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Abstract
Machine Translation (MT) has made considerable progress in the past two decades, particularly
after the introduction of neural network models (NMT). During this time, the research community
has mostly focused on modeling and evaluating MT systems at the sentence level. MT models
learn to translate from large amounts of parallel sentences in different languages. The focus
on sentences brings a practical simplification for the task that favors efficiency but has the
disadvantage of missing relevant contextual information. Several studies showed that the negative
impact of this simplification is significant. One key point is that the discourse dependencies
among distant words are ignored, resulting in a lack of coherence and cohesion in the text.
The main objective of this thesis is to improve MT by including discourse-level constraints. In
particular, we focus on the translation of the entity mentions. We summarize our contributions in
four points. First, we define the evaluation process to assess entity translations (i.e., nouns and
pronouns) and propose an automatic metric to measure this phenomenon. Second, we perform a
proof-of-concept and analyze how effective it is to include entity coreference resolution (CR) in
translation. We conclude that CR significantly helps pronoun translation and boosts the whole
translation quality according to human judgment. Third, we focus on the discourse connections
at the sentence level. We propose enhancing the sequential model to infer long-term connections
by incorporating a ‘self-attention’ mechanism. This mechanism gives direct and selective access
to the context. Experiments in different language pairs show that our method outperforms various
baselines, and the analysis confirms that the model emphasizes a broader context and captures
syntactic-like structures. Fourth, we formulate the problem of document-level NMT and model
inter-sentential connections among words with a hierarchical attention mechanism. Experiments
on multiple data sets show significant improvement over two strong baselines and conclude that
the source and target sides’ contexts are mutually complementary. This set of results confirms
that discourse significantly enhances translation quality, verifying our main thesis objective.
Our secondary objective is to improve the CR task by modeling the underlying connections
among entities at the document-level. This task is particularly challenging for current neural
network models because it requires understanding and reasoning. First, we propose a method to
detect entity mentions from partially annotated data. We then proposed to model coreference
with a graph of entities encoded in a pre-trained language model as an internal structure. The
experiments show that these methods outperform various baselines. CR has the potential to help
MT and other text generation tasks by maintaining coherence between the entity mentions.

Keywords– Neural machine translation; NMT; coreference resolution; mention detection; document-
level translation; discourse phenomenon; pronoun translation
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Zusammenfassung
In der maschinellen Übersetzung (MÜ) wurden in den letzten zwei Jahrzehnten erhebliche
Fortschritte erzielt, insbesondere seit der Verwendung neuronaler Netzwerkmodelle (NNM). In
dieser Zeit konzentrierte sich die Forschungsgemeinschaft hauptsächlich auf die Modellierung
und Bewertung von MÜ-Systemen auf Satzebene. MÜ-Modelle lernen von großen Mengen
paralleler Sätze in verschiedenen Sprachen. Die Fokussierung auf Sätze bringt eine praktische
Vereinfachung mit sich, die zwar Effizienz fördert aber den Nachteil hat, dass relevante Kon-
textinformationen fehlen. Mehrere Studien haben gezeigt, dass die negativen Auswirkungen
dieser Vereinfachung erheblich sind. Ein elementarer Punkt ist, dass die Kontextabhängigkeiten
zwischen weiter entfernten Wörtern ignoriert werden, was zu einem Mangel an Kohärenz und
Zusammenhang im Text führt.
Das Hauptziel dieser Arbeit ist die Verbesserung der MÜ durch Einbeziehung von Einschränkun-
gen auf Dokumentebene. Insbesondere konzentrieren wir uns auf die Übersetzung von Entitäts-
erwähnungen. Wir fassen unsere Beiträge in vier Punkten zusammen. Zunächst definieren wir
den Bewertungsprozess zur Bewertung von Entitätsübersetzungen (d.h. Nomen und Pronomen)
und schlagen eine automatische Metrik vor, um dieses Phänomen zu quantifizieren. Zweitens
führen wir ein Proof-of-Concept durch und analysieren, wie effektiv es ist, Co-Reference Resolu-
tion (CR) von Entitäten in die Übersetzung einzubeziehen. Wir schließen daraus, dass CR die
Pronomenübersetzung erheblich unterstützt und die gesamte Übersetzungsqualität nach mensch-
lichen Maßstäben verbessert. Drittens konzentrieren wir uns auf die Kontextverbindungen auf
Satzebene. Wir schlagen vor, das sequentielle Modell zu verbessern um auf langfristige Verbin-
dungen zu schließen, indem ein ßelf-attentionMechanismus integriert wird. Dieser Mechanismus
ermöglicht den direkten und selektiven Zugriff auf den Kontext. Experimente in verschiedenen
Sprachpaaren zeigen, dass unsere Methode verschiedene Ausgangsergebnisse verbessert und
die Analyse bestätigt, dass das Modell einen breiteren Kontext betont und syntaktisch ähnliche
Strukturen erfasst. Viertens formulieren wir das Problem der NMT auf Dokumentebene und
modellieren Verbindungen zwischen Wörtern auf Satzebene mit einem hierarchischen ättention-
Mechanismus. Experimente mit mehreren Datensätzen zeigen eine signifikante Verbesserung
gegenüber zwei starken Ausgangsergebnissen und kommen zu dem Schluss, dass der Kontext der
Ausgangs- und Zielseite komplementär ist. Diese Ergebnisse bestätigen, dass der Kontexts die
Übersetzungsqualität erheblich verbessert und unser Hauptziel bestätigt.
Unser sekundäres Ziel ist die Verbesserung der CR-Aufgabe durch Modellierung der zugrunde
liegenden Verbindungen zwischen Entitäten auf Dokumentebene. Diese Aufgabe ist für aktuelle
neuronale Netzwerkmodelle besonders anspruchsvoll, da sie Verstehen und Argumentation
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des Dokuments erfordert. Zunächst schlagen wir eine Methode vor, um Erwähnungen von
Entitäten aus teilweise kommentierten Daten zu erkennen. Dann kann die Co-Referenz mit einem
Graph von Entitäten modelliert werdem, die in einem vorab trainierten Sprachmodell als interne
Struktur codiert sind. Experimente zeigen, dass diese Methoden verschiedene Ausgangsergebnisse
übertreffen. CR hat das Potenzial, MÜ und anderen Aufgaben bei der Texterzeugung zu helfen,
indem die Kohärenz zwischen den Entitätenerwähnungen aufrechterhalten wird.

Schlüsselwörter– Neuronale maschinelle Übersetzung; MÜ; Koreferenzauflösung; Erwähnung
der Erkennung; Übersetzung auf Dokumentebene; Diskursphänomen; Pronomenübersetzung
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Résumé
La traduction automatique (TA) a fait des progrès considérables au cours des deux dernières
décennies, en particulier après l’introduction des modèles de réseaux neuronaux (TAN). Pendant
ce temps, la communauté scientifique a principalement concentré ses efforts sur la modélisation
et l’évaluation de systèmes de TA à l’échelle de la phrase, c’est-à-dire de modèles qui apprennent
à traduire de grandes quantités de phrases en parallèle dans différentes langues. L’accent mis
sur les phrases permet une simplification pratique de la tâche qui améliore l’efficacité de la
TA mais présente l’inconvénient d’ignorer des informations contextuelles pertinentes. Plusieurs
études ont montré que l’impact négatif de cette simplification est significatif. Un point clé est la
négligence de la dépendance entre des mots distants dans le discours, ce qui entraîne un manque
de cohérence et de cohésion dans le texte.
L’objectif principal de cette thèse est d’améliorer la TA en incluant des contraintes au niveau
du discours. Nous nous concentrons en particulier sur la traduction des mentions d’entité. Nos
contributions peuvent être résumées en quatre points. Tout d’abord, nous définissons un processus
d’évaluation et une mesure de performance automatique pour les traductions d’entités (c’est-à-dire
noms et pronoms).
Deuxièmement, nous proposons une preuve de concept et analysons l’efficacité d’une traduction
qui inclut la résolution de la coréférence d’entité (RC). Nous concluons que la RC améliore la
qualité de la traduction en général, et celle des pronoms en particulier, selon le jugement humain.
Troisièmement, nous nous concentrons sur les connexions dans le discours au niveau de la phrase.
Nous proposons d’améliorer le modèle séquentiel pour déduire des connexions à long terme en
incorporant un mécanisme d’ "auto-attention" qui donne un accès direct et sélectif au contexte.
Des expériences dans différentes paires de langues montrent que notre méthode surpasse diverses
méthodes de référence, et l’analyse confirme que le modèle proposé met l’accent sur un contexte
plus large et capture des structures de type syntaxique.
Quatrièmement, nous formulons le problème de la TAN au niveau du document et modélisons les
connexions entre les mots dans différentes phrases avec un mécanisme d’attention hiérarchique.
Des expériences sur plusieurs ensembles de données montrent une amélioration significative par
rapport à deux solides méthodes de référence et nous en concluons que le contexte de la source
et de la cible sont complémentaires. Cet ensemble de résultats confirme que la prise en compte
du discours améliore considérablement la qualité de la traduction, vérifiant ainsi notre objectif
principal de thèse.
Notre objectif secondaire est d’améliorer la RC en modélisant les connexions sous-jacentes entre
les entités au niveau du document. Cette tâche est particulièrement difficile pour les modèles
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de réseaux de neurones actuels car elle nécessite un certain niveau de compréhension et de
raisonnement. Tout d’abord, nous proposons une méthode pour détecter les mentions d’entités à
partir de données partiellement annotées. Ensuite, nous proposons de modéliser la coréférence
avec un graphe d’entités encodées dans un modèle de langage pré-entraîné en tant que structure
interne. Les expériences montrent que ces méthodes surpassent diverses méthodes de référence.
La RC a le potentiel d’aider la TA et d’autres tâches de génération de textes en maintenant la
cohérence entre les mentions d’entité.

Mots clés– Traduction automatique neuronale ; TA; résolution de coréférence ; détection des
mentions ; traduction au niveau du document ; phénomène de discours ; traduction du pronom
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Chapter 1. Introduction

Machine Translation (MT) is the task of translating text from one natural language to another
automatically. Like any other natural language processing task, it presents several challenges.
First, there are numerous languages with a distinct alphabet, grammar, lexicon, and syntactic
structures. Second, it requires a correct interpretation and understanding of the source text, which
is especially difficult for machines. Third, there is not a unique correct answer, as there are
multiple ways to convey the same information. Fourth, natural language is ambiguous, and its
meaning depends on context (e.g., shared knowledge, environment, time), which sometimes is
not part of the system input. This last challenge is of particular interest for the present thesis.

MT is a decades-old problem (Weaver, 1955), and the approaches to solve it have changed
over time. We can group them in three main paradigms: Rule-based Machine Translation
(RBMT), Statistical Machine Translation (SMT), and Neural Machine Translation (NMT). RBMT
(Nirenburg, 1989) performs translations following a set of rules formulated by experts. These
rules are typically based on syntactical, semantic, and morphological knowledge, but they could
not be exhaustive enough to contain all natural-language phenomena. On the contrary, data-driven
methods are shown to be more robust and flexible to adapt to language. These methods exploit
parallel data in a source and target languages to extract translation patterns. SMT (Koehn, 2009),
is a data-driven approach that uses statistical methods to learn these translation patterns. In
particular, the phrase-based SMT model demonstrates to be relatively efficient and practical.
However, the quality of MT reached to the state-of-the-art with NMT (Cho et al., 2014a; Bahdanau
et al., 2015). NMT is also a data-driven approach based on neural networks. NMT achieved high
translation quality due to its ability to exploit a larger quantity of data. Despite these advantages,
data-driven MT has one significant limitation: they are defined at sentence-level, so contextual
information at the document-level is dismissed. In the present chapter, we describe in more detail
this problem, our objectives and motivations, and the main contributions of this thesis.

1.1 Problem Description

A document is a complete unit of text; thus, corpora for MT is usually created based on parallel
documents in a target and source languages (Resnik, 1998; Resnik and Smith, 2003; Koehn,
2005; Ziemski et al., 2016). Nevertheless, data-driven MT was defined since the beginning as the
translation of individual sentences (Brown et al., 1990) due to SMT decoders need smaller units
of text to be efficient. Therefore, sentence alignment became an active research field (Brown et al.,
1991) and the corpora were transformed into parallel sentences. Following MT models, including
NMT ones, continue approaching the translation problem at sentence-level. This tendency can
be seen in the main events organized by the MT research community. The first Workshop of
Machine Translation (WMT) (Koehn et al., 2005) aimed at encouraging data collection for MT,
where the parallel alignment was diverse: words, sentences, paragraphs, and documents. Later
WMT events aimed at creating MT models based mostly on the sentence-level parallel corpus, so
most of the MT research over the past years was under these conditions. Only recently, due to
the growing interest of the research community on expanding the context in MT, WMT starting
offering parallel data with document alignment annotation (Bojar et al., 2019) again.
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1.2. Motivation

The traditional focus on sentences of MT models brings a practical simplification for the task
that favors efficiency but also has the disadvantage of missing contextual information while
translating a document. This issue cannot be minimized, as MT is commonly used for translating
entire documents rather than individual sentences. One key point is that the dependencies among
distant words, related to discourse-level constraints, are being ignored. This practice often results
in a lack of coherence and cohesion in the translated text. Efforts to approach these important
issues started with SMT, the majority of them were focus on specific linguistic phenomena such
as: coreference and anaphora (Le Nagard and Koehn, 2010) particularly for pronoun translations
(Bojar et al., 2015; Guillou et al., 2016), lexical cohesion (Xiong et al., 2013a), word sense
disambiguation (Vickrey et al., 2005), topic adaptation (Ruiz and Federico, 2011), and discourse
connectives (Meyer and Popescu-Belis, 2012). The definition of SMT as a document-level task
(Xiao et al., 2011; Hardmeier et al., 2012) instead of sentence-level was an important change of
paradigm; however, systems were difficult to optimize. When NMT became the state-of-the-art
MT, there was yet no effort to use contextual information. Nevertheless, over time, the interest in
document-level NMT was growing, specialty because the sentence-level systems reached high
quality, so the issues of missing context were more evident and difficult to solve. The present
thesis attempts to solve this issue and advance MT towards a more complete and coherent text
translation by modeling the underlying coherent-structures at the document level.

1.2 Motivation

1.2.1 What aspects of discourse phenomena influence translation?

Discourse refers to the linguistic elements and constructions that give a coherent structure to the
text. It covers a variety of linguistic phenomena that potentially impact translation. Here, we
analyze three aspects to illustrate the problem.

Coreferences and anaphora

One main issue of sentence-level MT is the translations of coreferences and anaphora. Corefer-
ence occurs when two or more expressions in a text refer to the same entity (e.g., person, object).
We refer to entity expressions as mentions. Typically the first mention of an entity is fleshed out
(The president of the U.S.). Later mentions may be expressed with abbreviated descriptions (the
president) or pronouns (she). When two mentions are coreferential, the one in full form is called
antecedent, and the one in short form is called anaphor. Coreferent mentions may be situated in
different sentences, so translating individual sentences containing anaphora without antecedent
can cause ambiguity. The following example of English-to-French illustrates this issue:

Source (EN) : – it was small.

Target (FR) : – il/elle était petit.
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Here, the translation of the English pronoun it to French is ambiguous to either il or elle depending
on the gender of the antecedent object.

Source (EN) : – The left slipper remained stuck.
– it was small.

Target (FR) : – La pantoufle gauche est restée coincée.
– elle était petit.

In this example, the antecedent slipper is mentioned in a previous sentence; without this informa-
tion, the MT system can not translate it correctly.

Lexical cohesion

Another problem of the lack of document-level discourse in translation is the lexical cohesion.
Cohesion refers to the various linguistic means by which sentences are linked into higher text units.
Repetition, synonyms, collocations, and other devices to express relations between parts of text
produce cohesion. The impact of cohesion in translation is related to word sense disambiguation
and lexical choice. When a word has several senses, those can have different translations,
interpreting the correct sense depends on the context. The following example expresses this idea:

Source (EN) : – Still some bugs . . .

Target (FR) : – Encore quelques insects . . .

Here, the English word bugs have at least two different senses: insect or coding error. Each sense
is translated differently into French. Context is required to make the correct translation choice:

Source (EN) : – And the code?
– Still some bugs . . .

Target (FR) : – Et le code?
– Encore quelques bugs . . .

Coherence

Coherence is the semantic structure that interconnects sentences in a text. This process is defined
in terms of the reader experience and understanding. Incorrect translations like the ones observed
in previous examples not only express incorrect information to the reader for a particular sentence,
but they can also be a source of misunderstanding of the complete text. Here we show an example:
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Translation (EN) : – I bought a very nice set of plates. The next morning, my
game was broken. He hadn’t even taken it out of the box.

Reference (EN) : – I bought a very nice set of plates. The next morning, my set
was broken. I hadn’t even taken it out of the box.

Source (ES) : – Compré un juego de platos muy lindo. A la mañana sigu-
iente, mi juego estaba roto. Ni siquiera lo había sacado de
la caja.

When comparing the MT translation versus a human reference translation, we can see that the
translation errors on only two words create a complete sense of misunderstanding of the text.

1.2.2 How much discourse phenomena impact translation?

Quantifying the context’s impact in translation is difficult because the phenomena are not clearly
defined and depend on the text’s language, domain, form, and style. Different studies about
discourse in translation analytically portray the issues, as in the previous section. However, few
studies perform a quantitative analysis of the problem. They focus on a particular corpus and
measure some aspects of discourse to show if its effect is significant in translation. Li et al. (2014)
analyzes the discourse connectives and their senses in two corpora from Chinese and Arabic to
English. They use human-targeted translation error rate (HTER) (Snover et al., 2006) for their
analysis (i.e., a measure of edit distance with respect to a human translation reference). They
found that the effect of discourse connectives measure higher in Chinese-to-English than Arabic-
to-English, but in both cases, translation quality is adversely affected by translations of discourse
relations expressed implicitly in one of the languages. Scarton and Specia (2015) analyzes several
discourse phenomena in a corpus of English and French in both directions, using HTER. They
found that all evaluated discourse features have a high correlation with HTER, meaning that better
translation quality is associated with stronger discourse markers. More specifically, correlation
with pronouns, connectives, and elementary discourse units are statistically significant. Recent
studies suggest that NMT reached human parity in the case of English-to-Chinese (Hassan et al.,
2018). However, Läubli et al. (2018) shows that when changing the evaluation conditions from
evaluating single sentences to evaluating documents, the human judges changed their assessments
and strongly prefer human translation rather than MT translation. The fact that evaluators have
access to context makes evident the translation errors related to coherence, which were not visible
on single sentence evaluation.

1.3 Challenges

In the previous sections, we have shown that incorporating discourse and document-level context
has a huge potential to improve the translation. However, there exist several challenges, as
discussed in the following:
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Discourse phenomena is difficult to model Previously, we described some aspects of discourse
that affect translation, but those are not exhaustive. Research in this area has been active
for a while, but its effectiveness is limited. For example, the fact that text coherence
depends on the reader’s experience makes it difficult to model for an automatic system.
The underlying process is not clearly understood or self-contained in the text.

Evaluation of discourse phenomena is challenging Standard automatic metrics to evaluate
MT like BLEU score are not designed to assess this aspect. There is research on quality esti-
mation (QE) metrics (Scarton and Specia, 2015; Fonseca et al., 2019) to measure discourse
aspects. However, none has been adopted as standard. On the other hand, human evaluation
for translation has been designed at sentence-level. Although recently researches noted
the necessity to evaluate translation at document level (Läubli et al., 2018), the methods
are just starting to be defined and implemented (Bojar et al., 2019). Nevertheless, human
evaluation is expensive and non-flexible.

There is a trade-off between the quantity of context and efficiency Including as much con-
text as needed should improve the translation, but this comes at the cost of higher com-
putation and memory requirements. Recently, specialized hardware for neural networks
has reached a higher capacity. Hence, including broader contextual information is more
feasible now, but it is still limited.

Language understanding is required Current NMT models have a higher capacity to process
complicated patterns in the natural language. However, it is still not clear that reasoning
and text understanding can be achieved at the human-level. Moreover, document-level in-
formation does not necessarily contain all contextual knowledge required to understand the
text. Text comprehension usually demands previous world knowledge and environmental
context like place, time, objects, and people. This kind of information is not contained in
the document.

1.4 Objectives and Contributions

The main objective of this thesis is to improve the automatic translation of documents by including
discourse-level constraints. In particular, we focus on the translation of entity mentions, including
aspects of coreference/anaphora resolution, lexical cohesion, and coherence. We address this
problem in four stages: First, we define the evaluation process to assess entity translations (i.e.,
nouns and pronouns). Second, we performed a proof-of-concept and analyze how effective it
is to include coreference resolution in translation. This preliminary work is performed utilizing
SMT models, but the outcomes are applicable for NMT models as well. We concluded that
coreference resolution significantly helps the pronoun translation even though it is limited by the
coreference resolution models’ low performance. Thus, for the next stages, we implicitly model
discourse and inter-sentential connections in a generic manner. In the third stage, we focus on
the discourse connections at the sentence level. Commonly, sentences are modeled as sequences.
When generating text, each produced word is conditioned on the previously predicted information,
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which is contained in a vector with limited memory capacity. Thus, this modeling approach has a
bias for recent information and does not always capture the long-range dependencies between
words, e.g., those connecting antecedents and anaphors. We propose to enhance the sequential
model to be able to infer long-term connections. For this purpose, we incorporate a “self-attention”
mechanism. This mechanism gives direct and selective access to context. It helps the network
to focus on specific parts of the sentence useful to predict a particular word. In the fourth stage,
we expand the previously described idea to model connections among different sentences. We
formulate the problem of document-level NMT and model inter-sentential connections among
words with a hierarchical attention mechanism.

The secondary objective of this thesis is to improve the coreference resolution task. This task is
particularly challenging for current neural network models because it requires understanding and
reasoning. We propose to model coreferences with a graph of entities encoded in the language
model as an internal structure. We believe it has the potential to help MT and other NLP tasks
that involve text generation by maintaining coherence between the entity mentions.

In summary, the contributions of this thesis are the following:

i) We proposed a metric for automatic evaluation of the accuracy of pronoun translation
(APT) and show that it strongly correlates with the human scores. The correlation is
considerably higher than general-purpose metrics such as BLEU and METEOR, and other
similar metrics. It has been adapted to measure the accuracy of noun translation as well.

ii) We proposed two methods to evaluate the impact of coreference resolution in machine
translation: re-ranking and post-editing. Post-editing significantly ameliorate pronoun
translation; and human judges prefer post-edit translations over the baseline. We empirically
show that coreference resolution can improve translation quality.

iii) We proposed a novel decoder to model the underlying language structures at the sentence
level. The decoder uses self-attentive residual learning. The residual connections facili-
tate the flow of contextual information on the target language side and show consistent
improvement over an NMT baseline. The analysis of the self-attention confirms that it
emphasizes a broader context and captures syntactic-like structures.

iv) We proposed a hierarchical framework to model discourse in MT. The model captures
context and inter-sentence connections in a structured and dynamic manner. We show
significant improvement over two strong baselines on multiple data sets and conclude that
the source and target sides’ contextual information are complementary.

v) We model coreference resolution as a graph problem. The model is non-autoregressive, but
it refines the predictions iteratively. We improve the performance of this task in comparison
to various baselines.

Each chapter of this thesis is based on a publication. The contributions described here are
attributed to the thesis’ author. Co-authors of different publications provided insightful advice
and discussions but did not contribute directly to the work presented here.
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1.5 Thesis Outline

The present thesis is organized into nine chapters. Chapter 1 (current chapter) presents the
problem introduction, motivations, challenges, and thesis contributions. Chapter 2 contains the
technical background describing the SMT, and NMT approaches, relevant discourse phenomena,
our evaluation method, and datasets used for the experiments. Our work is divided into two parts:

Part I: Machine Translation This part contains our main work related to discourse phenomena
in translation. It is divided into four chapters:

Chapter 3 This chapter describes the definition of the accuracy of pronoun translation
(APT) metric. APT is a reference-based metric that works with word alignments. We
assess APT with a dataset from a workshop of pronoun translations. We compare the
Pearson and Spearman correlation of APT and other metrics with human judgment and
found that APT presents a higher correlation.

Chapter 4 This chapter shows how coreference can be useful for translation. We present
two alternatives to optimize translations based on coreference scores: re-raking and post-
editing. We evaluate our approaches in a Spanish-to-English dataset using APT. We also
perform a manual evaluation of the general translation quality. The post-editing approach
improves pronoun translation, and human judges prefer it over the baseline.

Chapter 5 This chapter presents our approach to model discourse phenomena at sentence-
level with a self-attention mechanism. First, we detail the state-of-the-art NMT baseline.
Then, we present our approach and our adaption of similar approaches to translation. The
experiments are performed in different language pairs, and we show that our methods
outperform all baselines. We present a result analysis explaining possible reasons.

Chapter 6 This chapter presents our approach to model discourse phenomena at the
document-level with a hierarchical attention network. We describe the state-of-the-art
NMT baseline and our approach. We experiment with three different datasets and present
improvements over the baselines. We perform evaluations of lexical cohesion, coherence,
and APT.

Part II: Entity Detection and Linking This part describes our complementary work related to
the particular discourse phenomena of entity linking.

Chapter 7 This chapter presents our approach for mentions detection. We present two
alternative methods for mention detection: sequence tagging model and span scoring model.
Afterwards, we define the problem of partially annotated data and present our solution. We
evaluate our methods for coreference resolution.

Chapter 8 This chapter presents our approach for coreference resolution. We proposed
to model coreference as a graph of entity mentions and links between them. A sequence-
to-graph model predict the coreference in an iterative manner. The experiments show
improvement over various baselines.

Finally, Chapter 9 contains the general thesis conclusions and possible future directions.
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This chapter provides a brief background on machine translation and specific aspects of discourse
phenomena that we deem relevant for this thesis. Additional background is given in the context of
the individual chapters. Although state-of-the-art machine translation approaches have constantly
changed during the development of this thesis, the task definition has not changed. Machine trans-
lation has two mayor approaches: statistical machine translation and neural machine translation.
In both cases, most of the advances have not considered discourse phenomena at document-level,
with important exceptions that are described here.

2.1 Statistical Machine Translation

Statistical machine translation (SMT) (Brown et al., 1990) exploits statistical properties of the
text to estimate its translation, in contrast to previous rule-based approaches that require expert
knowledge to determine the translation rules. The SMT models’ parameters are learned from
a corpus of parallel sentences in a given source and target languages. The main idea is to
estimate translations based on the frequency of word co-occurrences in the source and target
sentences. Intuitively, if two words in different languages co-occur with high frequency in several
corresponding parallel source-target sentences, they are presumed to be translations of each other.

Here, a sentence is represented as a sequence of words, more specifically, tokens (i.e., words
including punctuations, and special treatment for compound words), and the objective is to find
the most probable sequence of tokens Ŷ in the target language given a sequence of tokens in the
source language X :

Ŷ = argmax
Y

p(Y |X ) ≈ argmax
Y

p(X |Y )p(Y ) (2.1)

The translation is expressed as an optimization problem, but the search space increases expo-
nentially with the length of the sequence. Therefore, by applying Bayes Theorem, the problem
is divided into two parts: the translation model p(X |Y ), and the language model p(Y ). This
transformation permits the reduction of the search space by giving priority to explore only well-
formed sentences, i.e., sentences with higher probabilities according to the language model. In
practice, however, Equation 2.1 is replaced by the following equation using log linear models:

Ŷ = argmax
Y

exp(λ1 log(p(X |Y ))+λ2 log(p(Y )))

= argmax
Y

∑
i
λi fi (X ,Y ) (2.2)

where λi is the weight of function fi , called ‘feature’. Under this definition, it is possible to add
an arbitrary number of features to the model. Detailed descriptions of SMT models can be found
at (Koehn, 2009; Cancedda et al., 2009). Notice that Equation 2.1 is an special case of Equation
2.2 when weights are equal to one.

Research on SMT started in the late 1980s with the word-by-word translation model proposed by
IBM (Brown et al., 1990), establishing the foundations of SMT. However, this design makes a
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strong independence assumption by translating each word disregarding its context (i.e., surround-
ing words). Phrase-based translation model (Koehn et al., 2003) improved this issue by extending
the translation units from words to “phrases”. In this case, “phrases” refer to sequences of words
that frequently co-occur in a dataset of parallel sentences.

Although SMT was state-of-the-art for several years, neural machine translation showed to be
a more powerful approach (Bahdanau et al., 2015). One advantage is that the independence
assumption between phrases was removed using recurrent models’ ability to encode whole
sentences. Additionally, SMT models are generative and make assumptions of independence
between its components (e.g., translation model and language model). Thus, the joint optimization
of different feature components is problematic, limiting the overall accuracy. On the other hand,
neural machine translation models are discriminative and set the problem in an end-to-end fashion;
they directly optimize the target objective. Another advantage of NMT is that it incorporates
flexibility at translating language pairs with different grammatical order, a point at which SMT
struggles. A comparison between phrase-based SMT and NMT in terms of quality of translation
(Bentivogli et al., 2016), concludes that NMT generates fewer morphological, lexical, and word
order errors. For instance, in the latter case, it produces 70% fewer errors than SMT. In general,
neural networks have shown superior performance than other machine learning methods in
different NLP tasks, especially when large amounts of data are available.

2.2 Neural Machine Translation

Advances in specialized hardware (Dean et al., 2012) for deep learning and artificial neural
networks (Nielsen, 2015; Goodfellow et al., 2016; Aggarwal et al., 2018) make its application
to large scale tasks such as machine translation feasible. On the other hand, the later research
on machine translation helped deep-learning advance towards better architectures for sequence
modeling. The earliest attempts to use neural networks in machine translation were to estimate
different features used by SMT models. First, the frequency-based n-gram language model
(Jelinek, 1980) was replaced by a more accurate neural language model (Bengio et al., 2003;
Schwenk et al., 2006). Then, feed-forward neural networks were used to re-score the translation
probability of phrases (Devlin et al., 2014) though they required the phrases to have a fixed length.
This issue was addressed later on by using recurrent neural networks instead (Cho et al., 2014b).
Even though these approaches demonstrated to be effective at improving translation performance,
the most important contribution by far was the new paradigm of end-to-end neural machine
translation (NMT) (Forcada and Ñeco, 1997; Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014b; Liepins et al., 2017). Like SMT, the objective is to find the most probable
sequence in the target language Ŷ given a sequence in the source language X , but instead of
applying chain rule, NMT calculates the direct conditional distribution:

Ŷ = argmax
Y

p(Y |X ) (2.3)
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In the following sections, we describe the different concepts and elements needed to define NMT
that will be useful for developing the following chapters. First, we describe the mapping of
words into vector representations, followed by the sequential modeling for constructing sentence
representations, and finally, the sequence-to-sequence model setup for NMT. The descriptions
here aim to be generic, so specific NMT architectures are detailed in each corresponding chapter
according to their use.

2.2.1 Word Representation

Previously, we mentioned that in Natural language processing (NLP) sentences are commonly
represented as sequences of words. They result from a word segmentation process that can be,
among other algorithms, simple tokenization or a subword segmentation (Sennrich et al., 2016b).
A vocabulary V is created based on the word segments obtained from a given dataset. Then, each
word segment is encoded as one-hot vector wt i.e., a vector of size of the vocabulary length, with
zero values and a single one at the position i of the vocabulary corresponding to that particular
word segment. Given that the one-hot encoding requires a finite vocabulary, tokenization results
in omitting infrequent out-of-vocabulary (OOV) tokens. Subword segmentation (Sennrich et al.,
2016b) process alleviates this issue because the vocabulary is composed of subword units obtained
with an algorithm based on byte pair encoding (BPE), so OOV words can be represented through
those subunits. Finally, the word representation xt is obtained by projecting wt to a different
vector space of much smaller dimension:

xt = Ewt s.t E ∈ d ×|V |, d << |V | (2.4)

where E is called embedding matrix. In later models, the matrix embedding weights are tied with
the output layer (Pappas et al., 2018).

2.2.2 Sequence Modeling

Recurrent neural networks (RNNs) offer a principled way to manage sequences. They operate
over an input sequence of vectors x= (x1, ..., xt , .., xT ) where T is the sequence length, and t is
the time step-index. This network is referred to as recurrent because at a given step time t refers
back to a previous state at time t −1:

ht = f (ht−1, xt ,Θ) (2.5)

where h is the network’s hidden state, f is a non-linear function, and Θ are the parameters of the
network. It is important to note that RNNs share parameters across various time steps. The RNN
creates a directed cycle that allows the network to have a dynamic temporal behavior, so it can
manage variable sequence lengths.

Vanilla RNN The simplest network architecture of RNN is called vanilla RNN or sigmoidal
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RNN. Here, the hidden state at time t is defined as follow:

ht = tanh(Wh[ht−1, xt ]) (2.6)

where Wh ∈ dh ×(dh +dx ) is a matrix of parameters. In our notation, all parameter matrices
contain both weights and biases. dh and dx are the dimensions of the hidden state and
input vector respectively. The brackets indicate matrix concatenation. The hyperbolic
tangent function tanh is commonly used in RNN’s, but other popular non-linear functions
are sigmoid σ, and rectified linear unit RELU (Glorot et al., 2011).

RNNs suffer from the vanishing gradient problem (Pascanu et al., 2013). During the
backward pass, neurons in early time steps are updated with smaller gradients than neurons
in later time steps. This issue ultimately leads to having very small or even zero gradients
with longer sequences. That means that RNNs have limited learning and memory capacity
over time steps. Long short term memory networks were proposed to overcome this
problem.

Long short term memory Long short term memory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) are RNNs with a specialized memory vector ct and gates to control the
reading and writing process over it. The input gate it filters useful information from the
current time-step input into the memory; the forget gate ft filters out information from the
previous memory state; and the output gate ot serves to select relevant information for the
current time step emission. First, the gates are calculated based on the current input and
previous hidden states:

it =σ(Wi [ct−1,ht−1, xt ]) (2.7)

ot =σ(Wo[ct−1,ht−1, xt ]) (2.8)

ft =σ(W f [ct−1,ht−1, xt ]) (2.9)

Then, the memory ct , and recurrent hidden state ht are updated as follows:

ĉt = tanh(Wc [ht−1, xt ]) (2.10)

ct = ft ¯ ct−1 + it ¯ ĉt (2.11)

ht = ot ¯ tanhct (2.12)

LSTMs are the state-of-the-art models for sequence. However, they require more hardware
resources i.e., memory and processing power than a vanilla RNN. This issue escalates with
the number of stacked layers limiting the practical implementation of very deep LSTM
networks. Some studies proposed modifications of LSTM to make them less resource
consuming. A popular one is the gated recurrent unit.

Gated recurrent unit (GRU) This is a variant of the LSTM introduced by (Cho et al., 2014b).
It simplifies the recurrent layer to make it more efficient. It uses an update gate ut to
control the input and output information in the current time step, and a reset gate rt to filter

13



Chapter 2. Background

out information from previous time steps. They are defined as follows:

ut =σ(Wu[ht−1, xt ]) (2.13)

rt =σ(W f [ht−1, xt ]) (2.14)

The memory is included directly into the hidden state as follows:

ĥt = tanh(Wc [rt ¯ht−1, xt ]) (2.15)

ht = (1−ut )¯ht−1 +ut ĥt (2.16)

For a while, GRU based networks were a feasible alternative to LSTMs. Later on, an
empirically better modeling approach, the transformer networks (Vaswani et al., 2017),
was proposed.

Bidirectional RNN The sequential modeling approaches presented so far follows a temporal
direction exploiting only information from the past. Nevertheless, it is possible to utilize
information from future as well. The objective is to represent each time step input with the
complete contextual information. The directed cycle of RNNs runs from left-to-right, so
by including a second cycle from right-to-left we get a bidirectional RNN (Schuster and
Paliwal, 1997). The bidirectional RNN architecture is composed of a forward

−→
h t and a

backward
←−
h t hidden states. At the end, this two vectors are concatenated to obtain a final

hidden state representation as follows:

−→
h t = f (

−→
h t−1, xt ,

−→
Θ ) (2.17)

←−
h t = f (

←−
h t+1, xt ,

←−
Θ ) (2.18)

ht = [
−→
h t ,

←−
h t ] (2.19)

Attention and Transformer Alternatively to the RNN based models discussed earlier based
on RNN, self-attentive models capture past or future time step representations with an
attention mechanism. The attention mechanism calculates a weighted sum of a set of
vectors h as:

ct =
∑

i
αt

i hi (2.20)

αt
i =

exp( f (ht ,hi ))∑
j exp( f (ht ,h j ))

(2.21)

where f is a scoring function. This mechanism is used in different architectures to model
sequences as explained in Chapter 5. More recently, the transformer (Vaswani et al., 2017)
architecture was proposed which is completely based on attention mechanism to model the
sequence. This is explained in detail on Chapter 6.
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2.2. Neural Machine Translation

2.2.3 Sequence-to-Sequence Model

The sequence-to-sequence model represents a conditional distribution of emitting a sequence
given another p(Y |X ). It is typically modeled with an encoder-decoder architecture. The encoder
builds representations of the source sequence by projecting the input vectors in context into a
continuous space. The decoder then uses those representations as input to project them into the
target language vector space. In autoregressive decoding, the output probability of a token in the
target language is computed using chain rule:

p(Y |X ) =
T∏

t=0
p(yt |y0, ..., yt−1; X ) (2.22)

Note that there is research on non-autoregressive decoding (Gu et al., 2018) as well, where the
whole output sequence is estimated at once. However, this is beyond the scope of the present
thesis.

The initial models applied for machine translation (Sutskever et al., 2014; Cho et al., 2014b),
used RNNs for the encoder and decoder. The encoder emits an output cT only in the last time
step of the sequence, it can be at the last layer as (Cho et al., 2014b) or at each layer as (Sutskever
et al., 2014). This output cT can be understood as the vector representation of the source sentence
in a continuous space, where the assumption is that “similar” sentences are close to each other.
Based on this representation, the decoder generates a sequence of tokens in the target language as
follows:

p(yt |y1, ...yt−1, X ) = g (ht ,cT ) s.t . ht = f (ht−1, yt−1,cT ) (2.23)

where ht is the hidden state of the decoder at time t , g is a nonlinear function that outputs the
probability of yt , and f is a sequence model. Figure 2.1 shows a basic sequence-to-sequence
architecture. One drawback of this model is that while short sentences can be represented in a
vector successfully, longer ones may not because the performance of translation degrades with
the length of the sentences due to the recency bias of RNNs (Pouget-Abadie et al., 2014).

To avoid the degradation of the translation of long sentences, Bahdanau et al. (2015) introduced an
attention mechanism as alignment function between encoder and decoder, allowing the decoder
to select at each step which part of the source sentence is more useful to predict the next output
symbol. Therefore, instead of a unique sentence representation, the output depends on a context
vector ct that changes at each time step. Equation 2.23 is modified as follows:

p(yt |y1, ...yt−1,ct ) = g (ht ,ct ); s.t ht = f (ht−1, yt−1,ct ) (2.24)

Figure 2.2 shows a sequence-to-sequence with attention architecture

Note that, here, we are concerned only on supervised learning models given that data is available
for our purposes, though significant research has been developed on unsupervised NMT (Lample
et al., 2017; Artetxe et al., 2018). In the same manner, we describe the models assuming to
have only a pair of source-target languages. Nevertheless, there is an interesting development
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Chapter 2. Background

Figure 2.1 – Encoder-Decoder architecture for NMT. Image taken from (Merity, 2016)

Figure 2.2 – Encoder-Decoder with attention architecture for NMT, Image taken from (Merity,
2016)

on multilingual NMT (Johnson et al., 2017; Blackwood et al., 2018) that generalizes the models
or some components among different languages, allowing to improve the translation for low
resource languages and zero-shot translation.

The machine translation problem that concerns this thesis is that sentences in a text are treated
independently, and discourse phenomena are ignored. This problem was pointed out by several
scholars (Nakaiwa and Ikehara, 1995; Hardmeier, 2014; Scarton and Specia, 2015) since SMT,
and different studies show that omitting discourse phenomena results in lack of lexical cohesion,
terminological inconsistency, and sometimes poor word choices (Scarton and Specia, 2015;
Läubli et al., 2018).

2.3 Discourse phenomena

Discourse phenomena refer to the linguistic elements and constructions that give a coherent
structure to the text. These constructions cross sentence boundaries and are often complex, subtle,
and subjective, making it challenging to analyze. Here, we focus on three aspects of discourse
relevant for translation: coherence, cohesion, and the particular case of coreferences.
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2.3. Discourse phenomena

2.3.1 Structure and coherence

In linguistics, coherence is defined as the semantic structure that unifies and interconnects
sentences in a text (Bussmann, 2006). It is formed through the interpretations of each sentence
in relation to the context, so it involves the reader’s mental process and knowledge. Several
computational linguistics theories aim to model and interpret coherence in a systematic manner.
In particular, the rhetorical structure theory (RST) (Mann and Thompson, 1988) addresses text as
rhetoric relations between spans and explains coherence as a hierarchical connected structure that
can be modeled in a tree structure. Based on this, discourse parsing (Marcu, 1996, 1997) task
was proposed, and later on, shallow discourse parsing (Miltsakaki et al., 2004; Xue et al., 2015).
Discourse parsing aims at predicting a tree or graph structure of discourse connections from the
text, while shallow discourse parsing predicts relations between pair of sentences independently
of other sentences.

Document-level machine translation presents an integrated solution for modeling the discourse
structure. Hardmeier et al. (2013) proposed a statistical document-level decoder based on phrase-
based MT. It employs a local search approach that scores the translation of an entire document at
any time. The optimization is made with a hill-climbing strategy. The document represents a
sequence of sentences and a sentence as a sequence of anchored phrases. The initialization is
made with a phrase-based MT. At each step, anchored phrases are modified, and the document
score is recalculated.

2.3.2 Lexical Cohesion

Cohesion refers to the various linguistics means e.g., grammatical, lexical, phonological, by
which sentences are linked into higher text units. Cohesion is produced by 1. the repetition of
elements in a text 2. the compacting of the text by relying on context (e.g ellipsis) 3. and linguistic
devices to express relations between parts of text (e.g. tense, aspect) (Bussmann, 2006).

In particular, lexical cohesion has been extensively studied to improve SMT (Mascarell, 2017a).
One way to do it is by enforcing topic adaptation, for example, with Latent Semantic Analysis
(LSA) or Latent Dirichlet Allocation (LDA), either in the language model (Woosung Kim and
Khudanpur, 2004; Ruiz and Federico, 2011), in the word alignment (Zhao and Xing, 2008), or in
the phase table (Tam et al., 2007; Gong et al., 2010; Hasler et al., 2014). Another way is directly
modeling lexical changes in document-level SMT (Xiong et al., 2013a,b).

2.3.3 Coreference Resolution

Coreference resolution is the task of grouping together the expressions that refer to the same entity
in a text. This task includes two stages: mention identification and coreference resolution. The
first stage is usually based on part-of-speech annotation and named-entity recognition. Candidate
mentions are usually noun phrases, pronouns, and named entities (Lee et al., 2011). Coreference
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Chapter 2. Background

resolvers follow three main approaches: pair-wise, re-ranking, and clustering. Pair-wise resolvers
perform a binary classification, predicting if two mentions refer to the same entity or not. It
assumes strong independence of mentions and does not utilize features of the entire entity
(Bengtson and Roth, 2008). The second approach lists a set of candidate antecedents for each
mention that are simultaneously considered to find the best match. Interpolation between the best
and worse candidate is considered (Wiseman et al., 2015; Bengtson and Roth, 2008). Finally, the
clustering approach considers the features of a complete cluster of mentions to decide whether a
mention belongs or not to a cluster (Clark and Manning, 2015; Fernandes et al., 2012).

The interest on using coreference systems to improve translation emerged while ago (Le Nagard
and Koehn, 2010; Hardmeier and Federico, 2010; Guillou, 2012). The limited accuracy of
coreference resolution may explain its restricted use in MT, although, it is well known that some
pronouns require knowledge of the antecedent for correct translation. For instance, Le Nagard and
Koehn (2010) trained an English-French translation model where some English pronouns were
manually annotated with the gender of their antecedent on the target side. The system translates
well 70% of these pronouns, but it did not beat the baseline MT. A model for MT decoding
proposed by Luong and Popescu-Belis (2016) used in a probabilistic way several features of the
antecedent candidates (e.g., gender, number and humanness values), and demonstrated some
improvement in pronouns. Two shared tasks on pronoun-focused translation have been organized
(Bojar et al., 2015; Guillou et al., 2016). The results show only marginal improvement of pronoun
translation with respect to a baseline SMT system. The best performing systems employed deep
neural networks: Luotolahti et al. (2016) and Dabre et al. (2016) summarizing the preceding and
following contexts of the pronoun to predict it.

2.4 Evaluation

In this section, we describe automatic evaluation metrics for machine translation and discourse
phenomena. Automatic evaluation is more accessible and significantly less costly than human
evaluation. However, it is sometimes less precise and extensive. Whenever possible, we have
performed a human evaluation to measure the specific objectives of our approaches. They are
described in each of the corresponding chapters.

2.4.1 Machine Translation

Automatic metrics for MT compare the translation hypothesis with one or more human reference
translations. If the hypothesis is closer to the human references, it is assumed to be a better
translation. Here we describe the main ones.

BLEU score (Papineni et al., 2002) is the standard metric for MT. It compares hypothesis and
reference translations by counting n-grams, with n typically from 1 to 4. This yields the
calculation of n-gram precision scores for each n, and the final value is the average loga-

18



2.4. Evaluation

rithm of those scores. The average logarithm is employed because there is an exponential
decay with increasing n. The recall is not considered, but shorter sentences are penalized.
An alternative version of BLEU is NIST (Doddington, 2002) that instead implements an
arithmetic average, and weights the n-grams according to the frequency of use in general
language. A more recent implementation is SacreBLEU (Post, 2018), which standardizes
tokenization and normalization schemes to enable stable output scores. BLEU score has
several issues, some of them technical (Banerjee and Lavie, 2005; Callison-Burch et al.,
2006), e.g., if the precision for one n is zero, then the whole score becomes zero. It is also
incomplete because it does not calculate recall, and it has no sense of word order. Other
issues are methodological (Callison-Burch et al., 2006), exposing the limitations of the
BLEU score to correlate with human judgments.

METEOR (Banerjee and Lavie, 2005) was proposed to deal with some weaknesses of the BLEU
score. In this case, the comparison between hypothesis and references is made applying
unigram matching with word-alignments. Here, precision and recall are calculated, and
there is a sense of word order. Moreover, it supports non-exact matching when language-
specific resources are available (e.g., stem, Wordnet synonyms, paraphrase table).

Other metrics There has been extensive research on automatic metrics for machine translation
(Ma et al., 2019). Some approaches are based on edit distance such as the translation edit
rate (TER) from (Snover et al., 2006) or CDER from (Leusch et al., 2006) that edit blocks
of words, and the extended edit distance (EDD) from (Stanchev et al., 2019). Other idea is
to use character n-grams (Popović, 2015; Wang et al., 2016b). More recently, metrics are
trained with neural networks to find the best combination of features i.e. word n-grams,
character n-grams, etc. e.g. BEER (Stanojević and Sima’an, 2015) and BLEURT (Sellam
et al., 2020). Although these metrics show a higher correlation with human judgment than
BLEU, the differences are not significant enough to drop the standard metric, and the fact
that researchers have reported the BLEU score for several years perpetuates its utilization
for backward comparison.

Test suites Test suites are an alternative way for evaluating translation. In general, they are
design to evaluate particular aspects of translation such as discourse. In recent years, the
organizers of WMT (Barrault et al., 2019) compile different test suites to evaluate aspects
such as document-level translation, gender bias, and domain agreement.

A critical limitation of reference-based metrics is that it is assumed to be wrong if the hypothesis
is different from the reference. However, this is not always true because different expressions can
transmit the same information. Another limitation is that human effort is required to produce the
references, and one can not estimate the quality of translation without a reference. Therefore,
researchers have work on Quality Estimation (QE) metrics (Scarton and Specia, 2015; Fonseca
et al., 2019) whose objective is to measure translation quality without a human reference and
several of them focus on discourse phenomena.
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2.4.2 Coreference Resolution

Coreference resolution is typically evaluated in comparison with a gold-standard annotation
(Popescu-Belis, 1999; Recasens and Hovy, 2011). The main metrics used for evaluation are:
(i) MUC (Vilain et al., 1995), which counts the minimum number of links between mentions to be
inserted or deleted in order to map the evaluated document to the gold-standard. (ii) B3 measure
(Bagga and Baldwin, 1998) computes precision and recall for all mentions of a document, while
(iii) CEAF (Luo, 2005) computes them at the entity level. (iv) BLANC (Recasens and Hovy,
2011) makes use of the Rand Index, an algorithm for the evaluation of clustering. These metrics
are implemented in the scorer for CoNLL 2012 (Pradhan et al., 2014) and the SemEval 2013 one
(Màrquez et al., 2013).

2.5 Datasets

NLP community has produced standardized datasets for established tasks such as machine
translation and coreference resolution. They are functional in comparing different systems under
similar experimental conditions. In this section, we describe the data sources we used for our
experiments.

2.5.1 Machine Translation

Datasets for MT consist of parallel sentences on two or more languages, and the test-sets can
have more than one human reference to compare. However, multi-parallel datasets are few, and
if not mentioned otherwise, the data we use is bilingual with one single human reference for
evaluation. We obtain data for our experiments from the following sources:

WMT The Conference on Machine Translation previously called Workshop on Machine Trans-
lation (WMT) 1, started in 2005 intending to build multilingual parallel text (Koehn et al.,
2005). Until now, this is the most commonly utilized dataset to build and evaluate machine
translation models (Bojar et al., 2019). Each year the datasets increase, and different
domains are evaluated. However, we only use data from the news translation task. The
testing and development sets are created from a sample of online newspapers, while data
for training includes different sources such as: (a) Europarl (Koehn, 2005) corpus extracted
from the proceedings of the European Parliament which includes different European lan-
guages, (b) Common Crawl 2 corpus crawled from web pages, (c) News Commentary 3

(Tiedemann, 2012) corpus with political and economic commentary crawled from the web
site Project Syndicate, (d) UN Parallel Corpus (Ziemski et al., 2016) composed of official
records and other parliamentary documents of the United Nations, and some others. Since

1http://www.statmt.org/
2https://commoncrawl.org
3http://www.casmacat.eu/corpus/news-commentary.html
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2.5. Datasets

2019, WMT (Barrault et al., 2019) offers datasets marked at the document-level for some
language pairs such as English-German and English-Czech.

IWSLT The evaluation campaign of the International Workshop on Spoken Language Transla-
tion (IWSLT) built a variety of multilingual speech corpora. In particular, we have used
the TED and TEDx Talks corpus from 2014 (Cettolo et al., 2014), and 2015 (Cettolo et al.,
2015) campaigns. The organizers provide train, development, and test sets.

Subtitles Additionally, we worked with movies and TV programs’ subtitles. The Chinese-
English subtitles corpus 4 is a compilation of TV program subtitles designed for research
on context by (Wang et al., 2018b). The authors proposed splits for testing, development,
and training; contrary to other sets, it has three reference translations for evaluation.
OpenSubtitles2018 5 (Lison and Tiedemann, 2016) offers a set of movie subtitles in
a variety of languages. However, it is an open corpus, so standard splits for testing,
development, and training are not available.

Specific datasets’ versions, splits, language, and statistics are described in the corresponding
chapter.

2.5.2 Coreference Resolution

Initial datasets for coreference resolution are composed of text documents with annotations of
entity clusters, while newer sets have shorter texts and focus only on pair-wise coreference links.
In this thesis, we have worked with the English part of the traditional CoNLL 2012 set.

CoNLL 2012 The shared task of the Conference on Computational Natural Language Learning
(CoNLL) 2012 (Pradhan et al., 2012) focused on coreference resolution. The organizers
built standard test, development, and training sets of the OntoNotes corpus (Hovy et al.,
2006; Marcus et al., 2011), which contains newswire data in English, Arabic, and Chinese.
Each text document has word-level annotations of part-of-speech, parsing, lemma, word
sense, entity name, and speaker; also, document-level annotations for mentions and entity
clusters, without considering singleton mentions. The English set has 2802 documents for
training, 343 for development, and 348 for testing.

4https://github.com/longyuewangdcu/tvsub
5http://www.opensubtitles.org
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3 Measuring Accuracy of Pronoun
Translation (APT)

This chapter is based on the following paper:

Miculicich Werlen, L. and Popescu-Belis, A. (2017b). Validation of an automatic
metric for the accuracy of pronoun translation (APT). In Proceedings of the Third
Workshop on Discourse in Machine Translation, pages 17–25, Copenhagen, Den-
mark. Association for Computational Linguistics
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Chapter 3. Measuring Accuracy of Pronoun Translation (APT)

3.1 Introduction

One of the first steps to include discourse in machine translation is to define an evaluation
method. A substantial amount of research has been conducted on the analysis and evaluation
of different discourse aspects in translation, but in particular, we are interested in the pronoun
translation. This problem has attracted interest of the research community (Hardmeier, 2014;
Guillou, 2016), leading to the organization of three shared tasks on the Discourse in Machine
Translation (DiscoMT) workshops at 2015 (Hardmeier et al., 2015), 2016 (Guillou et al., 2016),
and 2017 (Loáiciga et al., 2017).

Evaluating pronoun translation is challenging due to the interplay between pronouns and an-
tecedents, especially for pro-drop languages (Nakaiwa and Ikehara, 1995) and for the existence of
non-referential pronouns. Besides, correct translations often require non-local information, which
is a limitation for sentence-level machine translation. It is common to resort to human evaluation,
but this type of evaluation comes at a high cost, and in principle, it does not allow repeated
evaluations with new candidate sentences. On the other hand, it is considered that automatic
evaluation based on reference translations is too restrictive because the amount of legitimate
variation is too high. For instance, a particular pronoun can have different valid translations
depending on the context or can even be omitted if the target language’s grammatical rules allow
it. General automatic metrics like BLEU score or METEOR are not sensitive enough to capture
improvement in a particular set of POS markers, such as pronouns.

This chapter shows that a simple reference-based metric that estimates the accuracy of pronoun
translation (APT) reaches a high correlation with human judgment of quality. The metric includes
frequent variations of the pronoun translation obtained from statistics of source-target pronoun
occurrences in a parallel corpus. The definition of metric is generic for any set of words in any
language pair, but in this work, we define and assess the pronoun translation of English-French
using the data from DiscoMT 2015 shared task. This task targets the translation of third-person
English pronouns it and they into French. These pronouns have many possible translations,
depending on the referential status of each occurrence, and on the gender and number of its
antecedent. The metric compares the candidate translation of each occurrence of it and they with
the reference one. This operation requires a precise alignment of pronouns between these texts.
The metric counts the number of identical, equivalent, or different translations in the candidate
vs. the reference, and cases when one of the translations is absent or cannot be identified. Several
combinations of counts are considered – the most straightforward one gives credit for identical
matches and discards all other ones.

Our contributions are the following:

(i) We proposed a metric for automatic evaluation of the accuracy of pronoun translation APT.

(ii) We show that the APT scores correlate strongly with the human scores (0.993–0.999
Pearson and 1.000 Spearman rank correlation), which is considerably higher than general-
purpose metrics such as BLEU and METEOR, and other similar metrics.
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The rest of the chapter is organized as follows. We present the related work in Section 3.2.
In Section 3.3, we define the APT metric, including the alignment procedure and the scoring
method. Then, we present the dataset used to validate APT, along with the other metrics and
the correlation measures in Section 3.4. Finally, we present the results showing that APT has a
higher correlation with human judgment than the other existing metrics in Section 3.5, and our
conclusions in Section 3.6.

3.2 Related Work

Initial evaluations for pronoun translation were done by manual inspection. For example, Le Na-
gard and Koehn (2010) chooses at random a subsample of sentences with occurrences of particular
pronouns and reports percentages of correct translations. In order to improve the evaluation
efficiency, the DiscoMT 2015 shared task on pronoun translation (Hardmeier et al., 2015) created
a test suit 1 exclusively to evaluate pronouns from English to French, and compared the candidate
translations of different systems with the options deemed correct by human judges previously, so
the judges did not see those candidates. The organizers report on a series of metrics, including
AutoR, AutoP, and AutoF1 proposed by Hardmeier and Federico (2010). These metrics refer to
the recall, precision, and F1 score, respectively, compared to a reference translation. The intuition
for using them was that word alignments are not one-to-one so that each pronoun can be linked to
multiple elements in the target language. However, Guillou and Hardmeier (2018) later reported
that a close examination of this assumption did not show valid samples to support it. We use
this metric as a baseline for comparison and describe it in more detail in Section 3.4.2. Later
workshops (Guillou et al., 2016; Loáiciga et al., 2017) included additional language pairs for
testing i.e., German and Spanish versus English in both directions. They continue reporting on
the same automatic metrics, just varying macro-averaged F1 to micro-averaged F1.

After the publication of the present work (Miculicich Werlen and Popescu-Belis, 2017b), addi-
tional test suite were created to evaluate particularly challenging cases. Isabelle et al. (2017)
proposed a suite of 108 sentences for English-to-French to measure different linguistic aspects,
including pronoun translation. Bawden et al. (2018) proposed a contrastive suite from Englis-to-
French to evaluate coreference, coherence, and cohesion. A contrastive translation is a translation
variant where the correct pronoun is swapped with an incorrect one. Following this line of work,
Müller et al. (2018) presented a more extensive test suite of contrastive translations explicitly
focused on the translation of pronouns from English-to-German. Compared to automatic metrics,
test suites are more accurate at evaluating particular challenging cases where state-of-the-art
machine translation fails, as found in (Guillou and Hardmeier, 2018), so wherever possible, they
recommend employing them. Nevertheless, the test suites are still limited to a few language pairs.

1This test suite was published on (Guillou and Hardmeier, 2016)
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3.3 Definition of the APT Metric

In this section, we describe in detail our proposed APT metric. First, we define the used
terminology and give an overview of the approach. Then, we explain the pronoun alignments for
the triples source-reference-candidate, the scoring process, and finally, the treatment of non-exact
matching pronouns.

3.3.1 Terminology

To clarify our terminology, we distinguish referential pronouns from non-referential ones, which
are also called pleonastic or impersonal. Referential pronouns are also called anaphoric, as
they point back to a previous item in the discourse, typically but not necessarily a noun phrase,
which is called their antecedent. An anaphoric pronoun and its antecedent refer to the same
(discourse) entity and are therefore coreferent. Guillou (2016) argues that a correct translation
of pronouns when several options are plausible (i.e., in the case of translation divergences)
requires the identification of their function and antecedent (if they are referential). Pronoun and
antecedent usually agree in gender and number. The automatic identification of the antecedent of
a referential pronoun is called anaphora resolution (Mitkov, 2002).

3.3.2 Overview of the Approach

The APT metric relies on a referential human-translation. It compares a candidate translation
(i.e., produced by the MT system) with the human reference to compute the evaluation scores. It
uses both source and reference pronouns to consider equivalent and dropped pronouns as valid
translation alternatives. This process is performed as follows: Given a word-level alignment of
the source, reference, and candidate translations, APT first identifies triples of pronouns: (source
pronoun, reference pronoun, candidate pronoun). It then compares each candidate against the
corresponding reference, assuming that a pronoun is well translated when it is identical to the
reference. (This assumption is validated below by comparing APT scores with human ones,
averaged over multiple instances.) Partial matches defined using equivalence classes can also
contribute to the score, but these classes depend on the target language and must be defined a
priori.

‘Equivalent’ pronouns are those that can be exchanged in most contexts without affecting the
meaning of the sentence. For example in Italian, the formal use of the pronouns egli and lui
is analogous to he and him in English. However, the use of egli becomes less common and is
being replaced by lui. Therefore, these pronouns can be considered as equivalents, though they
are not always exchangeable. (e.g. egli can never translate him). Also, in some languages, one
should consider the possibility of identical pronouns with different forms. For example, French
has pronoun contractions such as c’ for ce, in the expletive construction c’est (meaning it is). Or,
the German pronoun es, translating the English it, is sometimes contracted to ’s. Moreover, the
correspondence between source, reference, and candidate pronouns is not always guaranteed.
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Pronouns can be missing either from the reference, candidate or from both of them. Plausible
reasons for missing pronouns are: human translation choices (omit to translate a source pronoun
which the system will most likely try to render), or mismatches in the alignment of pronouns.
The percentage of missing pronouns should be small if the alignment is correct. As this condition
is not always real, we also propose a simple algorithm to fix missing alignments of pronouns.

3.3.3 Pronoun Alignment

Given the list of source pronouns considered for evaluation, the first step is to obtain their
corresponding alignments in the target language texts. In the candidate translation case, the
alignment can be directly obtained from the MT system when available. However, in the case of
the reference, it is necessary to perform automatic word alignment. We use here the GIZA++
system (Och and Ney, 2003). We attach to the processed sentences a larger corpus to ensure an
acceptable accuracy, since GIZA++ has no separate training vs. testing stages. The alignment is
made in both directions: source-to-target and target-to-source. The results are then merged using
the grow-diag-final heuristic from Moses (Koehn et al., 2007).

Accurate pronoun alignment is essential to APT. To estimate its accuracy, we manually evaluated
100 randomly selected sentences from the WIT3 parallel corpus of English-French TED Talks
(Cettolo et al., 2012), containing the pronouns it and they. We found that the alignments of 19
out of 100 pronouns were missing and that 4 pronouns were incorrectly aligned. As expected, the
majority of misalignments involved infrequently-used target pronouns.

We defined several pronoun-specific heuristics to improve the alignment. Our four-step procedure
is exemplified in Table 3.1 where the alignment between the pronouns it and il was not identified
by GIZA++. First, we identify possible misalignments: source pronouns which are not aligned
to any word, or which are aligned to a non-pronoun, or multiple target words. This task can be
performed by using a predefined list of pronouns or a POS tagger. If among the multiply-aligned
target words, there is a pronoun, then it is considered the alignment. If not, we identify the
corresponding alignments (called markers) of the words preceding and following the pronoun
(position -1 and +1). Second, we define a range in the target-side neighborhood by considering
one word before the first marker and one after the second one, to expand the range of options.
Third, we test whether this range includes any likely translations of the source pronoun. Finally,
we choose as the aligned word the closest word to the center of the range. The proposed procedure
helped address 22 out of the 23 misalignments found in the WIT3 test data described above. The
heuristics here requires either POS tagger or a list of predefined pronouns on source and target
sides.

3.3.4 Computing APT Scores

The first step of the evaluation is to compare each pair of candidate and reference translations
of each source pronoun. We define six cases based on those from a similar metric for discourse
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Step Example

0
E: The system is so healthy that it purifies the water.
F: Le système est si sain qu’ il purifie l’ eau.

1
E: The system is so healthy that it purifies the water.
F: Le système est si sain qu’ il purifie l’ eau.

2 F: Le système est si [ sain qu’ il purifie l’ ] eau.

3 F: Le système est si [ sain2 qu’ il1 purifie l’2 ] eau.

4 From the list {il, l’}, the closest to the center: il.

Table 3.1 – Example of applying the heuristics to improve pronoun alignment: it in the English
source.

connectives (Hajlaoui and Popescu-Belis, 2013): (1) Identical pronouns, (2) Equivalent pronouns,
(3) Different or incompatible pronouns, (4) Candidate translation not found, (5) Reference
translation not found, (6) Both translations not found. We associate a score or weight to each
case. It reflects certainty about the translation in that case. For instance, the first case (candidate
identical to reference) is likely a correct translation, so its weight is 1.

Let C = c1, ..,cm be the set of m = 6 cases defined above, nci the number of pronoun translation
pairs that belong to case ci , and wi ∈ [0,1] the weight or score associated with case ci . We denote
the subset of discarded cases as Cd ⊆C . The APT score is computed as the number of correctly
translated pronouns over the total number of pronouns, formally expressed as:

APT =
(

m∑
i=1,ci∉Cd

wi nci

)
/

(
m∑

i=1,ci∉Cd

nci

)
.

The APT metric’s input parameters are the weights, the discarded cases if any, and the lists
of equivalent and identical pronouns in the target language. The case and weights for our
experiments on evaluating English to French pronoun translation are set as follows (The setup
summary is shown in Table 3.3):

Case 1: Candidate pronouns identical to the reference are considered correct, w1 = 1.

Case 2: In this case, the candidate pronoun is only deemed ‘equivalent’ to the reference one
according to a predefined list (see Section 3.3.5). Counting them always as correct may
lead to an indulgent metric, while the contrary might unduly penalize the candidate. We
experiment with three options: counted as incorrect (w2 = 0), as partially correct (w2 = 0.5),
or as correct (w2 = 1).

Case 3: Candidate pronouns different from the reference are considered as incorrect (w3 = 0).
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Case 4: When the reference pronoun is found but not the candidate one, which is then likely
absent, the pair is counted as incorrect (w4 = 0), although in some cases omitting a pronoun
may still be correct.

Case 5: This is a special scenario because there is no reference pronoun to compare with,
therefore we assume two possibilities: either discard these cases or consider them for
evaluation. With the second option, case 5 is necessarily considered as incorrect (w5 = 0),
but contributes to the denominator in the definition of APT above.

Case 6: Like case 5, we have two possibilities: discard these cases entirely, or evaluate them.
If we evaluate them, there are situations when neither the reference nor the candidate
translation of a source pronoun could be found, which can often be supposed to be correct,
but sometimes reflect complex configurations with wrong candidate translations. Due to
this uncertainty, we experiment with three possibilities: counted as incorrect (w6 = 0), as
partially correct (w6 = 0.5), or as correct (w6 = 1).

3.3.5 Equivalent Pronouns

The pronouns considered identical were defined based on insights from a French grammar
book (Grevisse and Goosse, 2007), which were verified and optimized based on the following
quantitative study of observed equivalents.

We built a baseline MT system using Moses (Koehn et al., 2007), and then performed a manual
evaluation with 100 randomly selected sentences from the parallel dataset of English-French TED
Talks WIT3 (Cettolo et al., 2012), containing the pronouns it and they. Each pronoun translation
was marked as correct or incorrect. The probability of a correct equivalence of different pronouns
is defined as p(c = 1|t ,r ) where t and r are the candidate and reference pronouns, r 6= t , and
c ∈ {0,1} corresponds to the manual evaluation (0 incorrect, 1 correct). First we filtered all pairs
(t ,r ) with a frequency of appearance smaller than 5% of the total sample. Then, we calculated
the probability by counting the number of correct samples given a particular pair (t ,r ). Finally,
we selected all pairs where p(c = 1|t ,r ) > 0.5, which indicates that the two pronouns are more
likely to be correct translation alternatives than not. The final lists found for French are shown
in Table 3.2. Two examples of pronoun equivalence in English/French translation are: “it is
difficult . . .” translated to “il / c’ est difficile . . .”, and “it would be nice . . .” to “ce / ça serait beau
. . .”. Equivalent pronouns require language-specific annotated resources. It is possible to obtain
the list of equivalent pronouns from a parallel corpus to obtain each pronoun’s most frequent
translations. In both cases, the equivalence is context-dependent and not always correct. Thus,
we add a weight to this count to balance the cases.

3.4 Experimental Settings

In this section, we describe our experimental setup for assessing APT. We present the DiscoMT
dataset, comparable metrics, and the evaluation method.
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Identical Equivalent

ce, c’ ce, il (p = 0.6)
ça, ç’, cela ce, ça (p = 0.6)

Table 3.2 – APT lists of identical and equivalent pronouns in French, constructed from a data set
where the translation options for it and they were limited to il, elle, ils, elles, ce, on, ça, and cela.
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Figure 3.1 – Correlation between the manual evaluation (vertical axis) and different automatic
metrics (horizontal axis). The red line is the linear regression model. Pearson’s and Spearman’s
correlations values are showed. The values of APT correspond to the setting: w6 = 0 and Cd = {;}
i.e. all cases are counted in the APT score.
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Case Weight Assumption
c1 (identical) w1 = 1 candidate = reference =⇒ correct translation

c2 (equivalent) w2 = {0,0.5,1} candidate ∼ reference =⇒ correct translation

c3 (different) w3 = 0 candidate 6= reference =⇒ incorrect translation

c4 (not in candidate) w4 = 0 incomplete translation =⇒ incorrect translation

c5 (not in reference) w5 =∅ Cd = {c5,c6}: no reference =⇒ discarded
w5 = 0 Cd = {;}: candidate 6= reference =⇒ incorrect translation

c6 (not in both) w6 =∅ Cd = {c5,c6}: no reference =⇒ discarded
w6 = {0,0.5,1} Cd = {;}: candidate = reference =⇒ correct translation

Table 3.3 – Settings of the APT metric in our experiments.

3.4.1 DiscoMT Dataset

The data set we use for our experiments was generated during the shared task on pronoun-focused
translation at the DiscoMT 2015 workshop (Hardmeier et al., 2015). The systems participating in
this task were given 2,093 English sentences to translate into French. The evaluation was focused
on the correctness of the translation of the English pronouns it and they into French. Only a
sample of 210 pronouns was manually evaluated for each of the six submitted systems plus a
baseline one. The methodology of evaluation was gap-filling annotation: instead of correcting the
translation, the annotators were asked to fill the gaps of hidden French candidate sentences with
one or more of the following options: il, elle, ils, elles, ce, on, ça/cela, other or bad translation.
The accuracy of each submitted translation was calculated with respect to the human annotations
using several metrics: accuracy with or without the other category, pronoun-specific F-scores
(harmonic mean of precision and a lenient version of recall), and general F-score (based on micro-
averages of pronoun-specific recall and precision). Additional possible metrics are presented
hereafter.

3.4.2 Other Metrics for Comparison

We compare the results of APT with two well-known automatic metrics for MT: BLEU (Papineni
et al., 2002) and METEOR (Denkowski and Lavie, 2014). Additionally, we include the METEOR
score restricted to the French pronouns present in the manual annotation. For this purpose, we set
the function words list of METEOR to the list of French pronouns defined in DiscoMT (listed
above), and its δ parameter to 0 to give preference to the evaluation of the function words (in our
case, pronouns).

Additionally, we include the AutoP, AutoR and AutoF metrics proposed by Hardmeier and
Federico (2010) for automatic evaluation of pronoun translation. These metrics were inspired by
BLEU score. First, they extracts a list C of all words aligned to the source pronouns from the
candidate text, and similarly a list R from the reference text. Then, they compute a clipped count
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of a candidate word w , defined as the minimum value between the number of times it occurs in
C and R:

ccl i p (w) = mi n(cC (w),cR(w))

Finally, all the clipped counts from the words in C are summed up, in order to calculate the
precision and recall as follows:

AutoP = ∑
w∈C

ccl i p (w)/|C |

AutoR = ∑
w∈C

ccl i p (w)/|R|

3.4.3 Assessment Method

We use for the assessment of the correlation between each automatic metric and the human
judgments the Pearson and Spearman correlation coefficients. Pearson’s correlation coefficient r

measures the linear dependency between two variables. The formulation we use for our data is:

r =
∑n

i=1(hi − h̄)(ai − ā)√∑n
i=1(hi − h̄)2

√∑n
i=1(ai − ā)2

where {h1, ..,hn} and {a1, .., an} represent the human and automatic scores for the n = 7 systems,
and h̄ and ā are the means of those scores.

Spearman’s rank correlation coefficient is a non-parametric measure of the possibility to express
the relation between two variables as a monotonic function. In contrast to Pearson’s correlation
coefficient, it does not measure the extent to which the metrics are linearly dependent but
compares only the rankings resulting from each metric. The formulation we use is the same as
for r where we replaced {h1, ..,hn}, {a1, .., an}, h̄ and ā with the rankings given by the human and
automatic metrics and their means.

In the pronoun-focused translation shared task at DiscoMT 2015 (Hardmeier et al., 2015), three
different human evaluation metrics were used: accuracy including the category others, accuracy
without others, and precision. The organizers selected the first one for the official ranking of
the systems, because it allows evaluating the whole sample, and penalizes MT systems that tend
to classify many difficult cases as others. Therefore, we also use this metric in our correlation
experiments hereafter.

3.5 Results Analysis

Here, we show the experimental results and analysis. We compare the correlation coefficients
with respect to human evaluation. Then, we analyze the role of the weights and the percentage of
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errors per case.

3.5.1 Correlation Coefficients

Figure 3.1 shows the correlations of several automatic metrics with the human evaluation scores
(i.e. accuracy with other, the official DiscoMT 2015 shared task metric): three versions of APT
(at the bottom, with w2 ∈ {0,0.5,1}), and six previous metrics: BLEU, METEOR (general and
restricted to pronouns), and recall/precision/F-score from Hardmeier and Federico (2010). The
plots display the values of Pearson’s and Spearman’s correlation coefficients and the linear
regression model fitted for the first coefficient. For all automatic metrics, Pearson’s correlation is
over 0.97, which is a relatively high value. METEOR has the lowest Spearman correlation, and
contrary to what we expected, METEOR evaluated only over pronouns does not perform better
than its generic version. Although BLEU and METEOR are not specialized for the evaluation
of pronouns, there Pearson’s correlation with human judgments is relatively high. These values
should be considered as lower bounds when studying metrics dedicated to pronouns. Another
interpretation of BLEU and METEOR’s high correlations with human judgments of pronouns is
that MT systems that are good at translation, in general, are also good at translating pronouns.
The performance of the metric proposed by Hardmeier and Federico (2010) is better than generic
metrics, especially for recall AutoR. Therefore, this specific metric appears to model better the
human evaluation for this particular task.

As shown in the lowest row of Figure 3.1, the three tested versions of APT have the best
performance, regardless of the weight w2 given to case 2 occurrences, namely ‘equivalent’
pronouns. If data for metric tuning were available, we could tune w2 to reach optimal scores.

Finally, one can argue that the linear correlation between the manual evaluation and the different
metrics is inflated because we included a prominent outlier system. This system, coded ‘A3-108’
in Hardmeier et al. (2015), shows a markedly poor performance at predicting pronouns compared
to the other systems. Thus, we also present the correlation values without the outlier, in Table 3.4,
and observe that in comparison with the values shown in Figure 3.1, APT remains almost the same
while the correlation of the other metrics have a small degradation. Therefore, our conclusions
hold regardless of the outlier system.

3.5.2 Role of Weights

Table 3.5 shows the correlation values between APT and other metrics for different values of
the weights of cases 2 and 6, with two alignment options. When applying APT with the basic
alignment method, always considering equivalent pronouns (case 2) as incorrect translations
w2 = 0 has better performance than considering them as partially incorrect w2 = 0.5 or totally
correct w2 = 1. The same observation can be made for the weight of case 6, i.e., when considering
missing pronoun pairs as correct or not.
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BLEU METEOR METEOR o/Pron.

Pearson 0.902 0.893 0.863
Spearman 0.943 0.714 0.714

AutoP AutoR AutoF

Pearson 0.923 0.965 0.955
Spearman 0.714 0.919 0.804

APT APT APT
(w2 = 1) (w2 = 0.5) (w2 = 0)

Pearson 0.994 0.999 0.998
Spearman 1.000 1.000 0.989

Table 3.4 – Correlation between the manual evaluation and different automatic metrics without
the outlier system. The values of APT are obtained with w6 = 0 and Cd = {;}, i.e. all cases are
counted in the APT score.

Nevertheless, the situation changes when applying APT with the heuristics for the pronoun
alignment described above. Here, the partially correct scenarios present better performance than
the others. There is a balanced percentage of correct and incorrect samples for case 2 (as seen in
Table 3.6, with heuristic-based alignment), which could explain why w2 = 0.5 leads to a slightly
better correlation than other values. On the contrary, all occurrences in case 6 are found to be
incorrect according to the manual evaluation. Although this could lead us to set w6 = 0, this does
not lead to the best correlation value; a possible explanation is the fact that all MT systems are
compared against the same reference. In general, each configuration’s differences are too small
to lead to firm conclusions about the weights. If more data with human judgments were available,
the weights could be optimized on such a set.

3.5.3 Analysis of Scores

Figure 3.2 shows the distribution of cases identified by APT. Most of the samples are identified
as case 1 (equal to reference) or case 3 (different from it). This indicates that most candidate
translations are either correct or incorrect and that the number of missing pronouns (on either
side) is much smaller. Moreover, the heuristics for pronoun alignment help to reduce the number
of reference misaligned pronouns (mainly cases 5 and 6, but not exclusively). When comparing
the reference and the manual annotation, the proportion of perfect matches increases from 61%
to 66% after applying the heuristics.

Table 3.6 shows a breakdown of the comparison between APT scores and manual evaluation
into six different cases. The result of the comparison is: Correct when the manual annotator’s
choice of pronoun coincides with the system’s translation; Incorrect when it does not coincide;
and Bad Translation when the annotator indicated that the entire sentence is poorly translated
and the pronoun cannot be scored. Table 3.6 provides the total number of judgments for the six
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w2 w6 Pearson Spearman

0 0 0.999 1.000
Basic alignment 1 0 0.992 0.987

0.5 0 0.998 1.000
1 1 0.994 0.964

0.5 0.5 0.999 0.987

0 0 0.998 0.989
Alignment with heuristics 1 0 0.994 1.000

0.5 0 0.999 1.000
1 1 0.995 0.964

0.5 0.5 0.999 1.000

Table 3.5 – Correlation between the manual evaluation and APT scores for different values of the
parameters of APT, namely the w2 and w6 weights of cases 2 and 6.

Manual Evaluation

Case Correct Incorr. Bad Tr. Total

c1 (same) 84% 13% 3% 534
c2 (similar) 43% 47% 10% 135
c3 (different) 26% 60% 14% 581
c4 (not in candidate) 0% 76% 24% 129
c5 (not in reference) 53% 36% 11% 81
c6 (not in both) 0% 76% 24% 38

Total 47% 43% 10% 1498

Table 3.6 – Comparison between APT and the manual evaluation for each case identified by APT.

systems and the baseline.

We observe that 84% of the instances in case 1 (candidate identical to reference) are considered
correct. Conversely, for case 3 (different pronouns) and case 4 (candidate translation not found),
the vast majority of occurrences were indeed judged as incorrect. However, a sizable 26% of
case 3 occurrences were considered correct translations by the annotator – presumably due to
legitimate variations that cannot be captured by a reference-based metric such as APT. As for
case 2 (‘equivalent’ translations), the percentages of correct vs. incorrect translations are nearly
balanced. That indicates that the definition of equivalent pronouns is quite problematic, as there
are equal chances that ‘equivalent’ pronouns are substitutable or not. Another direction for
improvement is the cases with no reference pronoun to compare a candidate: 53% of occurrences
in case 5 are considered correct by humans, but APT cannot evaluate them correctly for lack
of a comparison term. These cases could be discarded for APT evaluation, but if the goal is to
compare several systems with the same reference, they will all be equally penalized by these
cases.
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Figure 3.2 – Distribution of pronoun occurrences in each of APT’s six cases, with and without
heuristics for alignment.

3.6 Conclusion

In this chapter, we have shown that a simple reference-based metric for the accuracy of pronoun
translation (APT) has a high correlation with human judgment of correctness, over the scores of
seven systems submitted to the DiscoMT 2015 shared task on pronoun-focused translation. While
intrinsically, the APT metric seems to set strong constraints on the pronouns’ correctness, when
averaged over a large number of translations, it appears that improved APT scores reflect quite
accurately an improvement in the human perception of pronoun translation quality. A precise
alignment of the source and target pronouns, for the reference and the candidate translations,
appears to be an essential requirement for APT’s accuracy and should be improved in the future.
Similarly, a better understanding of ‘equivalent’ pronouns and their proper weighing in the
APT score should improve the quality of the metric and better models of omitting pronouns in
translation.

APT has been used for evaluating Spanish-to-English pronoun translation (Rios Gonzales and
Tuggener, 2017; Luong et al., 2017; Miculicich Werlen and Popescu-Belis, 2017a), showing
that it can be adapted to other language pairs. Despite the correlation between APT and human
judgments, (Guillou and Hardmeier, 2018) found that automatic evaluation of pronoun translation
misses essential parts of the problem. They point out that APT identifies good translations with
relatively high precision, but fails to reward spatially challenging cases. This is a general issue for
automatic evaluation. However, the metric serves its propose whenever another kind of evaluation
(e.i. human or test suite based) is not feasible.
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4 Coreference for Machine Translation

This chapter is based on the following paper:

Miculicich Werlen, L. and Popescu-Belis, A. (2017a). Using coreference links
to improve spanish-to-english machine translation. In Proceedings of the 2nd
Workshop on Coreference Resolution Beyond OntoNotes (CORBON 2017), pages
30–40, Valencia, Spain. Association for Computational Linguistics
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4.1 Introduction

Coreference resolution has the potential to guide machine translation towards a consistent
translation of entities. Although several attempts to integrate coreference and translation, they
have shown few or none significant improvements over the baselines (Section 4.2). The integration
is challenging because translation is defined at the sentence-level while coreference at the
document-level. To deal with this issue, we do not modify the translation model but rather rerank
or post-edit its output based on coreference scores defined at the document-level.

As good translations should provide the reader the same understanding of entities as the source
texts, we propose to use the similarity of coreference links between a source text and its translation
as a criterion to improve translation hypotheses. This information should be beneficial to the
translation of pronouns, which often depends on their antecedent properties, but should also
ensure lexical consistency in the translation of coreferent nouns, pronouns, and noun phrases.

With this work, we provide the first proof-of-concept showing that the coreference criterion can
lead to measurable improvements in the translation of referring expressions in Spanish-to-English
machine translation (MT). We consider that better translations should have coreference links
that are closer to those in the source text, and implement it in two ways. First, we define a
similarity measure between source and target coreference structures by projecting the target
ones onto the source ones and reusing existing monolingual coreference metrics. Based on
this similarity measure, we rerank the translation hypotheses of a baseline MT system for each
sentence. Alternatively, to address the lack of diversity of mentions among the MT hypotheses,
we focus on mention pairs and integrate their coreference scores with MT ones, resulting in
post-editing decisions. Experiments with Spanish-to-English MT on the AnCora-ES corpus show
that our second approach yields a substantial increase in pronoun translation accuracy, while
BLEU scores remain constant.

Our contributions are the following:

(i) We proposed two methods to evaluate the impact of coreference resolution in machine
translation: reranking and post-editing.

(ii) The post-editing is shown to be preferable for human judges with respect to the baseline,
and it significantly improves pronoun translation.

Our work is organized as follows. In Section 4.2, we present an overview of related work on
coreference and anaphora resolution in translation. In Section 4.3, we define a measure of entity
cluster similarity between source and target-side at document-level, and using this measure,
we propose to re-rank the translation hypothesis in Section 4.4.3. Alternatively, we propose a
post-editing method in Section 4.5. The experiments and results are presented in Section 4.6 and
Section 4.7 respectively. Finally, the conclusion is draw in Section 4.8.
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4.2 Related Work

Numerous anaphora resolution systems were designed in the past decades (Mitkov, 2002; Ng,
2010), as a consequence, the interest in using them to improve pronoun translation emerged
(Le Nagard and Koehn, 2010; Hardmeier and Federico, 2010; Guillou, 2012). However, the
limited accuracy of anaphora resolution caused those attempts to implement a coreference-aware
machine translation model had limited or no impact. Le Nagard and Koehn (2010) trained
an English-French translation model on an annotated corpus in which each occurrence of the
English pronouns it and they was annotated with the gender of its antecedent on the target
side. Their system correctly translated 40 pronouns out of the 59 that they examined but did
not outperform the MT baseline. A model for MT decoding proposed by Luong and Popescu-
Belis (2016, 2017) combined several features of the antecedent candidates (gender, number, and
humanness) with an MT decoder, in a probabilistic way, and demonstrated small improvement
on pronouns. Furthermore, shared tasks on pronoun-focused translation were organized. In the
first one (Hardmeier et al., 2015), the improvement of pronoun translation was only marginal
with respect to a baseline SMT. In the second one (Guillou et al., 2016), some of the best systems
avoided the direct use of anaphora resolution (except Luong et al. (2015a)). For example, (Callin
et al., 2015) designed a classifier based on a feed-forward neural network, which is considered a
feature all preceding nouns and determiners along with their part-of-speech tags. The winning
systems (Luotolahti et al., 2016; Dabre et al., 2016) summarized the contexts of the pronoun
with a recurrent neural network, so they assumed that anaphora resolution could be made in an
unsupervised manner. Later to the publication of this chapter, Rios Gonzales and Tuggener (2017)
integrated coreference resolution with phrase-based SMT to solve the problems of elided subjects
and drop-pronouns in Spanish-to-English. At the same time, Luong et al. (2017) showed that
pronoun translations improved Spanish-to-English when anaphora probabilities were included as
features in an SMT system.

4.3 Coreference Resolution for MT

A principle of translation is that the information conveyed in a document should be preserved in
its translation. Here, we focus on the referential information, i.e., the coreference links between
mentions. If we apply coreference resolution to a source text and a faithful translation of it, then
the mentions’ grouping should be identical. We thus formulate the following criterion for MT:
better translations should have coreference links that are more similar to the source. Table 4.1
illustrates the above criterion on an example of Spanish-to-English translation, extracted from the
AnCora-ES corpus (Recasens and Martí, 2010),1 with source coreference chains coming from
the AnCora-ES annotations. The automatic translation comes from a commercial online MT
system. The Stanford Statistical Coreference Resolution system (Clark and Manning, 2015)2 was
applied to both translations, and the resulting coreference chains are indicated in the table with

1http://clic.ub.edu/corpus/
2http://stanfordnlp.github.io/CoreNLP/coref.html
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numbers and colors. We observe that the chains in the human translation match well those in the
source, but this is less the case for the automatic translation, in particular, due to wrong pronoun
translations. Although the MT output is still understandable, this requires more time than human
translation, due to the wrong set of coreference links inferred by the reader.

In what follows, we will implement a proof-of-concept coreference-aware MT system for Spanish-
to-English translation. This pair is particularly challenging because Spanish is a pro-drop language
so that an MT system must not only select the correct translation of pronouns, but it must also
generate English pronouns from Spanish null ones. In this study, in order to avoid introducing
errors made by the coreference resolution system, we will always use on the source side the
gold-standard coreference annotation from AnCora-ES (Recasens and Martí, 2010), which was
used in the SemEval-2010 Task 1 on coreference resolution in multiple languages (Recasens
et al., 2010).3 As our proposal does not require specific training on coreference-annotated data,
AnCora-ES will be used for testing only. On the target side, as coreference resolution must be
performed for each translation hypothesis, we must use an automatic system. One advantage of
the Spanish-to-English direction is that English coreference resolution systems have been studied
and developed for a long time, more than any other language, thus keeping coreference errors
minimum. We use again the Stanford Statistical Coreference Resolution system proposed by
Clark and Manning (2015). Moreover, to obtain pairwise mention scores, needed in Section 4.5,
we use the code of the pairwise classifier available with the source code of the Stanford CoreNLP
toolkit (Manning et al., 2014)4.

4.4 Reranking Approach

We propose to use the document-level coreference similarity score to rerank the n-best translation
hypotheses of each sentence in the text. The n-best translation hypotheses can be obtained with
any MT system.

4.4.1 Coreference Similarity Score

To obtain a coreference similarity score, we first apply coreference resolution to the source and
candidate translation and compare both with the source playing the role of the ground-truth or
gold-standard. Then, we used traditional metrics for evaluating coreference resolution: MUC,
B3, and CEAF-m (see Section 2.4.2). Traditional metrics were designed to compare texts in the
same language and not across different languages. This issue raises difficulties for matching the
referring expressions (i.e., mentions, or markables). So we propose to project the mentions of the
target text back to the source text so that each word in the source is aligned with its corresponding
translation (one or more words). This alignment can be obtained directly from the Moses MT
system (see the start of Section 4.4.3). There is not always a one-to-one word correspondence

3http://stel.ub.edu/semeval2010-coref/
4Source class ‘edu.stanford.nlp.scoref.PairwiseModel’ at http://stanfordnlp.github.io/CoreNLP/.
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Source Human Translation Machine Translation

La película narra la historia
de [un joven parisiense]c1

que marcha a Rumanía
en busca de [una cantante
zíngara]c2 , ya que [su]c1

fallecido padre escuchaba
siempre [sus]c2 canciones.

The film tells the story of [a
young Parisian]c1 who goes
to Romania in search of [a
gypsy singer]c2 , as [his]c1 de-
ceased father used to listen to
[her]c2 songs.

The film tells the story of [a
young Parisian]c1 who goes
to Romania in search of [a
gypsy singer]c2 , as [his]c2 de-
ceased father always listened
to [his]c2 songs.

Pudiera considerarse un viaje
fallido, porque [;]c1 no en-
cuentra [su]c1 objetivo, pero
el azar [le]c1 conduce a una
pequeña comunidad...

It could be considered a
failed journey, because [he]c1

does not find [his]c1 objec-
tive, but the fate leads [him]c1

to a small community...

It could be considered [a
failed trip]c3 , because [it]c3

does not find [its]c3 objective,
but the chance leads ; to a
small community...

Table 4.1 – Comparison of coreference clusters in the Spanish source vs. English human and
machine translations. English clusters were obtained with the Stanford coreference resolver
(Manning et al., 2014). The clusters are numbed c1, . . . ,cn , and are also color-coded. The void
symbol ; indicates a null subject pronoun in Spanish. The third coreference clusters (c3) in the
MT output is erroneous.

between the words in the source and target sentences, and word order also differs. Thus, we
apply the following heuristic to improve the cross-language mapping of the mentions. Through
word-alignment, the words that comprise the mentions may have changed its original order in
the translation. Thus, we take the first and last words on the target side that align with any word
of the mention in the source and assume that all words in between are also part of the mention.
The null pronouns are transferred to the next immediate verb, and we refine the alignment to be
sure these verbs are aligned to the generated pronoun in the target. Once the target mentions are
mapped to the source, we apply the MUC, B3, and CEAF-m coreference similarity metrics from
the CoNLL 2012 scorer between the source document ds and the projected target one dt . To
mitigate individual variations, we use the average of the three scores at the similarity criterion
and note it Csi m(dt ,ds).

4.4.2 Coreference and Translation Quality

To validate the insight that better translations correlate with better coreference similarity scores,
we present in Table 4.2 the MUC, B3 and CEAF scores of a human translation vs. two systems:
the Moses baseline phrase-based MT system used below and an online commercial MT system.
The source is a set of documents with ca. 3.5 thousand words with gold-standard coreference
annotation from AnCora-ES. The English translation was done manually. On the target side,
we applied the Stanford automatic coreference resolution system (Manning et al., 2014). By
definition, the best translation is the human one. Then, according to the BLEU score measured
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Metric Translation Recall Precision F1
MUC Human 31 46 37

Commercial MT 21 38 28
Baseline MT 18 33 23

B3 Human 24 49 32
Commercial MT 20 38 26
Baseline MT 17 40 24

CEAF Human 41 40 41
Commercial MT 34 39 36
Baseline MT 32 35 33

Table 4.2 – Coreference similarity scores (%) between source and target texts for different
translations. The scores increase with the quality of translations.

on the same set of documents, the second-best translation is done by the commercial MT with
49.4, and the last one by the baseline MT with 43.7. We observe that the coreference scores also
decrease in this order, and they decrease consistently for the three evaluation metrics. These
results thus support the principle that translation quality and coreference similarity are correlated.
We will now show how to use this principle to improve translation quality.

4.4.3 Reranking Hypotheses

Our goal is to find a combination of sentence translations that optimize the document-level
coreference similarity score defined before. First, we use the Moses toolkit to build a phrase-
based statistical MT system (Koehn et al., 2007), with training data from the translation task
of the WMT 2013 workshop (Bojar et al., 2013). The English-Spanish training set consists of
14 million sentences, with approximately 340 million tokens. The tuning set is the News Test
2010-2011 one, with ca. 5,500 sentences and almost 120k tokens. We built a 4-gram language
model from the same training data augmented by ca. 5,500 sentences monolingual data from
News Test 2015. Our baseline system has a BLEU score of 30.8 on the News Test 2013 with
3,000 sentences.

A translated document dt is represented as an array of translations dt = (s1, s2, ..., sM ), where
each sentence can be selected from a list of n-best translation hypotheses si ∈ {si

1, si
2, ..., si

N }. The
objective is to select the best combination of hypotheses based on their coreference similarity
Csi m with the source, i.e.:

argmax
h1,h2,..,hM

Csi m((s1
h1

, s2
h2

, ..., sm
hM

),ds)

To limit the decrease of sentence-level translation scores when optimizing the document-level
objective, we keep track of the former and select the sentences with the best translation scores
if they lead to the same Csi m . This combinatorial problem is expensive, so we try to reduce
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the search space to allow reasonable performance. First, we filter out candidate sentences. In
this approach, the essential variations in the translation are entity mentions. Thus sentences are
modeled as sets of mentions, and duplicate sets are filtered out. Second, we apply beam search
optimization. Based on the fact that the first mentions of entities usually contain more information
than the next ones, the beam search starts from the first sentence and aggregates at each step the
translation hypothesis with the highest similarity scores with the preceding ones. We foresee
several limitations of this approach. First, with a sentence containing several mentions, there is no
guarantee that the n-best hypotheses include a combination of mention translations that optimize
all mentions simultaneously. What is worse, the correct translation of a given mention may not be
present at all among the n-best hypotheses because the differences among the top hypotheses are
often minimal, especially when sentences are long. In order to solve these problems, we present
a second approach.

4.5 Post-editing Approach

This approach differs from the previous one in two aspects. First, it uses hypotheses of translation
of individual coreferent mentions rather than complete sentences. It allows us to optimize the
translation of each mention independently and increase the variety of hypotheses of each mention.
Second, coreference resolution is applied only on the source side. So, instead of searching for
similar clustering on the target side, we try to induce it. The selection of the best translation
hypothesis of a mention is based on a cluster-level coreference score. First, we apply automatic
coreference resolution at source side to obtain the mentions and clusters, and translate the source
document. Second, we find the aligned words of each source mention in the target translation.
Then, we create a new document by coping the translated text and replacing the mentions with
the source version. Thus, the new document is in the target language except for the mentions
that are written in the source language. Then, we make a second pass translation using the new
document so we obtain translation candidates only for the mentions (other words are already in
the target language). Finally, we choose the translations hypothesis that correlates better with
other mentions in the same cluster (obtained in the first step). This automatic method improves
the performance because it uses coreference resolution only once instead of multiple times, and
as shown in the experimental section, it is more effective at improving the translation of mentions.

4.5.1 Candidate Translations

It is essential to include the surrounding context in the translation to obtain the n-best translation
hypotheses of the entity mentions. Otherwise, an independent translation could lead to the
construction of invalid or erroneous sentences. We would like to have an MT system that brings
hypotheses corresponding only to mentions and fix the translations of other words so that we can
interchange the hypotheses of one mention in the same text. Building such an MT system would
require a significant modification of the baseline. As an alternative solution, we will simply
perform two passes of MT. The first pass is a simple translation of the text. Then, the mentions
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are identified in the target text, and their source-language version replaces them. That results in a
mixed language text. Then, this text is passed to the MT system for the second time, so that the
system identifies and translates only the words in the source language. Nevertheless, the language
and reordering models are still going to evaluate the complete sentence. To avoid any translation
of the context words (i.e., not mentions) in the second pass, we filter out from the translation
table all words not corresponding to mentions. It is important to note that we consider only the
heads of mentions obtained from the parse tree (this annotation is included in AnCora corpus) to
avoid long mentions such as the ones with subordinate clauses, and focus on the most crucial part
of each mention.

4.5.2 Cluster-level Coreference Score

In this approach, we rely on the coreference resolver applied to the source side to define mentions’
clusters. Each cluster is defined as a set of mentions cx = {mi ,m j , ..,mk }, where each mention
can be selected from a set of translation hypotheses mi ∈ {mi

1,mi
2, ...,mi

N }. By definition, the
mentions in a cluster represent the same entity. Thus, they have to correlate in features such
as gender, number, and animation. To achieve this objective on the target side, we define a
cluster-level coreference score Css . It represents the likelihood that all mentions in that cluster
belong to the same entity. So, for each given cluster, we select the combination of translation
hypotheses of mentions with a higher cluster-level coreference score. This combinatorial problem
is expensive. Therefore, it is simplified with a beam search approach. Mentions are processed
one at a time. The translation hypotheses of a new upcoming mention are compared with each of
the previously selected ones. Then, the combinations with lower Css are pruned. The algorithm
continues in the same manner until it processes the last mention.

In order to compare two mentions, we use the mention pair scorer from (Clark and Manning,
2015). It uses a logistic classifier to assign a probability to a pair of hypotheses, which represents
the likelihood that they are coreferent. The pair score is defined as follows:

ppai r (mi
hi

,m j
h j

) = (1+e
θT f (mi

hi
,m j

h j
)
)−1

where f (mi
hi

,m j
h j

) is a vector of feature functions of the mentions and θ is the vector of feature
weights. Finally, we define the cluster-level coreference score Css as the product of the individual
pairwise probabilities:

Css(cx ) = ∏
mi∈cx

∏
mi 6= j∈cx

ppai r (mi
hi

,m j
h j

)

We illustrate this idea with an example. Here, we have a sentence in Spanish and its translation to
English. We show one coreference cluster c1 formed by three mentions:

Source (es): La alcaldesa de Málaga y cabeza del [partido]c1 [que]c1 ganó en esta ciudad, pidió
a los militantes de [este partido político]c1 ...
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Target (en): The mayor of Malaga and head of the [m1]c1 [m2]c1 won in this city, asked the
militants of this [m3]c1 to...

In this example, the three marked mentions have the following translation hypotheses: m1 ∈
{match, par t y}, m2 ∈ {who, whi ch}, and m3 ∈ {poli t i cal par t y}. We calculate the pair-
wise score ppai r of each combination and show the results in the following table.

m1,m2 (match, who) = 0.03,(match, whi ch) = 0.35,
(par t y, who) = 0.01,(par t y, whi ch) = 0.26

m1,m3 (match, poli t i cal par t y) = 0.08,
(par t y, poli t i cal par t y) = 0.53

m2,m3 (poli t i cal par t y, who) = 0.12,
(poli t i cal par t y, whi ch) = 0.27

Finally, we find that the set of translation hypotheses with the highest cluster-level coreference
Css score is {‘party’, ‘which’, ‘political party’}, with a score of 0.04. Intuitively, we can verify
that this final combination is the best solution for the example.

4.5.3 Joint Scoring

The proposed score guides the system to select translation hypotheses, which are more likely to
refer to the same entity in a cluster. In order to enhance the decision process, we include two
sources of additional information: the translation frequency, that can help to decide between
synonyms by selecting the most frequently translated one; and information of the entity in the
source side, which enriches the knowledge of the entity. The information about the frequency of
translation can indicate how well a particular hypothesis translates the mention. Therefore, we
define a translation score, Ts , at mention-level. The translation score of a hypothesis is calculated
based on its relative frequency of emission by the MT system, as follows:

Ts(mi
hi ) = count (mi

hi )/
∑

j
count (mi

j )

The information about the entity in the source side can indicate how well a particular hypothesis
represents it. Thus, we define a simple representation of an entity by setting relevant features such
as gender, number, and animation. The features are extracted and summarized from all mentions in
the cluster. That is a naive representation and more advanced work on entity-level representations
have been performed concerning coreference resolution (Clark and Manning, 2016; Wiseman
et al., 2016), which could be applied here in the future. Having an entity representation, we define
a simple scoring function which measures how well a candidate represents an entity with respect
to other alternatives:

Es(mi
hi = f (mi

hi
,θex )/

∑
j

f (mi
j ,θex )

where f is a linear function and θex are the entity features.
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Finally, the decision is made by combining the three previous scores: cluster-level coreference,
translation, and entity matching. As one additional step, we adjust the coreference score to the
same scale as others:

Cs =Css(mi
hi

,m j
h j

, . . .)/
∑

x,y,...
Css(mi

x ,m j
y , . . .).

The final score is defined as follows:

Cscor e (mi
hi

,m j
h j

, . . .) =Cs(mi
hi

,m j
h j

, . . .)λ1×
[Ts(mi

hi
).Ts(m j

h j
) . . .]λ2×

[Es(mi
hi

).Es(m j
h j

) . . .]λ3

where
∑

i λi = 1 are predefined hyper-parameters of the function. The final set is given by:

(mi ,m j , . . .) = argmax
hi ,h j ,...

Cscor e (mi
hi

,m j
h j

, . . .).

These three hyper-parameters were optimized on a different subset of AnCora-ES than the one
used for evaluation. The optimized values are λ1=0.5, λ2=0.1, and λ3=0.4.

4.6 Experimental Setting

Our initial experiments’ objective is to measure how much coreference can improve the correct
choices of translation of mentions and the impact of these choices on global translation quality.
We translated 10 sample documents from the test set to serve as reference translations for
evaluation. The evaluation of global MT quality is made with the well-known BLEU n-gram
precision metric (Papineni et al., 2002), while the evaluation of mentions, being less standardized,
is performed in several ways. We reuse previous insights on pronoun translation and therefore
score them with a metric that automatically computes the accuracy of pronoun translation (APT)
in terms of the number of identical pronouns vs. different from a human reference translation
(Miculicich Werlen and Popescu-Belis, 2017b)5. More originally, to provide a complete view
of the performance, we compute the “accuracy of noun translation” (ANT) by reusing the same
idea as in APT to count the number of exactly matched nouns between MT and the reference
translation.

We test the two proposed methods, reranking and post-editing vs. the phrase-based statistical
MT (PBSMT) baseline described in Section 4.4.3. We also include a neural machine translation
(NMT) baseline (Bahdanau et al., 2015) as a reference for comparison. We chose to build our
systems over a PBSMT system for simplicity because the word-alignment can be obtained directly
from the system. Additionally, we also present the results obtained with an automatic coreference
resolver in the source side, namely the CorZu system (Tuggener, 2016; Rios, 2015), for the

5https://github.com/idiap/APT
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System BLEU APT ANT
Baseline PBSMT 46.5±4.3 0.35±0.07 0.78±0.08
Baseline NMT 46.9±3.7 0.37±0.07 0.78±0.07
PBSMT + Re-rank 41.7±3.9∗∗∗ 0.40±0.10∗ 0.74±0.01∗∗

PBSMT + Post-edit 46.4±3.9 0.59±0.13∗∗∗ 0.78±0.07
PBSMT + Post-edit + Automatic coreference 46.1±4.3 0.41±0.07∗ 0.76±0.09

Table 4.3 – Comparison of baseline MT and our proposals for reranking or post-editing, for three
metrics. In addition to the average scores and standard deviation over the ten test documents, we
indicate the statistical significance level of the difference between each of our systems and the
baseline (∗ for 95.0%, ∗∗ for 99.0% and ∗∗∗ for 99.9%).

post-editing approach.

4.7 Results Analysis

In this section, we describe and analyze the experimental results with both automatic and human
evaluation.

4.7.1 Automatic Evaluation

Table 4.3 shows the results of the experiments. We first calculate BLEU, APT, and ANT values
at the document-level and show the average and standard deviation values for the three evaluated
systems: baseline and our two proposed approaches. Additionally, we show the significance
levels (t-test) of the results in comparison to the baseline. The post-editing approach improves the
pronoun translation quite significantly, without decreasing the overall quality of translation. This
improvement is demonstrated by the rise of the APT score, whereas the BLUE score remains
without significant change. However, the quality of the translation of nouns does not change
significantly, as shown by the ANT.

The reranking approach shows a significant increase in the quality of pronoun translation. Never-
theless, the overall quality of translation decreases significantly, as well as the quality of noun
translation. The limitations of this approach can explain these results. The optimization was
done by considering the correlation of mentions, but the changes were made at the sentence-level.
The overall quality of translation at the sentence-level was not considered. A combination of
coreference similarity and translation probability could be used in the future to address the
described problem.

Figure 4.1 shows the distribution of pronouns translated by the three evaluated systems (i.e.,
baseline, reranking, and post-editing) compared to the reference. The number of pronouns equal
to the reference increases for both proposed approaches, especially for the post-editing. The
pronouns that improve the most were the third-person personal and possessive ones. Also, the
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Figure 4.1 – Pronoun translation in comparison with the reference: numbers of equal vs. different
pronouns for the three systems, including also missing pronouns in target, reference, and both
sides (counts based on source pronouns).

Evaluation Scoring points Baseline Re-rank Post-edit
(#) (score) (#) (score) (#) (score)

Incorrect 0 53 0 55 0 21 0
Acceptable 1 21 21 19 19 28 28
Correct 2 115 230 115 230 140 280
Total score 251 249 308

Table 4.4 – Manual evaluation of fourth randomly selected documents. The evaluation was done
over nouns and pronouns.

translation of some of the null pronouns in the source was improved. The association with other
mentions of the same entity and the entity’s representation coming from the source side was
important for this improvement.

4.7.2 Human Evaluation

Finally, we perform manual evaluation by examining source mentions, as annotated over AnCora-
ES, and evaluating their translations by the baseline MT along with the two approaches presented
above (in Sections 4.4 vs. 4.5). When presented to the evaluator, the three translations of each
source sentence are provided in a random order, so that the evaluator does not know to which
system they belong. The evaluator assigned a score of ‘2’ to a translation identical to the reference,
‘1’ for translation that is different but still good or acceptable, and ‘0’ to a wrong or unacceptable
translation. To minimize the time spent on manual evaluation at this stage, one evaluator rated
four test documents.

Table 4.4 shows the results of the manual evaluation, scored as explained above, which includes
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Example 1: Correct pronoun gender
S: [Barton]3 , por [su]3 parte , también dudó de la capacidad de [Megawati]2 en [su]3

[nueva tarea]4 .
R: [Barton]3 , for [his]3 part , also doubted [Megawati]2 ’s ability in [her]2 [new task]4 .
B: [Barton]3 , for [its]3 part , also doubted the capacity of Megawati in [his]2 [new task]4 .
P: [Barton]3 , for [his]3 part , also doubted the capacity of [Megawati]2 in [her]2 [new

task]4 .

Example 2: Correct drop-pronoun
S: ... que “ [parece estar]2 abrumada ... críticos consideran que [no será ]2 capaz de hacerse

con el papel de líder .
R: ...that “ [she seems]2 overwhelmed ... critics consider [she will not be]2 able to take the

lead role .
B: ... that “ [appears to be]2 overwhelmed ... critics believe that [it will not be]2 able to

take a leading role .
P: ...that “ [she seems]2 to be overwhelmed ... critics believe that [she will not be]2 able to

take a leading role .

Example 3: Incorrect drop-pronoun
S: - ¿ [Es]1 iconoclasta por valenciano ? - .
R: - [Are you]1 iconoclastic by Valencian ? - .
B: - [Is]1 an iconoclast by Valencian ? - .
P: - [he is]1 an iconoclast by Valencian ? - .

Table 4.5 – Examples of source, reference, baseline and post-edited sentences.

nouns and pronouns together. In general, it supports the results of the automatic evaluation. Here,
the post-editing approach has 32 less mentions scored as “wrong” than the baseline, 7 of them
were score as “acceptable”, and the rest 25 as identical to the reference. The reranking approach,
despite the theoretical appeal of its definition, fails to improve noun and pronoun translation.
Table 4.5 shows examples of translations obtained with our approaches. The noun translations
by the baseline are good. The discrepancies with respect to the reference are, in many cases,
due to synonyms and acronyms. Still, some nouns suffer from sense ambiguity, which may be
improved by our method. However, this particular test set is too small and does not contain
enough instances of this type to evaluate their translations with certainty.

4.8 Conclusion

We presented two methods for evaluating the impact of including coreference scores in translation,
based on the coreference similarity of source and translated texts. Both approaches are shown to
improve the pronoun translations but not the noun translations. However, the reranking decreases
the whole translation quality because the sentence-level optimization makes it difficult to maintain
the balance between coreference and translation scores. The post-editing approach brought a
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significant improvement from Spanish-to-English pronoun translation without degradation of
the translation quality. Even though the BLEU scores of the baseline and the post-editing were
similar, the human evaluation determined that the post-editing translations were preferable in
a significant number of cases. The results presented here were later confirmed on larger data
sets (Rios Gonzales and Tuggener, 2017; Luong et al., 2017). However, post-editing has several
restrictions. First, the process of obtaining candidate translations requires a second pass of the
text to the MT system, and sporadically, the correct translations are not part of the hypotheses.
Second, the final probabilities are a combination of independent probabilities, which requires extra
hyperparameters. We believe that these problems can be addressed by integrating coreference
resolution with MT in an unsupervised or semi-supervised manner. In that way, the access to
hypotheses is not restricted, and the optimization can be done by taking into account all affecting
probabilities at the same time while decoding.
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5 Self-Attention for Neural Machine
Translation

This chapter is based on the following paper:

Miculicich Werlen, L., Pappas, N., Ram, D., and Popescu-Belis, A. (2018). Self-
attentive residual decoder for neural machine translation. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1366–
1379, New Orleans, Louisiana. Association for Computational Linguistics
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5.1 Introduction

In the previous chapters, we focused on coreference and anaphora resolution for improving the
translation of nouns and pronouns. We defined an evaluation metric and showed that coreference
resolution effectively boosts the pronoun translation producing sentences preferred by human
judges. Nevertheless, we also concluded that without full integration of discourse phenomena
on the translation, the impact is limited. In addition to that, the advances in neural machine
translation (NMT) led us to aim at incorporating discourse as an integral part of the neural
network. Neural networks are flexible, so we hypothesize that they can learn the text’s intrinsic
discourse phenomena when adding the correct mechanism for this purpose. In this chapter, we
work on the discourse context and semantics present at the sentence-level leaving open to the
model to learn any structure necessary, including but not limited to coreferences.

At the time of writing this chapter, the attention-based NMT model designed by Bahdanau et al.
(2015) was considered the de-facto baseline, achieving remarkable performance with respect to
the ancestor phrase-based SMT. One of the reasons for their effectiveness is their ability to capture
relevant source-side contextual information at each time-step prediction through an attention
mechanism. However, the target-side context is solely based on the sequence model, which, in
practice, is prone to recency bias and cannot capture effectively non-sequential dependencies
among words. This architecture comprises two recurrent neural networks (RNNs), an encoder
and a decoder, and an attention mechanism between them for modeling a soft word-alignment.
First, the model encodes the complete source sentence and then decodes one word at a time.
The decoder has access to all the context on the source side through the attention mechanism.
However, on the target side, the contextual information is represented only through a fixed-length
vector, namely the decoder’s hidden state. As observed by Bahdanau et al. (2015), this creates
a bottleneck, which hinders the sequential model’s ability to learn longer-term information
effectively. Additionally, such RNN models do not fully capture the structural composition of
language Cheng et al. (2016). Several models have been proposed to address these limitations,
namely memory networks (Cheng et al., 2016; Tran et al., 2016; Wang et al., 2016a) and self-
attention networks (Daniluk et al., 2016; Liu and Lapata, 2018). We experimented with these
methods, applying them to NMT: memory RNN (Cheng et al., 2016) and self-attentive RNN
(Daniluk et al., 2016). However, we observed no significant gains in performance over the
baseline architecture.

In this work, we propose a self-attentive residual recurrent decoder, presented in Figure 5.1b,
which, if unfolded over time, represents a densely-connected residual network. The self-attentive
residual connections focus selectively on previously translated words and propagate useful
information to the decoder’s output, within an attention-based NMT architecture. The attention
paid to the previously predicted words is analogous to a read-only memory operation and enables
the learning of syntactic-like structures useful for the translation task. Our evaluation over three
language pairs shows that the proposed model improves over several baselines, with only a small
increase in computational overhead. In contrast, other similar approaches have lower scores but a
higher computational overhead. The decoder’s analysis of the attention learned confirms that it
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(a) Baseline NMT decoder (b) Self-attentive residual dec.

Figure 5.1 – Comparison between the decoder of the baseline NMT and the proposed decoder
with self-attentive residual connections.

emphasizes a broader context and captures syntactic-like structures.

Our contributions are the following:

(i) We propose and compare several options for using self-attentive residual learning within a
standard decoder, facilitating the flow of contextual information on the target side.

(ii) We demonstrate consistent improvements over a standard baseline and two advanced
variants that use memory and self-attention on three language pairs (English-to-Chinese,
Spanish-to-English, and English-to-German).

(iii) We perform an ablation study and analyze the learned attention function, providing addi-
tional insights on its actual contributions.

The rest of the chapter is organized as follows: Section 5.2 describes the relevant related work
and Section 5.3 the baseline. Our self-attentive approach is detailed in Section 5.4, and alternative
self-attentive models are presented in Section 5.5. The experiments and results are discussed in
Sections 5.6 and 5.7 respectively. Finally, the conclusions are draw in Sections 5.8.

5.2 Related Work

Several studies have been proposed to enhance sequential models by capturing longer contexts.
Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) is the most commonly
used recurrent neural network (RNN), because its internal memory allows to retain information
from a more distant past than a vanilla RNN. Other studies attempt to increase the memory
capacity of LSTMs by using memory networks (Weston et al., 2015; Sukhbaatar et al., 2015).
For instance, Cheng et al. (2016) incorporate different memory cells for each previous output
representation, which are later accessed by an attention mechanism. Tran et al. (2016) include a
memory block to access recent input words selectively. Both methods show improvements in
language modeling. For NMT, Wang et al. (2016a) presented a decoder enhanced with external
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shared memory. Memory networks extend the network’s capacity and have the potential to read,
write, and forget information. Our method, which attends over previously predicted words, can
be seen as a read-only memory, which is simpler but computationally more efficient because it
does not require additional memory space. Other studies aim to improve the modeling of source-
side contextual information, for example through a context-aware encoder using self-attention
(Zhang et al., 2017), or a recurrent attention NMT (Yang et al., 2017) that is aware of previously
attended words on the source-side to better predict which words will be attended in the future.
Additionally, variational NMT (Zhang et al., 2016a) introduces a latent variable to model the
underlying semantics of source sentences. In contrast to these studies, we focus instead on the
contextual information on the target side.

The application of self-attention mechanisms to RNNs have been previously studied, and in
general, they seem to capture syntactic dependencies among distant words (Liu and Lapata,
2018; Soltani and Jiang, 2016; Lee et al., 2017b; Lin et al., 2017). Daniluk et al. (2016) explore
different approaches to self-attention for language modeling, leading to improvements over a
baseline LSTM and memory-augmented methods. However, the methods do not fully utilize a
more extended context. Our approach’s main difference is that we apply attention to the output
embeddings rather than the hidden states. Thus, the connections are independent of the recurrent
layer representations, which is beneficial to NMT, as we show below.

Our model relies on residual connections, which have been shown to improve deep neural
networks’ learning process by addressing the vanishing gradient problem (He et al., 2016). These
connections create a direct path from previous layers, helping the transmission of information.
Several architectures using residual connections with LSTMs have been proposed for sequence
prediction (Zhang et al., 2016b; Kim et al., 2017; Zilly et al., 2017; Wang and Tian, 2016). To
our knowledge, our study is the first one to use self-attentive residual connections within residual
RNNs for NMT. In parallel to our study, a similar method was recently proposed for sentiment
analysis (Wang, 2017).

5.3 Neural Machine Translation with Attention

Neural machine translation aims to compute the conditional distribution of emitting a sentence
in a target language given a sentence in a source language, denoted by pΘ(y |x), where Θ is the
set of parameters of the neural model, and y = {y1, ..., yn} and x = {x1, ..., xm} are respectively
the representations of source and target sentences as sequences of words. The parameters Θ are
learned by training a sequence-to-sequence neural model on a corpus of parallel sentences. In
particular, the learning objective is to maximize the following conditional log-likelihood:

max
Θ

1

N

N∑
n=1

log(pΘ(y |x)) (5.1)
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The models typically use gated recurrent units (GRUs) (Cho et al., 2014b) or LSTMs (Hochreiter
and Schmidhuber, 1997). Their architecture has three main components: an encoder, a decoder,
and an attention mechanism.

The goal of the encoder is to build meaningful representations of the source sentences. It consists
of a bidirectional RNN which includes contextual information from past and future words into
the vector representation hi of a particular word vector xi , formally defined as hi = [

−→
hi ,

←−
hi ]. Here,−→

hi = f (xi ,hi−1) and
←−
hi = f (xi ,hi+1) are the hidden states of the forward and backward passes of

the bidirectional RNN respectively, and f is a non-linear function.

The decoder (see Figure 5.1a) is in essence a recurrent language model. At each time step, it
predicts a target word yt conditioned over the previous words and the information from the
encoder using the following posterior probability:

p(yt |y1, ..., yt−1,ct ) ≈ g (st , yt−1,ct ) (5.2)

where g is a non-linear multilayer function. The hidden state of the decoder st is defined as:

st = f (st−1, yt−1,ct ) (5.3)

and depends on a context vector ct that is computed by the attention mechanism.

The attention mechanism allows the decoder to select which parts of the source sentence are more
useful to predict the next output word. This goal is achieved by considering a weighted sum over
all hidden states of the encoder as follows:

ct =
m∑

i=1
αt

i hi (5.4)

where αt
i is a weight calculated using a normalized exponential function a, also known as

alignment function, which computes how good is the match between the input at position
i ∈ {1, ...,n} and the output at position t :

αt
i = so f tmax(e t

i ) (5.5)

e t
i = a(st−1,hi ) (5.6)

Different types of alignment functions have been used for NMT, as investigated by Luong et al.
(2015b). Here, we use the one originally defined by Bahdanau et al. (2015).

5.4 Self-Attentive Residual Decoder

The decoder of the attention-based NMT model uses a skip connection from the previously
predicted word to the output classifier to enhance translation performance. As we can see in
Equation (5.2), the probability of a particular word is calculated by a function g which takes as
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input the hidden state of the recurrent layer st , the representation of the previously predicted word
yt−1, and the context vector ct . Within g , these quantities are typically summed up after going
through simple linear transformations. Hence the addition of yt−1 is indeed a skip connection
as in residual networks (He et al., 2016). In theory, st should be sufficient for predicting the
next word given that it is dependent on the other two local-context components, according to
Equation (5.3). However, the yt−1 quantity makes the model emphasize the last predicted word
for generating the next word. How can we make the model consider a broader context?

To answer this question, we propose to include into the decoder’s formula skip connections not
only from the previous time step yt−1, but from all previous time steps from y0 to yt−1. This
defines a residual recurrent network that, unfolded over time, can be seen as a densely connected
residual network. These connections are applied to all previously predicted words and reinforce
the recurrent layer’s memory towards what has been translated so far. At each time step, the
model decides which of the previously predicted words should be emphasized to predict the next
one. To deal with the dynamic length of this new input, we use a target-side summary vector dt

that can be interpreted as the representation of the decoded sentence until the time t in the word
embedding space. We therefore modify Equation (5.2) replacing yt−1 with dt :

p(yt |y1, ..., yt−1,ct ) ≈ g (st ,dt ,ct ) (5.7)

The replacement of yt−1 with dt means that the number of parameters added to the model is
dependent only on the calculation of dt . Figure 5.1b illustrates the change made to the decoder.
We define two methods for summarizing the context into dt , described in the following sections.

5.4.1 Mean Residual Connections

One simple way to aggregate information from multiple word embeddings is by averaging them.
This average can be seen as the sentence representation until time t . We hypothesize that this
representation is more informative than using only the embedding of the previous word. Formally:

d av g
t = 1

t −1

t−1∑
i=1

yi (5.8)

5.4.2 Self-Attentive Residual Connections

Averaging is a simple and cheap way to aggregate information from multiple words, but may
not be sufficient for all kinds of dependencies. Instead, we propose a dynamic way to aggregate
information in each sentence, such that different words have different importance according to
their relation with the prediction of the next word. We propose to use a shared self-attention
mechanism to obtain a summary representation of the translation, i.e., a weighted average
representation of the words translated from y0 to yt−1. This mechanism aims to model, in part,
important non-sequential dependencies among words, and serves as a complementary memory to
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the recurrent layer.

d cav g
t =

t−1∑
i=1

αt
i yi (5.9)

αt
i = so f tmax(e t

i ) (5.10)

The weights of the attention model are computed by a scoring function e t
i that predicts how

important each previous word (y0, ..., or yt−1) is for the current prediction yt .

We experiment with two different scoring functions, as follows:

e t
i = vᵀt anh(Wy yi +Ws st ) (content+scope) (5.11)

or e t
i = vᵀt anh(Wy yi ) (content) (5.12)

where v ∈ Re , Wy ∈ Re×e , and Ws ∈ Re×d are weight matrices, e and d are the dimensions of
the embeddings and hidden states respectively. Firstly, we study the scoring function noted
content+scope, as proposed by Bahdanau et al. (2015) for NMT. Secondly, we explore a scoring
function noted as content, which is calculated based only on the previous hidden states of the
decoder, as proposed by Pappas and Popescu-Belis (2017). In contrast to the first attention func-
tion, which makes use of the hidden vector st , the second one is based only on the previous word
representations, therefore, it is independent of the current prediction representation. However,
the normalization of this function still depends on t .

5.5 Other Self-Attentive Networks

To compare our approach with similar studies, we adapted two representative self-attentive
networks for application to NMT.

5.5.1 Memory RNN

The Memory RNN decoder is based on the proposal by Cheng et al. (2016) to modify an LSTM
layer to include a memory with different cells for each previous output representation. Thus at
each time step, the hidden layer can select past information dynamically from the memory. To
adapt it to our framework, we modify Equation (5.3) as:

st = f (s̃t , yt−1,ct ) (5.13)
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where s̃t =
t−1∑
i=1

αt
i si (5.14)

αt
i = so f tmax(e t

i ) (5.15)

e t
i = a(hi , yt−1, s̃t−1) (5.16)

5.5.2 Self-Attentive RNN

The Self-Attentive RNN is the simplest one proposed by Daniluk et al. (2016), and incorporates a
summary vector from past predictions calculated with an attention mechanism. Here, the attention
is applied over previous hidden states. This decoder is formulated as follows:

p(yt |y1, ..., yt−1,ct ) ≈ g (st , yt−1,ct , s̃t ) (5.17)

where s̃t =
t−1∑
i=1

αt
i si (5.18)

αt
i = so f tmax(e t

i ) (5.19)

e t
i = a(si , st ) (5.20)

Additional details of the formulations in Sections 5.3, 5.4, and 5.5 are described in the Ap-
pendix A.

5.6 Experimental Settings

Here we describe the datasets and general model setup.

5.6.1 Datasets

To evaluate the proposed MT models in different conditions, we select three language pairs with
increasing amounts of training data: English-Chinese (0.5M sentence pairs), Spanish-English
(2.1M), and English-German (4.5M).

For English-to-Chinese, we use a subset of the UN parallel corpus (Rafalovitch and Dale, 2009)1,
with 0.5M sentence pairs for training, 2K for development, and 2K for testing. For training
Spanish-to-English MT, we use a subset of WMT 2013 (Bojar et al., 2013), corresponding
to Europarl v7 and News Commentary v11 with ca. 2.1M sentence pairs. Newstest2012 and
Newstest2013 were used for development and testing respectively. Finally, we use the complete
English-to-German set from WMT 2016 (Bojar et al., 2016) with a total of ca. 4.5M sentence
pairs. The development set is Newstest2013, and the testing set is Newstest2014. Additionally,

1http://www.uncorpora.org/
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we include as testing sets Newstest2015 and Newstest2016, for comparison with the state of
the art. We report translation quality using (a) BLEU over tokenized and truecased texts, and
(b) NIST BLEU over detokenized and detruecased texts2.

5.6.2 Model Configuration

We use the implementation of the attention-based NMT baseline provided in team2016theano3

developed in Python using Theano (Team et al., 2016). The system implements an attention-based
NMT model, described above, using one layer of GRUs (Cho et al., 2014b). The vocabulary size
is 25K for English-to-Chinese NMT, and 50K for Spanish-to-English and English-German. We
use the byte pair encoding (BPE) strategy for out-of-vocabulary words (Sennrich et al., 2016b).
For all cases, the maximum sentence length of the training samples is 50, the dimension of the
word embeddings is 500, and the dimension of the hidden layers is 1,024. We use dropout with
a probability of 0.5 after each layer. The models’ parameters are initialized randomly from a
standard normal distribution scaled to a factor of 0.01. The loss function is optimized using
Adadelta (Zeiler, 2012) with ε= 10−6 and ρ = 0.95 as in the original paper. The systems were
trained in 7–12 days for each model on a Tesla K40 GPU at the speed of about 1,000 words/sec.

5.7 Results Analysis

Table 5.1 shows the BLEU scores and the number of parameters used by the different NMT
models. Along with the NMT baseline, we included a statistical machine translation (SMT)
model based on Moses (Koehn et al., 2007) with the same training/tuning/test data as the NMT.
The performance of memory RNN is similar to the baseline. As confirmed later, it mainly focuses
the attention on the prediction at t −1. The self-attentive RNN method is inferior to the baseline,
which can be attributed to the overhead on the hidden vectors that have to learn the recurrent
representations and the attention simultaneously. The proposed models outperform the baseline,
and the NMT model obtains the best scores with self-attentive residual connections. Despite their
simplicity, the mean residual connections already improve the translation, without increasing the
number of parameters.

Tables 5.2 and 5.3 show further experiments with the proposed methods on various English-
German test sets, compared to several previous systems. Table 5.2 shows BLEU values calculated
by multi-bleu, and includes the NMT system proposed by Luong et al. (2015b) which replaces
unknown predicted words with the most strongly aligned word on the source sentence. Also,
the table includes other systems described in Section 5.2. Additionally, Table 5.3 shows values
calculated by the NIST BLEU scorer, as well as results reported by the “Winning WMT” systems
for each test set respectively: UEDIN-SYNTAX (Williams et al., 2014), UEDIN-SYNTAX

2Scrips from Moses toolkit (Koehn et al., 2007): BLEU multi-bleu, NIST BLEU mteval-v13a.pl, tokenizer.perl,
truecase.perl.

3https://github.com/nyu-dl/dl4mt-tutorial
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|Θ||Θ||Θ| BLEU
Model En–Zh Es–En
SMT baseline – 21.6 25.2
NMT baseline 108.7M 22.6 25.4
+ Memory RNN 109.7M 22.5 25.5
+ Self-attentive RNN 110.2M 22.0 25.1
+ Mean residual connections 108.7M 23.6 25.7
+ Self-attentive residual connections 108.9M 24.0 26.3

Table 5.1 – BLEU score (multi-bleu) on tokenized text. The highest score per dataset is marked
in bold. The self-attentive residual connections make use of the content attention function. |Θ|
indicates the number of parameters per model.

BLEU
Model NT14 NT15
NMT (unk. word repl.) (Luong et al., 2015b) 20.9 –
Context-aware NMT (Zhang et al., 2017) 22.57 –
Recurrent attention NMT (Yang et al., 2017) 22.1 25.0
Variational NMT (Zhang et al., 2016a) – 25.49
NMT baseline 22.3 24.8
+ Memory RNN 22.6 24.9
+ Self-attentive RNN 22.0 24.3
+ Mean residual connections 22.9 24.9
+ Self-attentive residual connections 23.2 25.5

Table 5.2 – BLEU score (multi-bleu) on tokenized text for English-to-German on Newstest (NT)
2014, and 2015. The highest score per dataset is marked in bold. The self-attentive residual
connections makes use of the content attention function.

(Williams et al., 2015), and UEDIN-NMT (Sennrich et al., 2016a). Also, we include the results
reported by Sennrich et al. (2016b) for a baseline encoder-decoder NMT with BPE for unknown
words similar to our configuration, and finally, the system proposed by Nadejde et al. (2017), an
explicit syntax-aware NMT that introduces combinatory categorial grammar (CCG) super tags
on the target side by predicting words and tags alternately. The comparison with this work is
relevant for the analysis described later in Section 5.7.5. The results confirm that the self-attentive
residual connections improve the translations significantly. To evaluate the significance of the
improvements against the NMT baseline, we performed a one-tailed paired t-test.

5.7.1 Impact of the Attention Function

We now examine the two scoring functions that can be used for the self-attentive residual
connections model presented in Equation (5.11), considering English-to-Chinese and Spanish-to-
English. The BLEU scores are presented in Table 5.4: the best option is the content matching
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BLEU (NIST)
Model NT14 NT15 NT16
Winning WMT 20.1 24.4 34.2
NMT (BPE) (Sennrich et al., 2016b) – 22.8 –
Syntax NMT (Nadejde et al., 2017) – – 29.0
NMT Baseline 21.0 24.4 28.8
+ Mean residual connections* 21.4 24.7 29.6
+ Self-attentive residual connections** 21.7 25.0 29.7

Table 5.3 – NIST BLEU scores on detokenized and detruecased text for English-to-German on
Newstest (NT) 2014, 2015, 2016. Significance test: * p < 0.05, ** p < 0.01. The Winning WMT
systems are listed in the text below.

BLEU
Attention function En-Zh Es-En
Content+Scope 23.1 25.6
Content 24.0 26.3

Table 5.4 – BLEU scores for two scoring variants of the attention function of the proposed
decoder.

function, which depends only on the word embeddings. The content+scope function, which
depends additionally on the hidden representation of the current prediction, is better than the
baseline but scores lower than content.

The idea that the context’s importance depends on the current prediction is appealing because it
can be interpreted as learning internal dependencies among words. However, the experimental
results show that it does not necessarily lead to the best translation. On the contrary, the content
attention function may be extracting representations of the whole sentence, which are easier to
learn and generalize.

5.7.2 Performance According to Human Evaluation

Manual evaluation on samples of 50 sentences for each language pair helped to corroborate
the conclusions obtained from the BLEU scores, and to provide a qualitative understanding of
the improvements brought by our model. For each language, we employed one evaluator who
was a native speaker of the target language and had good knowledge of the source language.
The evaluators ranked three translations of the same source sentence – one from each of our
models: baseline, mean residual connections, and self-attentive residual connections – according
to their translation quality. The three translations were presented in a random order so that the
system that had generated them could not be identified. To integrate the judgments, we proceed
in pairs and count the number of times each system was ranked higher, equal to, or lower than
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Ranking (%)
Models En–Zh Es–En En–De

> = < > = < > = <
Mean vs. Baseline 26 56 18 20 64 16 28 58 24
Self-attentive vs. Baseline 28 60 12 28 56 16 32 54 14
Self-attentive vs. Mean 24 62 14 28 58 14 32 56 12

Table 5.5 – Human evaluation of sentence-level translation quality on three language pairs. We
compare the models in pairs, indicating the percentages of sentences that were ranked higher
(>), equal to (=), or lower (<) for the first system with respect to the second one. The values
correspond to percentages (%).

Model d Perplexity
LSTM (Daniluk et al., 2016) 300 85.2
LSTM + Attention (Daniluk et al., 2016) 296 82.0
LSTM + 4-gram (Daniluk et al., 2016) 968 75.9
LSTM + Mean residual connections 296 80.2
LSTM + Self-attentive residual connections 296 80.4

Table 5.6 – Evaluation of the proposed methods on language modeling. The number of parameter
for all models is 47M.

another competing system. The results shown in Table 5.5 indicate that the self-attentive residual
connections model outperforms the one with mean residual connections, and both outperform
the baseline, for all three language pairs. The rankings are thus identical to those obtained using
BLEU in Tables 5.1 and 5.3.

5.7.3 Performance on Language Modeling

To examine whether language modeling (LM) can benefit from the proposed method, we in-
corporate the residual connections into a neural LM. We use the same setting as Daniluk et al.
(2016) for a corpus of Wikipedia articles (22.5M words), and we compare it with two methods
proposed in the same paper, namely attention LSTM and 4-gram LSTM. As shown in Table 5.6,
the proposed models outperform the LSTM baseline as well as the self-attention model, but not
the 4-gram LSTM. Experiments using 4-gram LSTM for NMT showed poor performance (13.9
BLEU points for English-Chinese), which can be attributed to the difference between the LM and
NMT tasks. Both tasks predict one word at a time conditioned over previous words. However, in
NMT the previous target-word-inputs are not given. They have to be generated by the decoder.
Thus, the output could be conditioned over previous erroneous predictions affecting the 4-gram
LSTM model in higher proportion. This result shows that even if a model improves language
modeling, it does not necessarily improve machine translation.
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Figure 5.2 – Percentage of words that received maximum attention at a given relative position,
ranging from −1 to −50 (maximum length).

5.7.4 Distribution of Attention

Figure 5.2 shows a comparison of the distribution of attention of the different self-attentive
models described in this paper, on Spanish-to-English NMT (the other two language pairs exhibit
similar distributions). The values correspond to the number of words that received maximal
attention for each relative position (x-axis). At each prediction, we selected the preceding word
with maximal weight and counted its relative position. We normalized the count by the number
of previous words at the time of each prediction.

We observe that the memory RNN almost always selects the immediately previous word (t −1)
and ignores the rest of the context. On the contrary, the other two models distribute attention
more evenly among all previous words. In particular, the self-attentive RNN uses a longer context
than the self-attentive residual connections, but, as the performance on BLEU score shows, this
fact does not necessarily mean better translation.

Figure 5.3 shows the attention to previous words generated by each model for one sentence
translated from Spanish to English. The matrices present the target-side attention weights, with
the vertical axis indicating the previous words, and the color shades at each position (cell)
representing the attention weights. The weights of the memory RNN are concentrated on the
diagonal, indicating that the attention is generally located on the previous word, making the
model almost equivalent to the baseline. The weights of the self-attentive RNN show that
attention is more distributed towards the distant past, and they vary for each word because the
attention function depends on the current prediction. This model tries to find dependencies among
words, although complex relations seem challenging to learn. On the contrary, the proposed
self-attentive residual connections model strongly focuses on particular words, and we present a
more exhaustive analysis of it in the following section.
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(a) Memory RNN (b) Self-attentive RNN

(c) Self-attentive residual connections

Figure 5.3 – Matrix of distribution of the attention weights to previous words. The vertical axis
represents the previous words. A darker shade indicates a higher attention weight.

5.7.5 Structures Learned by the Model

When visualizing the matrix of attention weights generated by our model (Figure 5.3c), we
observed the formation of sub-phrases that are grouped depending on their attention to previous
words. To build the sub-phrases in a deterministic fashion, we implemented Algorithm 1, which
iteratively splits the sentence into two sub-phrases every time the focus of attention changes to a
new word, from left-to-right. The results are binary tree structures containing the sub-phrases,
exemplified in Figure 5.4.

We formally evaluate the syntactic properties of the binary tree structures by comparing them
with the results of an automatic constituent parser (Manning et al., 2014), using the ParsEval
approach (Black et al., 1991), i.e., by counting the precision and recall of constituents, excluding
single words. Our models reach a precision of 0.56, which is better than the precision of 0.45
obtained by a trivial right-branched tree model4. Note that these structures were neither optimized
for parsing nor learned using part-of-speech tagging as most parsers do. Our interpretation of the
results is that they are “syntactic-like” structures. However, given the model’s simplicity, they
could also be viewed as more limited structures, similar to sentence chunks.

4A model constructed by dividing iteratively one word and the rest of the sentence, from left-to-right.
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Figure 5.4 – Examples of hypothesized syntactic structures obtained with Algorithm 1.

Algorithm 1 Binary Parse Tree

Require: A matrix of attention of size N ×N
Require: s sentence as list of words of size N

1: function SPLIT(tr ee,A,s)
2: n ← leng th(s)
3: i ← 0
4: while max(A[:][i ]) = 0 or i < n do
5: i ← i +1
6: end while
7: tr ee.addC hi ld(s[0 : i ])
8: if i < n then
9: subtr ee ← newTr ee()

10: SPLIT(subtr ee,A[i : n][i : n],s[i : n]))
11: tr ee.addC hi ld(subtr ee)
12: end if
13: end function
14: tr ee ← newTr ee(); SPLIT(tr ee,A,s)
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BLUE score: self-attentive > baseline
Example 1: Correct sentence structure
S: Estudiantes y profesores se están tomando a la ligera la fecha.
R: Students and teachers are taking the date lightly.
B: Students and teachers are being taken lightly to the date.
O: Students and teachers are taking the date lightly.

Example 2: Correct drop-pronoun translation and sentence structure
S: No porque ; compartiera su ideología, sino porque para él los Derechos Humanos son

indivisibles.
R: Not because he shared their world view, but because for him, human rights are indivisi-

ble.
B: Not because I share his ideology, but because he is indivisible by human rights.
O: Not because he shared his ideology, but because for him human rights are indivisible.

BLUE score: self-attentive < baseline
Example 3: Incorrect sentence structure
S: El gobierno intenta que no se construyan tantas casas pequeñas.
R: The Government is trying not to build so many small houses.
B: The government is trying not to build so many small houses.
O: The government is trying to ensure that so many small houses are not built.

Example 4: Alternative translation
S: Otras personas pueden tener niños .
R: Other people can have children.
B: Other people can have children.
O: Others may have children.

Table 5.7 – Examples from Spanish to English.

5.7.6 Translation Examples

Table 5.7 shows examples of translations produced with the baseline and the self-attentive residual
connections model. The first part shows examples for which the proposed model reached a higher
BLEU score than the baseline. Here, the structure of the sentences, or at least the word order, are
improved. The second part contains examples where the baseline achieved a better BLEU score
than our model. In the first example, the sentence structure is different but the content and quality
are similar, while in the second one, lexical choices differ from the reference.
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5.8 Conclusion

We presented a novel decoder that uses self-attentive residual connections to previously translated
words to enrich the target-side contextual information in NMT. To cope with the variable lengths
of previous predictions, we proposed two methods for context summarization: mean residual
connections and self-attentive residual connections. Additionally, we showed how similar
previous proposals, designed for language modeling, can be adapted to NMT. We evaluated
the methods over three language pairs: Chinese-to-English, Spanish-to-English, and English-to-
German. In each case, we improved the BLEU score compared to the NMT baseline and two
variants with memory-augmented decoders. A manual evaluation over a small set of sentences
for each language pair confirmed the improvement. Finally, a qualitative analysis showed that the
proposed model distributes weights throughout an entire sentence and learns structures resembling
syntactic ones.
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6 Document-level Neural Machine
Translation

This chapter is based on the following paper:

Miculicich, L., Ram, D., Pappas, N., and Henderson, J. (2018). Document-level
neural machine translation with hierarchical attention networks. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages
2947–2954, Brussels, Belgium. Association for Computational Linguistics
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6.1 Introduction

In the previous chapter, we introduced a self-attentive decoder to facilitate modeling discourse
and semantic structures useful for translation at the sentence-level. In this chapter, we aim at
modeling discourse at the document-level. During the development of this work, research on
self-attention networks for sequences was gaining strength, and finally, a network entirely based
on attention, the transformer network (Vaswani et al., 2017), showed significant improvement
over the previous state-of-the-art models based on LSTMs. The transformer network’s attention
structure is flexible and allows performing parallel computations for each word in the sequence.
Thus, it is efficient at training and makes it easier to increase the network’s depth, resulting in
better learning capabilities.

However, the main issue of this thesis persists. The NMT models do not consider discourse and
context at the document-level. By ignoring discourse connections between sentences and other
valuable contextual information, the model potentially degrades the coherence and cohesion of
a translated document (Hardmeier, 2012; Meyer and Webber, 2013; Sim Smith, 2017). Some
previous studies (Tiedemann and Scherrer, 2017; Jean et al., 2017; Wang et al., 2017; Tu et al.,
2018) have demonstrated that adding contextual information to the NMT model improves the
general translation performance, and more importantly, improves the coherence and cohesion
of the translated text (Bawden et al., 2018; Lapshinova-Koltunski and Hardmeier, 2017). Most
of these methods use an additional encoder (Jean et al., 2017; Wang et al., 2017) to extract
contextual information from previous source-side sentences. However, this requires additional
parameters, and it does not exploit the representations already learned by the NMT encoder.
Tu et al. (2018) has shown that a cache-based memory network performs better than the above
encoder-based methods. The cache-based memory keeps past context as a set of words, where
each cell corresponds to one unique word keeping the hidden representations learned by the NMT
while translating it. However, in this method, the word representations are stored irrespective of
the sentences where they occur, and the representations are disconnected from the original NMT
network.

We propose to use a hierarchical attention network (HAN) (Yang et al., 2016) to model the
contextual information in a structured manner using word-level and sentence-level abstractions.
In contrast to the hierarchical recurrent neural network (HRNN) used by (Wang et al., 2017),
here the attention allows dynamic access to the context by selectively focusing on different
sentences and words for each predicted word. Besides, we integrate two HANs in the NMT
model to account for target and source context. The HAN encoder helps in the disambiguation of
source-word representations, while the HAN decoder improves the target-side lexical cohesion
and coherence. The integration is done by (i) re-using the hidden representations from both
the encoder and decoder of previous sentence translations and (ii) providing input to both the
encoder and decoder for the current translation. This integration method enables it to optimize for
multiple-sentences jointly. Furthermore, we extend the original HAN with a multi-head attention
(Vaswani et al., 2017) to capture different types of discourse phenomena. The HAN architecture
can adapt to any underlying NMT architecture because it works as an additional layer to the
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encoder and decoder. In this work, we used transformer networks.

Our main contributions are the following:

(i) We propose a HAN framework for translation to capture context and inter-sentence con-
nections in a structured and dynamic manner.

(ii) We integrate the HAN in a very competitive NMT architecture (Vaswani et al., 2017) and
show significant improvement over two strong baselines on multiple data sets.

(iii) We perform an ablation study of the contributions of each HAN configuration, showing
that contextual information obtained from source and target sides are complementary.

The rest of the chapter is organized as follows: additional work related to document-level machine
translation is described in Section 6.2. The baseline transformer architecture for our experiments
is detailed in Section 6.3, and our HAN approach in Section 6.4. The experimental setting and
result analysis are in Sections 6.5 and 6.6 respectively. Finally, our conclusions are drawn in
Section 6.7.

6.2 Related Work

As discussed in Section 2.3 of the Background Chapter, the necessity for introducing discourse
in translation was present since statistical machine translation (SMT). Some initial studies were
based on cache memories of previous translations (Tiedemann, 2010; Gong et al., 2011), however,
most of the work explicitly modeled discourse phenomena (Sim Smith, 2017; Mascarell, 2017a)
such as lexical cohesion (Meyer and Popescu-Belis, 2012; Xiong et al., 2013b; Loáiciga and
Grisot, 2016; Pu et al., 2017a), word sense disambiguation (Vickrey et al., 2005; Chan et al.,
2007; Pu et al., 2017b), coherence (Born et al., 2017), and coreference (Rios Gonzales and
Tuggener, 2017; Miculicich Werlen and Popescu-Belis, 2017a). However, these studies were
based on sentence-level translations. Some of studies proposed to optimize the translation of
the whole text (Xiao et al., 2011). For example, Hardmeier et al. (2013, 2012) implemented a
document-level decoder for phrase-based SMT, referred to as “Docent”. The decoder allows to
incorporate feature functions (i.e. scoring functions for optimizations) at document-level. Some
studies used this functionality to incorporate different discourse features (Garcia et al., 2015;
Mascarell, 2017b; Garcia et al., 2017; Born et al., 2017).

Previous to our work, several studies proved that context could be effectively used to improve
neural machine translation (NMT). Tiedemann and Scherrer (2017) use the concatenation of
multiple sentences as input and output of a standard NMT, Jean et al. (2017) adds a context
encoder for the previous source sentence, Wang et al. (2017) includes a hierarchical RNN to
summarize source-side context, and Tu et al. (2018) use a dynamic cache memory to store
representations of previously translated words.

Since the publication of the present work, research on document-level machine translation gained
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strength, especially since the conference on machine translation (WMT) included evaluations of
sentences in context and complete documents (Ma et al., 2019). Although sentence-level NMT
reached high performance comparable to human quality under certain evaluation conditions,
Läubli et al. (2018) showed that when sentences were evaluated in context, judges still prefer
human translation and MT errors related to discourse are spotted. Several studies were done in this
direction. Maruf and Haffari (2018) proposed a document-level NMT using memory-networks.
Junczys-Dowmunt (2019) proposed a large scale document-level NMT system using a simple
encoder-decoder architecture with whole documents as input/output. Voita et al. (2018) showed
that context-aware NMT improves, in particular, the anaphoric pronouns. (Voita et al., 2019b)
present a complete study of context-aware NMT based on deixis, ellipsis, and lexical cohesion.
(Yang et al., 2019b) proposed to use capsule networks to model the hierarchical structure of
languages. Similar to the work presented here, Tan et al. (2019) uses a hierarchical modeling
approach for global context, and Maruf et al. (2019) improves HAN with a selective attention.
Alternative approaches are, for instance, to model discourse at the target side with a monolingual
language model (Voita et al., 2019a), or to set document translation as a domain adaptation
problem (Kothur et al., 2018).

6.3 Transformer Network

The transformer network proposed by (Vaswani et al., 2017) is an encoder-decoder architecture
for sequence-to-sequence modeling. Instated of using LSTMs, the sequence is represented based
solely on attention mechanisms, so the intra-sentence contextual information for each word is
calculated with a multi-head self-attention. In order to keep the sense of order, a positional
embedding pt is added to the word input embedding xt at time-step t of the sequence. The
position vector is calculated as follows:

p2i
t = sin(t/10002i /d )

P 2i+1
t = cos(t/10002i /d )

where i is the index dimension of pt , and d is the embedding dimension.

The Attention function is defined over three variables: a query vector qt , a key matrix K , and a
value matrix V . It is calculated as follows:

Attention(qt ,K ,V ) = softmax(
qt ·K ᵀ

p
d

) ·V (6.1)

here query qt refers to the element of interest at time-step t either during encoding or decoding.
K and V refer to the context from where we want to obtain information, the names key and
value refer to their functionality in the equation. During encoding, these matrices are both the
input sequence representation. During decoding, there are two attentions: one to the encoder
representations, and another to the output sequence representation from previous time-steps.
The MultiHead term refers to the partition of the attention vector into H sections, each called

74



6.4. The Proposed Approach

head and denoted with index h. This partition allows to each head to pay attention to different
elements of the sequence (e.g. words of the sentence) reflecting independent and complementary
information. This function is defined as follows:

MultiHead(qt ,K ,V ) = LayerNorm(q̂t +qt ) (6.2)

where q̂t =Wa · [A1, ..., AH ]

Ah =Attention( W h
q ·qt , W h

k ·K , W h
v ·V )

here Wa ,W h
q ,W h

k ,W h
v are parameter matrices, and the square brackets denote concatenation. This

equation has a residual connection (He et al., 2016), and is normalized with a layer normalization
function (Lei Ba et al., 2016), notated as LayerNorm. The residual connection consists of adding
the input vector to the layer’s output to facilitate the flow of information, so the layer could be
skipped if needed. The layer normalization is a technique to normalize the distribution of a vector.
Both techniques allow smoother gradients, faster training, and better generalization accuracy. We
refer the attention vector output as zt :

zt =MultiHead(qt ,K ,V ) (6.3)

The feed-forward layer function FFN receives a vector as argument, in this case zt :

FFN(zt ) = LayerNorm(ẑt + zt ) (6.4)

where ẑt =W f ·max(0,Wz · zt )

here W f ,Wz are parameters of the network. The final hidden state ht at time-step t is:

ht = FFN(zt ) (6.5)

The complete architecture is shown in Figure 6.1a. The left component is the encoder and the
right is the decoder. The previous described layers, MultiHead and FFN, are repeated N times.

6.4 The Proposed Approach

The goal of NMT is to maximize the likelihood of a set of sentences in a target language
represented as sequences of words Y = [y1, ..., yt ] given a set of input sentences in a source
language X = [x1, ..., xm] as:

max
Θ

1

N

N∑
n=1

log (PΘ(Y n |X n)) (6.6)
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(a) Transformer Network (b) Transformer Network with HAN

Figure 6.1 – Comparison between baseline and proposed architectures. Image taken from
(Vaswani et al., 2017).

so, the translation of a document D is made by translating each of its sentences independently. In
this study, we introduce dependencies on the previous sentences from the source and target sides:

max
Θ

1

N

N∑
n=1

log (PΘ(Y n |X n ,Dxn ,D yn )) (6.7)

where Dxn = (X n−k , ..., X n−1) and D yn = (Y n−k , ...,Y n−1) denote the previous k sentences from
source and target sides respectively. The contexts Dxn and D yn are modeled with HANs.

6.4.1 Hierarchical Attention Network

The proposed HAN has two levels of abstraction. The word-level abstraction summarizes
information from each previous sentence j into a vector s j as:

qw = fw (ht ) (6.8)

s j =MultiHead(qw , H j , H j ) (6.9)

where ht denotes a hidden state of the NMT network at time-step t . H j = [h j
1 , ...,h j

m] is the
hidden state matrix representation of the j -th sentence of the context. The function fw is a linear
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transformation to obtain the query qw . We used the MultiHead attention function defined in
Equation (6.2) to capture different types of relations among words. It matches the query against
each of the hidden representations h j

i .

The sentence-level abstraction summarizes the contextual information required at time t in dt as:

qs = fs(ht ) (6.10)

dt =FFN( MultiHead(qs ,S,S) ) (6.11)

where S = [s1, ..., sl ] is the hidden state matrix representation of the previous sentences. fs

is a linear transformation, qs is the query for the attention function, FFN is a position-wise
feed-forward layer defined in Equation (6.4).

6.4.2 Context Gating

We use a gate (Tu et al., 2018, 2017) to regulate the information at sentence-level ht and the
contextual information at document-level dt . The intuition is that different words require different
amount of context for translation, e.g. ambiguous words vs. non-ambiguous ones.

λt =σ(Whht +Wd dt ) (6.12)

h̃t =λt ht + (1−λt )dt (6.13)

where Wh ,Wp are parameter matrices, and h̃t is the final hidden representation for a word xt or
yt .

6.4.3 Integrated Model

The context can be used during encoding or decoding a word, and it can be taken from previously
encoded source sentences (Bawden et al., 2018), previously decoded target sentences, or from
previous alignment vectors (Tu et al., 2018) (i.e. context vectors (Bahdanau et al., 2015)). The
different configurations will define the input query and values of the attention function. In
this work we experiment with five of them: one at encoding time, three at decoding time, and
one combining both. At encoding time the query is a function of the hidden state hxt of the
current word to be encoded xt , and the values are the encoded states of previous sentences h j

xi

(HAN encoder). At decoding time, the query is a function of the hidden state hyt of the current
word to be decoded yt , and the values can be (a) the encoded states of previous sentences h j

xi

(HAN decoder source), (b) the decoded states of previous sentences h j
yi

(HAN decoder), and
(c) the alignment vectors c j

i (HAN decoder alignment). Finally, we combine complementary
target-source sides of the context by joining HAN encoder and HAN decoder. Figure 6.2 shows
the integration of the HAN encoder with the NMT model; a similar architecture is applied to
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Figure 6.2 – Integration of HAN during encoding at time step t , h̃t is the context-aware hidden
state of the word xt . Similar architecture is used during decoding.

the decoder. The output h̃t is used by the NMT model as a replacement of ht during the final
classification layer. The complete architecture is show in Figure 6.1b.

6.5 Experimental Setting

In this section, we describe the datasets and evaluation metrics for our experiments. We also
detail the model configurations, hyper-parameters, and training setup.

6.5.1 Datasets and Evaluation Metrics

We carry out experiments with Chinese-to-English (Zh-En), and Spanish-to-English (Es-En) sets
on three different domains: talks, subtitles, and news where contextual information is relevant
(Tu et al., 2018; Bawden et al., 2018).

TED Talks is part of the IWSLT 2014 and 2015 (Cettolo et al., 2012, 2015) evaluation campaigns1.
We use dev2010 for development; and tst2010-2012 (Es-En), tst2010-2013 (Zh-En) for testing.
The Zh-En subtitles corpus is a compilation of TV subtitles designed for research on context
(Wang et al., 2018b). 2. In contrast to the other sets, it has three references to compare. The Es-En
corpus is a subset of OpenSubtitles2018 (Lison and Tiedemann, 2016)3. We randomly select two
episodes for development and testing each. Finally, we use the Es-En News-Commentaries114

corpus which has document-level delimitation. We evaluate on WMT sets (Bojar et al., 2013):
newstest2008 for development, and newstest2009-2013 for testing. A similar corpus for Zh-En is
too small to be comparable. Table 6.3 shows the corpus statistics.

1https://wit3.fbk.eu
2https://github.com/longyuewangdcu/tvsub
3http://www.opensubtitles.org
4http://opus.nlpl.eu/News-Commentary11.php
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6.6. Results

For evaluation, we use BLEU score (Papineni et al., 2002) on tokenized text, and we measure
significance with the paired bootstrap re-sampling method proposed by Koehn (2004) (imple-
mentations by Koehn et al. (2007)) 5.

6.5.2 Model Configuration and Training

As baselines, we use an NMT transformer and a context-aware NMT transformer with cache
memory, which we implemented for comparison following the best model described by Tu
et al. (2018), with a memory size of 25 words. We used the OpenNMT (Klein et al., 2017)
implementation of the transformer network. The configuration is the same as the model called
“base model” in the original paper (Vaswani et al., 2017). The encoder and decoder are composed
of 6 hidden layers each. All hidden states have a dimension of 512, dropout of 0.1, and 8 heads
for the multi-head attention. The target and source vocabulary size is 30K. The optimization and
regularization methods were the same as proposed by Vaswani et al. (2017). Inspired by Tu
et al. (2018) we trained the models in two stages. First, we optimize the parameters for the NMT
without the HAN, then we proceed to optimize the parameters of the whole network. We use
k = 3 previous sentences, which gave the best performance on the development set.

6.6 Results

We performed a quantitative and qualitative analysis of results, including contextual discourse
aspects such as coherence, cohesion, and pronoun translation.

6.6.1 Translation Performance

Table 6.1 shows the BLEU scores for different models. The baseline NMT transformer already
has better performance than previously published results on these datasets, and we replicate
previous improvements from the cache method over this stronger baseline. All of our proposed
HAN models perform at least as well as the cache method. The best scores are obtained by the
combined encoder and decoder HAN model, which is significantly better than the cache method
on all datasets without compromising training speed (2.3K vs 2.6K tok/sec). A critical portion
of the improvement comes from the HAN encoder, which can be attributed to the fact that the
source-side always contains the correct information, while the target-side may contain erroneous
predictions at testing time. However, combining HAN decoder with HAN encoder further
improves translation performance, showing that they contribute complementary information. The
three ways of incorporating information into the decoder all perform similarly.

5multi-bleu.perl and bootstrap-hypothesis-difference-significance.pl
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Chapter 6. Document-level Neural Machine Translation

Figure 6.3 – Difference (∆) BLUE score of the HAN model with respect to the transformer
baseline, for correct, shuffled and random context

6.6.2 Effect of Context

We analyze two different questions related to the effect of context on translation. First, how much
context is useful in terms of the number of sentences? Second, what happens when we change
the context? To answer the first question, table 6.4 shows the performance of our best HAN
model with a varying number k of previous sentences in the test-set. We can see that the best
performance for TED talks and news is achieved with 3, while for subtitles, it is similar between 3
and 10. We can infer that HAN model can exploit a relatively short context of about 3 sentences;
further context has no effect. This result could be caused by the limited memory capacity of the
vector ĥt , which has to compress all contextual information. To answer the second questions,
Figure6.3 shows the difference of BLEU scores of HAN model with respects to the baseline in
three experimental cases: (a) correct: using the three previous sentences as context, (b) shuffled:
using the three random sentences of the same document, (c) random: using the three random
sentences of other documents,. We can see that the best results for test-sets are obtained in case
(a) when having the correct context. In case (b), the model can be seen as domain adaptation, so
the results are better than baseline but worse than having context in correct order. In case (c), the
HAN model has worse performance than the baseline, with lesser impact in news. Thus, we can
deduce that HAN model effectively exploits context in this scenario.

6.6.3 Accuracy of Pronoun/Noun Translations

We evaluate coreference and anaphora using the reference-based metric: accuracy of pronoun
translation (Miculicich Werlen and Popescu-Belis, 2017b), which can be extended for nouns. The
list of evaluated pronouns is predefined in the metric, while the list of nouns was extracted using
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TED Talks Subtitles News
Zh–En Es–En Zh–En Es–En Es–En

Training 0.2M 0.2M 2.2M 4.0M 0.2M
Development 0.8K 0.8K 1.1K 1.0K 1.9K
Test 5.5K 4.7K 1.2K 1.0K 13.5K
Mean |s| (src-tgt) 18-20 19-20 5-7 8-9

Table 6.3 – Dataset statistics in # sentence pairs. |s| denotes sentence lengths

TED Talks Subtitles News
k Zh–En Es–En Zh–En Es–En Es–En
1 17.70 37.20 29.35 36.20 22.46
3 17.79 37.24 29.67 36.23 22.76
5 17.49 37.11 29.69 36.22 22.54
7 17.00 37.22 29.64 36.21 22.64
10 10.50 13.71 28.89 36.18

Table 6.4 – Performance for variable context sizes k with the HAN encoder + HAN decoder.

NLTK POS tagging (Bird, 2006). The upper part of Table 6.2 shows the results. For nouns, the
joint HAN achieves the best accuracy with a significant improvement compared to other models,
showing that target and source contextual information are complementary. Similarly, the joint
model has the best result for TED talks and news for pronouns. However, HAN encoder alone is
better in the case of subtitles. Here HAN decoder produces mistakes by repeating past translated
personal pronouns. Subtitles is a challenging corpus for personal pronoun disambiguation because
it usually involves a dialogue between multiple speakers.

6.6.4 Cohesion and Coherence Evaluation

We use the metric proposed by Wong and Kit (2012) to evaluate lexical cohesion. It is defined
as the ratio between the number of repeated and lexically similar content words over the total
number of content words in a target document. The lexical similarity is obtained using WordNet.
Table 6.2 (bottom-left) displays the average ratio per tested document. In some cases, the HAN
decoder achieves the best score because it produces a larger quantity of repetitions than other
models. However, as previously demonstrated in 6.6.3, repetitions do not always make the
translation better. Although HAN boosts lexical cohesion, the scores are still far from the human
reference, so there is room for improvement in this aspect.

For coherence, we use a metric based on Latent Semantic Analysis (LSA) (Foltz et al., 1998).
LSA is used to obtain sentence representations, then cosine similarity is calculated from one
sentence to the next, and the results are averaged to get a document score. We employed the
pre-trained LSA model Wiki-6 from (Stefanescu et al., 2014). Table 6.2 (bottom-right) shows
the average coherence score of documents. The joint HAN model consistently obtains the best
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S: y esto es un escape de su estado atormentado .
R: and that is an escape from his tormented state .
B: and this is an escape from its state .
C: and this is an escape from their state .
H: and this is an escape from his state .

Table 6.5 – Example of pronoun disambiguation (TED Talks Es-En).

Figure 6.4 – Example of pronoun disambiguation in context using HAN (TED Talks Es-En)

coherence score, but close to other HAN models. Most of the improvement comes from the HAN
decoder. Although the absolute difference between human reference and baseline is small, this
metric gives us a notion of the relative improvement, which places the HAN performance in
between the human reference and baseline.

6.6.5 Qualitative Analysis

Table 6.5 displays an example where HAN helped to generate the correct pronoun translation. It
displays the source S, reference R, translations of the baseline transformer B, the cache memory
C, and the HAN model H. To visualize how the HAN model use the context, Figure 6.4 shows the
source sentence and the translation to the target language together with two previous sentences
at each side. The figure plots the hierarchical structure obtained when calculating the context
vector for the pronoun ‘his’ and its counterpart ‘su’ in the source language. We see that HAN
correctly translates the ambiguous Spanish pronoun ‘su’ into the English ‘his’. The HAN decoder
highlighted a previous mention of ‘his’ (see red line), and the HAN encoder highlighted the
antecedent ‘Nathaniel’ (see blue line). HAN can capture interpretable inter-sentence connections.
More samples with different attention heads are shown in the Appendix B.

6NIST BLEU: NMT transformer 35.99, cache 36.52, and HAN 37.15.
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6.7 Conclusion

In this chapter, we proposed a multi-head hierarchical attention network (HAN) model for
document-level machine translation. We integrated context from the source and target sides by
directly connecting representations from previous sentence translations into the current sentence
translation. The model significantly outperforms two competitive baselines, and the ablation
study shows that the target and source context is complementary. It also improves lexical cohesion
and coherence, and the translation of nouns and pronouns. Our experiments show that varying
the input context to incorrect one harms the translations. Thus our model is sensitive to context.
The qualitative analysis shows that the HAN model can identify meaningful previous sentences
and words for the correct prediction and that the multi-head attention captures different types
of connections. After the publication of this work, some studies improved over this model, for
example, the hierarchical global context (Tan et al., 2019), and HAN with selective attention
(Maruf et al., 2019). As mentioned in Section 6.2, research on document-level machine translation
has recently become more important, and the human evaluation process for translation includes
context further than one sentence.
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7 Partially-supervised
Mention Detection

This chapter is based on the following paper:

Miculicich, L. and Henderson, J. (2020). Partially-supervised mention detection.
In Proceedings of the Third Workshop on Computational Models of Reference,
Anaphora and Coreference, pages 91–98, Barcelona, Spain (online). Association for
Computational Linguistics
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7.1 Introduction

Mention detection is the task of identifying text spans referring to an entity: named, nominal or
pronominal (Florian et al., 2004). It is a fundamental component for several downstream tasks,
such as coreference resolution (Soon et al., 2001), and relation extraction (Mintz et al., 2009); and
it can help to maintain coherence in large text generation (Clark et al., 2018), and contextualized
machine translation (Miculicich et al., 2018).

Previous studies tackled mention detection jointly with named entity recognition (Xu et al., 2017;
Katiyar and Cardie, 2018; Ju et al., 2018; Wang et al., 2018a). There, only certain types of entities
are considered (e.g., person, location), and the goal is to recognize mention spans and their types.
In this study, we are interested in discovering generic entity mentions, which can potentially be
referred to in the text, without the use of syntactic parsing information. Our long term objective
is to have a model that keeps track of entities in a document for word disambiguating language
modeling and machine translation.

Data from coreference resolution is suitable for our task, but the annotation is partial in that it
contains only mentions that belong to a coreference chain, not single entity-mentions. Neverthe-
less, the missing mentions have approximately the same distribution as the annotated ones, so we
can still learn this distribution from the data. Figure 7.1 shows an example from Ontonotes V.5
dataset (Pradhan et al., 2012) where “the taxi driver” is annotated in sample 1 but not in 2.

Thus, we approach mention detection as a partially supervised problem and investigate two
simple techniques to compensate for the fact that some negative examples are true mentions:
weighted loss functions and soft-target classification. By doing this, the model is encouraged to
predict more false-positive samples, so it can detect potential mentions which were not annotated.
We implement two neural mention detection methods: a sequence tagging approach, and an
exhaustive search approach. The first method is novel, whereas the other is similar to previous
work Lee et al. (2017a). We evaluate both techniques for coreference resolution by implementing
a multi-task learning system. We show that the proposed techniques help the model increase
recall significantly with a minimal decrease in precision. In consequence, the F1 score of the
mention detection and coreference resolution improves for both methods, and the exhaustive
search approach yields a significant improvement over the baseline coreference resolver.

Our contributions are:

(i) We investigate two techniques to deal with partially annotated data.

(ii) We propose a sequence tagging method for mention detection that can model nested
mentions.

(iii) We improve an exhaustive search method for mention detection.

(iv) We approach mention detection and coreference resolution as multi-task learning and
improve both tasks’ recall.

90



7.2. Related Work

Figure 7.1 – Samples from CoNLL 2012. Annotated mentions are within brackets, non-annotated
ones are underlined.

The rest of the chapter is organized as follows. Section 7.2 contains related work to this study.
Sections 7.3 and 7.4 describe the two mention detection approaches we use in our experiments.
Section 7.5 presents the proposed methods to deal with partially annotated mentions. We use
coreference resolution as a proxy task for testing our methods which is described in Section 7.6.
Section 7.7 contains the experimental setting and the analysis of results. Finally, the final
conclusion is drawn Section 7.8.

7.2 Related Work

Lee et al. (2017a) proposed the first end-to-end coreference resolution that does not require heavy
feature engineering for word representations. Their mention detection is done by considering all
spans in a document as the candidate mentions, and the learning signal is coming indirectly from
the coreference annotation. Zhang et al. (2018) used a similar approach but introducing a direct
learning signal for the mention detection, which is done by adding a loss for mention detection
with a scaling factor as hyper-parameter. This allows a faster convergence at training time.

Name entity recognition has been largely studied in the community. However, many of these
models ignored the nested entity names. Recently, Katiyar and Cardie (2018) presents a nested
named entity recognition model using a recurrent neural network that includes extra connections
to handle nested mention detection. Ju et al. (2018) uses stack layers to model the nested mentions,
and (Wang et al., 2018a) use an stack recurrent network.

7.3 Sequence tagging model

Several studies have tackled mention detection and named entity recognition as a tagging problem.
Some of them use one-to-one sequence tagging techniques (Lample et al., 2016; Xu et al., 2017),
while others use more elaborate techniques to include nested mentions (Katiyar and Cardie, 2018;
Wang et al., 2018a). Here, we propose a simpler yet effective tagging approach that can manage
nested mentions.

We use a sequence-to-sequence model, which allows us to tag each word with multiple labels.
The words are first encoded and contextualized using a recurrent neural network, and then a
sequential decoder predicts the output tag sequence. During decoding, the model keeps a pointer
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into the encoder, indicating the word’s position, which is being tagged at each time step. The
tagging is done using the following set of symbols: {[,],+,-} . The brackets “[” and “]” indicate
that the tagged word is the starting or ending of a mention respectively, the symbol “+” indicates
that one or more mention brackets are open, and “-” indicates that none mention bracket is open.
The pointer into the encoder moves to the next word only after predicting “+” or “-”; otherwise,
it remains in the same position. Figure 7.2 shows a tagging example indicating the alignments of
words with tags.

Given a corpus of sentences X = (x1, ..., xM ), the goal is to find the parameters Θ which maximize
the log likelihood of the corresponding tag sequences Y = (y1, ..., yT ):

PΘ(Y |X ) =
T∏

t=1
PΘ(yt |X , y1, ..., yt−1) (7.1)

The next tag probability is estimated with a softmax over the output vector of a neural network:

PΘ(yt |X , y1, ..., yt−1) = so f tmax(ot ) (7.2)

ot = r elu(Wo · [dt ,hi ]+bo) (7.3)

where Wo ,bo are parameters of the network, dt is the vector representation of the tagged sequence
at time-step t , modeled with a long-short term memory (LSTM) (Hochreiter and Schmidhuber,
1997), and hi is the vector representation of the pointer’s word at time t contextualized with a
bidirectional LSTM (Graves and Schmidhuber, 2005).

(h1, ...,hM ) = Bi LST M(X ) (7.4)

dt = LST M(y1, ..., yt−1) (7.5)

where the decoder is initialized with the last states of the bidirectional encoder, d0 = hM .

The i -th word pointed to at time t is given by:

i ←


0, if t = 0

i +1, if t > 0and yt−1 ∈ {+,-}

i , otherwise

(7.6)

At decoding time, we use a beam search approach to obtain the sequence. The complexity of the
model is linear with respect to the number of words. It can be parallelized at training time, given
that it uses ground-truth data for the conditioned variables. However, it cannot be parallelized
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Figure 7.2 – Tagged sentence example

during decoding because of its autoregressive nature.

7.4 Span scoring model

Our span scoring model of mention detection is similar to the work of Lee et al. (2017a) for
solving coreference resolution, and to Ju et al. (2018) for nested named mention detection, as both
are exhaustive search methods. The objective is to score all possible spans mi j in a document,
where i and j are the starting and ending word positions of the span in the document. For this
purpose, we minimize the binary cross-entropy with the labels y :

H(y,PΘ(m)) = − 1

M 2

M∑
i=1

M∑
j=1

(ymi j ∗ l og (PΘ(mi j )) + (1−ymi j ) ∗ log (1−PΘ(mi j )) ) (7.7)

where Θ are the parameters of the model, ymi j ∈ [0,1] is one when there is a mention from
position i to j . If ymi j is zero when there is no mention annotated, this is the same as maximizing
the log-likelihood. Nevertheless, we will consider models where this is not the case.

The probability of detection is estimated as:

PΘ(mi j ) =σ(V · r elu(Wm ·mi j +bm)) (7.8)

mi j =r elu(Wh · [hi ,h j , x̃i j ]+bh) (7.9)

where V ,Wm ,Wh are weight parameters of the model, bm ,bh are biases, and mi j is a representa-
tion of the span from position i to j . It is calculated with the contextualized representations of
the starting and ending words hi ,h j , and the average of the word embeddings x̃i j :

(h1, ...,hM ) = Bi LST M(X ) (7.10)

x̃i j = 1

j − i

j∑
k=i

xk (7.11)
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The complexity of this model is quadratic with respect to the number of words. However, it
can be parallelized at training and decoding time. Lee et al. (2017a) uses an attention function
over the embeddings instead of an average. That approach is less memory efficient and requires
the maximum length of spans as a hyperparameter. Also, they include embeddings of the span
lengths which are learned during training. As shown in the experimental part, these components
do not improve the performance of our model.

7.5 Partially annotated data

The partial annotation of coreference data for mention detection means that not labeled spans may
be true mentions of entities. Thus, the approach of treating spans without mention annotations as
true negative examples would be incorrect. On the other hand, the ideal solution of sampling all
possible mention annotations, which are consistent with the given partial annotation, would be
intractable. We want to modify the model’s loss function in such a way that, if the system predicts
a false-positive, the loss is reduced. This encourages the model to favor recall over precision by
predicting more mention-like spans, even when they are not labeled. We assume that it is possible
to learn the true mention distribution using the annotated mention samples by extrapolating the
non-annotated mentions, and we propose two ways to encourage the model to do so.

Weighted loss function: We use a weighted loss function with weight w∈]0,1[ for negative
examples only. The sequence tagging model makes word-wise decisions; thus, we consider
words tagged as “out of mention”, yt=“-”, as negative examples, while the rest are positives.
Although this simplification has the potential to increase inconsistencies, e.g., having non-
ending or overlapping mentions, we observe that the LSMT-based model can capture the
simple grammar of the tag labels with very few mistakes. For span scoring, the distinction
between negative and positive examples is clear, given that the decisions are made for each
span.

Soft-target classification: Soft-targets allow us to have a distribution over all classes instead of
having a single class annotation. Thus, we applied soft-targets to negative examples to
reflect the probability that they could actually be positive ones. For sequence tagging, we
set the target of negative examples, yt=“-”, to (ρ,ρ,ρ,1−3ρ) corresponding to the classes
([,],+,-). For span scoring, we change the target of negative examples to yneg=ρ. In both
cases, ρ is the probability of the example being positive.

7.6 Coreference Resolution

We use multi-task learning to train the mention detection together with coreference resolution.
The weights to sum the loss functions of each task are estimated during training, as in (Cipolla
et al., 2018). The sentence encoder is shared, and the output of mention detection serves as input
to coreference resolution. We use the coreference resolver proposed by Lee et al. (2017a). It uses
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a pair-wise scoring function s between a mention mk and each of its candidate antecedents ma ,
defined as:

s(mk ,ma) = sc (mk ,ma)+ sm(mk )+ sm(ma) (7.12)

where sc is a function that assesses whether two mentions refer to the same entity. We modified
the mention detection score sm .

For the sequence tagging approach, the function sm serves as a bias value and it is calculated as:

sm = v.P (yti = “[”).P (yt j = “]”) (7.13)

where yti and yt j are the labels of the first and last words of the span, and v is a scalar parameter
learned during training. At test time, only mentions in the one-best output of the mention
detection model are candidate mentions for the coreference resolver. During training, the set of
candidate mentions includes both the spans detected by the mention detection model and the
ground truth mentions. The mention decoder is run for one pass with ground-truth labels in the
conditional part of the probability function (Eq. 7.2), to get the mention detection loss, and run
for a second pass with predicted labels to provide input for the coreferece task and compute the
coreference loss.

For the span scoring approach, sm is a function of the probability defined in Eq. 7.8, scaled by a
parameter v learned during training.

sm = v.P (mi , j ) (7.14)

Instead of the end-to-end objective of Lee et al. (2017a), we use a multi-task objective, which
adds the loss function of mention detection. We do not prune mentions with a maximum length,
nor impose any maximum number of mentions per document. We use the probability of the
mention detector with a threshold of τ for pruning.

7.7 Experiments and Results

We evaluate our model on the English OntoNotes set from the CoNLL 2012 shared-task (Pradhan
et al., 2012), which has 2802 documents for training, 343 for development, and 348 for testing.
The setup is the same as Lee et al. (2017a) for comparison purposes, with the hyper-parameters
ρ, w,τ optimized on the development set. We use the average F1 score as defined in the shared-
task (Pradhan et al., 2012) for evaluation of mention detection and coreference resolution.

7.7.1 Mention detection

First, we evaluate our stand-alone mention detectors. For this evaluation, all unannotated mentions
are treated as negative examples. Table 7.1 show the results on the test set with models selected
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Model Rec. Prec. F1
Sequence tagging 73.7 77.5 75.6
Span scoring 72.7 79.2 75.8
+ span size emb. 71.6 80.1 75.6
- avg. emb. + att. emb. 72.1 78.9 75.4

Table 7.1 – Mention detection evaluation

Mention Coref.
Model Rec. Prec. F1 Avg. F1
Lee et al. (2017a) – – – 67.2
Sequence tagging 73.1 84.9 78.6 59.9
+ wt. loss w=0.01 77.3 83.2 80.1 64.1
+ soft-target ρ=0.1 74.3 84.0 78.8 61.2
Span scoring 75.3 88.3 81.3 67.0
+ wt. loss w=0.3 76.3 88.1 81.8 67.1
+ soft-target ρ=0.1 78.4 87.9 82.9 67.6

Table 7.2 – Coreference resolution evaluation (CoNLL 2012)

using the best F1 score with τ=0.5, on the development set. We can see that sequence tagging
performs almost as well as span scoring in F1 score, even though the latter is an exhaustive
search method. We also evaluate the span scoring model with different components from Lee
et al. (2017a). By adding the span size vector, the precision increases but the recall decreases.
Replacing the average embedding x̃ with attention over the embeddings requires a limited span
size for memory efficiency, resulting in decreased performance.

7.7.2 Coreference Resolution

Table 7.2 shows the results obtained for our multi-task systems for coreference resolution and
mention detection with and without the loss modification. The sequence tagging method obtains
lower performance compared to span scoring. This result can be attributed to its one-best method
to select mentions, in contrast to span scoring, where uncertainty is fully integrated with the
coreference system. The span scoring method performs similarly to the coreference resolution
baseline, showing that the naive introduction of a loss for mention detection does not improve
performance (although we find it does decrease convergence time). However, adding the modified
mention loss does improve coreference performance. For sequence tagging, the weighted loss
results in higher performance, while for the span scoring, soft-targets work best. In both cases,
the recall increases with a small decrease in precision, which improves the F1 score of mention
detection and improves coreference resolution.
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Figure 7.3 – Recall of the mention scoring function with respect to the detection threshold τ.
Values for the sequence tagging are referential

Figure 7.4 – Precision vs. Recall graph for the mention scoring function with soft-targets.

7.7.3 Recall performance

Figure 7.3 shows a comparison of the mention detection methods in terms of recall. The
unmodified sequence tagging model achieves 73.7% recall, and by introducing a weighted loss at
w=0.01, it reaches 90.5%. The lines show the variation of recall for the span scoring method with
respect to the detection threshold of τ. The dotted line represents the unmodified model, while
the continuous line represents the model with soft-targets at ρ=0.1, which shows higher recall for
every τ. Figure 7.4 show the precision-recall plot of the mention scoring with soft-targets method
for different values of ρ. ρ=0 corresponds to the baseline. The model with ρ=0.1 presents better
results in comparison with others.

7.8 Conclusion

We investigate two simple techniques to deal with partially annotated data for mention detection
and propose two methods to approach it: a Weighted loss function and a soft-target classification.
We evaluate them on coreference resolution and mention detection with a multi-task learning
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approach. We show that the techniques effectively increase the recall of mentions and coreference
links with a small decrease in precision, thus, improving the F1 score. In the future, we plan
to use these methods to maintain coherence over long distances when reading, translating, and
generating large text, by keeping track of abstract representations of entities.
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8.1 Introduction

Coreference resolution is the task of grouping together the expressions that refer to the same
entity in a text. This task consists of two parts: mention detection and coreference linking. In
the previous chapter, we explored the task of mention detection alone. Here, we propose a novel
modeling approach for coreference resolution, and we include methods from the previous chapter.

Current state-of-the-art solutions for coreference resolution are based on neural networks (Lee
et al., 2017a, 2018). The problem is formulated in an end-to-end manner where the models
jointly learn to detect mentions and link coreferent mentions. The objective is to predict the
antecedent of each mention-span in a document, so the model performs pair-wise decisions of all
mentions. After having the model predictions, related mentions are grouped into clusters. Under
this scenario, each decision (i.e., whether two mentions are related to the same entity or not)
is independent of other decisions. Lee et al. (2018) proposed an iterative method to update the
representation of a mention with information of its probable antecedents. However, decisions are
still made locally.

Following this thesis’s core idea, we propose a modeling approach that learns coreference at
the document-level and takes global decisions. We propose to model mentions and coreference
links in a graph structure where the nodes are tokens in the text, and the edges represent the
relationship between them. Figure 8.1 shows a short example of this approach, where the graph
edges are drawn with directed arrows. Our model receives a document as input and predicts the
graph of mentions and coreference links. We follow a similar approach to the graph-to-graph
transformer proposed in (Mohammadshahi and Henderson, 2020) for parsing, but instead of
encoding sentences, we encode complete documents. Our model predicts the graph in a non-
autoregressive manner, then iteratively refines it based on previous predictions. This recursive
process introduces global dependencies between decisions. We define different structures for
input and output graphs, which is new compared to (Mohammadshahi and Henderson, 2020). The
input encodes all possible relations between nodes or tokens to make the learning process easier
while the output encodes the minimal set of connections to facilitate the prediction. We initialize
the transformer with the pre-trained language model BERT (Devlin et al., 2019). During the first
iteration, the model predicts edges that identify mention-spans only, unlike (Mohammadshahi
and Henderson, 2020) who predict the whole graph at each iteration. This is because mention
detection has a different level of representation whose outputs are input to the coreference
resolution (i.e. discourse) level. The model predicts the complete graph from the second to last
iteration. The iterative process finishes when there are no more changes in the graph or when a
maximum number of iterations is reached.

Ideally, the whole document should be encoded at once, but there is a limitation in the maximum
length in practice. In order to deal with this issue, we applied two strategies: overlapping
windows and reduced document. In the first one, we split documents in overlapping windows of
the maximum allowed size N . The segments overlap for a value N /2. At decoding time, segments
are input in order, and we construct the final graph by joining all graphs from different segments.
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Figure 8.1 – Example of a graph structure for coreference.

In the second approach, we use two networks. The first is the previously described overlapping
model, and we use it for predicting the first graph. The second one reduces the document by
concatenating tokens of mention-spans separated by a particular token. This network refines the
initial graph for the following iterations.

The experiments show improvements over various baselines. Our analysis indicates that the
models reach the best solution in a maximum of three iterations. Given that we predict the graph
at once for each iteration, our model’s complexity is lower than the baseline.

Our contributions are the following:

(i) We propose a novel modeling approach to coreference resolution using a graph structure.

(ii) We propose two non-autoregressive graph models that can predict the complete entity
coreference structure of a document.

(iii) We show improvements over various baselines models.

The rest of the chapter is organized as follows. Section 8.2 presents a summary of coreference
resolution approaches and related research work to this chapter. Section 8.3 briefly describes
the fundamentals of the state-of-the-art approach. In Section 8.4, we define entity mentions and
their coreference links as a graph and fomulate the task as a sequence-to-graph problem. In
Section 8.5, we present our iterative refinement solution to increase the accuracy of the model
and, in Section 8.6, we present two proposed architecture models. Sections 8.7 and 8.8 contain
the experimental setup and results respectively, Finally, Section 8.9 draws the conclusions of this
chapter.

8.2 Related Work

The first approaches were rule-based systems (Lappin and Leass, 1994; Manning et al., 2014),
but eventually, they were outperformed by machine learning approaches (Aone and William,
1995; McCarthy, 1995; Mitkov, 2002) due to annotated corpora’s creation. We can classify the
coreference approaches in three main types: mention-pair, entity-mention, and ranking model.
Mention-pair models set coreference as a binary classification problem. The input is a pair
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of mentions, and the output is the prediction of whether they are related or not. The initial
state is the mention detection (Chapter 7), where the input is raw text, and the output is the
locations of each entity mention in the text. Mention detection is done as an independent task in
a pipeline model (Soon et al., 2001) or as part of an end-to-end model (Lee et al., 2017a). The
next stage is the classification. At first, the best classifiers were decision trees (Soon et al., 2001;
McCarthy, 1995; Aone and William, 1995), but later, neural networks became the state-of-art
(Lee et al., 2017a, 2018). The final stage is reconciling the pair-wise decisions to create entity
chains, usually by utilizing greedy algorithms or clustering approaches. Entity-mention models
focus on maintaining single underlying entity representation for each cluster, contrasting the
independent pair-wise decisions of mention-pair approaches (Clark and Manning, 2015, 2016).
Ranking models aim at ranking the possibles antecedent of each mention instead of making binary
decisions (Ng, 2005; Wiseman et al., 2016). An alternative modeling approach is to perform
clustering instead of classification (Fernandes et al., 2012).

The state-of-the-art models for CR are based on the work of Lee et al. (2017a, 2018). They
introduced the first end-to-end model that jointly optimizes mention detection and coreference
resolution tasks. These neural network-based models also simplify the mention input represen-
tation to be word embedding vectors, instead of the traditional pipeline of different linguistic
feature extraction tools such as part-of-speech (POS) tagging and dependency parsing. The
following models proposed improvements over this work. Fei et al. (2019) use reinforcement
learning to directly optimize the model on the evaluation metrics (Section 2.4.2 of the background
chapter). Joshi et al. (2019) uses BERT embeddings (Devlin et al., 2019) as input. Joshi et al.
(2020) introduced a new SpanBERT embedding model, which is shown to outperform BERT for
CR task.

8.3 Neural Coreference Resolution

Neural coreference resolution, as formulated in (Lee et al., 2017a, 2018), is a mention-pair
approach (described in the previous section). It uses an exhaustive method defining mentions as
any text span of any size in a document. There, a document D represents a sequence of tokens of
size N . The objective is to assign an antecedent yi to each text span mi in D . The set of possible
antecedents of the span mi is denoted as Y(i ). This set contains all text spans with index less than
i , plus a null antecedent ε, Y(i ) = {ε,m1, ...,mi−1}. The null antecedent is assigned when: (a) the
span is not an entity mention, (b) the span is the first mention of an entity in the document. The
final mention clusters are constructed greedily by grouping connected spans based on the model
predictions during decoding time.

The model is trained to learn a conditional probability distribution over documents p(y1, ..., yn |D),
assuming independence among each decision of antecedent assignment yi , as follows:

p(y1, ..., yM |D) =
M∏

i=1
p(yi |D) (8.1)
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In (Lee et al., 2018), the probability distribution p(yi |D) is inferred over T iterations of the model
over the same input document. At each iteration t , the span representations are updated with a
convex combination of two components: (a) the representation of the span at time t −1, (b) the
weighted average of all possible antecedents at time t −1 where the weights are given by the
probability distribution of the model at time t −1. They called this model high-order coreference
resolution since each mention representation considers information from its probable antecedents.

The training optimization is done using cross-entropy. Given that a mention-span mi can have
more than one true antecedent, the loss considers the sum of probabilities of all true antecedents
in the annotated data:

l og
M∏

i=1

∑
yi∈Y(i )∩C(i )

p(yi |D) (8.2)

where C(i ) indicates the cluster of mention-spans that includes mi in the annotated data. If the
span does not belong to any cluster or all its antecedents have been pruned, then the span is
assigned to the null cluster C(i ) = {ε}.

This model’s complexity is of the order O (N 4), where N is the document length. The complexity
is computed by considering all possible text spans M of the document, so O (M) =O (N 2). Then,
it considers all possible combinations of span-antecedents O (M 2). The model prunes spans and
candidate antecedents to predetermine maximum numbers in order to maintain computation
efficiency.

8.4 Graph Modeling

We propose to model the set of coreference links of a document in a graph structure where the
nodes are words and the edges are links of different types. Given a document D = [x1, ..., xN ] of
size N , the coreference graph is defined as the matrix G ⊂NN×N of links between tokens. Here,
the relation type between two tokens, xi and x j , is encoded with natural numbers and is denoted
as gi , j ∈ {0,1,2}. We define three relation types: (0) no link, (1) mention link, and (2) coreference
link.

Mention link This type of link serves to identify mentions. It relates tokens belonging to the
same mention-span m. We define mention links in two different manners depending on
whether the graph is an input or output of the model (refer to Section 8.5 for details). When
the graph is an input G i n , there is a directed link from each mention’s token to the mention
head1, including the head to itself. Let start(m), end(m), and head(m) be the functions to
obtain the mention’s starting, ending, and head index. Then:

g i n
i , j = 1 ⇐⇒ i ∈ [start(m), ...,end(m)] ∧ j = head(m)

1In linguistics, the head of a phrase is the word that determines the syntactic category. Every mention has a unique
head even in the case of nested mentions.
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When the graph is the model’s output Gout , there is only one directed link from the last
token of the mention-span to the first token. Then:

g out
i , j = 1 ⇐⇒ i = end(m) ∧ j = start(m)

The difference between input and output encoding is functional. Both encoding methods
define a mention-span uniquely, even when having nested mentions; every mention has
a unique start-end combination and a unique head. The model utilizes the output for
prediction, so it is simpler to predict one single link, whereas, in the input, the model uses
links to all tokens to represent every mention token properly.

Mention heads We simplified the head identification process by considering the first token of
a mention span as the head. Although this method is naive, experiments show that this
approximation works well enough in practice. However, as some spans can potentially
have the same head in case of nested mentions, we fix this issue by defining heuristics.
First, we order the mentions by size. Then, we iterate over this list to assign heads; if the
first token of the mention is already a head of another mention, we assign the next token as
the head. In this manner, every mention has a unique head to be identifiable.

Coreference link This type of link defines the relationship between a mention m and each of its
antecedents a. Here, we define coreference links in two different manners depending on
whether the graph is an input or output of the model. When the graph is input, there is a
directed link from a mention head token to each one of its antecedents’ head token. Then:

g i n
i , j = 2 ⇐⇒ i = head(m) ∧ j = head(a) ∧ a = antecedent(m)

When the graph is a model’s output, the mention m should be connected to at least one of
its antecedents a. Here, we only consider antecedents that appear before the mention. If
the mention has no antecedent, or correspond to the first mention of an entity in the text,
then it is connected to a null antecedent ε.

∃ j ∈ {ε,head(a) | a = antecedent(m) ∧ start(a) < start(m)} :

g i n
i , j = 2 ∧ i = head(m)

We consider all possible connections between mentions in an entity cluster at the input,
so the model has complete information. On the other hand, we consider that predicting at
least one connection of the mention to its cluster is sufficient during output.

Figure 8.1 shows an example taken from CoNLL 2012 dataset (Section 2.5.2). There, mention
spans are shown in bold, and colors represent entity clusters. The mention links are indicated
with continuous line arrows and the coreference links with dotted arrows.

The objective is to learn the conditional probability distribution p(G|D). This distribution is
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approximated by assuming independence among each relation gi , j as:

p(G|D) =
N∏

i=1

i∏
j=1

p(gi , j |D) (8.3)

The probability p(gi , j |D) is split in two parts: one for mention links pm and the other for
coreference links pc . The mention link probability is defined as:

pm(gi , j = 1|D) =σ(Wm · [hi ,h j ]) (8.4)

where Wm is a parameter matrix, and hi and h j are the hidden state representations of the tokens
xi and x j respectively. This probability indicates whether there is a mention starting at position i

and ending at position j of the document D . The optimization is done using binary-cross-entropy
loss, defined as follows:

l ossm =
N∑

i=1

i∑
j=1

ĝi , j ·pm(gi , j )+ (1− ĝi , j ) · (1−pm(gi , j )) (8.5)

(8.6)

where ĝi , j is the annotated label; it is 1 when there is a mention starting on j and finishing at i

and 0 otherwise.

The coreference link probability is defined as:

pc (gi , j = 2|D) = exp(Wc · [hi ,h j ])∑
j ′∈A(i ) exp(Wc · [hi ,h j ′ ])

(8.7)

where Wm is a parameter matrix, and hi and h j are the hidden state representations of the
tokens xi and x j respectively. Similar to the baseline, we denote A(i ) as the set of all candidate
antecedents of xi . This set contains all mention heads with an index less than i , plus a null head
ε, A(i ) = {ε, xk |k < i and xk ∈ H(D) }, and H(D) is the set of all mention heads in the document.
The optimization is done with cross-entropy loss. Given that a mention-span mi can have more
than one true antecedent, the loss considers the sum of probabilities of all true antecedents in the
annotated data (as in Equation(8.2)):

lossc = l og
∏

i∈H(D)

∑
j∈Y(i )∩Ĉ(i )

pc (gi , j |D) (8.8)

where Ĉ(i ) indicates the annotated cluster of mention-spans that includes mi in the annotated
data. If the mention does not belong to any cluster, then the span is assigned to the null cluster
Ĉ(i ) = {ε}. The final loss is the sum of lossm and l ossc .

We use BERT (Devlin et al., 2019) to encode the document and obtain the token’s hidden state
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representations {h1, ..,hN }. BERT is a pre-trained masked language model that uses a transformer
architecture (Section 6.3). This model is trained on a large quantity of text data to predict masked
tokens on the text based on the unmasked ones. BERT representations were used to improve
the baseline coreference resolution described in Section 8.3 with significant results (Joshi et al.,
2019) .

8.5 Iterative Refinement

The strong independence assumption made in Equation (8.3) does not reflect real scenario and
could lead to poor performance. Therefore, we use an iterative refinement approach to include
dependencies similar to (Mohammadshahi and Henderson, 2020). We called our model graph-
to-graph transformer (G2GT). Under this approach, the model makes T iterations over the
same document D. At each iteration t , the predicted coreference graph Gt is conditioned on the
previously predicted one Gt−1. The model’s conditional probability distribution is now defined as
follows:

p(G t |D,G t−1) =
N∏

i=1

i∏
j=1

p(gi , j |D,G t−1) (8.9)

It means that the graph should be input to the transformer model. Following (Mohammadshahi
and Henderson, 2020), the graph is encoded in the self-attention function of the transformer, this
architecture is described in Section 6.3. We modify Equation (6.1) for our purpose as follows:

Attention(Q,K ,V ,Lk ,Lv ) = softmax(
Q · (K +Lk )ᵀp

d
) · (V +Lv ) (8.10)

where Lv = E(Gt−1) ·Wv

Lk = E(Gt−1) ·Wk

where E is an embedding matrix to encode the types of links in the graph. Thus, the relationship
between a pair of tokens is encoded as an embedding vector. Wk ,Wv are weight parameters that
serve to specialize E(Gt−1) to be either key or value vector. The complexity of our model is of
the order of O (N 2 ×T ), where N is the document length, and T is the number of refinement
iterations of the model.

To illustrate the iterative refinement of a graph, Figure 8.2 shows an example of two iterations of
the model. The mention links are indicated with continuous line arrows and the coreference links
with dotted arrows. The initial graph matrix G i n

0 is full of zeros, so no connections are drawn.
The first predicted graph Gout

1 only has mention-links because there were no mention heads to
be connected initially. This graph is transformed to serve as input G i n

1 for the next iteration.
Finally, during the second iteration, the model predicts the coreference graph Gout

2 . The model
can continue iterating for a maximum of T times.
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Figure 8.2 – Example of iterations with graph-to-graph transformer.

8.6 Architectures

There exists in practice a maximum length for encoding a document due to the limited compu-
tational memory. In this section, we describe two strategies to manage this issue: overlapping
window and reduced document.

8.6.1 Overlapping Windows

Here, we split the documents into overlapping segments of the maximum size K , with an overlap
of K /2 tokens. The segments are encoded individually on our graph-to-graph transformer model.
During training, each segment is treated as an independent sample. However, during decoding,
the segments are decoded in order. The subgraph corresponding to the overlapping part is input to
the next segment. The following segments predict new links starting only on the non-overlapping
part. The union of the segmented graphs forms the final graph.

8.6.2 Reduced Document

This model has two parts; one to detect mentions and the other to perform coreference resolution.
The mention detection is similar to the previously described model. The coreference resolution
part receives a shorter version of the document as input. The complete model is described in the
following:

Mention Detection This transformer is non-iterative so it corresponds to the definition in Equa-
tion (8.3). To encode the document, we apply overlapping windows, as in the previous
section. For prediction, we used the soft-target method proposed in Section 7.5 of the
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Figure 8.3 – Example of iterations with graph-to-graph transformer in pipeline.

previous chapter. This method enables the model to increase the recall of detection. Given
that the candidate mentions will be fixed for the coreference resolution part, we need to
detect most of them here.

Coreference Resolution This part is a graph-to-graph transformer with iterative refinement.
The input is a shorter version of the document obtained by concatenating the tokens from
mention-spans with a separation token in between and removing all other tokens. To
maintain coherence in the document, we modify the token input representation as to the
sum of three vectors: (a) a token embedding, (b) an embedding of the token’s position in
the original document, so we retain information of distance between mentions, and (c) the
token’s contextualized representation obtained from the mention detection part where the
original document is encoded. This second part predicts only coreferent links, but the input
graph contains both mentions and coreference links.

Figure 8.3 shows an example of this architecture with one iteration over a document. The mention
links are indicated with continuous line arrows and the coreference links with dotted arrows. The
first model predicts the graph of mention-spans Gout . This graph is transformed into the input
format for the next model G i n

0 . Then, the second model predicts the graph of coreference Gout
1 .

Note that this coreference resolution model can continue iterating for T times.

8.7 Experimental Setting

This section describes the dataset, the model configuration, hyper-parameters, and training setup
used in our experiments.
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Train Dev. Test Total
Number of documents 2,802 343 348 3,493
Number of words 1.3 M 160 K 170 K 1.6 M
Average word length per document 464 466 488 458
Number of entity changes/clusters 35 K 4.5 K 4.5 K 44 K
Number of coreference links 120 K 14 K 15 K 150 K
Number of mentions 155 K 19 K 19 K 194 K

Table 8.1 – Dataset statistics and splits.

8.7.1 Dataset

We use the CoNLL 2012 corpus described in Section 2.5.2. It contains data from diverse domains
e.g., newswire, magazine, conversations. We experiment only with the English part. Table 8.1
shows the statistics of the dataset; the average length per document does not exceed the 500
words, however this length increases during preprocessing. We pre-processes the text to extract
sub-word units (Section 2.2.1) with BERT tokenizer (Wu et al., 2016). Sub-words are smaller
token units used to manage out of vocabulary words. That means that the actual document length
is even larger in terms of sub-word units. We map the positional annotation of mentions from
words to sub-words and retain this mapping for back transformation during evaluation. We do
not use any annotation for word markers (e.g., POS, syntax), given in the dataset, only raw
words. There are no annotations for stand-alone mentions i.e., entities mentioned only once in
the document are not considered.

8.7.2 Model configuration

We adopted the bert_base_uncased pre-trained model (Devlin et al., 2019) and the im-
plementation of Wolf et al. (2019) 2. All hyper-parameters follow this implementation unless
specified otherwise.

Training The graph-to-graph transformer considers an independent loss for each different
refinement iteration. There is no back-propagation between refinement iterations because
the model makes discrete decisions when predicting the graph for the next refinement
step. There are two stopping criteria for the refinement: (a) when a maximum number of
iterations T is reached, or (b) when there are no more changes in the graph, Gt = Gt−1.
This criteion is for both training and testing. Our models are trained with a maximum
segment length of K = 512 and a batch size of 1 document. We use BertAdam (Kingma and
Ba, 2014; Wolf et al., 2019) optimizer with a base learning rate of 2e −3 and no warm-up.
As our graphs are directed, we use only the lower triangle of G for predictions. The
components of the reduced models are trained independently. The coreference resolution
follows the currently described training schema. The mention detection model has no

2https://huggingface.co/transformers/
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Development Test
Model Iter. MUC B3 CEAFφ4 Avg. F1 MUC B3 CEAFφ4 Avg. F1
GT BERT-base T = 1 75.7 68.4 65.2 69.8 76.1 67.0 66.3 69.8

T = 2 76.9 69.3 66.0 70.7 77.9 69.9 67.0 71.6
T = 3 77.2 69.7 66.3 71.0 78.1 70.3 67.0 71.8

G2GT BERT-base reduced T = 1 79.2 76.1 68.5 71.6 80.7 70.1 69.3 73.4
T = 3 80.0 69.6 70.2 73.3 83.2 71.9 71.0 75.4

Table 8.2 – F1 scores by varying the number of refinement iterations T .

MUC B3 CEAFφ4

Model P R F1 P R F1 P R F1 Avg. F1
Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0
Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Lee et al. (2017a) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Fei et al. (2019) 85.4 77.9 81.4 77.9 66.4 71.7 70.6 66.3 68.4 73.8
Baseline (Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
+ BERT-base (Joshi et al., 2019) 80.4 82.3 81.4 69.6 73.8 71.7 69.0 68.5 68.8 73.9
+ BERT-large (Joshi et al., 2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
G2GT BERT-base 78.4 77.9 78.1 69.6 71.0 70.3 66.8 67.3 67.0 71.8
G2GT BERT-base overlap 81.2 82.8 82.0 69.8 73.6 71.6 69.6 69.3 69.4 74.4
G2GT BERT-base reduced 83.4 83.1 83.2 70.1 73.7 71.9 72.1 70.1 71.0 75.4

Table 8.3 – Coreference resolution evaluation (CoNLL 2012)

iterative refinement step and follows the training schema of our span scoring soft-target
approach described in Section 7.5 of the previous chapter, with ρ = 0.1.

Evaluation At evaluation time, we map back all sub-words units to words and reconstruct the
document in CoNLL 2012 format (Section 2.5.2). We use the precision, recall, and F1
score calculated in three different manners: MUC that counts the number of links between
mentions, B3 that counts the number of mentions, and CEAF that counts the entity clusters.
These metrics are standard for coreference resolution and are defined in Section 2.4.2.

8.8 Results Analysis

This section describes the results of various baselines and our models. First, we analyze the
optimum number of refinement iterations, and then we show results using the best models.

Table 8.2 shows the performance of our graph-to-graph transformer (G2GT) models when varying
the maximum number of refinement iterations T from 1 to 3. The results are in terms of the F1
score of the three coreference metrics and the average. Both implementations shown in the table
perform the best when using T = 3. There is a significant decrease in performance when the
graphs are not refined T = 1. We chose the best models on the development set, but we also show
the test set results.
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Table 8.3 shows the evaluation results on the test set in terms of precision (P), recall (R), and
F1 score for each metric. The last column displays the average F1 of the three metrics. The
first section of the table exhibits scores of different coreference resolution systems from the
literature. The second section shows the result of the ‘Baseline’ (Lee et al., 2018) system
described in Section 8.3. This model uses ELMo3 (Peters et al., 2018) instead of BERT to obtain
word representations. Baseline plus ‘BERT-base’ and ‘Base BERT-large’ (Joshi et al., 2019)
correspond to the baseline model replacing the ELMo word representations with the indicated
BERT architectures. We copy all these values from the original papers. The last section of the
table presents scores of our graph-to-graph transformer (G2GT) models with iterative refinement.
‘G2GT Bert-base’ is our model with no special treatment for document length; the documents are
truncated at the maximum segment length of K for both training and testing. ‘G2GT Bert-base
overlap’ and ‘G2GT Bert-base reduce’ are the models described in Section 8.6.

G2GT Bert-base performs poorly in comparison to the baseline. Both G2GT Bert-base overlap
and reduce perform better than the comparable baseline Base BERT-base. The baseline with
BERT-large is not directly comparable with our results because the improvement is orthogonal to
the CR methods. We expect that our model would improve when using BERT-large4 in similar
proportion as the baseline. The reduce document strategy performs better than overlapping
window. We believe that encoding all the document mentions together helps to coordinate the
model decisions, and these results can vary in favor of G2GT Bert-base with better computational
resources and larger segment length.

8.9 Conclusion

We proposed a graph-to-graph transformer model with iterative refinement for coreference
resolution. For this purpose, we define a graph structure to encode coreference links contained
in a document. That enables our model to predict the complete coreference graph at once. The
graph is then refined in a recursive manner, iterating over the model conditioned on the document
and the graph prediction from previous step. We experimented with two methods to manage long
documents and maintain the computation efficient. The first method encodes the document in
overlapping segments. The second one reduces the document size to a more manageable length.
The evaluation shows that both methods outperform a comparable baseline and that the second
method has better performance than the first one. This experiment shows that document-level
information is useful to improve coreference and should not be dismissed. The models can be
further improved by replacing the underlying language model BERT-base (Devlin et al., 2019)
with a more powerful pre-trained model such as BERT-large (Devlin et al., 2019), XLNet (Yang
et al., 2019a), SpanBERT (Joshi et al., 2020), Longformer (Beltagy et al., 2020), or BART (Lewis
et al., 2020). Also, the decoding approach of graphs obtained from the overlapping segments can
be improved.

3Embeddings from Language Models (ELMo) (Peters et al., 2018) is a pre-trained language model based on LSTMs.
4We do not report BERT-large for now due to hardware limitations
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9.1 General Conclusions

In this thesis, we addressed the problem of discourse phenomena in machine translation. Particu-
larly, we focused on the coherent translation of entity mentions. We divided the thesis into two
parts. The first part describes our main work on machine translation task. The second one presents
our complementary work on coreference resolution. Our main conclusions are the following:

• We proposed a simple metric to evaluate the accuracy of pronoun translation (APT) and
show that it has a high correlation with the human judgment of correctness. APT is a
reference-based metric thus it has strong constraints on the correctness of the pronouns,
but when averaged over a large number of translations the scores reflect similar results as
human evaluation. APT has limitations when evaluating challenging instances, thus for
finer evaluation test suites can be used instead, when available. APT can be used without
the restriction of language and can be adapted to evaluated nouns or other specific word
types. This metric is utilizes to evaluate our proposed approaches.

• We tested the hypothesis that discourse information can effectively improve machine
translation. We showed that this is the case for coreferences. We work under the assumption
that the clusters of mentions referring to the same entity should be equal in the source
and target languages. We proposed two methods that improve entity translation based
on this assumption: re-ranking and post-editing. Our post-editing approach brought a
significant improvement for pronoun translation as evaluated by APT, and improved the
general translation quality according to a manual evaluation.

• We integrated discourse phenomena in the translation models. We proposed a novel de-
coder based on self-attention and residual connections. The self-attention allows selective
access to contextual information and the residual connection facilities the flow of infor-
mation. Additionally, we adapted similar architectures, designed for language modeling,
to translation. Experiments in various datasets showed improvement of our method in
comparison to different baselines. Finally, a qualitative analysis showed that the proposed
model learns structures resembling syntactic ones.

• We established the problem as document-level machine translation. For this purpose, we
proposed to use a multi-head hierarchical attention network (HAN) model. We integrated
context from source and target sides by directly connecting representations from previ-
ous sentence translations into the current sentence translation. The model significantly
outperforms two competitive baselines, and the ablation study shows that the target and
source context is complementary. It also improves lexical cohesion and coherence, and the
translation of nouns and pronouns. Our experiments show that varying the input context to
incorrect one has a negative effect on the translations, thus our model is sensitive to context.
With this work, we showed that discourse information improves significantly translation
verifying our thesis hypothesis that discourse and context improves translation.
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• Finally, we were interested in coreference resolution as it is a particularly challenging
discourse phenomenon. First, we worked on mention detection. We evaluated two models,
one of which was novel, and proposed a method to learn from partially-annotated data. We
showed that our method boost detection recall without decreasing precision. Second, we
proposed a graph-based coreference resolution model. This model works with iterative
refinement and showed to outperform the baseline model. The model can encode discourse
relations (in this case coreferences) explicitly as a substructure of the language model.
This has the potential to (a) extract discourse information which is usually embedded in
language, and (b) manipulate the discourse information for certain goals.

9.2 Directions for Future Research

Although the work presented here demonstrates improvement in machine translation, there is an
immense space for further amelioration. We identify some research directions in the following:

• In our document-level translation model, the maximum effective context used is around
three sentences. We believe it is because the context is summarized in a single vector with
limited capacity. Recently, with more powerful hardware, NMT models can process larger
sequences, thus a document can be fully encoded (Junczys-Dowmunt, 2019). Processing a
document as a single sequence is simpler and does not limit the available context. Thus,
neural networks can learn internal discourse connections easily. Moreover, these models
can profit from research on efficient attention-based networks that require less memory
and have better algorithm complexity.

• Although in some cases a document could be encoded in a single sequence sample, in
practice, there is always a limit for the sequence length. The previous strategy is not
sufficient for all scenarios e.g. when translating a book. Thus, the problem of extracting,
summarizing, and retaining meaningful contextual information remains of interest for
future research. This problem overlaps with several other tasks such as dialog generation,
summarization, machine reading, etc.

• The evaluation of document-level machine translations remains a challenging problem.
Even though automatic metrics are helpful, they are not sensitive enough to evaluate
difficult translation cases that require text comprehension. There is a line of research
focusing on test suites (Bawden et al., 2018) and human evaluation (Bojar et al., 2019).

• We have investigated context at the document-level. However, context is a more generic
concept that involves all circumstances around the produced language. For instance
previous word knowledge, background, and environment. This is also an interesting topic
for any natural language task and specifically for translation.
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Appendix A. Self-attentive Networks Architecture

This appendix describes in detail the implementation of the self-attentive residual decoder for
NMT, which builds on the attention-based NMT implementation of dl4mt-tutorial1.

The input of the model is a source sentence denoted as 1-of-k coded vector, where each element
of the sequence corresponds to a word:

x = (x1, x2, ..., xm), xi ∈RV

and the output is a target sentence denoted as well as 1-of-k coded vector:

y = (y1, y2, ..., yn), yi ∈RV

where V is the size of the vocabulary of target and source side, m and n are the lengths of the
source and target sentences respectively. We omit the bias vectors for simplicity.

A.1 Encoder

Each word of the source sentence is embedded in a e-dimensional vector space using the
embedding matrix Ē ∈ Re×V . The hidden states are 2d-dimensional vectors modeled by a bi-
directional GRU. The forward states

−→
h = (

−→
h 1, ...,

−→
h m) are computed as:

−→
h i =−→z i ¯

−→
h i−1 + (1−−→z i )¯−→

h ′
i

where

−→
h ′

i = t anh(
−→
W Ē xi +−→

U [−→r i ¯
−→
h i−1])

−→z i =σ(
−→
W z Ē xi +−→

U z
−→
h i−1)

−→r i =σ(
−→
W r Ē xi +−→

U r
−→
h i−1)

Here,
−→
W ,

−→
W z ,

−→
W r ∈ Rd×e and

−→
U ,

−→
U z ,

−→
U r ∈ Rd×d are weight matrices. The backward states←−

h = (
←−
h 1, ...,

←−
h m) are computed in similar manner. The embedding matrix Ē is shared for both

passes, and the final hidden states are formed by the concatenation of them:

hi =
[−→

h i←−
h i

]

1https://github.com/nyu-dl/dl4mt-tutorial
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A.2 Attention Mechanism

The context vector at time t is calculated by:

ct =
m∑

i=1
αt

i hi

where

αt
i =

exp(e t
i )∑

j exp(e t
j )

e t
i = vᵀ

a t anh(Wd st−1 +We hi )

Here, va ∈Rd , Wd ∈Rd×d and We ∈Rd×2d are weight matrices.

A.3 Decoder

The input of the decoder are the previous word yt−1 and the context vector ct , the objective is to
predict yt . The hidden states of the decoder s = (s1, ..., sn) are initialized with the mean of the
context vectors:

s0 = t anh(Wi ni t
1

m

m∑
i=1

ci )

where Wi ni t ∈ Rd×2d is a weight matrix, m is the size of the source sentence. The following
hidden states are calculated with a GRU conditioned over the context vector at tine t as follows:

st = zt ¯ s′t + (1− zt )¯ s′′t

where

s′′t = t anh(E yt−1 +U [rt ¯ st−1]+C ct )

zi =σ(Wz E yt−1 +Uz st−1 +Cz ct )

ri =σ(Wr E yt−1 +Ur st−1 +Cr ct )

Here, E ∈Re×V is the embedding matrix for the target language. W,Wz ,Wr ∈Rd×e , U ,Uz ,Ur ∈
Rd×d , and C ,Cz ,Cr ∈Rd×2d are weight matrices. The intermediate vector s′t is calculated from a
simple GRU:

s′t =GRU (yt−1, st−1)

In the attention-based NMT model, the probability of a target word yt is given by:

p(yt |st , yt−1,ct ) = so f tmax(Wo t anh(Wst st +Wy t yt−1 +Wct ct ))

Here, Wo ∈RV ×e , Wst ∈Re×d , Wy t ∈Re×e , Wct ∈Re×2d are weight matrices.
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A.3.1 Self-Attentive Residual Connections

In our model, the probability of a target word yt is given by:

p(yt |st ,dt ,ct ) = so f tmax(Wo t anh(Wst st +Wd t dt +Wct ct ))

Here, Wo ∈RV ×e , Wst ∈Re×d , Wd t ,Wy t ∈Re×e , Wct ∈Re×2d are weight matrices. The summary
vector dt can be calculated in different manners based on previous words y1 to yt−1. First, a
simple average:

d av g
t = 1

t −1

t−1∑
i=1

yi

The second, by using an attention mechanism:

d cav g
t =

t−1∑
i=1

αt
i yi

αt
i =

exp(e t
i )∑t−1

j=1 exp(e t
j )

e t
i = vᵀt anh(Wy yi )

where v ∈Re , Wy ∈Re×e are weight matrices.

A.3.2 Memory RNN

This model modifies the recurrent layer of the decoder as follows:

st = zt ¯ s′t + (1− zt )¯ s′′t

where

s′′t = t anh(E yt−1 +U [rt ¯ s̃t ]+C ct )

zi =σ(Wz E yt−1 +Uz s̃t +Cz ct )

ri =σ(Wr E yt−1 +Ur s̃t +Cr ct )

Here, E ∈Re×V is the embedding matrix for the target language. W,Wz ,Wr ∈Rd×e , U ,Uz ,Ur ∈
Rd×d , and C ,Cz ,Cr ∈Rd×2d are weight matrices. The intermediate vector s′t is calculated from a
simple GRU:

s′t =GRU (yt−1, s̃t )
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A.3. Decoder

The recurrent vector s̃t is calculated as following:

s̃t =
t−1∑
i=1

αt
i si

where αt
i =

exp(e t
i )∑t−1

j=1 exp(e t
j )

e t
i = vᵀt anh(Wm si +Ws st )

where v ∈Rd , Wm ∈Rd×d , and Ws ∈Rd×d are weight matrices.

A.3.3 Self-Attentive RNN

The formulation of this decoder is as following:

p(yt |y1, ..., yt−1,ct ) ≈ so f tmax(Wo t anh(Wst st +Wy t yt−1 +Wct ct +Wmt s̃t ))

Here, Wo ∈RV ×e , Wst ∈Re×d , Wy t ∈Re×e , Wct ∈Re×2d , and Wmt ∈Re×d are weight matrices.

s̃t =
t−1∑
i=1

αt
i si

αt
i =

exp(e t
i )∑t−1

j=1 exp(e t
j )

e t
i = vᵀt anh(Wm si +Ws st )

where v ∈Rd , Wm ∈Rd×d , and Ws ∈Rd×d are weight matrices.
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Appendix B. Hierarchical Attention Network Examples

These examples were taken from the Spanish-English TED talks corpus. We show the behavior
of the attention function of HAN. First, we show the attention to context for HAN encoder and
HAN decoder respectively. Second, we show the multi-head attention only for HAN decoder
(English) for better understanding.

B.1 Encoder and Decoder Attention

Currently Translated Sentence

Src.: y toqué el primer movimiento del concierto para violín de Beethoven .
Ref.: and I played the first movement of the Beethoven Violin Concerto .
Base: and I touched the first move from the concert to Beethoven .
Cache: and I touched the first move of Beethoven ’s violin .
HAN: and I played the first move of Beethoven ’s violin .

Context from Previous Sentences

HAN decoder context with target. Query: played (En)

HAN encoder context with source. Query: toqué (Es)

Table B.1 – In this example, the HAN model disambiguates correctly the word “toqué”, which can
be translated as “touched” or “played”. We can see that the HAN decoder uses the semantically
close word “playing” from the previous sentence. In similar manner, the HAN encoder focused
on “tocar” which is coherent with “toqué”.
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B.2. Multi-Head Attention

B.2 Multi-Head Attention

Currently Translated Sentence

Src: y como resultado construimos relaciones sociales más fuertes .
Ref: and we actually build stronger social relationships as a result .
Base: and as a result , we construct stronger social relationships .
HAN: and as a result , we build stronger social relationships .

Context from Previous Sentences. Query: build

Head 1: Attention to related words “construimos”, “trust”...

Head 4: Attention to a similar translation “builds” in s t−1

Table B.2 – This example displays the translation of the ambiguous Spanish word “construimos”,
which can be translated as “construct” or “build’. HAN translates this word correctly according
to the context using for example related words “trust”, “ties”, and “cooperation” on previous
sentences with head 1, and a previous translation “builds” in the previous sentence with head 4.
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Currently Translated Sentence

Src.: y < el los > estarían tan compenetrados en la partida de dados porque los juegos son tan
atractivos ...

Ref: and they would be so immersed in playing the dice games because games are so engaging
..

Base: and you would be so < unk > in the start of it because games are so attractive ...
HAN: and they would be so < unk > in the start of dice because games are so attractive ...

Context from Previous Sentences. Query: they

Head 2: Attention to the antecedent “people” in s t−3.

Head 4: Attention to the same pronoun “they” in s t−2

Head 7: Attention to verbs that conjugate with “they”

Table B.3 – This example displays the translation of Spanish pronoun “ellos”, which is a dropped-
pronoun which is implicit in the verb conjugation of “estarían”. As we can observe, HAN
translates correctly the dropped-pronoun into the English “they”. Each head focuses on a different
aspect during translation, for example head 2 seems to attend to the antecedent of the pronoun
“people” in the third previous sentence, head 4 attends to the same pronoun on the second previous
sentence, and head 7 attends to different verbs on all previous sentences.
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B.2. Multi-Head Attention

Currently Translated Sentence

Src: antes de los fantásticos controladores de juegos teníamos tabas de oveja .
Ref: before we had awesome game controllers , we had sheep ’s knuckles .
Base: before the fantastic TV controllers , we had < unk > .
HAN: before the fantastic game controllers , we had < unk > .

Context from Previous Sentences. Query: game

Head 3: Attention to similar word “game” in s t−3

Head 5: Attention to a related word “dice” in s t−1

Table B.4 – This example shows the translation of the Spanish word “juegos”. The baseline
translates it incorrectly, while HAN translates it correctly by spotting a similar translation “game”
in the third previous sentence with head 3, and a related word “dice” on previous sentence with
head 5.

.
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