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Abstract
Diffractive optical elements (DOEs) which consist of microstructure surface relief permit

the generation of the spatial distribution of light beams by using a single element. Due to

their compact size, design flexibility, and mass productivity, they are used for a variety of

applications, from optical metrology to biotechnology. However, the required wide angle

DOEs have been elusive due to design challenges. Conventional design approaches such as

iterative Fourier transform algorithm (ITFA) fail when applied to DOEs containing very small

features or nanostructures. But it is exactly the small features that are required to create high

performance wide diffraction angle diffractive optics. This thesis aims to extend the range

of DOEs applications by developing designing and optimization algorithms for wide angle

DOEs which is far beyond the limits of scalar paraxial diffraction model such as thin element

approximation (TEA).

The development of inverse design, where computational optimization techniques are used to

find the geometry needed for the desired functionality, has led to the discovery of superior and

non-intuitive design. Among various approaches, gradient-based optimization methods have

been one of the most important techniques to obtain the optimal structure described by a

huge number of design variables. These methodologies are made possible when the gradient

of a merit function with respect to all design parameters efficiently enables to be calculated.

Here, two approaches are considered: optimization based on the step transition perturbation

approach and the adjoint-state method.

The step transition perturbation approach (STPA) is based on the evaluation of local field

perturbations due to sharp surface profile transitions. When we used the positions of transition

points as design parameters in DOEs, it facilitates describing an analytical solution of the

gradient of diffraction efficiency with respect to the positions of transition points. The gradient-

based optimization with STPA creates various one-dimensional diffractive beam splitters

generating wide angle spot arrays. The results of the experimental characterization confirm

that this optimization tool is valid for wide angle DOEs.

We discuss the adjoint method with rigorous electromagnetic theory, for example, rigorous

coupled-wave analysis (RCWA), to optimize the DOEs with small features for generating even

wider angles. Due to the adjoint method, we can compute the gradient of the objective func-

tion with respect to all design parameters efficiently even using a rigorous electromagnetic

calculation. Hence, the permittivity distribution in the geometry of DOEs is used as the

design variable during the optimization. This method also is able to account for application-

dependent target functions while ensuring compatibility with existing fabrication processes.
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Abstract

Thus we design the various wide angle DOEs including two-dimensional diffractive beam

splitters by adjoint method. The results of the experimental characterization confirm that

this optimization tool is valid in wide angle beam splitters creating a square spot array with

maximal diffraction angle up to 53° from the center to diagonal edges, which is far beyond the

limit of any scalar paraxial diffraction regime.

Keywords: Diffractive optical element, diffractive beam splitter, fan-out grating, gradient-

based optimization, inverse design, adjoint method, rigorous coupled-wave analysis, step

transition perturbation approach.
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Résumé
Les éléments optiques diffractifs (EODs) sont des éléments à l’échelle micrométrique qui, en-

semble, constituent un relief microstructuré permettant de générer une distribution spatiale

des faisceaux lumineux. En raison de leur petite taille, de leur facilité de fabrication et de leur

potentiel à être produits en masse, ils sont utilisés pour diverses applications allant de la mé-

trologie optique à la biotechnologie. Toutefois, maints domaines requièrent des EODs grand

angle, dont la conception pose encore plusieurs soucis. Les approches conventionnellement

utilisées pour fabriquer des EODs, comme l’algorithme itératif de transformée de Fourier

(ITFA -“Iterative Fourier transform algorithm”), échouent lorsqu’elles sont appliquées à des

EODs grand angle : en effet, ces algorithmes sont inutiles pour l’élaboration d’éléments nano-

métriques nécessaires à la création d’optiques à grand angle de diffraction. Cette thèse vise à

étendre la gamme d’applications des EODs en développant des algorithmes de conception

et d’optimisation pour les EODs grand angle. Ces algorithmes ont pour but de dépasser les

limites des modèles de diffraction paraxiale scalaire actuels, comme celui de l’approximation

par éléments minces (TEA - “Thin element approximation”).

Le développement de méthodes inverses, pour lesquelles des techniques d’optimisation

permettent d’établir une géométrie optimale ayant les fonctionnalités désirées, nous a permis

de découvrir des géométries fortement contre-intuitives, mais très performantes. Parmi les

diverses approches utilisées, la méthode par gradient a été l’une des plus adaptées pour

obtenir une géométrie optimale remplissant les nombreux critères de conception. La clé de ces

méthodes est de calculer efficacement le gradient d’une fonction de mérite par rapport à toutes

les variables de conception. Dans ce projet, nous envisageons deux approches différentes,

à savoir : une méthode d’optimisation basée sur la “ step-transition perturbation approach

(STPA)” et la “adjoint state method (ASM)”.

La STPA est basée sur l’évaluation des perturbations locales du champ électromagnétique

dues à des transitions nettes de surface. Lorsque nous utilisons les positions des points

de transition comme paramètres de conception dans les EODs, cela facilite la description

d’une solution analytique du gradient d’efficacité de diffraction par rapport aux positions des

points de transition. L’optimisation basée sur le gradient avec la STPA permet de créer divers

séparateurs de faisceaux diffractifs unidimensionnels générant des réseaux de spots à grand

angle. Les résultats de la caractérisation expérimentale confirment que cet outil d’optimisation

est efficace pour le design d’EODs grand angle.

Dans cette thèse nous combinons également l’ASM avec des méthodes électromagnétiques

rigoureuses, comme par exemple, l’analyse rigoureuse des ondes couplées (RCWA-“Rigorous
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Résumé

coupled-wave analysis”), pour optimiser les EODs avec de petites structures afin de générer

des angles encore plus grands. Grâce à l’ASM, nous pouvons calculer efficacement le gradient

de la fonction objectif par rapport à tous les paramètres de conception, même en utilisant un

calcul électromagnétique rigoureux. Ainsi, nous utilisons la valeur de la permittivité comme

variable pour l’optimisation de la géométrie des EODs.

Cette méthode permet également de prendre en compte diverses fonctions objectives pour

une application spécifique tout en assurant la compatibilité avec les procédés de fabrication

existants. Ceci nous a permis de concevoir différents EODs grand angle, y compris des sé-

parateurs de faisceaux diffractifs bidimensionnels. Les résultats expérimentaux confirment

que l’ASM fonctionne pour les diviseurs de faisceau à grand angle. Cette méthode nous a

ainsi permis de créer un réseau de points carrés avec un angle de diffraction maximal allant

jusqu’à 53° du centre aux bords diagonaux, ce qui est bien au-delà de la limite de tout régime

de diffraction scalaire paraxiale.

Mots-clés : Éléments optiques diffractifs, séparateur de faisceau diffractif, réseau de diffraction

en éventail, optimisation basée sur le gradient, conception inverse, adjoint method, rigorous

coupled-wave analysis, step transition perturbation approach.
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Zusammenfassung
Diffraktive optische Elemente (DOE), die aus einem mikrostrukturellen Oberflächenrelief

bestehen, ermöglichen die Erzeugung der räumlichen Verteilung von Lichtstrahlen indem

ein einzelnes Element zu verwenden. Aufgrund ihrer kompakten Größe, Gestaltungsflexi-

bilität und Massenproduktivität werden sie für eine Vielzahl von Anwendungen eingesetzt,

von der optischen Messtechnik bis zur Biotechnologie. Die benötigten Weitwinkel-DOE wa-

ren jedoch aufgrund von Design-Herausforderungen schwer zu realisieren. Konventionelle

Designansätze wie der « iterative Fourier transform algorithm (ITFA) » versagen, wenn sie

auf DOE angewendet werden, die sehr kleine Merkmale oder Nanostrukturen enthalten. Es

sind aber genau diese kleinen Strukturen, die benötigt werden, um hochleistungsfähige dif-

fraktive Optiken mit großem Beugungswinkel zu erzeugen. Diese Arbeit zielt darauf ab, den

Anwendungsbereich von DOE zu erweitern, indem Design- und Optimierungsalgorithmen für

DOE mit großem Beugungswinkel entwickelt werden, die weit über die Grenzen des skalaren

paraxialen Beugungsmodells wie z.B. der « thin element approximation (TEA) » hinausgehen.

Die Entwicklung des inversen Designs, bei dem computergestützte Optimierungstechniken

zum Auffinden der für die gewünschte Funktionalität erforderlichen Geometrie eingesetzt

werden hat zur Entdeckung eines überlegenen und nicht-intuitiven Designs geführt. Unter ver-

schiedenen Ansätzen waren gradientenbasierte Optimierungsmethoden eine der wichtigsten

Techniken zum Erhalt der optimalen Struktur, die durch eine große Anzahl von Designvaria-

blen beschrieben wird. Diese Methodologien werden ermöglicht, wenn der Gradient einer

Merit-Funktion in Bezug auf alle Designparameter effizient berechnet werden kann. Hier

werden zwei Ansätze betrachtet: die Optimierung basierend auf dem « step-transition pertur-

bation approach (STPA) » und « Adjoint state method (ASM) ».

Der STPA basiert auf der Auswertung von lokalen Feldstörungen aufgrund von scharfen

Oberflächenprofilübergängen. Wenn wir die Positionen der Übergangspunkte als Designpara-

meter in DOE verwenden, erleichtert dies die Beschreibung einer analytischen Lösung des

Gradienten der Beugungseffizienz in Bezug auf die Positionen der Übergangspunkte. Die

gradientenbasierte Optimierung mit STPA erzeugt verschiedene eindimensionale diffrakti-

ve Strahlteiler, die weitwinklige Punktraster erzeugen. Die Ergebnisse der experimentellen

Charakterisierung bestätigen, dass dieses Optimierungswerkzeug für Weitwinkel-DOE gültig

ist.

Wir diskutieren die ASM mit der rigorosen elektromagnetischen Theorie, z. B. der « rigorous

coupled-wave analysis (RCWA) », um zur Erzeugung des noch größeren Winkels anhand von

kleinen Merkmalen die DOE zu optimieren. Bei der ASM können wir mit einer rigorosen elek-
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Zusammenfassung

tromagnetischen Berechnung den Gradienten der Zielfunktion in Bezug auf alle Designpara-

meter effizient bestimmen. Daher wird die Permittivitätsverteilung in der Geometrie der DOE

als Designvariable während der Optimierung verwendet. Die verschiedenen Weitwinkel-DOE,

einschließlich zweidimensionaler diffraktiver Strahlteiler, wurden durch ein gradientenba-

siertes Optimierungsverfahren auf der Grundlage einer ASM entworfen, das in der Lage ist,

anwendungsabhängige Zielfunktionen zu berücksichtigen und gleichzeitig die Kompatibilität

mit bestehenden Fertigungsprozessen zu gewährleisten. Die Ergebnisse der experimentellen

Charakterisierung bestätigen, dass dieses Optimierungswerkzeug in Weitwinkel-Strahlteilern

gültig ist, die ein quadratisches Punktraster mit maximalem Beugungswinkel bis zu 53° von

der Mitte zu den diagonalen Kanten erzeugen, was weit jenseits der Grenze jedes skalaren

paraxialen Beugungsregimes liegt.

Stichwörter: Diffraktives optisches Element, diffraktiver Strahlteiler, Fan-Out Gitter, gradi-

entenbasierte Optimierung, inverses Design, adjoint state method, rigorous coupled wave

analysis, step-transition perturbation approach.
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1 Introduction

This thesis include the material which is adapted with permission from [1] ©2020 Optical

Society of America, from [2] ©2020 Walter de Gruyter GmbH, and from [3, 4] ©2020 SPIE,

©2019 SPIE .

During the past few decades, diffractive optical elements (DOEs) have gained a great deal

of attention because of their high design flexibility, compact size, and mass production as

well as relatively spatial invariant focusing behavior [5–13]. For example, DOEs have been

used as beam shapers for laser welding and cutting, beam splitters for optical telecommu-

nications couplers, pattern generators for machine vision, anti-fraud protection for security

documents, and optical disc read-heads in DVD and Blue-ray. DOEs consist of surface reliefs

with dimensions in micrometer ranges. The micro-structure permits the generation of a

spatial distribution of light beams by modulating and transforming the amplitude and/or

phase of the light propagated through them. However, traditional theory, which is the scalar

paraxial diffraction model based on thin element approximation, is only valid for modeling

small diffraction angle DOEs. Nowadays, wide diffraction angle DOEs are increasingly being

used in a promising field of applications with recent developments in fabrication technology

realizing nanoscale features. This leads to the need for new design algorithms to build and

optimize DOEs operating in complex diffraction regimes beyond the scalar paraxial diffraction

model. In this work, we propose the different design strategies based on the gradient based

optimization to overcome the present limitations and realize wide diffraction angle DOEs.

1.1 History and state-of-the-art

Optics which is the study of light is one of the oldest fields of human inquiry: ‘What is light?’,

‘What are its properties?’, and ‘how can we manipulate it?’ Efforts to answer these enquiries

date back a few thousand years. The ancient Greek philosophers well known to us such

as Plato, Aristotle and Pythagoras, developed various theories of light. In Alexandria, the

emerging center of learning after Greece’s Golden Age, Euclid was one of the first to realize

that light travels in straight lines [14]. In the following millennium, very little happened until

1



Chapter 1. Introduction

Ibn al-Haytham [15] who was an Arab physicist of the Islamic Golden Age wrote numerous

books of Optics. Ibn al-Haytham was the first to explain that vision occurs when light reflects

from an object and then passes to one’s eyes.

Diffraction effect was first scientifically studied by Francesco Maria Grimaldi in 1665 [16].

Grimaldi had observed a gradual transition from light to dark at the boundary of the shadow

of a small aperture illuminated by a light source. In 17th century, during the Renaissance,

there were some early attempts at a wave theory. Robert Hooke thought that light have a wave-

like nature from observing the phenomenon of diffraction in colored films [17]. Christiaan

Huygens developed a wave theory of light involving “wavelets” which is each point of a

wavefront is a spherical source [18]. The wave model was also supported by Thomas Young

[19] who performed the double slit experiment demonstrating interference of light, and by

Augustin Fresnel [20] and François Arago [21] who extended Huygens’ approach, and Gustav

Kirchhoff [22] who developed strong mathematical basis of wave theory. From the work

of many scientists over the decades, James Clerk Maxwell unified the known relationships

between electric and magnetic fields in Maxwell’s equation [23], which become the heart of

the rigorous electromagnetic simulation.

The first mention of fabricated diffractive optical elements refers to the studies of David

Rittenhouse in the late 18th century [24]. Joseph von Fraunhofer independently introduced the

idea of the diffraction grating for scientific applications in 1821 [25]. Since then, Lord Rayleigh,

Arnold Sommerfeld, and many ohter contributors developed the theory and manufacture of

diffraction gratings and used these in spectroscopic applications.

In 1948, the discovery of holography by Dennis Gabor opened up new possibilities for practical

realization of DOEs [26, 27]. Gabor showed that an interference pattern was generated and

written into a photographic plate using a coherent electron beam [28]. But the reconstructed

object waves were poor visibility and low contrast due to lack of strong coherent light sources.

With the invention of the laser, Emmett Leith and Juris Upatnieks recorded the first high

quality holograms with an off-axis geometry, i.e. spatially filtering out the zeroth order [29]. A

drawback of the optically recorded holography is the difficulty of producing arbitrary phase

functions for the optical element. To circumvent this limitation, Adolf Lohmann and Byron

Brown proposed computer generated holograms (CGHs) and fabricated them using ink as

an amplitude absorbing material [30, 31]. It was soon realized that phase-only CGHs have

high transmission efficiency [32, 33]. However, the CGHs with continuous profile are difficult

to fabricate accurately so that fabricated elements performance are significantly degraded.

Joseph W. Goodman showed that the fabrication introduced quantization of the phase and

the amplitude in the hologram [34]. In order to optimize the reconstruction in the presence

of quantization, new design algorithms were developed [35–41]. In addition, developments

in microfabrication technology, e.g. direct laser writing [42, 43], diamond turning [44],

Electron Beam Lithography [45] inspired a significant advances in the DOE and allowed for

manufacturing structures with nanoscale feature sizes [46]. Owing to the developments in

fabrication technology, DOEs generating wide-angle spot arrays are used in a promising field

2



1.1. History and state-of-the-art

of applications such as structured light projection [47, 48], and camera calibration [49].

As long as only small diffraction angles are required, the iterative Fourier transform algorithm

(IFTA) [50–52] based on the thin element approach (TEA) [53, 54] is widely and success-

fully used for the design of the microstructure surface of the DOEs. However, when larger

angles are required, this approach suffers from several severe shortcomings and effectively

gets unusable. Among those shortcomings, the limited choice of diffraction angles and the

geometric distortions can be corrected for most easily, and IFTA’s computation scheme can

be still be used with moderate extensions and modifications [55, 56]. A significantly more

severe problem is the insufficient modeling of the light field transmission through the DOE

by the TEA approximation [57, 58]. A precise modeling can be obtained only by rigorous

electromagnetic diffraction theory, such as rigorous coupled-wave analysis (RCWA) [59–64].

This significantly increases the computation time, triggering efforts to improve the computa-

tion speed [65] and to find faster alternatives with similar accuracy [66]. However, for iterative

computations schemes, a projection operator in the DOE domain for the far-field-adapted

and back-propagated field is required, but cannot be derived in a similar manner using the

rigorous electromagnetic methods.

Some groups employed genetic algorithms or gradient-based algorithms based on the finite-

difference time-domain (FDTD) method to optimize the DOEs [67–69]. FDTD requires

high computational effort and thus have been applied only to the one-dimensional domain.

Parametric optimization is another option and was used for design and analysis of only two

dimensional (2D) fan-out DOEs with low complexity, e.g. 3×3 array beam-splitters [70]. The

correspondingly significantly larger number of parameters poses a practical limitation to

parametric optimization for those scenarios due to resulting very large computational efforts

also, even if such microstructures and corresponding initial parameters can be found at all.

Other design approaches recently combined a genetic algorithm with the RCWA method

to design large-angle 2D fan-out DOEs [71, 72]. The experimental results of the fabricated

DOEs verified the method is reliable, but the improvements were comparatively insignificant

during the optimization so that the obtained elements still have a rather low performance

with respect to uniformity error. Data-driven photonics inverse design approaches have also

been investigated for binary fan-out DOEs in the non-paraxial domain, but again only for

elements with low complexity [73].

In recent years, inverse design methods using the adjoint variable method [74–79], have

attracted attention due to their successful application to the optimization of photonic devices.

In the adjoint method, one can calculate the gradient with respect to a figure of merit based on

only two rigorous simulations, no matter how many design parameters are utilized to describe

the device. This approach resolves the mentioned problem of the missing projection operator

for computational schemes in the non-paraxial domain.

In summary, DOEs has become mature over the last decades with scalar paraxial diffraction
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model. Fabrication technology developments now enables manufacturing of wide diffraction

angle DOEs (i.e., with nanoscale features), leading to the needs for new design methods.

1.2 Motivation

We require mathematical models for calculating the diffracted wave, and optimization algo-

rithms based on these models to design the DOEs. The TEA-based IFTA has proved a powerful

design approach that can easily be adapted for a variety of different design problems [80].

However, TEA does not take into account the actual physical process and it is only valid in the

structures which are much bigger compared to the wavelength of incident wave. Some cases

which have structures with feature sizes in the range of wavelength can still be described by

TEA [41]. In general, the feature size is about 10 times greater than wavelength to ensure an

accurate approximation [57, 81, 82]. This work aims to develop optimization tools for wide

angle DOEs which required analysis of more complex diffraction regimes than TEA. We go

beyond the limitations and realize the design and fabrication of new generations of DOEs for

a wider range of applications.

To overcome the limitations, we used a rigorous electromagnetic approach, especially RCWA,

in this work. This method is particularly well suited for the analysis of gratings due to periodic

structure. However, the use of parametric optimization based on the rigorous analysis is often

computationally heavy because the gratings with many parameters, especially 2D gratings

are leading to high dimensional optimization problems. We thus introduce stable and fast

design approach for wide angle DOEs using gradient-based algorithms based on two different

methods: step-transition perturbation approach (STPA) and adjoint-variable method [74].

The STPA is an approximate method based on local field perturbations generated by sharp

transitions of the surface profile of diffractive elements. We describe a design approach based

on STPA for wide-angle DOEs in Chapter 3. Adjoint method allow to calculate the gradient

of the figure of merit with respect to the design parameters efficiently even using rigorous

diffraction theory. The implementation of adjoint method with RCWA is provided in Chapter 4.

In this work, we focus on diffractive beam splitters, often also referred to as fan-out gratings,

as various applications use elements of this type from optical interconnects [83], multifocal

microscopy [84, 85], camera calibration [86], optical system distortion measurement [87] to

structured light projectors [48, 88] in which the spot array will be useful for the verification of

diffraction efficiency. We also focus our efforts to designing binary (i.e. 2-level) microstruc-

tures because these are considerably easier to fabricate than multilevel or continuous-relief

elements and thus obviously are very attractive for optical systems. Despite the advancement

in lithography technologies, high cost and fabrication errors are inevitable for fabrication of

multilevel gratings. A schematic of a binary fan-out grating creating 7 X 7 spot array is shown

in Fig. 1.1. The grating period and the smallest feature size, i.e., critical dimension (CD) is

represents in the inset. It is designed by TEA-based IFTA, not surprisingly the performance

of the element become degraded when the grating is shrunk, i.e., the size of structures in the
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gratings becomes comparable with the wavelength of the incident light. The diffraction angle

is proportional to the ratio of the wavelength. Thus, we show new strategies to optimize wide

angle diffractive optical elements in Fig. 1.1(b). We hope this framework for new inverse design

methods contributes to improving design methods for various diffractive optical elements.

(a) (b)

λ
G

ra
tin

g 
Pe

rio
d 
Λ

Critical Dimension

TEA-based IFTA

Optimization based on
 perturbation approach

Optimization with adjoint method
Λ

Λ CD

Figure 1.1 – (a) Scheme of two-dimension diffractive beam splitter generating 7 X 7 spot array
designed by IFTA. The insets show the layout of the single unit cell with grating period Λ
and critical dimension (CD). Black represents dielectric material and white represents air. (b)
Validity region of different optimization methods in the domain of grating period and critical
dimension. dash line indicates the wavelength λ scale of feature size.

1.3 Outline of thesis

The upcoming Chapter 2 reviews relevant theories and methods of diffraction models and

inverse design. The focus in that chapter is on identifying the scalar diffraction theory, i.e.,

TEA and rigorous electromagnetic theory such as RCWA and introduce gradient-based opti-

mization.

Chapter 3 proposes an optimization based on perturbation approach to overcome the limit of

scalar diffraction theory. This framework is formulated through a mathematical foundation of

Fourier coefficient with local perturbation caused by sharp step transitions in structures. An

important feature of this methodology is to calculate the gradient of diffraction efficiency with

respect to transition points analytically. Also, the simulated and experimental results of 1D

diffractive beam splitters optimized by this approach are presented.

Chapter 4 builds inverse design with adjoint method. The procedure to obtain the gradient

of objective function with respect to design parameter using adjoint method with RCWA are

introduced. The inverse design tool incorporates solutions for wide diffraction angle DOEs
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and efficient gradient calculation into a method that allows to optimize 1D and 2D fan-out

gratings creating wide diffraction angle arrays.

The findings of inverse design methods and evaluations are then summarized in Chapter 5.

The inverse design framework presented in this work may be applied to a wide variety of

applications, potentially figuring out new structures and functionalities. Whereas the current

lead of electromagnetic computation is the quick solution of the response to a given structure,

the inverse problem of computing the structure for a given response may prove much more

powerful in the future.
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2 Background

In this chapter, we introduce methods and theories of diffraction models and inverse design

that are required to understand the following chapters. The validity regions and computational

constraints will be analyzed in detail to identify the practical limits of different diffraction

models.

2.1 Electromagnetic theory of light

All phenomena of light and its propagation in free space and interactions with structured

matter can be explained by Maxwell’s equations (excluding quantum level interactions), partial

differential equations describing the behavior of electromagnetic field vectors. Considering

monochromatic stationary time harmonic fields which is usually used in ideal cases, we have

functions of the form

A(r , t ) = Re
{

A(r )exp(−iωt )
}

(2.1)

where A(r ) is the complex amplitude of the real part A(r , t) and can be replaced with E (r ),

H(r ), D(r ), B(r ), or J (r ) which are the electric field, magnetic field, electric displacement,

magnetic induction and electric current density, respectively. The r represents position vector,

t is time, and ω is angular frequency.

We thus express the differential form of Maxwell’s equation [23] in the frequency domain using

Eq. (2.1) as,

∇∇∇···D(r ) = ρ(r ) (2.2a)

∇∇∇···B (r ) = 0 (2.2b)

∇∇∇×××E (r ) = iωB (r ) (2.2c)

∇∇∇×××H(r ) = J (r )− iωD(r ), (2.2d)

where ρ is the electric charge density. This time-harmonic Maxwell’s equations are valid in
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vacuum and in any continuous medium, especially, in linear, isotropic, and nondispersive

media, we have the constitutive relation

D(r ) = ε(r )E (r ) (2.3a)

B (r ) =µ(r )H(r ) (2.3b)

J (r ) =σ(r )E (r ), (2.3c)

where ε(r ) = ε0εr (r ), µ(r ) =µ0µr (r ), and σ(r ), which are in respective order the permittivity,

magnetic permeability, and conductivity. The parameters ε0 and εr (r ) denote the permittivity

of vacuum and the relative permittivity. In this work, non-conductive (i.e., dielectric), non-

magnetic , and homogeneous media are considered, in which case ρ(r ), σ(r ), J (r ) is vanished,

µr (r ) = 1,and µ and ε do not vary with position in the material. In this case, we define

the refractive index as n =p
εr . Additionally, we define the complex relative permittivity as

ε∗r = n2 = εr + i σ
ωε0

where n is assumed a complex value.

Maxwell’s equations Eq. (2.2) are valid only in continuous matter, but diffractive elements are

practically always interfaces between two media. Therefore we need boundary conditions

relating the field components across the discontinuity. Denoting the unit normal vector of

the boundary between media 1 and 2 by ~u12, we can describe the electromagnetic boundary

conditions in the form

~u12 · (D2 −D1) =σs = 0 (2.4a)

~u12 · (B2 −B1) = 0 (2.4b)

~u12 × (E2 −E1) = 0 (2.4c)

~u12 × (H2 −H1) = Js = 0, (2.4d)

where σs is surface charge density between media and Js is surface current density. In both

media 1 and 2 are dielectrics, there are no charges nor surface currents at the interface so that

the tangential component of electric field and all the component of he magnetic field should

be continuous across the boundary.

In optics, it is not practical to measure the exact magnitudes of the electromagnetic field due

to its high frequency. As a measure of the direction of energy flow, we have the Poynting vector

S = E ×H , and the intensity of the field is obtained from the time average Poynting vector

〈S(r , t )〉 = 1

2
Re

{
E (r )×H∗(r )

}
, (2.5)

which is often considered as a measured of intensity and the direction of the electromagnetic

field flow.
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2.2. Wave propagation

2.2 Wave propagation

By substituting the constitutive relations and taking the curl of both side of Eq. (2.2)(c) one

obtains, after using Eq. (2.2)(d), the following equation for the electric field in a homogenous

medium

∇2E (r )+k2E (r ) = 0, (2.6)

where the wave number k is absolute value of wave vector k ,which is defined by k = (ω/c)n =
2πn/λ. Here, λ and c are the vacuum wavelength of the field and the speed of light in vacuum

and n is refractive index of medium. This is referred to as Helmholtz equation, and can also be

applied for magnetic field H(r ). The simplest solution to this is the harmonic plane wave

E (r ) = E0 exp(i k · r ). (2.7)

Since the Helmholtz equation is linear, any superposition of plane waves is also a solution, and

obviously the equation is valid for all the cartesian components(i.e., x, y , z-axis components)

of the electric and magnetic field separately.

2.2.1 Angular spectrum representation

The angular spectrum representation is a mathematical technique to describe optical fields

in homogeneous media. Optical fields are described as a superposition of plane waves and

evanescent waves which are physically intuitive solutions of Maxwell’s equations.

Assuming the electric field E (r ) at any point r = (x, y, z) in space, we chose an arbitrary axis z

and consider the field E in a plane z = z transverse to the chosen axis. In this plane we can

evaluate the two-dimensional Fourier transform of the complex field E (r ) = E (x, y ; z) as

Ê (kx ,ky ; z) = 1

4π2

+∞Ï
−∞

E (x, y ; z)exp
{−i (kx x +ky y)

}
dx dy , (2.8)

where x , y are the Cartesian transverse coordinates and kx , ky is the corresponding spatial

frequencies. Similarly, the inverse Fourier transform is expressed as

E (x, y ; z) = 1

4π2

+∞Ï
−∞

Ê (kx ,ky ; z)exp
{
i (kx x +ky y)

}
dkx dky . (2.9)

In notation of Eqs. (2.8) and (2.9), the field E = (Ex ,Ey ,Ez ) and its Fourier transform Ê =
(Êx , Êy , Êz ) represent vectors. The Fourier integrals thus hold separately for each vector com-

ponent. If the medium is homogeneous, isotropic, linear and source-free in the transverse

plane, the optical field with angular frequency ω has to satisfy the field E in Eq. (2.7). Inserting

the Fourier representation of E (x, y ; z) in Eq. (2.8) into the in the Helmholtz equation Eq. (2.6),
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we obtain that the Fourier spectrum Ê propagates along the z-axis as

Ê (kx ,ky ; z) = Ê
(
kx ,ky ; 0

)
exp(±i kz z) (2.10)

where kz ≡
√

k2 − (k2
x +k2

y ). It shows that the Fourier spectrum of E in an arbitrary image

plane located at z = z can be calculated by multiplying the spectrum in the object plane at

z = 0 by the transfer function exp(±i kz z). The ± sign specifies that we have two solutions

that need to be superimposed: the + sign refers to a wave propagating into the half-space

z > 0 whereas the − sign denotes a wave propagating into z < 0. Finally, we find for arbitrary z

substituting the result of Eq. (2.10) into Eq. (2.9)

E (x, y ; z) = 1

4π2

+∞Ï
−∞

Ê (kx ,ky ; 0)exp
{
i (kx x +ky y)

}
exp(±i kz z)dkx dky . (2.11)

which is referred to the angular spectrum representation. Similarly, we can also represent

the magnetic field H by an angular spectrum. It is general solutions of the wave propagation

problem [89].

For the case of a purely dielectric medium with no losses, the refractive index n is a real

and positive value. The wavenumber kz is then either real or imaginary value and turns

the factor exp(±i kz z) into an oscillatory or exponentially decaying function. Then, when

k2
x +k2

y > k2, we have exponentially decaying fields, which are named as evanescent waves,

whereas k2
x +k2

y ≤ k2 yields propagating waves.

Let us now determine how the fields themselves are related. We denote the transverse coordi-

nates in the object plane at z = 0 as (x ′, y ′) and in the image plane at z = z as (x, y). The fields

in the image plane can be described by the angular spectrum Eq. (2.11) We just represent the

Fourier spectrum Ê (kx ,ky ; 0) in term of the field in object plane z = 0 using Eq. (2.8) as

Ê (kx ,ky ; 0) = 1

4π2

+∞Ï
−∞

E (x ′, y ′; 0)exp
{−i (kx x ′+ky y ′)

}
dx ′ dy ′ . (2.12)

We obtain the following expression for the field E in the image plane z = z, applying Eq. (2.12)

into Eq. (2.11),

E (x, y ; z) = 1

4π2

+∞Ï
−∞

E (x ′, y ′; 0)

+∞Ï
−∞

exp
{
i
[
kx (x −x ′)+ky (y − y ′)±kz z

]}
dx ′ dy ′ dkx dky

= E (x, y ; 0)⊗h(x, y ; z).

(2.13)
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2.2. Wave propagation

This equation describes an invariant filter with the impulse response

h(x, y ; z) =
+∞Ï

−∞
exp{i (kx x +ky y)}exp(±i kz z)dkx dky , (2.14)

where h is the inverse Fourier transform of the transfer function in spatial frequency do-

main ĥ(kx ,ky ; z), i.e., exp(±i kz z)) in Eq. (2.10). Thus, the field at z = z is calculated by the

convolution of the impulse response h with the field at z = 0.

z = constantz = 0

E(r)

Illumination

E(x, y; z)

Figure 2.1 – Propagation of the angular spectrum. The fields are evaluated in planes (z = z)
perpendicular to an arbitrarily chosen z-axis.

2.2.2 Rayleigh-Sommerfeld representation

The angular spectrum representation which is a solution of the Helmholtz equation, but

the Rayleigh-Sommerfeld representation is a mathematical model of the Huygens principle.

The observed field E (x, y, z) is considered as a superposition of diverging spherical waves

originating from every secondary point source within the aperture plane E (x ′, y ′,0). Figure 2.2

illustrate the situation geometrically. r is the distance between source point (x ′, y ′,0) and the

observation point (x, y, z)

r 2 = (x −x ′)2 + (y − y ′)2 + z2 (2.15)

The Rayleigh-Sommerfeld diffraction formula is given in as:

E(x, y ; z) =− 1

2π

+∞Ï
−∞

E(x ′, y ′; 0)
exp(−i kr )

r

z

r

(
i k + 1

r

)
dx ′ dy ′ , (2.16)

Despite the apparent differences of their approaches, the angular spectrum representation

and the Rayleigh-Sommerfeld solution yield identical descriptions of diffracted fields [87].

Equation (2.16) can be seen as a convolution of the source-plane field E (x ′, y ′; 0) with an
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impulse response h,

h(x, y, z) = 1

2π

(
i k − 1

r

)
z

r

exp(i kr )

r
. (2.17)

If the distance from the aperture plane to the observation plane is large compared with the

wavelength,i.e., r Àλ, the Rayleigh-Sommerfeld representation can be rewritten,

E(x, y ; z) = 1

iλ

+∞Ï
−∞

E(x ′, y ′; 0)
exp(i kr )

r

z

r
dx ′ dy ′ . (2.18)

z = 0

x’

z = constant

x

y

y’

r

Figure 2.2 – Coordinates used in of Rayleigh-Sommerfeld representation and the geometry of
the model

2.2.3 Paraxial approximation

In many optical problems, the light field propagates along a certain direction, e.g., z-axis

but spread out slowly in a transverse direction, i.e., x and y-axis, for instance, laser beam

propagation. In this case, the wave vector in the angular spectrum is almost parallel to the

z-axis, and transverse wave numbers (kx ,ky ) are significantly small compared to k. Then we

may employ the following approximation,

kz = k

√
1− (k2

x +k2
y )

k2 ≈ k −
k2

x +k2
y

2k
. (2.19)

This is referred to as the paraxial approximation and it considerably simplifies the analytical

integration of the Fourier integrals.
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2.2.4 Fresnel representation

Applying the paraxial approximation in the situation illustrated in Fig. 2.2. The R is the

observation distance defined as the distance from the origin in the source plane (e.g., center

of an aperture) to the observation point. On the other hand, r is the true distance between

source point (x ′, y ′,0) and the observation point (x, y, z). The r is represented as

r =
√

(x −x ′)2 + (y − y ′)2 + z2 = z

√
1+ (x −x ′)2

z2 + (y − y ′)2

z2

≈ z

[
1+ (x −x ′)2

2z2 + (y − y ′)2

2z2

] (2.20)

Inserting Eq. (2.20) into Eq. (2.18), we can obtain the following equation,

E(x, y ; z) = exp(i kz)

iλz

+∞Ï
−∞

E(x ′, y ′; 0)exp

{
i k

2z

[
(x −x ′)2 + (y − y ′)2]}dx ′ dy ′ . (2.21)

which is a convolution of the field in aperture plane E(x ′, y ′,0) with an impulse response

h(x, y ; z) = exp
[

i k
2z (x2 + y2)

]
. Extracting the constant phase term out of the integrals, we

obtain the formula:

E(x, y ; z) =
exp

[
i kz + i k

2z (x2 + y2)
]

iλz
+∞Ï

−∞
E(x ′, y ′; 0)exp

[
i k

2z
(x ′2 + y ′2)

]
exp

[−i 2π(kx x ′+ky y ′)
]

dx ′ dy ′ .

(2.22)

where kx = x
λz and ky = y

λz . Fresnel approximation can be written as a Fourier transform:

E(x, y ; z) = 1

iλz
exp

[
i kz + i k

2z
(x2 + y2)

]
FT

{
E(x ′, y ′; 0)exp

[
i k

2z
(x ′2 + y ′2)

]}
. (2.23)

The Fresnel representation covers the common situation in which the observation plane is at

a finite distance behind the object. This is the Fresnel representation often used in derivations

since it gives many analytical results [90].

2.2.5 Fraunhofer representation

The Fraunhofer diffraction is a special case and analytically a simplification of the Fresnel

diffraction, which is valid for large distances. Equation (2.22) for large values of z reduces to

just a Fourier transform operation

E(x, y ; z) =exp(i kz)

iλz
FT

{
E(x ′, y ′; 0)

}
, (2.24)
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which is valid only for very large distances given by z À k(x2+y2)
2 .

2.3 Thin element approximation

The easiest method available for determining the response of diffractive structures is the thin

element. This approximation is very useful provided that not only minimum features of the

structure are at least 10λ but also the thickness of the element is of the order of the wavelength.

Then, the optical path calculation yields sufficient accuracy for the field distribution after the

element.

Let us consider the plane wave through the structure consist of the material with different

refractive index from air. The scheme of this situation as shown in the Fig. 2.3. Assuming a

scalar incident field U0(x, y,0) arriving at the structure, which has a complex refractive index

n(x, y, z) and depth d , we can propagate the field through the diffractive structure by using

the complex amplitude transmittance approach. The transmitted field

UT (x, y ; d) = t (x, y) ·U0(x, y ; 0) (2.25)

where the complex amplitude transmittance function t (x, y) is given by

t (x, y) = exp

[
i k

∫ d

0
n∗(x, y, z)dz

]
(2.26)

where n∗ is the complex refractive index of the element. The complex refractive index is

consist of

n∗ = n + iκ (2.27)

where n is the real refractive index and κ is the absorption coefficient. If the material is

non-conductive, i.e., κ= 0, the element only affects the phase of the incident field.
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z

d

U0(x,y; 0)

k

x

UT(x,y; d)

Figure 2.3 – Scheme of the propagation through the element using complex amplitude
transmittance

2.3.1 Diffraction at binary gratings

If the structure is periodic,e.g., gratings, its spatial frequency spectrum is consists of discrete

frequencies. We assume a unit-amplitude plane wave illumination from the substrate of

grating. Thus, the gratings show a discrete far-field diffraction pattern, in contrast to the

spatially continuous diffraction patterns of spatially aperiodic objects. The field through the

structure UT can be expanded in a Fourier series,

UT (x, y,d) = ∑
m,n

Tmn exp

[
i 2π(

mx

Λx
+ nx

Λy
)

]
(2.28)

where the Fourier coefficients Tmn are obtained from

Tmn = 1

ΛxΛy

∫ Λx

0

∫ Λy

0
UT (x, y ; d)exp

[
−i 2π

(
mx

Λx
+ ny

Λy

)]
dx dy (2.29a)

= Ti n

ΛxΛy

∫ Λx

0

∫ Λy

0
t (x, y)exp

[
−i 2π

(
mx

Λx
+ ny

Λy

)]
dx dy (2.29b)

and the periods along the x and y-axis are denoted by Λx and Λy . The Fourier coefficients

Tmn means the complex-valued amplitudes of the diffracted waves in the far-field. Ti n means

the complex amplitude of incident wave and it become 1 when we set the unit-amplitude

plane wave illumination.

Let us consider the Fourier coefficient in one-dimensional binary grating in Fig. 2.4. The phase

profile of a binary grating period consists of K grooves of equal depth but different width.

The coordinates x1, · · · , x2K of the grooves represent phase transitions positions. Then we
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represent the transmittance function as

t (x) =
exp(iΦ1) = exp(i kn1d), for xk = x1, x3, · · · , x2K−1

exp(iΦ2) = exp(i kn2d), for xk = x2, x4, · · · , x2K

(2.30)

where Φ1 and Φ2 is the phase shift by optical path of depth d with refractive of n1 and n2.

Then, we express the Fourier coefficient as

Tm = sin(∆Φ/2)

mπd

2K∑
k=1

(−1)k exp(−i 2πmxk /d), for m 6= 0 (2.31a)

T0 = exp(iΦ1)− 2sin(∆Φ/2)

d

[
i exp

(
i
Φ1 +Φ2

2

)] 2K∑
k=1

(−1)k · xk (2.31b)

where ∆Φ is the difference ofΦ1 andΦ2. Using the diffraction efficiency ηm is |Tm |2, we can

find the analytical form as following

ηm = sin2(∆Φ/2)

(mπ)2 (C 2
k +S2

k ) (2.32a)

η0 = 1−4Q(1−Q)sin2(∆Φ/2) (2.32b)

where

Ck =
2K∑

k=1
(−1)k cos(2πmxk ) (2.33a)

Sk =
2K∑

k=1
(−1)k sin(2πmxk ) (2.33b)

Q =
2K∑

k=1
(−1)k xk (2.33c)

We observe the fact ηm = η−m from the Eqs. (2.32) and (2.33). Hence, the diffraction patterns

of binary gratings have always symmetry by simulation of TEA.

x

z

d

x1x1 x2x2 x2K-1x2K-1 x2Kx2K

n1

n2n2

ΛΛ

Figure 2.4 – Surface profile of the one-dimensional binary grating
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2.3. Thin element approximation

2.3.2 Limit of the TEA

One of the most discernible examples of the limits of the TEA is the prediction in the direction

of the diffracted field after the structure. To observe this limitation, let us consider simple one

dimensional (1D) binary grating consist of one ridge, which is illuminated by a linear transverse

electric (TE)-polarized plane wave,i.e., the illumination wave consists of two components:

Ey and Hx . If we apply the TEA to this grating to calculate its transmitted fields, the fields

through the structure will consist of only the two components Ey and Hx , with a phase shift

∆Φ due to the optical path length difference Ey exp(i∆Φ) and Hx exp(i∆Φ). However, This is

not true according to Maxwell’s equation. Eq. (2.2)

If we compute the fields in the same grating using rigorous electromagnetic solver such as

RCWA, there are three components Ey , Hx , and Hz as shown in Fig. 2.5. In the simulation,

we use the parameters which are λ= 633nm of wavelength,Λ= 8µm of grating period, 4µm

width of one ridge. The depth is corresponding to π phase shift so that the depth is d = 693nm,

where the refractive index of dielectric material is n = 1.46. In Fig. 2.5, we can observe the

boundary of the grating structure indicated by the black and white lines. The plane wave

illuminates from the bottom to the top. The RCWA simulation is run with a sufficiently large

number of Fourier modes. Its details will be discussed in the next section.

This result in Fig. 2.5(e) and (f) show that there are generation of Hz component during the

propagation according to Eq. (2.2),i.e., Hx ∝ ∂Ey

∂x , Hz ∝ ∂Ey

∂z , which is rigorous in the vectorial

domain. This can be explained due to the oscillation of Ey in Fig. 2.5(a) and (b) in the direction

perpendicular to the ridge, leading to the diffraction of the magnetic field into the z-direction

at the interface between different media. However, the TEA fails to predict the diffraction of

the electromagnetic component perpendicular to the direction, i.e., the generation of the Hz

component after the structure. The phenomenon is similar for the case of linear transverse

magnetic (TM)-polarized plane waves, where the illumination has only two components Hy ,

Ex but the transmitted field contains three components Hy , Ex , Ez .

To assess the error of the TEA, we compare the amplitude and phase distribution of the fields

on the plane after the grating, which is simulated by RCWA and TEA as represented in Fig. 2.6.

In Fig. 2.6(a) and (b), the field Ey from TE-polarized illumination and in (c) and (d) the field

Hy from the case of TM-polarized illumination is presented. The amplitude and phase of the

field in a ridged surface profile determined by TEA indicated by the blue dash line in Fig. 2.6.

The field obtained by the RCWA simulation is complex comparing to a result as predicted by

the TEA. In sharp transition points, the perturbations are observed by RCWA, even though TEA

yields the constant amplitude and phase and no difference between TE- and TM-polarized

illumination. This omission of perturbation in TEA makes computing inaccurate within

wavelength-scale structures, so call non-paraxial domain or resonance domain.
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Figure 2.5 – Electromagnetic fields in periodic 1D binary grating illuminated by a TE-polarized
plane wave simulated by rigorous coupled-wave analysis (RCWA). (a) The amplitude and (b)
phase of Ey component in the structure. (c) The amplitude and (d) phase of Hx component
and (e) the amplitude and (f) phase of Hz component. The illumination propagates from the
plane z = 0 to the top. The boundary of the grating is indicated by the black and white lines.
The field distribution in the plane z = 1.2 is given by Fig. 2.6
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2.3. Thin element approximation
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Figure 2.6 – The field distribution in the plane after the grating, i.e., the plane z = 1.2 in Fig. 2.5.
(a) Amplitude and (b) phase of the electric field Ey in TE-polarized illumination and (c) the
amplitude and (d) phase of the magnetic field Hy in TM-polarized illumination. The fields are
calculated by RCWA (red line) and TEA ( blue dashed line)
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Chapter 2. Background

2.4 Rigorous coupled-wave analysis

Scalar diffraction theories such as thin element approximation are well established in the

paraxial domain, in which the electromagnetic nature of light may often be neglected. How-

ever, in the non-paraxial domain, multiple scattering and the effects of polarization appear.

As a result, the scalar theory fails and it becomes necessary to apply rigorous electromag-

netic theory to simulate correctly the behavior of light in the structure. Different rigorous

methods can be used to simulate wide-angle DOEs. The well-known methods include the

Finite-Difference Time-Domain method (FDTD) [91, 92], the Finite Element Method (FEM)

[93–95], the Finite-Difference Frequency-Domain method (FDFD) [96], Method of Moments

[97], and the Rigorous Coupled Wave Analysis (RCWA) [63, 70, 98–104] also known as the

Fourier Modal Method (FMM).

2.4.1 Historical overview

One of the first numerical methods for gratings has been the differential method [105, 106].

The method is mainly applied to describe the interaction of light with gratings. The grating

system can be divided into three regions: the homogeneous substrate region, the structured

grating region, and the homogeneous layer above the grating as shown in Fig. 2.7(a). Due to

the periodicity of the grating, the description of fields in the homogeneous layer upward and

downward grating are given by the Rayleigh expansion [107]. The fields in the grating region

can be expanded in Fourier series along with the periodic directions according to the Floque-

Bloch theorem. By inserting the expansion for the grating region in Maxwell’s equations, we

obtain a set of differential equations for the coefficients which determine the propagation

of the light perpendicular to the grating plane. Together with the Rayleigh expansions in

the outside of the grating region, the differential equations build a boundary value problem.

Then it can be solved via the so-called shooting method which is a method for solving initial

and boundary value problems in the classical differential method. When these problems are

solved with computers, the infinite series of the expansions have to be truncated. This can

cause convergence problems that already arise for purely two-dimensional metallic gratings

in TM-polarization. Additionally, the method becomes unstable for deep gratings [106]. As

an alternative, new methods such as the Rigorous coupled-wave analysis[59, 60], have been

proposed. In RCWA, the grating profile is approximated by a stack of lamellar gratings as

illustrated in Fig. 2.7(b) and each lamellar layer can be solved independently by an eigenvalue

technique. Besides, there are many efforts for stable and reliable results by introducing the

scattering matrix algorithm [108, 109], improving the convergence in metallic gratings[62, 110].

It was explained by the convergence behavior of the truncated Fourier series for continuous

and discontinuous functions and it is named correct Fourier factorization [111, 112]. Using

this technique a new formulation of the RCWA for crossed gratings is called the Fourier modal

method [63]. In the following, we briefly present the Fourier Modal Method as developed with

the correct Fourier factorization.
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Figure 2.7 – (a) Grating with homogeneous upward region, structured grating region, and
the homogeneous substrate. (b) Approximation of the structure of (a) into a stacked lamellar
structures that can be simulated using the Fourier modal method.

2.4.2 Incident plane wave

There are two homogeneous regions denoted by region 1 and region 3 with refractive index

n1 and n3 in the above Fig. 2.7(b). In the middle, stacked layers in region 2 located between

0 ≤ z ≤ h. A periodic modulation of region 2, which is divided into z-invariant layers, for

example 0 ≤ h1 ≤ h2 ≤ ·· · ≤ h, and n j (x, y) is the distribution of the refractive index between

the boundaries h j and h j+1. The unit-amplitude plane wave illuminated from the negative

direction of z-axis. The wave vector k0 of incident wave have an angle θ with respect to the

z-axis the azimuthal angel is denoted by φ. The parameter ψ defined the angle between the

incident plane and the polarization vector u.

Thus we can represent the incident field as

E0(x, y, z) = u exp
[
i (kx,0 +ky,0 +γ00)

]
, (2.34)

where kx,0 = kn1 sinθcosφ, ky,0 = kn1 sinθ sinφ, and γ00 = kn1 cosθ. The values kx,0, ky,0,

and γ00 form

k0 = kx,0x +ky,0 y +γ00z , (2.35)

which is the wave vector of the incident field. And the polarization vector u is expressed by

u =(cosψcosθcosφ− sinψsinφ)x

+ (cosψcosθ sinφ+ sinψcosφ)y

−cosψsinθz .

(2.36)

The geometry of incident vector is illustrate in Fig. 2.8(a).
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Figure 2.8 – (a) Scheme of geometry of incident vector (b) surface profile of grating with
lamellar layers

2.4.3 Floque-Bloch wave and Rayleigh expansion

In above Fig. 2.7(b), each lamellar layer in region 2 has a periodic permittivity distribution

ε(x, y, z) = ε(x +Λx , y +Λy , z), (2.37)

whereΛx ,Λy is grating period along x and y-axis. Considering the plane wave in Eq. (2.34) il-

luminate the medium of this permittivity distribution with the assumption of lossless medium,

we can represent each field component satisfies the Floque-Bloch theorem everywhere in

space:

U (x +Λx , y +Λy , z) =U (x, y, z)exp
[
i (kx,0Λx +ky,0Λy )

]
. (2.38)

The field is thus laterally periodic with periodΛx andΛy apart from a phase factor determined

by the constant kx,0 and ky,0, and is called pseudo-periodic. Substitution of Eq. (2.38) into the

angular spectrum representation of Eq. (2.11) leads to the following condition for the lateral

propagation coefficient of the pseudo-periodic field

kx,m = kx,0 + 2πm

Λx
(2.39a)

ky,n = ky,0 + 2πn

Λy
, (2.39b)

where m, n are integers. The pseudo-periodicity of the field discretizes the angular spectrum,

i.e., the diffracted plane waves only have a discrete set of allowed propagation directions.

Therefore the angular spectrum is reduced to the Rayleigh expansion of the scattered field in

homogeneous regions. The reflected and transmitted electric field in region 1 and 3 is given
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2.4. Rigorous coupled-wave analysis

by

ER (x, y, z) =
∞∑

m,n=−∞
Rmn exp

[
i (kx,m x +ky,n y − iγR

mn z)
]

if z ≤ 0 (2.40a)

ET (x, y, z) =
∞∑

m,n=−∞
Tmn exp

{
i
[
kx,m x +ky,n y + iγT

mn(z −h)
]}

if z ≥ h (2.40b)

where the γR
mn =

√
(n1k)2 −kx,m

2 −ky,n
2 and γT

mn =
√

(n3k)2 −kx,m
2 −ky,n

2 and Rmn and

Tmn denote the complex amplitudes vector of the reflected and transmitted fields, respectively.

Imaginary values of γR
mn and γT

mn indicate evanescent waves which decays exponentially. Cor-

responding magnetic fields H in regions 1 and 3 can be solved from the relation in Eq. (2.2)(c)

and (d).

Let us consider the propagation directions of the plane waves of Rayleigh expansion. We can

obtain the propagation angle of each order by θm using the condition γT
mn = n3k cos(θmn).

The propagation angle θmn of the mn-th transmitted diffraction order thus can be represent

the following equation

(n3k sinθmn)2 =
(
n1k sinθcosφ+ 2mπ

Λx

)2

+
(
n1k sinθ sinφ+ 2nπ

Λy

)2

, (2.41)

which drives the one-dimensional grating equation if the period Λy is towards infinity and

φ= 0. while for the reflected diffraction angles, one replaces n3 with n1 in Eq. (2.41). It means

that the diffraction angle θmn in Eq. (2.41) only depend on the grating periodΛx andΛy and

wavelength λ of incident light. The structure design in period only controls the distribution of

diffraction intensity between the diffraction orders.

2.4.4 Fourier factorization

Let us briefly outline the correct Fourier factorization by taking into account the behavior of

partial sums at the points of discontinuity [63, 111]. In order to obtain fast convergence, a

truncated expansion has to be performed by carefully considering Fourier Factorization rules.

Considering a periodic permittivity distribution that is discontinuous in both x and y di-

rections, Es(x, y, z) denote an arbitrary scalar component of electric field and Es denote the

vector consisting of its Fourier coefficients. The Fourier vectors are composed of the Fourier

coefficients Emn according to the rule in [70]

[Es]m′n = Emn , (2.42)

where m′ is m′ = m +2M +1 with M is trancated Fourier number −M : M . We define JεK,
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Jεx (y)K Jεy (x)K as Toeplitz matrice builded form the Fourier coefficient

εmn = 1

ΛxΛy

∫ Λx

0

∫ Λy

0
ε(x, y)exp

[−i 2π(mx/Λx +ny/Λy )
]

dx dy (2.43a)

εx, m(y) = 1

Λx

∫ Λx

0

1

ε(x, y)
exp[−i 2π(mx/Λx )]dx (2.43b)

εy, n(x) = 1

Λy

∫ Λy

0

1

ε(x, y)
exp

[−i 2π(my/Λy )
]

dy , (2.43c)

and Jεx yK and Jεy xK composed of the following elements:

εx y, mn = 1

Λy

∫ Λy

0
Jεx (y)K−1 exp

[−i 2π(my/Λy )
]

dy (2.44a)

εy x, mn = 1

Λx

∫ Λx

0
Jεy (x)K−1 exp

[−i 2π(my/Λx )
]

dx . (2.44b)

Using the expression in Eq. (2.42), the Fourier coefficient of the product of permittivity and

electric field, which is the dielectric displacement Dp (x, y, z) = ε(x, y)Es(x, y ; z) represented

by correct factorization rules:

Dp = JεKEs (2.45a)

Dp = Jεx yKEs (2.45b)

Dp = Jεy xKEs . (2.45c)

where Dp is the vector containing the Fourier coefficients of Dp (x, y, z). If Es(x, y, z) and

ε(x, y, z) have no concurrent discontinuities, the Fourier coefficients of the product Dp (x, y, z) =
ε(x, y)Es(x, y ; z) obtained from Laurent’s rule in Eq. (2.45)a. If both Es(x, y, z) and ε(x, y, z)

have complementary concurrent discontinuities in x-direaction,i.e., Dp is still continuous, ap-

plying Eq. (2.45)b in the Fourier factorization. Similarly, wehn the complementary concurrent

discontinuities take place in the y-direaction, we use Eq. (2.45)c. This is called inverse rule in

Eq. (2.45)b, c. Furthermore, if the functions are discontinuous in both directions, we use the

inverse matrix of the coefficients JεK−1 of the function 1/ε(x, y). A detailed description of the

problem can be found in these article [63].

2.4.5 Computation of Eigenmode

In order to represent in the structured region, we need to consider only four field components

and thus we eliminate the z-components of the magnetic and electric field. According to the

Floque-Bloch theorem, the fields are pseudo-periodic in two dimensions and each field can

be expressed as

Us(x, y, z) =∑
n

∑
m

Us,mn exp
[
i kx,m x +ky,n y +γz

]
, (2.46)
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2.4. Rigorous coupled-wave analysis

where Us become any scalar component of the electric and magnetic field, e.g., Ex , Hx , Ey ,

Hy . Here, we confine our attention only to the electric field. Operating with the divergence

operator to Eq. (2.2)(d) and using the relation ∇∇∇··· (∇∇∇×××A) = 0, we may express

∇∇∇··· (∇∇∇×××H) =−iω∇∇∇··· [ε(x, y)E
]= 0. (2.47)

Thus, we find

∂Ez

∂z
=− 1

ε(x, y)

{
∂

∂x
[ε(x, y)Ex ]+ ∂

∂y
[ε(x, y)Ey ]

}
. (2.48)

By applying the curl operation to Eq. (2.2)(c), then we have

∇∇∇××× (∇∇∇×××E ) = iω∇∇∇×××H = k2ε(x, y)E (2.49)

Using ∇∇∇××× (∇∇∇×××A) =∇∇∇(∇∇∇···A)−∇∇∇2A we drive the inhomogeneous wave equation[
k2ε(x, y)+∇∇∇2]E =∇∇∇(∇∇∇···E )

=∇∇∇
(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

) (2.50)

Inserting the Eq. (2.48) into Eq. (2.50), the relations between the x and y-components of the

electric field are represented in the forms

−∂
2Ex

∂z2 =
[

k2ε(x, y)+ ∂2

∂x2 + ∂

∂x

1

ε(x, y)

∂

∂x
ε(x, y)

]
Ex +

[
∂

∂x

1

ε(x, y)

∂

∂y
ε(x, y)− ∂

∂x

∂

∂y

]
Ey

(2.51a)

−∂
2Ey

∂z2 =
[
∂

∂y

1

ε(x, y)

∂

∂x
ε(x, y)− ∂

∂y

∂

∂x

]
Ex +

[
k2ε(x, y)+ ∂2

∂x2 + ∂

∂y

1

ε(x, y)

∂

∂y
ε(x, y)

]
Ey

(2.51b)

Applying the representation in Eq. (2.46), the Eq. (2.51) can be represented in the form of a

matrix eigenvalue problem

γ2

[
Êx

Ê y

]
=

[
M̂xx M̂xx

M̂y x M̂y y

][
Êx

Ê y

]
, (2.52)

where Êx and Ê y denote the vectors containing the Fourier coefficient Ex,mn and Ey,mn .

Taking account to Laurent’s rule and inverse rule for calculating the products of the Fourier
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coefficients, we develop the following equations for the elements of the matrix M

M̂xx = k2Jεx yK−diag(k̂y )diag(k̂y )−diag(k̂x )JεK−1diag(k̂x )Jεx yK (2.53a)

M̂y y = k2Jεy xK−diag(k̂x )diag(k̂x )−diag(k̂y )JεK−1diag(k̂y )Jεy xK (2.53b)

M̂x y = diag(k̂x )diag(k̂y )−diag(k̂x )JεK−1diag(k̂y )Jεy xK (2.53c)

M̂y x = diag(k̂y )diag(k̂x )−diag(k̂y )JεK−1diag(k̂x )Jεx yK. (2.53d)

The variables kx,m and ky,n constitute the elements of the diagonal matrices diag(k̂x ) and

diag(k̂y ) and the Toeplitz matrices JεK contain the Fourier coefficiencts of the complex relative

permittivity calculated with the Laurent’s rule and inverse rule [63]. Applying the boundary

conditions of electromagnetic in Eq. (2.4) we find that the permittivity is discontinuous in the

both x and y-directions, Ex has discontinuities in the x-direction and the Ey is discontinuous

in the y-direction. The fact is that the inverse rule should be applied in the electric field

calculation in Fourier domain.

By solving the eigenmodes from Eq. (2.52), we can represent the electric field in the j -th layer

as

Ex , j (x, y, z) =∑
l

Al , j exp
[
iγl , j (z −h j−1)

]+Bl , j exp
[−iγl , j (z −h j )

]
(2.54a)

× ∑
m,n

E j
x,mnl exp

[
i (kx,m x +ky,n y)

]
Ey , j (x, y, z) =∑

l
Al , j exp

[
iγl , j (z −h j−1)

]+Bl , j exp
[−iγl , j (z −h j )

]
(2.54b)

× ∑
m,n

E j
y,mnl exp

[
i (kx,m x +ky,n y)

]
Corresponding representations of the magnetic field inside the stacked layer are obtained

from Maxwell’s equation.

2.4.6 Calculating the field distribution

The Equation (2.4) shows that x and y- components electric field and magnetic field Ex , Ey ,

Hx , and Hy are continuous across the boundary h j . Hence, we arrive at the matrix equation[
E j+1 −E j

H j+1 H j

][
A j+1

B j

]
=

[
E j+1X j+1 −E j X j

H j+1X j+1 H j X j

][
A j

B j+1

]
, (2.55)

where Xk is a diagonal matrix with elements exp
[
iγ j , l (h j+1 −h j )

]
and the vectors A j and B j

contain the complex amplitudes of the modes. The E j and H j consist of the eigenvectors

of the electric and magnetic fields for both x- and y-components. To simulate evanescent

waves at the boundaries with numerically stable treatment, we use the S-matrix algorithm. We

presented the scattered field as a function of the illuminating field in Eq. (2.55) which yields a
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local S-matrix

S( j ) =
[

E j+1 −E j

H j+1 H j

]−1[
E j+1X j+1 −E j X j

H j+1X j+1 H j X j

]
(2.56)

We can compose an S matrix related to each boundary and if only the reflected and transmit-

ted amplitudes are interested, one may combine the local S( j ) matrices to form the global

scattering matrix S by using the recursion formula known as Redheffer’s star product [109,

113] by

S = S(2) ∗S(1) ∗·· ·S(J−1) ∗S(J ) (2.57)

where the star product is defined as

A∗B =
[

a11 a12

a21 a22

]
∗

[
b11 b12

b21 b22

]

=
[

b11(I−a12b21)−1a11 b12 +b11a12(I−b21a12)−1b22

a21 +a22b21(I−a12b21)−1a11 a22(I−b21a12)−1b22

]
,

(2.58)

where a11 and b11, etc, are also square matrices. Having constructed the matrix S, we can

write the relation between the incident and the scattered field in the form[
T

R

]
= S

[
δ

0

]
(2.59)

where T and R contain the complex amplitudes related to the x and y-components of the

transmitted and reflected electric fields, and δ denotes the angular spectrum of the illumi-

nating plane wave. The difracion efficiencies of the scttered field are commonly the matter

of main interest with diffraction gratings. The time averaged z-component of the Poynting

vector gives the relations

ηRmn = Re(γR
mn/γ00)|Rmn |2 (2.60a)

ηTmn = Re(γT
mn/γ00)|Tmn |2 (2.60b)

for the reflected ad transmitted efficiencies.

2.4.7 Truncation procedure

Choosing a suitable truncation order, one should carefully keep in view some fundamental

aspects of FMM. Increasing the truncation parameter N , i.e., the Fourier coefficients included

in the analysis are between −N and N ) to value 2N +1, we observe that the computation time

may easily even double since the number of the elements in the matrices is approximately

comparable to the fourth power of N . Thus all improvements in convergence, even small
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ones, are of major interest with gratings. Usually, the Fourier coefficients taken into account

form a rectangular area, but Li et al. showed that the convergence is enhanced when a circular

truncation is utilized.

The electromagnetic fields are represented by Fourier expansions in our system. The numerical

inaccuracies of calculation mainly occur due to the inevitable truncation of the Fourier series.

To evaluate the accuracy of our numerical results, we analyze the convergence of simulation

in our grating generating 7×7 spot array from the main text with incrementally increasing the

number of Fourier modes. This defines the set of Fourier harmonics retained in x and y-axis

from −N to N , respectively. In other words, the number of Fourier modes is 2N +1 in each

axis. The plot in Fig. 2.9 present the diffraction efficiency in [0,0]th and [3,3]th order of grating

with different number of modes N . The zeroth-order normally indicate slower convergence

than off-axis orders. In the Fig. 2.9, when N is large enough ( e.g. N > 10), all of the simulations

converge to within 1 % of same value. To obtain accurate converged calculation, we thus use

this value for the optimization process and final calculation of optimized devices reproduces

with a enough high number of modes, e.g., in this case N = 25. All theoretical results presented

in this work use enough high number of modes to show equivalent numerical accuracies.

In summary, the principle of the method is to present the refractive index profile and the field

inside the grating region as a Fourier series. The eigenvalue equation is solved for the waveg-

uide modes in each slice. Finally, the resulting field expansion is matched at the interfaces

of the slices with the boundary conditions under considering polarization of incident wave.

The number of eigenmodes taken into count needs to be chosen to sufficiently large [63]. The

parameter is defined as N , which is referred to as Fourier orders −N : N . The accuracy of the

simulation depends on this parameter [61]. The convergence of the calculations has to be

checked by simulating the diffraction efficiency as a function of the number of Fourier orders.

If the efficiency reaches a stable value, the number of Fourier orders is high enough to ensure

reliable results.
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Figure 2.9 – Convergence analysis for diffraction efficiency of two-dimensional grating gener-
ating 7 x 7 spot array
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2.5 Inverse design methods

In previous sections, we briefly reviewed the methods to predicting the electromagnetic

phenomena in diffrative elements such as TEA and RCWA. They are all meant to solve the

“forward problem”, which is to calculate the fields for a given structure. However, one is

typically more interested in “inverse problem”, which is to find the geometry for a desired

electromagnetic response. Normally, the inverse problem is more difficult than the forward

problem. In the forward problem case, there is obviously only one solution with a given

geometry and sources. But, for the inverse problem, most of case we cannot expect the unique

geometry for specified fields , or there may be no exact solution. Hence, in general, we try

to find a structure that satisfies the desired electromagnetic field the most closely. From this

viewpoint, inverse design problems may called optimization problems.

To optimize an optical element, the element parameterized by several design variables, such as

geometric or material parameters. The desired performance of the optical element is defined

mathematically through an figure of merit (FOM), also known as merit function, we then

find the set of design parameters either minimizing or maximizing FOM using mathematical

and computational optimization techniques. There are many possible approaches to the

inverse design problem. The measure of optimization tool chain is its ability to efficiently

search such a large design parameter space. In general, the most time-consuming part of the

inverse design is the solution of the forward problem, which is generally repeated for many

different set of design parameters ,e.g., stochastic algorithms [81, 114–118] , genetic algorithms

[119–123]. But, if optical propagation model from the input source to the output field can be

inverted, the number of simulations required by the approach is significant less than general

case. Otherwise, we have no choice but to rely on the gradient-based optimization. We briefly

introduce to these two cases.

2.5.1 Evaluation of diffractive beam splitters

For many applications, the goal is to propagate to all the light in the desired orders and avoid

losses. To quantify the amount of light that propagates in the desired diffraction orders, we

define the diffraction efficiency ηmn as the ratio of the sum of the intensities of all desired

orders to the total intensity of the incident beam,

ηtotal =
∑
m,n

Im,n

Iin
= ∑

m,n
ηmn . (2.61)

The ηmn is the diffraction efficiency in orders on 2D array and m,n is the diffraction order

along horizontal and vertical axis, respectively (see Fig. 1.1(a)) . Diffractive fan-out elements

which produce a set of uniformly illuminated diffraction orders, are commonly used to various

cases, while some applications potentially require diffractive beam splitters with various

intensity distributions. To evaluate diffractive beam spiltter with various diffraction efficiency

distribution, we define uniformity error (UE) and normalized root-mean-square error (NRMS)
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σ as follows:

U E = ηmax −ηmin

ηmax +ηmin
(2.62)

σ=
√√√√ 1

T

∑
m,n

(
ηmn −ηobj

ηobj

)2

(2.63)

where ηmax and ηmin represent the maximal and minimum intensity of the diffraction effi-

ciency. T is the total number of target diffraction orders. The spot energy distribution can

be designed for any distribution meeting the application’s requirements. The NRMS with

scaled diffraction efficiency η̃ is preferable to with normal diffraction efficiency η because

normalizing root-mean square error facilitates the comparison among various diffraction

efficiency distributions with different scales from diverse DOEs. Lower values of both UE and

NRMS indicate less residual variance so that our objective is to minimize UE and NRMS of a

DOE design given certain diffraction efficiency distribution.

2.5.2 Iterative Fourier transform algorithm

In the far-field region, the spatial or angular region where the properties of the signal are

specified is called signal area. And the plane immediately after the diffractive element is

named as the element plane. The IFTA is one of the most common inverse methods for

designing the diffractive elements in paraxial domain [36, 50, 124–127]. The basic idea behind

the IFTA is based on TEA as shown in Section 2.3, which is a Fourier transform pair between

the field in the element plane and the diffraction orders of the field in far-field region. The

field is propagated forward and backward between the domains applying suitable constraints

during the iterative process as shown in Fig. 2.10.

Starting from the distribution of target diffraction amplitudes in signal area, we define the

complex amplitude of the field by adding some initial phase to amplitude information. The

generated diffraction amplitudes can be used to calculate the field in the element plane by

inverse Fourier transform in Eq. (2.28). This obtained field is a complex valued function with

freely fluctuating amplitude and phase, but an element generating such a field cannot be

fabricated with normal methods and thus the fabrication constraints such as quantization

and minimum feature size are considered. Then the complex amplitudes of the diffraction

orders in far-field are calculated by Fourier transform. There will be some noise which are the

signals in unwanted diffraction orders, and we remove it by resetting the field amplitude to

the goal diffraction distribution. By continuing the iteration this way the algorithm eventually

converges to a local minimum representing the element phase which produces the target

intensity distribution at the signal area. In order to avoid stagnation of the iteration process,

some modification of the algorithm have to be made. For instance, by allowing the intensity

outside of signal area, it will be enhance the convergence so that obtain improved uniformity,
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Target diffraction
 amplitude

Final solution

U(x, y; z0)U(x, y; 0)
FT-1

FT
U(x, y; 0) U(x, y; z0)

 Backward
propagation

 forward
propagation

constraints 
at element plane

constraints 
at signal plane

add phase

Figure 2.10 – Flowchart of iterative Foureir transform algorithm. The left-hand column
represent the element plane and the signal plane is on the right.

although the total diffraction efficiency is slightly decreased. Also, the choice of initial phase

can have an effect on the quality of the results because the method converges to the nearest

solution.

The method is very computationally efficient due to the use of the fast Fourier transform

algorithm, and versatile because concerning possible constraints imposed by both the element

plane and the diffraction orders. However, one should keep in mind that, as a method based

on the TEA, IFTA is valid only when the geometry is paraxial.

2.5.3 Limitation of IFTA

IFTA does not take into account the actual physical process, resulting in the inaccuracy of

the calculating for the diffraction efficiency of devices with small features. To evaluate the

performance of DOEs designed by IFTA in the non-paraxial domain, we prepared a 7× 7

diffractive beam splitter generated by IFTA (see Fig. 2.11 inset). The plot in Fig. 2.11 show

the UE and NRMS of grating with the different grating period. In Fig. 2.11, the maximum

diffraction angle indicate the angle from 0th order to the highest target diffraction order. To

analyze the diffraction efficiencies in orders, we calculated the UE in off-axis, i.e. excluding

the zeroth-order which has usually the largest intensity variation with respect to the change of

grating period. In these simulations, we use the RCWA to calculate the diffraction efficiency

with an incident beam of 940 nm wavelength. when the grating is shrunk, i.e. the size of
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structures in the gratings becomes comparable with the wavelength of the incident light, the

device designed by IFTA is no more valid. The diffraction angle is proportional to the ratio

of the wavelength of the incident light as given by Eq. (2.41). Thus, we need to the adjoint

method based on rigorous diffraction theory to optimize wide angle DOEs in the non-paraxial

domain.
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Figure 2.11 – Uniformity of 7×7 diffractive beam splitter designed by IFTA as a function of
grating periodΛ. The insets show the layout of the single unit cell. Black represents dielectric
material and white represents air.

2.5.4 Gradient-based optimization

If the diffractive elements features are below the wavelength scale, the rigorous diffraction

theory is used and the design has to be made by parametric optimization. Typically, this is

performed using gradient-based optimization techniques, which use local gradient informa-

tion to iteratively progress through the design space. In inverse design problems with several

degrees of freedom, gradient-based methods generally converge on local minima much faster

than global optimization techniques such as particle swarm optimization [114] or genetic

algorithms[119], which typically do not use local gradient information.

To achieve an optimal diffractive beam splitter generating the desired target distribution,e.g.,

often the uniform array , we define the FOM as

F
(
s(p)

)= ∑
m,n

[
ηmn

(
s(p)

)−ηobj
]2 , (2.64)

where s(p) is shape function described by the set of design parameter, for example, the position

of the transition points or the pixel of the geometry.

Through the gradient-based optimization, one updates from an old structure as described by

a set of design parameters sold
(
p
)

to a new structure as described as a set of design parameters
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snew
(
p
)

with in each iteration,

snew (
p
)= sold (

p
)+α ·∆s

(
p
)

, (2.65)

where α is the learning rate which is an important value determining how big of an update

which is often referred to as a line search [128]. The process of finding appropriate value of

α is therefore a good measure of various gradient-based approach’s efficiency. In this work,

we perform updates of the design variables using the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm [129, 130] because it produces superior convergence

compared to the other method such as steepest decent [131, 132] and conjugate gradient

method [133].

In this Eq. (2.65), ∆s
(
p
)

is the search direction which is related to the gradient of the FOM

∇∇∇s(p)F with respect to s
(
p
)
. If we calculate the gradient of FOM efficiently, for instance, ac-

cessing the analytical solution of the gradient or computing the gradient using adjoint method,

we would have optimization tools for wide angle DOEs using gradient-based methods.

Global minimum

Local minimum

Initial point

Figure 2.12 – Scheme of gradient-based optimization
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3 Optimization based on Perturbation
Approach

In this chapter, we introduce the gradient-based optimization method for wide angle DOEs

operating in the complex diffraction regimes beyond scalar paraxial theory, e.g., thin element

approximation. It will allow us to calculate the gradient of FOM efficiently with an analytical

solution. For this purpose, a diffraction model is required that permits to describe analytically

the gradient of diffraction efficiency with respect to the design variables as well as efficient

diffraction analysis of DOEs in the non-paraxial domain. We introduce such a diffraction

model: step transition perturbation approach (STPA) [134]. The STPA is an approximate

method based on local field perturbations generated by sharp transitions of the surface profile

of diffractive elements.

Here, we discuss a design approach based on STPA for wide angle one-dimensional gratings,

yielding improvements in the uniformity of the generated patterns while maintaining the

total diffraction efficiency. Section 3.1 describes the fundamental diffractive geometry and

the basic principle of the method. The method with a precise mathematical description

and minimum requirements for the accuracy of calculation is also given. Section 3.2 then

explains the process of optimization based on STPA. We can describe analytically the gradient

of diffraction efficiency with respect to the design variables of optical elements using STPA.

Thus, we use gradient-based optimization using the gradient of the figure of merit (FOM)

calculated by STPA. With this computational implementation, Section 3.3 shows the optimiza-

tion results of diffractive fan-out grating creating a one-dimensional spot array. The results of

the experimental characterization are also discussed.

3.1 Step transition perturbation approach

An important aspect of the optimization process is to parameterize the shape of the optical

elements, which can significantly affect the performance and computational cost. In the

previous chapter, the Figure 2.4 illustrates a cross-section view of a part of a general surface

profile of binary (i.e., 2-level) grating with 2K transitions in position xk within a single grating

period. We use these positions of transition points as the set of design parameters xk =
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[x1 · · ·xk · · ·x2K ].

This approximative method has been introduced by Kettunen et al. [135] and later reformu-

lated by Vallius et al. [58, 134, 136] that in fact the approximated method based on local field

perturbations from sharp step-transitions enables rapid calculation of diffraction patterns of

DOEs in the non-paraxial domain.

3.1.1 Field perturbations

The surface profile of binary grating clearly consists of locally sharp transitions between

different height levels. Let us consider the effect of a single step transition on the amplitude

and phase of a normally incident plane wave illumination as shown in Fig. 3.1. In Fig. 3.1, the

TE-polarized plane wave is illuminated from bottom z = 0 and the observation plane in the

plane z = 4. A significant perturbation is observed in the phase and amplitude of the field

distribution directly after a sharp vertical transition determined by rigorous electromagnetic

theory. The TEA calculation, however, yields a constant amplitude and phase corresponding

to the phase shift by the height of the step transition. In Fig. 3.1(b) and (c), the normalized

amplitude and phase of the field distribution after the step transition determined by TEA

and RCWA is presented. The phase and amplitude modulation and function form of both

calculated by RCWA depends on the step height and also on the state of polarization of the

incident wave. This omission of perturbations in TEA makes computing inaccurate especially

gratings with wavelength-scale structures, i.e., the gratings creating the wide angle arrays.

Thus, we can accurately calculate the diffraction efficiency using the model which combines

the TEA with field disturbances caused by sharp transitions in the surface profile calculated by

RCWA. We define the field perturbation behind the k:th sharp transition located at the point

xk in the surface profile as

pk (x) =
U R

k (x)−U T
k (x) if |x| <∆T

0 elsewhere
(3.1)

where U R
k (x) and U T

k (x) are field calculated by RCWA and TEA, respectively and truncation

parameter ∆T = 10λ is chosen in the calculations [136]. If adjacent transitions in the opti-

cal elements are sufficiently distant (approximately one optical wavelength [135]), the field

perturbation caused by them can be added coherently without making a considerable error.

The field perturbations of binary diffractive elements consist of only two kinds of oscillation

corresponding to left-side and right-side transition point in a ridge. Therefore, the constructed

field U (x) behind a binary grating with many transition points is described by the coherent

sum of two kinds field perturbations p1(x) and p2(x) added to the transmitted field given by
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TEA in the following expression:

U (x) =U T (x)+
2K∑

k=1
pk (x)

=U T (x)+
K∑

k=1
p1(x −x2k−1)+

K∑
k=1

p2(x −x2k )

(3.2)

where 2K is the total number of the transitions. The amplitude and phase of the field pertur-

bation of right-side of a ridge p2(x) is represented in Fig. 3.1(d) and (f). Then, the diffraction

pattern behind the surface profile can be obtained by propagating the resulting field U (x) with

the use of standard algorithms such as the angular spectrum representation of the electromag-

netic field. We can calculate the diffraction efficiency more efficiently using the Fourier shift

theorem.

Perturbation
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Figure 3.1 – (a) The surface profile with sharp transition points. observation plane and
truncated region are represented. (b) The amplitude and (c) phase of the electric field in TE-
polarization and after the sharp vertical surface profile with a transition point corresponding
to a phase delay of π radians calculated by RCWA (red line) and TEA (blue dotted line). The (d)
amplitude and (e) phase of corresponding perturbations in Eq. (3.1) are shown.
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3.1.2 Perturbations in the Fourier domain

We calculate the effect of a single perturbation from a transition in the Fourier domain and

finally combine the perturbations associated with all transitions in the diffractive elements.

For periodic structures such as grating, the Fourier spectrum is discrete, and the complex

amplitudes due to transitions in both left-side and right-side of a ridge p1, p2 in Fourier

domain are given by

Pm = 1

Λ

∫ Λ

0
p1(x)exp(−i 2πmx/Λ)d x (3.3a)

P−m = 1

Λ

∫ Λ

0
p2(x)exp(−i 2πmx/Λ)d x (3.3b)

where m is the index of the diffraction order and Λ is grating period of the element. The

Fourier coefficient of complex amplitudes caused by a transition in right-side of a ridge p2(x)

is P−m because the p2(x) is an even function of p1(x).

According to Fourier shift theorem [30, 137], if the transition is located at x = xk instead of at

the origin, this transverse shift of transition implies multiplication of Pm or P−m by factor of

exp(−i 2πmxk /Λ). Therefore, the superposition of Fourier domain corresponding to the total

field U (x) in Eq. (3.2) is expressed as a sum of the Fourier coefficient of field calculated by TEA

and the perturbations:

Am = 1

Λ

∫ Λ

0
U (x)exp

(
−i

2πmx

Λ

)
d x

= Tm +Dm

(3.4)

where Tm and Dm is the Fourier coefficient of the field calculated by TEA and the field pertur-

bations contribution, respectively.

Tm = 1

Λ

∫ Λ

0
U T (x)exp

(
−i

2πmx

Λ

)
d x (3.5a)

Dm = Pm

K∑
k=1

exp(−i 2πmx2k−1/Λ)+P−m

K∑
k=1

exp(−i 2πmx2k /Λ) (3.5b)

Once the Fourier coefficient of the step-transition perturbation Pm and P−m in Eq. (3.3) is

calculated and no further RCWA calculations are necessary no matter how many the features

in the diffractive element. It permits the computation of the diffraction amplitude Am from

the Fourier coefficient obtained by TEA simply by adding precalculated Fourier domain

contributions P−m and Pm from left- and right-side step transition, with appropriate phase

shifts depending on the location x2k−1 and x2k of the transitions.
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3.1.3 Diffraction efficiency

The diffraction efficiencies ηm can be express as

ηm = |Am |2 = |Tm |2 +|Dm |2 +T ∗
mDm +TmD∗

m (3.6)

where the m:th order Fourier coefficients Tm and Dm are given by Eqs. (3.4) and (3.5). In

binary grating case such as Figure 2.4, we can represent the square module of the Fourier

coefficients in the following form:

|Tm |2 =Φm
2(C1m

2 +S1m
2) (3.7a)

|Dm |2 =|Pm |2 (C2m
2 +S2m

2)+|P−m |2 (C3m
2 +S3m

2) (3.7b)

+2Re(PmP∗
−m)(C2mC3m +S2mS3m)

−2Im(PmP∗
−m)(C2mS3m −S2mC3m)

T ∗
mDm +TmD∗

m =Φm
[
2Re(Pm)

(
C1mC2m +S1mS2m

)+2Re(P−m)
(
C1mC3m +S1mS3m

)
+2Im(Pm)

(
C1mS2m −S1mC2m

)+2Im(P−m)
(
C1mS3m −S1mC3m

)]
(3.7c)

where

Φm = sin
(
∆φ/2

)
/πm (3.8a)

C1m =
2K∑

k=1
(−1)k cos(2πmxk /Λ), S1m =

2K∑
k=1

(−1)k sin(2πmxk /Λ) (3.8b)

C2m =
K∑

k=1
cos(2πmx2k−1/Λ), S2m =

K∑
k=1

sin(2πmx2k−1/Λ) (3.8c)

C3m =
K∑

k=1
cos(2πmx2k /Λ), S3m =

K∑
k=1

sin(2πmx2k /Λ) (3.8d)

where the ∆φ is the difference between phase φ1 and φ2 which are the phase of an electric

field in the air and dielectric material, respectively and 2K is the number of transition point

in structure. The Fourier coefficients Pm and P−m of field perturbation are given by Eq. (3.3),

which are constant values with respect to transition point xk . Thus the values Re(Pm), Re(P−m),

Im(Pm), Im(P−m), Re(PmP∗−m) and Im(PmP∗−m) also constant with respect to transition point

xk . The Equation (3.7) is only valid in m 6= 0. The diffraction efficiency in zero order η0 is
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expressed as

η0 = |T0|2 +|D0|2 +T ∗
0 D0 +T0D∗

0

= 1−4Q(1−Q)sin2(∆φ/2)+4K 2 |P0|2
−4K ·Re(P0)

{
cosφ1 +2sin

(
∆φ/2

)
sin

(
φs/2

)
Q

}
−4K · Im(P0)

{
sinφ1 −2sin

(
∆φ/2

)
cos

(
φs/2

)
Q

} (3.9)

where Q = ∑2K
k=1(−1)k xk and φs = φ1 +φ2. Therefore the diffraction efficiency ηm can be

expressed as a function as the transition point xk .

3.2 Inverse design based on STPA

We furthermore focus on the fact that this Fourier-domain contribution from step transition

Pm doesn’t contain explicit dependence on transition point xk . This point is highly useful

when calculating the gradient of diffraction efficiencies with respect to transitions positions

which are design parameters in our examples. We define the FOM to optimize DOEs creating

diffraction pattern with uniform intensity distribution:

F (xk ) =
M∑

m=−M

[
ηm (xk )−ηobj

]2 (3.10)

where F represents the difference between the calculated diffraction efficiency ηm and the

target diffraction efficiency ηobj in diffraction orders with respect to the set of transition posi-

tions xk = [x1 · · ·xk · · ·x2K ]. The gradient of the FOM with respect to transition positions ∇∇∇xk F

is crucial in determining the search direction to optima. For example, if the total number of

transitions 2K is large, it may easily become computationally heavy to calculate the gradient

by RCWA analysis. The STPA, however, allows expressing the variation for a diffraction effi-

ciency with respect to transition positions as an analytical solution so that it can calculate

the gradient straightforwardly. This point is highly useful when calculating the gradient of

diffraction efficiencies with respect to transitions positions ∇∇∇xk F =
[
∂F
∂x1

, · · · , ∂F
∂xk

, · · · , ∂F
∂x2K

]
to

optimize the structures. To find these derivatives, we apply chain rule when differentiating the

FOM:

∂F

∂xk
=

M∑
m=−M

∂F

∂ηm
· ∂ηm

∂xk
=

M∑
m=−M

∂F

∂ηm
· ∂ |Tm +Dm |2

∂xk
(3.11)

where the first term ∂F
∂ηm

is easily calculated by using Eq. (2.64) and the second term ∂|Tm+Dm |2
∂xk

is also expressed by an analytical equation because because Pm and P−m don’t include the de-

pendence on the position of transition point xk . We represent the derivatives of the diffraction

efficiencies as

∂ηm

∂xk
= ∂ |Tm +Dm |2

∂xk
= ∂ |Tm |2

∂xk
+ ∂ |Dm |2

∂xk
+ ∂T ∗

mDm

∂xk
+ ∂TmD∗

m

∂xk
(3.12)
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where the diffraction efficiency ηm is a function with respect to transition point xk in our

examples. Thus we can partially differentiate each term of ηm with respect to xk . when m 6= 0,

we can develop the derivatives as

∂ |Tm |2
∂xk

=2Φm
2(C1mC1

′
m +S1mS1

′
m) (3.13a)

∂ |Dm |2
∂xk

=



|Pm |2 (
C2mC ′

m +S2mS′
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where

C1
′
m =−2πm

Λ
(−1)k sin(2πmxk /Λ), S1

′
m = 2πm

Λ
(−1)k cos(2πmxk /Λ) (3.14a)

C ′
m =−2πm

Λ
sin(2πmxk /Λ), S′

m = 2πm

Λ
cos(2πmxk /Λ). (3.14b)

The other variables are given by Eq. (3.8). If m = 0, the derivatives of the diffraction efficiency
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in zero order is represented to

∂η0

∂xk
=−4Q ′(1−2Q)sin2(∆φ/2)

−8K ·Re(Pm)sin
(
∆φ/2

)
sin

(
φs/2

)
Q ′

+8K · Im(Pm)sin
(
∆φ/2

)
cos

(
φs/2

)
Q ′

(3.15)

where Q =∑2K
k=1(−1)k xk , Q ′ = (−1)k

Λ , andφs =φ1+φ2. Therefore, we can express the gradient of

diffraction efficiency with respect to transition points based on STPA as an analytical solution.

It is feasible to calculate the gradient straightforwardly with accuracy as much as the approach

based on the rigorous method if most of the features of the structure are bigger than the

wavelength of the incident light. The obtained gradient was used in optimization based on

the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [129, 130]. The

workflow of inverse design based on STPA is shown in Fig. 3.2.

Final solution

Computing FOM
based on RCWA

A set of transition points

The gradient of FOM
based on STPA

Applying gradient

Stopping
criterion

Initial estimation

No

Yes

Figure 3.2 – Flowchart for optimization based on STPA

42



3.3. Optimization results : one dimensional (1D) diffractive fan-out elements

3.3 Optimization results : one dimensional (1D) diffractive fan-out

elements

Using the proposed optimization approaches, we can design various multi-spot array gen-

erators. In general, a diffractive beam splitter creating a larger number of spots requires a

more complex structure, i.e., gratings with many features. To verify our method is valid in

high dimensional optimization problems, we show the optimization results of fan-out grating

generating many spots.

3.3.1 Initial design and parameters

With the gradient-based optimization, the elements are optimized within local parametric

space to produce the final solution,i.e., local optima. The setting of the initial design thus

affects the optimization results. the 1D fan-out grating designed by IFTA is no more valid in

wide angle fan-out gratings. Nonetheless, it may be a good candidate for the starting point

for the optimization method. Therefore, we prepared surface profiles of 1D fan-out grating

designed by IFTA for the initial design of this optimization method.

In binary grating, the depth of the features is normally selected d = λ(n2 −n1)/2 obtaining

a π phase shift between binary levels. When the grating period is shrunk to generate a wide

angle diffraction pattern, we need to modify the depth to adjust the 0-th order, which is often

most sensitive to change, in such a manner that the 0-th order can be brought within the

range between maximum and minimum diffraction efficiency. If it is not possible, in this case,

one can adjust the fill factor or change the polarity of the grating, i.e., exchange the grooves

with the ridges. Because the polarity typically has an effect on the diffraction pattern in the

non-paraxial domain. In Fig. 3.3, the diffraction efficiency of zeroth order is varied by the

depth of features. The black lines indicate maximum and minimum of diffraction efficiency

excluding 0-th order,i.e., in off-axis, and the black dashed line is the average of all diffraction

efficiency. We adjust the depth in the initial design before running the optimization. Thus, we

don’t include the depth value to design parameters which are updated during the optimization

process.

We select fused silica (SiO2) as material. The refractive index of SiO2 is assumed as n2 = 1.46.

Transverse electric (TE)-polarized (i.e., E-field component along the y-axis) or Transverse

magnetic (TM)-polarized monochromatic light with a wavelength of λ= 633nm is an incident

plane wave from the substrate side with normal incidence angle. We optimize 3 different

kinds of beam splitters with the depth of the features d = 692nm. The target grating periods

and maximal diffraction angles are shown in Table 3.1. The maximal diffraction angle θmax

is illuminated in Fig. 3.4(a), for example, the maximal diffraction angle of 1 : 117 diffractive

beam splitter are 10.58° at 58th order from 0th order. The selected diffraction angles are

already beyond the paraxial domain, the designs created by TEA-based IFTA are no more valid.

The Fig. 3.4(b) presents the performance of one of these fan-out elements as a function of
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Figure 3.3 – Diffraction efficiency of zeroth order as a function of depth of a 1 : 77 beam splitter

diffraction angle. The dashed line indicate the performance predicted by TEA, which is good

estimation in the paraxial domain, i.e., in small diffraction angle. Obviously, the performance

of this initial fan-out element is very unsatisfactory with respect to uniformity even when the

maximum diffraction angle is over 7°.

Table 3.1 – The specification of the target 1D fan-out elements

Description Grating period (µm) θmax (°) Target diffraction orders(th)

1 : 77 beam splitter 100 13.92 -38:38
1 : 117 beam splitter 200 10.58 -58:58
1 : 157 beam splitter 200 14.29 -78:78
1 : 197 beam splitter 400 8.92 -98:98
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Figure 3.4 – (a) The surface profile of a grating structure in a single period. (b) Uniformity
of 1-to-117 diffractive beam splitter designed by TEA-based IFTA as a function of maximum
diffraction angle when the grating period Λ decreases. The uniformity error and NRMS
calculated using Eq. Eq. (3.16) and Eq. (3.17). The dashed lines indicate the uniformity values
calculated based on TEA. The insets show the layout of the single unit cell with a total of 60
transition points.
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3.3.2 Objective function and evaluation

To obtain the 1D fan-out grating creating uniform diffraction pattern, we use the FOM in

Eq. (3.10): F = ∑M
m=−M

[
ηm −ηobj

]2. By applying Eqs. (2.61) to (2.63), we use two different

metrics which are uniformity error (UE) and normalized root-mean-square error (NRMS) σ to

evaluate the various 1D fan-out elements:

U E = ηmax −ηmin

ηmax +ηmin
(3.16)

σ=
√√√√ 1

2M +1

M∑
m−M

(
ηm −ηobj

ηobj

)2

(3.17)

where ηmax and ηmin represent the maximal and minimum diffraction intensity and ηm is

diffraction efficiency in orders from −M to M and ηobj is target diffraction efficiency and

2M +1 is the total number of diffraction orders. Lower values of both UE and NRMS indicate

less residual variance so that our objective is to minimize UE and NRMS of a 1D diffractive

beam splitter design given uniform diffraction efficiency distribution. The UE is the metrics

intuitively evaluate the uniformity of diffraction distribution. Sometimes, these metrics fail

to measure uniformity. For instance, in case, all efficiencies are identical except in one order

(normally, in zeroth order) with the highest or lowest efficiency, UE indicates very poor value.

Thus, we use the NRMS to discover the information which is not able to be measured by UE.

In addition, the NRMS value is directly related to the FOM.

3.3.3 Optimized performances

We apply our optimization tool to create various wide angle diffractive beam splitters men-

tioned in Table 3.1. To generate these diffractive beam splitters, we use our FOM as in Eq. 2.64

with the uniform intensity distribution of target efficiency ηobj and find the local optima using

the L-BFGS algorithm with the gradient calculated based on STPA. And we prepare 82 different

initial designs in total with 4 different kinds of fan-out gratings designed by TEA-based IFTA.

To verify the validity of the optimization tool based on STPA, we plot in Fig. 3.5 distribution

of the final fan-out elements performance, i.e., the uniformity of diffraction pattern, with

two metrics: UE and NRMS. In Fig. 3.5, the black dash line indicates the points have an

identical value of initial and final elements. In other words, a point located below the dashed

line means that there is an improvement in the uniformity of the diffraction distribution

after the optimization process. The diffraction efficiencies of initial and final elements are

simulated by RCWA for accurate evaluation. We can observe that most cases are significantly

improved their uniformity of diffraction pattern through the optimization process. We note

that upon optimizing an ensemble of different initial geometries, the final elements from the

initial cases with bad performances often exhibit still low performances. As such, the initial
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condition affects the optimization results due to gradient-based optimization. Thus, multiple

optimization attempts are required to identify devices with exceptional efficiencies.
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Figure 3.5 – Realization achieved using optimization based on STPA from initial TEA-based
IFTA designs of 1D fan-out elements (82 in total) with different metrics: (a) UE and (b) NRMS.

To observe the changes of the FOM and transition positions during the optimization, we

represent the details of the optimization process about a 1 : 117 diffractive beam splitter in

Fig. 3.6. The merit function as a function of the optimization iterations is shown in Fig. 3.6(a).

The FOM converged well and the algorithm found the optimum point after 190 iterations.

The initial surface profile in a single grating period is illustrated in Fig. 3.6(b). Through the

optimization, the change of all transition positions of the structure is plotted in Fig. 3.6(c).

The positions of initial transition points are indicated in the black dash line. We thus observe

the total number of transitions is 66 and the average change of transition points is around

300 nm after optimization. Finally, the simulated diffraction efficiency distributions of DOEs

after optimization is shown in Fig. 3.6(d). We calculated the total diffraction efficiency, UE,

and NRMS of optimized diffractive beam splitters using RCWA. The total diffraction efficiency

of 117 spots of optimized DOE is 77.35 % and UE from 38.68 % to 10.79 % and NRMS from

12.16 % to 4.18 %, through gradient-based optimization using STPA. The surface profile of

optimized design which have critical dimension(CD) (i.e., minimum feature size) is 700 nm

and fill factor is 51.16 % is represent in Fig. 3.6(d) inset.
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3.3.4 Comparison with the gradient from RCWA

Let us compare the gradient of FOM based on the STPA with the numerically calculated

gradient based on RCWA. The surface profile of the 1 : 77 fan-out grating before optimization

is illustrated in Fig. 3.7(a). The numerical derivative is shown in Fig. 3.7(c), which is obtained

by computing the FOM after varying slightly each transition point. Hence, to obtain this

numerical gradient, the number of transition points, and one more 2K +1 RCWA calculation

is required. By comparing Fig. 3.7(b) and Fig. 3.7(c), both gradients have the same order of

magnitude and the same features. In Fig. 3.7(d), the difference between derivatives from STPA

and the numerical derivatives from RCWA is calculated. Note that the scale of y-axis is 10

times smaller than Fig. 3.7(b) and (c) so that we observe the estimation of gradient from STPA

is valid.

Furthermore, we apply gradient-based optimization based on numerical derivatives computed

RCWA to optimize the fan-out gratings in order to compare with the optimization tool based

on STPA. The uniformity of beam arrays created by elements designed from IFTA based on

TEA, followed by optimization, are plotted in Fig. 3.8 with two metrics. We plot together

with the uniformity of final design after gradient-based optimization based on RCWA, in this

case, the gradient calculated numerically. Therefore, normally around 60 RCWA simulation

are required in an iteration during the optimization process. We compared the optimized

results by gradient-based on STPA and RCWA. For an accurate comparison, The diffraction

efficiencies of final designs are calculated by RCWA. In most cases, the uniformity of these

final elements is significantly improved and the uniformity of final design optimized based

on STPA are as good as those of optimized based on RCWA. However, the performance of

optimization based on STPA is much better than based on RCWA in term of computational

effort.

The simulation and optimization steps were written using MATLAB scripts, and the optimiza-

tion process took less than 20 s using gradient-based optimization by STPA, while taking over

6 h using the optimization with numerical gradient based on RCWA on a machine with 3.60

GHz clock rate and 32 GB RAM. During the optimization, the diffraction pattern for calculating

UE and NRMS was evaluated with RCWA solver RETICOLO [138].
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Figure 3.7 – Comparison with the gradient of the FOM with respect to the transition points
obtained from STPA and RCWA. The dash lines indicate design variables, i.e., the positions of
transition points. (a) The surface profile of 1 : 77 beam splitter before optimization. (b) The
derivative of FOM with respect to the positions of transition points. (c) Numerical derivate of
the FOM computed by RCWA (d) Difference between (b)STPA and (c)RCWA.
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3.3.5 Experimental results

The diffractive beam splitters were fabricated by direct laser writing to obtain SiO2 binary

surface relief structures. The elements are optically characterized using a TE-polarized 636 nm

wavelength beam from a diode laser. We detect the diffracted light beams using a mobile

single-pixel detector with a high dynamic range. In Fig. 3.9, a detector with a pinhole aperture

is mounted on a translation stage under computer control. By scanning the detector to the

center of each of the spots, it is possible to measure the power contained in each of the spots,

i.e. diffraction orders in the output array. The size of detector is enough big to cover the beam

spot size. When measuring spots in higher order, the shadow effect may prevent the light from

reaching the detector due to the large angle. In preparation for this situation, a system was

also established to allow the laser source and sample to rotate on behalf of the detector.

To focus on both the simulation and experiment to facilitate a quantitative comparison, we

applied loss caused by Fresnel reflection from the interface between air and SiO2 substrate to

simulate the overall efficiency of DOEs. The comparison between theoretical and experimental

diffraction efficiencies are presented in Fig. 3.10. We represent the total diffraction efficiency,

UE, and RMSE of simulated and measured one in Table 3.2. The experimental data show that

the DOEs operate with high-performance. The UE and NRMS of beam splitters are 21.42 % and

8.07 %, respectively. For an accurate comparison between theoretical and measured results,

we analyze the correlation of these data using mean absolute percentage deviation (MAPD) as

a ratio defined by the formula:

MAPD = 1

M

∑∣∣∣∣ηS
m −ηE

m

ηS
m

∣∣∣∣ (3.18)
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Figure 3.9 – Schematic of equipment used for diffractive array measurements

where ηS
m ,ηE

m are simulated and experimental efficiency in (m)th diffraction orders and M is

the total number of diffraction orders. The MAPD of 1-to-117 beam splitters are calculated

to the 8.15 %, which shows excellent reproducibility of the simulated results in a quantitative

manner. The only noticeable deviation in the measurement is a small mismatch of diffraction

efficiency in a few orders due to minor fabrication errors. In general the diffraction efficiency

in orders often strongly depends on the errors in fabrication processes, e.g., etching depth,

feature width, slope steepness, and feature rounding. Nevertheless, the fabricated samples are

based on optimized design overall display experimental performances which are better than

the theoretical performances of initial designs before optimization.

Table 3.2 – Comparsion with the simulated and experimental properties of the 1 : 117 beam
splitters. The simulated efficiency take into account the loss from Fresnel reflection in the
air-SiO2 substrate interface.

Simulated Measured

Total efficiency (%) 74.56 74.65
UE (%) 11.74 21.42

NRMS (%) 04.45 08.07
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Figure 3.10 – Experimental characterization of 1 : 117 diffractive beam splitter. (a) experimen-
tal data (orange star) from profile optimized base on STPA and the simulated data(blue bar).
(b) difference between experimental and simulated data in orders.

3.4 Discussion of optimization based on STPA

Let us discuss the features of this optimization based on STPA. The derivatives of FOM is

calculated based on the STPA so that the accuracy and validity are also following those of STPA.

Hence we investigate the conditions for the perturbation method to be established.

Here we use the transition points as a design parameter. We can easily simulate the fabrication

errors such as under- or over- etch by changing feature width. To create a robust design toward

the fabrication errors, we may include the effect of dilated and eroded features on the gradient.

3.4.1 The feature size and accuracy of optimization based on STPA

The performance of this optimization tool is limited by the accuracy of the STPA. Due to the

truncation length of perturbation in step transition, the perturbation method becomes inac-

curate when the features are smaller than one optical wavelength. Thus, the derivatives based

on STPA also get inaccurate if the wavelength scale features are dominant in the structure.

To investigate the validity of gradient from STPA in grating with small features, we compare the

degree of improvement between the optimization based on STPA and optimization based on

numerical derivatives calculated by RCWA. we apply to optimize the 1 : 37 beam splitter with

25µm grating period. It have critical dimension (CD) is 315 nm and have several wavelength-

scale features. In Fig. 3.11, we observe that there is improvement through optimization

using STPA, but the performance of the final design is worse than that of using numerical
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derivatives from RCWA. The variation of transition positions after optimization using STPA

and numerical derivative based on RCWA from the same initial design is shown in Fig. 3.11(a)

and (b), respectively. The dash lines indicate the position of transition points in the initial

design. The calculated efficiency of diffractive beam splitter after optimization using STPA and

RCWA is represented in Fig. 3.11(c) and (d). The diffraction efficiency is simulated by RCWA

with enough Fourier modes for accurate comparison. The final 1 : 37 beam splitter optimized

using STPA show the 28.11 % of UE and 18.29 % of NRMS, while the final one optimized using

numerical derivatives show the 13.39 % of UE and 8.55 % of NRMS. These values are presented

in Table 3.3.

We may thus conclude that at least for the diffractive elements with most of the feature is

larger than the wavelength, the optimization based on STPA gives reliable results with low

computation effort. But if we create a even wider angle fan-out elements, i.e., the grating

become shrunk, the optimization based on STPA may get degraded or doe not work anymore.

Table 3.3 – The uniformity of final 1 : 37 beam splitter obtained using gradient-based optimiza-
tion by RCWA and STPA.

Initial
Optimized

using STPA using RCWA
GP (µm) 25
θmax (°) 27

CD (nm) 315 260 390
ηtotal (%) 80.71 80.71 80.73

UE (%) 34.58 28.11 18.29
NRMS (%) 18.09 13.39 08.55
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Figure 3.11 – The variation of transition positions after optimization using (a) STPA and (b)
numerical derivative based on RCWA. The dash lines indicate the transition positions in initial
design. The calculated efficiency of diffractive beam splitter after optimization using (c) STPA
and (d) RCWA.

3.4.2 Fabrication errors

In general, the spot diffraction efficiency strongly depends on the fabrication errors. The

fabrication errors are often inevitable during the process. To investigate the effect of such

fabrication errors on the diffraction pattern, we simulated an under- or over-etched effect on

the width of features simply by shifting transition points, as shown in Fig. 3.12(a). Here, we

consider the under- and over-etched effect in varying the width of features, not the depths.

The variation in the etch width is ∆xk in which under-etch +∆xk and over-etch −∆xk effect

produces the dilated and eroded features in the structure. Thus, the dilated, intermediate, and

eroded designs, which mimic under-, normal-, and over-etching in the manufacturing process.

For instance, the etch width is ∆xk = +20nm so that the width of features are increased as

40 nm and fill factor also is increased.

The simulated results of an optimized 1 : 117 fan-out element with 100µm grating period

with varying the etch width are represented in Fig. 3.12(b), (c), and (d). Through this analysis,

we observe how sensitive this beam splitter is to fabrication errors. The UE and NRMS are

dramatically degraded when the design is dilated or eroded. We may create more robust design

from fabrication error using combined gradient of FOM with respect to design variables from

dilated, intermediate, and eroded designs.
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Figure 3.12 – (a) Schematic of the effect of under- or over- etching to the surface profile and
the width of features. Simulated results of a 1 : 77 beam splitter with varing ∆xk : (b) UE, (c)
NRMS, and (d)Diffraction efficiency in 0th order
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Chapter 3. Optimization based on Perturbation Approach

3.5 Summary

In summary, we utilized the STPA in optimizing the optical elements, which is able to create

wide angle diffractive optical elements at a very low computational cost. We explored proper-

ties of the optimization method, such as efficient computation for the gradient of the target

function with respect to transition positions with Fourier-domain local field perturbation.

As a case study, we applied gradient-based optimization with STPA to 1-117 beam splitter

with a non-paraxial diffraction angle, i.e., maximal diffraction angle is 11° from the center,

respectively. The optimized beam splitters show considerable improvement of uniformity

while maintaining the initial diffraction efficiency. The experimental results obtained by the

illumination of the fabricated optical elements using a laser of 635 nm wavelength with a

normal incidence have been compared with the numerical results. Numerical simulation and

experimental results were found to be in good agreement and our optimization method can

be considered proven to be an effective design tool for wide angle diffractive beam splitters.

However, this method is not suitable to optimize the gratings having a lot of wavelength-scale

features. As the design parameters are the set of transition points, we only change the size

of the features but we cannot generate or eliminate the features during the optimization

process. Sometimes, the improvements through the optimization thus are canceled out due

to the fabrication errors. Also, the definition of transition points is difficult to extend to the

two-dimensional fan-out grating. Therefore, we introduce the optimization with the adjoint

method based on RCWA in the next chapter.
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4 Optimization based on Adjoint State
Method

DOEs with a large diffraction angle require feature sizes down to sub-wavelength dimensions,

which require a rigorous electromagnetic computational model for calculation. However, the

computational optimization of these diffractive elements is often limited by a large number

of design parameters, making parametric optimization practically impossible due to large

computation times. The adjoint method allows calculating the gradient of the target function

with respect to all design variables with only two electromagnetic simulations, thus enabling

gradient-based optimization.

4.1 Adjoint state method

We give a brief introduction to the mathematics behind the adjoint method before applying to

our specific cases. We often wish to compute some function f (x ,p) based on the solution x

the design parameters p and , which are given the solution x of partial differential equation

or some other set of M equations parameterized by N variables p. However, we want to

know more than just the value of f , especially we also want to know its gradient ∇∇∇p f for

inverse design process. Adjoint state methods give an efficient way to evaluate ∇∇∇p f with a cost

independent of the number of parameters N and usually comparable to the cost of solving for

x once.

4.1.1 Mathematical introduction

Let us suppose the column-vector x solves the M × M linear system of equation Ax = b

where A and b depend on a set of parameters describing the system, p. The gradient can be

expressed by ∇∇∇p F = ∂ f
∂p + ∂ f

∂x
∂x
∂p where partial derivatives ∂ f

∂x is a row vector, ∂x
∂p is an M ×N

matrix. Since f is a given function, ∂ f
∂p and ∂ f

∂p are often easy to compute. On the other hand,

computing ∂x
∂p is demanding: evaluating it directly by differentiating Ax = b by parameters p

gives ∂x
∂p = A−1(∂b

∂p − ∂A
∂p x). We multiply a M ×M by a M ×N matrix, which costs O(M 2N ) works,

or equivalently we have multiplications of A−1 by N times. However, this can be ameliorated
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Chapter 4. Optimization based on Adjoint State Method

simply by parenthesizing in a different way as following

∂ f

∂x

∂x

∂p
= ∂ f

∂x

[
A−1

(
∂b

∂p
− ∂A

∂p
x
)]

=
[
∂ f

∂x
A−1

](
∂b

∂p
− ∂A

∂p
x
)

(4.1)

In the last expression of Eq. (4.1), if we first multiply xT
adj =

∂ f
∂x A−1 that corresponds to only a

single solution of an adjoint equation

AT xadj =
(
∂ f

∂x

)T

. (4.2)

Then we multiply a single vector xT
adj by our M ×N matrix for only O(MP ) work.

In the case of performing the inverse problem of electromagnetic devices, A represents

Maxwell’s equations in the presence of the device, x are the electromagnetic fields, and

b is the source driving the system.

4.1.2 Adjoint method for diffractive optical elements

In this section, we show the mathematical framework of adjoint method using in our wide-

angle DOEs optimizations. The diffraction efficiencies η can be obtained by transmitted power

flow going to the diffraction order represented by plane wave E,H from the Poynting vector

expression,

η= |t |2

= 1

4 |Λ|2
∣∣∣∣Ï

Λ

[
E

(
r ′′′)×H∗

i

(
r ′′′)+E∗

i

(
r ′′′)×H

(
r ′′′)] ·nz dr ′′′

∣∣∣∣2

.
(4.3)

where both fields E , H are evaluated at location r′ on the z = h plane above the grating and the

overlap integral is performed for a single grating period in Fig. 4.1(a). For the sake of simplicity,

we assume the permittivity distribution does not depend on the y-axis. The k-vector of Ei,Hi is

(kx ,ky ,kz ) and transmitted amplitude t is normalized by 1
2

∣∣(Ei ×H∗
i +E∗

i ×Hi
) ·nz

∣∣= 1, where

nz is unit vector along z-axis.

To obtain the change of η for a small perturbation in permittivity ∆ε in grating, we use the

Green’s function. we can calculate electromagnetic field in isotropic medium from given

illumination by using time-independant Maxwell’s equation:

∇∇∇×××E = i k0µ(r )H (4.4a)

∇∇∇×××H =−i k0ε(r )E (4.4b)

where µ(r ) and ε(r ) is permeability and permittivity with location r = (x, y, z). For small

perturbation in permeability and permittivity, the variation of elctromagnetic field is the
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4.1. Adjoint state method

solution of following equations:

∇∇∇××× (E +∆E ) = i k0
[
µ(r )+∆µ(r )

]
(H +∆H) (4.5a)

∇∇∇××× (H +∆H) =−i k0 [ε(r )+∆ε(r )] (E +∆E ) . (4.5b)

We can simplify Eq. (4.5) by neglecting the O(∆2) terms because we consider the cases of the

permettivity and permeability is optimized instead of the boundary between two homoge-

neous media. Hence the equation becomes:

∇∇∇×××∆E = i k0
[
µ(r )∆H +∆µ(r )H

]
(4.6a)

∇∇∇×××∆H =−i k0 [ε(r )∆E +∆ε(r )E ] (4.6b)

which is a valid approximation if the change in the electromagnetic field from ∆µ and ∆ε is

sufficiently small. The addition of this tiny perturbation∆µ and∆ε at location r can be treated

as the dipole with polarization density P and a magnetization density M given by:

P (r ) =∆ε(r )E (r ) (4.7a)

M(r ) =∆µ(r )H(r ). (4.7b)

By introducing Green’s tensors, this dipole produces scattered fields to location r ′′′ ,which are

described by:

∆E
(
r ′′′)= ĜEP

(
r ′′′,r

)
P (r )+ĜE M

(
r ′′′,r

)
M(r ) (4.8a)

∆H
(
r ′′′)= ĜHP

(
r ′′′,r

)
P (r )+ĜH M

(
r ′′′,r

)
M(r ) (4.8b)

where M(r ) terms can be omitted because ∆µ(r ) = 0 in our material. In addition, the Green’s

tensors in a reciprocal medium can be expressed by:

ĜEP
(
r ′′′,r

)= ĜT
EP

(
r ,r ′′′) (4.9a)

ĜHP
(
r ′′′,r

)=−ĜT
E M

(
r ,r ′′′) (4.9b)

The details of these properties are proved in Chapter 7 in Ref.[139].

By applying Eqs. (4.5) and (4.6) to Eq. (4.3), the change of η for a small perturbation in permit-

tivity ∆ε at a location r in the grating layer, i.e., the layer 2 in Fig. 4.1(a), is given by:

∆η= 1

2 |Λ| Re

{
t∗

Ï
Λ

[
∆E

(
r ′′′)×H∗

i

(
r ′′′)+E∗

i

(
r ′′′)×∆H

(
r ′′′)] ·nz dr ′′′

}
(4.10)

Using Eq. (4.7) and Eq. (4.8), the derivative of diffraction efficiency with respect to permittivity

is

∂η

∂ε(r )
= 1

2 |Λ| Re

{
t∗

Ï
Λ

[
ĜEP (r ′′′,r )E (r )×H∗

i (r ′′′)+E∗
i (r ′′′)×ĜHP (r ′′′,r )E (r )

] ·nz dr ′′′
}

. (4.11)
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Chapter 4. Optimization based on Adjoint State Method

Applying the triple product rule of vector identities and reciprocity of Green’s tensor in Eq. (4.9),

we obtain as following

∂η

∂ε(r )
= 1

2 |Λ| Re

(
t∗

Ï
Λ

{
ĜEP (r ,r ′′′)

[
H∗

i (r ′′′)×nz
]+ĜE M (r ,r ′′′)

[
E∗

i (r ′′′)×nz
]}

dr ·E (r )

)
(4.12a)

= 1

2 |Λ| Re
{

t∗Eadj(r ) ·E (r )
}

, (4.12b)

where the adjoint field Eadj isÏ
Λ

{
ĜEP (r ,r ′′′)

[
H∗

i (r ′′′)×nz
]+ĜE M (r ,r ′′′)

[
E∗

i (r ′′′)×nz
]}

dr . (4.13)

It can be obtained by an solution of Maxwell’s equation with illumination condition which is a

plane wave generated by the polarization (H∗
i (r ′′′)×nz ) and magnetization densities (E∗

i (r ′′′)×
nz ) from dipole expression. Thus, the adjoint field Eadj(r ) can be obtained by an auxiliary

rigorous electromagnetic simulation. The Eq.4.12 shows that one requires the derivative of

diffraction efficiency from only two simulations, one direct E (r ) and adjoint Eadj(r ) to evaluate

the derivatives for all pixels in illustrate in Fig. 4.1.

Grating Period  ΛGrating Period  Λ

mthmth

(m+1)th(m+1)th

D
ep

th

z=0z=0

z=hz=h

Incident beamIncident beam
XY

Z

Layer 1Layer 1

Layer 2Layer 2

Layer 3Layer 3

Adjoint simulationAdjoint simulationForward simulationForward simulation

Em(r)Em(r)

EincEinc

tmEinc

Em
adj(r)Em
adj(r)

(a) (b)

Figure 4.1 – (a) The surface profile of a grating structure in a single period. (b) Schematic of
the forward and adjoint simulations in RCWA.

4.2 Topology optimization

We employ spatial filtering[140] and projection function[141] during the optimization. We

discuss our method for driving the dielectric continuum to discrete values of dielectric material

and air and maintaining the fabricable minimum feature size over the iterative process. For

the optimization, the starting point is a structure designed IFTA with applying a spatial filter to

generate the dielectric continuum. We update a design density ρ which has a value from 0 to

1, rather than updating the permittivity distribution ε directly (see Fig. 4.2(a)). For generating

a structure with larger feature sizes, a spatial loss-pass filter can be applied to ρ to create a
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4.2. Topology optimization

filtered density ρ̃ :

ρ̃i =
∑

j∈Ni
Wi jρ j∑

j∈Ni
Wi j

(4.14)

where Ni denotes the design region, and Wi j is the weighting matrix, defined for a blurring

radius of R as

Wi j = R − ∣∣ri − r j
∣∣ (4.15)

with
∣∣ri − r j

∣∣ being the distance between pixel i and j . This defines a spatial filter on ρ with

the effect of smoothing out features with a length scale below R. The effect of this filter with

300 nm radius of R on a sample design density distribution is illustrated in Fig. 4.2(b). The

filtered geometry becomes then a binary pattern using projection function. We define ρ̄ as the

projected density, which is created from blurred density ρ̃ as

ρ̄i =
tanh

(
βγ

)+ tanh
(
β

[
ρ̃i −γ

])
tanh

(
βγ

)+ tanh
(
β

[
1−γ]) (4.16)

where a threshold factor γ between 0 and 1 which controls the threshold of the projection,

typically 0.5, and β controls the strength of the projection, bigger value delivers harder bina-

rization. The projected density distribution in Fig. 4.2(c) is recreated from blurred pattern in

Fig. 4.2(b) with γ= 0.5 and β= 300. We also observe that the combination of circular spatial

blurring filter and projection function can remove tiny features. The final relative permittivity

distribution from the projected pattern is shown in Fig. 4.2(d). In addition, we can describe an

analytical solution of the derivatives ∂ε
∂ρ̄ , ∂ρ̄∂ρ̃ , ∂ρ̃∂ρ , these filters [141] can be combined with the

derivatives of figure of merit calculated by adjoint method. The obtained gradient was used

in optimization based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithm[129, 130].

In these filter and projection functions, we can control the strength of the projection so that the

binary structure is gradually obtained by updating the strength factor over several iterations

during the optimization process. The optimization is performed in an iterative approach and

typically 100−200 iterations are used to achieve convergence. The starting points in gradient

optimization are designs from IFTA optimizations with applied spatial filter and projection

function. To obtain final design density with binary value, we choose sufficiently large βmax .
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Chapter 4. Optimization based on Adjoint State Method

The full optimization procedure can be written in Algorithm 1.

Algorithm 1: The iterative optimization implementation for wide-angle DOEs

Input :the design density ρ

Output :argminρ F (ηmn ,ρ)

1 Initialize the design variable ρ

2 i ← 0 // iteration counter
3 while β≤βmax do

4 i ← i +1

5
∂F
∂ε = ∂F

∂η ·
∂η
∂ε // using adjoint method

6
∂ε
∂ρ =∑ ∂ε

∂ρ̄ ·
∂ρ̄
∂ρ̃ ·

∂ρ̃
∂ρ // spatial filter and projection

7
dF

dvb∗ρ = dF
dε · dvb∗ε

dvb∗ρ // calculate the sensitivities

8 update ρi // by using L-BFGS
9 if i mod 10 = 0 then

10 β← 2β // update the projection strength
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Figure 4.2 – spatial filter and projection of example design density. (a)the initial design density
ρ before processing. (b) the density after applying the spatial filter, ρ̃. (c) the density after
applying projection, ρ̄. (d) the final relative permittivity ε.
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4.3. Inverse design of 1D fan-out gratings

4.3 Inverse design of 1D fan-out gratings

As a case study, we optimize wide angle 1D fan-out grating creating various diffraction pattern,

we use thus figure of merit in Eq. (2.64): F =∑M
m=−M

[
ηm −ηobj

]2. We optimized wide angle

1D fan-out gratings generating even-numbered spot array with uniform intensity using the

proposed optimization tool. Hence, the ηobj is high intensity in odd diffraction orders and

suppressed intensity in even diffraction orders.

To evaluate DOEs with various diffraction efficiency distribution, we define uniformity error

(UE) and normalized root-mean-square error (NRMS) in Eqs. (2.62) and (2.63) : U E = ηmax−ηmin

ηmax+ηmin

and N RMS =
√

1
T

∑
m

(
ηm−ηobj

ηobj

)2
, where we only consider the high intensity orders, i.e., odd

diffraction orders not the suppressed orders. Lower values of both UE and NRMS indicate

less residual variance so that our objective is to minimize UE and NRMS of a DOE design

given certain diffraction efficiency distribution. We also use the signal-to-noise ratio (SNR)

especially for the even-numbered beam splitter as following

SNR = 10log
ηsignal

ηnoise
= 10log

∑M
m=−M η2m∑M

m=−M η2m+1
, (4.17)

where the ηsignal is the sum of diffraction efficiencies in target orders and the ηnoise is the sum

of diffraction efficiencies in suppressed orders.

Regarding the grating structure, we select fused silica (SiO2) as material. The refractive index

of SiO2 is assumed as n2 = 1.45. Linear polarized monochromatic light with a wavelength of

λ= 1064nm is an incident plane wave from the substrate side with a normal incidence angle.

The target grating periods and maximal diffraction angles are shown in Table 4.1. The maximal

diffraction angle θmax is around 24° from zeroth order to 15th order when the grating period is

50µm.

Table 4.1 – The specification of the target 1D fan-out element creating even-numbered spot
array

Description Grating period (µm) θmax (°) Target diffraction orders(th)

1 : 16 beam splitter 50 24 -15:15

4.3.1 Even-numbered spot array illuminator

Here, we design the wide angle beam splitter generating even-numbered spot array using

the optimization based on the adjoint method. The even-numbered array contains an even

number of spots along one direction, where high intensity orders alternate with suppressed

orders. In the paraxial domain, the translational symmetry with π phase offset in binary

grating produces the even-numbered spot array[142]. We thus express a translational shift
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Chapter 4. Optimization based on Adjoint State Method

thus relates the second half-period to the first half-period as

Φ(x) =Φ
(

x − 1

2
Λ

)
+π,

1

2
Λ≤ x ≤Λ (4.18)

whereΛ is the grating period,Φ(x) phase shift due to the structure at location x. An example

of translational symmetry in a binary grating is shown in Fig. 4.3 Obviously, this design is not

suitable for wide-angle fan-out grating, but we can still use this for the initial starting point for

the optimization process.

-25 -20 -15 -10 -5 0 5 10 15 20 25
x(μm)

z(
μm

)

Translation symmetry

1.1
1.2

1.3
1.4

Figure 4.3 – Surface profile one period of a binary grating area with translation symmetry
about the period midpoint x = 0

4.3.2 Optimization results

To evaluate the validity of the optimization tool, we summarize the distribution of the final

fan-out elements performance in Fig. 4.4 with three metrics: UE, NRMS, and SNR. In Fig. 4.4,

the black dash line indicates the points have an identical value of initial and final elements. In

UE and NRMS plot in Fig. 4.4(a) and (b), a point located below the dashed line means that

there is an improvement in the uniformity of the diffraction distribution after the optimization

process and SNR plot in Fig. 4.4(c), a point located above the dashed line means that there

is an improvement in sharpness of spot array pattern. Some elements have high SNR values

at the initial, but it is often due to a strong intensity in zeroth order with enormously week

intensity in suppressed orders. Hence, the high SNR value does not always guarantee the

high-performance even-numbered beam splitter.

We can observe that most cases are significantly improved their uniformity of diffraction

pattern through the optimization with the adjoint method. We note that upon optimizing an

ensemble of different initial geometries, the final elements from even initial cases with bad

performances can be achieved with exceptional performances. As such, the optimization with

the adjoint method is more powerful than the optimization tool presented in the previous

chapter because there is more chance for improvements by using the refractive index in the

pixels as design parameters.

To observe the progress of the FOM over the optimization iterations, the details of the opti-

mization process about a 1 : 16 diffractive beam splitter is given in Fig. 4.5. The merit function

as a function of the optimization iterations is shown in Fig. 4.5(a). The projection strength

factor β incrementally increases every 10 or satisfied the criteria for binarization. The update
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4.3. Inverse design of 1D fan-out gratings

of this factor is indicated by the black dash line in Fig. 4.5(a). The FOM converged well and the

algorithm found the optimum point after 220 iterations in this case. The final design which

have critical dimension (CD) (i.e., minimum feature size) is 780 nm and fill factor is 45.25 % is

represent in Fig. 3.6(b). Finally, the simulated diffraction efficiency distributions of optimized

fan-out element is shown in Fig. 4.5(c).

For an accurate comparison, we calculated the total diffraction efficiency, UE, NRMS, and SNR

of initial and optimized even-numbered diffractive beam splitters. In Table 4.1, the optimized

DOE has significantly improvements which are the total diffraction efficiency of 16 spots from

75.56 % to 77.44 % and UE from 99.27 % to 4.74 % and NRMS from 90.88 % to 2.63 % and SNR

from 14.16 dB to 19.86 dB, through gradient-based optimization using adjoint method.
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Figure 4.4 – Realization achieved using optimization with adjoint method from initial transla-
tion symmetry designs of even-numbered spot array illuminators (27 in total) with different
metrics: (a) UE, (b) NRMS, and (c) SNR.

Table 4.2 – Comparison with the initial and optimized properties of the 1 : 16 even-numbered
beam splitters.

Initial Optimized
ηtotal(%) 75.56 77.44
UE (%) 99.27 04.74
NRMS (%) 90.88 02.63
SNR(dB) 14.16 19.86
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Figure 4.5 – (a) The plot of the figure of merit over the course of the optimization process in
1 : 16 beam splitter. (b) The surface profile of the final element. (d) The calculated efficiency of
diffractive beam splitter after optimization.

4.4 Inverse design of 2D diffractive beam splitters

To obtain the 2D fan-out grating creating various diffraction pattern, we use figure of merit in

Eq. (2.64): F =∑N
m=−N

∑M
m=−M

[
ηmn −ηobj

]2. Two kinds of 2D fan-out gratings were selected

for verification of the proposed design approach. The first one is a common multi-spot

generator which creates an array of spots with equal intensity distribution, and the other

generates a two-dimensional array of spots with the multilevel intensity distribution. To

evaluate DOEs with various diffraction efficiency distribution, we define uniformity error (UE)

and normalized root-mean-square error (NRMS) in Eqs. (2.62) and (2.63) : U E = ηmax−ηmin

ηmax+ηmin
and

N RMS =
√

1
T

∑
m,n

(
ηmn−ηobj

ηobj

)2
. We use NRMS because normalizing root-mean-square error

facilitates the comparison among various diffraction efficiency distributions with different

scales from diverse DOEs. Lower values of both UE and NRMS indicate less residual variance

so that our objective is to minimize UE and NRMS of a DOE design given certain diffraction

efficiency distribution. Fused silica (SiO2) was selected as a material for DOE. The refractive

index of SiO2 is assumed as n2 = 1.45. TE- or TM-polarized monochromatic light with a
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4.4. Inverse design of 2D diffractive beam splitters

wavelength of λ= 940nm is an incident wave from the substrate side with a normal incidence

angle. The grating period is 5µm×5µm and the pixel size is 100 nm×100 nm. The depth of

the grating was selected as d = 1.18µm. Thus, the maximal diffraction angle of 7×7 and 7×5

diffractive beam splitter are about 53° at (3,3)th order and 43° at (2,3)th order from (0,0)th

order, respectively. The diffraction angle in vertical and horizotal are shown in the Table 4.3.

Table 4.3 – The diffraction angle of the target 2D fan-out elements

Description Grating period (µm)
Diffraction angle (°)

in horizontal in vertical in diagonal

5×7 beam splitter 5×5 22 34 43
7×7 beam splitter 5×5 34 34 53

4.4.1 Fan-out elements with uniform intensity distribution

To apply the optimization method, we prepared two kinds of two-dimensional fan-out gratings

calculated by IFTA for initial designs. One kind is a square multi-spot generators which creates

a 7x7 array of spots with equal intensity, the other generates a 5x7 non-square array of spots. To

optimization these diffractive beam splitter, we define our figure of merit as Eq. 2.64 with the

uniform intensity distribution of target efficiency ηobj and find the local optima using L-BFGS

with the gradient calculated by the adjoint method. The objective of this design is to create a

grating structure that can accurately diffract the incident light into 49 in different directions

with equal intensity distribution. Figure 4.6(a) shows the merit function as a function of the

optimization iterations of 7×7 diffractive beam splitters. To minimize the modifications of the

adjoint sensitivity, the projection strength factor β incrementally increases every 10 iterations

for binarization. This function results in immediate effects in the figure of merit, which can

be visualized as disconnections on the dash lines. The figure of merit converged well and the

algorithm found the optimum point after 80 iterations in this case. The simulated diffraction

efficiency distributions of DOEs before and after optimization is shown in Fig 4.6(b) and 4.6(c),

respectively. These results are calculated for normally incident TE-polarized light, i.e. the

electric field component along the y-axis. In the diffraction pattern, the maximal diffraction

angle is about 53° at (3,3)th order spot from the center. The diffraction efficiency in orders

before and after optimization are presented in Table 4.4.

For an accurate evaluation, we calculated the total diffraction efficiency, UE, and NRMS of the

initial and optimized diffractive beam splitter. The total diffraction efficiency of 49 spots of

initial and optimized 7×7 spot-array generators are 79.96 %, and 79.71 %, respectively. This

optimized element thus has no degradation in total efficiency while there is considerable

improvement in UE from 63.79% to 16.35% and NRMS from 32.62% to 7.74%, through adjoint-

based optimization.

Furthermore, we applied this algorithm to optimize the beam-splitters creating non-square

arrays. One of the optimized results is shown in Fig. 4.7. The convergence plot over the
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Chapter 4. Optimization based on Adjoint State Method

Figure 4.6 – Theoretical analysis of wide angle 7×7 diffractive beam splitters. (a) Plot of figure
of merit over the course of the optimization process of 7×7 diffractive beam splitter. The
simulated efficiency of diffractive beam splitter (b) before and (c) after optimization.

optimization of a 5x7 beam splitter is presented in Fig. 4.7(a). Over the course of multiple

iterations, the dielectric continuum in the device converges to the dielectric constant of either

silica or air. The simulated diffraction pattern from initial dielectric distribution and the final

one after optimization is presented in Fig. 4.7(b) and (c), respectively. We can observe the

diffraction pattern distribution of optimized design is a nearly identical intensity to every target

spot. The diffraction efficiency in target orders are given in Table 4.5. Over the optimization

process, 7×5 spot-array generator also has significant improvement in UE from 81.1% to 6.98%

and NRMS from 37.93% to 3.78%. Moreover, the total diffraction efficiency of 35 spots created

by this fan-out element slightly increase from 74.45% to 78.48%. The numerical accuracy

of these theoretical values, calculated by RCWA solver and has less than 0.2% error due to

computing with enough large number of Fourier harmonic modes.

By comparison, ref [71] achieved 17.4 % of uniformity error and 71.4 % of total efficiency in

5×5 beam splitter with maximal 35° of diffraction angle using a genetic algorithm which is one

kind of meta-heuristic optimization often required high computation cost. Thus, gradient-

based optimization with adjoint-state-method, with much lower computational cost, is able to

yield better results, i.e. better uniformity, higher efficiency, and larger angle, than optimization

based on genetic algorithm.
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Figure 4.7 – Theoretical analysis of wide angle 7×7 diffractive beam splitters. (a) Plot of figure
of merit over the course of the optimization process of 7×7 diffractive beam splitter. The
simulated efficiency of diffractive beam splitter (b) before and (c) after optimization.
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Table 4.4 – The diffraction efficiencies of 7×7 beam spitter before and after optimization

Initial

n
m

-3 -2 -1 0 1 2 3

-3 1.67 % 1.53 % 2.47 % 1.87 % 0.82 % 1.38 % 1.50 %
-2 1.24 % 2.10 % 1.53 % 1.40 % 1.23 % 1.41 % 1.36 %
-1 1.38 % 2.66 % 1.65 % 2.37 % 1.83 % 1.43 % 1.07 %
0 0.90 % 1.05 % 2.00 % 2.26 % 2.77 % 3.09 % 1.55 %
1 1.65 % 1.56 % 1.38 % 1.32 % 2.04 % 1.05 % 1.44 %
2 1.29 % 2.03 % 0.77 % 1.75 % 2.42 % 2.09 % 1.20 %
3 1.37 % 1.62 % 2.45 % 1.46 % 1.07 % 1.77 % 0.68 %

Optimized

n
m

-3 -2 -1 0 1 2 3

-3 1.47 % 1.45 % 1.76 % 1.74 % 1.41 % 1.69 % 1.68 %
-2 1.68 % 1.74 % 1.64 % 1.58 % 1.58 % 1.54 % 1.65 %
-1 1.44 % 1.74 % 1.61 % 1.71 % 1.93 % 1.68 % 1.58 %
0 1.75 % 1.60 % 1.82 % 1.96 % 1.58 % 1.68 % 1.62 %
1 1.82 % 1.67 % 1.43 % 1.50 % 1.67 % 1.70 % 1.46 %
2 1.48 % 1.68 % 1.59 % 1.62 % 1.82 % 1.65 % 1.47 %
3 1.53 % 1.44 % 1.67 % 1.53 % 1.52 % 1.56 % 1.58 %

Table 4.5 – The diffraction efficiencies of 5×7 beam spitter before and after optimization

Initial

n
m

-2 -1 0 1 2

-3 4.02 % 1.23 % 0.72 % 2.00 % 2.54 %
-2 1.58 % 2.07 % 2.55 % 2.94 % 1.63 %
-1 1.59 % 2.02 % 1.73 % 1.76 % 2.42 %
0 2.19 % 1.93 % 5.12 % 2.76 % 1.17 %
1 2.15 % 2.29 % 2.32 % 2.24 % 1.89 %
2 2.76 % 1.55 % 2.03 % 1.25 % 2.16 %
3 1.38 % 2.89 % 2.80 % 2.45 % 0.35 %

Optimized

n
m

-2 -1 0 1 2

-3 2.30 % 2.19 % 2.19 % 2.28 % 2.21 %
-2 2.32 % 2.24 % 2.21 % 2.27 % 2.16 %
-1 2.24 % 2.19 % 2.28 % 2.41 % 2.22 %
0 2.26 % 2.09 % 2.22 % 2.27 % 2.11 %
1 2.32 % 2.35 % 2.36 % 2.33 % 2.15 %
2 2.27 % 2.20 % 2.23 % 2.17 % 2.19 %
3 2.18 % 2.38 % 2.25 % 2.31 % 2.13 %
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4.4. Inverse design of 2D diffractive beam splitters

4.4.2 Fan-out elements with tailored intensity distribution

We applied our optimization method to the diffractive beam splitter with tailored power

distribution corresponding to Fig.4.8. As listed in Table 4.6, we specify different 9 groups have

spot array with a specific intensity ratio, where group A, B, C, D, E, B’, C’, D’ and E’ have 1.0,

1.5, 2.0, 2.5, 1.0, 1.5, 2.0, 2.5 and 1.0 of intensity ratio, respectively.

Table 4.6 – The target efficiency depends on groups in beam splitter with tailored intensity
distribution

Groups A B C D E
B’ C’ D’ E’

Efficiency ratio 1.0 1.5 2.0 2.5 1.0
Target efficiency (%) 1.63 2.45 3.27 4.08 1.63
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Figure 4.8 – The target diffraction pattern for diffractive beam splitter with designated intensity
distribution. The target efficiency depends on the groups, where group A, B, C, D, E, B’, C’, D’
and E’ have 1.0, 1.5, 2.0, 2.5, 1.0, 1.5, 2.0, 2.5 and 1.0 of intensity ratio, respectively. (see Table
4.6)

To optimize this diffractive beam splitter, we also use the figure of merit function in Eq. 2.64

with target efficiency distribution of above entries (see Table 4.6). Over the course of multiple

iterations, the dielectric continuum in the device converges to the dielectric constant of

either silica or air from the initial dielectric distribution designed by IFTA. We finally obtain

a diffraction pattern distribution of optimized design nearly identical to the target pattern.

The optimization convergence and the geometry of the fan-out element during optimization

are shown in the Fig. 4.9. The optimization process is performed iteratively and typically

takes 100−200 iterations to achieve convergence. Figure 4.9(a) shows the merit function as a

function of the optimization iterations for beam-splitter generating the tailored spot array in

the main text. The dash lines indicate the updating of projection strength β. The patterns in a

single period of the element at different stages of the process are presented in Fig. 4.9(b).

The geometry and the simulated diffraction efficiency distributions of diffractive beam splitters
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Figure 4.9 – (a) a plot of the figure of merit over the course of the optimization process for
the beam splitter with tailored intensity distribution. (b) Three figures show refractive indices
distributions of the device at different stages of the optimization process.

after optimization is shown in Fig. 4.10. We optimize the elements in different polarized

incident wave: TE- and TM-polarization. The final geometry and diffraction efficiency for

TE-polarized incident wave is presented in Fig. 4.10(a) and (b). The fill factor of the dielectric

material of this element is 34.08 %. In addition, total efficiency of this fan-out element slightly

increases from 75.20 % to 78.28 % and UE and NRMS consequently reach 8.45 % from 74.73 %

and 4.14 % from 55.15 %.

The optimized geometry and diffraction efficiency for TM-polarized incident wave is presented

in Fig. 4.10(c) and (d). Quantitatively, total efficiency of this DOE slightly increases from

71.99 % to 77.65 % and UE and NRMS consequently reach 13.30 % from 85.48 % and 4.74 %

from 54.98 %. The fill factor of the dielectric material of the element is 32.00 %.

These results prove that the optimization algorithm is suitable for designing wide-angle

diffractive beam splitters with various shapes of spot array and intensity distributions. For

instance, the proposed optimization strategy can be also used for an even number of fan-

out beam splitters, with a zero intensity in zeroth order. Based on optimized designs, we

fabricated and characterized diffractive beam-splitters. The details of the experimental results

are presented in the following section.
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Figure 4.10 – Theoretical analysis of diffractive beam splitters with tailored intensity distri-
bution. (a) Top view of a two-dimensional binary grating for TE-polarized incident wave.
The color bar indicates the refractive index. (b) The calculated efficiency of diffractive beam
splitter of (a) with TE-pol incident wave. (c) Top view of fan-out element for TM-polarized
incident wave. (d) The calculated diffraction distribution from the fan-out element in (c) with
TM-pol incident wave.
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4.4.3 Experimental results

The diffractive beam splitters were fabricated by lithography using electron-beam and dry

etching to create a chromium etch mask, and then by reactive ion etching to obtain SiO2

binary surface relief structures. The optical elements are optically characterized using a TE-

and TM-polarized 940 nm wavelength beam as our input source. We detect the diffracted

light beams using a mobile single-pixel detector with a high dynamic range. To focus on both

the simulation and experiment to facilitate a quantitative comparison, we applied the loss by

Fresnel reflection from the interface between air and SiO2 substrate to simulated efficiency of

DOEs.

Experimental diffraction efficiencies of 7×7 beam splitter and 5×7 beam splitter are shown

in Fig. 4.11, respectively. The experimental data show that these devices operate with good

uniformity which is close to the theoretical values. The 7×7 beam splitter sample has a total

efficiency of 75.35 %, UE of 23.35 %, and NRMS of 12.76 %. The 5×7 beam splitter sample has

a total efficiency of 73.86 %, UE of 14.42 %, and NRMS of 10.50 %. The properties based on the

measurement are considerably close to the results obtained by calculation in the previous

section. The comparison between theoretical and experimental diffraction efficiencies of 7×7

and 5×7 beam-splitter creating uniform intensity array is presented in Table 4.7. To exclude

the effects which may occur during measurement such as Fresnel reflection loss and power

detector offset, the measured efficiency is normalized. The results of the comparison show

that the experimental results have a strong correlation with the designs. Little discrepancies

between the experimental and theoretical efficiencies are due in part to minor geometric

imperfections in the fabricated device. In general the diffraction efficiency in orders often

strongly depends on the errors in fabrication processes, e.g., etching depth, feature width,

slope steepness, and feature rounding. Overall, the optimized samples display experimental

performances which are significantly higher than the theoretical performances of initial

devices before optimization.

Table 4.7 – Comparison with the theoretical and experimental properties of the 7×7 and 5×7
beam splitters. The calculated efficiency takes into account the loss from Fresnel reflection in
the air-SiO2 substrate interface.

7×7 beam splitter 5×7 beam splitter
Calculated Measured Calculated Measured

Diffraction efficiency (%) 77.01 75.35 75.83 73.86
UE (%) 16.35 23.35 06.98 14.42
NRMS (%) 08.35 12.76 06.10 10.50

For an accurate comparison between theoretical and measured results, we analyze the corre-

lation of these data using mean absolute percentage deviation (MAPD) as a ratio defined by
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Figure 4.11 – Experimental characterization of fan-out grating devices. The measured (orange
line) and simulated efficiency (blue bar) of (c) 7x7 beam splitter and (d) 5x7 beam splitter.

the formula:

MAPD = 1

T

∑∣∣∣∣ηS
mn −ηE

mn

ηS
mn

∣∣∣∣ (4.19)

where ηS
mn ,ηE

mn are simulated and experimental efficiency in (m,n)th diffraction orders and

T is the total number of diffraction orders in 2D array. The MAPDs of 7×7 and 7×5 beam

splitters are calculated to 7.24 % and 5.00 %, respectively, which represents measurements

demonstrate excellent reproducibility of the simulated results in a quantitative manner.

We also measured the diffraction efficiency of tailored-intensity-level beam splitters fabri-

cated based on optimized design. A scanning electron microscopy (SEM) image of the optical

elements are presented in Fig. 4.12(a) and (c), and theoretical and experimental diffraction

efficiencies of the beam splitters with array groups and their objective efficiency are sum-

marized in 3.10(b) and (d). Tilted SEM images of the beam-splitter show vertical sidewalls,

indicative of high-quality etching.

The experimental plot shows that these elements operate with excellent agreement with re-

spect to the objective in the overall intensity distributions. For an accurate comparison, we

present the total diffraction efficiency, UE, and RMSE of simulated and measured one in

Table 4.8. The UE and NRMS of the fabricated sample are measured to 14.54 % and 9.81 %,
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Figure 4.12 – Experimental characterization of the diffractive beam splitter with designated
intensity distribution. Scanning electron microscopy images of the diffractive beam splitters
for (a)TE-polarized and (c) TM-polarized incident waves. Top insets: magnified tilted-view
image of a grating unit cell. The measured (orange line) and simulated (blue bar) efficiency
of a beam splitter with tailored power distribution from (b)TE-polarized (d)TM-polarized
incident wave. The dash lines indicate the groups and their target efficiency

respectively. Moreover, the results of the comparison show that the experimental results

have a strong correlation with the theoretical results, where the MAPD of this beam splitter is

calculated to 5.99 %. The only noticeable deviation in the measurement is a small mismatch of

diffraction efficiency in a few orders that emerge due to minor fabrication errors. In general the

diffraction efficiency in orders often strongly depends on the errors in fabrication processes,

e.g., etching depth, feature width, slope steepness, and feature rounding. Nevertheless, the

fabricated samples based on optimized design overall display experimental performances

which are significantly higher than the theoretical performances of initial designs before

optimization. In other words, our methodology can readily create robust high-performance,

multifunctional optical elements with wide-angle spot array that show theoretical and experi-

mental performances that far exceed the previous record for manufacturable diffractive beam

splitters recently reported [71–73], at much less computational cost than previous methods.
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Table 4.8 – Comparison with the simulated and experimental properties of the beam splitters
with tailored power distribution. The simulated efficiency take into account the loss from
Fresnel reflection in the air-SiO2 substrate interface.

Beam splitter for TE-pol Beam splitter for TM-pol
Calculated Measured Calculated Measured

Diffraction efficiency (%) 75.63 74.20 75.02 74.16
UE (%) 08.46 14.54 13.30 23.11
NRMS (%) 06.57 09.81 08.13 12.75

4.5 Summary

In summary, we utilized the adjoint state method in optimizing the topology of optical ele-

ments, which is able to create high-performance, multi-functional wide-angle DOEs at a very

low computational cost. We explored properties of the optimization method, such as efficient

computation for the gradient of the target function with respect to high-dimensional design

parameters with rigorous diffraction theory, and discussed the optimization method can

readily extend to not only the diffraction beam splitter with equal intensity distribution but

also DOE with the tailored intensity distribution. As a case study, we applied gradient-based

optimization with adjoint-state method to 7×7, 7×5 beam splitter and designated-power-level

beam splitter with non-paraxial diffraction angle, i.e. maximal diffraction angle is 53°, 43° and

37° from center, respectively. The optimized beam splitters show considerable improvement

of uniformity while maintaining the initial diffraction efficiency. The experimental results ob-

tained by the illumination of the fabricated optical elements using an incident laser of 940 nm

wavelength with a normal incident angle have been compared with the numerical results. As

numerical simulation and experimental results were found to be in excellent agreement, our

optimization method can be considered proven to be an effective design tool for wide-angle

diffractive beam splitters creating various diffraction distributions. We envision that these

methods in diffractive optics will extend to other high-performance, multi-functional optical

elements which will enable the next generation of photonics systems such as compact optical

sensors.
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5 Conclusion

This thesis aimed to develop optimization tools for wide diffraction angle diffractive optical

elements (DOEs) beyond the limits of scalar paraxial diffraction theory. For this purpose,

we have examined optimization methodologies based on both the approximate step transi-

tion perturbation approach (STPA) and rigorous coupled-wave analysis (RCWA) which have

shown computationally efficient, accurate performances, and overcoming the limits of the

conventional tools based on scalar diffraction theory such as thin element approximation

(TEA).

5.1 Summary

The gradient-based optimizations have been one of the most important computational opti-

mization techniques to design a structure based on certain specifications, which can lead to

the discovery of many structures with superior performance. With gradient-based optimiza-

tion, the inverse problem in a large number of design parameters space can be solved if we

efficiently obtain the gradient of the figure of merit with respect to design variables. These

methodologies are realized by the STPA, in which the gradient of a merit function with respect

to design parameters can be expressed analytically, and by the adjoint method, in which the

gradient of an objective function with respect to all design variables can be computed using

only two rigorous electromagnetic simulations.

One- (1D) and two-dimensional (2D) diffractive elements were used to analyze the potential of

our approaches. The optical functionality of these elements is beam splitting which allowed an

easy interpretation of the quality by the parameters of diffraction efficiency and uniformity of

diffraction distribution. We have focused on designing the binary, i.e., 2-level microstructures

because they are easier to fabricate than multi-level or continuous surface structures and thus

are attractive for many optical systems.

We first clarified the limits of TEA by comparing it with the simulated fields after the vertical

transition in surface profile using TEA and RCWA. The difference between the fields computed
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from TEA and RCWA was expressed by field perturbation. The STPA is a model that combines

the TEA with these perturbation distributions after the surface profile of the elements. If

we used the positions of transition points as design parameters in the fan-out elements,

we can describe an analytical solution of diffraction efficiency with respect to the positions

of transition points of the optical element due to this perturbation contribution term in

STPA. It was allowed us to calculate the gradient straightforwardly with accuracy. Applying

these optimization tools to various 1D diffractive beam splitters, we obtained the optimized

solutions with considerable improvement in uniformity of diffraction pattern distribution.

We then discussed the adjoint method with RCWA to optimize the elements with smaller

features or 2D fan-out elements. Due to the adjoint method, we can compute the gradient of

the figure of merit with respect to design parameters efficiently even using rigorous diffraction

calculation, independently of the number of design parameters. Hence, the permittivity distri-

bution in the geometry of fan-out gratings is used in design variables during the optimization.

With the adjoint method, to compute the derivatives of diffraction efficiency with respect to

the permittivity at all pixels in a grating, two RCWA simulations are required. Fabrication con-

straints were added to the optimization to ensure that the final output converges to a binary

structure with feasible features. We applied gradient-based optimization with the adjoint

method to wide angle 2D beam splitters with maximal diffraction angle was up to 53° from the

center to diagonal edges, which is beyond the limit of the scalar paraxial diffraction regime.

The optimized beam splitters showed considerable improvement of uniformity while main-

taining the initial diffraction efficiency. In addition, we proved to create tailored-power-level

beam splitters meeting the application’s requirement using this optimization method.

The evaluation of our approaches was done by testing the optical performances of fabricated

elements. The results of the experimental characterization were compared to the simulated

diffraction distributions and optical efficiencies of the elements. The results of the comparison

showed that the experimental results have a strong correlation with the designs.

5.2 Outlook

The results of this thesis show that the wide-angle DOEs are realized by our approaches.

While the fan-out gratings with various diffraction pattern distribution are presented in this

thesis, some challenging tasks remain to extend these approaches to various diffractive optical

elements more than a binary fan-out element for normal incident monochromatic wave.

For instance, to create multilevel structures i.e., 8-level or 16-level elements, quantization

methodologies would be required to making the final structure have multilevel depth during

the optimization process in the optimization based on adjoint method cases. In addition, New

fabrication constraints or penalty functions would be studied to design robust and feasible

features to survive during the fabrication process.

One may demand multi-function DOEs such as a fan-out grating creating different diffraction
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patterns depends on the polarization of incident wave or different wavelength. Then, the multi-

objective FOM would be defined to incorporate several FOMs together during the optimization

process. Among various merit functions, the effect of the weighted ratio of each FOM would be

studied to create high performance multi-function DOEs. Furthermore, one can ask that the

robust DOEs in broadband illumination or various incident angle? Solving these challenges

would allow us to access the potential of this technology for a new generation of DOEs as well

as to resolve potential technological drawbacks such as the wavelength sensitivity of the DOEs.

These solutions to challenges would be possible to implement with our approaches or we may

use other optimization techniques such as deep learning.
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