determined during on-line
optimization with n EOTs, are a function of the set of
back offs, 8, and the set of parameter estimates, p:

qodug,
q10uy)
Suj = = 8u} (B, - .

-1ﬂn53ﬁ01 "-’sﬁﬂ)

: (80)
Gndity,
= 8ui(B, 8p)

A.2.3. Average deviation from optimum

The deviation of the achieved final batch time from
the true minimum final time is integrated with respect to
the distribution functions of the parametric uncertainty
and the measurement error. This gives the following
expression for the average deviation from optimum for
the on-line optimization with n EOTs:

0 r" Jw [1: (w120, 4p)

—00 -—0Q

@®1)
= 8133118, 89). 8p. B,) | () Ae)dedn
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=tu(WTCBW ) + %tr(W~TBTC3BW1)

n
1
-3 [C.P,Ri + ER,.T PTCyP;R; + tr(W~TC,PiN;)
s

- —;—tr(N,-T PTGPN)+ ) % tr(M,-]T-PiTC3P,-M,-j)
i=1

+ Z Z tr(MIPTCiPiMy) + B C7P,-R,-]
=1 k=1

n n
-3 [R,TP{C3PjRj +tr(NTPTC3P;N))

i=0 j=i+l
i :
T pT 1T
+ I; I;tr(M,.kP,. QP,-M,-,)] — Cobn — 581 Copn
(82)
with
Ri=) K
=0
N,‘ = Z LUD]
=0

My = LyE;,j<i

The summations start at i = 0 to allow for the back off
in the first time interval before the first EOT is carried
out. The permutation matrices P; are introduced to
account for the fact that only the first element of the
calculated input vector at EOT i, 8uj;(B;, 6p;, 8&;), is
applied to the process.

The average deviation from optimum for off-line
optimization is given by the following expression:

1
Ooft-tine = tr(W TC,BW™") + Etr(W‘TBTC3BW“‘)
_Lgryr _
— C1 Ao zﬁo Ay C340B0 — Csfo

1
~ BYC1 4080 — iﬂoTC9ﬂo-
(83)
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