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Abstract

Understanding the turbulent dynamics in the outermost region of the tokamak is essen-

tial to predict and control the heat and particle loads to the vessel wall, a crucial problem for

the entire fusion program. In this thesis, the problem is approached via two-fluid simulations

run with the GBS code. We leverage a recent code upgrade to employ coordinate systems

independent of the magnetic geometry, allowing the simulation of diverted configurations.

We focus on double-null magnetic configurations. A double null configuration is being con-

sidered for DEMO due to its practical advantages of spreading the heat load over more strike

points than a single null configuration, having a quiescent high field side on which heating

antennas can be placed and the possibility to radiate more heat in detached scenarios. From a

theoretical point of view, it is simpler to analyse than a single null because the high and low

field sides are topologically separated.

Simulations with a balanced double null configuration are run for a range of resistivities and

safety factors. The results are used to study the density decay at the outer midplane. A double

decay length is observed and a model to predict the two decay lengths is developed. The

decay length of the near scrape-off layer is well described as the result of transport driven by a

non-linearly saturated ballooning instability, while in the far scrape-off layer the density decay

length is described using a model of intermittent transport mediated by blobs. The analytical

estimates of the decay lengths agree well with the simulation results and typical experimental

values and can therefore be used to guide tokamak design and operation.

Unbalanced double null configurations are then simulated using a new elliptical coordinate

system developed for this purpose, allowing more realistic elongation of the magnetic field.

The distribution of the heat flux between the four divertor legs is calculated and compared

to previous experimental results. We explain the heat flux sharing in terms of the E ×B ,

diamagnetic and parallel flows.

Key words: plasma physics, nuclear fusion, fluid simulations, scrape-off layer, plasma turbu-

lence, plasma transport
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Résumé

La compréhension de la dynamique de la turbulence dans la région périphérique du to-

kamak est essentielle pour prévoir et contrôler la charge thermique et de particules sur le mur

interne du tokamak, un problème crucial pour l’ensemble du programme de fusion. Dans

cette thèse, le problème est abordé par des simulations à deux fluides réalisées avec le code

GBS. Pour cela, nous utilisons une nouvelle version du code qui est basée sur des systèmes de

coordonnées indépendants de la géométrie magnétique, ce qui permet de simuler des configu-

rations dites ’diverted’. Nous nous concentrons sur les configurations magnétiques double-nul.

Une configuration double-nul est envisagée pour DEMO en raison de ses avantages pratiques,

à savoir la répartition de la charge thermique sur un plus grand nombre de points d’impact

qu’une configuration simple-nul, le côté de haut champ inactif sur lequel les antennes de

chauffage peuvent être placées, et la possibilité de rayonner plus de chaleur dans des scénarios

détachés. D’un point de vue théorique, la configuration double-nul est plus simple à analyser

que la configuration simple-nul, car le côté de champ haut est topologiquement séparé du

côté de champ bas.

Des simulations avec une configuration double-nul équilibrée sont effectuées pour des valeurs

différentes de résistivités et de facteurs de sécurité. Les résultats sont utilisés pour étudier

la décroissance de la densité au niveau du plan médian extérieur. Une double longueur

de décroissance est observée et un modèle permettant de prévoir les deux longueurs de

décroissance est développé. La longueur de la décroissance de la couche d’arrachement

proche est bien décrite comme le résultat d’un transport produit par une instabilité ballonnée

non linéairement saturée, tandis que dans la couche d’arrachement lointaine, la longueur

de la décroissance de la densité est décrite à l’aide d’un modèle de transport intermittent

causé par des filaments de plasma. Les estimations analytiques des longueurs de décroissance

concordent bien avec les résultats des simulations et les valeurs expérimentales typiques, et

peuvent donc être utilisées pour la conception et le fonctionnement du tokamak.

Les configurations double-nul déséquilibrées sont ensuite simulées à l’aide d’un nouveau

système de coordonnées elliptiques développé à cet effet, permettant un allongement plus

réaliste du champ magnétique. La répartition du flux de chaleur entre les quatre branches du

déflecteur est calculée et comparée à des mesures expérimentales. Nous expliquons le partage

du flux de chaleur en termes de flux E ×B , diamagnétique et parallèle.
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1 Introduction

1.1 The energy problem

Energy, both in the form of electricity and fuels is fundamentally important to society. Global

energy consumption, nowadays mostly provided by fossil fuels, is expected to increase by

almost 50% between 2018 and 2050 [43], due largely to improving living standards, especially

in developing countries. In addition to reserves of fossil fuels being limited, the driving of

climate change by carbon dioxide emissions calls urgently for alternative energy sources to be

developed. The alternatives fall broadly into three categories: renewables, nuclear fission and

nuclear fusion, and the best solution will probably involve a combination of all three.

The most promising renewable energy technologies are based on the exploitation of wind,

sunlight, rainfall or geothermal heat. While their supply will (practically) never be exhausted,

they require a lot of land and supply electricity intermittently. To illustrate the former draw-

back, we borrow an example from the highly insightful Ref. [15], that claims concentrated

solar power in deserts (using mirrors to focus light onto solar photovoltaic panels) provides

the best land and cost efficiency of the leading renewable energy technologies. Using this

technology to supply the population of Europe and North Africa with power equal to current

European consumption would require a total land area of 340,000km2, an area roughly the

size of Germany. This is not impossible - the author suggests breaking it up into 65 plants

about the size of Greater London - but it is clear the required infrastructure would be vastly

more extensive than typical power plants today. To take another example, the energy density

of an onshore wind farm is about 2W /m2. This means that to supply the power of a typical

nuclear power station ( 1GW) requires an area of 500km2; in Vaudoise terms a square of side

length Lausanne-Vevey. Of course in Switzerland, hydroelectric power is a more attractive and

energy dense alternative to wind, but we are geographically lucky! The second major drawback

of renewables is their intermittency, that is, solar panels do not generate anything at night

and the wind can be calm for days at a time. Possible solutions include hydroelectric pumped

storage and charging electric car batteries at times of surplus, which are again possible but

require significant development of infrastructure, land use and raw materials.
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Chapter 1 Introduction

The principle of nuclear fission is to harness the energy released when a large atomic nucleus

splits into smaller nuclei. Nuclear fission fuel is orders of magnitude more energy dense than

releasing energy from fossil fuels by burning, but the supply is still limited. The world’s current

land-based sources of uranium are expected to last only 100 years if the nuclear fission was the

sole power source with current (non-breeder) technology [3]. However, breeder reactors and

extracting uranium from seawater could solve this problem. The main limitations of nuclear

fission as a power source are the production of long-lived radioactive waste, risk of nuclear

proliferation and popular opposition.

1.2 Fusion Energy

Fusion energy eliminates all the intermediate energy transitions involved in renewable energy

sources: rather than generating electricity from a process ultimately driven by the Sun, it is

developed around the idea of creating our own miniature Sun here on Earth and generating

electricity from that. More concretely, the reactions powering the Sun are fusion reactions:

two light nuclei join to make one heavier nucleus, releasing energy in the process. This

process is difficult to achieve because the electromagnetic repulsion between two positively

charged nuclei dominates the attractive strong nuclear force until the two nuclei are very close.

Hence the colliding nuclei must approach each other at very high speeds to overcome the

electromagnetic repulsion. The most promising approach to solving this problem is to heat the

fuel gas so that the thermal energy of the nuclei is very high. The exact temperature required

for fusion depends on the particular fusion reaction, the easiest of which is deuterium-tritium

(D-T) fusion

2
1D+ 3

1T → 4
2He (3.5 MeV) + 1

0n (14.1 MeV) (1.1)

for which the rate of fusion-producing collisions peaks at approximately 100 keV. This reaction

releases ∼ 350GJ per gram of fuel, compared to ∼ 40 kJ per gram of fossil fuels. In fact, everyone

in the world could be supplied with energy for 100 million years using D-T fusion making use

of the available resources on Earth [3]. No greenhouse gases are produced in this process,

nor any radioactive waste. The confinement vessel is radioactively activated by the energetic

neutrons, however with the proper choice of materials it becomes safe after roughly 100 years,

compared to the millions of years for which fission waste must be safely stored. Further, since

fusion is not a chain reaction, there is no risk of meltdown and neither the fuel (hydrogen)

nor waste product (helium) is dangerous or presents proliferation risks. Unlike renewables,

fusion power promises to be reliable, controllable and take up relatively little space. These

advantages have motivated decades of research effort to develop a working reactor.
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Introduction Chapter 1

Figure 1.1 – Schematic diagram of a tokamak showing the current coils and magnetic field.
Image source: Eurofusion.

1.3 The Tokamak Scrape-Off Layer

Atoms of gas heated to fusion temperatures lose their electrons and become plasma. Since

charged particles orbit around magnetic field lines due to the Lorentz force, a magnetic field

can be used to confine the plasma; this is the key principle of a tokamak.

The tokamak vessel has a toroidal shape, within which a near vacuum must be maintained to

avoid the hydrogen nuclei losing energy via collisions with other species. The helical magnetic

field is generated by three sets of current-carrying coils, as shown in Fig. 1.1. The inner

poloidal field coils drive a toroidal current in the plasma via transformer action. This heats the

plasma and creates the poloidal component of the magnetic field. The toroidal component of

the magnetic field, which is greater, is generated by the toroidal field coils. Finally, the outer

poloidal field coils are used to adjust the plasma position and shape.

Based on the magnetic field, the tokamak can be divided into two regions: the closed flux

region in which magnetic field lines trace out closed toroidal surfaces and the Scrape-Off

Layer (SOL) where the field lines intersect the vessel wall. The flux surface dividing the two

regions is referred to as the Last Closed Flux Surface (LCFS). The SOL can be in either a limited

or diverted configuration. In a limited configuration, a physical barrier protrudes across

the flux surfaces and defines the LCFS. In a diverted configuration, shaping coils divert the

magnetic field lines, generating one or more X points in the magnetic field; these are locations

where the poloidal magnetic field vanishes. The advantage of this configuration over the

simpler limiter technique is that the closed flux surfaces are kept well away from any material

surface, reducing the impurity level within the closed flux region and improving the plasma

confinement. In this configuration, the region in which plasma is in contact with the vessel

wall is known as the divertor. In the SOL, the plasma outflowing from the closed flux region is

scraped off (hence its name) by the flow along the magnetic field lines. The width of the SOL is

3



Chapter 1 Introduction

Figure 1.2 – Poloidal cross-section of a tokamak showing the location of the Scrape-Off Layer
(yellow) and the main plasma flows. Blue arrows indicate the projection of the parallel flow
towards the vessel wall, which is balanced by turbulent outflow from the closed flux region
indicated by the red arrows. The green arrows indicate the SOL width, which is typically
1mm-1cm.

determined by the balance between parallel flow and turbulent plasma transport across the

magnetic field lines. Since plasma parallel velocity is much higher than the cross field velocity,

the SOL is thin compared to the rest of the plasma, typically 1mm-1cm thick (Fig. 1.2).

The SOL has an importance for tokamak operation out of proportion to its size: it is responsible

for fuelling the plasma and removing the helium ash, as well as determining the impurity level.

It also plays a role in the overall confinement of the plasma. Most importantly, the width of

the SOL determines the power exhaust: the heat load onto the wall tiles in contact with the

plasma, which is one of the critical issues facing ITER and DEMO [93],[48], [103]. Empirical

extrapolations predict that the heat may be exhausted over a narrow region just 1mm thick,

exceeding the heat flux limit of 5MW/m2 required to avoid material damage to the wall [53].

Whilst the lower temperatures in the SOL (a few 10s of eV compared to around 100 keV

in the core) allow easier access of experimental diagnostics such as Langmuir probes and

Gas Puff Imaging, numerical simulations are still necessary for the understanding of the

plasma dynamics in this region. A range of approaches exists for such simulations, from

the phenomenological modelling on which ITER predictions are based [46], through two-

fluid models including the one used in this thesis [69], [78], [36], [92], [91], [19], [100], [35],

to high-fidelity, highly expensive gyrokinetic modelling [89], [88], [13], [66], [17]. Two-fluid

models are generally based on the drift-reduced Braginskii equations (DRBE). First derived

by Braginskii [9], the equations in their original form describe dynamics on timescales from

the electron cyclotron frequency to the tokamak confinement time and length scales from

the electron gyroradius to the machine size. Zeiler [98] simplified the Braginskii equations

under what is known as the drift reduced approximation. The DRBE are suitable for numerical

implementation and constitute an ideal framework to study the plasma dynamics in the SOL.

4
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1.4 SOL Modelling with the drift-reduced Braginskii equations

Many groups use the DRBE to study the SOL plasma dynamics, using codes such as BOUT++

[78], [19], TOKAM3X [92], GRILLIX [91], GBD[100], HESEL [65] and GBS, the simulation tool

used in this thesis [69],[36], [74]. The work carried out at the Swiss Plasma Center using the

GBS code [69], [36], [74] has focused on developing predictive models for the SOL width and

can be summarised as follows. Until recently, first-principles fluid modelling of the SOL has

been carried out only for limited configurations, which can be simulated using a coordinate

grid aligned to the magnetic field. In this configuration, the density and temperature decay in

the SOL have been interpreted using a model based on the growth and saturation of linear

instabilites, in particular drift waves and ballooning modes. In Ref. [58] the linear instabilities

of the tokamak configuration are studied numerically and analytically from the linearised

DRBE, to identify the dominant linear instability as a function of the safety factor, magnetic

shear and parallel resisitivity. The instability saturation mechanism was studied in Ref. [75]

and removal of the driving background gradient found to be the saturation mechanism in

typical tokamak conditions. This analysis of the linear instability together with the gradient

removal saturation mechanism is used in Ref. [59] to identify the instability dominating the

transport as a function of the same parameters, and hence predict the self-consistent pressure

decay length. In Ref. [56] this study is extended to include finite ion temperature effects.

Taking the resistive-ballooning mode regime, which is the case for typical limited tokamak

parameters, an analytical model was developed and validated against an extensive set of

simulations and experimental measurements [39], [38]. This study was extended in Ref. [77]

to study the effect of non-circularity of flux surfaces on the instability regimes, in particular

the effect of finite aspect ratio, Shafranov shift, elongation and triangularity. It was found that

elongation and negative triangularity stabilise the resistive ballooning mode, shortening the

pressure decay length.

The simulation domain was then extended to include part of the closed flux region, allowing

theoretical study of a narrow heat flux feature close to the LCFS, where the density and

temperature gradient is much steeper than further into the SOL. The difference was ascribed to

strong shear flow near the LCFS that suppresses the growth of instabilities in this region, so the

transport is dominated by turbulent structures generated in the confined region that propagate

across the SOL at a velocity determined from the balance of parallel and perpendicular electric

currents [37].

Magnetic X points cannot be simulated using a single coordinate grid aligned to the magnetic

field [69], presenting a significant difficulty for their simulation. Only recently have solutions

to this problem been developed. The GBS approach is to use a fully geometric coordinate grid

[69]. This version of the code has been used to valid a theoretical model of blob propagation

[68] and following a further upgrade has been used to study the heat flux distribution in

snowflake configurations [34]. Other solutions exist. TOKAM3X [92] uses flux coordinates

with domain decomposition to treat the X point. The code has been used to study the impact

of divertor leg length [32] and midplane flux expansion [30] on the turbulent transport; the

5
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role of large scale and small scale ExB flow and grad B drift in creating poloidal assymetry

in the parallel flow [29], the impact of a diverted configuration with respect to a limited

configuration on the isothermal turbulence and transport [31] and the properties of energy

turbulent structures and heat transport [4]. The TOKAM3X code has also been coupled to the

Monte Carlo neutral particle solver EIRENE [24] to study the effect of turbulent fluctuations

on the transport of neutral particles [23].

BOUT++ is a modular code that can simulate in principle any set of fluid equations in curvi-

linear coordinates [18]. The STORM module is a two fluid plasma model used for the study

of blobs [21], [20], [96], which has recently been extended to include neutrals [86]. Like

TOKAM3X, flux aligned coordinates are used [85].

The GRILLIX code [91] uses coordinates independent of the magnetic flux, with a cylindrical

or cartesian grid and standard finite difference methods for the perpendicular operators.

The parallel operators are handled using a field-line following and interpolation procedure

[41]. The code has been used to compare the characteristics of the turbulence [90] and

Reynolds stress [52] between diverted and limit geometries, and the effect of the Boussinesq

approximation has been studied in slab, limited and diverted geometries [82], [90], [81], [99].

Finally the code has been adapted and used to study advanced divertor configurations [6].

However, as yet, no attempt has been made to bring together these insights, as well as other

work on blob transport [62] [83] [22], [97] [25], to develop a predictive model of the transport

and SOL width in diverted configurations.

1.5 Outline of current work

Among the attempts to develop numerical tools to simulate the plasma turbulence in diverted

configurations, the GBS code was recently upgraded to allow the simulation of the diverted

SOL, using a geometric coordinate system entirely independent from the magnetic field (Fig.

1.3), placing minimal constraints on its form, which is specified via the flux function. In this

thesis, we leverage the extensive numerical work detailed in Ref. [69] to provide physics insight

into the diverted SOL, making significant progress towards providing predictive capability

of the heat load to the divertor plates. We focus in particular on Double Null (DN) magnetic

configurations. DN configurations are of interest because the four strike points provide greater

opportunity to spread the heat load to the wall, the two X points may allow greater radiative

heat losses and the quiescent High Field Side (HFS) allows heating antennas to be placed there

safe from heat damage, hence the DN configuration is being considered for DEMO [73], [47].

It also provides an ideal setting for advancing the first numerical investigation of the plasma

dynamics in diverted configurations because of the topological seperation between the HFS

and Low Field Side (LFS).

In Chapter 2, the version of the GBS code used in this thesis is described. We outline the

derivation of the DRBE from the kinetic equation, and their drift-reduction to obtain the form

6
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Figure 1.3 – Circular geometric coordinate system used in GBS. The coordinate directions
are shown in red: r is the radial coordinate, θ the poloidal coordinate and φ the toroidal
coordinate. The flux surfaces are shown in colour and the LCFS in black.

implemented in the code. The implementation of the magnetic field via the geometric opera-

tors in the geometric coordinate system, as well as the boundary conditions and numerical

approach, are explained.

In Chapter 3 we study the turbulence and transport in balanced Double Null magnetic config-

urations. First, the geometric operator expressions in a circular-toroidal coordinate system

are derived, then we present the main results of the first GBS simulations in a double null

configuration. The striking HFS-LFS asymmetry of interest for the placement of heating an-

tennas is discussed in terms of the ballooning instability driving the turbulence. The up-down

asymmetry is investigated by the time averaging of Ohm’s law and the parallel resistivity is

found to have a significant effect, in contrast to earlier work [50] where it was neglected.

We then focus on the density decay on the LFS of the tokamak. This is a key element in

the prediction of the heat load to the divertor plates, one of the most critical issues for the

operation of ITER and design of DEMO [48], [93], [103]. It is also important in determining the

wall recycling, wall erosion and impurity influx. We find a double decay length, as observed in

experiments [47], [78], [45], [12], [42]. The decay length of the near SOL is well described by

transport driven by a non-linearly saturated ballooning instability, whilst the far SOL density

decay length is described using a model of intermittent transport mediated by blobs.

In Chapter 4, we look at the effect of magnetic inbalance on the plasma transport. We first

describe the modifications to GBS to make the domain more elongated, allowing the study of

more realistic magnetic equilibria. In particular, a new elliptic-toroidal coordinate system, the

derivation of the geometric operators in this system and the numerical verification of their

implementation in the GBS code are described. We present the results of three simulations

with different magnetic configurations: an unbalanced double null in which the LCFS forms

an upper single null, a balanced double null and an unbalanced double null in which the LCFS

forms a lower single null. The heat distribution between the four strike points is compared

between the three configurations and interpreted in terms of the equilibrium fluxes.

7



Chapter 1 Introduction

Finally, the work of the present thesis is summarised and conclusions presented in Chapter 5.
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2 Drift Reduced Braginskii Equations
and the GBS Code

2.1 Introduction

In this Chapter the physical model and the simulation tool used in this thesis - that is the

Drift Reduced Braginskii Equations (DRBE) and their implementation in the GBS code -

are described. The derivation of the Braginskii fluid equations from the Boltzmann kinetic

equation is outlined. We then consider the limit of low frequency (with respect to the ion

cyclotron frequency) and large scale (with respect to the ion cyclotron radius) fluctuations,

i.e. the drift ordering, obtaining the set of DRBE. This set of equations is implemented in the

GBS code, which has been developed in the last decade at the Swiss Plasma Center. GBS is the

ideal tool to carry out the simulations of the double-null configurations described in the rest

of the thesis.

In Section 2.2 the derivation of the physical model is outlined and the physical hypotheses

behind it are described. In Section 2.3 details of the numerical implementation are given,

comprising the geometry, numerics and boundary conditions.

2.2 The drift-reduced Braginskii equations

The most complete description of a plasma is given by the distribution function, f (t ,x,v),

of each particle species making up the plasma, which evolve according to the Boltzmann

equation:

∂ f

∂t
+∇· (v f )+∇·

(
F

m
f

)
=C (2.1)

where F = q(E+ 1
c v×B) is the Lorentz force, q is the particle charge, m is the particle mass and

C is the collision operator. Collisions force the velocity distribution towards a Maxwellian, so

for a sufficiently collisional plasma, such as in the case of the tokamak boundary, the velocity

9



Chapter 2 Drift Reduced Braginskii Equations and the GBS Code

dependence of f does not merit evolving the full six dimensional distribution function. It

is more practical to consider the evolution of the first three moments of the distribution

functions: the density,

n(x, t ) =
∫

f (x,v, t )dv, (2.2)

momentum,

n(x, t )V(x, t ) =
∫

v f (x,v, t )dv, (2.3)

and temperature,

T (x, t ) = 1

n

∫
m

3
(v−V)2 f (x,v, t )dv (2.4)

of each species. The density evolution equation is found by taking the first moment of Eq.

(2.1),

∂n

∂t
+∇· (nV) = 0, (2.5)

and analogous equations are derived for the evolution of V and T by taking the second and

third moments of Eq. (2.1). In Eq. (2.5), the evolution of the first moment, n, is linked to the

scond moment, nV. This is a general issue known as the closure problem: the equation for

the evolution of the nth moment contains the (n +1)th moment, so to obtain a closed system

the (n +1)th moment must be expressed in terms of the moments of order n and lower. The

Braginskii closure is based on the assumption that the velocity distibutions of the particle

species are close to Maxwellian, since the collisionality is high, and that since the deviations

from a Maxwellian distribution are due to the presence of spatial and temporal gradients, the

higher moments can be expressed as proportional to n, V, T and their gradients. The full

derivation of the Braginskii equations is found in Ref. [9]. GBS uses the strong magnetic field

case of Braginskii’s equations.

The Braginskii equations encapsulate the plasma dynamics on timescales from the cyclotron

frequencies to the confinement time and from the Larmor radii to the machine size. Since they

are computationally too demanding, Zeiler et. al. [98], [87] proposed to use the drift ordering

10
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for the length and timescales of typical SOL phenomena:

∂

∂t
∼ vE×B ·∇ ∼ ρ2

s

L2
⊥
ωi ¿ωi (2.6)

where ρs = cs/ωi is the ion sound speed Larmor radius, that is, the ratio between the sound

speed and ion cyclotron frequency, and

vE = (−∇φ×b)
c

B
(2.7)

is the E ×B drift velocity. This ordering allows us to decompose the ion and electron velocities

Ve = vE +v∗e + v∥e b (2.8)

Vi = vE +v∗i +vpol + v∥i b (2.9)

where

v∗s = (−b×∇ps)
c

enB
(2.10)

is the diamagnetic drift velocity for species s and

v∥s = b ·Vs (2.11)

is the velocity in the magnetic field direction. The E ×B and diamagnetic drift velocities

constitute the approximation to the perpendicular drift velocity in the limit of vanishing

Larmor radius. For the electrons, this approximation is sufficient, but ions have a larger

11
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Larmor radius so the first order correction to their drift velocity,

vpol =
b

ωi
× dV⊥i 0

d t
+ 1

nmiωi

{
b× [

pi

(
∇× b

ωi

)
·∇V⊥i0

]
+b×∇⊥

[2pi

ωi
∇·b×V⊥i 0

]−∇⊥
[ pi

2ωi
∇⊥ ·V⊥i 0

]}
+ 1

nmiωi
b× [

Giκ− ∇Gi

3

]
,

(2.12)

must be included, where

κ= b ·∇b (2.13)

is the magnetic field curvature and the gyroviscous terms, Gi ,e are

Ge =−η0,e

(
2∇∥v∥,e −

C (pe )

Bn
+ C (φ)

B

)
(2.14)

Gi =−η0,i

(
2∇∥v∥,e +τ

C (pi )

Bn
+ C (φ)

B

)
, (2.15)

with η0,e,i constant coefficients. These terms are neglected in this thesis, since it can be shown

that ∇· (nvpol ) ¿∇· (nvE×B ) [55].

The detailed derivation of the the set of equations we consider for the present study is given in

Ref. [55]. Here, we briefly summarize this derivation.

The plasma is assumed to be quasineutral, ni = ne ≡ n, thus we consider the electron continu-

ity equation:

∂n

∂t
+∇· [n(vE +v∗e +v∥e )] = 0. (2.16)

The electrical potential, φ is evolved via the vorticity ω=∇2
⊥φ, which is determined by sub-

tracting the electron and ion continuity equations:

− nc

Bωi

(
∂ω

∂t
+v∥i ·∇ω

)
+ 1

3miωi
b×κ ·∇Gi +∇∥

j∥
e
+∇·n(v∗i −v∗e ) = 0 (2.17)

12
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where j∥ = n(v∥i − v∥e ).

The electron and ion momentum equations are projected along the b direction to derive the

equations for the parallel velocities

me
d e v∥e

d t
=− 1

n
∇∥pe − 2

3
∇∥Ge +e∇∥φ+e

j∥
σ∥

−0.71∇∥Te (2.18)

mi
d v∥i

d t
=− 1

n
∇(pi +pe )−pi∇× b

ωi
·∇V∥i −

2

3
∇∥Gi (2.19)

where dt = ∂t + (vE +v∥i b) ·∇ and d e
t = ∂t + (vE +v∥e b) ·∇ and the electromagnetic fluctuations

are neglected since the plasma β is small in the SOL. Finally the electron and ion temperature

equations come from considering the drift ordering of Braginskii’s temperature equation:

3

2
n

d e Te

d t
=−3

2
nv∗e ·∇Te −pe∇· (v⊥e +v∥e )

+ 5

2

c

e
∇·pe

(
b

B
×∇Te

)
+0.71Te∇∥ j∥+∇· (χ∥e∇∥Te )

(2.20)

3

2
n

dTi

d t
=−Ti [n ·∇(vE +v∥e )+∇· (nv∗e ]− 5

2

c

e
pi

(
∇× b

B

)
·∇Ti (2.21)

We now rewrite the the divergences of the E ×B , diamagnetic and parallel fluxes in a form

suitable for numerical implementation.

The ∇· (nvE ) terms are evolved as

∇· (nvE ) = c∇n ·
(
−∇φ× b

B

)
+ cn∇·

(
∇φ× b

B

)
= c

B
[φ,n]+ 2cn

B
C (φ) (2.22)

where

[φ,n] = b · (∇φ×∇ f ) (2.23)

is the Poisson bracket operator and

C ( f ) = B

2

(
∇× b

B

)
·∇ f (2.24)

13



Chapter 2 Drift Reduced Braginskii Equations and the GBS Code

is the curvature operator.

The ∇· (nv∗e ) terms are evolved as

∇· (nv∗e ) =−c

e
(∇× b

B
) ·∇pe =− 2c

eB
C (pe ). (2.25)

The ∇· (nv∥e ) terms are evolved as

∇· (nv∥e ) =∇n ·v∥e +n∇·v∥e = n∇∥v∥e + v∥e∇∥n. (2.26)

where

∇∥ f = b ·∇ f (2.27)

is the parallel gradient operator and ∇·b is neglected. This constitutes a neglect of finite aspect

ratio effects.

In this thesis we consider the cold ion limit, τ = Ti /Te = 0. This assumption can have an

effect on the stability of linear SOL modes [57], on the electrical potential structure near the

LCFS [101] and on up-down asymmetry [102]. We neglect fluctuations in the magnetic field

(electrostatic limit) and employ the Boussinesq approximation.

To summarise, the model equations in the dimensionless form we consider in the present

thesis are

dn

d t
= 2

B
[C (pe )−nC (φ)]−∇∥(nv∥e )+Sn +Dn∇2

⊥n (2.28)

dω

d t
= 2B

n
C (pe )− v∥i∇∥ω+ B 2

n
∇∥ j∥+Dω∇2

⊥ω (2.29)

dTe

d t
= 4

3B

[7

2
TeC (Te )+ T 2

e

n
C (n)−TeC (φ)

]
+ 2

3

Te

n
0.71∇∥ j∥−

2

3
Te∇∥v∥e − v∥e∇∥Te +STe +DTe∇2

⊥Te

(2.30)

d v∥e

d t
= − v∥e∇∥v∥e +µ(∇∥φ− Te

n
∇∥n −1.71∇∥Te +ν j∥)+Dv∥e∇2

⊥v∥e (2.31)

d v∥i

d t
=−v∥i∇∥v∥i −

1

n
∇∥pe +Dv∥i ∇2

⊥v∥i (2.32)

where n, Te , φ and v∥e,i , B and t are normalized to n0, Te0, Te0/e, cs0, B0 and R0/cs0, respec-

tively, where n0, Te0 and cs0 =
p

Te0/mi are the reference density, electron temperature and

14



Drift Reduced Braginskii Equations and the GBS Code Chapter 2

sound speed, B0 and R0 are the magnetic field strength and major radius at the magnetic

axis. Perpendicular lengths are normalised to the ion sound Larmor radius ρs0 = cs0/ωi , with

ωi = eB0/(cmi ), and parallel lengths normalised to R0. The normalised resistivity is defined

based on the Spitzer resistivity as ν= me R0/(1.96mi cs0τe ) where τe is the electron collision

time. We use a constant resistivity across the domain, with no temperature dependence. We

define µ = mi /me and ρ∗ = ρs0/R0. The electron pressure is denoted pe = nTe and dimen-

sionless current j∥ = n(v∥i − v∥e ). Using the Poisson bracket operator defined in Eq. (2.23), the

convective derivative becomes dt f = ∂t f +ρ−1∗ [φ, f ]. Small diffusion operators are added for

numerical stability.

To summarise, Eqs. 2.28- 2.32 employ the following assumptions:

• The parallel resistivity, ν is constant.

• Ti = 0.

• Equations are in the electrostatic limit, ∂tψ= 0.

• The Boussinesq approximation - d
d t ∇2

⊥(nφ) = n d
d t ∇2

⊥φ - is used.

• Gyroviscous terms are neglected

The conversion between the normalised units n0 and Te0 and physical units of density and

temperature is most correctly derived from the source terms. That is, given the divergence

of particle flux from experiments in units of m−3s−1 this must be matched to the simulation

Sn = S̃n/(n0/t0) = S̃nR0/(n0cs0) where S̃n is the particle source in physical units and Sn is the

particle source in GBS units. The same consideration applies for the heat flux, from which we

find Te0 and hence cs0. However, in practice, temperature data is much more readily available

from experiments than heat or particle flux divergence, so we estimate ρs0 by taking Te0 as the

experimentally measured temperature at the LCFS.

The ion sound velocity is given by:

cs0 = 9.79 ·105
√
γTe /µ cm/sec (2.33)

Where γ is the adiabatic index, Te is the electron temperature in [eV] and µ= mi /mp is the

mass ratio between an ion and a proton. The ion gyrofrequency is given by:

ωi = 9.58 ·103Z B/µ rad/sec (2.34)

Where Z is the ion charge state and B is the magnetic field in Gaussian cgs units. Substituting

in TCV-like parameters for a hydrogen plamsa - Te0 = 45eV, B = 1.43T and γ= Z =µ= 1 - gives

an approximation of ρs0 = 0.0479 cm.
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2.3 The GBS Code

For a given set of model equations, there exist a range of possibilities for their implementation.

When fluctuations are small, it is common to evolve only the deviations from a pre-determined

equilibrium. In a medium that is uniform over a certain length scale, it is common to simulate

only a small sample of the area, with suitable boundary conditions such that the small area is

representative of the whole. While these approximations are valid and often used in the study

of plasma turbulence in the tokamak core, such simplifications are impossible in the SOL due

to the fluctuations being of order unity and the existance of non-local phenomena such as

propagating blobs.

The problem of solving these equations in the SOL has been approached using a number of

codes, which differ in the approximations made to the DRBE, the boundary conditions and

numerical schemes. These include BOUT++ [78], [19], TOKAM3X [92], GRILLIX [91], GBD[100]

and GEMR [35].

The GBS code was developed to solve the set of equations in three dimensions treating

the equilibrium profiles and plasma turbulence self consistently. It initially used a second

order finite differences scheme and was used to study linear devices, such as LAPD, then

Simple Magnetic Torus configurations, such as in TORPEX. The coordinate system was flux

aligned, with coordinate directions x perpendicular to the flux surfaces, z the periodic toroidal

coordinate and y the binormal coordinate such that the system was orthogonal [74].

Magnetic presheath boundary conditions were derived and implemented to correctly treat

the boundary at the limiter [51]. The physical model was extended to include neutral atom

physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq

treatment of the polarization drift [36]. Recently, the code was upgraded to implement a

geometric coordinate system, independent from the magnetic field, that allows the study

of diverted magnetic configurations [69], and a further upgrade allows the simulation of

advanced divertor configurations [34].

The approach of GBS is that starting from an arbitrary initial state, constrained only to be

consistent with the boundary conditions, the five fields n, Te , ω, φ, v∥e and v∥i are evolved

self-consistently according to Eqs. (2.28 - 2.32) with no seperation between equilibrium and

fluctuations. The 3D simulation domain covers the full toroidal and poloidal angle and extends

radially from a certain distance inside the LCFS, typically of the order 20ρs0, up to the wall.

The source terms are non-zero only within the LCFS and mimic plasma outflow from the core.

Plasma losses to the wall are encapsulated by boundary conditions. Hence, starting from a

uniform initial state, the fields evolve until a dynamic equilibrium state is reached in which the

source input is balanced by the wall losses. We perform the physical analysis in this dynamic

equilibrium state.
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2.3.1 Geometry

The plasma fields are defined on a coordinate grid that is purely geometrical, independent

from the magnetic field. We define our coordinate [x, y, z] with x being the radial coordinate,

y the poloidal coordinate and z the toroidal coordinate. More precisely, two different poloidal

coordinate systems are used in this thesis. The first is the circular coordinate system, in

which x is a linear rescaling of the minor radius r , and y a linear rescaling of the geometrical

poloidal angle θ. This coordinate system is right handed and orthogonal. This coordinate

system is used in Chapter 3 to perform balanced DN simulations. The second system is the

elliptic system, which is non-orthogonal. In this system the x coordinate refers to an elliptic

surface and y is a poloidal angle, defined in Chapter 4. The elliptic system is used to carry out

simulations of unbalanced DN configurations.

The operators described in Eqs. (2.23-2.27) include a number of coefficients that depend on

both the definition of the coordinate system and the magnetic field. We consider magnetic

fields that are toroidally uniform and are specified by a flux function, ψ(x, y), which is related

to the magnetic field as

B = F (ψ)∇z +∇z ×∇ψ(x, y) (2.35)

from which we find the b(x, y) vector and B(x, y) scalar in Eqs. (2.23-2.27). We simplify

the operators by taking only the first order terms in a/R0, l⊥/R0 and ρs0/R0, where a is the

tokamak minor radius and l⊥ is the length scale of field gradients in the poloidal plane. This

simplification is described fully in Ref. [67] and corresponds to taking the infinite aspect ratio

limit. Removing this approximation was found to have a stabilising effet on ballooning modes

in a limited configuration [44]. The magnetic field is defined such that the poloidal magnetic

field component is a factor a/R0 smaller than the toroidal field component, allowing further

simplification using this ordering parameter [69].

2.3.2 Numerics

The spatial derivatives are evaluated using a fourth order finite differences method. For

numerical stability, v∥e and v∥i are evolved on a grid displaced by ∆y/2 and ∆z/2 relative

to the n, φ, ω, Te grid, where ∆x and ∆y are the grid spacing in the poloidal and toroidal

directions. The Poisson bracket is evolved according to an Arakawa scheme. To evaluate φ

from ω, Poisson’s equation is inverted using a direct solver method based on the MUMPS

library [1], [2]. The timestepping is performed using a fourth order Runge-Kutta scheme.

The correct numerical implementation of Eqs. (2.28 - 2.32) is verified using the method of

manufactured solutions, first adapted to plasma fluid codes in Ref. [79] and described for the

version of GBS used in this thesis in Ref. [69].
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The use of geometric coordinates requires a greater resolution in the toroidal direction than

the one necessary in codes based on flux-aligned coordinates. Indeed, it must be checked

for each magnetic configuration used that the local pitch angle nowhere exceeds more than

two perpendicular grid spacings per toroidal grid spacing. If this requirement is not met, the

parallel gradient operator is not correctly evaluated and the simulation will crash.

Other approaches exist for handling magnetic X points. TOKAM3X [92] and BOUT++ [78] retain

the use of flux-aligned coordinates by decomposing the domain into a number of sub-domains

and thus avoiding the coordinate singularity. Ghost cells are used to exchange information

between the sub-domains. This method is less computationally expensive because less

poloidal planes are required in each simulation, however, the coordinate grid suffers a loss

of resolution where there is greater flux expansion at the X point. The GRILLIX [91] code,

like GBS, uses a geometric grid, however the parallel gradient operator is treated using a

field line following and interpolation method, which can be difficult to handle at the domain

boundaries.

2.3.3 Boundary conditions

The simulations are periodic in the y direction but boundary conditions must be applied in

the radial direction. At rmax, boundary conditions are applied at the magnetic pre-sheath,

where the ion drift approximation breaks down and gradients in the direction perpendicular

to the wall become large. These boundary conditions are derived and compared to kinetic

simulations in Ref. [51] and have been properly adapted to be applied to to the diverted

geometry in Ref. [69],

v∥i =±
√

Te (2.36)

v∥e =±
√

Te exp(λ−φ/Te ) (2.37)

∂xφ=∓
√

Te∂x v∥i (2.38)

∂x n =∓n/
√

Te∂x v∥i (2.39)

ω=−(∂x v∥i )2 ∓
√

Te∂
2
xx v∥i (2.40)

∂x Te = 0 (2.41)

The plus and minus signs refer to field lines entering and leaving the wall and λ≈ 3. Where

the sign changes, a smoothing function is applied to avoid discontinuity [69].

At the inner radial boundary, we use an ad-hoc set of boundary conditions: ∂x f = 0 for all

fields f , except for ω and φ, for which we impose ω = 0 and φ = λTe . The ad-hoc inner

boundary conditions have minimal effect in the region outside the source where our analysis

is performed.
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3 Density decay in the SOL of balanced
double-null configurations

3.1 Introduction

Managing the heat load to the divertor is among the most critical issues for the operation

of ITER and design of DEMO [48], [103] and identified by the European roadmap for the

realisation of fusion energy as a possible showstopper for the entire program [93]. A first step

towards a theoretical model of the heat flux is a prediction of the density decay in the SOL

region, this is the subject of this chapter. Besides the heat flux, the density decay length also

determines the wall recycling, impurity influx and wall erosion.

This Chapter is concerned with the density decay length in DN configurations and the re-

sults presented are the first study of density decay length carried out with GBS in diverted

geometry. Looking at diverted rather than limited configurations is crucial because diverted

configurations are used in the majority of present day experiments and will be used in ITER

and DEMO. Certain aspects of the density decay such as the properties of the linear modes

and blob propagation are significantly modified when going from limited to diverted con-

figurations - for example due to the region of high flux expansion, topological separation of

good and bad curvature regions, higher magnetic shear - making it necessary to study diverted

configurations carefully and not simply extrapolate the results from limited configurations.

The density decay of the SOL cannot always be fitted by a single exponential decrease, in fact

a double decay length is commonly observed in double null (DN) configurations, for example

on C-Mod [47] and MAST [78] with a shorter decay length in the near SOL and a longer one

in the far SOL. This is similar to observations in other magnetic configurations, such as the

single null (SN) [45] [12] and limited configurations [42]. The different decay in the near and

far SOL is the result of differences in the near and far SOL turbulence. Differences have been

observed experimentally [37]. In the near SOL, turbulence is not intermittent, while in the far

SOL intermittent events known as blobs have been detected and tracked [63], [68]. Our work

represents a step forward building upon earlier single blob studies [61] and multiblob models

[83], [22], [97].
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We disentangle the different turbulent mechanisms at play in the SOL, in particular the nature

of the fluctuations in the near and far SOL, the properties of blobs including their typical

size, velocity and generation rate, and the parallel transport. Ultimately, our work allows the

development of a predictive model for the density decay in DN configurations. The focus of

the present chapter is on balanced DN configurations, meaning the two X points are on the

same magnetic flux surface constituting the single separatrix. Configurations in which one X

point is closer to the magnetic axis than the other and there are therefore two separatrices are

referred to as unbalanced, these are considered in the next chapter.

This Chapter is an expanded version of Ref. [5]. First we describe the coordinate system and

geometric operators used for the simulation of the balanced DN configuration in Section

3.2. In Section 3.3 we describe a set of simulations in which the resistivity and safety factor

- the most important controls on the plasma dynamics - are varied. We highlight the main

features of the results and discuss the asymmetry in the turbulence between the high field

side (HFS) and low field side (LFS) and in the structure of the time and toroidally averaged

fields around the upper and lower X points. In Section 3.4 we focus on the density decay

at the outer midplane. In the near SOL, the turbulent radial flux is not intermittent, so we

estimate the flux based on the development and saturation of a linear instability driven by the

background radial gradient in density and temperature. We match the predicted flux, Γ, to

the turbulent flux across the LCFS, ΓLC F S , to find the near SOL density decay length. In the

far SOL the fluctuation distribution is heavy-tailed, indicating intermittent turbulence and

indeed observation of the simulation results reveals the presence of coherent structures of

high plasma density (blobs) that propagate outwards due to their self-generated E×B velocity.

We predict the blob-mediated flux using only the near SOL properties, from which we can

derive the far SOL density decay length.

3.2 Coordinate system and geometric operators for the balanced

DN configuration

For the simulations of the balanced DN configuration, we use a circular toroidal coordinate

system (r,θ,φ), defined as,

r =
√

R2
1 +Z 2

θ = arctan Z /R1

φ= arctanY /X

(3.1)

where (X ,Y , Z ) is a Cartesian system centred at the midplane of the major axis of the tokamak,

R0 is the major radius at the magnetic axis, R = R0 − r cosθ is the major radius, R1 = R0 −R =
r cosθ is the distance from the magnetic axis in the ∇R direction and a is the minor radius at

the wall (see Fig. 3.1).
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Figure 3.1 – Flux surfaces (colours) and coordinate directions (red) for the balanced double
null configuration. The LCFS is shown by the thick black line. The hole around the magnetic
axis is not physical, rather the Braginskii model is not valid in the core so we do not simulate
that region.

The inverse transformation is

X = R cosφ

Y = R sinφ

Z = r sinθ.

(3.2)

The covariant basis vectors associated with the coordinates (r,θ,φ) are

er =

 −cosθcosφ

−cosθ sinφ

sinθ

 eθ = r

 sinθcosφ

sinθ sinφ

cosθ

 eφ = R

 −sinφ

cosφ

0

 (3.3)

The basis in Eq. (3.3) is orthogonal, so the covariant and contravariant basis vectors are parallel.

The covariant and contravariant sets of basis vectors are related by

∇r = er ∇θ = eθ
r 2 ∇φ= eφ

R2 . (3.4)

In order to evaluate the geometric coefficients appearing in Eqs. (2.23-2.27), the magnetic

field is specified via its flux function ψ̃(r,θ), which should be a solution of the Grad-Shafranov

equation but here we assume it can be any 2D function. From the flux function, we derive the

magnetic field in covariant and contravariant components,
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B = F (ψ̃)∇φ+∇φ×∇ψ̃(r,θ) (3.5)

= F (ψ̃)

R2 eφ− 1

r R

∂ψ̃

∂θ
er + 1

r R

∂ψ̃

∂r
eθ (3.6)

= F (ψ̃)∇φ− 1

r R

∂ψ̃

∂θ
∇r + r

R

∂ψ̃

∂r
∇θ (3.7)

where we assume that F (ψ̃) is a constant, F (ψ̃) = B0R0. From these expressions, we can

calculate the norm B = |B| and unit vector b = B
B .

These expression are substituted into Eqs. (2.23 - 2.27) to obtain the operator coefficients

needed to carry out GBS simulations.

In the GBS implementation, we define ψ̃ in terms of a normalised radial coordinate r̄ = r /a

where a is the radius at the wall. The coordinates θ and φ are already dimensionless.

The turbulent quantities evolved by GBS vary on spatial scales of order ρs0 in the perpendicular

direction. Therefore we use a coordinate system normalised to ρs0 so that the gradients of the

turbulent quantities are O(1). This system, (x, y, z), is related to the (r,θ,φ) system by

x = (r−a)
ρs0

y = aθ
ρs0

z =φ. (3.8)

The expressions of the parametric operators appearing in Eqs. (2.28 - 2.32) are expressed in the

(x, y, z) coordinates. We present the example of the derivation of the parallel gradient operator,

the derivation of the other four operators is found in Ref. [67] with only the final expression

given below.

The definition of the parallel gradient operator is given by Eq. (2.27), which we can write in the

circular coordinate system and dimensionless units as

b ·∇ f = 1

B
(B r∂r +Bθ∂θ+Bφ∂φ) f . (3.9)

Using Eq. 3.6 and 3.7 we find that

B 2 = B 2
0 R2

0 +
a2B 2

0

R2
0R̄2

[
1

r̄ 2

(
∂ψ

∂θ

)2

+
(
∂ψ

∂r̄

)2]
(3.10)
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where the normalised quantities R̄ = R/R0 and ψ= ψ̃/(a2|B0|) are both O(1). We substitute

the expression for the B components in Eq. 3.6 into Eq. 3.9 and express the perpendicular

derivatives in terms of the x and y coordinates so that they are also O(1):

b ·∇ f = 1

B

[
B0R0

R̄2R2
0

∂φ− |B0|
r̄ R0R̄

∂ψ

∂θ

a

ρs0
∂x + |B0|

r̄ R0R̄

∂ψ

∂r̄

a

ρs0
∂y

]
f . (3.11)

We simplify the expression in Eq. (3.11) using the ordering parameters a/R0, l⊥/R0 and ρs0/R0,

where l⊥ is the length scale of field gradients in the poloidal plane. We keep only the first order

terms in these parameters, as described fully in Ref. [67]. The parallel gradient operator we

consider for our simulations is then

R0∇∥ f = B0

|B0|
∂ f

∂φ
+ a

ρs0

1

r̄

(
∂ψ

∂r̄

∂ f

∂y
− ∂ψ

∂θ

∂ f

∂x

)
. (3.12)

We note that for the parallel gradient operator, none of the terms can be dropped using the

above ordering. Following similar steps, we obtain the other geometric operators:

∇2
∥ f = δ−2

r̄ 2

(
(∂ψ∂θ )2 ∂

2 f
∂x2 + (∂ψ∂r̄ )2 ∂

2 f
∂y2 −2∂ψ∂r̄

∂ψ
∂θ

∂2 f
∂x∂y

)
+δ−1

(
1

r̄ 2 (∂ψ∂θ
∂2ψ
∂r̄∂θ −

∂ψ
∂r̄

∂2ψ

∂θ2 )− 1
r̄ 3 (∂ψ∂θ )2

)
∂ f
∂x

+δ−1
(

1
r̄ 2 (∂ψ∂r̄

∂2ψ
∂r̄∂θ −

∂ψ
∂θ

∂2ψ

∂r̄ 2 )+ 1
r̄ 3

∂ψ
∂r̄

∂ψ
∂θ

)
∂ f
∂y

+δ−1 B0
|B0|

2
r̄ (∂ψ∂r̄

∂2 f
∂y∂φ − ∂ψ

∂θ
∂2 f
∂x∂φ )+ ∂2 f

∂φ2

(3.13)

C ( f ) = B0

|B0|
(
sinθ

∂ f

∂x
+ cosθ

r̄

∂ f

∂y

)
(3.14)

∇2
⊥ f = 1

r̄ 2

∂2 f

∂y2 + ∂2 f

∂x2 (3.15)

[Φ, f ] = 1

r̄
[Φ, f ]r̄ ,θ (3.16)

where we defined [Φ, f ]x,y = ∂xΦ∂y f −∂yΦ∂x f .
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3.3 Overview of simulation results

3.3.1 Magnetic field and simulation parameters

The magnetic field configuration we consider for our simulations is based on that of three

infinite wires, one located on the magnetic axis, one at a distance 2a above the magnetic axis

and one 2a below the magnetic axis. The wire located on the magnetic axis mimics the plasma

current in the core. We take the flux function,

ψ(s,θ) = S(log(s)+ 1

2
In(log(s2 +a2 −2as sinθ)+ log(s2 +a2 +2as sinθ)), (3.17)

where In is the ratio of current strength in each of the outer wires with respect to inner wire, and

perform a radial transform s = r − r0, with r0 an ad-hoc parameter to obtain a configuration

sufficiently circular to fit in the simulation domain. The parameter S is used to tune the

poloidal field strength. In our simulations, the upper and lower wires carry a current ten

times stronger than the central wire (In = 10). By setting r0 = 0.9a we obtain a configuration

sufficiently circular to fit in the domain. The flux surfaces are shown in Fig. 3.1.

Figure 3.2 – Profiles of the safety factor, q(ψ) in the closed flux regions and the connection
length Lc (ψ) on the LFS (right). Profiles for q = 4.3,6.5,8.6 are shown in yellow, orange and
blue respectively. Both q and Lc tend to infinity at the LCFS.

Based on the magnetic field specified in Eq. (3.17) we carried out a set of simulations where

we varied the safety factor and resistivity - here we present some of the main features of the

simulation results.
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3.3.2 Parameter scan in ν and q

Simulations consider a fixed plasma size, ρ−1∗ = R0/ρs0 = 500, Lx = xwall − xinner boundary =
120ρs0 and Ly = 2πa = 800ρs0. The grid resolution is ∆x = 0.769ρs0 and ∆y = 1.78ρs0 for the

simulations with ν= 1 and ∆x = 0.513ρs0 and ∆y = 1.18ρs0 for the simulations with ν= 0.1

and 0.01. We use 80 planes in the z direction for the simulations with ν= 1 and 120 planes for

the simulations with ν= 0.1 and 0.01. Previous convergence tests [69] show that this numerical

convergence is reached with grid of this resolution.

The source terms, Sn and STe , are Gaussian centred at a distance 11ρs0 inside the LCFS with

half width half maximum (HWHM) 1.5ρs0 and amplitude 1.35n0. By tuning the poloidal

field strength via the parameters S in Eq. (3.17), simulations are run with local safety factor

q = (a/ρ∗)B ·∇z/B ·∇y = 4.3,6.5,8.6 at the LCFS outer midplane. The resulting profiles of q

inside the LCFS and the connection length in the SOL are shown in Fig. 3.2. We also scan the

parallel resistivity, ν= 1,0.1 and 0.01, typical experimental values for the normalised resistivity.

Scans over these parameters are chosen since they are the most important controls on the

plasma dynamics. We fix µ= mi /me = 200. Typical snapshots and time and z averaged fields

are shown for all six fields for the highest and lowest resistivity with q = 6.5 in Figs. 3.3, 3.4 and

3.5. The effect of changing q is found to be much smaller than the effect of changing ν in these

simulations.

These snapshots show the presence of fluctuations, particularly on the LFS. To quantify the

fluctuation level, the standard deviation of n and φ is shown in Fig. 3.6. The fluctuation level

is highest on the LFS near the midplane, as expected for interchange turbulence. For n, the

highest fluctuation level is at the LCFS, for φ larger fluctuations are present further into the

LFS. For the ν= 1 simulations there are significant fluctuations in the private flux regions, for

the ν= 0.01 simulation less so.

In all the simulations, we observe asymmetries between the HFS and LFS, and upper and

lower X points, even though the magnetic field is up-down symmetric. The asymmetries are

visible in both the turbulent snapshots and time-averaged quantities. We now examine these

asymmetries in more detail.

3.3.3 HFS-LFS asymmetry

In our simulations, we observe a turbulent LFS and quiescent HFS. Similar observations have

been made in DN experiments [47]. This points out a different nature of turbulence in the

HFS and LFS.

The different nature of turbulence on the HFS and LFS has been tested by considering two

additional simulations. Removing the interchange instability drive [the curvature term in Eq.

(2.29)] drastically reduces turbulence on the LFS (see Fig. 3.7), indicating ballooning insta-

bilities are the primary driver of turbulence in this region. On the other hand, removing the

Kelvin-Helmholtz drive [the [φ,ω] term in the convective derivative in Eq. (2.29)] suppresses
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Figure 3.3 – Typical snapshots of the six fields for the q = 6.5,ν = 1. The axis lengths are
normalised to a.
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Figure 3.4 – Typical snapshots of the six fields for the q = 6.5,ν= 0.01.

27



Chapter 3 Density decay in the SOL of balanced double-null configurations

Figure 3.5 – Comparison of time and toroidally averaged fields between the q = 6.5,ν= 1 (left)
and ν= 0.01 (right) simuations. We observe a better confinement and less asymmetry in the
lower resistivity simulation.
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Figure 3.6 – Standard deviation of n and φ, a proxy for the fluctuation level.
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the turbulence on the HFS but has a small impact on the LFS (Fig. 3.7), indicating velocity

shear and the Kelvin-Helmholtz instability play a dominant role only on the HFS.

The analysis of LFS and HFS turbulence should therefore be carried out separately. In the

following we will focus on the LFS, where most of the heat flux is exhausted.

Figure 3.7 – Snapshots of n and φ for the simulations with no KH instability drive (top) and
no interchange instability drive (bottom). Removing the KH drive has minimal effect on the
turbulence, whist removing the interchange drive changes it completely.

3.3.4 Up-down asymmetry

We observe an up-down asymmetry, despite the fact that the magnetic configuration is per-

fectly balanced. In n and Te this is caused by the time-averaged, anti-clockwise E×B advection

of plasma from the midplane towards the upper X point on the LFS. On the HFS, turbulent

outflow is negligible, hence plasma advection to the lower X point outside the LCFS is low,

resulting in a less important asymmetry.

The asymmetry is even more pronounced in the electrical potential, particularly in the higher

resistivity simulation (see Fig. 3.5). To understand the mechanism behind this asymmetry,
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we followed the method described in Ref. [50], considering the dominant terms of the time

averaged Eq. (2.31):

∇∥φ̄= 1.71∇∥T̄e − (T̄e /n̄)∇∥n −ν j̄∥ (3.18)

(we indicate the time and toroidal average with an overbar and the fluctuation with a tilde, e.g.

n = n̄ + ñ). In addition to ∇∥Te and ∇∥n contributions which result from the E ×B convection,

we observe an important contribution to ∇∥φ from the j∥ term. This can be estimated by

studying the main terms of the time averaged Eq. (2.29): ∇∥ j∥ ∼ −(2/B)C (pe ) which is a

balance between the diamagnetic and parallel currents. At the upper divertor, the parallel

currents are directed from the X point towards the wall, whilst in the lower divertor region

they flow from the wall towards the X point. This means that the contribution to φ from∫
z (−ν j∥d z is positive for the upper X point and negative for the lower X point, since the

poloidal component of b goes anticlockwise in both cases.

Up-down asymmetry in balanced DN configurations is widely observed in the heat flux to

the outer legs [10], [16], [70] and can be enhanced or reduced in unbalanced configurations.

The analysis of the up-down asymmetries in balanced and unbalanced configurations is the

subject of Chapter 4.

3.4 LFS density decay

The density decay in our simulations cannot be properly described by a single exponential

decrease, rather it can be fitted with two exponentials characterised by a shorter decay length

Ln near the LCFS and longer decay length L′
n in the far SOL (see Fig. 3.8). Such a double decay

length is a typical observation in a DN configuration, e.g. on C-Mod [47] and MAST [78], as

well as in SN configurations [45] [12] and limited configurations [42]. It has also been observed

in turbulent two-fluid simulations [26] [40].

The difference in the scale length is reflected by different turbulent properties in near and far

SOL. As observed experimentally [8], [45], [14], the fluctuation distribution is close to Gaussian

in the near SOL with increasing skewness and kurtosis, indicative of intermittency, in the far

SOL (Fig. 3.8). In the following, we identify the two different mechanisms setting Ln and L′
n .

We call the width of the inner SOL ∆, this is the distance over which the density decays steeply.

We refer to the density, temperature and radial turbulent particle flux at the separatrix by n̄, T̄e

and Γ, and at the entrance of the far SOL, i.e. a distance ∆ from the separatrix, by n̄′, T̄e
′

and

Γ′, both at the outer midplane.
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Figure 3.8 – Radial profile of n̄ at the outer midplane with the fitted exponentials (top), profiles
of the skewness and kurtosis (middle) and total turbulent transport and transport due to blobs
(bottom). Above are two PDFs of the normalised density fluctuation, ñ/σn , evaluated in the
corresponding radius range, where σn is the standard deviation evaluated locally.
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3.4.1 Turbulence in the near SOL

We start by looking at the near SOL. Since the turbulent radial flux in the near SOL is not due

to large intermittent events, but can be rather associated to Gaussian-distributed fluctuations,

we estimate the flux based on the development and saturation of a linear instability driven

by the background radial gradient in density and temperature. We then match the predicted

turbulent flux, Γ, to the turbulent flux across the LCFS, ΓLC F S , to find Ln . It should be noted

that although ñ(ky ) has a broad spectrum, Γ(ky ) has a clear peak [71], as shown in Fig. 3.9,

which supports our approach based on considering one single mode as responsible for the

turbulent transport.

Figure 3.9 – Poloidal spectra of the density and E ×B flux at fixed radius for the simulations
with ν= 1, q = 6.5 (top) and ν= 0.01, q = 6.5. The flux spectrum has a clear peak even through
the density fluctuation spectrum does not and the wavenumber of the peak matches well the
linear analysis prediction shown by the dashed line.
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The turbulent flux can be written

Γ=
〈

ñ∂y φ̃

B

〉
y

(3.19)

where the poloidal, y , average is evaluated over 45 degrees centered around the outer midplane.

The density fluctuation can be estimated by noticing that linear instabilities saturate when the

gradient of the fluctuations becomes comparable to the background density gradient, hence

locally removing the turbulence drive [75][76], that is ∂x ñ ∼ ∂x n̄ or equivalently kx ñ ∼ n̄/Ln ,

with kx the typical radial wavenumber of the perturbation, in agreement with ñ/n̄ in the

simulations. We relate ∂y φ̃ to ñ by balancing the leading order terms in the continuity equation,

Eq. (2.28):

γñ = ρ−1
∗
∂φ̃

∂y

∂n̄

∂x

1

B
(3.20)

where γ is the linear growth rate of the instability driving the transport. The simulation test

mentioned above (Fig. 3.7) shows that ballooning modes drive turbulence on the LFS. For

these modes, as well as for drift waves [80], non-local linear theory shows that kx =
√

ky /Ln

[75]. By considering the linear instability that maximises the transport, the turbulent flux

Γ̄= ρ∗n̄

(
γ

ky

)
max

(3.21)

follows.

In order to evaluate the (γ/ky )max, we linearise Eqs. (2.28) - (2.32) assuming C ( f ) ∼ ∂y , since

the flux surfaces are approximately vertical in most of the region we are considering, and

neglecting radial variation of the perturbation and poloidal variation of the equilibrium. We

take k∥ = 2/q where 2 approximately is the minimum parallel mode number allowed by our

configuration. This is expected from ballooning stability and observed in the simulations. The

linearised system


γ (i ky R0Te0)/Ln 0 0

2i ky Te0 k2
y Te0γ −i k∥

p
Te0 2i ky Te0

0 −i k∥
p

Te0 ν 0

0 (i ky R0Te0η)/Ln 0 γ




n

φ

j∥
Te

= 0 (3.22)
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that we obtain corresponds to that of the simple magnetic torus geometry [72]. We take

η= Ln/LTe = 0.77, the theoretically expected value [76], which is within 20% of the simulations.

Using Γ= ΓLC F S and solving the dispersion relation associated with the system 3.22 we find

numerically the ky and Ln shown in Fig. 3.10 for three values of ΓLC F S . The estimates of Ln

correspond well to the simulations, as shown in Fig. 3.16.

To understand the decrease in ky and increase in Ln with increasing ν and q (which has been

observed experimentally [64]), we consider the limit (valid for typical parameters) in which the

resistive ballooning mode is dominant: R/Ln À 1, µγ¿ ν and, to avoid coupling with sound

waves and drift waves, k∥ ¿ γ and ω∗ ¿ γ where ω∗ = ky R/Ln . The dispersion relation from

Eq. (3.22) reduces to γ2 −γ2
i +γk2

∥/(νk2
y ) = 0, where γi =

√
2R(1+η)/Ln is the ideal ballooning

growth rate, capturing well the strong transport limit [38]. Expressed in physical units to make

explicit the dependence on physical parameters, the density scale length we obtain can be

written as

Ln = 2

3
(1+η)c̄s

2
(

qn̄

2ΓLC F S

)4/3( me

mi 1.96τe

)2/3

ω−4/3
i R1/3

0 , (3.23)

which of the order 1mm for typical experimental parameters in TCV and C-Mod tokamak

[47], [95]. We can use this equation to estimate ky by noticing that the peak γ/ky occurs

approximately where the damping term and ballooning drive are equal. Using γ∼ γi , we find

ky = 22/3

31/4

[
1.96n̄ω2

i miτe

q2ΓLC F SR2
0me

]1/3

(3.24)

in physical units. The full numerical result, shown in Fig. 3.10, agrees well with this estimate,

as well as the simulation flux spectra as shown in Fig. 3.9.

3.4.2 Turbulence in the far SOL

We now turn to the far SOL, where the fluctuation distribution is heavy-tailed (Fig. 3.8),

indicating intermittent turbulence. Indeed observation of the simulation results reveals the

presence of coherent structures of high plasma density - blobs - that propagate outwards due

to their self-generated E ×B velocity. Considerable effort has been made to understand the

dynamics of blobs, as described in the review paper Ref. [14], motivated by their significant

contribution to the total radial transport in the SOL (shown for example in Ref. [62]). In

particular, the relationship between the blob size and velocity has been the subject of extensive

work, culminating in the two-region model [61], [83] which has been validated against both

experimental measurements (see e.g. Ref. [94]) and simulations (see e.g. Ref. [68]). The
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Figure 3.10 – Predicted Ln , ky , vb , Γ′ and L′
n as a function of ν, q and ΓLC F S . All reference

quantities are taken at the LCFS.
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two-region model describes the radial motion of blobs (defined as regions of plasma density

over a certain threshold based on the standard deviation of the density fluctuation) in diverted

configurations. The two regions refers to the region around the midplane (region 1), where

ballooning instability drive is significant and the region near the divertor (region 2) where the

ballooning instability drive is negligible (see Fig. 3.11). The two regions are separated by an

area of high flux expansion, which has the effect of making the blobs more elongated in the

poloidal plane. We give a brief overview of the derivation of the two-region model size-velocity

relation. A more detailed derivation can be found in Ref. [68].

Figure 3.11 – The two regions referred to in the two region model. Region 1 lies between the
midplane and the region of maximum flux expansion, region 2 lies between the region of
maximum flux expansion and the wall.

We first consider the linear system governing the blob instability, starting from the simplified

vorticity equations (simplified Eq. (2.29)) in the two regions:

∂tω1 +ρ−1
∗ [φ1,ω1] = 1

n1
∇∥ J∥,1 +

2Te

n1
C (n1)

∂tω2 +ρ−1
∗ [φ2,ω2] = 1

n2
∇∥ J∥,2

and the density equation in region 1

∂t n1 +ρ−1
∗ [φ1,n1] = 0. (3.25)

Note that we include the ballooning instability drive only in region 1. The subscripts refer

quantities in region 1 and 2, and the model is isothermal. At the outer midplane, the curvature

term is given by C (n1) =− 1
r
∂n1
∂θ . We linearise these equations about a background density that

depends only on x and a constant background potential. Therefore
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ni = n0,i (x)+δni e−iωt+i ki y

φi = δφi e−iωt+i ki y .

We substitute these expressions into Eq. 3.25 to relate the density and potential perturbations

in region 1:

ωδn1 =−ρ−1
∗ k1δφ1

∂n1

∂x
. (3.26)

For the parallel current gradients, we use the two point approximation [61]. This can be written

in region 1 as

∇∥ J∥ ∼
φ1 −φ2

νL2
∥1

. (3.27)

where L∥1 is the field line length from the midplane to the region of maximum flux fanning.

Assuming no current at the midplane, J∥ at the boundary between the two regions is approxi-

mately (φ1 −φ2)/(νL∥1). Hence for region 2, we have

∇∥ J∥ ∼
1

L∥2

φ1 −φ2

νL∥1
− n2cs

Te
(φ2 −φ f ) (3.28)

where L∥2 is the field line length from the region of maximum flux fanning to the wall and the

sheath current J∥ = ncs(1−exp(λ−φ/Te )) has been linearised around φ≈φ f =λTe /e.

Linearising these equations we have the system

ω2δφ1 =−iωσ,1ω(δφ1 −δφ2)−γ2
mhdδφ1

ωδφ2 = iωσ,2
k2

1

k2
2

(δφ1 −δφ2)− iωα,2δφ2

(3.29)

where we have introduced the frequencies ωσ, j = (νL1L j n0, j k2
1)−1 associated with the parallel

resistivity,ωα, j = (ρsL2k2
j )−1 associated with the sheath resistivity andγmhd = (−2ρ2

sρ
−1∗

∂x n1
n0,1

)1/2
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the ballooning instability growth rate. The relative sizes of these timescales define the blob

regime parameters

Λ=ωα,1/ωσ,1 = νn̄′L2
∥1/[L∥2ρs]

Ω=ωα,1/γmhd = k−4
1 n0,1

2ρ2
s1ρ

2
s2L2

∥2
∂x n1
n0,1

ρ−1∗

These parameters quantify the importance of sheath resistivity with respect to plasma resis-

tivity and sheath resistivity with respect to ballooning drive, respectively. We consider a high

and low resistivity limit. For Λ >> 1, the first term on the RHS in the second of equations

3.29 vanishes, requiring δφ2 = 0, meaning the perturbation does not extend into the divertor

region. The first equation then gives

1+ ω̂2 + i ω̂
Θ

Λ
= 0 (3.30)

where the normalised frequency ω̂=ω/γmhd . We see that the curvature drive (first term) is

balanced by either the region one inertia (second term) or region one plasma resistivity (third

term). ForΛ<< 1, theωσ terms (parallel current between the two regions) cancel to first order

and solving the second order system gives

1+ (1+ f 2)ω̂2 + iΘω̂= 0. (3.31)

where f is the flux tube fanning [61]. Therefore, the curvature drive can be balanced either

with fanning enhanced inertia in region two or with the sheath resistivity.

To relate these results to the blob behaviour, we invoke the blob correspondence principle [61],

[14]: that a single blob moves according to the linear dispersion relation. From the linearised

continuity equation, we have therefore that blob velocity

vx = vE =ℑ(ω)ρ∗
δn1

∂x n1
(3.32)

where the E ×B velocity vE = −i k1δφ1. Using the normalised size and velocity â = ab/a∗,

39



Chapter 3 Density decay in the SOL of balanced double-null configurations

v̂ = v/v∗ where

ab = (2ay /π)4/5a1/5
x

a∗ = [2ρ4
s L2

∥2nb/(ax n̄′ρ∗)]1/5

v∗ = ρs[2π2a2
xρ

2
sρ

2
∗L∥2nb/(n̄′a2

y )]1/5

(3.33)

this becomes v̂ = Im(ω̂)â1/2 and the above relations correspond to the a−v scalings shown in

figure 3.12. A complete characterization of the blobs in these simulations is given in Ref. [68].

We use a pattern recognition algorithm described in [68] to track the blobs (defined here as

coherently propagating structures of amplitude greater than 2.5 times the standard deviation of

n) and measure their size, amplitude and velocity. Following Ref. [63] we calculate the fraction

of the cross field transport due to blobs by assuming a 2D Gaussian density distribution of

each blob in the poloidal plane with a peak density fluctuation nb,i and radial and poloidal

HWHM ax,i and ay,i where i is the blob index. The blob flux is calculated

Γb(x, y) =∑
i

nb,i vb,i exp

[
(x −xb,i )2

2a2
x,i

+ (y − yb,i )2

2a2
y,i

]
, (3.34)

where the sum is carried out over all blobs and (xb,i , yb,i ) are the blobs’ centre of mass. We find

that blob transport dominates in the far SOL (Fig. 3.8), consistent with the result of Ref. [63]

and previous experimental works that found blobs to contribute an order unity fraction of the

particle flux [8], [14], [7].

To estimate the far SOL decay length, we balance the divergences of the blob flux and parallel

flux: ∇⊥Γ′ =∇∥Γ∥. Since the parallel flow near the divertor is not intermittent (see Fig. 3.14)

we can estimate the divergence of the parallel flux from the Bohm boundary conditions,

∇∥Γ∥ ∼ n̄′c ′s/L∥ with L∥ = L∥1+L∥2, n̄′ = n̄ exp(−∆/Ln) and c̄s
′ = c̄s exp(−∆η/[2Ln]). We remark

that L′
n depends only weakly on ∆ since Γ′ also scales approximately with n̄′c̄s

′. We assume

that the blob flux can be written in the form Γ′ =C n̄′α where C is a product of parameters with

no radial dependence in the simple model (ν,R0, q etc) and α is a power of order unity. The

exponential decay of n̄ with radius then gives that ∇⊥Γ′ =CαΓ′/L′
n ∼ Γ′/Ln . We now relate the

blob flux to the time and toroidal average density n̄′ and near SOL properties.

First, we express the blob flux averaged in the poloidal plane [83]

Γ′ = 〈Γb〉x,y =σb fb vb (3.35)

in terms of σb the average density inside a blob, fb the blob packing fraction (ratio of area
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Figure 3.12 – Comparison of the detected blobs to the two region model predictions for the
ν= 1 simulations (top) and ν= 0.01 simulation (bottom). In theΛ−Θ plots (left)we see that
blobs in the ν = 1 simulation are in the RB and R X regimes, meaning they don’t extend to
the wall in the parallel direction, whilst in the ν= 0.01 simulation the blobs are in the Ci and
Cs regions, meaning they extend into divertor region and in some cases to the wall. In the
a−v scaling plots (right) we see a good agreement with the two region model scaling relations.
The solid black line is the scaling relation Eq. (3.30) in the upper plot, and Eq. (3.31) in the
lower plot. The dashed lines are the RB and RX asymptotes in the upper plot and Ci and Cs

asymptotes in the lower plot.
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Figure 3.13 – Parallel current structure of blobs in different blob regimes. Top left is an RB
blob, in which the current loop closes within the main part of the SOL, not too far from the
midplane. For the RX (top right) and Ci blobs (bottom left) the current loop closes around the
X point region and for the Cs blob the parallel current perturbation reaches right to the wall.
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Figure 3.14 – Parallel flux of electron density as a function of time (left), near the lower LFS
divertor leg (black marker on the right figure), which does not show an intermittent character.

covered by blobs to total SOL area) and vb the average blob velocity. The x average is taken

from the LCFS to the wall. We address each of these quantities in turn.

We estimate σb = 2nb/ln(2), i.e. as the ratio of the average number of particles in a blob,

2πnb ax ay /ln(2), where we assume blobs have on average a Gaussian shape with HWHM ax

and ay and peak density n̄′+nb , and the average blob area, Ab =πax ay . Since n̄′ decreases

radially, nb/n̄′ remains approximately constant over the blob lifetime despite parallel draining,

so we combine the definition of a blob and the estimate of the ñ/n̄ in the near SOL to estimate

nb ∼ 3ñ ∼ 3n̄/(Lnkx ).

The packing fraction fb = Nb Ab/(ASOL) where Nb is the number of blobs, requires an estimate

of the blob size. We observe that the blob size remains approximately constant as the blobs

propagate (as observed experimentally in AUG [11]) and that blobs tend to be circular, max-

imising their Kelvin-Helmholtz stability [75], so we estimate their size as the geometric mean

of the near SOL eddy dimensions ax ∼ ay ∼π/(2
√

kx ky ). We infer therefore from the results

for the near SOL analysis that blob size increases with resistivity, a trend observed both in our

simulations (Fig. 3.15) and experimentally [95].

We now turn to the estimation of Nb . In steady state, the blob generation and loss rates

are equal. Since blobs are generated from instabilities of wavelength 2π/ky we expect the

generation rate to be proportional to Ly ky /(2π). The generation timescale has previously

been proposed as determined by poloidal flow shear [28] or a combination of flow shear and

mode phase velocity [27], [14]. In the presence of hot ions, strong E ×B flow shear may be

present [101], [69]. However, in our simulations we find the flow shear timescale, ∂x vE×B ,

almost an order of magnitude less than the observed generation timescale and not to scale

with ν and q as observed. We reason that blobs are created because the linear instability

saturates as the local density gradient is removed and the resulting density perturbation moves

outwards without the streamer being refilled from the core, a case which was studied in a
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Figure 3.15 – Distribution of the vertical size (left) and radial velocity (right) of the blobs at
ν= 1 and ν= 0.01 with q = 6.5. The mean sizes and velocities are shown with a solid line and
the predictions with a dashed line.

basic plasma physics device in [60]. Hence, the generation rate is limited by the time taken

for the blob to travel one radial wavelength of the driving instability, 4ax /vb , and allow the

density gradient to be re-established, which is consistent with the simulations. Taking the blob

lifetime as the time taken to cross the domain, the loss rate is Nb vb/Lx where Lx is the distance

between the LCFS and the wall. Hence Nb = 4π2Lx Ly /(kx ky ). Using the above relations, we

find fb ≈π/16, independent of SOL parameters. While the universality of fb is well supported

by the simulation data, the predicted value is an overestimate (likely because we assume all

blobs cross the entire radial domain) and a better estimate is fb = 0.1.

The average blob velocity, vb , is deduced from the average blob size, ax and ay , according to

the two region model scaling relations derived above. We saw that the normalised velocity

is related to the normalised size by v̂ = ℑ(ω̂)â1/2 and ω̂ is given by the relevant dispersion

relation, either Eq. (3.30) or Eq. (3.31). The average blob velocity is estimated by vb = 0.5v̂ v∗,

where the factor 0.5 is obtained by comparing the scaling with the simulation results and

accounts for the fact that our estimate is an upper limit that neglects various mechanisms

slowing the blobs [94]. A comparison between the two-region model a − v scalings and the

detected blobs is shown in Fig. 3.12. Whilst there is considerable scatter around the theoretical

scalings (for the reasons described in Ref. [94]), the parallel current structure of the blobs is

consistent with the current closure mechanism proposed for itsΛ−Θ regime, as shown in Fig.

3.13.

Using the balance of flux divergences, as described above, we find L′
n , for which the full

numerical result is shown in Fig. 3.10. For typical experimental parameters, most blobs are in
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theΛ>Θ regime, for which

L′
n = 7.3 fbL∥ω0.0167

i (R0miτe )0.00833Γ1.04
LC F S

m0.00833
e c̄s

1.05n̄1.04(1+η)q0.0167ρ′0.1
s

(3.36)

is of the order several mm for typical experimental parameters. We note that sinceΛ∝ R0 and

Θ∝ R1.46
0 , larger device will likely have blobs in theΘ>Λ,Λ> 1 regime, for which

L′
n =

94.8 fbL2
∥1L∥Γ5/3

LC F Sm17/15
i τ2/15

e ρ′7/5
s ω19/15

i

R28/15
0 n̄5/3m17/15

e c14/5
s ρ2/5

s (1+η)7/5q34/15
(3.37)

In Fig. 3.10 we show vb , Γ′ and L′
n as a function of ν, q and ΓLCFS. We observe that Γ′ increases

with ν and with q , primarily due to variation in vb and to a lesser extent σb , as suggested

in [83]. The increase in vb follows from the â − v̂ scaling. Such an increase has also been

observed in gyrofluid simulations [35]. The increase in L′
n with resistivity is well documented

experimentally [14]. The predicted L′
n is compared to the simulation result in Fig. 3.16. As for

the near SOL, we find good agreement between theory and simulation.

Figure 3.16 – Comparison of the model and simulation Ln and L′
n .
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4 Turbulence and flows in unbalanced
double-null configurations

4.1 Introduction

One of the possible main advantages of the double-null (DN) configuration is the ability to

spread the heat load over the the four divertor legs and in particular over the two LFS strike

points. One might expect a more equal spreading between the two LFS strike points than

between the inner and outer strike points of a single null (SN) configuration [10] [16]. Since

both these strike points are at greater major radius than the SN inner strike point, the heat

load is also spread over a larger area for a given heat flux decay length [73], [10].

However, a perfect DN configuration is impossible to control, rather in practice the magnetic

configuration cycles between lower single null (LSN), balanced DN and upper single null

(USN) geometries [73]. In the LSN, the lower X point lies closer to the magnetic axis, hence

the separatrix associated with the lower X point forms the LCFS and represents the primary

separatrix. The separatrix associated with the upper X point lies entirely outside the LCFS and

is therefore a secondary separatrix. We refer to the region between the two separatrices as

the interseparatrix region (ISR). For the USN, it is the upper X point that is closer to the core

and its associated separatrix forms the LCFS, whilst for the balanced case they are equidistant

from the core so there is only one separatrix that is also the LCFS. The variation in magnetic

topology can be quantified by the distance between the separatrices associated with the upper

and lower X points at the midplane, among other methods.

The dependence of the heat flux sharing on the degree of magnetic balance has been studied

experimentally on MAST [16], DIII-D [70] and C-Mod [10] tokamaks. In Ref. [16] the power

deposition was compared for lower single null (LSN) and balanced DN discharges, in L and

H mode. In the LSN configuration, the heat loads at the inner and outer strike points were

measured, and more power was deposited at the outboard side in both L and H mode. In the

balanced configuration, more power went to the lower LFS than the upper LFS leg in L-mode

and inter-ELM H mode periods.

In Ref. [70] the heat flux sharing between the upper and lower divertors was found to be less
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sensitive to the magnetic balance than the in/out power sharing. A higher heat flux was found

at the lower divertor compared to the upper divertor, whilst a higher particle flux was found at

the upper divertor. The heat and particle fluxes were interpreted in terms of the E ×B flow

across the private flux regions.

In Ref. [10], it was found equal power sharing between the upper and lower outer legs occurs

close to a balanced double null that in L mode. Non-zero power to the inner divertor legs was

measured. The results could be explained in terms of heat flux mapping along the magnetic

field lines.

In this Chapter we approach the study of the heat flux distribution among the four divertor

legs in balanced and unbalanced DN configurations using simulations run with a new version

of GBS upgraded to employ an elliptic rather than circular toroidal coordinate system. This

is a necessary step because the details of the magnetic field shape around the X point may

have a significant effect on the fluxes in this region, hence a realistic X point shape is required.

The use of an elliptic domain means magnetic fields with more realistic elongation can be

simulated, so the radial rescaling of the flux function described in Section 3.2 is no longer

required.

In Section 4.2, we describe the choice of a new coordinate system. The numerical verification

of its implementation in GBS is described in Section 4.3. We then explain the system of

magnetic flux coordinates we use in the analysis in Section 4.4. Section 4.5 describes the

three simulations that we consider for the present study, that is a LSN, a balanced DN and

a USN configuration. Finally in Section 4.7, we present the simulation results and, for the

three magnetic fields, compare the heat loads to the four divertor legs, which are interpreted

in terms of the E ×B , parallel and diamagnetic fluxes.

4.2 An elliptical coordinate system for the simulation of double null

configurations

We describe the coordinate system introduced to properly describe turbulence in DN config-

urations. Since tokamak plasmas tend to be vertically elongated, an elliptic domain in the

poloidal plane has been chosen, elongated in the vertical direction.

4.2.1 Definition of the elliptic coordinates

When defining the elliptical coordinates, we target simplicity of coordinate definition, regular

grid spacing and absence of coordinate singularities. For these reasons, a non-orthogonal

coordinate system was chosen. Like the circular-toroidal system described in Chapter 3, the

elliptic coordinate system has two coordinate directions in the poloidal plane (a and ν), and
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one coordinate, φ is the toroidal angle. We define the elliptical coordinate basis (a,ν,φ) as


a =

√
R2

1 + Z 2

k2

tanν= Z
kR1

tanφ= Y
X

(4.1)

where (X ,Y , Z ) are Cartesian coordinates centred at the tokamak axis of symmetry on the

midplane, with Z the vertical direction and X and Y the orthogonal coordinates on the

equatorial midplane. We also define the major radius R =
p

X 2 +Y 2 and the distance from the

magnetic axis projected to the midplane R1 = R0 −R = a cosν, where R0 is the major radius of

the magnetic axis. The parameter k > 1 is the ratio of the major and minor axes of the ellipse

defined by a = const and the coordinate a is the ellipse minor radius. The coordinate ν is

chosen to be different to θ in order to improve the resolution at the extremity of the ellipse. An

added advantage of this choice is that the Jacobian does not depend on the coordinate ν and

this simplifies the computation of the operators.

We also introduce the inverse coordinate transformation


X = (R0 −a cosν)cosφ

Y = (R0 −a cosν)sinφ

Z = ka sinν

(4.2)

The coordinate system is shown diagrammatically in Fig. 4.1.

4.2.2 Derivation of the GBS operators in elliptic coordinates

We now derive the GBS operator in this newly introduced coordinate system. We start by

evaluating the covariant basis vectors:

ea =

 −cosνcosφ

−cosνsinφ

k sinν

 eν =

 a sinνcosφ

a sinνsinφ

ak cosν

 eφ =

 −R sinφ

R cosφ

0

 (4.3)

and the contravariant basis vectors

ea =

 −cosνcosφ

−cosνsinφ
1
k sinν

 eν =


1
a sinνcosφ
1
a sinνsinφ

1
ak cosν

 eφ =

 − 1
R sinφ

1
R cosφ

0

 (4.4)
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Figure 4.1 – Coordinate surfaces for the elliptic coordinate system. The torus major axis is R0.
Surfaces of constant a are shown in blue and constant ν in red.

The metric tensor and the inverse metric tensor are then given by:

G =

 gaa gaν 0

gaν gνν 0

0 0 gφφ

 G−1 =

 g aa g aν 0

g aν gνν 0

0 0 gφφ

 (4.5)

with the components

gaa = cos2ν+k2 sin2ν

gaν = a(k2 −1)cosνsinν

gνν = a2(sin2ν+k2 cos2ν)

gφφ = R2

g aa = cos2ν+ 1
k2 sin2ν

g aν = k2−1
ak2 cosνsinν

gνν = 1
a2 (sin2ν+ 1

k2 cos2ν)

gφφ = 1
R2

(4.6)

where we note the presence of off-diagonal terms due to the non-orthogonality of the coordi-

nate basis. Using J =p
detG , the Jacobian is given by:

J = aRk (4.7)

We now need to evaluate the components of the operators given in Eqs. (2.23-2.27) in the
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elliptical coordinates. First, we express the magnetic field, in physical units as

B = F (ψ̃(a, v))∇̃φ+∇̃φ×
(
∂ψ̃

∂a
∇̃a + ∂ψ̃

∂ν
∇̃ν

)
(4.8)

where ψ̃ is the flux function in physical units. We will consider F (ψ̃) = R0B0 in the following.

The magnetic field can be expressed in either covariant or contravariant components:

B = Baea +Bνeν+Bφeφ = B aea +Bνeν+Bφeφ (4.9)

where the components are given by

Ba = 1
J (gaν

∂ψ̃
∂a − gaa

∂ψ̃
∂ν )

Bν = 1
J (gνν

∂ψ̃
∂a − gaν

∂ψ̃
∂ν )

Bφ = B0R0

B a =−1
J
∂ψ̃
∂ν

Bν = 1
J
∂ψ̃
∂a

Bφ = B0R0

R2 .

(4.10)

We also evaluate the norm of the magnetic field:

B 2 = B 2
0 R2

0

R2 + 1

k2a2R2

[
gνν

(
∂ψ̃

∂a

)2

+ gaa

(
∂ψ̃

∂ν

)2

−2gaν
∂ψ̃

∂a

∂ψ̃

∂ν

]
. (4.11)

These expressions are substituted into Eqs. (2.23-2.27) and simplified in an analogous manner

to that described in Ref. [69]. More precisely, to perform the simplification, we define the

normalised coordinate ā = a/a∗ where a∗ is radial coordinate of the domain inner boundary

at the midplane. We then have the following ordering for the equilibrium quantities:

∂ψ
∂a ∼ 1

a∗
→ ∂ψ

∂ā ∼ 1, 1
a
∂ψ
∂ν ∼ 1

a∗
→ 1

ā
∂ψ
∂ν ∼ 1, ∂ψ

∂φ = 0 (4.12)

where ψ = ψ̃/(a2|B0|) is the normalised flux function. For the fluctuating quantities, we

normalise the poloidal coordinates to ρs0 (the scale length of the fluctuations), we then define

the dimensionless coordinate x = (a −a∗)/ρs0 and y = a∗ν/ρs0, which have the ordering

∂ f
∂a ∼ 1

ρs
→ ∂ f

∂x ∼ 1, 1
a
∂ f
∂ν ∼ 1

ρs
→ 1

ā
∂ f
∂y ∼ 1, R0

R
∂ f
∂φ ∼ 1. (4.13)

We then retain only the terms O(1) or above in the parameters δ= ρs0/a∗ and ε= a∗/R0. The
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geometric operators in Eqs. (2.23-2.27) then become

∇∥ f = B0

|B0|
∂ f

∂φ
+δ−1 1

ka
(
∂ψ

∂a

∂ f

∂y
− ∂ψ

∂ν

∂ f

∂x
) (4.14)

∇2
∥ f = δ−2

k2a2

(
(∂ψ∂ν )2 ∂

2 f
∂x2 + (∂ψ

∂a )2 ∂
2 f
∂y2 −2∂ψ

∂a
∂ψ
∂ν

∂2 f
∂x∂y

)
+δ−1

(
1

k2a2 (∂ψ∂ν
∂2ψ

∂a∂ν −
∂ψ

∂a
∂2ψ

∂ν2 )− 1
k2a3 (∂ψ∂ν )2

)
∂ f
∂x

+δ−1
(

1
k2a2 (∂ψ

∂a
∂2ψ

∂a∂ν −
∂ψ
∂ν

∂2ψ

∂a2 )+ 1
k2a3

∂ψ

∂a
∂ψ
∂ν

)
∂ f
∂y

+δ−1 B0
|B0|

2
ka (∂ψ

∂a
∂2 f
∂y∂φ − ∂ψ

∂ν
∂2 f
∂x∂φ )+ ∂2 f

∂φ2 +O(ε)

(4.15)

C ( f ) = B0

|B0|
1

k
(sinν

∂ f

∂x
+ cosν

a

∂ f

∂y
)+O(ε) (4.16)

[Φ, f ] = 1

ka
[Φ, f ]a,ν+O(ε) (4.17)

Where we defined [Φ, f ]x,y = ∂xΦ∂y f −∂yΦ∂x f .

∇2
⊥ f = 1

a (sin2ν+ 1
k2 cos2ν)∂

2 f
∂y2 + (cos2ν+ 1

k2 sin2ν)∂
2 f
∂x2

+2 (k2−1)sinνcosν
āk2

∂2 f
∂x∂y +O(ε)

(4.18)

We note that these operators reduce the toroidal expressions given in Ref. [69] when k = 1.

4.3 Numerical verification of the GBS implementation

We ensure the correct implementation of the elliptical coordinates in GBS by testing each

operator individually. This is done by evolving GBS by one timestep with all but one field

frozen. An analytical expression for this field is chosen so that the application of the operator

gives a known result. Performing this procedure with a series of different sized grids allows us

to confirm that the numerical error converges at the expected rate, which is the order of the

numerical scheme [79].
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Operator Test Function Expected Result
∇∥ f ψ 0
∇2
∥ f ψ 0

C ( f ) ka sin(ν) C ( f ) =
(

B0
|B0|

)
ρs0

a∗

[ f1, f2] [∂ψ∂x , x]+ [∂ψ∂y , y] 0

Table 4.1 – Test functions for the GBS operators in elliptic coordinates.

The grid sizes used are given by:

Nx = Nx02ng

Ny = Ny02ng

Nz = Nz02ng

(4.19)

where Nx0 = 20, Ny0 = 30 and Nz0 = 4, and ng varies between 0 to 4. We study the convergence

rate using the L2 and L∞ norms, given by:

L2 =
√ ∑

i , j ,k
∆i j k

Nx Ny Nz

L∞ = max
i , j ,k

(|∆i j k |)
(4.20)

where ∆i j k is the difference between the numerical and analytical value of the operator

applied to the test function at the i j k grid point, where i , j and k reference the x, y and z grid

directions. The L2 norm is a measure of the average error over whole grid and the L∞ norm is

a measure of the maximum error. Table 4.1 shows the test functions and expected results for

the parallel gradient, parallel diffusion, curvature and Poisson bracket operators, all of which

converged at the expected fourth order rate, with similar results to that shown for the parallel

gradient in Fig. 4.2.

The verification of the Laplacian operator is performed in a different way. The Laplacian

operator appears in Poisson’s equation: ∇2
⊥Φ=ω and is discretized using a fourth order finite

difference scheme.

To verify that this operation is correctly implemented, we use the method of manufactured

solutions [79]. Precisely, we choose a test function f and we apply the Laplacian operator

analytically on the test function using Mathematica. In the GBS code, the value of ω is set to

correspond to this result: ω=∇2
⊥ f . By running only one step in the GBS code, we get the value

ofΦ. If the boundary conditions are set correctly,Φmust be equal to f .

We choose the test function f = sin(ax)sin(by), with a = 2π
Lx

and b = 2π
Ly

and periodic boundary

conditions for y and Dirichlet boundary condition for x imposing Φ(x = 0) = 0 and Φ(x =

53



Chapter 4 Turbulence and flows in unbalanced double-null configurations

Figure 4.2 – Convergence of the parallel gradient operator. The upper plots show the L∞ (left)
and L2 (right) norms as a function of grid size. The lower plots show the convergence rates
p∞ = ln[L∞(ng )/L∞(Ng +1)]/ln(2) (left) and p2 = ln[L2(ng )/L2(Ng +1)]/ln(2) (right), which
we expect to approach the order of the numerical scheme as the grid size tends to infinity, in
this case four.

Lx ) = 0. This choice of function f = sin(ax)sin(by) implies:

ω= sin(by)

[
2ab(k2−1)cos(ax)cos2(by)

k2(1+bx) − b2 sin(ax)( cos2(by)

k2 +sin2(by))

(1+bx)2

−a2 sin(ax)(cos2(by)+ sin2(by)
k2 )

] (4.21)

The results of the convergences of ∇2
⊥Φ−∇2

⊥ f are shown on Fig.4.3. The norm L∞ seems

to converge at order four but the norm L2 only reaches order three, probably because the

boundary conditions are implemented only to second order.

4.4 Magnetic Coordinates

In the balanced DN configuration, there are five topologically separated regions: the closed

flux (CF), low field side (LFS), high field side (HFS), upper private plasma (UPP) and lower

private plasma (LPP) regions. When the double null is unbalanced, there is a sixth region that

we refer to as the inter-separatrix region (ISR). These are shown in Fig. 4.4.
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Figure 4.3 – Convergence analysis for the Laplacian operator ∇2
⊥Φ−∇2

⊥ f . The upper plots
show the L∞ (left) and L2 (right) norms as a function of grid size. The lower plots show
the convergence rates p∞ = ln[L∞(ng )/L∞(Ng +1)]/ln(2) (left) and p2 = ln[L2(ng )/L2(Ng +
1)]/ ln(2) (right), which we expect to approach the order of the numerical scheme as the grid
size tends to infinity, in this case four. This is the case for p∞ but not for p2, we attribute this
to the boundary conditions, which are not implemented at fourth order.

To better understand the mechanism behind the distribution of the heat flux in such a complex

topology, it is useful to project the vector components of the heat fluxes, such as the E ×B flux,

onto a magnetic coordinate basis. The system we use consists of the toroidal coordinate φ, a

flux coordinate,

ρ = (ψ−ψLC F S)
xmax −xLC F S

ψmax −ψLC F S
, (4.22)

in practice a rescaling of the flux function, and a binormal coordinate χ that is orthogonal to

both ρ and χ. The value of χ is found by integrating the arc length along the outer separatrix in

units of ρs0, starting in the high field side at midplane and going in the direction of increasing

ν. The arc length is given by:

dS =
√

gi j dui du j =
√

gxx d x2 + g y y d y2 +2gx y d xd y . (4.23)

These definitions are such that ρ and χ have the same order of magnitude as x and y .

In order that χ is continuous and single-valued within a given topological region (as shown in

Fig. 4.5), we integrate dS along the divertor legs as follows: when passing from the extremity
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Figure 4.4 – Topological regions in double null configurations.

of one leg to the other one, for example on Fig. 4.6 from point B to point C, χ is decreased

of ∆Xχ in order to keep the continuity of χ at the X-point, where ∆Xχ is the sum of the arc

lengths between the point A to the point B and between the point C to the point D. In this way

the value of χ at the point A is equal to χ at the point D. The same method is applied when

passing from point F to point G in order for χ to have only one value at the X point, (point E).

Using the fact that the coordinate χ is defined to be perpendicular to the coordinate ρ in the

R − Z plane, we can compute the contours of χ= cnst in the x − y grid. Knowing the value

of χ along the outer separatrix, we use the contours of χ constant to find the value of χ in

every region. The intersections of the χ contour and the ρ contour form the grid points of the

magnetic coordinate grid. The grid is defined such that ∆χ and ∆ρ are uniform.

The values of x, y , R1 and Z in the ρ−χ grid are computed by interpolating their value at every

intersection of the contours of χ constant and the contours of ρ constant. The arrays x(ρ,χ)

and y(ρ,χ) are then used to interpolate the simulation quantities onto the ρ,χ grid.
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Figure 4.5 – χ-ρ coordinates in an unbalanced double null configuration. Coordinate surfaces
(left), colour plot of ρ (centre) and colour plot of χ (right) showing the continuity of the
coordinates and single-valuedness within a single topological region.

4.4.1 Analytical computation of χ derivatives

In the following analysis, we project the E × B flux, ΓE = nvE , and the diamagnetic flux,

Γ∗ = nv∗, (where vE and v∗ are defined in Eqs. (2.7) and (2.10)) in the χ and ρ directions,

that is to say parallel and perpendicular to the flux surfaces. For each flux vector, we wish to

evaluate

Γχ = Γ ·∇χ= Γx ∂χ

∂x

∣∣∣∣
y
+Γy ∂χ

∂y

∣∣∣∣
x

(4.24)

and

Γρ = Γ ·∇ρ = Γx ∂ρ

∂x

∣∣∣∣
y
+Γy ∂ρ

∂y

∣∣∣∣
x

. (4.25)

Using Eq. (4.22), it can be seen that the ρ derivatives, ∂ρ∂x

∣∣
y and ∂ρ

∂y

∣∣
x are simply a rescaling of

the ψ derivatives already in hand. In this section we derive the expressions of ∂χ/∂x)y and

∂χ/∂y)x analytically, starting from the orthogonality condition in the R −Z plane:

∇χ ·∇ψ= 0. (4.26)
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In the R −Z Cartesian basis, we write ∇ψ :(
∂χ
∂R
∂χ
∂Z

)
=

( ∂χ
∂x

∂x
∂R + ∂χ

∂y
∂y
∂R

∂χ
∂x

∂x
∂Z + ∂χ

∂y
∂y
∂Z

)
(4.27)

and ∇χ,

(
∂ψ
∂R
∂ψ
∂Z

)
=

( ∂ψ
∂x

∂x
∂R + ∂ψ

∂y
∂y
∂R

∂ψ
∂x

∂x
∂Z + ∂ψ

∂y
∂y
∂Z

)
(4.28)

from which we find that Eq. (4.26) is satisfied by{ ∂χ
∂x

∂x
∂R + ∂χ

∂y
∂y
∂R =−C (∂ψ∂x

∂x
∂Z + ∂ψ

∂y
∂y
∂Z )

∂χ
∂x

∂x
∂Z + ∂χ

∂y
∂y
∂Z =C (∂ψ∂x

∂x
∂R + ∂ψ

∂y
∂y
∂R ).

(4.29)

Solving the two equations in Eq. (4.29) for the two unknowns, ∂χ
∂x and ∂χ

∂y , leads us to the

required analytical expression,

∂χ

∂x

∣∣∣∣
y
=−Cρs

ak
(
∂ψ

∂ν
cos2ν−a

∂ψ

∂a
(k2 −1)cosνsinν+ ∂ψ

∂ν
k2 sin2ν) (4.30)

∂χ

∂y

∣∣∣∣
x
= Cρs

a∗k
(a
∂ψ

∂a
k2 cos2ν− ∂ψ

∂ν
(k2 −1)cosνsinν+a

∂ψ

∂a
sin2ν) (4.31)

from which we can compute Γχ using Eq. (4.24).

4.5 Magnetic field and simulation parameters

The magnetic field is developed in the same way to the circular simulations, that is based on

straight, current carrying wires of infinite length in addition to the plasma current assumed.

The wire pairs are introduced at different angles and radii to change the shape of the magnetic

field for a total of 2n wires. To achieve unbalanced configurations, a new parameter, λn , is

introduced to multiply the strength of the upper wire relative to the lower one.

The flux function in toroidal coordinate is therefore given by:

ψ(r,θ) = S log(r )+S
nwires∑

n=1

1

2
In

(
λn log(r 2 +a2

n −2r an sin(θ+θn))+ log(r 2 +a2
n +2r an sin(θ+θn))

)
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(4.32)

where S is a constant that sets the strength of the poloidal magnetic field relative to B0, In is

the ratio of the current flowing through the nth wire pair with respect to the current flowing

through the plasma, an is the distance from the magnetic axis to the nth wires and θn is the

angle between the pair of wires and the z axis.

The derivatives of the flux function are given by:

∂ψ
∂r = S

r +
nwires∑

n=1
SIn

(
λn

r−an sin(θ+θn )
a2

n+r 2−2an r sin(θ+θn )
+ r+an sin(θ+θn )

a2
n+r 2+2an r sin(θ+θn )

)
∂ψ
∂θ =

nwires∑
n=1

SInr an cos(θ+θn)
(
λn

−1
a2

n+r 2−2an r sin(θ+θn )
+ 1

a2
n+r 2+2an r sin(θ+θn )

) (4.33)

We consider three simulations with three different magnetic fields: LSN, balanced DN and

USN. In each case, the magnetic field has two X points. We use 6 wire pairs to form the

magnetic field. In the balanced case, these are at angles θn = 0,π/2,±π/4 and ±π/32 at

distances an = 4,3.7,3.7,3.7,3.7,3.7 with relative strengths In = 1.25,0.35,0.27,0.27,0.14,0.14,

λn = 1 for all n. The USN is the same except that λ1 = 1.1 and I1 is reduced to 1.1905 to keep

the total current constant. For the LSN we use the same wire configuration as the USN except

θ1 =π so that the lower rather than the upper wires carries the stronger current. We consider

S = 0.25 in all cases. The flux surfaces for the three configurations considered are shown in Fig.

4.7. The local q at the midplane in the interseparatrix region is approximately 5.

In the unbalanced configurations, the gap between the inner and outer separatrices is 23ρs0,

corresponding to approximately 1cm for typical tokamak parameters. This is somewhat less

than the range of ±4cm obtained experimentally [70], [16] but nevertheless allows sufficient

effect on the division of heat flux between the divertor legs to be observed.

For all simulations, the elongation of the domain is k = 1.4, the grid size is nx = 156,ny =
450 and nz = 80. Ly = 800ρs0, the same as the circular case, whilst Lx = xwall −xinner boundary =
137.5ρs0. The grid resolution is therefore ∆x = 0.881ρs0 and ∆y = 1.78ρs0. The resistivity is

ν= 1 for all three simulations and the rest of the parameters are the same as the circular case

(see Section 3.3).

4.6 Overview of the simulation results

Equilibrium profiles of pe , v∥e and φ are shown in Fig. 4.8. As for the circular simulations,

we see little plasma on the HFS outside the LCFS. In contrast to the circular simulation with

ν= 1.0, in the balanced DN simulation there is more plasma at the bottom than the top of the

closed flux region, and little in either the upper or lower private plasma. On the LFS, all three

simulations have very similar n̄(r ) profiles at the midplane. There is a single decay length

across the separatrix or separatrices of approximately 90ρs0, comparable to the outer decay
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Figure 4.6 – ψ surfaces for the LSN magnetic field, with the definitions of the magnetic field
parameters θn , an and In .

Figure 4.7 – LSN, balanced DN and USN magnetic fields.
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length for the ν= 1 simulation on the circular domain.

Whilst the electron pressure is considerably more up-down symmetric than the circular

case with ν= 1, up-down asymmetry in φ is clearly present, with a higher potential around

the upper X point compared to the lower X point. This is the case for all three magnetic

configurations. The electric potential is higher on the LFS than HFS, in particular around the

midplane, due to the higher n and Te there. In the LSN configuration, the electrical potential

peaks on the outer separatrix, whilst in the USN configuration, the peak is just outside the

secondary separatrix and there is also a high potential within the LCFS near the upper X point,

leading to a more complex structure, (see Fig. 4.8). Inside the LCFS, φ decreases, a pattern

also observed in GBS simulations with no inner boundary [33] and experimentally [84] [54].

This phenomenon has been theoretically explained when hot ions are present [101].

In Fig. 4.8 we see stronger parallel flow to the strike points associated with the primary X point

in the USN configuration compared to the LSN configuration. This is likely due to the high

plasma pressure in the ISR in the USN configuration, which arises because the E×B flow in the

ISR is in the direction from the upper to the lower X point, so turbulent plasma outflow from

the midplane is lost at the lower outer leg in the LSN configuration and distributed around the

ISR in the USN configuration. Hence the ISR is hotter in the USN configuration, resulting in

greater absolute v∥e .

The fluctuation level in n andφ at each point in the poloidal plane is quantified by the standard

deviation in the time and toroidal direction variation, shown in Fig. 4.9. The fluctuation pattern

in n is very similar to the circular case, with the highest fluctuation level on and just inside

the LCFS. In both elliptic and circular simulations, the relative size of the density fluctuations

in upper and lower private flux regions is comparable to the relative fluctuation level at the

midplane, with a higher fluctuation in both simulations in the upper compared to the lower

private flux region. In both cases, the absolute fluctuation level in the private plasma remains

much smaller than the absolute fluctuation level at the midplane because the density there is

much lower.

The highest fluctuation level in φ in the elliptic simulation is on the separatrix, whilst in

the circular domain simulation it is further into the open flux region. The absolute and

relative fluctuation levels in this region are similar in both simulations. In the elliptic domain

simulation, the fluctuation level is considerably lower in the private flux regions compared to

the circular simulation.

4.7 Distribution of heat flux between divertor legs

As mentioned in Sec. 4.1, one of the main reasons that the Double Null configuration is

interesting is its potential to spread the heat load between several strike points. Since a perfect

double null is rarely achieved in practice [73], it is critical to understand how the heat flux

sharing depends on the degree of magnetic inbalance, quantified by the distance between the
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Figure 4.8 – Time and toroidally averaged pe , v∥e and φ (left to right).
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Figure 4.9 – Local standard deviation of n (left) and φ (right) in the circular domain and
elliptic domain balanced double null simulations. The n fluctuation pattern is similar for
the two simulations, with the highest standard deviation on around the LCFS just above the
midplane, whilst in φ the highest fluctuation level in the circular simulation is outside the
LCFS in contrast to the elliptic simulation where it lies right on the LCFS.
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inner and outer separatrices. This problem is addressed in this section.

(a) LSN (b) balanced (c) USN

Figure 4.10 – Pie charts of the heat flux sharing.

To visualise the heat flux distribution, we divide the tokamak into four quadrants, bounded

by the y = 0,Ly /4,Ly /2 and 3Ly /4 surfaces. We integrate the parallel component of the heat

flux Γq = nTe v∥e over the section of the wall in each quadrant to identify where the heat is

being exhausted. The results are shown in Fig. 4.10. We see that most of the heat is lost on the

LFS with less than 10% going to each of the HFS legs. The heat load on the LFS is split almost

equally between the upper and lower legs, with a few percent more to the lower leg for the

balanced and LSN cases and a few percent more to the upper leg for the USN.

In Ref. [10] a model is introduced to describe the division of the heat flux between the upper

and lower LFS legs. The model assumes there is radial turbulent transport across the LCFS

around the outer midplane and plasma is lost to the wall by parallel flow, resulting in a single

heat flux decay length at the divertors. This divertor decay projects to a single pressure decay

length at the midplane. The heat exhausted at the divertor leg associated with the primary

X point is the radial integral of the heat flux from the inner separatrix (the LCFS) to the wall,

whilst the heat exhausted at the divertor leg associated with the secondary X point is the radial

integral of the heat flux from the secondary separatrix to the wall. If we assume that the only

cross-field transport is at the midplane, the remaining heat transported over the LCFS should

be exhausted at the HFS leg associated with the primary X point, however, Ref. [10] does not

find the corresponding logistic function a good fit for the in-out power sharing and instead fits

a Gaussian function. The 10% power measured at the in Ref. [10] is similar to what we observe

in our simulations.

Following this model, the heat fluxes to the upper outer and lower outer divertor legs are

expected to be equal in a balanced DN configuration and the fractional difference in the

heating power is given by

PLFS,l −PLFS,u

PLFS,l +PLFS,u
= tanh

(
−δRsep

2Lpe

)
(4.34)

64



Turbulence and flows in unbalanced double-null configurations Chapter 4

Figure 4.11 – Radial E ×B flux components: Γ̄ρE (left) and Γ̃ρE (right). The turbulent component
of the flux is more important than the mean field contribution in all three simulations.
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Figure 4.12 – Poloidal E×B flux components: Γ̄χE (left) and Γ̃χE (right). The turbulent component
of the flux is more important than the mean field contribution in the LFS common flux region,
whilst in the interseparatrix region the turbulent and equilibrium fluxes are comparable.
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Figure 4.13 – Left to right Γ̄ρ∗, Γ̄χ∗ and Γ̄∥. The turbulent components of the flux are much less
important than the mean field contribution in both ρ and χ directions so are not shown. The
radial component of the diamagnetic flux acts as a source of plasma to the ISR in the lower half
and a sink in the upper half. The stagnation point of Γ̄∥ in the ISR is below the outer midplane
in both the LSN and USN configurations.
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where l and u refer to the lower and upper divertors, δRsep is the distance between the two

separatrices at the midplane and Lpe is the pressure decay length at the outer midplane [10].

In our simulations, δRsep = 23,0,−23ρs0 for the USN, balanced DN and LSN configurations

respectively. Following the model in Ref. [10], we fit a single density decay length at the

midplane, which appears to be a good fit to the density decay in these simulations. The

pressure decay length is related to the density decay length by Lpe = Ln/(1+η) = 51ρs0 where

η= Ln/LTe ≈ 0.77 as described in Chapter 3. Substituting these numbers into Eq. 4.34 predicts

the fractional differences in the heat load as −0.22,0,0.22 whilst in the simulations we find

−0.18,−0.05,0.07. Hence, the fractional difference in the heat flux in our simulations is less

than expected from the model in Ref. [10]. In addition the heat flux to the upper and lower

LFS legs is not equal in the balanced DN configuration.

To understand why this difference arises, we consider the time and toroidally averaged par-

allel, diamagnetic and E ×B fluxes, which are plotted in the poloidal plane in the magnetic

coordinate (ρ−χ) directions in Figs. 4.11, 4.12 and 4.13. We note that the diamagnetic and

E ×B fluxes are not considered in the model in Ref. [10].

For the balanced case, as expected, we find the main fluxes are the turbulent E ×B flux across

the LCFS and the parallel flow to the wall. The stagnation point of the parallel flow lies close

to the outer midplane, and there is little E ×B flow across the midplane, however the up-

down symmetry is broken by the diamagnetic flux. Since Γ∗ = −b×∇pe c/(eB) goes in the

downwards direction for a pressure gradient mostly in the ∇R direction, as is the case on the

LFS, the diamagnetic flux acts as a sink of plasma in the upper half of the LFS domain and a

source in the lower half resulting in a greater heat flux to the lower leg, as shown in Fig. 4.10.

The difference in heating power to the upper and lower outer legs is consistent with an order

of magnitude estimate of the diamagnetic heat flux.

In the LSN and USN, the plasma dynamics are complicated by the existence of the intersep-

aratrix region, in which two competing flow effects that are not accounted for in the model

of Ref. [10] are at play. The first is that the stagnation point of v∥e is below the midplane in

the ISR for both LSN and USN simulations, so the parallel flow at the midplane goes upwards

in both cases. We observe the greatest divergence of the parallel heat flux in the part of the

ISR just below the midplane, particularly in the LSN configuration. In the LSN configuration,

the turbulent radial flow across the LCFS is also strongest here (see Fig. 4.11). In the USN,

the upwards parallel flow is exhausted on the upper LFS, whilst in the LSN it goes towards

the HFS lower leg. The second effect is the downwards equilibrium E ×B flow in the ISR,

resulting from the inwards electric field across the ISR (see Fig. 4.8). The inwards electric field

results because φ'ΛTe [49] and Te increases across the midplane from the wall towards the

second separatrix, whilst in the closed flux region φ< 0, implying a peak in φ near the second

separatrix an inwards electric field across the ISR, as observed in Fig. 4.8.

In the LSN configuration, the downwards E ×B flow across the y = Ly /2 surface is greater

than the parallel flow across this surface in the opposite direction, resulting in a greater heat
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flux to the lower leg. Conversely, in the USN configuration there remains a downwards E ×B

flow across the outer midplane, however it is less that the upwards parallel flow, resulting in

a greater heat flux to the upper leg. The weaker E ×B flow results from φ being less strongly

peaked on the outer separatrix than in the LSN configuration.

We observe a more equal heat flux sharing in the balanced DN and USN configurations than

in the LSN configuration, which is advantageous in terms of reducing the peak heat load to

the divertor plates. It is also interesting that the additional flow effects not included in the

model of Ref. [10] result in a more equal heat flux sharing in the unbalanced configurations,

again a desirable result.

In Refs. [70] and [16], a greater heat flux was measured on the lower LFS divertor leg than

the upper leg in a balanced configuration, as is also observed in our simulations. However,

the direction of the toroidal magnetic field is reversed in these experiments compared to our

simulations. In Ref. [70] the higher heat flux at the lower leg is interpreted in terms of the E ×B

flow. In their experiments, the E ×B flow went from the lower outer to lower inner leg, and

upper inner to upper outer leg, resulting in a higher particle flow at the upper outer compared

to the lower outer leg. Coupled with the assumption of constant pressure along field lines, this

leads to a higher temperature at the lower outer compared to the upper outer leg, leading to a

higher heat flux at the lower outer leg. In contrast, in our simulations, the E ×B drift across

the private flux regions is weak compared to the stronger drifts around the midplane, which

could explain the difference in our results.
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5 Summary and conclusions

In this work we leverage the recent upgrade to GBS to use geometric coordinates to make

significant progress towards first-principles predictions of plasma transport in SOL in DN mag-

netic configurations. In Chapter 2, the physical model, based on the drift-reduced Braginskii

equations, is present and its implementation in the GBS code described.

In Chapter 3 we present the results of a set of simulations in a balanced double null configura-

tion in which the resistivity and safety factor are varied. We explain the origins of the up-down

and LFS-HFS asymmetries. We focus on the density decay at the outer mid-plane, which we

find to have two decay lengths. We develop a model to predict the two density decay lengths

observed in the simulations. In the near SOL, we use an approach based on the saturation of

linear instabilities, whilst in the far SOL we consider blob transport. The final results reveal

the dependencies of the two scale lengths on the resistivity, safety factor and major radius.

In Chapter 4, we turn our attention to unbalanced double null configurations, used a further

code upgrade to use an elliptical coordinate system in the poloidal plane. This permits the

simulations of magnetic configurations with more realistic elongation. We focus on the heat

flux sharing between the four divertor legs, finding the more equal sharing in a balanced or

USN configuration compared to a LSN configuration. This result is explained in terms of the

E ×B , diamagnetic and parallel drifts.

One of the main advantages of a DN magnetic configurations that has not been considered in

this thesis is the possibility of increased radiative losses due to the presence of two X points

[73]. Future simulations including neutrals would therefore be greatly useful to decide if a DN

configuration is preferable to SN in terms of the heat load dissipation in the SOL.

In addition, simulating balanced and unbalanced double null configurations including the

core region, using the code upgrade presented in Ref. [33] could give important insights into

the interplay between turbulence in the edge and in the SOL. Finally, it has been shown that

the ion pressure can play an important role in the formation of E ×B shear near the LCFS

[101], so the inclusion of finite ion temperature would also be an interesting continuation of
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this work.
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