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Abstract

The quasi-brittle nature of rocks challenges the basic assumptions of linear hydraulic frac-

ture mechanics (LHFM): namely, linear elastic fracture mechanics and smooth parallel plates

lubrication fluid flow inside the propagating fracture. We relax these hypotheses and inves-

tigate in details the growth of a plane-strain hydraulic fracture in an impermeable medium

accounting for a rough cohesive zone and a fluid lag. In addition to a dimensionless toughness

and the time-scale tom of coalescence of the fluid and fracture fronts governing the fracture

evolution in the LHFM case, the solution now also depends on the ratio between the in-

situ stress and material peak cohesive stress �o/�c and the intensity of the flow deviation

induced by aperture roughness (captured by a dimensionless power exponent). We show

that the solution is appropriately described by a nucleation time-scale tcm = tom⇥ (�o/�c)3,

which delineates the fracture growth into three distinct stages: a nucleation phase (t⌧ tcm),

an intermediate stage (t ⇠ tcm) and late time (t � tcm) stage where convergence toward

LHFM predictions finally occurs. A highly non-linear hydro-mechanical coupling takes place

as the fluid front enters the rough cohesive zone which itself evolves during the nucleation

and intermediate stages of growth. This coupling leads to significant additional viscous

flow dissipation. As a result, the fracture evolution deviates from LHFM predictions with

shorter fracture lengths, larger widths and net pressures. These deviations from LHFM

ultimately decrease at late times (t � tcm) as the ratios of the lag and cohesive zone sizes

with the fracture length both become smaller. The deviations increase with larger dimen-

sionless toughness and larger �o/�c ratio, as both have the effect of further localizing viscous

dissipation near the fluid front located in the small rough cohesive zone. The convergence
1
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toward LHFM can occur at very late time compared to the nucleation time-scale tcm (by

a factor of hundred to thousand times) for realistic values of �o/�c encountered at depth.

The impact of a rough cohesive zone appears to be prominent for laboratory experiments

and short in-situ injections in quasi-brittle rocks with ultimately a larger energy demand

compared to LHFM predictions.

Keywords: Fluid-driven fractures, Fracture process zone, Cohesive zone model, Fluid flow

in rough fractures, Fluid lag

1. Introduction1

The growth of a hydraulic fracture (HF) in an impermeable linear elastic solid is now rel-2

atively well understood, in particular the competition between the energy dissipated in the3

creation of new fracture surfaces and the one dissipated in viscous fluid flow. Such a compe-4

tition leads to distinct propagation regimes depending on the main dissipative mechanism5

(Detournay, 2016). Linear elastic fracture mechanics (LEFM) combined with lubrication6

theory (linear hydraulic fracture mechanics - LHFM for short) have successfully predicted7

experimental observations for the growth of a simple planar fracture in model materials such8

as PMMA and glass (Bunger & Detournay, 2008; Lecampion et al., 2017; Xing et al., 2017).9

However, some observations on rocks at the laboratory (Thallak et al., 1993; Van Dam &10

de Pater, 1999) and field scales (Shlyapobersky, 1985; Shlyapobersky et al., 1988) are not11

consistent, and some indicate that linear hydraulic fracture mechanics (LHFM) underesti-12

mates the observed fluid pressure and overestimates the fracture length. These observations13

hint toward a possibly larger energy demand compared to LHFM predictions and challenge14

two of its basic assumptions: i) fracture process governed by LEFM and ii) lubrication flow15

between two smooth parallel surfaces resulting in Poiseuille’s law. A non-linear process zone16

always exists in the vicinity of the fracture tip (Fig. 1). This is especially true for quasi-17

brittle materials like rocks. The stresses are capped by a finite peak strength in the fracture18

process zone while the aperture roughness is no longer negligible and decreases the fracture19

permeability. How such non-linearities affect the solid-fluid coupling inside the fracture and20

as a result its growth is the main goal of this paper. We focus on the propagation of a plane-21
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Figure 1: Illustration of a) the length scale of solid non-linearity and b) deviated fluid flow from Poiseuille’s

law (cubic law). Figure b) is adapted from figure 5 in Renshaw (1995) with additional data. The superscripts

indicate the source of the image in figure a) 1. Lhomme (2005), and the source of the data in figure b):

2. Schrauf & Evans (1986); 3. Witherspoon et al. (1980); 4. Raven & Gale (1985); 5. Garagash (2015);

Breysse & Gérard (1997).

strain hydraulic fracture from nucleation to the late stages of growth where the process zone22

is inherently much smaller than the fracture length.23

A number of previous investigations have dealt with the relaxation of the LEFM assump-24

tion on HF growth: either using theories accounting for bulk plastic dissipation around the25

tip (Papanastasiou, 1997, 1999; Papanastasiou & Atkinson, 2006; Sarris & Papanastasiou,26

2013), or with an increasing apparent fracture toughness with length embedding different27

toughening mechanisms (Liu et al., 2019), or/and adopting cohesive zone models (CZM) as28

a propagation criterion (see Lecampion et al. (2018) for review). Among these approaches,29

cohesive zone models are the most widely used due to their simplicity: the fracture growth30

is simply tracked via a cohesive traction-separation law. Studies of hydraulically driven31

fracture using CZM (Chen et al., 2009; Chen, 2012; Lecampion, 2012; Yao et al., 2015) all32

show that the numerical solutions can be well approximated with LEFM/LHFM solutions.33

However these conclusions just follow from the fact that these simulations fall in the small-34

scale-yielding limit where the cohesive zone only takes up a small fraction of the whole35
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fracture. In addition, in all these contributions, the existence of a fluid lag is neglected as36

well as the effect of roughness on flow. The assumption of a negligible fluid lag is often37

claimed to be valid for sufficiently deep fractures (where the confining stress is large) on the38

basis of the LHFM results.39

However, the existence of a fluid lag is to lubrication flow what the process zone is to40

fracture mechanics. It removes the negative fluid pressure singularities at the fracture tip41

associated with suction resulting from the elasto-hydrodynamics coupling (Desroches et al.,42

1994; Garagash & Detournay, 2000). In fact, the presence of a fluid lag is necessary if43

accounting for the presence of a cohesive zone in order to ensure that the stresses remain44

finite. Rubin (1993) has pioneered studies accounting for a cohesive zone and a fluid lag by45

investigating the stress field around a plane-strain HF. The obtained results are, however,46

restricted to the particular case where the fluid lag is always larger than the cohesive zone.47

Rubin (1993) argues that the fluid lag increases with the fracture length and thus possibly48

influences the off-plane inelastic deformation. Recently, Garagash (2019) has derived the49

complete solution of a steadily moving semi-infinite smooth cohesive fracture with a fluid50

lag. The results demonstrate the strong influence of the ratio between the minimum in-situ51

compressive stress and the material peak cohesive stress �o/�c on the near tip asymptotes.52

Such a semi-infinite fracture solution is obviously valid only when the process zone has53

fully nucleated and is smaller than the fracture length. These investigations assume smooth54

fracture surfaces in the cohesive zone (and thus Poiseuille’s law). The effect of roughness55

on the interplay between the fluid front and cohesive zone growth still calls for further56

investigation.57

In this paper, we investigate the growth of a finite plane-strain hydraulic fracture from58

nucleation to the late stage of growth accounting for the presence of both a cohesive zone59

and a fluid lag. We also investigate the impact of a decreased hydraulic conductivity in the60

rough cohesive zone using existing phenomenological approximations. After a description61

of the model, we discuss the overall structure of the solution thanks to a scaling analysis.62

We then explore the coupled effect of the fluid lag, cohesive zone and roughness numerically63

using a specifically developed numerical scheme. We then discuss implications for the HF64
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growth both at the laboratory and field scales.65

2. Problem Formulation66

We consider a plane-strain hydraulic fracture of half-length ` propagating in an infinite67

homogeneous impermeable quasi-brittle isotropic medium (Fig. 2). We denote �o as the68

minimum in-situ compressive stress acting normal to the fracture plane. The fracture growth69

occurs in pure tensile mode and is driven by the injection of an incompressible Newtonian70

fluid at a constant rate Qo in the fracture center. We account for both the existence of a71

cohesive zone (of length `coh) and a fluid-less cavity (of length ` � `f ) near the tips of the72

propagating fracture as described in Fig. 2.73

2.1. Solid mechanics74

2.1.1. Cohesive zone model75

We adopt for simplicity a linear-softening cohesive zone model to simulate the fracture76

process zone, where cohesive traction decreases linearly at the tip from the peak cohesive77

stress �c to zero at a critical aperture wc, as illustrated in Fig. 2. Such a traction separation78

law can be simply written as:79

�coh(w) =

8
><

>:

�c(1� wc) 0  w < wc

0 w > wc

(1)

where �c is the material peak strength (the maximum cohesive traction). The length of the80

cohesive zone `coh is given by the distance from the fracture tip where the critical opening is81

reached: w(`coh) = wc. For such a linear weakening model, the fracture energy is given by:82

Gc =
1

2
�cwc (2)

Note that in linear elastic fracture mechanics in pure mode I, the fracture energy is related83

to the material fracture toughness KIc by Irwin’s relation for co-planar growth G
LEFM

c
=84

K
2
Ic
/E

0, where E
0 is the plane-strain elastic modulus. Equalizing the quasi-brittle frac-85

ture energy with the LEFM expression allows to define an equivalent fracture toughness86
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Figure 2: Illustration of a) a propagating plane-strain hydraulic fracture accounting for a cohesive zone and

a fluid lag, b) a linear softening cohesive zone model, and c) roughness-induced deviation of the fluid flow

inside the cohesive zone.
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KIc =
p
GcE

0 thus allowing comparison with known results for HF growth under the LEFM87

assumption.88

2.1.2. Elastic deformation89

For a purely tensile plane-strain fracture, in an infinite elastic medium, the quasi-static90

balance of momentum reduces to the following boundary integral equation (see for example91

Hills et al. (1996)):92

E
0

4⇡

Z
`

�`

@w(x0
, t)

@x0
dx0

x� x0 = pf (x, t)� �o � �coh(w(x, t)), x, x
0 2 [�`, `] (3)

where E
0 = E/(1� ⌫

2) is the plane-strain modulus, ⌫ the Poisson’s ratio of the material. In93

view of the problem symmetry, the previous integral equation can be conveniently written94

for on one-wing of the fracture:95

E
0

4⇡

Z
`

0

✓
1

x� x0 �
1

x0 + x

◆
@w(x0

, t)

@x0 dx0 = pf (x, t)� �o � �coh(w(x, t)), x, x
0 2 [0, `] (4)

Due to the presence of cohesive forces and the traction separation law, this boundary integral96

equation is non-linear.97

Using a cohesive zone model, the fracture advance `(t) is based on the stress component98

�yy perpendicular to the fracture plane ahead of the current fracture tip. In other words,99

the fracture propagates when100

�yy(x = `) = �c (5)

It is worth pointing out that at any given time, the cohesive forces cancel the stress singular-101

ity at the fracture tip that would be otherwise present. The stress intensity factor KI must102

thus be zero at all times. For a pure mode I crack, the stress intensity factor is obtained via103

the weight function approach directly from the profile of the net loading (Bueckner, 1970;104

Rice, 1972):105

KI =
2
p
`p
⇡

Z
`

0

pf (x, t)� �o � �coh(w(x, t))

(`2 � x2)1/2
dx = 0 (6)

The requirement KI = 0 can be altenatively used as a propagation condition, or checked a106

posteriori as an error estimate.107
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2.2. Laminar lubrication flow in a rough tensile fracture108

Under the lubrication approximation, for an incompressible fluid and an impermeable109

medium (negligible leak-off), the fluid mass conservation in the deformable fracture reduces110

to111

@w

@t
+

@q

@x
= 0 in the fluid filled part x 2 [0,`f ] (7)

where q(x, t) is the local fluid flux inside the fracture and `f (t) denotes the current fluid112

front position.113

As the aperture is small near the tip and especially in the cohesive zone, it can not be114

considered as much larger than its small scale spatial variation - i.e. its roughness. The rough115

surfaces in possibly partial contact in the cohesive zone results in a decrease of the hydraulic116

transmissivity of the fracture compared to the cubic law. This has been observed in a large117

number of flow experiments under laminar condition in rock joints under different normal118

stress (Fig. 1). A number of empirical approximations have been put forward in literature119

to describe such a deviation from the cubic Poiseuille’s law observed in the laminar regime.120

A typical approach consists in introducing a friction/correction factor f in Poiseuille’s law121

relating fluid flux to the pressure gradient:122

q = � w
3

µ0f

@pf

@x
, 0 < x < `f , f = 1 + ↵c ⇥

⇣
wR

w

⌘↵e

(8)

where µ
0 = 12µ is the effective fluid viscosity. wR quantifies the fracture roughness, and is123

for example, taken as the peak asperity height or the standard deviation of the aperture (see124

Table. 1). It grasps the width scale characterizing the deviation from the cubic law. ↵c and125

↵e are experimentally determined parameters dependent on the fractal properties of the self-126

affine rough fracture surfaces (Talon et al., 2010; Jin et al., 2017). Interestingly, the fracture127

roughness properties are also related to the size of the process zone, above and below which128

the off-plane height variation may present different roughness exponents (Mourot et al., 2005;129

Bonamy et al., 2006; Ponson et al., 2007; Morel et al., 2008). Moreover, a process zone length130

scale can be extracted from the spatial correlations of the slopes of a rough fracture surface131

(Vernède et al., 2015). Fracture roughness therefore appears to correlate with both the132

process zone wc and the fluid flow deviation wR width scales, yet the exact relation between133
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wc and wR has not been clearly deciphered to our knowledge. On the account that wR and134

wc ⇠ 1�500µm in most rocks (Renshaw, 1995; Garagash, 2015, 2019), we assume wR ⇡ wc.135

One has to note, that ↵c and ↵e are fitted from experiments and ↵c is not independent of the136

choice of wR - ↵c ⇥ w
↵e

R
is the controlling constant when expanding Eq. (8). ↵e governs the137

power-law dependence of the friction factor with the mechanical width w. The number of138

experiments dedicated to flow in rough fractures provide a guideline for ↵c and ↵e although139

a significant scatter can be observed (see Table. 1). In the following, we assume ↵c = 1140

(and wR = wc) for simplicity in order to investigate the mechanism associated with fracture141

roughness although we recognize that it may not be the case. The friction factor therefore142

reduces to143

f = 1 +
⇣
wc

w

⌘↵e

(9)

where ↵e = 0 in the smooth fracture limit. For the case of a rough fracture, we will144

perform simulations for ↵e = 2 which corresponds to the largest power-law exponent reported145

experimentally (and as such will lead to the largest impact of fracture roughness). The146

resulting deviation between mechanical and hydraulic aperture for such a simplified fluid147

flow deviation model (9) is illustrated in Fig. 2.148

2.3. Boundary and initial conditions149

The fluid is injected at the fracture center at a constant injection rate Qo (in m
2
/s under150

plane-strain conditions), such that the flow entering one-wing of the fracture is:151

q(x = 0+, t) = Qo/2 (10)

which can be alternatively be accounted by the global fluid volume balance, integrating the152

continuity equation (7) for the fluid:153

2

Z
`f (t)

0

w(x, t)dx = Qot (11)

In the fluid lag near the fracture tip, the fluid is vaporized and its pressure is equal to the154

cavitation pressure pcav, which is typically much smaller than the liquid pressure pf in the155
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wR definition Reference ↵e ↵c wR (µm)

Renshaw (1995) ⇤ 2 1.5

Basalt (1.6), marble (13)

Standard deviation granite (0.63-320),

of the aperture granodiorite (500)

Zimmerman & Bodvarsson (1996) ⇤ 2 1.5 Granite (34-295)

Garagash (2015) 1 1 Concrete (150)

Lomize (1951) 1.5 6.0 Sand-coated glass

Peak asperity height
Zhang et al. (2015) 1.12 10�3

Granite (2320-3140),

limestone (4050)

Table 1: Different empirical models suggested in literature for the friction factor (Eq. (8)). The superscript
⇤ indicates that the expression of the friction factor reported does not exactly correspond to the functional

form of Eq. (8). As a result, for those cases, we obtain ↵c, ↵e from the two leading terms of a Taylor

expansion of the reported expression.

fluid filled part and the in-situ confining stress �o. We thus have the following pressure156

boundary condition in the lag:157

pf (x, t) = pcav ⇡ 0, x 2 [`f (t), `(t)] (12)

The fluid front velocity ˙̀
f is equal to the mean fluid velocity q/w at that fluid front location158

x = `f (Stefan condition):159

˙̀
f = � w

2

µ0f(w)

@pf

@x

����
x=`f

(13)

The fracture opening is zero at the fracture tip taken as the beginning of the cohesive zone:160

w(x = `, t) = 0 (14)

Initial conditions. We model the nucleation process, and the coupled developments of the161

cohesive zone and the fluid lag. We start from a negligibly small fracture in which cohesive162

forces have not completely vanishes: the fracture length equals the cohesive zone length163

initially. Upon the start of injection, this initially static flaw is fully filled with fluid at a164

pressure slightly larger than the in-situ stress �o.165
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2.4. Energy balance166

The energy balance for a propagating hydraulic fracture can be constructed by combining167

two separate energy balance equations, one for the viscous fluid flow and the other one for the168

quasi-brittle medium deformation of an advancing crack (Lecampion & Detournay, 2007).169

The external power Pe = Qopf0 (where pf0 = pf (x = 0, t) is the fluid pressure at the inlet)170

provided by the injecting fluid is balanced by five terms:171

• the rate of work done to overcome the in-situ confining stress: Ẇo = Qo�o172

• the rate of change of the elastic energy stored in the solid Ẇe:173

Ẇe =

Z
`f

0

p
@w

@t
dx+

Z
`f

0

w
@p

@t
dx� �o

Z
`

`f

@w

@t
dx (15)

• a power associated with the rate of the change of the fluid lag cavity volume times the174

in-situ far-field stress Ẇl:175

Ẇl = 2�o

d
dt

Z
`

`f

wdx (16)

• the viscous dissipation rate in the fluid filled region of the fracture Dv:176

Dv = �2
Z

`f

0

q
@p

@x
dx (17)

• the energy rate associated with the debonding of cohesive forces and the creation of177

new fracture surfaces Dk:178

Dk = �
Z

`

0

w
@�coh

@t
dx+

Z
`

0

�coh

@w

@t
dx. (18)

Accounting for the symmetry of the problem, we can define an apparent fracture energy179

Gc,app =
Dk

2 ˙̀
(19)

In the coordinate system of the moving tip, we can rewrite Eq. (19) for the linear weakening180

cohesive zone model as follows (see more details in Supplemental Materials):181

Gc,app =
1

2
�cw(x̂ = `coh) +

1

2 ˙̀
�c

Z
`coh

0

@w

@t

����
x̂

dx̂, x̂ = `� x (20)
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When the fracture has already nucleated and the cohesive zone size is negligible compared182

to the fracture length (`� `coh), the first term in Eq. (20) equals the real fracture energy Gc183

with w(x̂ = `coh) = wc. For a large fracture, where the cohesive zone is nearly constant, the184

second term tends to zero as the material time derivative of width is negligible for fracture185

with slow variation of velocity: more precisely, in the tip reference frame the convective186

derivative ˙̀ @·
@x̂

(which leads when integrated to the first term) dominates over the material187

time derivative @·
@t
|x̂. As a result, the apparent energy tends to equal to the real fracture188

energy Gc,app ⇡ Gc at large time. However, it does not necessarily imply that the fracture189

width asymptote in the near tip region follows the LEFM limit. It only results from the fact190

that the convective derivative dominates - and as such the travelling semi-infinite fracture191

solution of Garagash (2019) applies (where different tip asymptotes emerge as function of192

the ratio �o/�c). However the equivalence Gc,app = Gc does not hold when the fracture193

length is comparable to the cohesive zone ` � `coh. The first term increases with time until194

w(x̂ = `coh) reaches the critical opening wc at nucleation while the second term results from195

the competition between the fracture velocity and the material rate change of the volume196

embedded inside the cohesive zone. As a result of this second term, the evolution of the197

apparent fracture energy may not be necessarily monotonic in an intermediate phase as we198

shall see later from our numerical simulations.199

3. Structure of the solution200

Before investigating the problem numerically, we discuss the evolution of such a quasi-201

brittle HF in light of dimensional analysis. We notably highlight the difference brought202

upon the existence of a process zone compared to the linear elastic fracture mechanics case203

(Garagash & Detournay, 2005; Garagash, 2006; Lecampion & Detournay, 2007). Following204

previous work on hydraulic fracturing (Garagash, 2000; Detournay, 2004), we scale the flux205

q with the injection rate Qo, and scale the fracture width w, net pressure pf � �o, fracture206

length `, and the extent of the liquid filled part of the fracture `f introducing corresponding207
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width W , pressure P , fracture length L and fluid extent Lf characteristic scales:208

w(x,t) = W (t)⌦(⇠,P), pf (x,t)� �o = P (t)⇧(⇠,P), q(x,t) = Qo (⇠,P) (21)

`(t) = L(t)�(P), `f (t) = Lf (t)�f (P) (22)

where ⇠ = x/` is a dimensionless coordinate. The dimensionless variables also depend on209

one or more dimensionless number P (which may depend on time). Introducing such a210

scaling in the governing equations of the problem allows to isolate different dimensionless211

groups associated with the different physical mechanisms at play (elasticity, injected volume,212

viscosity, fracture energy) and define relevant scalings.213

Before going further, we briefly list the dimensionless form of the governing equations and214

the expression of the different dimensionless groups appearing in the governing equations215

(1)-(14).216

• The elasticity equation can be re-written as:217

⇧� ⌃coh(⌦(⇠)) = Ge

1

4⇡

1

�

Z 1

0

@⌦

@⇠

✓
1

⇠ � ⇠0
� 1

⇠ + ⇠0

◆
d⇠0, 0 < ⇠, ⇠

0
< 1 (23)

with Ge =
WE

0

PL
and the dimensionless traction-separation law as218

⌃coh = Gt ⇥
✓
1� ⌦

Gw

◆
, ⌦ < Gw (24)

with Gt = �c/P and Gw = wc/W .219

• The dimensionless fluid continuity and roughness corrected Poiseuille’s law are bet-220

ter expressed by scaling the spatial coordinate with the fluid front position - thus221

introducing the ratio of scales Gl = Lf/L - ⇠̂ = x/`f = ⇠ ⇥ (�/�f )/Gl:222

t
@⌦

@t
+ t

Ẇ

W
⌦+ Gv

1

�f

@ 

@⇠̂
= 0 (25)

 = � 1

Gm

⌦3

f ⇥ �f

@⇧

@⇠̂
(26)

with Gv =
Qot

WLf

related to the fracture volume, and Gm =
µ
0
QoLf

PW 3
related to fluid223

viscosity, while the friction roughness correction f can be simply re-written as f =224

1 + (Gw/⌦)
↵e .225
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• the entering flux boundary conditions becomes226

 (⇠ = 0+,t) = 1/2 (27)

while the dimensionless net pressure ⇧ in the fluid lag is227

⇧(⇠  ⇠f = `f/`) = �Go = �
�o

P
(28)

It is worth noting that for the linear weakening law the dimensionless fracture energy228

is simply Gc = (wc�c)/(2PW ) =
1

2
GwGt. In addition, in order to make the link with the229

LEFM scalings that use a reduced fracture toughness defined as K
0 =

p
32/⇡KIc, we use230

the equivalent dimensionless fracture toughness: Gk =
p

32/⇡
p
GeGc =

p
16/⇡

p
GeGwGt in231

the following.232

The well-known scalings under the LHFM assumptions for the case of negligible lag233

(Gl = Lf/L = 1) are obtained by recognizing that elasticity is always important (Ge = 1),234

and the fact that without fluid leak-off the fracture volume equals the injected volume at235

all time (Gv = 1). The viscosity and toughness scalings are then obtained by either setting236

Gm (M/viscous scaling) or Gk (K/toughness scaling) to unity. Alternatively, the fluid lag237

dominated scaling (O-vertex) is obtained by recognizing that viscous effects are necessary238

for cavitation to occur (Gm = 1) and the lag covers a significant part of the fracture such that239

the pressure scale is given by the in-situ stress (Go = 1). Similarly elasticity (Ge = 1) and240

fluid volume (Gv = 1) are driving mechanisms. These well-known scalings for the different241

limiting propagation regimes are recalled in Table 2.242

Under the assumption of linear elastic fracture mechanics, as discussed in Garagash243

(2006); Lecampion & Detournay (2007), a plane-strain HF evolves from an early-time so-244

lution where the fluid lag is maximum to a late solution where the fluid and fracture front245

coalesces (zero lag case) over a time-scale246

tom =
E

02
µ
0

�3
o

(29)

This time-scale directly emerges as the time it takes for the dimensionless in-situ stress247

Go to reach unity in the zero lag scalings. In addition, the solution also depends on a248
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dimensionless toughness Km (or alternatively dimensionless viscosity) independent of time.249

The fluid lag is the largest for small dimensionless toughness and is negligible at all time250

for large dimensionless toughness. The propagation can thus be illustrated via a triangular251

phase diagram, whose three vertices (O-M-K) corresponds to three limiting regimes. The252

O-vertex corresponds to the limiting case of a large lag / negligible toughness, the M-vertex253

corresponds to viscosity dominated propagation with a negligible fluid lag while the K-254

vertex corresponds to a toughness dominated propagation where viscous effects are always255

negligible and as a result no fluid lag exists.256

The introduction of a cohesive zone modifies partly this propagation diagram. One can257

define a cohesive zone scaling (which will be coined with the letter C) by setting the pressure258

scales P to the peak cohesive stress �c (Gt = 1), the opening scale W to the critical opening259

wc (Gw = 1). We then readily obtain from elasticity (Ge = 1) that the fracture characteristic260

length L equals the classical cohesive characteristic length scale (Rice, 1968; Hillerborg et al.,261

1976):262

Lcoh =
E

0
wc

�c

(30)

Such a scaling is relevant at early time when the cohesive zone scale is of the order of the263

fracture length. We know from the LHFM limit that the fluid lag is also important at early264

time. From lubrication flow, combining fluid continuity and Poiseuille’s law to obtain the265

Reynolds equation enables to define the corresponding fluid front scale Lf as wc

p
�ct/µ

0 (by266

setting the resulting dimensionless group Gv/Gm in the Reynolds equation to one). Another267

time-scale tcm thus emerges as the characteristic time for which the fluid front in that cohesive268

scaling is of the same order of magnitude than the characteristic fracture / cohesive length:269

tcm =
E

02
µ
0

�3
c

= tom ⇥
✓
�o

�c

◆3

. (31)

This time-scale quantifies the time required for the cohesive zone to develop in relation to270

the penetration of the fluid. It is worth noting that the ratio of time-scales tcm/tom related271

to the fluid lag in the cohesive (C) and LHFM (O) scalings is directly related to the ratio272

between the in-situ confining stress and the peak cohesive stress.273
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Three stages of growth can thus be delineated as function of the evolution of the cohesive274

zone.275

• Stage I for early time (t ⌧ tcm): the whole fracture length is embedded inside the276

cohesive zone. The cohesive zone develops with time yet is not fully nucleated. We277

will refer to this stage as the nucleation stage in the following.278

• Stage II for intermediate times (of the order of tcm): the cohesive zone has now fully279

nucleated and part of the fracture surfaces are completely separated without cohesion280

(w > wc in the central part of the fracture). The cohesive zone remains important281

compared to the whole fracture length and may be not yet stabilized. We will refer to282

this stage as the intermediate propagation stage.283

• Stage III (t � tcm): the cohesive zone now only takes up a very small fraction of the284

whole fracture such that the small-scale-yielding assumption becomes valid. We will285

refer to this stage as the late time propagation stage/small-scale-yielding stage.286

From the different scalings in Table 2, we see that using tcm as a characteristic time-287

scale, the evolution of a HF in a quasi-brittle material depends only on i) a dimensionless288

toughness Km, ii) the ratio between the confining stress and material strength �o/�c and289

iii) the dimensionless roughness exponent ↵e. Possibly, a value different than unity for the290

coefficient ↵c in relation to the flow-roughness relationship (8) would also play a role.291

For a quasi-brittle impermeable material, the propagation can be schematically grasped292

by the propagation diagram depicted on Fig. 3. The propagation starts in a cohesive /293

nucleation regime (vertex C) and ultimately ends up at large time on the M-K edge (LHFM294

/ small-scale-yielding limit) at a point depending on the (time-independent) dimensionless295

toughness Km. How the fracture evolves from the nucleation (vertex C) stages to the large296

time LHFM limits is function of the ratio �o/�c as well as the roughness exponent. When297

�o ⌧ �c (tcm ⌧ tom), the cohesive zone develops faster than the time required for the fluid298

front to coalesce with the fracture front. In that case, the small-scale-yielding assumption299

may become valid early in conjunction with the presence of a fluid lag (O-K edge) - the fluid300
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Table 2: Characteristic scales and dimensionless numbers governing the evolution of a plane-strain quasi-

brittle HF in the different limiting regimes: C - lag/cohesive/nucleation, O - lag/viscous/ LHFM, M - fully

filled/viscous/LHFM, K - fully filled/toughness/LHFM. The evolution of the HF is also function of the

dimensionless roughness exponent ↵e. The time-scales tom and tcm defined in Eqs (29), (31) are related

as tcm/tom = (�o/�c)3. The 16/⇡ factors appearing in the dimensionless numbers are due to the use of

K
0 =

p
32/⇡KIc in the LHFM based scalings (Detournay, 2004; Garagash, 2006) and the fact that for the

linear weakening cohesive law Gc = wc�c/2.

front will lie outside of the cohesive zone for some time. On the other limit, for �o > �c,301

the fluid front tends to remain inside the cohesive zone which develops slower than the fluid302

front progress.303

How exactly, the growth of the HF is influenced by the interplay between the cohesive304

zone and lag evolution for different values of �o/�c, dimensionless toughness and fracture305

roughness intensity will be now investigated numerically.306

4. Numerical scheme307

In order to decipher the interplay between the fluid front and cohesive zone, it is necessary308

to account for the nucleation of both the cohesive zone and the fluid lag. Previous numerical309
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Figure 3: Propagation diagram of a plane-strain hydraulic fracture with a rough cohesive fracture tip. The

bottom O�M �K triangle corresponds to the LHFM limit. Note that possibly, a value of ↵c (see Eq. (8))

different than unity will impact the solution.

investigation using LHFM either tracks explicitly the fluid front in addition to the fracture310

front (Lecampion & Detournay, 2007; Zhang et al., 2005; Gordeliy & Detournay, 2011) or311

uses a cavitation algorithm introducing a fluid state variable ✓ 2 [0,1] (1 for the liquid phase,312

0 for the vapour phase) (Shen, 2014; Mollaali & Shen, 2018) in a similar way than thin-film313

lubrication cavitation models (see for example Szeri (2010)).314

The cavitation approach enables the spontaneous nucleation of the fluid lag but adds315

another variables and additional inequalities conditions (pf � 0, 0  ✓  1, pf (1� ✓) = 0) in316

each element. The computational cost of such cavitation schemes increases significantly as317

quadratic programing problem needs to be solved at each time-step. We therefore propose318

here an algorithm taking advantage of both the cavitation scheme at early time (when the319

fluid lag nucleates from an initially fully liquid filled flaw) and a fluid-front-tracking scheme320

at later times.321

Our algorithm consists of the use of two successive schemes, both based on a fixed322

regular grid with constant mesh size. At the beginning of the simulation, we adopt an323

Elrod-Adams type scheme similar to the one described in Mollaali & Shen (2018). This324
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scheme automatically captures the appearance of the fluid lag in the most accurate manner325

(Liu & Lecampion, 2019b). In a second stage of the simulation, we use the results of the326

previous algorithm to initialize a scheme similar to Gordeliy & Detournay (2011) where the327

fluid front position is tracked explicitly via the introduction of a filling fraction variable in328

the partly filled element at the lag boundary. We discretize respectively the elasticity and329

fluid mass conservation using a displacement discontinuity method with piece-wise constant330

elements and finite difference. We use an implicit time-integration scheme to solve iteratively331

for the fluid pressure and the associated opening. An additional outer loop solves for the332

time-step increment corresponding to a fixed increment of fracture length. More details are333

given in Appendix A.334

Mesh requirements. A sufficient number of cohesive elements is necessary to ensure the stress335

accuracy ahead of the fracture tip and the resolution of the fracture propagation condition.336

A minimum of three elements are suggested to mesh the cohesive zone to ensure sufficient337

accuracy of the near tip stress field (Falk et al., 2001; Moës & Belytschko, 2002; Turon et al.,338

2007). In dry fracture mechanics, the technique of artificially enlarging the cohesive zone339

length while keeping the fracture energy constant is often used (increasing wc and decreasing340

�c accordingly) (Bazant & Planas, 1997; Turon et al., 2007) thus allowing the use of coarser341

meshes. Unfortunately, such a technique is not adequate for cohesive hydraulic fractures.342

It is only valid when the confining �o is adjusted together with �c in order to keep the343

ratio of time scales tcm/tom unchanged (see Eq. (31)). If not, this will change the physics344

of the fluid front-cohesive zone coupling. Another important difference with dry fracture345

mechanics is the fact that the fracture propagates in a medium under initially compressive346

state of stresses, as such the tensile region ahead of the fracture shrinks as the confinement347

increases. Assuming a fluid lag the same size as the cohesive zone, Fig. 4 displays the348

evolution of the tensile zone ahead of the fracture tip as the uniformly pressurized HF349

grows under different confinements. The tensile zone significantly shrinks as the confining350

stress increases, and therefore requires for a finer mesh. Such a confinement-related mesh351

requirement has been seldomly discussed in previous studies (Chen et al., 2009; Chen, 2012;352
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Figure 4: Evolution of the size of the tensile zone ahead of the fracture tip with the cohesive fraction for

different confining to peak cohesive stress ratios. The pressure is uniform everywhere inside the fracture but

no fluid is allowed to enter the cohesive zone (Dugdale cohesive zone model).

Sarris & Papanastasiou, 2011; Carrier & Granet, 2012; Salimzadeh & Khalili, 2015; Wang,353

2015; Li et al., 2017) where the fluid front-cohesive zone coupling is often neglected (zero354

fluid lag, small cohesive zone) and the simulation performed under zero confinement. In this355

paper, we release the confinement-related requirement by adapting the time-step for a given356

fixed fracture increment to fulfill the propagation stress propagation condition. We also357

check a posteriori that the stress intensity factor is indeed null using Eq. (6). We obtain an358

absolute error on Eq. (6) of about 5% (in a range between 0.1 and 8%) for all the reported359

simulations.360

Apart from the tensile zone ahead of the fracture tip, one also needs to resolve the361

fluid lag which shrinks tremendously as the fracture grows but still influences the solution362

(Garagash, 2019). At least one partially-filled (lag) element is necessary to account for the363

influence of the fluid cavity on the tip stress field. At large time, the fluid lag becomes364

negligible compared to the cohesive zone. This is ultimately the bottle-neck governing the365

computational burden due to the mesh requirement of at minima one element in the fluid366

lag. For all the results presented in the following, we actually stop the simulations when367

the fluid fraction ⇠f = `f/` reached 0.99 or when the fracture length was already within five368

percent of the LHFM solutions.369
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Figure 5: Evolution of a) the non-cohesive fraction 1�`coh/` and b) dimensionless cohesive length `coh/Lcoh

with t/tcm for Km = 1�4. The red, orange, and purple curves correspond to �o/�c = 0.1, 1.0, 10 respectively.

The dotted vertical lines indicate the cohesive zone nucleation period for �o/�c = 0.1, Km = 1 � 4. The

dashed horizontal line represents the small-scale yielding asymptote (⇡ 0.115⇡) of the cohesive zone length

for the linear-softening cohesive model (Dempsey et al., 2010).

5. Results370

We now numerically explore the propagation diagram described in Fig. 3. We perform371

a series of simulations covering dimensionless toughness from 1 to 4 and different level of372

confining to peak cohesive stress ratio �o/�c from 0.1 to 10 for either a smooth (↵e = 0) or373

rough (↵e = 2) fracture. These conditions span the transition from viscosity to toughness374

dominated growth regimes, as well as laboratory (�o/�c = 0.1 � 1) and field conditions375

(�o/�c = 10).376

5.1. A smooth cohesive fracture (↵e = 0)377

The three stages related to nucleation, intermediate and late time propagation are well378

visible on the time evolution of the dimensionless cohesive length (Fig. 5), apparent fracture379

energy (Fig. 6), fracture length (Fig. 9), as well as inlet width (Fig. 10) and net-pressure380

(Fig. 11).381

Cohesive zone growth. The scaled cohesive length `coh/Lcoh evolves non-monotonically with382

time (Fig. 5). This evolution is dependent on both the dimensionless toughness Km and383
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Figure 6: Smooth cohesive fracture tip: evolution of the apparent fracture energy Gc,app/Gc with t/tcm for

Km = 1� 4. The red, orange, and purple curves correspond to �o/�c = 0.1, 1.0, 10 respectively. The dotted

vertical lines indicate the cohesive zone nucleation period for �o/�c = 0.1, Km = 1� 4.

�o/�c. At early time during the nucleation phase, when the fracture length is completely384

embedded inside the cohesive zone (1�`coh/` = 0), the cohesive zone increases monotonically385

(Fig. 5). We define the time tc as the end of the nucleation phase, when here after 1�`coh/` >386

0. From our simulations, we found that tc follows approximately an exponential relation387

tc/tcm ⇠ K5.17
m

for Km 2 [1 � 4]. This exponent is consistent with the range of exponents388

in the viscosity (tc/tcm ⇠ K6
m

) and toughness (tc/tcm ⇠ K4
m

) dominated regimes which can389

be obtained by setting Gw = W/wc = 1 in respectively the M- and K-scaling in Table 2.390

In addition, tc also slightly depends on the dimensionless confinement �o/�c, see the inset391

on Fig. 5. Larger confinement slightly reduces this nucleation period for a given Km. The392

cohesive zone length at nucleation are larger for larger dimensionless toughness and then393

decreases with time after nucleation.394

At large time, we observe that - at least for low dimensionless confinement - the cohesive395

zone length tends to a similar value for all dimensionless toughness. Unfortunately, this is396

less observable for larger dimensionless confinement which leads to prohibitive computational397

cost such that the simulations were stopped prior to stabilization of the cohesive zone length.398

However, the trend for �o/�c = 1 hints that a similar behavior holds for larger confinement399

albeit possibly much later in time.400
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Associated energy dissipation. The energy spent in debonding cohesive forces (apparent401

fracture energy) increases similarly to the growth of the cohesive zone length (Fig. 6). This is402

due to the fact that ˙̀ ⇡ ˙̀
coh during the nucleation stage. Interestingly, the apparent fracture403

energy may even go above the fracture energy Gc at nucleation for large dimensionless404

toughness / large dimensionless confinement as illustrated in Fig. 6. At large time, the405

apparent fracture energy converges to the fracture energy Gc, confirming the fact that the406

material derivative of width (in the moving tip frame) becomes negligible in Eq. (20). This407

confirms that at large time (when 1 � `coh/` ⇠ 1) one can use the solution of a steadily408

moving semi-infinite hydraulic fracture solution accounting for cohesive forces (Garagash,409

2019). However, care must be taken to use such a semi-infinite fracture solution when the410

cohesive zone length is of the same order than the overall fracture length. For example,411

the results obtained in Garagash (2019) based on the use of an equation of motion and the412

semi-infinite cohesive HF solution lead to cohesive zone length larger than the finite fracture413

length under the premises of the constant apparent fracture energy. This ultimately leads to414

an over-estimation of fracturing energy dissipation and larger deviation from LEFM solutions415

as it neglects the evolution of the apparent fracture energy associated with the nucleation416

phase.417

Comparisons with linear hydraulic fracture mechanics (LHFM). The time evolution of di-418

mensionless fracture length (scaled by the viscosity dominated LHFM growth length scale419

Lm(t) - see Table. 2) is displayed as dashed curves on Fig. 9. The corresponding inlet net-420

pressure and width evolution for the smooth cohesive zone are displayed as dashed curves421

on Fig. 10 and 11 respectively. Our results indicate that the CZM solutions converge toward422

the LHFM ones (for the corresponding dimensionless toughness) at large times t � tcm.423

The exact dimensionless time for such a convergence toward the LHFM solution is larger424

for larger dimensionless toughness, and smaller for larger �o/�c.425

Interestingly, the fracture length is larger at the early stage of growth compared to the426

LHFM estimate while the inlet opening and pressure are smaller. These differences directly427

result from the fact that the cohesive forces greatly increases the fluid lag size and impacts428
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its evolution during the nucleation and intermediate stages of growth. Indeed, in the LHFM429

case, the fluid lag is negligible at all times for dimensionless toughness Km larger than ⇠ 1.5430

as reported in Garagash (2006); Lecampion & Detournay (2007). For Km = 1, the fluid431

fraction in the LHFM case is already small at early time: it evolves from 0.9 (when t⌧ tom)432

to 1 (for t ⇡ tom, see Fig. A.18 in appendix). For the same dimensionless toughness,433

the fluid fraction is lower than 0.6 at early time when accounting for the cohesive zone434

(see Fig. 12). The large extent of the fluid lag is similarly found for larger dimensionless435

toughness - a striking difference with the LHFM case for which no fluid lag is observed436

for Km > 1.5. The cohesive forces significantly enhance the suction effect and thus lag437

size during nucleation. For the same value of Km, a larger confinement compared to peak438

strength (larger �o/�c) decreases the lag size. Larger �o/�c results in steeper fluid pressure439

gradient and accelerates the penetration of the fluid front into the cohesive zone during the440

nucleation and intermediate phase (see Fig. 13) .441

As the dimensionless toughness increases, the effect of �o/�c becomes limited to the nu-442

cleation phase (see the length, inlet width and inlet net pressure evolution on Figs. 9, 10, 11).443

After nucleation, the solutions appear independent of �o/�c for t > tcm for the Km = 3 and 4444

cases. The fact that �o/�c does not influence the growth after nucleation for large toughness445

can be traced back to the fact that the fluid lag cavity is very small in comparison to the446

cohesive zone length as can be seen on Fig. 13.447

Fig. 7 displays the dimensionless fracture length, fluid fraction, inlet width and pressure448

for a small dimensionless toughness case (Km = 0.495). We have plotted these time evolution449

as function of t/tom for better comparison with the LHFM solution accounting for a fluid450

lag (Lecampion & Detournay, 2007). For low dimensionless toughness Km, the response451

converges well to the LHFM lag solution (Lecampion & Detournay, 2007) relatively quickly452

after nucleation (contrary to the case of large Km). On Fig. 7, the convergence occurs453

earlier for smaller �o/�c in term of t/tom - actually later for smaller �o/�c in term of t/tcm =454

t/tom ⇥ (�o/�c)�3 (in line with observations for larger Km).455
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Figure 7: Km = 0.495: evolution of a) the fracture half length, b) fluid fraction, c) inlet width, and d)

inlet net pressure with t/tom. The red, orange and purple curves correspond to different confining stress

�o/�c = 0.1, 1, 10 in a smooth cohesive HF with the dotted vertical lines as their corresponding cohesive

zone nucleation period. The gray dashed curves indicate LHFM numerical results with a lag. The two gray

horizontal lines correspond respectively to the LHFM early-time solutions with a lag (Garagash, 2006) and

large-time solutions without a lag (Garagash & Detournay, 2005). The time evolution of the cohesive zone

length and the ratio between the lag and cohesive zone sizes, fracture apparent energy and ratio of energy

dissipation in viscous flow to that in fracture surface creation is shown in Supplemental Materials.
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Figure 8: a) Dimensionless opening, and b) net pressure profiles at t/tom = 0.02 for Km = 1.009. “+”

indicates the boundary of the cohesive zone and “⇥” indicates the fluid front location. The red, orange, and

purple curves represent different confining stress level �o/�c = 0.1, 1.0, 10. The gray curves represent the

LHFM solutions with a lag at the same time t/tom = 0.02.

Tip asymptotes. The width and net pressure profiles in the tip reference frame for Km = 1456

is displayed on Fig. 8 at time t/tom = 0.02 for different �o/�c (thus at different t/tcm for the457

different �o/�c and different ratio `coh/`). On can observe different asymptotic behavior as458

function of distance from the tip on Fig. 8. In the far-field, the 2/3 viscosity ’m’ asymptote459

(Desroches et al., 1994) is visible in the low confinement case - for which at this time,460

the fluid front is actually outside the cohesive zone. Closer to the tip, the 3/2 cohesive461

zone ’c’ asymptote is visible. These results are in line with the cohesive tip solution of462

Garagash (2019), although here the cohesive zone is not necessarily small compared to the463

overall fracture length. This induces a significant offset compared to the semi-infinite results464

reported in Garagash (2019) (see Supplemental Materials for details).465

5.2. A rough cohesive fracture (↵e = 2)466

The additional resistance to fluid flow associated with fracture aperture roughness has467

a profound impact on growth both at the nucleation and intermediate stage. The effect468

is amplified for larger �o/�c and larger Km. This can be well observed from the evolution469

of length, inlet width and net pressures displayed on Figures 9, 10 and 11 respectively.470
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In particular the net pressure and width are significantly larger compared to the smooth471

cohesive zone and LHFM cases, while the dimensionless length is shorter after nucleation.472

The convergence toward the LHFM solutions with zero lag are in some cases not fully473

achieved even at very large time (t� tcm especially for the large �o/�c cases. As mentioned474

earlier, we actually stop these simulations when the fluid fraction ⇠f = `f/` reached 0.99 or475

the fracture length was within five percent of the LHFM solutions.476

Faster nucleation of the cohesive zone. As the fluid front is necessarily embedded in the cohe-477

sive zone during the nucleation stage, the effect of roughness is significant during nucleation.478

For the same stress ratio �o/�c and dimensionless toughness Km, roughness influences the479

fracture growth by decreasing the fluid front penetration into the cohesive zone as illustrated480

by the evolution of the ratio between the lag and cohesive zone sizes in Fig. 13.481

The increase of the fluid flow resistance brought by roughness can also be observed on482

the net pressure and width profiles (see Fig. 14). The steeper pressure gradient near the fluid483

front results in a wider opening in the fluid-filled part of the fracture, ultimately making it484

easier to completely debond the cohesive tractions (w > wc) near the tip. The nucleation485

process is therefore accelerated as shown in Figs. 15, 16. The cohesive length is shorter at486

nucleation compared to the smooth case, but tends to converge to the same value as the487

smooth case at late time at least for smaller dimensionless toughness. In spite of the lack of488

stabilized cohesive zone length for the large dimensionless toughness / large �o/�c cases, the489

trend for �o/�c = 1 hints a similar behavior for larger confinement albeit at a much later490

dimensionless time.491

Additional energy dissipation. These observations indicate an increase of the overall energy492

dissipated in the hydraulic fracturing process in the rough cohesive zone case. As shown493

in Figs. 16, 17, the extra energy dissipation comes from viscous fluid flow inside the rough494

cohesive zone and not from additional energy requirement to create new fracture surfaces.495

The evolution Gc,app is not fundamentally different, with actually a smaller maximum at496

nucleation compared to the smooth cohesive zone case (Fig. 16). The ratio Dv/Dk of the497

energies dissipated in fluid viscous flow and in the creation of new fracture surfaces is signif-498
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icantly larger than the smooth and LHFM cases in the nucleation and intermediate stages499

(Fig. 17), especially for larger �o/�c. However, the Dv/Dk ratio converges toward the LHFM500

limit at very large time (t� tcm).501

Fracture aperture roughness has an impact on the fracture growth only when the fluid502

front is located within the cohesive zone (`� `f < `coh). For small dimensionless toughness503

and stress ratio, the fluid lag is larger or just slightly smaller than the cohesive zone length504

after nucleation (see for example the Km = 1, �o/�c = 0.1 case). As a result roughness505

has little effect and the growth is similar to the smooth case in the intermediate stage of506

growth. A larger dimensionless confining stress level or/and larger dimensionless toughness507

facilitates the penetration of the fluid front into the cohesive zone and results in additional508

fluid viscous dissipation due to the roughness.509

At large time, the cohesive zone and fluid lag size becomes much smaller than the overall510

fracture length such that the effect of roughness on growth is significantly reduced. The511

large time trend for �o/�c = 1 (for all toughness) both in terms of length, width, pressure512

(see Figs. 9, 10, 11) as well as energy (Figs. 16) hints that the growth of a rough cohesive513

fracture tends to LHFM limits at sufficiently large time, similarly than for the smooth case.514

However, the time at which fracture growth finally follows the LHFM prediction appears515

much larger than tcm especially for larger Km and �o/�c.516

6. Discussions517

6.1. Implications for HF at laboratory and field scales518

To gauge the implications for real systems, we consider typical values relevant to lab-519

oratory and field scales hydraulic fractures in oil/gas bearing shale/mudstone formation.520

These rocks have a large range of reported tensile strength (2 � 12 MPa - Rybacki et al.521

(2015)), elastic modulus (4� 30 GPa - Rybacki et al. (2015)) and fracture toughness (0.18-522

1.43 MPa.m1/2 - Chandler et al. (2016)). We assume in what follows �c = 3 MPa, Gc = 45523

N/m, wc = 30µm and E
0 = 30 GPa. We report the corresponding characteristic scales and524

dimensionless numbers for different type of injection in Table. 3.525
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Figure 9: Evolution of the dimensionless fracture half length `/Lm(t) with t/tcm for Km = 1� 4. The red,

orange, and purple curves correspond respectively to �o/�c = 0.1, 1.0, 10 and the solid and dashed curves

correspond respectively to a rough (↵e = 2) and smooth fracture (↵e = 0). The dotted vertical lines indicate

the cohesive zone nucleation period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture. The

gray horizontal lines indicate the LHFM solutions in the zero fluid lag limit.
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Figure 10: Evolution of the inlet width w(x = 0)/Wm(t) with dimensionless time t/tcm for Km = 1 � 4.

The red, orange, and purple curves correspond respectively to �o/�c = 0.1, 1.0, 10 and the solid and dashed

curves correspond respectively to a rough (↵e = 2) and smooth fracture (↵e = 0). The dotted vertical lines

indicate the cohesive zone nucleation period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture.

The gray horizontal lines indicate the LHFM solutions in the zero fluid lag limit.
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Figure 11: Evolution of the inlet net pressure p(x = 0)/Pm(t) with t/tcm for Km = 1� 4. The red, orange,

and purple curves correspond respectively to �o/�c = 0.1, 1.0, 10 and the solid and dashed curves correspond

respectively to a rough (↵e = 2) and smooth fracture. The dotted vertical lines indicate the cohesive zone

nucleation period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture. The gray horizontal lines

indicate the LHFM solutions in the zero fluid lag limit.
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Figure 12: Evolution of the fluid fraction ⇠f = `f/` with t/tcm for Km = 1 � 4. The red, orange, purple

curves correspond to �o/�c = 0.1, 1.0, 10 and the solid and dashed curves correspond respectively to a rough

(↵e = 2) and smooth fracture (↵e = 0). The dotted vertical lines indicate the cohesive zone nucleation

period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture.

32



10- 4 0.01 1 100

10- 4

0.001

0.010

0.100

1

10- 4 0.01 1 100

10- 4

0.001

0.010

0.100

1

10- 4 0.01 1 100

10- 4

0.001

0.010

0.100

1

10- 4 0.01 1 100

10- 4

0.001

0.010

0.100

1

Figure 13: Time evolution of the ratio between the lag and cohesive zone sizes (`� `f )/`coh for Km = 1� 4.

The red, orange, and purple curves correspond to �o/�c = 0.1, 1.0, 10 respectively and the solid and dashed

curves correspond respectively to a rough (↵e = 2) and smooth fracture (↵e = 0). The dotted vertical lines

indicate the cohesive zone nucleation period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture.
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Figure 14: a) Dimensionless opening and b) net pressure profiles at t/tcm = 50 for Km = 3.0. “+” indicates

the boundary of the cohesive zone and “⇥” indicates the fluid front location. The red and orange curves

correspond to �o/�c = 0.1, 1.0 respectively. The solid and dashed curves indicate respectively a rough

(↵e = 2) and smooth fracture (↵e = 0).

Fracturing fluid µ
0 (Pa.s) Qo (m2/s) �o Injection duration (s)

Lab injection (1) Silicone oil 12⇥ 1000 1.0⇥ 10�9 3 600-1800

Lab injection (2) Glycerol 12⇥ 0.6 1.0⇥ 10�9 0.3 30-1800

Micro-HF test Slick water 12⇥ 0.005 1.0⇥ 10�5 30 60-240

Well stimulation Slick water 12⇥ 0.005 1.0⇥ 10�3 30 1800-7200

Km �o/�c tcm (s) tc (s) Lcoh (m)

Lab injection (1) 0.88 1.0 4.0⇥ 105 ⇡ 1.6⇥ 103 0.3

Lab injection (2) 5.6 0.1 2.4⇥ 102 > 1.1⇥ 103 0.3

Micro-HF test 1.8 10 2.0 ⇡ 0.19 0.3

Well stimulation 0.6 10 2.0 < 4.9⇥ 10�3 0.3

Table 3: Examples of characteristic scales for laboratory and field scale HF injection. We report the

corresponding time tc and length scale Lcoh for nucleation in the rough cohesive zone case (↵e = 2).
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Figure 15: Time evolution of the cohesive length `coh/Lcoh for Km = 1 � 4 . The red, orange, and purple

curves correspond respectively to �o/�c = 0.1, 1.0, 10 and the solid and dashed curves correspond respectively

to a rough (↵e = 2) and smooth fracture (↵e = 0). The dotted vertical lines indicate the cohesive zone

nucleation period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture. The dashed horizontal line

represents the small-scale yielding asymptote (⇡ 0.115⇡) of the cohesive zone length for the linear-softening

cohesive model (Dempsey et al., 2010).
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Figure 16: Time evolution of the apparent fracture energy Gc,app/Gc for Km = 1� 4. The red, orange, and

purple curves correspond respectively to �o/�c = 0.1, 1.0, 10 and the solid and dashed curves correspond

respectively to a rough (↵e = 2) and smooth fracture (↵e = 0). The dotted vertical lines indicate the

cohesive zone nucleation period of �o/�c = 0.1 for a smooth (gray) and a rough (black) fracture.
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Figure 17: Time evolution of the ratio of the energies dissipated in fluid viscous flow and in the creation of

new fracture surfaces Dv/Dk for Km = 1�4. The red, orange, and purple curves correspond respectively to

�o/�c = 0.1, 1.0, 10 and the solid and dashed curves correspond respectively to a rough (↵e = 2) and smooth

fracture (↵e = 0). The dotted vertical lines indicate the cohesive zone nucleation period of �o/�c = 0.1 for

a smooth (gray) and a rough (black) fracture. The gray horizontal lines are the corresponding LHFM limits

with zero fluid lag.
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Laboratory HF tests are performed on finite size samples Ls (typically with Ls at most526

half a meter) with a minimum confining stresses either smaller or on par with the material527

cohesive stress (�o/�c ⇡ 0.1�2). In the case where the sample dimension Ls is smaller or of528

the order of the characteristic scale of the cohesive zone Lcoh, laboratory HF tests will only529

span the nucleation and intermediate stages of growth, and as a result will strongly deviate530

from LHFM predictions. If Ls is sufficiently larger than Lcoh (Ls & 10Lcoh), the fracture531

growth will possibly converge to LHFM solutions at late time for small Km (Lab injection532

(1) case in Table. 3). Nevertheless, it will still present significant deviations from LHFM533

solutions in the inlet width and net pressure (see Figs. 10, 11) for larger Km values (Lab534

injection (2) case in Table. 3).535

In-situ HF operations are performed at depth (anything from 1.5 to 4 km), and as a536

result the ratio �o/�c is always much larger than unity (�o/�c ⇠ 10 or even larger). We537

evaluate the characteristic scales by assuming injection of slick water in micro-HF tests and538

well stimulation operations (see Table. 3). A micro-HF test (typically performed at a small539

injection rate) is characterized by a dimensionless toughness Km around two. Based on540

the results presented previously, significant deviations from LHFM predictions are expected541

in that case with a fracture length shorter by about 15% (see Fig. 9), a fracture opening542

larger by about 20% (Fig. 10), and a net pressure larger by about 40% (Fig. 11) after less543

than a minute of propagation (t ⇠ 100tcm). For well stimulation applications, the fracture544

growth will converge toward the LHFM predictions after few minutes thanks to the smaller545

dimensionless toughness resulting from the larger injection rate. This convergence will be546

delayed for deeper injections / larger �o/�c. One should bare in mind that very different547

responses can be encountered as function of rocks properties (notably of wc, �c) and in-situ548

stress conditions.549

6.2. Limitations and possible extensions of the current study550

We have used a simple linear-weakening cohesive zone model to simulate the fracture551

process zone and a phenomenological correction to Poiseuille’s law (assuming wR = wc) to552

account for the effect of aperture roughness on fracture hydraulic conductivity. These choices553
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are actually the simplest possible ones, and may well be oversimplified. More advanced554

traction-separation relations with both a non-linear hardening and softening branch are555

often found to better reproduce experimental observations of fracture growth in quasi-brittle556

materials (Park & Paulino, 2011; Needleman, 2014). Similarly, the precise relation between557

the width scale of solid non-linearity wc and that of the one related to the flow deviation558

wR remains to be better constrained from experiments. A better description of the details559

of both the traction-separation law and the effect of roughness on fluid flow will likely560

modify quantitatively the hydraulic fracturing growth at the early and intermediate stages.561

However, the scaling and qualitative structure of HF growth presented here will remain562

similar. We also have to recall that a difference between wc and wR, or similarly a value of563

↵c different than unity is clearly possible in view of the scatter of the available experimental564

data (Table 1). This would add another dimensionless parameter (↵c) in addition to �o/�c,565

↵e and the dimensionless toughness Km.566

Our results indicate a convergence of HF growth in quasi-brittle materials toward LHFM567

predictions at large time, even though the investigation of the parametric space reported568

here is only partial due to the extremely significant numerical cost of the simulation in569

the vanishing lag size limits as time increases. The numerical difficulty results from the570

requirement of a sufficiently fine mesh to resolve the shrinking fluid lag at large time as well571

as the small tensile zone ahead of the tip which significantly decreases for large �o/�c. An572

algorithm with an adaptive mesh refinement must be developed to ensure a sufficiently fine573

resolution of the process zone and fluid lag in order to further investigate fracture growth574

for large �o/�c cases.575

We have assumed the flow to be strictly laminar in the rough fracture. In some spe-576

cific cases where very large injection rates are used, turbulence may appear in the fracture577

(Lecampion & Zia, 2019; Zia & Lecampion, 2017; Dontsov, 2016). Interestingly, the devia-578

tion from smooth laminar flow via the introduction of a friction correction bears similarity579

with the case where turbulent flow is accounted for (Tsai & Rice, 2010; Lecampion & Zia,580

2019). The impact of turbulent flow in fractures is also captured via a friction correction581

albeit with a different functional form. The effect of turbulence has been shown to be re-582
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stricted to the early time of fracture growth (Lecampion & Zia, 2019). As such it may583

possibly influence the nucleation and intermediate phases of growth previously discussed for584

large injection rate field conditions.585

The discussions and results presented here pertain to a plane-strain geometry, but can586

be extended to a radial hydraulic fracture (Liu & Lecampion, 2019a; Garagash, 2019). For a587

radial cohesive HF, the energy dissipated in the creation of fracture surfaces increases with588

the fracture perimeter. In particular, the dimensionless toughness Km increases with time589

as Km = (t/tmk)1/9 (Savitski & Detournay, 2002), with590

tmk =
E

013/2
Q

3/2
o µ

05/2

K 09 (32)

This introduces another time-scale into the problem besides tom and tcm = tom⇥(�o/�c)3. As591

a result, the exact growth of a radial cohesive HF will be impacted by the ratio tcm/tmk, or in592

other words by the competition between hydro-mechanical effects associated with nucleation593

and the overall transition toward the late-time toughness dominated regime. The results of594

Garagash (2019) obtained using an equation of motion based on the solution of a steadily595

moving HF provides an estimate of the propagation, but should be taken with caution as596

this approach does not necessarily ensure that the cohesive zone length is smaller than the597

fracture length. Additional quantitative investigation of the radial cohesive HF are left for598

further studies.599

7. Conclusions600

We have investigated the growth of a plane-strain HF in a quasi-brittle material using a601

cohesive zone model including the effect of aperture roughness on fluid flow in the simplest602

possible manner. In parallel to the cohesive zone, it is necessary to account for the presence603

of a fluid lag to ensure that both the fluid pressure and stresses in the near tip region remain604

finite. Resolving with sufficient accuracy these potentially small regions near the fracture605

tip renders the problem extremely challenging numerically.606

We have shown that a plane-strain cohesive HF presents three distinct stages of growth:607

a nucleation phase, an intermediate phase during which the results slowly converge toward608
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linear hydraulic fracture mechanics (LHFM) predictions in a third stage. The overall solu-609

tion is characterized by a cohesive zone nucleation time scale tcm = E
02
µ
0
/�

3
c
, a dimensionless610

fracture toughness Km (whose definition is similar to the LHFM case) and the ratio between611

in-situ and material cohesive stress �o/�c. In addition, the enhanced flow dissipation as-612

sociated with fracture roughness significantly influences the solution as it re-inforces the613

hydro-mechanical coupling in the near tip region.614

After the nucleation stage, for large Km, the effect of �o/�c for a smooth cohesive zone615

case is not significant when the solutions tend toward the LHFM predictions. This con-616

vergence toward LHFM occurs at later t/tcm for larger Km. For small Km, the fluid lag617

diminishes faster for larger �o/�c and the convergence to LHFM occurs for smaller t/tcm as618

a result.619

Roughness significantly modifies the convergence toward LHFM notably for dimension-620

less toughness larger than 1. In addition, for these large toughness cases, larger �o/�c results621

in larger deviations and a much slower convergence toward the LHFM predictions (which622

now occur for orders of magnitude of the nucleation time scale tcm). Fracture roughness leads623

to additional energy dissipation in the viscous fluid flow associated with the fluid penetration624

in the cohesive zone. This ultimately results in larger openings, larger net pressures, shorter625

fracture extension and thus larger input energy. This additional viscous dissipation is further626

amplified for larger �o/�c, which facilitates the penetration of the fluid in the rough cohesive627

zone. It is also worth noting that counter-intuitively the effect is stronger and remains in628

effect longer for larger dimensionless toughness: the viscous pressure drop localizes to an629

even smaller region near the tip for larger Km such that viscous flow dissipation increases630

as a result.631

Different models for the impact of roughness on flow (such as different values for ↵c632

and the power-law flow roughness exponent ↵e taken here equal to 1 and 2 respectively) will633

impact quantitatively the fracture evolution although the structure of the solution described634

here will remain. The same can be said with regards to the simple linear-weakening traction635

separation law used which may be replaced by a more elaborate one if required.636

The theoretical predictions presented here need to be tested experimentally on well char-637

41



acterized quasi-brittle materials. This is particularly challenging as one must ensure that638

the sample size is at least ten times larger than the characteristic cohesive zone length639

Lcoh = E
0
wc/�c in order to hope capturing the convergence toward LHFM predictions. It640

is actually worth noting that so far all the quantitative experimental validations of linear641

hydraulic fracture mechanics have been obtained on transparent and/or model materials -642

all with very small process zone sizes (see Lecampion et al. (2017) and references therein).643

HF experiments in rocks need to performed with a quantitative measurement of the time644

evolution of the fracture and fluid fronts, as well as fracture opening. This is achievable645

via active acoustic imaging (Liu et al., 2020). However, the accurate spatiotemporal imag-646

ing of the process zone of a growing hydraulic fracture under realistic stress and injection647

conditions remains truly challenging.648
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Appendix A. Numerical scheme accounting for the nucleation of a cohesive656

zone and a fluid lag657

As suggested in Liu & Lecampion (2019b), the problem is solved numerically via a fully658

implicit scheme based on the boundary element method. We automatically nucleate the659

fluid lag using the Elrod-Adams lubrication cavitation model at the early stage of fracture660

growth (Mollaali & Shen, 2018). We then switch to a level-set algorithm for computational661

efficiency by precisely tracking the fluid front (Gordeliy & Detournay, 2011).662
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Appendix A.1. Fluid-lag-nucleation algorithm663

We initiate the fracture aperture from the solution of a static elastic fracture under a664

uniform fluid pressure slightly larger than �o. For a given fracture length increment, the665

solution is obtained using three nested iterative loops: we start from a trial time step and666

solve the fluid pressure for all elements inside the fracture using a quasi-Newton method.667

Such a procedure is repeated until each element in the fracture reaches a consistent state:668

either fluid or vapor. A converged estimate of the cohesive forces is then updated using669

fixed-point iterations with under-relaxation. The time step is finally adjusted in an outer670

loop using a bi-section and secant method to fulfill the propagation criterion.671

Elasticity.

Aw = pf � �coh(w)� �o (A.1)

where A is the elastic matrix obtained via the discretization of the elastic operator using the672

displacement discontinuity method with piece-wise constant elements, and pf , �o, �coh are673

respectively vectors of the fluid pressure, minimum compressive stress and cohesive forces.674

Elrod-Adams lubrication. A state variable ✓ is introduced in the mass conservation, charac-675

terizing the percentage of liquid occupying the fracture within one element. All the elements676

inside the fracture fulfil the condition pf (1� ✓) = 0 and can be classified into three domains677

according to the filling condition of the element: ⌘p (elements fully filled with fluid), ⌘✓678

(elements partially filled with fluid) and ⌘ex (empty or vapor elements).679

⌘p = {i 2 ⌘� | ✓i = 1, pfi > 0}

⌘✓ = {i 2 ⌘� | 0 < ✓i < 1, pfi = 0}

⌘ex = {i 2 ⌘� | i 62 (⌘p [ ⌘✓), pfi = 0, ✓i = 0}

(A.2)

where ⌘p\ ⌘✓ = ; and ⌘� = ⌘p[ ⌘✓ [ ⌘ex. We integrate the lubrication equation over element680

i:681 Z

i

@(✓w)

@t
dx

| {z }
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+

Z

i

@

@x

✓
�w

3

µ0
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3

= 0 (A.3)
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Repeat solving for pressure pfi, ✓i for i 2 ⌘p [ ⌘✓ using Newton’s method;

for i 2 ⌘� do

if pf,i < 0 then set pf,i = 0, ⌘p  ⌘p \ {i}, ⌘✓  ⌘✓ [ {i}, ⌘ex  ⌘� \ (⌘p [ ⌘✓)

if ✓i > 1 then set ✓i = 1, ⌘✓  ⌘✓ \ {i}, ⌘p  ⌘p [ {i}, ⌘ex  ⌘� \ (⌘p [ ⌘✓)

if ✓i < 0 then set ✓i = 0, ⌘✓  ⌘✓ \ {i}, ⌘ex  ⌘� \ (⌘p [ ⌘✓)

end

until all constraints pf,i � 0, 0  ✓i  1 for i 2 ⌘� are satisfied, in other words, pf,i(1� ✓i) = 0.

Table A.4: Algorithm using the Elrod-Adams model (adapted from Mollaali & Shen (2018)) within one

iteration with a given cohesive force vector

The first and the second terms are respectively discretized as follows,682
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(A.5)

where h is the element size and the superscript o denotes the solution at the previous time684

step.685

We back-substitute the elasticity into the lubrication equation and use the quasi-Newton686

method to solve the non-linear problem. We set the solution of the previous time step as an687

initial guess and solve iteratively for pf,i(i 2 ⌘p) and ✓i(i 2 ⌘✓). The lag-nucleation algorithm688

then updates the sets of ⌘p and ⌘✓ as demonstrated in Table A.4.689

Propagation condition. In the context of a cohesive zone, we check the equality of the tensile690

stress component ahead of the fracture tip with the material peak strength:691

�yy,n+1 = An+1,jwj � �o = �c, j = 1...n (A.6)

where n is the number of elements inside the fracture at the current time step.692

44



Appendix A.2. Fluid-front-tracking algorithm693

The fluid-front tracking algorithm (Gordeliy & Detournay, 2011) assumes a clear bound-694

ary between the fluid and cavity. The n elements inside the fracture is divided into m695

fluid channel elements fully-filled with fluid (pf > 0), (n �m � 1) fluid lag elements with696

a negligible cavitation pressure (pf = 0) and one partially filled element (pf = 0) where lo-697

cates the fluid front. By introducing a filling fraction �, we estimate the fluid front position698

using the solution of the lag-nucleation / Elrod-Adams based algorithm. We assume that699

fluid-front-tracking algorithm initializes with a solution (wO
, p

O

f
, V

O
,m

O
,�

O
, `

O

f
) obtained700

from the lag-nucleation / Elrod-Adams based algorithm at a chosen time step k. mO is the701

number of elements in the domain ⌘p. �
O is the filling fraction obtained by gathering the702

fluid mass of all lag elements from the lag-nucleation algorithm in the partially-filled element703

(the (mO + 1)th element) of the fluid-front-tracking algorithm.704

�
O =

X

i

✓
k

i
w

k

i
/wmO+1, i 2 ⌘✓ (A.7)

We then obtain the fluid front position `
O

f
and the fluid front velocity V

O for a chosen time705

step k.706

`
O

f
= (mO + �

O)h,

V
O = (`f,k+1 � `f,k�1)/(tk+1 � tk�1)

(A.8)

where and tk�1 and tk+1 are respectively propagation time at the (k�1)th and (k+1)th time707

step in the lag-nucleation algorithm.708

Based on this initial estimation of the fluid front, we solve iteratively the increment of709

the opening in the channel elements for a given fracture front through three nested loops710

in the fluid-front-tracking algorithm. One loop tracks the fluid front, one updates the time711

step to fulfill the propagation condition and another solves the non-linear system due to the712

cohesive forces and lubricated fluid flow through a fixed-point scheme. We present in the713

following the discretization of the non-linear system.714

Elasticity.

pc � �o � �cohc = Acww + Aol(��o � �cohl) (A.9)
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where pc is the vector net pressures in the channel part of the fracture; �cohc and �cohl715

cohesive forces applied in the fluid channel and fluid lag.716

Acw = Acc � AclA�1
ll
Alc

Aol = AclA�1
ll

(A.10)

Acc,Acl,Alc,All are sub-matrix of the elastic matrix A associated with elements inside the717

fluid channel and lag.718

Lubrication flow. For fluid channel elements (1  i  m),719

�wi =
�t

µ0h2

✓
1

fi�1/2
w

3
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1
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w

3
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µ0h2
(

1
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w

3
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1
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w

3
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2h

� �(i,m)Fm �H(i�m
o)

mX

k=mo+1

�(i,k)Fk

(A.11)

The second term on the second line represents the contribution due to a constant injection720

rate and the two terms on the third line are mass corrections due to the partially-filled721

element where the fluid front locates. H(·) is the Heaviside step function.722

Fm =

8
><
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�wm+1 � �
o
w

o

m+1, m = m
o

�wm+1 � �
o
w

o
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o

i=m+1 wi, m < m
o

(A.12)

Fk =

8
><

>:

(1� �
o)wo

k
, k = m

o + 1

w
o

k
, k > m

o + 1
(A.13)

where the superscript o refers to the solutions at the previous time step. The lubrication723

equation can be thus arranged as724

�w = L · pc + S1 � Sm � Smo (A.14)

Coupled system of equations. We back-substitute the elasticity and write the coupled system725

as in Eq. (A.15). For a given fracture front and a trial time step, we solve for incremental726
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apertures �w using fixed-point iterations. The tangent linear system reads:727

(I� L(�w(s�1))Acw)�ws = L(�w(s�1))Acww
o + L(�w(s�1))Aol(��o � �cohl(�w(s�1)))

(A.15)

where s refers to the solution at the previous iteration.728

Update of the fluid front position. The fluid front position is estimated as729

`
(s)
f

= (mo + �
o)h+ V

(s�1)�t,m
(s) = floor[`(s)

f
/h],�(s) = `

(s)
f
/h�m

(s) (A.16)

where V is the fluid front velocity and it can be obtained through lubrication theories,730

V =
1

2

✓
V

o � 1

µ0fm
w

2
m

@p

@x

◆
,

@p

@x
=
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pc,m �

pc,m + �o

�+ 1/2
� pc,m�1

◆
/(2h), m > 1

(A.17)

The iteration starts with V
(0) = V

o and continues until |(`(s)
f
� `

(s�1)
f

)/`(s�1)
f

| is within a set731

tolerance.732

Control of overestimation of the fluid front position. We may possibly overestimate the733

fluid front position using Eq. (A.16) especially when the fracture front advances too much734

compared to the previous time step. As a result, negative pressure may be detected in the735

channel elements near the fluid front.736

In order to better locate the fluid front, we adopt a strategy similar to the one in Gordeliy737

et al. (2019). Once the scheme detects a negative fluid pressure in the channel elements738

(where the elements are fully-filled with fluid) during the s
th iteration at the current time739

step, we utilizes the bi-section algorithm to estimate the fluid front position (Liu & Lecam-740

pion, 2019a). We set the fluid front position at the previous time step as the lower bound741

`f� = `
o

f
and the current position obtained from the previous iteration as the upper bound742

`f+ = `
(s�1)
f

. As long as the fluid front advances during the fracture growth, the trial fluid743

front position for the next iteration can be estimated from744

`
(s)
f

= (`f+ + `f�)/2 (A.18)

We iterate on `f until that |(`(s)
f
� `

(s�1)
f

)/`(s�1)
f

| is within a set tolerance and that all fluid745

pressure in the channel elements remain positive.746
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Figure A.18: Time evolution of a) the half fracture length and b) fluid fraction in viscosity scaling for

different dimensionless toughness Km.

Appendix A.3. Benchmark of the growth of a linear elastic fracture747

We simulate the growth of a plane-strain HF in a linear elastic medium by adapting the748

propagation condition as749

wn =
2

3

K
0
p
h

E 0 (A.19)

where wn is the opening of the element closest to the fracture tip obtained by the integration750

of the tip asymptote. We benchmark our scheme using different Km values and formulate751

the problem with the viscosity scaling in the time-domain t/tom similar to Lecampion &752

Detournay (2007). We show in Fig. A.18 that our results (CZMLAG) are in good agreement753

with the numerical solutions reported in Lecampion & Detournay (2007).754
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1. Energy balance1

Following Lecampion & Detournay (2007), we write the energy balance of a propagating2

cohesive HF by combining the energy dissipation in the fluid and solid. The external power3

provided by injecting fluid at a flow rate Qo, under the inlet pressure pf (x = 0, t), is balanced4

by the rate of work expended by the fluid on the walls of the fracture and by viscous5

dissipation. Hence,6

Qopf (x = 0, t) = 2

Z `f

0

pf
@w

@t
dx� 2

Z `f

0

q
@p

@x
dx, q = � w3

µ0f

@p

@x
(1)

where the cavity pressure in the lag zone is neglected in the above expression. By differen-7

tiating the global continuity equation with time,8

Qo = 2

Z `f

0

@w

@t
dx+ 2 ˙̀

fw(`f ) (2)

After multiplying the above expression by �o and subtracting it from Eq. (1), we obtain an9

alternative form of the energy balance in the fluid,10

Qopf0 = Qo�o + 2

Z `f

0

p
@w

@t
dx� 2

Z `f

0

q
@p

@x
dx� 2�o

˙̀
fw(`f ) (3)

For a fracture propagating quasi-statically in limit equilibrium in the solid, the fracture11

energy release rate is then written as the decrease of the strain energy rate and the work12

rate of the external forces (Keating & Sinclair, 1996).13
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dx = 0 (4)
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Eqs. (3) and (4) can be combined to yield an energy balance for the whole system.14

Pe = Qopf0 = Ẇo + Ẇe + Ẇl +Dk +Dv (5)

where15

Ẇo = Qo�o,

Ẇe =

Z `f

0

p
@w

@t
dx+

Z `f

0

w
@p

@t
dx� �o

Z `
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dx,

Ẇl = 2

Z `
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dx� 2�o
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dt
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wdx,
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dx+
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Z `f

0

q
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(6)

Using the linear-softening cohesive traction-separation law, we rewrite Dk in the coordinates16

of a moving tip17

Dk =

Z `

`�`coh

�c
w

wc

@w

@t
dx+

Z `

`�`coh

�c

✓
1� w

wc

◆
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(7)

where18

x̂ = `� x,
@w

@t
=

@w

@t

����
x̂

� (� ˙̀)
@w

@x̂
(8)

The energy dissipation during the fracturing process Dk can be thus simplified as follows19

Dk = �c

Z `coh

0

@w

@t

����
x̂

dx̂+ �c
˙̀
Z `coh

0

@w

@x̂
dx̂ = �c

Z `coh
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@w

@t

����
x̂

dx̂+ 2 ˙̀(
1

2
�cw(x̂ = `coh)) (9)

2. Complementary results for a smooth cohesive hydraulic fracture with Km =20

0.49521

We show the time evolution of the cohesive zone length, the ratio between the lag and22

cohesive zone sizes, the apparent fracture energy, and the ratio of the energies dissipated in23

fluid viscous flow and in the creation of new fracture surfaces in Fig. 1 as complimentary24

information of Fig. 7 in the main text.25
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Figure 1: Km = 0.495: evolution of a) the cohesive zone length `coh/Lcoh, b) the ratio between the lag

and cohesive zone sizes (` � `f )/`coh, c) the apparent fracture energy Gc,app/Gc, and d) the ratio of the

energies dissipated in fluid viscous flow and in the creation of new fracture surfaces Dv/Dk with t/tom.

The red, orange and purple curves indicate the smooth cohesive hydraulic fracture with the confining stress

�o/�c = 0.1, 1, 10 with the dotted vertical lines as their corresponding cohesive zone nucleation period. The

dashed horizontal line in Figure a) represents the small-scale yielding asymptote (⇡ 0.115⇡) of the cohesive

zone length for the linear-softening cohesive model (Dempsey et al., 2010). The dashed horizontal line in

Figure d) represents the LHFM limit with zero lag.
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3. Tip asymptote comparison with solutions for a semi-infinite cohesive hy-26

draulic fracture27

When the cohesive fraction is very small in a smooth HF, the tip asymptote tends to28

converge to the semi-infinite cohesive hydraulic fracture solution as reported in Garagash29

(2019). We show this trend in Fig. 2 for �o/�c = 0.1, 1 with different values of the cohesive-30

to-lag fracture energy ratio �c which is defined as31

�c =
Gc

Go
=

Gc

wo�o
=

1

2

wc�c�o

E 0µ0V
(10)

32

wo =
�o

E 0 `o, `o =
µ0V

E 0

✓
E 0

�o

◆3

(11)

where V represents the fracture front velocity and `o the lag length scale (Garagash, 2019).33

The fracture opening in Fig. 2 is normalized by the far field ’m’ asymptote:34

w1 = 21/335/6
✓
µ0V

E 0

◆1/3

(`� x)2/3 (12)

The tip asympotote of a finte fracture shows an offset from the semi-infinite solution (Fig. 2).35

This offset results from the finite size of the fracture dimension and a relatively important36

fraction of the cohesive zone (see Table. 1).37
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Figure 2: The crack opening normalized by the far-field ’m’-asymptote for �o/�c = 0.1, 1 and various

values of �c = Gc/Go (see the definition in Eq. (10)) between 10�5/2 and 103/2 in 101/2 increments on

the logarithm scale. The dashed curves are semi-infinite solutions in Garagash (2019). The solid curves

are results of a smooth plane-strain cohesive hydraulic fracture whose corresponding cohesive fractions are

shown in Table. 1. “+” indicates the boundary of the cohesive zone and “⇥” the fluid front location.
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