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When classical systems fail to explore their entire configurational space, intriguing macroscopic phenomena
like aging and glass formation may emerge. Also closed quanto-mechanical systems may stop wandering
freely around the whole Hilbert space, even if they are initially prepared into a macroscopically large
combination of eigenstates. Here, we report numerical evidences that the dynamics of strongly interacting
lattice bosons driven sufficiently far from equilibrium can be trapped into extremely long-lived
inhomogeneous metastable states. The slowing down of incoherent density excitations above a threshold
energy, much reminiscent of a dynamical arrest on the verge of a glass transition, is identified as the key
feature of this phenomenon. We argue that the resulting long-lived inhomogeneities are responsible for the
lack of thermalization observed in large systems. Such a rich phenomenology could be experimentally
uncovered upon probing the out-of-equilibrium dynamics of conveniently prepared quantum states of
trapped cold atoms which we hereby suggest.

T
he ergodicity axiom in classical statistical mechanics states that, during its time evolution, a closed mac-
roscopic system uniformly explores the entire phase space compatible with conservation laws, so that the
time average of any observable comes to coincide with the micro-canonical ensemble average and, when the

observable is local, also with the canonical Gibbs ensemble average. Nonetheless, ergodicity can be violated in
classical systems, a noticeable example being glasses1. Quantum effects might also spoil ergodicity by preventing
the wave function from diffusing within all available configurations. This phenomenon is actually known to occur
in the presence of disorder and manifests itself either by single-particle2 or many-particle3–5 wave function
localization. However, alike classical models for glassy behavior, ergodicity breakdown in the quantum dynamics
may not necessarily require disorder and it could instead be entirely due to frustrating dynamical constraints6,7.
This issue is currently attracting great interest8,9, since well controlled realizations of closed quantum systems have
become feasible upon trapping cold atomic species10. Indeed, similarly to what can be done in numerical
simulations, one can prepare atoms in a given initial state and probe their time evolution under a
Hamiltonian whose parameters are fully under control, thus offering the unique opportunity to monitor the
ergodicity principle at work in the quantum realm11.

In this work, we report numerical evidences that an isolated system of strongly interacting bosons, modeling
atoms in optical lattices, can be trapped during its evolution into long-lived inhomogeneous metastable states,
provided that its internal energy exceeds a certain threshold. We argue that the slowing down of high-energy
incoherent excitations in the strongly correlated system is the key feature responsible for this dynamical arrest,
much resembling a kind of glass transition. By formulating the problem in a different language, we explicitly show
that a system initially prepared in a inhomogeneous state is unable to diffuse within the entire configurational
space; such a dynamical localization in the many-body Hilbert space looks intriguing and may represent a kind of
many-body Anderson localization3 that occurs without disorder. The above phenomenon is put in further
relation with and deemed responsible for the lack of ergodicity observed in large finite size systems. This belief
is confirmed by means of a novel time-dependent variational Monte Carlo method that we introduce hereby and
an experimental set up to uncover this very rich phenomenology is also suggested.

One of the simplest models that can be realized in experiments is the Bose-Hubbard Hamiltonizan10,12:
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characterized by the amplitude J for a bosonic species of an atom to hop between nearest-neighboring wells of an
optical lattice and by a local repulsion U among atoms localized in the same potential well. The operators b{i and bi
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create and destroy, respectively, a boson on site i, and ni~b{i bi is the
density operator36. Experiments are often performed with aniso-
tropic lattices that realize a collection of almost uncoupled chains,
a fortunate case for numerical simulations that we shall mainly con-
sider hereafter, apart from a brief excursion in two dimensions
towards the end of the paper.

In one dimension, obstacles to ergodicity can arise in integrable
models13. However, the Hamiltonian (1) is not integrable and,
indeed, there are experimental evidences that its dynamical evolution
may succeed in fast relaxing to a thermal state. Specifically, in a re-
cent experiment a system of 87Rb atoms, well described by the
Hamiltonian (1), has been prepared in a state in which the sites of
the optical lattice were alternatively empty and singly occupied14.
This state was let evolve for different experimental conditions cor-
responding to different ratios U/J. Even at the largest value U=J^10,
the initial density profile (…1,0,1,0,…) was found to rapidly relax to
the homogeneous thermal one . . . 1

2 , 1
2 , 1

2 , 1
2 , . . .

� �
, with half a boson

per site, much faster than the integrable counterparts of non-inter-
acting or infinitely-interacting (i.e., hard-core) bosons and consis-
tently with the increased number of relaxation channels that opens
once integrability is lost.

Numerical simulations of the above experiment successfully
reproduce the observed thermal behavior14. However, there are also
numerical evidences pointing out a breakdown of ergodicity in the
same model (1) but within a different region of the parameter space,
specifically when the number of bosons is one per site. This case, as
well as any other one with integer density, is special because, at
equilibrium and at zero temperature, the model (1) undergoes a
quantum phase transition into a Mott insulator above a critical U/
J. Even though the phase transition is washed out by thermal fluctua-
tions, nonetheless its influence on the spectrum seems to prevent
thermalization above a certain U/J in numerical simulations of finite
size systems26,29; a result that may27 or may not28 prelude to a true
breakdown of ergodicity in the actual thermodynamic limit.

Here, we propose an experiment a lot alike the one previously
described14, which may distinguish very sharply a change from cha-
otic to non-chaotic dynamics in the Bose-Hubbard model (1). Our
proposal starts by observing that, in the gapless phase next to the
Mott insulator at one boson per site, low-energy itinerant Bogoliubov
quasiparticles should coexist with high-energy incoherent excita-
tions, which, for U=J?1, can be identified as sites occupied by more
than a single boson. It is well possible that the overall relaxation
depends critically upon the population of those high-energy excita-
tions20, which can be assessed by tailoring initial states with lots of
doubly occupied sites rather than none as in the experiment of Ref.14.
This is indeed what we propose and simulate by means of different
and complementary numerical tools, such as exact diagonalization,
time-evolving block decimation15 and a novel time-dependent vari-
ational Monte Carlo algorithm, as discussed in more detail in the
Supplementary Material.

Results
Inhomogeneous initial states and dynamical localization. We start
from analyzing the model at density n 5 1, when at equilibrium a
Mott transition occurs at a critical U=Jð Þc^3:516. We imagine to
prepare an initial state where all the sites are either empty or
doubly occupied. In particular we consider the states depicted in
Fig. 1, namely with clusters of doubly occupied sites of variable
size Sd. These states are let evolve with the spatially homogeneous
Hamiltonian (1) for different U/J, below and above the critical value.
While for small U/J the density profile rapidly reaches the
equilibrium configuration (…1,1,1,1,…), for large U/J, it stays close
to its initial value for a remarkably long time. Eventually, since the
system is finite, the density profile approaches the homogeneous
plateau, with small residual oscillations that get damped as the
system size increases.

We can define a relaxation time tR (whose inverse is shown in
Fig. 2, for Sd 5 1), as the first time for which the local density
approaches its homogeneous value. We highlight that tR, at a specific
U=Jð Þdyn

c , has a sudden step up, which becomes sharper and sharper
as the system size increases. The above results show that above
U=Jð Þdyn

c the system has the tendency to stay dynamically trapped
into long-lived inhomogeneous configurations.

We emphasize that such a behavior is all the more remarkable not
because doubly occupied sites seem unable to decay, which is known
to require for U=J?1 very long times and large system sizes18, but
rather because they are not capable to move, hence restore trans-
lational symmetry. We can better understand this surprising result
by an effective Hamiltonian that can be derived following the same
reasoning of Refs.19, 20. For a sufficiently large interaction, it is jus-
tified to project the evolution onto states with the same potential
energy per site U/2, at least for time scales shorter than U2/J3. One
realizes that states with the same potential energy but with triply and
singly occupied sites start to contribute only at order J4/U3, so that,
with accuracy J2/U, the number of doubly occupied sites is conserved.
If we associate a fictitious spin up or down to a doublon (doubly
occupied site) or a holon (empty site), respectively, we find that the
effective Hamiltonian that controls the evolution reads:
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which describes a hard-axis ferromagnetic Heisenberg model19. We
note that the evolution of an XXZ spin chain starting from an anti-
ferromagnetic ordered initial state has been studied numerically in
Ref.21 with DMRG. Here we consider the effective dynamics (2) in a
regime when the anisotropy would favor a ferromagnetic ground
state and when the initial state contains clusters of up and down
spins of increasing lenght. The smaller cluster size of Sd~1 corre-
sponds to a Neel initial state considered in Ref 21. In the right panel of
Fig. 2 we show the time-dependence of the clusters density in the
large U regime, evolved according to the effective Hamiltonian (2).
Remarkably, we see that even for small clusters the system fails to
restore the spatial homogeneity up to very long time scales, which
turn to be far beyond those currently accessible in typical experi-
mental setups.

The slowing down of the dynamics can be traced back to the
effective attraction among doublons20, which makes their aggregates
hard to break up. In other words, what seems to matter more is the
dissociation of clusters of doublons, rather than the decay of a single
one. Indeed we have checked (not shown) that in the large U regime
the system has the tendency to get dynamically stuck into clusters of
doublons of finite size, whereas a much faster annihilation and
recombination rate is observed in the small U limit.

To get further insights into the dynamical behavior of the system,
we recast the problem in a different language. Starting from the initial
state, denoted as j0æ, we can generate an orthogonal basis set jiæ, i 5 0,
1,…, by repeatedly applying the Hamiltonian (see Supplementary
Material). In this Lanczos basis of many-body wave functions, the
Hamiltonian has the form of a tight-binding model on a semi-infinite
chain. Each site i 5 0, 1,… corresponds to a many-body state, it has

Figure 1 | Inhomogeneous initial states constituted by clusters of doubly
occupied sites (large blue circles) and empty sites (small dots). The size of

each cluster is denoted by Sd.
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an on-site energy i~ i Hj jih i and is coupled only to its nearest
neighbors by hopping elements tiRi11 and tiRi21

22. It is easy to
realize that the unitary evolution of the original many body problem
is thus fully equivalent to the dynamics of a single particle, initially
sitting at site 0, that is then let propagate along such a tight-binding
chain of many-body states. We note that, both i and tiRi11 largely
fluctuate from site to site, therefore resembling an effective Anderson
model, even though those parameters are in reality deterministic, see
Fig. 3. In the same figure, we also show the mean distance traveled by
the particle after time t starting from the first site of the chain, which
corresponds to an initial state j0æ ; (… 2, 0, 2, 0,…), and for different
U/J. We observe that, for small values of U/J, the particle diffuses and
its wave-packet finally spreads over the whole chain, in a rather
uniform way. On the contrary, above a certain critical value of the
interaction U=Jð Þdyn

c , the particle stays localized near the origin for
arbitrarily long times. A closer look to the structure of the on site
energies reveal the existence of a potential well at the edge of the
chain. This is crucial in order to understand the observed localization
transition. Since the potential well cannot induce a true bound state
below the bottom of the spectrum, at most a resonance will form in
the spectrum, from which the particle could in principle escape in a
finite time. This indeed happens at small U but apparently not at
large U, where the increased depth of the well and the effective
randomness of the on-site energies conspire together to keep the
particle localized close to the edge, preventing the the states in the

well to hybridize with other states along the chain. We now see how
this result connects with the previous analysis on the density relaxa-
tion times. In the small U/J regime the particle is able to escape from
the well and to explore larger portions of the chain, thus resulting
into a fast density relaxation. As opposite, for large U/J, the particle
bounces back and forth inside the well, finding hard time to escape
from it. This lack of diffusion results into a very long-time scale for
the density to relax to its homogeneous value.

The above results show explicitly that some kind of localization in
the many-body configurational space does occur, at least in the finite
system3,23. While such an intriguing behavior might well be a subtle
effect due to the finite size spectrum, it could also signal the onset of a
genuine localization that survives in the thermodynamic limit.

We conclude the discussion on the inhomogeneous initial states
by studying the case at density n , 1, when at equilibrium there is no
longer a Mott transition. For example, we consider n 5 2/3 and
an initial density profile (…2, 0, 0, 2, 0, 0,…). Interestingly, we find
quite a different behavior for the density relaxation times tR (see
Supplementary Material), with a much smoother crossover from
small to large values of U/J and no evidence of any increase in the
relaxation times with the system size. This fact suggests a deeper
connection between the observed dynamical behavior and the zero
temperature Mott transition that occurs at equilibrium and at in-
teger filling, as suggested by calculations with infinite-coordination
lattices24,25.

Figure 2 | Left panel – Inverse relaxation times t{1
R of the local density for the initial state (… 2, 0, 2, 0, …). Exact diagonalization results are reported,

with darker points marking larger systems, respectively N 5 8, 10 and 12 with periodic-boundary conditions. In the Inset, the time dependence of the on-

site densities is shown. Right panel – Effective-Hamiltonian evolution of the average density within a cluster of different size Sd, where the dimensionless

time is defined as teff ~ 2J2

U t. We show results for N 5 72 and 96 sites with open-boundary conditions, obtained by the time-evolving block decimation

technique17. We note that even small clusters of doubly occupied sites can effectively freeze the dynamical evolution in the large-U regime.

Figure 3 | Left panels – On site energies and nearest-neighbor hoppings of the effective chain that represents the Hamiltonian in the Lanczos basis
starting from the state (…, 2, 0, 2, 0, …). Red points refer to U 5 2J, when the particle does diffuse starting from site 0, while blue points to U 5 10J, when

it does not. The shaded regions correspond to energies less or equal that of the initial state. Right panel – Time-dependent expectation value of the wave-

packet position of the effective particle traveling in the Hilbert space generated by a chain of Rmax 5 1000 Lanczos states. The red points correspond to U 5

2J and the blue points to U 5 10J (the original lattice size of the Bose-Hubbard model is N 5 12). The shaded region marks the center of the Lanczos chain,

which is not reached in the localized regime.

www.nature.com/scientificreports
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Homogeneous initial states and Quantum Quenches. In light of
the previous results, one may question that by choosing an
inhomogeneous configuration of doublons we pick up a rather
specific initial state in the Hilbert space. We are now going to
show that the above findings strongly affect the dynamics starting
from a perfectly homogeneous state. In this respect, a particularly
interesting class of initial states are the ground states ofH for given
values of the interaction Ui, which are let evolve under the
Hamiltonian dynamics after a sudden increase of the interaction to
a final value Uf . Ui, the so-called quantum quench. Kollath and
coworkers26 reported evidence for the existence of two separated
regimes in which either thermal or non-thermal behavior is
observed for local observables. The origin of the non-thermal
behavior in the large Uf region and the possibility of an ergodicity
breaking in the thermodynamic limit is still highly debated29,30.

In the following, we focus on an average density n 5 1 and we
show that signatures of long lived metastable states of doblons can be
identified in the dynamics after a quantum quench. At variance with
the previous numerical calculations, now both the initial state and
the quantum Hamiltonian do preserve the spatial homogeneity and,
therefore, the quest for possible signatures of ergodicity breaking
requires a different approach. Since we have identified density
relaxation as the slowest process in the problem, we monitor the
dynamics of the system by measuring the auto-correlation of the
density averaged over all sites, namely through

C tð Þ~ 1
N

X
i

ni tð Þni 0ð Þh i{ ni tð Þh i ni 0ð Þh i: ð3Þ

For any finite size system, limt??C tð Þ~0 since the densities dec-
orrelate at very long times. Indeed, as shown in Fig. 4, for small Uf =
Ui this quantity has a very fast transient to zero. On the contrary, for
Uf ? Ui the density auto-correlation C tð Þ gets stuck into a long-lived
finite value plateau C�=0, before approaching zero only on a much
longer time scale. If we extract a relaxation time from C tð Þ, we find a
similar behavior as in Fig. 2, i.e., a dramatic increase of the relaxation
times above a threshold value of the final interaction strength.

In agreement with the previous analysis, the appearance of such a
long-lived metastable state characterized by a finite plateau C� of the
density auto-correlation function might indicate an excess of double
occupancies that have no channel to relax. In other words, the
dynamical constraints brought by the interaction severely slow down
density excitations, whose characteristic time scales increase abruptly
after a critical threshold. The main phenomenological traits of this

dynamical arrest characterized by long-lived inhomogeneous states
closely remind the physics of glassy materials.

Variational description, lack of thermalization and higher dimen-
sions. The previous discussion revealed the existence of a threshold
energy above which a steep increase of the relaxation time of density
fluctuations takes place. In order to assess the relevance of this
phenomenon for the dynamics of larger systems or even for higher
spatial dimensions, it is desirable to devise a comprehensive
alternative framework able to catch its very characteristics. Here,
we introduce an approach based on real-time variational Monte
Carlo (see Supplementary Material for details), which has two
important advantages: it allows us to follow the evolution for times
comparable to those accessible experimentally, which are much
longer than t-DMRG31,32; it can be easily extended to higher
dimensions. We mention that mean-field-like variational ap-
proaches to the real-time dynamics of correlated systems have
been developed in recent years24,25.

However, although they seem to capture well the main features
of the dynamical evolution, these methods are unable to describe
important aspects such as damping and relaxation. On the contrary,
our approach is sufficiently rich to account for damping and relaxa-
tion of local observables. It is based on a very simple and transparent
out-of-equilibrium extension of the Jastrow-like variational wave
function that was shown to describe quite accurately the equilibrium
phase diagram of the Bose-Hubbard model33:

Y tð Þj i~ exp
X

ij

Vij ni,nj; t
� � !

Y0j i, ð4Þ

where jY0æ is the initial state and Vij(ni, nj; t) is a Jastrow factor that
depends on the occupancies ni and nj of two sites i and j and varies
with time so to maintain the time evolution as close as possible to the
true evolution via the Schroedinger equation (see Supplementary
Material). The comparison between our approach and the t-
DMRG34 is reported in the Supplementary Materials, demonstrating
the high accuracy of the time-dependent variational Monte Carlo.

Results for the time evolution of a local observable, such as the
potential energy, after a sudden quench from Ui 5 2J to a final Uf are
shown in Fig. 5. The values of the thermal averages have been com-
puted in the grand-canonical ensemble by means of finite-
temperature quantum Monte Carlo calculations35, with the effective
temperature fixed by the average energy of the initial state, which we
take as the best variational approximation for the ground state at Ui

5 2J.
As shown in Fig. 5, in the region of small Uf we observe a damping

of the average potential-energy, which approaches a quasi-steady
stationary value in contrast to the simple Gutzwiller wave func-
tion24,25. In this regime, damping is mainly due to a density-density
Jastrow factor of the form Vij(ni, nj;) 5 vij(t) ni nj, which already at
equilibrium was shown to provide a satisfactory description of the
physical behavior33. This fact enlightens the relevance of the
Bogoliubov modes whose dephasing during the time evolution
allows to approach the stationary state. Remarkably, the steady state
averages coincide with the thermal ones; a signal that the dynamics is
ergodic.

In the region of large interactions Uf, a simple density-density
Jastrow factor does not account for all relaxation pathways, which
will now mainly result from specific correlations among doublons,
holons and between holons and doublons. The effective Hamiltonian
(2) indeed explicitly shows that doublons attract each other as well as
holons do, while doublons repel holons. These correlations, as well as
other among higher on-site densities, can be easily implemented via
the the Jastrow factor in Eq. (4) and indeed substantially improve the
dynamics. Interestingly, the effective interaction between doblons
that results from the dynamical variational calculation turns to be
attractive, therefore leading to a consistent determination of the

Figure 4 | Inverse relaxation times of density excitations in the
homogeneous system, see Eq. (3). From left to right, different curves

correspond to different initial states at Ui/J 5 0, 1, and 2. Insets: real part of

the density correlations C(t) in the ergodic and in the non-ergodic region.

Data are obtained with exact-diagonalization on a lattice with N 5 12.

www.nature.com/scientificreports
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anticipated dynamical effects that drive the dynamics in this regime.
As we see from Fig. 5, in the region of very large Uf the potential-
energy expectation values do show a damping to a non-thermal
quasi-steady state on a time of the order of tD , 1/Uf. This fast time
scale must be put in comparison with the much longer one, tR of
Fig. 4. It is natural to identify tR with the time scale that controls the
eventual escape from the quasi-steady state, hence the approach to
thermal equilibrium. Whether this time scale does truly diverge in
the thermodynamic limit, or rather saturates to a very large value
which is still out of reach for state of the art numerics, it is certainly an
important issue that cannot be definitively solved. However, we can
safely state that a large finite system of actual experimental relevance
will get stuck for a quite long time into highly inhomogeneous meta-
stable states, which we revealed to be on the verge of a spatial sym-
metry breaking.

The above results have been obtained for out-of-equilibrium one
dimensional systems and therefore leave the questions concerning
the dependence on the dimensionality of the problem still open.
However, the anomalously long-time relaxation of the density
auto-correlation points towards a kind of glassy behavior that should
be observable even in higher dimensions, provided that the inter-
action induces sufficiently strong dynamical constraints. In this
regard, we have studied the two-dimensional case by means of our
time-dependent variational scheme, verifying that a similar behavior
occurs even in two dimensions. In Fig. 6, we show the results of the
potential-energy expectation values as a function of the time. As
before, if the repulsion is weak, the time average coincides with the
thermal ones, while for strong repulsion there is a clear difference
between thermal and time averages, giving rise to a nonergodic
dynamics. We therefore argue that the phenomenology we have
hereby identified is almost independent on the dimensionality and
it is rather due to the existence in strongly correlated systems of

high-energy incoherent excitations that do not have channels to relax
efficiently. This scenario is also consistent with the observed strong
doping dependence of the relaxation time (see Supplementary
Material).

Discussion
In conclusion, we have found that the dynamical constraints brought
by a strong interaction can trap the evolution of repulsive bosons
hopping on a lattice into metastable states that lack translational
symmetry, provided that the energy stored into the initial state is
above a threshold. We pointed out that a self-induced effective
attraction among doublons is one of the major processes that can
effectively freeze the dynamics on long time scales. Such a mech-
anism is recognized to play a role in the density relaxation processes
of purely homogeneous systems through a dynamical arrest visible in
time-dependent density correlations. The main features of this intri-
guing behavior, namely the slowing down of density excitations and
the long-lived inhomogeneous pattern, resembles closely a kind of
glass transition.

Moreover, we have shown that the time evolution of the many-
body problem can be mapped onto that of a particle moving from the
edge of a semi-infinite tight-binding chain with nearest-neighbor
hopping, where each site represents a many-body wave function.
This model looks like an Anderson model, since both the on-site
energy and the hopping vary from site to site, with a potential well
at one edge due to the high-energy content of the initial state.
Interestingly, we find a delocalization-localization transition in this
problem, with the particle being unable to diffuse on the whole chain
above a certain value of the well depth. We consider this analogy
quite suggestive and potentially constitute an even stronger indica-
tion of ergodicity breaking in the many-body space which is worth to
be further investigated.

Figure 6 | Two dimensional results for the time-dependent expectation
values of the on-site potential energy ep tð Þ~ Uf

2 ni ni{1ð Þh i in the ergodic
(upper panel) and in the non-ergodic regions (lower panel). The initial

state is the ground state of the Bose-Hubbard Hamiltonian with Ui 5 4J

and the considered system size is N 5 20320. Grand-canonical thermal

averages are shown for comparison as dashed horizontal lines.

Figure 5 | One-dimensional results for the time-dependent expectation
values of the on-site potential energy ep tð Þ~ Uf

2 ni ni{1ð Þh i in the ergodic
(upper panel) and in the non-ergodic regions (lower panel). The initial

state is the ground state of the Bose-Hubbard Hamiltonian with Ui 5 2J

and the considered system size is N 5 200. Grand-canonical thermal

averages are shown for comparison as dashed horizontal lines.
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Glassy Dynamics Of Many-Body Quantum Systems. Sci. Rep. 2, 243; DOI:10.1038/
srep00243 (2012).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 243 | DOI: 10.1038/srep00243 6

http://physics.mines.edu/downloads/software/tebd
http://physics.mines.edu/downloads/software/tebd
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/3.0

	Localization and Glassy Dynamics Of Many-Body Quantum Systems
	Introduction
	Results
	Inhomogeneous initial states and dynamical localization
	Homogeneous initial states and Quantum Quenches
	Variational description, lack of thermalization and higher dimensions

	Discussion
	Acknowledgements
	References


