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Constructing exact representations of quantum
many-body systems with deep neural networks
Giuseppe Carleo1,2, Yusuke Nomura3 & Masatoshi Imada3

Obtaining accurate properties of many-body interacting quantum matter is a long-standing

challenge in theoretical physics and chemistry, rooting into the complexity of the many-body

wave-function. Classical representations of many-body states constitute a key tool for both

analytical and numerical approaches to interacting quantum problems. Here, we introduce a

technique to construct classical representations of many-body quantum systems based on

artificial neural networks. Our constructions are based on the deep Boltzmann machine

architecture, in which two layers of hidden neurons mediate quantum correlations. The

approach reproduces the exact imaginary-time evolution for many-body lattice Hamiltonians,

is completely deterministic, and yields networks with a polynomially-scaling number of

neurons. We provide examples where physical properties of spin Hamiltonians can be effi-

ciently obtained. Also, we show how systematic improvements upon existing restricted

Boltzmann machines ansatze can be obtained. Our method is an alternative to the standard

path integral and opens new routes in representing quantum many-body states.
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A tremendous amount of successful developments in
quantum physics builds upon the mapping between
many-body quantum systems and effective classical the-

ories. The probably most well-known mapping is due to Feyn-
man, who introduced an exact representation of many-body
quantum systems in terms of statistical summations over classical
particles trajectories1. Effective classical representations of quan-
tum many-body systems are however not unique, and other
approaches rely on different inspiring principles, such as per-
turbative expansions2, or decomposition of interactions with
auxiliary degrees of freedom3,4. The classical representations of
quantum states allow both for novel conceptual developments
and efficient numerical simulations. On one hand, perturbative
approaches based on the graphical resummation of classes of
diagrams are at the heart of many-body analytical approaches in
various fields of research, ranging from particle to condensed-
matter physics5. On the other hand, several non-perturbative
numerical methods for many-body quantum systems are also
based on these mappings. Quantum Monte Carlo (QMC)
methods are among the most successful numerical techniques,
relying on continuous-space polymer representations6–9, world-
line lattice path integrals10,11, continuous time algorithm12, and
summation of perturbative diagrams13,14. Effective classical
representations are also the building block of variational methods
based on correlated many-body wave-functions15. Several suc-
cessful variational techniques make extensive use of parametric
representations of quantum states, where the effective parameters
are determined by means of the variational principle16–19. In
matrix-product and tensor-network-states the ground-state is
expressed as a classical network20,21. In general, finding alter-
native, efficient classical representations of quantum states can
help establishing novel numerical and analytical techniques to
study challenging open issues.

Recently, an efficient variational representation of many-body
systems in terms of artificial neural networks, which consists of
classical degrees of freedom, has been introduced22. Numerical
results have shown that artificial neural networks can represent
many-body states with high accuracy22–31. The majority of the
variational approaches adopted so-far are based on shallow neural
networks, called restricted Boltzmann machines (RBM), in which
the physical degrees of freedom interact with an ensemble of
hidden degrees of freedom (neurons). While shallow RBM
states have promising features in terms of entanglement
capacity25,32–34, only deep networks are guaranteed to provide a
complete and efficient description of the most general quantum
states35,36.

In this work, we introduce a constructive approach to
explicitly generate deep network structures corresponding to
exact quantum many-body ground states. We demonstrate this
construction for interacting lattice spin models, including the
transverse-field Ising and Heisenberg models. Our construc-
tions are fully deterministic, in stark contrast to the
shallow RBM case, in which the numerical optimization of the
network parameters is inevitable. The number of neurons
required in the construction scales only polynomially with the
system size, thus the present approach constitutes a new family
of efficient quantum-to-classical mappings exhibiting a pro-
minent representational flexibility. Given as a simple set of
iterative rules, these constructions can be used both as a self-
standing tool, or to systematically improve results obtained
with variational shallow networks. The latter improves the
efficiency of the method because the numerically optimized
shallow RBM states are already good approximations for
ground states. Finally, we discuss sampling strategies from the
generated deep networks and show numerical results for one-
dimensional spin models.

Results
General scheme of constructing deep neural states. The ground
state of a generic Hamiltonian, H, can be found through
imaginary-time evolution, ΨðτÞj i= e�τH Ψ0j i, for a sufficiently
large τ � ΔE�1. Here ΔE is the energy gap between the ground
and the first excited state, Ψ0j i is an arbitrary initial state non-
orthogonal to the exact ground state, and we work in units where
ħ= 1. For a finite system, the energy gap is typically finite, and
the total propagation time needed to reach the ground state
within an arbitrary given accuracy is expected to grow at most
polynomially with the system size (for systems becoming gapless
in the thermodynamic limit).

Here, we introduce a representation of the wave-function
coefficients in terms of a deep Boltzmann machine (DBM)37. For
the sake of concreteness, let us consider the case of N spins,
described by the quantum numbers σzj i= σz1 ¼ σzN

�� �
. Then, we

represent generic many-body amplitudes σz1 ¼ σzN jΨ
� � � Ψ σzð Þ

in the two-layer DBM form:

ΨW σzð Þ ¼ P
fh;dg

exp
P
i
aiσ

z
i þ

P
ij
σziWijhj

"

þP
j
bjhj þ

P
jk

hjdkW
′
jk þ

P
k
b′kdk

# ð1Þ

where we have introducedM hidden units h,M′ deep units d, and
a set of couplings and bias terms W ≡ (a, b, b′, W, W′). A sketch
of the DBM architecture is shown in Fig. 1.

In the following, we specialize to the case of spin 1/2, thus all
the units are taken to be σz, h, d= ±1. This representation is the
natural deep-network generalization of the shallow RBM,
introduced as variational ansatz in ref. 22. As for the RBM form,
also in this case direct connections between variables in the same
layer are not allowed. A crucial difference is however that the
layer of deep variables makes, in general, the evaluation of the
wave-function amplitudes not possible analytically. At variance
with RBM, the DBM form is known to be universal, as proven by
Gao and Duan recently35.

Our key finding is that, thanks to the much more flexible
representability, the DBM wave function can reproduce the
Hamiltonian imaginary-time evolution exactly by changing its
form dynamically, and that the parameters for ground state DBM
network can be derived analytically. In order to find explicit
expressions for the parameters W that represent ΨðτÞj i for
arbitrary imaginary time, we start considering a second-order

Visible layer

Hidden layer

Deep layer

�z
3�z

2�z
1 �z

N

hMh1 h2 h3

d1 d2 d3 dM ′

W ′jk

W ij

Fig. 1 Structure of deep Boltzmann machine. Dots, squares, and triangles
represent physical degrees of freedom σzi

� �
, hidden units (hj), deep units

(dk), respectively. Solid curves represent interlayer couplings (Wij and W′
jk)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07520-3

2 NATURE COMMUNICATIONS |          (2018) 9:5322 | DOI: 10.1038/s41467-018-07520-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Trotter–Suzuki decomposition10,38:

ΨðτÞj i ¼ G1 δτ=2ð ÞG2 δτð Þ¼G1 δτð ÞG2 δτð ÞG1 δτ=2ð Þ Ψ0j i; ð2Þ

where we have decomposed the Hamiltonian into two non-
commuting parts, H ¼ H1 þH2, and introduced the short-time
propagators Gν δτð Þ ¼ e�Hνδτ . The problem of finding an exact
representation for ΨðτÞj i then reduces to finding a rule to
construct the building blocks of the time-evolution, namely
representing the state after two-types of propagators by DBM
with new parameters �W:

e�Hνδτ ΨW
�� � ¼ C Ψ �W

�� �
: ð3Þ

In practice, this is achieved either by changing parameters W, or
by introducing additional parameters in W, adding new neurons
and creating new connections in the network.

In the following, we show concrete examples for paradigmatic
spin hamiltonians, namely the transverse-field Ising and Heisen-
berg models. The rest of this section provides a general overview
of how the DBM constructions are derived (how Eq. (3) is
satisfied) for these models. The next section (Sampling strategies)
discusses how they can be used in numerical schemes. A
complete, in-depth derivation of the representations and algo-
rithms can be found both in Methods and in the Supplementary
Notes, as referred to at each step in this section. Furthermore, we
provide computer codes to create the DBM network for each
model as Supplementary Software 1–4.

Transverse-field Ising model (TFIM). We start considering the
TFIM on an arbitrary interaction graph. In this case, we
decompose the Hamiltonian into two parts:H1 ¼ �Pl Γlσ

x
l , andH2 ¼

P
l<m Vlmσ

z
l σ

z
m, where σ denote Pauli matrices, Γl (>0) are

site-dependent transverse fields, and Vlm are arbitrary coupling
constants.

In order to implement the mapping to a DBM, we first
consider the action of the diagonal propagator e�δτVlmσ

z
l σ

z
m , acting

on a bond Vlm. In this case, the goal of finding an exact DBM
representation can be rephrased as finding solutions to

σzh je�δτVlmσ
z
l σ

z
m ΨW
�� � ¼ CΨ �W σzð Þ; ð4Þ

i.e. finding a set of new parameters �W that exactly reproduces the
imaginary time evolution on the left- hand side. Here C is an
arbitrary finite normalization constant. The diagonal propagator
introduces an interaction between two visible, physical spins,
which is not directly available in the DBM architecture. This
interaction can be mediated by a new hidden unit in the first
layer, h[lm] which is only connected to the visible spins on that
bond, i.e. �Wl½lm� and �Wm½lm� are finite, but �Wi½lm� = 0, ∀i ≠ l, m and
�W ′
j½lm� = 0, ∀j (see Fig. 2a).

More concretely, the new wave function has then the form:

Ψ �W σzð Þ ¼ P
h½lm�

eσ
z
l Wl½lm�h½lm�þσzmWm½lm�h½lm�ΨW σzð Þ

¼ 2cosh σzl Wl½lm� þ σzmWm½lm�
� �

ΨW σzð Þ:
ð5Þ

Equation (4) is then satisfied if

e�δτVlmσ
z
l σ

z
m ¼ 2C cosh σzl Wl½lm� þ σzmWm½lm�

� �
ð6Þ

for all the possible values of σzl and σzm. By means of a useful
identity [Eq. (21) in Methods], the new parameters Wl[lm] and

Wm[lm] are given by

Wl½lm� ¼
1
2
arcosh e2 Vlmj jδτ� � ð7Þ

Wm½lm� ¼ �sgn Vlmð Þ ´Wl½lm�: ð8Þ

In this way the classical two-body interaction can, in general, be
represented exactly by the shallow RBM.

Next, to exactly represent the off-diagonal propagator
eδτΓlσ

x
l ΨW
�� �

, we must solve:

cosh Γlδτð ÞΨW σzð Þ þ sinh Γlδτð ÞΨW σzl ! �σzl
� �

¼ CΨ �W σzð Þ ð9Þ

for the new weights �W, and for an appropriate finite normal-
ization constant C. In this case, one possible solution is obtained
by adding one deep d[l] and one hidden h[l] neurons. For d[l], we
create new couplingsW ′

j½l� to the existing hidden neurons hj which
are connected to σzl . We simultaneously allow for changes in the

�z
m�z

l

a b

�z
l

Step 0
Initial state

Step 1
New d and W ′

Step 3
New h, W,W ′

Step 2
Modify W

Skip

Skip

h[lm] h[l ]

d[l ]

Fig. 2 Construction of exact DBM representations of the transverse-field
Ising model. In this example, a step of imaginary-time evolution is shown,
for the case of the one-dimensional transverse-field Ising model. Dots
represent physical degrees of freedom σzi

� �
, squares represent hidden units

(hj), triangles represent deep units (dk). In each panel, upper networks are
the initial state with arbitrary network form, and the bottom networks are
the final states, after application of the propagator. Intermediate steps
illustrate how the network is modified, where the relevant modified
couplings at each step are highlighted in black. The highlighted solid and
dashed curves indicate new and vanishing couplings, respectively. a Shows
the diagonal (interaction) propagator being applied to the highlighted blue
spins. This introduces a hidden unit (green) connected only to the two
physical spins. In (b) the off-diagonal (transverse-field) propagator is
applied, acting on the blue physical spin. Here, we then add one deep unit
(red triangle), and a hidden unit (green) mediating visible–deep interactions
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existing parameters. By the procedure given in Methods, after
applying the off-diagonal propagator for the site l, a solution of
Eq. (9) is found by the matching condition of the hidden unit
interactions on the left and the right hand sides of Eq. (9).
Overall, the solution results in a three-step process (Fig. 2b): First,
the hidden units attached to σzl are connected to the newly
introduced deep unit d[l] as

W ′
j½l� ¼ �Wlj ð10Þ

(see Eq. (35)). Second, all the hidden units previously connected
to the spin σzl lose their connection, i.e., �Wlj ¼ 0; 8j. Third, the
spin σzl and the deep unit d[l] are connected to the new hidden
unit,h[l], through the interactionWl[l] and W ′

½l�½l�, respectively, as

Wl½l� ¼
1
2
arcosh

1
tanh Γlδτð Þ
	 


; ð11Þ

W ′
½l�½l� ¼ �Wl½l�: ð12Þ

Using the given expressions for the parameters �W we can then
exactly implement a single step of imaginary-time evolution. The
full imaginary-time evolution is achieved by applying the above
procedure for H1 and H2 alternately and repeatedly. Example
applications of these rules, for both the diagonal and the off-
diagonal propagators are shown in Fig. 2.

Approximate RBM from DBM for transverse ising model.
From the previous discussion, we have seen that the action of the
off-diagonal propagator is responsible for the introduction of
deep units in the network, thus breaking the shallow RBM
structure. An interesting question is whether, in some limit, it is
possible to stay within the RBM structure even for the off-
diagonal propagator. The action of the off-diagonal propagator
onto an RBM state can be then systematically expanded in powers
of the weights:

σzh jeδτΓlσxl ΨRBM
W

�� �
/
X
fhg

e

P
ij

Wijσ
z
i hj

1þ tanh Γlδτð Þ 1� 2σzl
X
j

hjWlj

 !( )
þO W2

lj

� �
:

ð13Þ

In the case of small weights, we can then exactly reproduce the
off-diagonal propagator upon imposing a small change in the
parameters Wlj→Wlj+ ΔWlj and keeping an RBM structure. If
we expand the new RBM with modified weights, we get

σzh jeδτΓlσxl ΨRBM
�W

�� � /X
fhg

e

P
ij

Wijσ
z
i hj

1þ σzl
X
j

ΔWljhj

( )

þO ΔW2
lj

� �
:

ð14Þ

Comparing Eqs. (13) and (14), it follows that (apart from an
irrelevant global normalization) the state after the off-diagonal
propagator is still an RBM, with weights equal to:

Wlj ! Wlj � 2tanh Γlδτð ÞWlj; ð15Þ

and an error proportional to the square of the weights at that time
step. In general, we expect that this kind of approximate updates
is accurate in perturbative regimes (for example in the limit of
small Γl) or in the limit of small imaginary time evolution. A
similar approximation scheme has been derived in ref. 39.
Numerical results for this approximation are discussed in a
dedicated section before the Discussion.

Heisenberg model. We now consider the anti-ferromagnetic
Heisenberg model (AFHM), on bipartite lattices. In one dimen-
sion, we decompose the Hamiltonian into odd and even bonds:
H1 ¼

Podd
hl;mi Hbond

lm and H2 ¼
Peven

hl;mi Hbond
lm , with Hbond

lm =
J σxl σ

x
m þ σyl σ

y
m þ σzl σ

z
m

� �
, where σ denote Pauli matrices. Because

the bond Hamiltonian Hbond
lm is a building block also in higher

dimensional models, construction of an exact DBM representa-
tion of the ground states can be achieved by finding solutions for
the bond-propagator σzh je�δτHbond

lm ΨW
�� �

= C σzjΨ �W
� �

, where the
parameters �W are such that the previous equation is satisfied for
all the possible σzh j, and for an arbitrary finite normalization
constant C. More explicitly, we need to satisfy

δσzl ;σzme
�JδτΨW σzð Þ þ 1� δσzl ;σzm

� �
eJδτ cosh 2Jδτð Þ

´ ΨW σzð Þ � tanh 2Jδτð ÞΨW σzl $ σzm
� �� � ¼ CΨ �W σzð Þ:

ð16Þ

The basic strategy of finding a solution for Eq. (16) is similar to
that for Eq. (9) in the transverse Ising model. Several possibilities
arise when looking for solutions of the bond-propagator equation,
Eq. (16). The existence of non-equivalent solutions prominently
shows the non-uniqueness of DBM structure to represent the very
same state and, at the same time, provides us flexibility in
designing DBM architectures. Here, we show three concrete
constructions. See Methods and Supplementary Note 2 for a
detailed derivation of the DBM construction for the Heisenberg
model, including anisotropic and bond-disordered coupling cases.

1 deep+ 3 hidden variables construction for Heisenberg
model. The first construction is dubbed “1 deep, 3 hidden”
(1d–3h). It amounts to adding an extra deep neuron, d[lm], and
three more hidden neurons to satisfy Eq. (16). A crucial differ-
ence with respect to the TFIM is that the introduced deep spin
d[lm] has a constraint depending on the state of the spins on the
bond: σzl and σzm. Specifically, when σzl ¼ σzm the deep spin is
constrained to be d½lm� ¼ σzl ¼ σzm, whereas when σzl ≠σ

z
m, its value

is unconstrained. From a pictorial point of view, the action of the
bond propagator is a four-step process (see Fig. 3a). Starting from
a given initial network (uppermost structures in Fig. 3), d[lm] is
added and connected, through W ′

j½lm� given in Eq. (43), to the
existing hidden units hj connected to σzl and σzm. Second, spin σzl
is disconnected to all hidden units and reconnected to those
hidden units the spin σzm is attached to [see Eq. (42)]. Third, two
new hidden units are introduced. One of the hidden units, h[lm1],
mediates the interaction between σzl and d[lm] [Eq. (47)], and the
other hidden unit h[lm2] mediates a direct spin–spin interaction
between σzl and σzm [Eq. (49)]. Fourth, a further hidden unit
connected to σzl , σ

z
m, and d[lm] is inserted, in such a way that the

constraint previously described is satisfied. For all but the last
step, the DBM weights are real-valued. In the last step instead the
constraint is enforced by introducing imaginary-valued interac-
tions (dotted lines in Fig. 3), referred to the “iπ/6‘ trick, resulting
in a sign-problem-free global term cosðπ=6ðσzl þ σzm � d½lm�ÞÞ
after the summation over ±1 for the lastly added hidden unit
h[lm3]:

P
h½lm3�¼± 1 exp½iπ=6ðσzl þ σzm � d½lm�Þh½lm3��. The constraint

mentioned above is assured by this cosine term.

2 deep+ 6 hidden variables construction for Heisenberg
model. The second construction is dubbed “2 deep, 6 hidden”
(2d–6h), and is more similar to the lattice path-integral for-
mulation. In this representation, we introduce two auxiliary deep
spins per bond, d[l] and d[m] with constraint d½l� þ d½m� ¼ σzl þ σzm,
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and six hidden neurons. The action of the bond propagator is
schematically illustrated in Fig. 3b: first, two deep units d[l] and
d[m] are introduced, connecting, respectively, to the hidden units
spins σzl and σzm are attached to [see Eqs. (51) and (52)]. Second,
all the connections between spins σzl , σ

z
m, and hidden units hj are

cut off [Eqs. (53) and (54)]. Third, four hidden units h[lm1], …,
h[lm4] are introduced, to mediate interactions between the two
deep units and the physical spins l, m [Eqs. (61) and (62)].
Finally, two hidden units h[lm5] and h[lm6] are introduced, con-
necting both to d[l], d[m] and σzl ; σ

z
m with imaginary-valued

weights. The last step realizes the constraint d½l� þ d½m� ¼ σzl þ σzm,
through the “iπ/4, iπ/8‘ trick discussed in Methods and the dis-
cussion of the 2d–6h representation in Supplementary Note 2.

In this representation, if the hidden neurons are traced out, the
imaginary-time evolution becomes equivalent to that of the path-
integral Monte Carlo method. More specifically, the number
of deep neurons introduced at each time slice is exactly the
same as the number of visible spins, and the deep neurons at
each time slice can be regarded as additional classical spin
degrees of freedom in the path-integral. Moreover, the constraint

Step 0
Initial state

Step 2
Modify W

a b c

Step 1
New d and W ′

Step 3
New h, W,W ′

(real)

Step 3
New h, W,W ′
(constraint)

h[lm3]

h[lm 5] h[lm 6]

h[lm 1] h[lm 2]h[lm 1] h[lm 2]

d[lm] d[l ] d[m] d[l ] d[lm]

h[lm 4]
h[lm 3]

h[m]h[l ]

h[lm 1] h[lm 2]

�z
m�z

l
�z

m�z
l

�z
m�z

l

Fig. 3 Construction of exact DBM representations of Heisenberg models. In this example, a time step of imaginary-time evolution is shown, for the case of
the one-dimensional antiferromagnetic Heisenberg model. Dots represent physical degrees of freedom σzi

� �
, squares represent hidden units (hj), triangles

represent deep units (dk). The three panels (a–c) represent different possible explicit constructions. In each panel, upper networks are the initial state with
arbitrary network form, and the bottom networks are the final states, after application of the propagator. Intermediate steps illustrate how the network is
modified, where the relevant modified weights at each step are highlighted in black. In those diagrams, dashed lines indicate that the corresponding weights
are set to zero, and dotted lines indicate complex-valued weights. The three panels correspond to the (a) “1 deep, 3 hidden” (1d–3h), (b) “2 deep, 6 hidden”
(2d–6h), and (c) “2 deep, 4 hidden” (2d–4h) constructions (see text for a more detailed explanation of the individual steps characteristic of each
construction)
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d½l� þ d½m� ¼ σzl þ σzm ensures that the total magnetization is
conserved at each time slice. Finally, the W and W′ interactions
reproduce the matrix element of exp �δτHbond

lm

� �
between neighbor-

ing time slices. See Supplementary Note 2 for more detail on this
point.

2 deep+ 4 hidden variables construction for Heisenberg
model. A further possible solution to Eq. (16) is dubbed “2 deep,
4 hidden” (2d–4h) construction. In this case, we introduce two
auxiliary deep variables d[l] and d[lm]. We also introduce four
hidden units h[l], h[m], h[lm1], and h[lm2]. Before the imaginary
time evolution, e�δτHbond

lm , the physical variables σzn (n= l or m) are
already coupled to each hidden variable hj with a coupling Wnj.
After the time evolution e�δτHbond

lm , as shown schematically in
Fig. 3c, the coupling parameters are updated in the following way
based on the old Wnj: First, the first deep unit d[l] becomes
coupled to the already existing hidden variables hj through the
coupling W ′

j½l� given in Eq. (67). The second deep unit d[lm]

becomes similarly coupled to hj through a term Zlmj given in Eq.
(67). Second,Wnj is updated to �Wnj ¼ Wnj þ ΔWnj [see Eq. (66)].
Third, newly introduced h[n] (n= l or m) gets coupled to d[l]
through W ′

½n�½l�, and also to σzn through Wn[n] [Eqs. (71) and (73)].
Finally, as clarified in Methods, we also need to satisfy the

constraint d½l�d½lm� ¼ σzl σ
z
m. Such a constraint is represented in

DBM form asX
h½lm1�;h½lm2�

exp
iπ
4

h½lm1� þ h½lm2�
� �

σzl þ σzm þ d½l� þ d½lm�
� �� �

; ð17Þ

which ensures d½l�d½lm� ¼ σzl σ
z
m after explicit summation of h[lm1]

and h[lm2]. Finally, we remark that the three constructions
presented here have different intrinsic network topologies. In
particular, 2d–6h gives rise to a local topology (because of the
equivalence with the path-integral contruction), 1d–3h has a local
structure in the first layer and non-local in the second one, and
2d–4h is purely non-local in both layers.

Sampling strategies. With network structures explicitly deter-
mined, we now focus on the problem of extracting meaningful
physical quantities from them. To this end, it is convenient to
decompose the DBM weight into two parts, such that

ΨW σzð Þ ¼
X
fh;dg

P1 σz; hð ÞP2 h; dð Þ; ð18Þ

where P1 σz; hð Þ= eσ
z �aþσz �W�hþh�b, and P2ðh; dÞ= eh�W′�dþd�b′. The

expectation value of an arbitrary (few-body) operator O can then
be computed through the expression

Oh i ¼

P
σz ;h;h′d;d′f g

Π σz; h; h′; d; d′ð ÞOloc σz; h; h′ð Þ
P

σz ;h;h′d;d′f g
Π σz; h; h′; d; d′ð Þ ; ð19Þ

where we have introduced the pseudo-probability density Π(σz, h,
h′, d, d′)≡ P1 σz; hð ÞP2 h; dð ÞP�

1 σz; h′ð ÞP�
2 h′; d′ð Þ, and the “local”

estimator

Oloc σz; h; h′ð Þ ¼ 1
2

X
σ′z

σzh jO σ ′z
�� � P1 σ ′z; h

� �
P1 σz; hð Þ þ P1 σ ′z; h′

� ��
P1 σz; h′ð Þ�

 !
:

ð20Þ

For the sampling over the Π distribution, a block Gibbs
sampling analogous to what performed in standard DBM

architectures can be performed37,40. Alternatively, it is possible
to devise a set of Metropolis local updates sampling the exactly
known marginals ~Π σz; h; h′ð Þ=Pfd;d′g Π σz; h; h′; d; d′ð Þ or
~Π′ σz; d; d′ð Þ=Pfh;h′g Π σz; h; h′; d; d′ð Þ.
In general, we have found that efficiently sampling the DBMs

arising from the Heisenberg model constructions is typically
more challenging than for the TFIM. This circumstance is a
consequence of the imaginary couplings which set constraints on
the value of hidden/deep units. These constraints typically make
local Metropolis updates inefficient. With the notable exception
of the 2d–6h representation, for which loop updates can be
readily implemented, we leave the problem of designing efficient
Monte Carlo sampling for the other Heisenberg constructions
open. The sampling strategies adopted in our numerica are
discussed more in detail in Supplementary Note 3.

Numerical results. We have implemented numerical algorithms
to sample and obtain physical properties from the DBM pre-
viously derived. In Fig. 4a we show results for the one-
dimensional TFIM. Specifically, we show the expectation value
of the energy following the imaginary-time evolution starting
from a fully polarized (in the x direction) initial state. The initial
state corresponds to an empty network, where all the DBM
parameters are set to zero. The DBM results closely match the
exact imaginary-time evolution, thus verifying the correctness of
our construction.

In Fig. 4a we also show the corresponding imaginary-time
evolution as obtained from the approximate RBM construction,
Eq. (15). As expected, this approximation is very accurate for
short times, and breaks at later times.

Numerical results for the one-dimensional Heisenberg model
are shown in Figs. 4b and 5a. Specifically, 4b shows the numerical
check for the DBM (construction 2d–6h) time evolution for one-
dimensional Heisenberg model for N= 16. As expected, the DBM
results also in this case follow the exact time evolution. Figure 5a
shows the dependence of the energy from the initial state, for
N= 80 case. Specifically, by taking a pre-optimized variational
RBM as an initial state, we can significantly decrease the time τ
needed to reach the ground state.

Results for two-dimensional models are shown in Fig. 5b, both
for the two-dimensional Heisenberg model, and for the frustrated
J1− J2 model, on 4 × 4 lattice with periodic boundary conditions.

In the case of the TFIM, sampling from the DBM is realized
through the Gibbs scheme previously sketched, in conjunction with a
parallel tempering scheme, to improve ergodicity in the sampling.

For the AFHM and for the J1− J2 model with 2d–6h
representation, we adopt loop updates41 used in the path-
integral QMC method, because the imaginary-time evolution in
the 2d–6h representation has a direct correspondence to the path-
integral formulation, allowing for an efficient handling of the
constraint d½l� þ d½m� = σzl þ σzm.

All the simulations carried here are sign-problem free, with the
notable exception of the simulations carried on the two-
dimensional J1− J2 model. In this case, we start the imaginary-
time evolution from a pre-optimized variational wave function,
thus setting the fully evolved state as product of a DBM and the
initial state. Because of the quality of the initial guess, a moderate
sign problem can be numerically afforded for short
time evolutions, and in this case it is enough to converge to the
exact ground state (see Fig. 5b).

Discussion
We have shown how exact ground states of interacting spin
Hamiltonians can be explicitly constructed using artificial
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neural networks comprising only two layers of hidden vari-
ables. In contrast to approaches based on one-layer RBMs, the
constructions we have derived here do not require further
variational optimization of the network parameters, and the
exact representation of many-body ground states can be
achieved with only polynomially many neurons. In the case of
the Heisenberg model, all of the explicit algorithms presented
here give rise to sign-problem-free representations, if the lat-
tice is bipartite.

The DBM representation has an intrinsic conceptual value, as
an alternative quantum-to-classical mapping to the path-integral
representation. In the path-integral formalism, the addition of an
extra dimension (the imaginary time direction) is needed to
exactly represent the quantum many-body state. In our case, the
DBM deep hidden layer plays a similar role as the additional
dimension in the path integral. As argued in Methods [see Eq.
(28)], a single-layer RBM is indeed sufficient to exactly, and
efficiently describe the state of arbitrary classical spin systems. On
the other hand, a second, deep layer is necessary for the efficient,
and exact construction of compact networks describing quantum
mechanical states.

DBM-based schemes can be further used to systematically
improve upon existing RBM variational results. More generally,
the initial state for the present DBM scheme can be generic
variational states or even combinations of RBMs and more con-
ventional wave functions24,33. We have shown that, by starting
the DBM construction from a pre-optimized variational state, a
fast convergence to the exact ground state is observed. As shown
in Fig. 5b, this kind of scheme opens the possibility of char-
acterizing the ground state even in the case of non-bipartite lat-
tices with frustration effects, exploiting the transient regime in
which the sign problem can be still efficiently handled numeri-
cally, as for example discussed in ref. 42.

Methods
Useful identities. It is useful to introduce several identities, which can be used
when more complicated interactions between the visible spins σz, hidden variables
h and deep variables d beyond the standard form Eq. (1) are needed. The first
identity reads

es1 s2V ¼ C
X
s3¼ ± 1

es1 s3
~V1þs2s3 ~V2 ¼ 2C cosh s1 ~V1 þ s2 ~V2

� �
: ð21Þ
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Fig. 4 Imaginary-time evolution with a DBM for 1D spin models. a Expectation value of energy of the transverse-field Ising Hamiltonian in the exact
imaginary-time evolution (continuous line) is compared to the stochastic result obtained with a DBM (filled circles) (δτ= 0.01). Empty circles correspond
to the approximate RBM evolution scheme, Eq. (15). We consider the critical point (Γl= Vlm), periodic boundary conditions, and N= 20 sites. b Expectation
value of the isotropic antiferromagnetic Heisenberg Hamiltonian (AFHM) in the exact imaginary-time evolution (continuous line) is compared to the
stochastic result obtained with a DBM (δτ= 0.01) following the 2d–6h construction. We consider periodic boundary conditions, N= 16 sites. The subscript
α in DBMα in panels (a, b) specifies a different initial state Ψ0j i: α= 1 means that the initial state is an RBM state with hidden-unit density M/N= 1,
whereas when α= 0 the initial state is the empty-network state (M= 0). All energies are in units of the transverse field (Γl= 1) for the TFIM, and of the
exchange (J= 1) for the AFHM
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Fig. 5 Approaching the exact ground-state energy. a Relative error on the ground-state energy for the 1D AFHM as a function of the imaginary time. Here
we consider periodic boundary conditions, N= 80 sites, and δτ= 0.01, in units of the exchange J= 1. The subscript α in DBMα specifies a different initial
state Ψ0j i: α= 1 means that the initial state is an RBM state with hidden-unit density M/N= 1, whereas when α= 0 the initial state is the empty-network
state (M= 0). b Relative error on the ground-state energy for the two-dimensional J1 – J2 AFHM as a function of the imaginary time. As an energy unit, we
consider J1= 1, and take J2= 0.0 and 0.4, periodic boundary conditions, N= 4×4= 16 sites, and δτ= 0.001. Initial states are pre-optimized pair-product

(geminal) state ψPP

�� �
supplemented by Gutzwiller factor P1G =

Q
l 1� nl"nl#
� �

prohibiting double occupancy and quantum number projection onto the

singlet state LS¼0, i.e., Ψ0j i=LS¼0P1G ψPP

�� �
. The PP states are given by ψPP

�� �
=
PN

l;m¼1 f
"#
lm c

y
l"c

y
m#

� �N=2
0j i, where f"#lm are variational parameters and cylσ are

the operators creating the electron with spin σ at lth site
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with

C ¼ 1
2
e�jV j ð22Þ

~V1 ¼
1
2
arcosh e2jV j

� �
ð23Þ

~V2 ¼ sgnðVÞ ´ ~V1 ð24Þ

for Ising variables s1 and s2, and a real interaction V. This is a gadget for
decomposing two-body interactions, and can be proven by examining all the cases
of s1 and s2.

By taking s1 and s2 as visible (physical) variables σz and s3 as a hidden variable h,
the direct classical two-body interaction between physical variables [the leftmost
part in Eq. (21)] is cut and instead mediated by the hidden neuron h. Furthermore,
a direct interaction between σz and d can also be decomposed: In the following
derivations for the DBM wave constructions, for convenience, we sometimes
introduce the direct interaction between σz and d, which is not allowed in the DBM
structure. However, by taking s1 as a visible spin σz, s2 as a deep variable d, and s3 as
a hidden variable h in Eq. (21), one can eliminate the direct interaction between σz

and d and decompose it into the interaction mediated only by h with trade-off of
the summation over the hidden variable h. With this trick, one can recover the
standard DBM form in Eq. (1).

Another identity (decomposition of four-body interaction) is

es1 s2s3s4V ¼ 1
4

P
s5 ;s6 ;s7

exp i π4 s5 þ s6ð Þ s1 þ s2 þ s3 þ s7ð Þ
 �
´ exp s4s7Vð Þ

¼P
s7

cos2 π
4 s1 þ s2 þ s3 þ s7ð Þ
 �

exp s4s7Vð Þ
ð25Þ

for Ising variables si with i= 1,…, 4. Although we have introduced complex
couplings in the first line, each term in the summation in the second line of Eq.
(25) is positive definite if V is real. The second line remains nonzero only if s1s2=
s3s7, which proves the identity. This identity with s1 and s2 as physical variables, s4,
s5, and s6 as hidden variables, and s3 and s7 as deep variables, reads

eσ1σ2d1h1V ¼ 1
4

P
h2 ;h3 ;d2

exp i π4 h2 þ h3ð Þ σ1 þ σ2 þ d1 þ d2ð Þ
 �
´ exp h1d2Vð Þ;

ð26Þ

Note that the right-hand side fits the DBM structure.
General three-body and two-body interactions can also be represented by the

two-body form just by putting some of s1,…,s4 as constants in Eq. (25). These could
be used instead of Eq. (21), although we employ Eq. (21) in the formalism below
for the decoupling of the two-body interaction.

Finally, we discuss the gadgets for decomposing general N-body classical
interactions using complex bias term bj in addition to the couplings W and W′,
whereas the gadgets Eqs. (21) and (26) are represented only by W and W′
interactions. The gadget reads

eσ1σ2 ¼ σNV ¼ C cos2 bþ π

4

XN
i¼1

σ i

 !
ð27Þ

¼ C
4

X
h1 ;h2

eib h1þh2ð Þei
π
4 h1þh2ð Þ σ1þσ2þ¼þσNð Þ ð28Þ

with

b ¼ arctan e�V
� �� π

4
mod N; 4ð Þ; ð29Þ

C ¼ 1
cos arctan e�Vð Þð Þ ´ sin arctan e�Vð Þð Þ: ð30Þ

This fact suggests that any classical partition function defined for Ising spins
can be written exactly in terms of an RBM. Although the RBM is shown to be
powerful in representing also the quantum states, there is no analytical way to map
quantum states to the RBM and one must rely on numerical optimizations to get
the RBM parameters. In the present study, we show analytical mappings from
quantum states to the DBM, which has additional hidden layer. In the statistical
mechanics, it is known that quantum systems with D dimension can be mapped on
(D+ 1)-dimensional classical systems. Therefore, having additional hidden layer in
neural network language is equivalent to acquiring additional dimension in
statistical mechanics.

Transverse-field ising model. The solution of Eq. (9) is found in the following
way. The left-hand side of Eq. (9) can be rewritten by using the notation Eq. (18) as

P
fh;dg

P1 σz ; hð ÞP2ðh; dÞ 1þ tanh Γlδτð Þe
�2σzl

P
j

hjWlj

" #

¼ CΨ �W σzð Þ:
ð31Þ

We look for a solution by adding one deep neuron d[l] and creating new
couplings W ′

j½l� to the existing hidden neurons hj which are connected to σzl . We

also allow for changes in the existing interaction parameters. In particular we set
the new couplings to be �Wlj ¼ Wlj þ ΔWlj , (with ΔWlj to be determined).
Moreover, we introduce one hidden neuron h[l] coupled to σzl and d[l] through the
interactions Wl[l] and W′

½l�½l�, respectively. If we trace out h[l], the hidden neuron h[l]
mediates the interaction between σzl and d[l] (denoted as W ′′

l½l�).
With this choice, we have (in the representation where h[l] is traced out):

Ψ �W σzð Þ ¼ P
fh;dg

P
d½l�

P1 σz ; hð ÞP2ðh; dÞ

e
σzl

P
j

ΔWljhjþd½l�
P
j

hjW
′
j½l�þσzl d½l�W

′′
l½l�
:

ð32Þ

The equations to be verified are obtained considering the two possible values of
σzl ¼ ± 1:

e

P
j

hj ΔWljþW ′
j½l�

� �
þW ′′

l½l� þ e

P
j

hj ΔWlj�W ′
j½l�

� �
�W ′′

l½l� ¼ C ´ 1þ tanh Γlδτð Þe
�2
P
j

hjWlj

 !

ð33Þ

e

P
j

hj �ΔWljþW ′
j½l�

� �
�W ′′

l½l� þ e

P
j

hj �ΔWlj�W ′
j½l�

� �
þW ′′

l½l� ¼ C ´ 1þ tanh Γlδτð Þe
2
P
j

hjWlj

 !
:

ð34Þ

This equation has a solution from the requirement that the hidden unit interactions
on the left and right hand sides match, thus we require

ΔWlj þW ′
j½l� ¼ �2Wlj ð35Þ

ΔWlj �W ′
j½l� ¼ 0; ð36Þ

and

W ′′
l½l� ¼

log tanh Γlδτð Þ
2

: ð37Þ

Notice that when Γl > 0, W ′′
l½l� is also real. By using Eq. (21) with the following

replacement s1 ! σzl , s2→ d[l], s3→ h[l], V ! W ′′
l½l� , ~V1 ! Wl½l�, and ~V2 ! W ′

½l�½l� ,
the last condition determines the real couplings Wl[l] and W ′

½l�½l� as Eqs. (11) and
(12).

Heisenberg model. Here, we show the derivation for the general form of bond
Hamiltonian allowing anisotropy and bond-disorder: Hbond

lm = Jxylm σxl σ
x
m þ σyl σ

y
m

� �
+ Jzlmσ

z
l σ

z
m . In the case of the bipartite lattice and the antiferromagnetic exchange

Jzlm; J
xy
lm>0, we further apply a local gauge transformation by a π rotation around the

z-axis in the spin space as σx→−σx and σy→−σy on one of the sublattices, which
gives a – sign for σxl σ

x
m and σyl σ

y
m interactions. This transformation is equivalent to

taking

Jxylm ! �Jxylm: ð38Þ

The gauge transformation enables to design a DBM neural network with real
couplings {W,W′} except for those to put “constraint‘ on the values of deep neuron
spins (see more detail about the constraint in the following sections). It ensures that
the DBM algorithm has no negative sign problems.

In the case of the antiferromagnetic Heisenberg model after the gauge
transformation on the bipartite lattice, we must solve, for each bond,

δσzl ;σzm e
�δτ J

z
lmΨW σzð Þ þ 1� δσzl ;σzm

� �
eδτ J

z
lm

ΨW σzð Þcosh 2Jxylmδτ
� �þ ΨW σzl $ σzm

� �
sinh 2Jxylmδτ

� �� �
¼ C σz jΨ �W

� �
:

ð39Þ

It is also useful to explicitly write the expression for the exchange term in the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07520-3

8 NATURE COMMUNICATIONS |          (2018) 9:5322 | DOI: 10.1038/s41467-018-07520-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


second line above:

ΨW σzð Þcosh 2Jxylmδτ
� �þ ΨW σzl $ σzm

� �
sinh 2Jxylmδτ

� �
¼ P

fh;dg
P1 σz ; hð ÞP2ðh; dÞ cosh 2Jxylmδτ

� �


þsinh 2Jxylmδτ
� �

e
σzm�σzlð ÞP

j

hj Wlj�Wmjð Þ#
:

ð40Þ

In the following derivations, for the antiferromagnetic Hamiltonian
Jzlm; J

xy
lm > 0

� �
after the gauge transformation, we look for a solution with zero bias

terms
(ai; bj; b

′
k ¼ 0, ∀i, j, k). We can also derive a sign-problem-free solution for the

imaginary time evolution in the absence of the explicit gauge transformation by
introducing a complex bias term ai. Indeed, in the “2 deep, 4 hidden”
representation, we will explicitly show that taking a specific set of complex bias
term ai on physical spins is equivalent to the gauge transformation, making a
solution free from the sign problem.

In a way similar to the TFIM, solutions of Eq. (39) can be found by specifying
the structure of the DBM and the three examples are the following.

1d–3h construction for Heisenberg model. We assume the structure of the
updated wave function (corresponding to Eq. (32) for the TFIM) to be

Ψ �W σzð Þ ¼ P
fh;dg

P
d½lm� ¼ ± 1

d½lm� ¼ σzl if σ
z
l ¼ σzm

P1 σz ; hð ÞP2ðh; dÞ

e
σzl

P
j

ΔWljhjþd½lm�
P
j

hjW
′
j½lm�þd½lm�σ

z
l W

′′
l½lm�þV½lm�σ

z
l σ

z
m

:

ð41Þ

Similarly to the case of the TFIM, a solution of Eq. (39) is given by

ΔWlj ¼ �Wlj þWmj ð42Þ

W ′
j½lm� ¼ Wlj �Wmj: ð43Þ

and

W′′
l½lm� ¼ � log tanh 2Jxylmδτ

� �� �
=2 ð44Þ

V½lm� ¼ � log cosh 2Jxylmδτ
� �� �

=2� Jzlmδτ ð45Þ

Notice that the first condition is equivalent to cutting all connections from spin l to
the hidden units and attaching the spin l to all the hidden units connected to spin
m, with an interaction Wmj.

Although the terms proportional to W ′′
l½lm� and Vlm do not satisfy the standard

DBM form, they can be transformed to the DBM form by introducing new hidden
neurons h[lm1] and h[lm2] [see the gadget Eq. (21)]:

eσ
z
l d½lm�W ′′

l½lm� ¼ C½lm1�
X
h½lm1�

eσ
z
l h½lm1�Wl½lm1�þh½lm1�d½lm�W ′

½lm1�½lm� ; ð46Þ

with

Wl½lm1� ¼ W ′
½lm1�½lm� ¼

1
2
arcosh

1

tanh 2Jxylmδτ
� �

 !
: ð47Þ

Similarly, the coupling V[lm] is decomposed as

eσ
z
l σ

z
mV½lm� ¼ C½lm2�

X
h½lm2�

eσ
z
l h½lm2�Wl½lm2�þσzmh½lm2�Wm½lm2� ; ð48Þ

with

Wl½lm2� ¼ �Wm½lm2� ¼
1
2
arcosh cosh 2Jxylmδτ

� �
e2J

z
lmδτ

� �
: ð49Þ

Finally, as discussed in the main text, the constraint d½lm� ¼ σzl when σzl ¼ σzm can
be satisfied by adding the third neuron h[lm3], introducing pure complex iπ/6
couplings.

2d–6h construction for Heisenberg model. In this case, the form of the new wave
function reads

Ψ �W σzð Þ ¼ P
fh;dg

P
d½l�; d½m�

d½l� þ d½m� ¼ σzl þ σzm

P1 σz ; hð ÞP2ðh; dÞ

e

P
j

P
n¼l;m

hj ΔWnjσ
z
nþW ′

j½n�d½n�

� �
þ
P
n¼l;m

σzn W ′′
n½l�d½l�þW ′′

n½m�d½m�

� �
:

ð50Þ

A solution of Eq. (39) is given by

W ′
j½l� ¼ Wlj; ð51Þ

W ′
j½m� ¼ Wmj; ð52Þ

ΔWlj ¼ �Wlj; ð53Þ

ΔWmj ¼ �Wmj; ð54Þ

and

W′′
l½l� ¼ W ′′

m½m� ¼ � Jzlmδτ
2

� 1
4
log sinh 2Jxylmδτ

� �
; ð55Þ

W ′′
l½m� ¼ W ′′

m½l� ¼ � Jzlmδτ
2

� 1
4
log cosh 2Jxylmδτ

� �
: ð56Þ

The direct interactions between σzl ; d½l�
� �

, σzm; d½m�
� �

, σzl ; d½m�
� �

, and

σzm; d½l�
� �

, are mediated by h[lm1], h[lm2], h[lm3], and h[lm4], respectively, as follows:

eσ
z
l d½l�W

′′
l½l� ¼ C½lm1�

P
h½lm1�

eσ
z
l h½lm1�Wl½lm1�þh½lm1�d½l�W ′

½lm1�½l� ; ð57Þ

eσ
z
md½m�W

′′
m½m� ¼ C½lm2�

P
h½lm2�

eσ
z
mh½lm2�Wm½lm2�þh½lm2�d½m�W

′
½lm2�½m� ; ð58Þ

eσ
z
l d½m�W

′′
l½m� ¼ C½lm3�

P
h½lm3�

eσ
z
l h½lm3�Wl½lm3�þh½lm3�d½m�W

′
½lm3�½m� ; ð59Þ

eσ
z
md½l�W

′′
m½l� ¼ C½lm4�

P
h½lm4�

eσ
z
mh½lm4�Wm½lm4�þh½lm4�d½l�W

′
½lm4�½l� : ð60Þ

By applying the gadget Eq. (21), the new W and W′ interactions are given by, for

small δτ (such that e
�Jz

lm
δτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh 2Jxylmδτð Þp >1),

Wl½lm1� ¼ W ′
½lm1�½l� ¼ Wm½lm2� ¼ W ′

½lm2�½m�

¼ 1
2 arcosh

e
�Jz

lm
δτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh 2Jxylmδτð Þp
 ! ð61Þ

and

Wl½lm3� ¼ �W ′
½lm3�½m� ¼ Wm½lm4� ¼ �W ′

½lm4�½l�

¼ 1
2 arcosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2Jxylmδτ

� �q
´ eJ

z
lmδτ

� �
:

ð62Þ

Finally, the constraint d½l� þ d½m� ¼ σzl þ σzm can be put by introducing additionally
two hidden neurons h[lm5] and h[lm6], and by introducing complex couplings

P
h½lm5� ;h½lm6�

ei
π
4 σzl þσzmð Þh½lm5��h½lm5� d½l�þd½m�ð Þð Þ

´ ei
π
8 σzl þσzmð Þh½lm6��h½lm6� d½l�þd½m�ð Þð Þ

ð63Þ

This term gives interactions among d[l], d[m], σzl and σzm :

4 cos π
4 σzl þ σzm � d½l� � d½m�
� �� �

cos π
8 σzl þ σzm � d½l� � d½m�
� �� �

, which realize the

constraint.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07520-3 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5322 | DOI: 10.1038/s41467-018-07520-3 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


2d–4h construction for Heisenberg model. For this construction, we assume the
following structure for the wave-function after the propagator:

Ψ �W σzð Þ ¼ P
fh;dg

P
d½l�

P1 σz ; hð ÞP2ðh; dÞe
P

j;n¼l;m

σznhjΔWnj

´ e

P
j

hjd½l�W ′
j½l�þ
P
n¼l;m

σznd½l�W
′′
n½l�þ
P
j

σzl σ
z
mhjd½l�Zlmj

:

ð64Þ

In this case, we also look for a solution for the bond operator without the gauge
transformation. This shows that the introduction of a complex bias term ai can play
the same role as the gauge transformation. Then, we need to solve

δσzl ;σzm e
�δτ J

z
lmΨW σzð Þ þ 1� δσzl ;σzm

� �
eδτ J

z
lm

ΨW σzð Þcosh 2Jxylmδτ
� �� ΨW σzl $ σzm

� �
sinh 2Jxylmδτ

� �� �
¼ C σz jΨ �W

� �
:

ð65Þ

Note that the sign for ΨW σzl $ σzm
� �

sinh 2Jxylmδτ
� �

term is different from that in Eq.
(39).

A solution of Eq. (65) is obtained as

ΔWlj ¼ �ΔWmj ¼ � 1
2

Wlj �Wmj

� �
; ð66Þ

where Wnj (n= l, m) is updated to �Wnj with the increment ΔWnj as �Wnj =
Wnj þ ΔWnj . The new couplings W ′

j½l� , Zlmj and W′′
n½l� are also given by

W ′
j½l� ¼ �Zlmj ¼ � 1

2
Wlj �Wmj

� �
ð67Þ

and

W′′
l½l� ¼ 1

4 log �e�2al�m tanh 2Jxylmδτ
� �
 �


þ2arcosh e
�2Jz

lm
δτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2e�2al�m sinh 4Jxylmδτð Þp
" ## ð68Þ

W′′
m½l� ¼ 1

4 �log �e�2al�m tanh 2Jxylmδτ
� �
 �


þ2arcosh e
�2Jz

lm
δτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2e�2al�m sinh 4Jxylmδτð Þp
" ## ð69Þ

with al−m= al− am. On a bipartite lattice, to avoid the negative sign (or complex
phase) problem we need to keep W ′′

l½l� and W ′′
m½l� real. This can be achieved by

choosing al= 0 for any l if Jlm < 0 (ferromagnetic case). For Jlm > 0
(antiferromagnetic case), al= nπi with an arbitrary integer n if the site l belongs to
the sub-lattice A and al= (n+ 1/2)πi if l belongs to the sub-lattice B. This local
gauge for Jlm > 0 is equivalent to the transformation Jxylm ! �Jxylm and al= 0 for any
site l. We further notice that W ′′

m½l� can be taken positive if we take a sufficiently

small δτ in Eq (69), with the leading order term �log 2Jxylmδτ
� �

=2. On the other
hand, in Eq. (68), the leading order term is negative (=−Jlmδτ).

To recover the original form of the DBM, we first use Eq. (21) with the
replacement s1 ! σzn , s2→ d[l], s3→ h[n], C→Dn, V ! W ′′

n½l� ~V1 ! Wn½n� , and
~V2 ! W ′

½n�½l� for n= l, m. Then a solution for Dn, Wn[n], and W ′
½n�½l� are represented

by using W ′′
n½l� as

Dn ¼ 1
2
exp �W ′′

n½l�
h i

ð70Þ

Wn½n� ¼ W ′
½n�½l� ¼

1
2
arcosh exp 2W ′′

n½l�
h i� �

; ð71Þ

for positive W ′′
n½l� and

Dn ¼ 1
2
exp W ′′

n½l�
h i

ð72Þ

Wn½n� ¼ �W ′
½n�½l� ¼

1
2
arcosh exp �2W ′′

n½l�
h i� �

; ð73Þ

for negative W ′′
n½l� to give real Wn[n] and W ′

½n�½l� .

To completely recover the original DBM form, we next use Eq. (26) by replacing
σ1 with σzl , σ2 with σzm , d1 with d[l], d2 with d[lm], h1 with hj, h2 with h[lm1], h3 with
h[lm2], and V with Zlmj.

With these solutions, by ignoring the trivial constant factors including Dl and
Dm, the evolution is described by introducing two deep and four hidden additional

variables d[l], d[lm], h[l], h[m], h[lm1], and h[lm2] as

Ψ �W σzð Þ ¼ P
f�h;�dg

P1 σz ; hð ÞP2ðh; dÞexp
P

j;n¼l;m
σznhjΔWnj

"

þP
j
hjd½l�W

′
j½l� þ

P
n¼l;m

h½n� σznWn½n� þ d½l�W
′
½n�½l�

� �

þd½lm�
P
j
hjZlmj þ iπ

4 h½lm1� þ h½lm2�
� �

σzl þ σzm þ d½l� þ d½lm�
� �#

;

ð74Þ

where �h; �d
� �

is a set consisting of the existing and new neurons.

Code availability. Computer codes to create the deep Boltzmann machine net-
works for each model are provided as Supplementary Software 1–4. Other code
written for and used in this study is available from the corresponding author upon
reasonable request.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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