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Learning hard quantum distributions with variational
autoencoders
Andrea Rocchetto 1,2,3, Edward Grant3, Sergii Strelchuk4, Giuseppe Carleo5,6 and Simone Severini3,7

The exact description of many-body quantum systems represents one of the major challenges in modern physics, because it
requires an amount of computational resources that scales exponentially with the size of the system. Simulating the evolution of a
state, or even storing its description, rapidly becomes intractable for exact classical algorithms. Recently, machine learning
techniques, in the form of restricted Boltzmann machines, have been proposed as a way to efficiently represent certain quantum
states with applications in state tomography and ground state estimation. Here, we introduce a practically usable deep architecture
for representing and sampling from probability distributions of quantum states. Our representation is based on variational auto-
encoders, a type of generative model in the form of a neural network. We show that this model is able to learn efficient
representations of states that are easy to simulate classically and can compress states that are not classically tractable. Specifically,
we consider the learnability of a class of quantum states introduced by Fefferman and Umans. Such states are provably hard to
sample for classical computers, but not for quantum ones, under plausible computational complexity assumptions. The good level
of compression achieved for hard states suggests these methods can be suitable for characterizing states of the size expected in
first generation quantum hardware.
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INTRODUCTION
One of the most fundamental tenets of quantum physics is that
the physical state of a many-body quantum system is fully
specified by a high-dimensional function of the quantum
numbers, the wave-function. As the size of the system grows
the number of parameters required for its description scales
exponentially in the number of its constituents. This complexity is
a severe fundamental bottleneck in the numerical simulation of
interacting quantum systems. Nonetheless, several approximate
methods can handle the exponential complexity of the wave
function in special cases. For example, quantum Monte Carlo
methods (QMC), allow to sample exactly from many-body states
free of sign problem,1–3 and Tensor Network approaches (TN), very
efficiently represent low-dimensional states satisfying the area law
for entanglement.4,5

Recently, machine learning methods have been introduced to
tackle a variety of tasks in quantum information processing that
involve the manipulation of quantum states. These techniques
offer greater flexibility and, potentially, better performance, with
respect to the methods traditionally used. Research efforts have
focused on representing quantum states in terms of restricted
Boltzmann machines (RBMs). The RBM representation of the wave
function, introduced by Carleo and Troyer,6 has been successfully
applied to a variety of physical problems, ranging from strongly
correlated spins,6,7 and fermions8 to topological phases of
matter.9–11 Particularly relevant to our purposes is the work by
Torlai et al.12 that makes use of RBMs to perform quantum state
tomography of states whose evolution can be simulated in

polynomial time using classical methods (e.g., matrix product
states (MPS)13). Although it is remarkable that RBMs can learn an
efficient representation of this class of states without any explicitly
programmed instruction, it remains unclear how the model
behaves on states where no efficient classical description is
available.
Theoretical analysis of the representational power of RBMs has

been conducted in a series of works.7,14–17 Gao and Duan, in
particular, showed that RBMs cannot efficiently encode every
quantum state.14 They proved that Deep Boltzmann Machines
(DBMs) with complex weights, a multilayer variant of RBMs, can
efficiently represent most physical states. Although this result is of
great theoretical interest the practical application of complex-
valued DBMs in the context of unsupervised learning has not yet
been demonstrated due to a lack of efficient methods to sample
efficiently from DBMs when the weights are complex-valued. The
absence of practically usable deep architectures remains an
important limitation of current neural network based learning
methods for quantum systems. Indeed, several research efforts on
neural networks18–20 have shown that depth significantly
improves the representational capability of networks for some
classes of functions (such as compositional functions).
In this paper, we address several open questions with neural

network quantum states. First, we study how the depth of the
network affects the ability to compress quantum many-body
states. This task is achieved upon introduction of a deep neural
network architecture for encoding probability distribution of
quantum states, based on variational autoencoders (VAEs).21 We
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benchmark the performance of deep networks on states where no
efficient classical description is known, finding that depth
systematically improves the quality of the reconstruction for
states that are computationally tractable and for hard states that
can be efficiently constructed with a quantum computer.
Surprisingly, the same does not apply for hard states that cannot
be efficiently constructed by means of a quantum process. Here,
depth does not improve the reconstruction accuracy.
Second, we show that VAEs can learn efficient representations

of computationally tractable states and can reduce the number of
parameters required to represent an hard quantum state up to a
factor 5. This improvement makes VAE states a promising tool for
the characterization of early quantum devices that are expected to
have a number of qubits that is slightly larger than what can be
efficiently simulated using existing methods.22

Encoding quantum probability distributions with VAEs
Variational autoencoders (VAEs), introduced by Kingma and
Welling in 2013,21 are generative models based on layered neural
networks. Given a set of i.i.d. data points X= {x(i)}, where xðiÞ 2 Rn,
generated from some distribution pθ(x

(i)|z) over Gaussian dis-
tributed latent variables z and model parameters θ, finding the
posterior density pθ(z|x

(i)) is often intractable. VAEs allow for
approximating the true posterior distribution, with a tractable
approximate model qϕ(z|x

(i)), with parameters ϕ, and provide an
efficient procedure to sample efficiently from pθ(x

(i)|z). The
procedure does not employ Monte Carlo methods.
As shown in Fig. 1a VAE is composed of three main

components. The encoder that is used to project the input in
the latent space and the decoder that is used to reconstruct the
input from the latent representation. Once the network is trained
the encoder can be dropped and, by generating samples in the
latent space, it is possible to sample according to the original
distribution. In graph theoretic terms, the graph representing a
network with a given number of layers is a blow up of a directed
path on the same number of vertices. Such a graph is obtained by
replacing each vertex of the path with an independent set of
arbitrary but fixed size. The independent sets are then connected
to form complete bipartite graphs.
The model is trained by minimizing over θ and ϕ the cost

function:

J θ;ϕ; x ið Þ� �¼ � Ez�qϕ zjx ið Þð Þ log pθ x ið Þ zj� �� �

þDKL qϕ z xj ið Þ� �
pθk zð Þ� ��

:
(1)

The first term (reconstruction loss) �Ez�qϕ zjx ið Þð Þ logpθ xðiÞ zj� �� �
is

the expected negative log-likelihood of the i-th data-point and
favors choices of θ and ϕ that lead to more faithful reconstructions
of the input. The second term (regularization loss) DKL(qϕ(z|x

(i))||
pθ(z))) is the Kullback-Leibler divergence between the encoder’s
distribution qϕ(z|x

(i)) and the Gaussian prior on z. A full treatment
and derivations of the variational objective are given in the ref. 21.
VAEs can be used to encode the probability distribution

associated to a quantum state. Let us consider an n-qubit
quantum state |ψ〉, with respect to a basis bij if gi¼ 1;¼ ;2n . We
can write the probability distribution corresponding to |ψ〉 as p(bi)
= |〈bi|ψ〉|

2. If we consider the computational basis, we can write
ψj i ¼ P2n

i¼ 1 ψi ij i, where each basis element corresponds to an n-
bit string. A VAE can be trained to generate basis elements i
according to the probability p(i)= |〈i|ψ〉|2= |ψi|

2.
We note that, in principle, it is possible to encode a full

quantum state (phase included) in a VAE. This requires samples
taken from more than one basis and a network structure that can
distinguish among the different inputs. The development of VAE
encodings for full quantum states will be left to future work.
We approximate the true posterior distribution across measure-

ment outcomes in the latent space z with a multivariate Gaussian,

having diagonal covariance structure, zero mean and unit
standard deviation. The training set consists of a set of basis
elements generated according to the distribution associated with
a quantum state. Following training, the variables z are sampled
from a multivariate Gaussian and used as the input to the decoder.
By taking samples from this Gaussian as input, the decoder is able
to generate strings corresponding to measurement outcomes that
closely follow the distribution of measurement outcomes used to
train the network.

Hard and easy quantum states
In this section we introduce a method to classify quantum states
based on the hardness of sampling their probability distribution in
a given basis. This will be used to assess the power of deep neural
network models at representing many-body wave-functions.
We now proceed to define two concepts that will be frequently

used throughout the paper and form the basis of our classification
method: reconstruction accuracy and compression. Let ρ and σ be
n—qubit quantum states. We say that σ is a good representation

of ρ if the fidelity F ¼ Trð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2σρ1=2

p
Þ � 1� ε for an ε > 0. This

accuracy metric cannot be immediately applied to the analysis of
VAEs, that can only encode the probability distribution associated
to a state. We now show that the fidelity can expressed in terms of
the probability distributions over a measurement that maximally
distinguishes the two states. Let E= {Ei} be a POVM measurement.

Fig. 1 Encoding quantum probability distributions with VAEs. A VAE
can be used to encode and then generate samples according to the
probability distribution of a quantum state. Each dot corresponds to
a neuron and neurons are arranged in layers. Input (top), latent, and
output (bottom) layers contain n neurons. The number of neurons in
the other layers is a function of the compression and the depth.
Layers are fully connected with each other with no intra layer
connectivity. The network has three main components: the encoder
(blue neurons), the latent space (green), and the decoder (red). Each
edge of the network is labeled by a weight θ. The total number of
weights m in the decoder corresponds to the number of parameters
used to represent a quantum state. The network can approximate
quantum states using m < 2n parameters. The model is trained using
a dataset consisting of basis elements drawn according to the
probability distribution of a quantum state. Elements of the basis are
presented to the input layer on top of the encoder and, during the
training phase, the weights of the network are optimized in order to
reconstruct the same basis element in the output layer
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Then, using a result by Fuchs and Caves23 we can write

F ¼ min
E

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr Eiρð ÞTr Eiσð Þ

p
; (2)

where the minimum is taken over all possible POVMs. Note that p
(i)= Tr(Eiρ) and q(i)= Tr(Eiσ) are the probabilities of measuring the
state ρ and σ, respectively, in outcome labeled by i andP

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þq ið Þp

is the Bhattacharyya coefficient between the two
distributions.
Using Eq. 2 we can relate the complexity of a state with the

problem of estimating the fidelity F. This corresponds to the
hardness of sampling the probability distribution p ið Þ ¼ TrðE0iρÞ,
where E′ minimizes Eq. 2 (here we assume that sampling from the
approximating distribution q(i) is at most as hard as sampling from
p(i)).
Throughout the paper, unless where explicitly mentioned, we

will work with states that have only positive, real entries in the
computational basis. In this case, it is easy to see that the
Bhattacharyya coefficient between the distributions reduces to the
fidelity and, hence, measurements in the Z basis minimizes Eq. 2.
We remark that, if it is not possible to find a POVM for which Eq.

2 is minimized it is always possible to use the standard
formulation of the fidelity as a metric in the context of VAEs.
This can be accomplished by making use of three VAEs to encode
the state σ over three different basis. By using standard
tomographic techniques, like maximum likelihood, measurements
in a complete basis can be used to reconstruct the full density
matrix.
In order to connect the above definition of state complexity

with VAEs we introduce the compression factor. Given an n-qubit
state that is represented by a VAE with m parameters in the
decoder, the compression factor is C ¼ m

2n. We say that a state ρ is
exponentially compressible if there exists a network that
approximates ρ with high accuracy using m=O(poly(n))
parameters.
Once a network is trained, the cost of generating a sample is

proportional to the number of parameters in the network. In this
sense the complexity of a state is parametrized by the number of
parameters used by a neural network representation. Based on
these observation we define easy states those that can be
represented with high accuracy and exponential compression and
hard states those that can be represented with high accuracy
using at least O(exp(n)) parameters. The last category includes: (1)
states that can be efficiently sampled with a quantum computer,
but are conjectured to have no classical algorithm to do so; (2)
states that cannot be efficiently obtained on a quantum computer
starting from some fixed product input state (e.g., random states).
Under this definition, states that admit an efficient classical

description (such as stabilizer states or MPS with low bond
dimension) are easy, because we known that O(poly(n)) para-
meters are sufficient to specify the state. Specifically, for the class
of easy states we consider separable states obtained by taking the
tensor product of n different 1-qubit random states. More
formally, we consider states of the form τj i ¼ �n

i¼1 rij i where |ri〉
are random 1-qubit states. These states can be described using
only 2n parameters.
Among the class of hard states of the first kind, we study the

learnability of a type of hard distributions introduced in the ref. 24,
which can be sampled exactly on a quantum computer. These
distributions are conjectured to be hard to approximately sample
from classically—the existence of an efficient sampler would lead
to the collapse of the Polynomial Hierarchy under some natural
conjectures described in the ref. 24,25. We discuss how to generate
this type of states in the Methods section.
Finally, for the second class of hard states, we consider random

pure states. These are generated by normalizing a 2n dimensional

complex vector drawn from the unit sphere according to the Haar
measure.

RESULTS
The role of depth in compressibility
Classically, depth is known to play a significant role in the
representational capability of a neural network. Recent results,
such as the ones by Mhaskar, Liao, and Poggio,18 Telgarsky,19 and
Eldan and Shamir20 showed that some classes of functions can be
approximated by deep networks with the same accuracy as
shallow networks but with exponentially less parameters.
The representational capability of networks that represent

quantum states remains largely unexplored. Some of the known
results are only based on empirical evidence and sometimes yield
to unexpected results. For example, Morningstar and Melko26

showed that shallow networks are more efficient than deep ones
when learning the energy distribution of a two-dimensional Ising
model.
In the context of the learnability of quantum states Gao and

Duan14 proved that DBMs can efficiently represent some states
that cannot be efficiently represent by shallow networks (i.e.,
states generated by polynomial depth circuits or k-local Hamilto-
nians with polynomial size gap) using a polynomial number of
hidden units. However, there are no known methods to sample
efficiently from DBMs when the weights include complex-valued
coefficients.
We benchmark with numerical simulations the role played by

depth in compressing states of different levels of complexities. We
focus on three different states: an easy state (the completely
separable state discussed in the previous section), a hard state
(according to Fefferman and Umans), and a random pure state.
Our results are presented in Fig. 2. Here, by keeping the number

of parameters in the decoder constant, we determine the
reconstruction accuracy of networks with increasing depth.
Remarkably, depth affects the reconstruction accuracy of hard
quantum states. This might indicate that VAEs are able to capture
correlations in hard quantum states. As a sanity check we notice
that the network can learn correlations in random product states
and that depth does not affect the learnability of random states.
Our simulations suggest a further link between neural network

and quantum states. This topic has recently received the attention
of the community. Specifically, Levine et al.27 demonstrated that
convolutional rectifier networks with product pooling can be
described as tensor networks. By making use graph theoretic tools
they showed that nodes in different layers model correlations
across different scales and that adding more nodes to deeper
layers of a network can make it better at representing non-local
correlations.

Efficient compression of physical states
In this section we focus our attention onto two questions: can
VAEs find efficient representations of easy states? What level of
compression can we obtain for hard states? Through numerical
simulations we show that VAEs can learn to efficiently represent
some easy states (that are challenging for standard methods) and
achieve good levels of compressions for hard states. Remarkably,
our methods allow to compress up to a factor 5 the hard quantum
states introduced in the ref. 28. We remark that the exponential
hardness cannot be overcome for general quantum states and our
methods achieve only a factor improvement on the overall
complexity. This may nevertheless be sufficient to be used as a
characterization tool where full classical simulation is not feasible.
We test the performance of the VAE representation on two

classes of states: the hard states that can be constructed efficiently
with a quantum computer introduced by Fefferman and Umans28

and states that can be generated with a long-range Hamiltonian
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dynamics, as found for example in experiments with ultra-cold
ions.29 The states generated through this evolution are highly
symmetric physical states. However, due to the bond dimension
increasing exponentially with the evolution time, these states are
particularly challenging for MPS methods. An interesting question
is to understand whether neural networks are able to exploit these
symmetries and represent these states efficiently. We describe
long-range Hamiltonian dynamics in the Methods section.
Results are displayed in Fig. 3. For states obtained through

Hamiltonian evolution we achieve with almost maximum recon-
struction accuracy compression levels of up to C= 10−3. This
corresponds to a number of parameters m ¼ Oð100Þ � 218 which
implies that the VAE has learned an efficient representation of the
state.
In the case of hard state we can reach a compression of 0.2,

corresponding to a factor 5 reduction in the number of
parameters required to represent the state. Note that the
entanglement properties of hard states are likely to make them
hard to compress for tensor network states. For example, if one
wanted to compress an 18 qubits state using MPS (a type of
tensor network that is known to be efficiently contractable) we
have found that the estimated bond dimension to reconstruct this
state is D= 460. This number is obtained computing the largest
bipartite entanglement entropy (S), and estimating the bond

dimension with D= 2S. Considering that an MPS has D2 variational
parameters (in the best case), this would yield about 200
thousands variational parameters required to represent those
hard states. The resulting MPS compressing factor is then about
1.23, a significantly lower figure with respect to the 5 compression
factor obtained with VAEs. We note that this calculation only
shows that the entanglement structure of hard states is not well
modeled by MPS. Other types of tensor networks might be more
amenable to the specific structure of these states but it is unlikely
these models will be computationally tractable.
Although limited, the levels of compression we achieve for hard

states could play a role in experiments aimed at showing quantum
supremacy. In this setting a quantum machine with a handful of
noisy qubits performs a task that is not reproducible even by the
fastest supercomputer. As recently highlighted by Montanaro and
Harrow30 one of the key challenges with quantum supremacy
experiments is to verify that the quantum machine is behaving as
expected. Because quantum computers are conjectured to not be
efficiently simulatable, verifying that a quantum machine is
performing as expected is a hard problem for classical machines.
The paper by Jozsa and Strelchuk31 provides an introduction to
several approaches to verification of quantum computation. Our
methods might allow to characterize the result of a computation
by reducing the complexity of the problem. Because any

Fig. 3 VAEs can learn efficient representation of easy states and can be used to characterize hard states. Fidelity as a function of compression
C=m/2n for (a) an 18-qubit state generated by evolving 2�n=2 P

i i using the long-range Hamiltonian time evolution described in the Methods
section for a time t= 20 and (b) an 18-qubit hard state generated according to the ref. 28. a VAE can learn to represent efficiently with almost
perfect accuracy easy states that are challenging for MPS. b Hard quantum states can be compressed with high reconstruction accuracy up to
a factor 5. The decoder in a has 1 hidden layer to allow for greater compression without incurring in the saturation effects discussed in
Methods section. The decoder in b has 6 hidden layers in order to maximize the representational capability of the network

Fig. 2 Depth affects the learnability of hard quantum states. Fidelity as a function of the number of layers in the VAE decoder for a an 18-qubit
hard state that is easy to generate with a quantum computer, b random 18-qubit product states that admit efficient classical descriptions and
c random 15-qubit pure states. Errors bars for b and c show the standard deviation for an average of five different random states. The
compression level C is set to C= 0.5 for (a) and (c) and C= 0.015 for (b) where C is defined by m

2n where m is the number of parameters in the
VAE decoder and n is the number of qubits. We use a lower compression rate for product states because, due to their simple structure, even a
1 layer network achieves almost perfect overalp. Plot (b) makes use of up to 4 layers in order to avoid the saturation effects discussed in the
Methods section
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verification of quantum supremacy will likely involve a machine
with only a few qubits above what can be efficiently classically
simulated, even small reductions in the number of parameters of
the state might allow to approximate relevant quantities in a
computationally tractable way. Potentially, a neural network
approach to verification can be accomplished by compressing a
trusted initial state into a VAE whose parameters are then evolved
according to a set of rules specified by the quantum circuit. By
comparing the experimental distribution with the one sampled
with the VAE it is then possible to determine whether the device is
faulty. We remark that this type of verification protocol would only
“approximately verify” the system because of the errors intro-
duced during the compression phase.

DISCUSSION
In this work we introduced VAEs, a type of deep, generative,
neural network, as way to encode the probability distribution of
quantum states. Our methods are completely unsupervised, i.e.,
do not require a labeled training set. By means of numerical
simulations we showed that deep networks can represent hard
quantum states that can be efficiently obtained by a quantum
computer better than shallow ones. On the other hand, for states
that are hard and conjectured to be not efficiently producible by
quantum computers, depth does not appear to play a role in
increasing the reconstruction accuracy. Our results suggest that
neural networks are able to capture correlations in states that are
provably hard to sample from for classical computers but not for
quantum ones. As already pointed out in other works, this might
signal that states that can be produced efficiently by a quantum
computer have a structure that is well represented by a layered
neural network.
Through numerical experiments we showed that our methods

have two important features. First, they are capable of represent-
ing, using fewer parameters, states that that are known to have
efficient representation but where other classical approaches
struggle. Second, VAEs can compress hard quantum states up to a
constant factor. However low, this compression level might enable
to approximately verify quantum states of a size expected on near
future quantum computers.
Presently, our methods allow to encode only the probability

distribution of a quantum state. Future research should focus on
developing VAE architectures that allow to reconstruct the full set
of amplitudes. Other interesting directions involve finding
methods to compute the quantum evolution of the parameters
of the network and investigating whether the depth of a quantum
circuit is related to the optimal depth of a VAE learning its output
states. Finally, it is interesting to investigate how information is
encoded in the latent layers of the network. Such analysis might
provide novel tools to understand the information theoretic
properties of a quantum system.

METHODS
Numerical experiments
All our networks were trained using the tensorflow r1.3 framework on a
single NVIDIA K80 GPU. Training was performed using backpropagation
and the Adam optimizer with initial learning rate of 10−3.32 Leaky rectified
linear units (LReLU) function were used on all hidden layers with the leak
set to 0.2.33 Sigmoid activation functions were used on the final layer.
Training involves optimizing two objectives: the reconstruction loss and

the regularization loss. We used a warm up schedule on the regularization
objective by increasing a weight on the regularization loss from 0 to 0.85
linearly during training.34 This turned out to be critical, especially for hard
states. A consequence of this approach is that the model does not learn
the distribution until close to the end of training irrespective of the
number of training iterations. Each network was trained using 50,000

batches of 1000 samples each. Each sample consists of a binary string
representing a measurement outcome.
Following training the state was reconstructed from the VAE decoder by

drawing 1002n samples from a multivariate Gaussian with zero mean and
unit variance. The samples were decoded by the decoder to generate
measurement outcomes in the form of binary strings. The relative
frequency of each string was recorded and used to reconstruct the
learned distribution which was compared to the true distribution to
determine its fidelity.
In all experiments the number of nodes in the latent layer is the same as

the number of qubits. Using fewer or more nodes in this layer resulted in
worse performance. The number of nodes in the hidden layers is
determined by the number of layers and the compression C defined by
m
2n where n is the number of qubits and m is the number of parameters in
the decoder. In all cases the encoder has the same number of hidden
layers and nodes in each layer as the decoder.
We compress the VAE representation of a quantum state by removing

neurons from each hidden layer of the VAE. For small n's achieving a high
level of compression caused instabilities in the network (i.e. the
reconstruction accuracy became more dependent on the weight
initialization). In this respect we note that, by restricting the number of
neurons in the penultimate layer, we are effectively constraining the
number of possible basis states that can be expressed in the output layer
and, as a result, the number of configurations the VAE can sample from.
This can be shown noting that the activation functions of the penultimate
layer generate a set of linear inequalities that must be simultaneously
satisfied. A geometric argument that involves how many regions of an n-
dimensional space m hyperplanes can separate lead to conclude that, to
have full expressive capability, the penultimate layer must include at least
n neurons. Similar arguments have been discussed in the ref. 35 for
multilayer perceptrons.

States that are classically hard to sample from
We study the learnability of a special class of hard states introduced by
Fefferman and Umans28 which is produced by a certain quantum
computational processes which exhibit quantum “supremacy”. The latter
is a phenomenon whereby a quantum circuit which consists of quantum
gates and measurements on a constant number of qubit lines samples
from a particular class of distributions, which is known to be hard to
sample from on a classical computer modulo some very plausible
computational complexity assumptions. To demonstrate quantum supre-
macy one only requires quantum gates to operate within a certain fidelity
without full error-correction. This makes efficient sampling from such
distributions feasible to execute on near-term quantum devices and opens
the search for possibilities to look for practically-relevant decision
problems.
To construct a distribution one starts from an encoding function h:

[m]→{0, 1}N. The function h performs an efficient encoding of its argument
and is used to construct the following so-called efficiently specifiable
polynomial on n variables:

Q X1; ¼ ; XNð Þ ¼
X
z2 ½m�

Xh zð Þ1
1 ¼ Xh zð ÞN

N ; (3)

where h(z)i means that we take only the i-th bit, and m is an arbitrary
integer. In the following, we pick h to be related to the permanent. More
specifically, h : 0; n!� 1½ � ! 0; 1f gn2 maps the i-th permutation (out of n!)
to a string which encodes its n × n permutation matrix in a natural way
resulting in a N-coordinate vector, where N= n2. To encode a number A∈
[0, n!− 1] in terms of its permutation vector we first represent A in factorial
number system to get A′ obtaining the N-coordinate vector which
identifies a particular permutation σ.
With the above encoding, our efficiently specifiable polynomial Q will

have the form:

Q X1; ¼ ; XNð Þ ¼
X

z2 n!�1½ �
Xh zð Þ1
1 ¼ Xh zð ÞN

N : (4)

Fix some number L and consider the following set of vectors y= (y1,…,
yN)∈ [0, L− 1]N (i.e., each yj ranges between 0 and L− 1). For each y
construct another vector Zy ¼ zy1 ; ¼ ; zyN

� �
constructed as follows: each zyj

corresponds to a complex L-ary root of unity raised to power yj. For
instance, pick L= 4 and consider y′= (1, 2, 3, 0, 2, 3, 0, 4). Then the
corresponding vector Zy′= (w1, w2, w3, w0, w2, w3, w0, w4), where w= e2πi/4

(for an arbitrary L it will be e2πi/L).
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Having defined Q fixed L we are now ready to construct each element of
the “hard” distribution DQ,L:

PrDQ;L y½ � ¼ Q Zy
� ��� ��2
LNn!

: (5)

A quantum circuit which performs sampling is remarkably easy. It
amounts to applying the quantum Fourier transform to a uniform
superposition which was transformed by h and measuring in the standard
basis (see Theorem 4 of Section 4 of ref. 28).
Classical sampling of distributions based on the above efficiently

specifiable polynomial is believed to be hard in particular because it
contains the permanent problem. Thus, the existence of an efficient
classical sampler would imply a collapse of the Polynomial Hierarchy to the
third level (see Section 5 and 6 of ref. 28 for detailed proof).

Long-range quantum Hamiltonians
The long-range Hamiltonian we consider has the form:

ΨðtÞj i ¼ e�iHt Ψ t ¼ 0ð Þj i; (6)

where

H ¼
X
i<j

Vði; jÞ σxi σ
x
j þ σyi σ

y
j

� 	
; (7)

and V(i, j)= 1/|i− j|3/4 is a long-range two-body interaction, and the initial
state is a fully polarized state is the product state Ψ t ¼ 0ð Þj i ¼ 2�n=2 P

i jii.
At long propagation times t � 1, the resulting states are highly entangled,
and are for example, challenging for MPS-based tomography.36 To assess
the ability of VAE to compress highly entangled states, we focus on the
task of reconstructing the outcomes of experimental measurements in the
computational basis. In particular, we generate samples distributed
according to the probability density |Ψi(t)|

2, and reconstruct this
distribution with our generative, deep models.
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