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ABSTRACT 

 

Cell-to-cell variability plays a key role in tissue patterning by setting initial asymmetry that 

primes cell fate decisions. Fluctuations in the activity of regulatory molecules can commit 

individual cells to divergent differentiation pathways, and cell-to-cell variability can diversify 

the response of an otherwise homogeneous cell community to its environment. Recent 

advances have provided scientists with tools to study the variability associated with individual 

cells. However, while single-cell data are available for genomes, transcriptomes and 

proteomes, they are scarce for metabolic products, such as lipids. 

Eukaryotic cells produce thousands of lipids – each potentially contributing to specific 

biological functions.  Furthermore, a number of metabolic switches involving lipids have been 

described to occur in development and cell differentiation. 

Few studies have directly addressed cell-to-cell lipid variations in syngeneic cell populations 

suggesting that lipid heterogeneity contributes to the emergence of multicellular patterns. 

Nonetheless, lipid biologists have so far addressed lipidomes in bulk cell extracts or selected 

lipids at the single-cell level. Thus, how lipidomes vary from one cell to another and which 

cell-to-cell lipid variations have biological meaning remains to be defined.  

Recent developments have provided mass spectrometry with sufficient sensitivity to reveal 

molecules in few hundred copies, making single-cell lipidomics possible. A rapidly emerging 

technique with a potential use in single-cell lipidomics is imaging mass spectrometry. 

Here, we devised a high-resolution MALDI imaging mass spectrometry pipeline to study cell-

to-cell variability of the lipidome of hundreds of primary dermal human fibroblasts.  

We found that sphingolipid metabolism shows high cell-to-cell heterogeneity and that 

specific sphingolipids mark distinct cell sub-populations: coined herein as “lipotypes”. 

Furthermore, we found that fibroblast lipotypes correspond to cell states endowed with 

proliferative, inflammatory or fibrogenic properties.  

Finally, we asked whether lipotypes participate in the specification of cell states and find that 

specific glycosphingolipids modulate signalling pathways (i.e., the FGF and TGF-b) to shape 

the transcriptional cell landscape.   

In summary, through the use of single-cell omics techniques, we found that: (i) specific lipid 

metabolic segments (i.e., the sphingolipid pathways) have cell-to-cell variation; (ii) given lipid 
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configurations mark discrete cell states; and (iii) sphingolipids modulate dermal fibroblast 

activation involved in wound healing and skin homeostasis.  

Altogether, this study is among the first to demonstrate the potential of MALDI-IMS for single-

cell lipidomics and to reveal cell-to-cell lipidome heterogeneity. It also demonstrates a role 

for lipids in the determination of cell states and in tissue patterning and reveals a new 

regulatory component to the self-organization of multicellular systems. 
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RÉSUMÉ 

 

La variabilité intercellulaire joue un rôle déterminant dans l’établissement de motifs 

tissulaires en définissant la symétrie initiale qui amorce les décisions du sort cellulaire. Des 

fluctuations dans l’activité de molécules régulatrices peuvent engager des cellules 

individuelles dans des voies de différenciation choisies, alors que la variabilité intercellulaire 

peut diversifier la réponse à l’environnement de ce qui serait autrement une population 

cellulaire homogène. Des progrès récents ont offert aux chercheurs des outils pour étudier la 

variabilité associée aux cellules individuelles. Cependant, malgré la disponibilité de données 

de cellules uniques aux niveaux génomes, transcriptomes et protéomes, celles-ci demeurent 

rares au niveau des produits métaboliques, comme par exemple les lipides.  

Les cellules eucaryotes produisent des milliers de lipides, dont chacun contribue 

potentiellement à une fonction biologique spécifique. En effet, un certain nombre de 

commutateurs métaboliques impliquant des lipides ont bien été décrits dans le 

développement et la différenciation cellulaire. 

Quelques études ayant directement abordé les variations intercellulaires des lipides dans des 

populations cellulaires syngéniques et homogènes suggèrent que l’hétérogénéité lipidique 

contribue à l’émergence de motifs multicellulaires. A présent, les chercheurs en biologie des 

lipides ont abordé soit des lipidomes à partir d’extraits de masses cellulaires, ou bien certains 

lipides choisis au niveau de la cellule unique. Il reste donc à définir comment les lipidomes 

varient d’une cellule à l’autre et quelle variation intercellulaire de lipides revêt un sens 

biologique.  

Les progrès récents en spectrométrie de masse ont conduit à une sensibilité adéquate pour 

révéler des molécules présentes en seulement quelques centaines d’exemplaires, ce qui 

concrétise la faisabilité de la lipidomique au niveau de la cellule unique. Une technique en 

plein essor ayant un potentiel d’utilisation dans la lipidomique à cette échelle est l’imagerie 

par spectrométrie de masse. 

Ici, nous avons conçu un mode opératoire basé sur l’imagerie par spectrométrie de masse de 

type MALDI à haute résolution afin d’étudier la variabilité intercellulaire de lipidomes de 

centaines de fibroblastes primaires du derme humain. 

Nous avons ainsi trouvé que les sphingolipides ont remarquablement une grande 
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hétérogénéité intercellulaire. Ces lipides caractérisent des sous-populations distinctes parmi 

les fibroblastes humains syngéniques, définies ici comme lipotypes. 

De plus, nous avons trouvé que chez les fibroblastes les lipotypes distincts correspondent à 

des états cellulaires pourvus de propriétés prolifératives, inflammatoires ou fibrotiques. 

En dernier lieu, nous voulions savoir si les lipotypes participent à la spécification des états 

cellulaires et nous avons conclu que des glycosphingolipides spécifiques modulaient des voies 

de signalisation, précisément celles de FGF et TGF-b, pour façonner le paysage 

transcriptionnel de la cellule unique. 

Pour résumer, l’application de méthodes omiques aux cellules uniques m’a permis de 

découvrir que: (i) des segments spécifiques du métabolismes des lipides, c’est-à-dire les voies 

des sphingolipides, sont variables de cellule en cellule ; (ii) certaines configurations de lipides 

sont la marque d’états cellulaires discrets ; (iii) et que les sphingolipides modulent chez les 

fibroblastes dermiques l’activation impliquée dans la guérison des plaies et le 

microenvironnement tumoral.  

En tout, cette étude est parmi les premières à démontrer le potentiel du MALDI-IMS pour la 

lipidomique des cellules uniques, et à révéler l’hétérogénéité des lipidomes intercellulaires. 

Elle démontre également un rôle des lipides dans la détermination des états cellulaires et 

dans l’homéostasie tissulaire, et dévoile une nouvelle composante régulatrice dans l’auto-

organisation des systèmes multicellulaires.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Membrane lipid synthesis and membrane composition 

 
Lipids are among the most abundant and functionally relevant cell metabolites. They play 

fundamental roles in several biological functions, including the regulation of signal 

transduction, gene expression, apoptosis, membrane trafficking, cell division, cell polarity, 

cell motility, acting as energy stores, precursor of hormones and being the main constituents 

of cell membranes (Eyster KM, 2007). Lipids comprise a vast group of hydrophobic molecules 

that can be classified into three main categories: glycerophospholipids (GPLs), sphingolipids 

(SLs), and sterols (Figure 1). 

 

 
 

Figure 1. Lipids structure. Structure of the three main lipids categories: Glycerophospholipids (GPLs), 
Sphingolipids (SLs) and sterols. Depending on the head group attached to the fatty acid acyl chains 
several lipids exist. PtdCho, phosphatidylcholine; PtdSer, phosphatidylserine; PtdEtn, 
phosphatidylethanolamine; PtdGly, phosphatidylglycine; PtdAc, phosphatidyc acid; SM, 
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sphingomyelin; Cer, Ceramide; GlcCer, Glucosyl Ceramide; GalCer, Galactosyl Ceramide; GSLs, 
glycosphingolipids.  
 

 

GPLs are the most abundant membrane lipids in mammalian cells. They are composed of a 

hydrophobic core of fatty acids attached to a hydrophilic headgroup facing the aqueous 

phase. GPLs consist of a glycerol-3-phosphate (G3P) backbone, linked to a head group via a 

phosphodiester bond and to fatty acid chains, with different lengths, through ester, ether or 

vinyl ether bonds (Hermansson M et al., 2011).  GPLs are subdivided into different classes 

according to the nature of their headgroup: phosphatidylcholine (PtdCho), 

phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine 

(PtdSer), phosphatidic acid (PtdAc) and phosphatidylglycerol (PtdGly) (van Meer G, 2005). The 

synthesis of GPLs starts in the Endoplasmic Reticulum (ER) with acylation of G3P by glycerol-

3-phosphate acyltransferase (GPAT), and lysophosphatidic acid acyltransferase (LPPAT), to 

form PtdAc that can be either dephosphorylated into diacylglycerol (DAG) – the precursor of 

PtdCho, PtdEtn and PtdSer – or converted into CDP-diacylglycerol (CDP-DG) – the precursor 

of the anionic PtdIns, PtdGly and cardiolipin (CL) (Figure 2A). Other minor classes of GPLs also 

exist. They can be derived from existing GPLs (phosphoinositides, lysophospholipids) or result 

from a different biosynthetic pathway (ether-phospholipids).  

 

Phosphoinositides are derivatives of PtdIns, obtained by successive phosphorylation and 

dephosphorylation of the inositol ring in position D-3, D-4 or D-5, in different combinations.  

These phosphorylation reactions are reversible thanks to the action of PtdIns phosphatases 

(Figure 2A). Seven distinct PtdIns species have been identified with a non-homogeneous 

distribution among cell organelles that is due to the balance of kinases vs phosphatases. For 

instance, the Plasma Membrane (PM) is enriched in PtdIns(4,5)P2, PtdIns(4)P and 

PtdIns(3,4,5)P3; Early Endosomes (EE) are enriched in PdtIns(3)P; Late Endosomes (LE) in 

PtsIns(3,5)P2; and, the Golgi in PtdIns(4)P (De Matteis MA and Godi A, 2004).  

 

Lysophospholipids are GPLs in which one of the fatty acyl chains is replaced by a hydroxyl 

group in position 1 or 2 of their glycerol backbone. Unlike other GPLs, they are low abundant 

in biological cell membranes. Lysophospholipids are synthesized either by de novo synthesis 
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from G3P or by hydrolysis of GPLs via the action of phospholipases and acyltransferases 

(D’Arrigo P and Servi S, 2010). 

In mammalian cells, ether-phospholipids represent derivatives of GPLs in which the fatty acyl 

chain at the sn-1 position is linked to the glycerol backbone by an ether bond, as opposed to 

an ester bond. Ether lipids synthesis starts in the peroxisomes where G3P is dehydrogenated 

to dihydroxyacetone phosphate (DHAP). DHAP is then acylated with a long-chain fatty acyl by 

the glycerone phosphate O-acyltransferase (GNPAT) before that the enzyme alkyl-glycerone 

phosphate synthase (AGPS) replaces the acyl-chain by a fatty alcohol. The final peroxisomal 

step in ether lipid synthesis is carried out by acyl/alkyl-DHAP reductase, which reduces alkyl-

DHAP into the ether lipid precursor 1-O-alkyl-glycerol-3-phosphate (AGP). The DHAP 

reductase can also reduce acyl-DHAP to generate the diacyl phospholipid precursor 

lysophosphatidic acid (LysoPtdAc) (Brites P et al., 2004). 

 

Sterols are made of a sterane nucleus with four rings and one hydroxylation on carbon 3. In 

mammalian cells, sterols mainly consist of free cholesterol whose biosynthesis starts in the 

ER with the synthesis of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) from Acetyl-CoA, which 

is then irreversibly reduced into melanovate by the HMG-CoA reductase (HMGCR). Then, 

mevalonate is converted into 3-isopentenyl pyrophosphate, and six molecules of isopentenyl 

pyrophosphate are added to synthesize squalene. Finally, squalene is cyclized to form 

cholesterol (Figure 2A) (Schroepfer GJ, 1981).  

 

Lastly, SLs are another class of structural lipids whose synthesis begins in the ER with the 

condensation of serine and palmitoyl CoA into 3-ketodihydrosphingosine by serine 

palmitoyltransferase (SPT). This product is then reduced to generate sphinganine, the 

precursor of Long-Chain Bases (LCBs). LCBs can be phosphorylated by a kinase or condensed 

with fatty acids by one of the 6 different ceramide synthases (CerS 1-6), giving 

dihydroceramides that can be desaturated to form ceramide (Cer) (Mullen TD et al., 2012). 

Cer can be then galactosylated in the ER to produce galactosylceramide (GalCer) (Holthuis 

JCM et al., 2001) or it can be transported to the Golgi complex through vescicular or non-

vesicular transport routes (Gault CR et al., 2010; Hanada K et al., 2003). The subsequent fate 

of Cer is highly dependent on the mode of transport: either conversion to glucosylceramide 
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(GlcCer) or sphingomyelin (SM) (Funakoshi T et al., 2000; Hannun YA and Obeid LM, 2018; 

Hanada K et al., 2003). 

 

GlcCer has to be transported, through vesicular transport or by the lipid-transfer protein 

FAPP2 (D'Angelo G et al., 2007; D'Angelo G et al., 2013) to the Trans Golgi Network (TGN), 

where it serves as precursor for the production of complex GSLs through the action of TGN-

specific glycosylating enzymes (Merrill AH, 2011). In particular, the first step is the production 

of lactosylceramide (LacCer), via b4-galactosyltransferases V and VI, represents the metabolic 

branch point for the formation of the different classes of complex GSLs: asialo, ganglio, 

globo/iso-globo and lacto/neo-lacto series (Kumagai T et al., 2010; Nishie T et al., 2010). 

Indeed, LacCer is the substrate of: b1,4-N-acetylgalactosylaminyltransferase B4GALNT1 to 

produce GA2 (Nagata Y et al., 1992); a-2,3-sialyltransferase ST3GAL5 to produce GM3 (Ishii A 

et al., 1998); a1-4 galactosyltransferase A4GALT to produce Gb3 (Kojima Y et al., 2000); and, 

b-1,3-N-acetylglucosaminyltransferase B3GNT5 to produce Lc3 (Biellmann F et al., 2008) 

(Figure 2A,B).  
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Figure 2. Membrane lipid biosynthesis. A) Principal pathways for the production of sterols, 
sphingolipids and glycerophospholipids in mammals, and the key biosynthetic enzymes involved. 
(Adapted from Holthuis JCM and Menon AK, 2014). B) GSLs synthesis and classification and schematic 
representation of the GSL synthetic pathways. Cer can be conveyed by CERT to the TGN for the 
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synthesis of SM. Alternatively, Cer is glycosylated for the synthesis of the GSL precursors, GlcCer. 
GlcCer is galactosylated to LacCer, which serves as a common precursor for the different GSL series 
(left panel): globo (red), ganglio (green), asialo (blue) and lacto (purple). Glycosphingolipid-
synthetizing enzymes (GSEs) catalyzing the major synthetic reactions are shown in dark orange. 
(Adapted from Russo D et al., 2018). 
 

 

1.1.1 Bioactive lipids 

 

Apart from being major structural components of cell membranes, lipids are signalling 

molecules and precursors of bioactive compounds.  

For instance, each of the seven different phosphoinositides that decorate the cytosolic 

membrane leaflet of specific cell compartments determines the recruitment of a number of 

effector proteins operating at the membrane-cytosol interface (Balla T, 2013). Thus, at the 

plasma membrane, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and 

phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] have fundamental roles in key 

signalling pathways (i.e., the PI3K, PLA2, and PLC pathways) where their malfunction is at the 

basis of common diseases (Skwarek LC and Boulianne GL, 2009). Phosphoinositides associated 

with intracellular organelles [i.e., phosphatidylinositol 3-phosphate (PtdIns(3)P) and 

phosphatidylinositol 4-phosphate (PtdIns(4)P)] are direct regulators of membrane trafficking 

at the endosomal compartment and Golgi complex,  and a key controllers of the intracellular 

protein and lipid fluxes (De Matteis MA et al., 2005; D’Angelo G et al., 2008). 

 

Another important class of bioactive lipids are SLs, which are ubiquitous components of 

eukaryotic Plasma Membranes (PM) (Hannun YA and Obeid LM, 2008, 2018; Bartke N and 

Hannun YA, 2009). Their hydrophobic structure allows establishment of lateral interactions 

to yield a tightly-packed and thick membrane structure (Hannun YA and Obeid LM, 2018; 

Holthuis JCM et al., 2001) that works at the plasma membrane as a ‘barrier’ towards the 

extracellular environment (Holthuis JCM and Menon AK, 2014).  

 

Simple SL species have been shown to act as second messengers and to be produced upon 

cell stimulation. These include:  
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1) Sphingosine: it is produced by ceramidase-dependent ceramide hydrolysis (Kitatani K 

et al., 2008). Sphingosine production can be stimulated under several stress 

conditions and it has roles in regulating actin cytoskeleton, endocytosis, cell cycle and 

apoptosis by modulation of protein kinases (Smith ER et al., 2000).   

2) Ceramide (Cer): it is produced either by acylation of long chain bases by ceramide 

synthases (CerS1-6) or by hydrolysis of complex sphingolipids (Bartke N and Hannun 

YA, 2009). Sphingomyelinases, specifically, can produce Cer from sphingomyelin upon 

cell stimulation (Kitatani K et al., 2008). Cer is involved in the regulation of senescence 

(Modrak DE et al., 2009), necrosis (Hetz CA et al., 2002), proliferation (Mesicek J et al., 

2010), and apoptosis (Hartmann D et al., 2012; Kroesen BJ et al., 2001; Seumois G et 

al., 2007; Senkal CE et al., 2011). 

3) Sphingosine-1-phosphate (S1P): sphingosine phosphorylation by sphingosine kinases 

(SPHK1 and 2) leads to the production of S1P. S1P is the ligand for a family of G-protein 

coupled receptors at the PM (Pyne S and Pyne N, 2000) and shows antagonizing 

effects to those of ceramide. S1P is involved in the regulation of cell migration (Adada 

MM et al., 2015), inflammation and proliferation (Spiegel S and Milstein S, 2011), cell 

growth, cell survival and resistance to apoptotic cell death (Osawa Y et al., 2005).  

4) Ceramide-1-phosphate (C1P):  it is produced by ceramide phosphorylation catalysed 

by Ceramide Kinase (CERK) and has roles in inflammation and vesicular trafficking 

(Gomez-Muñoz A et al., 2016). 

5) Glucosylceramide (GlcCer): at the Golgi complex, glucosyl ceramide transferase (GCS) 

glycosylates ceramide to produce GlcCer (Ichikawa S and Hirabayashi Y, 1998). GlcCer 

has roles in post-Golgi trafficking and in drug resistance (Liu YY et al., 2013). 

 

A further layer of signalling diversification is found in the structural variability of SL backbones 

with different acyl chains and in the modifications of the hydrophobic SL portion. This is the 

case for dihydroceramide (dhCer) – which has a role in apoptosis, autophagy and inhibition 

of cell growth (Kraveka JM et al., 2007) – and deoxy-sphingolipids, whose role is still not clear 

but they have been shown as the mediators of neurotoxicity in hereditary sensory neuropathy 

(HSAN1), cell death and diabetes (Hammad SM et al., 2017; Penno A et al., 2010; Hannich TJ 

et al., 2019). 
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Complex sphingolipids (i.e., SM and GSLs) at the PM participate in signalling events by 

segregating signalling molecules into membrane microdomains for the modulation of their 

activities and for their endocytosis (Holthuis JCM and Menon AK, 2014; Holthuis JCM et al., 

2001; Simons K and Ikonen E, 1997). Among complex SLs, glycosphingolipids (GSLs) are 

essential components of the PM that consist of a ceramide backbone linked to a glycan 

moiety. Their complexity is mainly due to the heterogeneous elongation of glycan chains. 

Indeed, GSL-associated glycans have between one and more than 20 sugar residues, with 11 

different monosaccharide types existing in vertebrates (D’Angelo G et al., 2013b). 

Importantly, the elongation of glycans in GSLs is not driven by a template; instead, it entirely 

depends on the relative expression and organization of their specific synthetic enzymes 

(Bieberich E et al., 2002; Giraudo CG and Maccioni HJF, 2003). Still, GSLs production is tightly 

controlled during differentiation programs; as a result, specific GSLs are used as 

differentiation stage or cell-type-specific markers (D’Angelo G et al., 2013b). Accordingly, 

numerous studies have reported that the GSL membrane composition is remodeled during 

embryonic development (Cochran FB et al., 1982; Handa K and Hakomori S, 2017; Kannagi R 

et al., 1983; Yamashita T et al.,1999).  

 

Mice KO for the genes encoding the first two enzymes initiating GSLs production (i.e., GlcCer 

and LacCer synthases) are unable to synthesize GSLs downstream GlcCer and die 

embryonically. In both these cases, the embryos are able to progress through the pre-

implantation phase but not beyond the formation of the three germ layers (Yamashita T et 

al., 2002; Nishie T et al., 2010; Allende ML and Proia RL, 2014). According to these studies the 

preimplantation phase is dominated by globosides (Handa K and Hakomori S, 2017; Sato B et 

al., 2007), while during gastrulation, the ganglioside production is induced in both neuronal 

and glial cell precursors (Goldman JE et al., 1984) (Figure 3). 
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Figure 3. Stage-specific changes of GSLs expression during mouse embryogenesis. Globo- and lacto-
series GSLs are expressed predominantly during the preimplantation phase and gastrulation. Ganglio-
series GSLs and sulfatides, start to be synthetized during late gastrulation until the prenatal phase and 
concomitantly to embryonic brain development. The three phases of embryonic development are 
indicated by three different shades of orange. The colour-coded rectangles represent lipid species 
expressed at that specific stage. (Adapted from Russo D et al., 2018). 
 

 

Similar GSL changes have been measured during in vitro differentiation of pluripotent stem 

cells to neuronal cells (Liang YJ et al., 2010, 2011; Russo D et al., 2018a; Breimer ME et al., 

2017) (Figure 4).  

 

 

 
 

Figure 4. Regulatory circuits for GSL expression and metabolism. The globo- to ganglio-GSL 
switch during neuronal differentiation. In parallel with the decrease in the globo-series GSL, 
the epigenetic regulator AUTS2 is induced. AUTS2, in turn, binds and activates the promoters 
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of neuronal genes – and of GM3S – inducing GM3S gene expression and favouring neuronal 
differentiation.  
 

 

The globo-to-ganglio metabolic switch is specifically required for proper brain development 

as mice KO of genes involved in in this process yield a wide range of neurological phenotypes. 

In addition, loss-of-function mutations in the three genes that encode enzymes involved in 

the synthesis of ganglio-series GSLs cause neuronal diseases in humans (Boccuto et al., 2014; 

Boukhris et al., 2013; Fragaki et al., 2013; Harlalka et al., 2013; Simpson et al., 2004). 

Aberrations in GSL metabolism have also been linked to cancer. In fact, for cells during 

oncogenic transformation, changes in GSL composition contribute to cellular transformation, 

metastasis and the emergence of multi-drug resistance (Gouaze-Andersson V and Cabot MC, 

2006; Morad SAF and Cabot MC, 2013; Ogretmen B, 2018; Jacob F et al., 2014; Kovbasnjuk O 

et al., 2005). Finally, GSLs can be used as tumour-associated antigens (TAAs) since specific GSL 

overproduction has been reported in several tumours (Geyer PE et al., 2016).  

 

1.2 Cellular Heterogeneity 

 

Cells do not live in isolation. They are part of communities where individual components can 

contribute to collective phenotypes.  For years, in biology, cell phenotypes have been 

explained by genetic variations.  However, even populations of monoclonal cells cultured 

under identical conditions can show cell-to-cell variability (Pelkmans L, 2012). Cellular 

heterogeneity, is induced by one or more parameters ranging from genetic and epigenetic to 

metabolic, proteomic and environmental factors, and it can reflect phenotypic differences in 

cell morphology and physiology (Altschuler SJ et al., 2010; Symmons O and Raj A, 2016; Junker 

JP and van Oudenaarden A, 2014) (Figure 5). 
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Figure 5. Cell-to-cell heterogeneity. Cell-to-cell variability is a phenomenon caused by various genetic, 
epigenetic and environmental factors and is reflected by differences in morphology, physiology and 
pathology. Cell variability can be reflected in genetic variation, metabolites and proteins 
heterogeneity but also in diverse cellular phenotypes. 
 

 

The experimental observation of heterogeneity in clonal population of bacteria was reported 

long ago (Balaban NQ et al., 2004; Spudich JL and Koshland DE, 1976; Takhaveev V and 

Heinemann M, 2018). Already in 1957, Novick and Weiner showed that the production of b-

galactosidase in individual cells was highly variable and random (Novick A and Weiner M, 

1957). In the last 10-15 years, the biological significance of non-genetic variability has been 

described in the context of stem cell development, embryogenesis and cell fate decision 

(Chang HH et al., 2008; Krieger T and Simons BD, 2015; Graf T and Stadtfeld M, 2008; 

Xenopoulos P et al. 2012). A prototypical example of functionally significant cell-to-cell 

variability is that of Nanog, a key transcription factor in the maintenance of pluripotency, that 

exhibits heterogeneous expression in the early mouse embryo and in undifferentiated 

embryonic stem cells (Dietrich JE and Hiiragi T, 2007; Chambers I et al., 2007). 

 

Biologists have interrogated cell systems using technologies that often rely on population-

averaged assays, deriving from pooling thousands to millions of cells. These technologies are 

powerful tools that enable the identification of components and interactions within 
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metabolic complexes, signalling pathways, and transcriptional networks. These 

characteristics of given cell states are able to reveal how these states change in response to 

perturbations. However, averaged population behaviours do not always reflect the 

complexity of biological mechanisms and often even obscure the presence of rare or small 

subpopulations with key roles. This highlights the necessity to study cells as individual objects 

since cell-to-cell variability may affect a wide range of cellular processes causing phenotypic 

variations including in the lipid composition of cell membranes (Snijder B et al., 2009). 

 

1.2.1 Biological noise vs. deterministic variability 

 

Cell-to-cell variability both in populations of unicellular organisms and in complex tissues is a 

widely reported phenomenon. Where this heterogeneity arises is the focus of intense 

research. There are two main reasons why cells could vary from one another: deterministic, 

which means that cells can receive different instructions, leading to different outcomes 

(Pelkmans L, 2012; St-Pierre F and Endy D, 2008; Snijder B et al., 2009), and stochastic (or 

probabilistic), in which cells receiving the same instructions can have different outcomes (Raj 

A and van Oudenaarden A, 2008; Eldar A and Elowitz MB, 2010; Maheshri N and O'Shea EK, 

2007; Losick R and Despaln C, 2008) (Figure 6). Cell-to-cell variability, is often coupled with 

the term “cellular noise”, because it may arise from the inherently probabilistic nature of 

intracellular reactions. Indeed, it is true that many biochemical processes involve low 

molecule numbers, especially when looking at gene expression were the low copy number of 

most genes is highly susceptible to noise. 

 

The lack of reliable single-cell assays has precluded prior detection of noise in living cells. The 

main open question was: is cell-to-cell variation set by the intrinsic noise in expression of a 

particular gene itself or by extrinsic fluctuations in the amounts of other cellular components? 

The first to introduce the concepts of intrinsic and extrinsic noise and explore stochastic gene 

expression was Elowitz in 2002 (Elowitz MB et al. 2002). In their experiments, Elowitz and 

coworkers quantified the variability associated with gene expression in E. coli, by introducing 

two copies of the same promoter, one upstream of the cyan fluorescent protein (CFP) and 

the other upstream of the yellow fluorescent protein (YFP). In this setup, they could study 

both extrinsic and intrinsic fluctuations in gene expression. The former can be derived from 
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general variations in the efficiency of the transcriptional and translational machineries that 

should similarly affect the expression of both reporters in a given cell. The latter is due to the 

randomness inherent to transcription and translation and should affect each copy of the gene 

independently, giving rise to uncorrelated variations in the CFP and YFP levels. With this study 

they demonstrated that fluctuations in the expression of a single gene can propagate in a 

clonal population through metabolic pathways or networks, eventually inducing other 

changes that can affect the entire cellular metabolism. 

 

The existence of extrinsic biological noise does not, however, mean that biological systems 

are themselves stochastic. Such upstream sources of variability, could indeed be programmed 

features of wider deterministic circuits. The two extrinsic factors that determine cell-to-cell 

variability in syngeneic and homogeneous cell populations are the microenvironment (cell-

cell contacts and cell crowding) and the cell cycle. Even in the same culture conditions, cells 

continuously experience variability as a consequence of an increase in cell number together 

with cell adhesion and migration (Snijder B et al., 2009) or because they are in different cell 

cycle phases (Liu P et al., 2014).  

 

Given that most cellular activities are highly complex and still not totally understood, it is 

complicated to separate stochasticity from determinism. Indeed, while numerous studies, 

both experimental and theoretical, has been devoted to understanding the implications of 

intrinsic or extrinsic stochastic variability (Hilfinger A and Paulsson J, 2011; Fu AQ and Pachter 

L, 2016; Wang DG et al., 2019; Lynch MD and Watt FM, 2018; Kiviet DJ et al., 2014; Locke JCW 

and Elowitz MB, 2009; Kobayashi Tet al., 2009), there are many examples where 

heterogeneity in apoptosis (Spencer SL et al., 2009), cancer (Cohen AA et al., 2008; Roesch A 

et al., 2010) and stem-cell differentiation (Ungrin MD et al., 2008) is induced by deterministic 

factors. 

 

Although, it is now accepted that single-cell variability can be either stochastic or 

deterministic, understanding the way cells acquire their fates is still a major challenge in 

developmental biology. Noise alone is indeed insufficient to explain why cells break 

population symmetry, creating binary switches between alternative cell fates. One largely 

unexplored role for stochastic behaviour can be to ensure deterministic outcomes in the 
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multicellular context. As consequence, the choice to adopt a particular fate can occur with an 

apparent stochasticity, even if all the events are influenced by precisely programmed and 

regulated signals that induce symmetry breaking events and stabilize cell fate decision. 

 

An illustration of this, is the case of stem cells differentiation or embryo development. Stem 

cells often exhibit variable levels of expression of key regulators and genes.  Are these 

different subpopulations of cells in a probabilistic and transient state in which they are 

exploring potential trajectories, or are they intermediate states influenced by previous 

deterministic factors (Kalmar T et al., 2009; Singer ZS et al., 2014; Biase FH et al., 2014; White 

MD et al., 2016)?. Another example are tissue-specific stem cells; their correct balance 

between stemness and differentiation is critical for tissue functions. Some reports show that 

although this balance is achieved through asymmetric cell divisions, the maintenance of adult 

stem cell can also be determined by probabilistic loss and replacement of individual stem cells 

(Krieger T and Simons BD, 2015; Graf T and Stadtfeld M, 2008). 

 

 
 

Figure 6. Stochastic vs. deterministic variability. A) Stochastic variability (noise) definition and 
characteristics. Intrinsic and extrinsic noise can be measured and distinguished by placing the gene 
encoding two fluorescent proteins under the control of the same promoter (YFP, shown in yellow; 
CFP, shown in green). Intrinsic noise results in differences between two reporters of the same gene in 
a single-cell (upper panel). Extrinsic noise affects two reporters of the same gene equally in a single-
cell but causes differences from cell to cell over time (lower panel). B) The presence of upstream 
influences (deterministic variability) can be used to predict phenotypic variations in single-cells. 
Various cellular state parameters, such as cell size, growth speed, cell cycle state, and spatial cell 
population context parameters such as local cell density and location on cell colony edges (lower 
panel) can be source of deterministic cell-to-cell variability induced by external influences.  
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1.3 Cell-to-cell lipid variability 

 

Single-cell biology aims at understanding cell-to-cell variability by studying genomes, 

transcriptomes, proteomes, and metabolomes at the single-cell level. However, cell-to-cell 

lipid variability has not yet been explored to the same extent. Indeed, although lipids, and in 

particular GSLs, are key regulatory molecules during development, differentiation events and 

in cancer, whether and how cell-to-cell lipids heterogeneity contributes to self-organization 

properties of cell populations or determines cell fate has not been systematically explored. 

 

Recently, a few studies have uncovered an unsuspected degree of cell-to-cell variability for 

some lipids. According to these reports, lipid droplets (Herms A et al., 2013; Le TT and Cheng 

JX, 2009), cholesterol levels (Frenchin M et al., 2015), membrane ordering (Denz M et al., 

2017), and glycosphingolipid composition (Russo D et al., 2018a,b) are subjected to high cell-

to-cell variability. This variability results from microenvironmental cues, cell cycle or 

intrinsically bi-stable circuits, and influences cell signalling and gene transcription. 

 

More specifically: (i) storage lipids (i.e., triglycerides and cholesterol esters) accumulation in 

hepatocytes displays a strong cell-to-cell heterogeneity with a minority of cells showing a 

‘high fat storage’ phenotype due to fluctuations in fatty acid oxidation and lipolysis and 

possibly protecting the overall cell population from generalized lipotoxicity (Herms A et al., 

2013); (ii) along similar lines, lipid droplets biogenesis in fibroblasts induced to differentiate 

to adipocytes happens heterogeneously at single-cell level and irrespective of the induction 

of adipogenic genes (Le TT and Cheng JX, 2009); (iii) the ordering of the plasma membrane 

varies among cells due to changes in lipid composition that depend on the cell cycle phase 

individual cells are in (Denz M et al., 2017); (iv) cholesterol and GSLs levels vary among cells 

depending on whether they are in a crowded or sparse cell environment (Frenchin M et al., 

2015; Snijder B et al., 2009); (v) different cell types can show different lipids composition 

according to their function as in the case of astrocytes and neurons (Neumann EK et al., 2019).  

 

An interesting case of cell-to-cell variability in lipid composition is that linked to GSLs 

belonging to the globo and ganglio series. Indeed, it has been reported that in several cell 

types globosides and gangliosides are produced by individual syngeneic cells in a mutual 
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exclusive fashion (Russo D et al. 2018a; Majoul I et al., 2002). This cell-to-cell heterogeneity 

can be explained by the operation of a self-contained bi-stable metabolic circuit (Russo et al., 

2018a) by which globosides inhibit the production of the alternative GSL metabolic branch 

through the repression of a master regulator of neuronal genes expression AUTS2 (autism 

susceptibility gene 2) (Gao Z et al., 2014) that in turn binds and activates the promoter of the 

gene encoding GM3S (ST3GAL5). As a result, gangliosides and globosides are produced in a 

mutual exclusive fashion by single-cells depending on fluctuating AUTS2 levels. This process 

can be exploited during neuronal differentiation where globosides are highly produced in 

stem cells where they repress the expression of AUTS2, that is then induced when globosides 

expression decrease, resulting in gangliosides production and neuronal genes expression. 

These examples suggest that lipid metabolic reprogramming is an important contributor to 

(and not a mere consequence of) cell fate determination.  

 

1.4 Single-cell techniques to investigate cellular heterogeneity 

 

Technological improvements of single-cell techniques are now becoming crucial to 

investigate cell-to-cell variation. In the past indeed, one way to investigate single-cell 

phenotypes and their biological functions, has been the use of low-throughput approaches, 

such as immunofluorescence, fluorescent reporters (Elowitz MB et al., 2002), fluorescence in 

situ hybridization (FISH) (Raj et A al., 2008; Femino AM et al., 1998) and single-cell polymerase 

chain reaction (PCR) (Maryanski JL et al., 1996; Taniguchi K et al., 2009; Citri A et al., 2012). 

However, in order to explain with sufficient detail the origin, the dynamics and the 

consequences of cell-to-cell heterogeneity we need technologies linking three essential 

elements: multiple simultaneous measurements (high-throughput), temporal resolution and 

spatial resolution.  An all-inclusive tool is still unavailable, but we can rely on the combinations 

of high-resolution and high-throughput single-cell ‘omics’ techniques: genomics, 

transcriptomics, proteomics and metabolomics (Junker JP and van Oudenaarden A, 2014; 

Symmons O and Raj A, 2016; Ranzoni AM and Cvejic A, 2018) (Figure 7). 

 

This depth of analysis has allowed to identify rare cell states or cell types (Schwalie PC et al., 

2018; Jindal A et al., 2018; Cao J et al., 2017), to realize the contribution of multiple axes of 

variation to gene and protein expression, and to recognize differentiation trajectories (Tusi 
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BK et al., 2018). Here, I will briefly give an overview of the different single-cell omics 

techniques that have been developed in the past years. 

 

 
 

Figure 7. Main single-cell omics techniques. The throughput landscape of the latest single-cell 
analytical methods. On the x axis the number of cells that can be analysed in a single experiment is 
shown, while on the y axis, the number of analytes that can be identified. Different experimental 
approaches are required to quantitate and model single-cell properties of a complex organism. Multi-
omics single-cell analysis that link functional, spatial and temporal scales in a high-throughput way will 
help to explain the multicellular dynamic interactions caused by cellular variability (right panel). 
 

 

1.4.1 Single-cell sequencing  

 

Quantitative polymerase chain reaction (qPCR) was one of the first genomic technologies to 

be used for measuring the expression of selected genes from single-cells. However, 

measuring multiple genes simultaneously from hundreds of individual cells was high time and 

cost consuming. This problem was overcome in the mid-2000’s when, the first genomic 

sequencing of a single microorganism (Lasken RS, 2007), encouraged the birth of high-

throughput single-cell next generation sequencing (NGS) analysis.  

 

In less than a decade, improvements in NGS analysis provided reliable methods for high-

quality measurement of DNA and RNA expression level, for a better understanding of the 

function of individual cells in multicellular context (Mardis ER, 2011; Metzker ML et al., 2010) 
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Single-cell sequencing technologies were developed to determine single-nucleotide 

variations (SNVs), copy number variations (CNVs), genomic structural variations of the single- 

cell genome, gene expression levels, gene fusion, alternative splicing of the single-cell 

transcriptome, and even the state of DNA methylation. 

 

1.4.1.1 Single-cell genomics  

 

In single-cell genomics one limiting step is the amplification of the single copy of a genome 

while minimizing the introduction of artefacts. Before the emergence of NGS technologies, 

whole genome amplification (WGA) methods such as ligation-anchored PCR (LA-PCR) (Troutt 

AB et al., 1992), primer extension pre-amplification PCR (PEP-PCR) (Zhang L et al., 1992) and 

degenerate oligonucleotide-primed PCR (DOP-PCR) (Telenius H et al., 1992), generated high 

amplification bias, leading to extremely low and uneven coverage of the genome and to the 

introduction of high number of mutations. Owing to these inherent drawbacks, PCR- based 

WGA methods are not appropriate for single-cell sequencing.  

 

One possibility are isothermal methods such as multiple displacement amplification (MDA). 

MDA uses isothermal random priming and extension with Φ29 polymerase, which has high 

processivity, a low error rate and strand displacement activity, resulting in a greater genome 

coverage, with lower error rates (Lasken RS, 2007). Thanks to technological improvements, 

single-cell genomics is now applied in diverse areas as microbial ecology, cancer, prenatal 

genetic diagnosis and the study of human genome structure and somatic variation and 

haplotype measurement (Marcy Y et al., 2007; Blainey PC, 2013; Shapiro E et al., 2013; Peters 

BA et al., 2013; McConnell MJ et al., 2013).  

 

1.4.1.2 Single-cell epigenomics 

 

In mammals, epigenetic regulation is crucial during development, cell differentiation, and 

proliferation (Bernstein BE et al., 2007). Epigenetic modifications include DNA methylation, 

chromatin remodelling, histone modification, and non-coding RNA (ncRNA) associated 

mechanisms (Egger G et al., 2014). Histones modifications are typically analysed using 

chromatin immunoprecipitation followed by sequencing (ChIP-seq). This method is highly 



 Chapter 1  

 19 

dependent on the specific binding of the antibody to histones and DNA-binding proteins, and 

requires a large number of cells as starting materials thus, not allowing single-cell high-

throughput analysis (Zhou VW et al., 2011).  

 

Another important topic in epigenomics is the understating of the spatial proximity and 

nuclear organization of specific genomic loci. Hi-C, first introduced in 2009, brings these 

analyses to the omic level by coupling proximity-based ligation with sequencing (Erez 

Lieberman-Aiden et al., 2009). Variations and optimizations have been performed to increase 

throughput and resolution to the single-cell level with a method referred to as single-cell Hi-

C (scHi-C) (Flyamer IM et al., 2017; Nagano T et al., 2013; Ramani V et al., 2017). scHi-C has 

allowed visualization and reconstruction of the 3-dimensional organization of every 

chromosome in individual haploid cells and revealed how data from bulk analysis can obscure 

the dynamic reorganization of chromosome compartments during the cell cycle (Nagano T et 

al., 2017). 

 

Another technique used to identify accessible DNA regions is Assay for Transposase-

Accessible Chromatin (ATAC-seq), whose resolution has been improved with the 

development of single-cell ATAC-seq (scATAC-seq) (Buenrostro JD et al., 2013; Buenrostro JD, 

et al., 2015).  

 

1.4.1.3 Single-cell transcriptomics 

 

The first single-cell RNA sequencing (scRNA-seq) study was published in 2009 (Tang F et al. 

2009) just a year after the first bulk RNA-seq publication (Mortazavi A et al. 2008). Although, 

they have been the first to combine whole transcriptome amplification (WTA) technology 

with NGS technologies, their method still required manual manipulation and was restricted 

to inspecting few cells. Further studies allowed the analysis of the limited mRNA transcripts 

from single-cells in a high-throughput manner with less sample manipulation (Lafzi A et al. 

2018; Picelli S 2016; Svensson V et al. 2017). Among these methods, CEL-Seq (Hashimshony T 

et al. 2012), CEL-Seq2 (Hashimshony T et al. 2016), Drop-seq (Macosko EZ et al. 2015), Smart-

seq (Ramskold D et al. 2012), Quartz-seq (Sasagawa Y et al. 2013), inDrop (Klein AM et al. 

2015) and SPLiT-seq (Rosenberg AB et al. 2018) have been extensively used.  
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Typically, individual cells are isolated using microfluidics devices or droplet-based methods.  

In the first approach, single-cells are passively separated into individual wells of a microfluidic 

system, according to their size. Alternatively, in droplet-based cell isolations, cell mixture is 

fed into a microfluidic device, while beads coated in primers enter another input and capture 

up to thousands of cells at the time despite their size. Once isolated, individual cells are lysed, 

barcoded and reverse transcribed to cDNA using poly A tailing (Quartz-seq, Quartz-seq2), 

template-switching (Smart-seq, Smart-seq2, Chromium (10x Genomics)), or a combination of 

Ribonuclease (RNase H) with DNA pol I from E. coli (CEL- seq, CEL-seq2, MARS-seq, inDrop 

and sci-RNA-seq). Given the limited amount of material, the cDNA is amplified using standard 

PCR approaches, Rolling Cycle Amplification (RCA) or in vitro transcription (IVT) strategy. 

Finally, single-cells are sequenced and barcodes are used to assign sequencing reads to 

individual cells. Some of the available methods can collect reads from the entire transcript 

(full-length coverage), while others only capture the 3ʹ- or 5ʹ-ends.  

 

Thanks to technological improvements, scRNA-seq has produced in the last years valuable 

insights on the dynamics of embryonic development and stem cell differentiation (Semrau S 

et al., 2017; Zeng C et al., 2017; Guo J et al., 2017), the composition of complex tissues 

(Hochane M et al., 2019; Wang P et al., 2018), expression differences and heterogeneity 

caused by cancer (Patel AP et al., 2014) and identification of rare cell subtypes (Xie T et al., 

2018; Rodda LB et al., 2018; Aizarani N et al., 2019). 

 

Other promising technologies are those allowing the study of individual cells in their natural 

microenvironment while maintaining the spatial information (Lee JH et al., 2014; Lee JH, 

2017). Among them single-molecule fluorescence in situ hybridization (smFISH), Multiplexed 

error-robust FISH (MERFISH) or Fluorescent In Situ RNA Sequencing (FISSEQ) that allows 

highly multiplexed subcellular RNA sequencing are the most used.  

 

1.4.2 Single-cell temporal omics approach  

 

Single-cell omics technologies have helped in elucidating the role of cell-to-cell variability and 

revealed the complexity of developmental processes, gene regulatory networks, and cell fate 

commitment. High-throughput cell transcriptomics methods can provide snapshots of cell 
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and microenvironment states with an unprecedented depth of information, allowing the 

study of spectrums of cell types and their spatial organization within tissues. However, these 

methods cannot produce, can lost or hide, information about cell state transitions, the history 

of a cell and functional significance of putative aging-related heterogeneity (Isildak U et al., 

2020).  

 

The emergence of single-cell temporal omics approaches to profile dynamical processes, 

during tissue development, homeostasis and regeneration, has been crucial to characterize 

intermediate states (Mayr U et al., 2019; Lederer AR and La Manno G, 2020). In a recent study, 

La Manno et al. developed a method called “RNA velocity”. In this approach they use the ratio 

of unspliced mRNA to spliced mRNA of each gene, to deduce a probabilistic description of 

expression dynamics of future expression states (La Manno G et al., 2018). RNA velocity has 

been used in developmental studies (Lo Giudice Q et al., 2019; Xia B et al., 2019) and to 

describe pathological changes in human tissues (Zhang Q et al., 2019). 

 

Other approaches are based on labelling newly synthesized RNA during transcription. A 

method called transcriptome alkylation-dependent single-cell RNA sequencing (NASC-seq) for 

example, is able to simultaneously sequence pre-existent and newly synthesized RNA 

providing high temporal resolution of short-term changes in gene expression even for the 

most unstable RNA (Hendriks GJ et al., 2019). 

 

Lineage reconstruction is another challenge in biology. In 2017, Frieda et al. described a 

synthetic system that enables cells to record lineage information in the genome. This method, 

called memory by engineered mutagenesis with optical in situ readout (MEMOIR), is based 

on a set of barcoded recording elements termed scratchpads that can be altered by 

CRISPR/Cas9-based targeted mutagenesis, and later read out in single-cells through single-

molecule RNA FISH (smFISH) (Frieda KL et al., 2017).  

 

1.4.3 Single-cell proteomics and metabolomics  

 

During the last 10-15 years, single-cell “omics” field has made substantial progress, especially 

in the area of genomics and transcriptomics.  However, cells can differ in their proteomes and 
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metabolomes with significant functional consequences. Thus, single-cell proteomic and 

metabolomic studies can provide a wider picture of the heterogeneity among cancer cells in 

response to drugs, stem cells during differentiation and dynamics of immune cells (Wang YJ 

et al., 2019; Saadatpour A et al., 2015; Lu Y et al., 2017; Cohen AA et al., 2008). Proteomics 

and metabolomics are still challenging techniques due to the large dynamic range of the 

cellular proteome and metabolome, high complexity of the sample, rapid response to 

external stimuli, the difficulty of amplifying them and the absence of labelling methods for 

metabolites.   

 

Mass Spectrometry (MS), a label free technique, with recently improved detection limit to 

the range of sub-attomole to zeptomole, in combination with the development of new 

metabolite and protein databases, is considered the best candidate for multiplexing, 

unlabelled and untargeted study of single-cell proteomics and metabolomics. However, there 

are still practical issues, such as the difficulty in interfacing single-cell samples with the MS 

instrument, high-throughput and sample handling (Zenobi R, 2013). 

 

1.4.3.1 Proteomics 

 

Measuring genomics and transcriptomics in single-cells can provide qualitative information 

on proteins as gene-products, but cannot provide information on their concentration and 

expression levels, localization, post-translational modification (PTMs) or protein-protein 

interactions. Conventional antibodies-based techniques such as flow cytometry and 

fluorescence microscopy have been powerful tool to study single-cell phenotypes but they 

are not comprehensive due to the limited amount of information and limited number of cells 

that can be analysed.  

 

Flow cytometry is the most established method for both qualitative and quantitative 

multiparameter analysis of single-cells. With this method is possible to simultaneously 

measure 10–15 proteins in individual cells (De Rosa SC et al., 2001; Perez OD and Nolan GP, 

2002). However, measurements beyond three fluorophores become more complex. 

Furthermore, sample preparation is still done manually and therefore requires a large number 

of cells that makes hard to analyse rare cell types. 
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A promising technology that combines flow cytometry and inductively coupled plasma MS 

(ICP-MS) is the mass cytometry, CyTOF (Cytometry by Time of Flight) (Bandura DR et al., 2009; 

Han G et al., 2018). CyTOF enables the simultaneous detections of signals with up to 50 

parameters in millions of single-cells using antibodies that can be conjugated to metal 

isotopes instead of fluorophores. This method enabled the identification of rare cell types, 

new details on immune system regeneration and reprogramming regulators (Wang YJ et al., 

2016; Lakshmikanth T et al., 2017; Lujan E et al., 2015). 

 

Standard MS is also considered a powerful tool for label free and unbiased protein analysis, 

although is still limited to very abundant protein. To fill this gap, fractionation of the cell lysate 

by Capillary Electrophoresis (CE) prior to MS offers a good way to improve sensitivity (Mellors 

JS et al., 2010). Nemes et al. have developed a home-made microanalytical CE platforms for 

identifying proteins by high-resolution MS at ultrahigh sensitivity, identifying more than 1000 

proteins from single X. laevis embryos (Lombard-Banek C et al., 2016). More recently the 

same group demonstrated the ability of CE-ESI-MS to analyze in situ more than 700 proteins 

in live embryos of X. laevis and zebrafish revealing previously unknown proteomic 

reorganization during embryo development (Lombard-Banek C et al., 2019). 

 

Another platform dedicated to single-cell proteomics after fractionation is nano-LC-MS/MS 

that was used recently to identify specific markers for different cell type in lung primary cells 

(Zhu Y et al., 2018). 

 

1.4.3.2 Metabolomics  

 

Metabolomics provides the most immediate and dynamic picture of the functionality of a cell, 

linking its genotype, which describes its potential, and the phenotype, which describes its 

function. Thus, metabolites (amino acids, sugars, and lipids) could represent a “fingerprint” 

of each cell, having each one their role in cellular signaling cascades, epigenetics mechanisms 

and post-translational modifications (Johnson CH et al., 2016). 
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Single-cell metabolomics is not particularly new; in the late 1990s, Fung et al. profiled a 

handful of metabolites from single rat peritoneal mast cells using laser vaporization MS (Fung 

EN et al., 1998). In the following decade, a few more studies on single-cell metabolomics were 

reported, even though, these methods enabled the detection of only few cells and of a minor 

subset of abundant metabolites, due to sensitivity limitations and, extensively analyte loss 

during the preparation steps. 

 

Recent progress in the field of MS, with the development of method with high mass resolution 

and high sensitivity, provides great hope for future successes in detecting and identifying 

metabolites in single-cells. Among the different ionization methods, the soft techniques (ESI, 

MALDI and DESI), that cause minimal fragmentation, are the favored method to identify both 

known and unknown metabolites.  

 

Based on MALDI-MS (Matrix-Assisted Laser Desorption Ionization), Urban et al. developed a 

high-throughput platform to analyze thousands of individual cells in one experiment, called 

microarrays for mass spectrometry (MAMS). The MAMS chips are made of hydrophilic wells 

that enable automated isolation of single-cells. Using the platform, the authors monitored 

the metabolism of single yeast and algal cells and observed intrinsic variabilities that were 

not accessible by population-based metabolomics (Ibanez J et al., 2013; Urban et PL al., 2010). 

Since high-throughput analysis are always challenging, Ong et al. proposed a workflow in 

which cells are dispersed onto a microscope slide and then optical images are used to 

determine the cell coordinates to automatize MS measurements (Ong TH et al., 2015). 

 

Based instead on nano-DESI-MS (Desorption ElectroSpray Ionization), Bergman and Lanekoff 

developed a method to measure 50 different lipids from single human cheek epithelial cells 

deposited on glass slides (Bergman HM and Lanekoff I, 2017).  In a similar approach to nano-

DESI, Pan et al. developed the single-probe electrospray (ESI). Their method allows direct 

sampling in live cells, enrichment of metabolites, which improved the sensitivity, subcellular 

detection with miniaturized probes, and simplified device with reusable probes (Pan N et al., 

2014). With this approach it was possible to identify metabolites in Hela cells, in single marine 

dinoflagellate cells (S. trochoidea) and in single Allium cepa cells (Pan N et al., 2014; Gong X 

et al., 2014; Sun M et al., 2018). 
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Based on nano-ESI-MS, Mizuno et al., developed a method called “live single-cell mass 

spectrometry” (LSC-MS).  In this method, an optical microscope is used to target an individual 

cell with a sharp metal coated nanospray microcapillary that penetrates the cell wall or 

membrane of live cells and withdraws a portion of the intracellular content that can be further 

analyzed by ESI-MS (Mizuno H et al., 2008; Fuji T et al., 2015).  

 

The vast majority of the MS methodologies described above, directly introduce cellular 

contents into the mass spectrometer to facilitate analysis from small sample volumes. 

However, simultaneous ionization of all cellular contents, including phospholipids and salts, 

can introduce ionization suppression and hinder the observation of low abundance analytes. 

The added dimension of separation before MS analysis can reduce these limitations and 

improve detection limits for less abundant compounds. One example is capillary 

electrophoresis (CE) coupled to ESI-MS. CE-MS was used to detect hundreds of metabolites 

in single neurons from the sea slug Aplysia californica or during the development of a 16 cell 

Xenopus laevis embryo (Nemes P et al., 2011; Onjiko RM et al., 2015; Onjiko RM et al., 2017). 

 

1.5 Imaging Mass Spectrometry (IMS) 

 

While all the aforementioned metabolomics and proteomics techniques, have been 

reasonably successful in revealing cell-to-cell variability, the degree of manipulation required 

and the technical complexity associated, have limited their use to low multiplexing capacity. 

Moreover, the integration of spatial information is another frontier in the field that will be 

critical for linking single-cell phenomena to organismal behavior. To fill this gap, imaging 

studies seem to be a natural starting point, and among them, a rapidly emerging technique 

with a potential use in single-cell metabolomics and proteomics is imaging mass spectrometry 

(IMS).  

 

IMS is a MS-based technique that enables the detection of molecules in situ, in a space-

resolved fashion and generates distribution maps of a wide range of molecules, in the same 

specimen, without the need for invasive labelling and without altering the morphology of the 

tissue. 



 Chapter 1  

 26 

 

IMS was first introduced almost 50 years ago, using laser desorption ionization (LDI) 

and secondary ion mass spectrometry (SIMS) to study inorganic compounds and 

semiconductor surfaces respectively (Hillenkamp F et al., 1975; Castaing R and Slodzian G, 

1981). However, it was the pioneering work of Bernhard Spengler first and Richard Caprioli 

then, in the late 1990s, to demonstrate how MALDI could be applied to analyse biomolecules 

(as proteins and lipids) in cells and tissue (Spengler B et al., 1994; Caprioli RM et al., 1997).  

 

The principle of IMS is that to ionize the biological material present in a discrete spot of the 

sample and to collect the relative mass spectrum. The sample is then moved to reach another 

spot, until it is completely scanned. Each peak in the collected spectra can then be used to 

reconstruct an image that represents the distribution of that peak (and of the associated 

compound) in the sample. Nowadays, several ionization strategies are used in IMS: 

Desorption Electrospray Ionization (DESI), Secondary Ion Mass Spectrometry (SIMS) and 

Matrix-Assisted Laser Desorption/Ionization (MALDI), each of them with their pros and cons. 

Among them, SIMS and MALDI offer the highest lateral resolution enabling the visualization 

of metabolites at single-cell level (Figure 8). 

 



 Chapter 1  

 27 

 

 

Figure 8. Imaging mass spectrometry.  A) Common IMS technologies. (a) MALDI-IMS requires applying 
an organic matrix across the sample in such a way that the analytes are locally extracted and 
incorporated into the matrix. (b) DESI-IMS requires a solvent spray directed towards the sample for 
desorption. (c) SIMS-IMS uses pulsed ion beams to locally desorb compounds from a certain position. 
(d) Spatial resolution reachable by the different ionization techniques. SIMS-IMS has the smaller laser 
diameter. (e) Mass range offered. MALDI-MSI, has the highest versatility in the mass range. (f) Sample 
preparation time. DESI is the fastest MSI method. (Figure B was adapted from Addie RD et al., 2015). 
B) In MALDI-IMS the tissue section is irradiated by a pulsed laser, an ion or a solvent spray beam that 
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raster the sample pixel by pixel. For each spot a mass spectrum is collected and then, mass images are 
reconstructed for each ion by plotting m/z intensity vs. x,y coordinates. 
 

 

1.5.1 SIMS-IMS 

 

In SIMS ionization, a focused primary ion beam is used to bombard a sample, ejecting 

secondary ions from the sample surface that are subsequently measured using a mass 

spectrometer. In imaging modality, Time-of-flight SIMS (TOF-SIMS) can reach submicron 

lateral resolution and is thus able to image the spatial distribution of metabolites in 

subcellular space. More and more researchers used TOF-SIMS for the detection of lipids and 

small molecules on single-cell surfaces (Kurczy ME et al., 2010; Colliver TL et al., 1997). One 

of its application for example, has been shown in 2013 when Leefmann and co-workers 

showed fatty acid cellular localization on cryosections of a phototropic microbial mat 

(Leefmann T et al., 2013). 

 

SIMS-TOF has been also used to analyze 3D distribution of drugs in macrophages (Passarelli 

MK et al., 2015) or in Hela cells (Huang L et al., 2016). Furthermore, the 3D depth profiling 

accuracy was validated by comparing the spatial distribution of polymeric nanoparticles 

measured by SIMS within HeLa cells with 3D optical data obtained by fluorescence labeling of 

polymeric nanoparticles (Graham DJ et al., 2016). 

 

An improvement of TOF-SIMS is nanoscale SIMS (NanoSIMS), which combines high spatial 

resolution with simultaneous detection of both heavy and light elements. It was used to 

image and monitor the internalization of a new group of platinum-based chemotherapeutics 

in MCF7 breast cancer cells (Wedlock LE et al., 2013).  

 

Despite its excellent lateral resolution, SIMS for single-cell analysis is typically limited in mass 

range to m/z < 500, and structural information is difficult to obtain. This is due to severe 

fragmentation of larger analyte ions and limited tandem mass spectrometry (MS/MS) 

capabilities in the imaging mode. 
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1.5.2 MALDI-IMS 

 

Compared to SIMS-IMS, MALDI-IMS is considered a better technique to analyse small and 

large molecules while causing minimal fragmentation (Zimmerman TA et al., 2008). In a 

typical MALDI-IMS experiment, a sample is mounted on a target plate, coated with a 

homogenous layer of an organic matrix, placed in an ionization chamber and analyzed by a 

laser beam that ‘scans’ a specific area of the sample and collects a mass spectrum for each 

coordinate. MALDI-IMS is completely label-free and it has been optimized to work at 

atmospheric pressure with minimal sample manipulation. 

 

The main disadvantages of MALDI-IMS in the past were the high vacuum in the ionization 

chamber and its low spatial resolution (> 10 µm) that have limited studies of metabolites 

distribution among single-cells.  Recent technological developments have led to the setup of 

atmospheric pressure instruments able to reach a spatial resolution of < 2 μm, while 

maintaining good mass resolution and accuracy, thus allowing single-cell imaging.  For 

example, atmospheric pressure scanning microprobe MALDI (SMALDI) or high vacuum 

transmission geometry, coupled with Orpitrap instruments, can allow higher spatial 

resolution, while keeping high sensitivity and mass accuracy (Spengler B and Hubert M et al., 

2002; Zavalin A et al., 2012).  

 

Several recent studies using MALDI imaging for single-cell metabolite profiling, used high 

spatial resolution to target cellular and sub-cellular lipids localizations. Indeed, lipids are 

particularly suited for MALDI-IMS analysis for two main reasons: first, lipids are abundant and 

second, the vast majority of them are already charged and this improves their ionization 

efficiency. One of the first example of MALDI-IMS analysis at single-cell level was reported in 

2012. Shober et al. utilized atmospheric pressure SMALDI to image a number of metabolites 

and lipids of individual HeLa cells with 7 μm resolution (Shober Y et al., 2012). Soon after, with 

the development of transmission geometry, Zavalin et al., performed direct imaging of lipids 

in single-cells at cellular and sub-cellular resolution with 1 μm spatial resolution (Zavalin A et 

al., 2012).  Kompauer et al. then, developed an atmospheric pressure SMALDI system with 
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1.4 μm lateral resolution, which was used to image P. caudatum single-cell organisms with 

subcellular resolution (Kompauer M et al., 2017).  

MALDI-IMS has been applied also to the study of neurons by Setou’s group, to analyze 

differences in intracellular PtdCho metabolism, by combining a microfluidic 

compartmentalized culture system with IMS (Sugiyama E et al., 2018). Another study 

employed 3D MALDI-IMS to map lipids distribution during the embryonic development of 

zebrafish (Duenas ME et al., 2017). 

 

While sub-cellular imaging, as described, can reveal unique insights into metabolites 

localization, studying the cellular heterogeneity requires a large number of cells to be 

analysed and thus, analytical and computational workflow. For example, Yang et al. applied 

MALDI-IMS to monitor the metabolite heterogeneity from > 100 single-cells in culture upon 

external stimulation (Yang B et al., 2018). Another solution has been proposed by 

Alexandrov’s group with the development of SpaceM, a method for spatial single-cell 

metabolomics of cell monolayers that integrates MALDI-imaging mass spectrometry with 

bright-field and fluorescence microscopy. With this method they analysed > 100 metabolites 

in > 10000 individual cells (Rappez L et al., Biorxiv).  

 

 All these pioneering works showed that MALDI-IMS is a good candidate to study metabolites, 

by keeping the spatial information, at cellular and sub-cellular resolution. However, when 

going to such high spatial resolution (< 2 µm), sensitivity and ion yield decrease dramatically, 

impeding sometimes to obtain interpretable mass spectra and reducing the number of 

recognizable compounds detected per ionization event. To this aim, post ionization 

approaches have been developed that increase the ionization yield of MALDI-IMS  

 

One of the most promising methods is called MALDI-2 where the beam of a second UV laser 

intercepts the plume generated by the primary MALDI laser to initiate a second MALDI-like 

ionization process leading to an increase of the ionization yields by up to two orders of 

magnitude (Soltwish J et al., 2015; Ellis SR et al., 2017). It has been shown that coupling the 

use of transmission geometry with MALDI-2 ionization it is possible to achieve crucial 

sensitivity and spatial resolution to visualize even less abundant metabolites at single-cell and 

sub-cellular level in tissue sections and cultured cells (Niehaus M et al., 2019). 
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1.6 Goal of the project 

 

Recent advances in single-cell biology have provided scientists with tools to study the variability 

associated with individual cells. Thanks to these approaches, cell-to-cell heterogeneity has 

emerged as a driver of self-organization, tissue development, differentiation events and 

multicellularity. While single-cell data are available for nucleic acids and by derivation for protein 

expression, they are still scarce for metabolic products (such as lipids), even though some studies 

have addressed and found that single-cell lipid variability plays a key role during development. 

Major reasons for this knowledge gap are the difficulties to visualise lipids in their biological 

context and to systematically analyse their amounts at the single-cell level.     

 

The main goal of this research project was to systematically study single-cell lipid variability and 

to investigate whether and how lipids can influence cell states and contribute to cell identity.  

 

Therefore, this project can be divided as follows: 

• Developing a workflow to systematically visualize a consistent fraction of the lipidome in 

single-cells by using MALDI-IMS on dermal human fibroblasts (dHFs). 

• Investigating cell-to-cell lipid variability.  

• Understanding the origin of single-cell lipid variability and whether specific lipid 

compositions relate to cellular states. 

• Evaluating how highly variable lipids participate in the maintenance of dHFs 

transcriptional states.



  

 32 



 Chapter 2  

 33 

 
CHAPTER 2. SINGLE-CELL LIPIDOMICS OF DERMAL HUMAN FIBROBLASTS  

 

Lipids are key components of eukaryotic cells since they contribute to several biological 

functions. Thanks to lipidomics, we now appreciate the lipid compositional dynamics of the 

cells and recent developments have provided MS with enough sensitivity to reveal molecules 

in a few hundred copies, making single-cell lipidomics possible. A technique with a potential 

use in single-cell lipidomics is Imaging Mass Spectrometry (IMS) and, in particular, MALDI-IMS. 

Indeed, latest MALDI-IMS instruments have reached a spatial resolution < 10 μm, thus 

allowing single-cell imaging. In this chapter, we aim to develop a workflow for single-cell 

lipidome analysis through MALDI-IMS. 

 

2.1 Single-Cell Lipidomics by MALDI-IMS 

 

In our workflow, we combined the use of high-resolution (25-50 µm2 pixel size) MALDI-IMS 

[AP-SMALDI10/5, TransMIT GmbH] and of large cells (i.e., dermal human fibroblasts) to 

investigate the lipidome of hundreds of individual cells cultured in standard laboratory 

conditions. According to this pipeline, low passage dermal Human Fibroblasts (dHFs) were 

fixed, coated with a MALDI matrix (2,5-DHB) and analysed in positive ion mode with high 

resolution MALDI-IMS in the lipid mass range (Figure 9).  

 

 
Figure 9. dHFs analysis workflow by MALDI-IMS. A) Schematic drawing of MALDI-IMS analysis. Cells 
were grown on coverslips, fixed and covered by a MALDI matrix. MALDI-IMS was performed on a small 
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area by rasterizing the laser across the field of the cells. Images of dHFs were reconstructed plotting 
the intensity of each m/z against the x,y coordinates. B) Mass spectrum acquired from a single 7 µm/ 
pixel mass spectrum in the lipid mass range (m/z 400-1600). 
 

 

As a first step of data analysis, 296 mass images in the lipid range were extracted from raw 

data by either Mirion (Paschke C et al., 2013) or MSiReader software (Bokhart M et al., 2017).  

Subsequently, peak attribution and lipids identification were obtained by combining Alex123 

(Husen P, 2013; https://git.embl.de/ejsing/alex123) and Metaspace metabolite annotation 

tool (Palmer A, 2017; https://metaspace2020.eu), and the LipidMaps database (Sud M, 2007; 

https://www.lipidmaps.org). As an independent validation of peak identity, lipid extracts from 

dHFs were analysed by Electrospray Ionization Liquid Chromatography Mass Spectrometry 

(ESI-LC/MS) and Multiple Reaction Monitoring (MRM) (Table 1). Specific peaks in the mass 

range of glycosphingolipids where their attribution was equivocal were further analysed by 

comparison with pure standards (Figure 10) or MS/MS fragmentation (Figure 11).  
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Figure 10. MALDI-TOF mass spectra of GSL standards. LactosylCeramide (LacCer), trihexosylceramide 
Gb3 and globosides Gb4 standards were analysed by MALDI-TOF in positive ion mode at 20 kV (upper 
panel) showing the presence of several species with different acyl chains. In the lower panel, lipids 
were extracted from dHFs and analysed by MALDI-TOF and compared to the mass spectra of GSL 
standards. 
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Figure 11. LC-MS/MS mass spectrum of Gb3 and Gb4. Lipids were extracted from dHFs and analysed 
by LC/MS analysis. Precursor ion species detected at m/z 1339.8824 and at m/z 1136.8240 were 
isolated and MS/MS fragmentations were obtained upon HCD fragmentation at 23 eV. Corresponding 
fragmentation scheme identified the precursor ion species as Gb4 (d18:1/C24:1) (upper panel) and 
Gb3 (d18:1/C24:1) (lower panel). 
 

 

Based on the combination of these approaches, to each peak was associated an Attribution 

Confidence Score (ACS) obtained as detailed in methods. According to this procedure, 205 

annotated peaks were obtained by MALDI-IMS (159 of which with high confidence; ACS > 5) 

(Figure 12) thus accounting for ~ 12% of the dHFs lipidome, as assessed by LC-MS (Figure 13).   

Therefore, by using MALDI-IMS we were among the first lab to accurately identify a good 

portion of the lipidome of a representative eukaryotic cell line with single-cell spatial 

resolution. 
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Figure 12. IMS images gallery of dHFs lipids identified with high accuracy. 7 μm ion images (354x218 
pixels), extracted from MsiReader software, of 159 lipids identified with high ACS (>5). All signal 
intensities were normalized to the Total Ion Count (TIC). The maximum value for the ion intensities is 
found in the lower left corner. Scale bar is 500 μm. 
 

 

 
 
Figure 13. Comparison between LC/MS and MALDI-IMS lipidomics analysis of dHFs. A) Lipid extracts 
from dHFs, were separated on a HILIC column and analysed by ESI-LC/MS in positive ion mode. m/z 
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values for the whole dHF lipidome are plotted against their retention times. Each dot represents a 
lipid and colour code is according to the lipid species they belong to. 1183 lipids were identified from 
17 different lipid classes. B) Positive ion mode MALDI-IMS analysis returned 296 ion images belonging 
to 13 lipid classes. By comparison with LC-ESI/MS, 205 lipids were identified, 159 of which with high 
confidence (ACS >5). 
 

 

2.2 Single-pixel analysis on MALDI-IMS images 

 

[The following analysis has been done in collaboration with Irina Khven] 

 

On the mass images obtained by Mirion software, a single-pixel analysis was attempted. Here, 

intensity values in individual pixels of the 296 known and unknown lipids were considered. 

These values were used to build a multidimensional vector map, using Uniform Manifold 

Approximation and Projection (UMAP) analysis followed by clustering. Pixel clustering, based 

on the lipid composition of individual pixels, was able to discriminate between pixels 

belonging to cellular or intercellular space (Figure 14A). Randomly sampled pixels among 

those assigned to the cellular space were then used to generate a pixel similarity heatmap 

based on Pearson Correlation (PC) (Figure 14B). A few discrete pixels with similar lipid 

signatures could be recognized, suggesting that a finite number of lipid configurations exist in 

the sample.  

 

 
 

Figure 14. Single pixel analysis. A) UMAP analysis of single pixels lipid intensities, coloured by assigned 
cluster. Single pixels belonging to intercellular and intracellular space were discriminated into two 
clusters and mapped into the corresponding mass image. B) Pixel similarity heatmap based on Pearson 
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Correlation (PC). Log10 normalized single pixel lipid values were used to calculate PC. Pixels with similar 
lipid composition were clustered together, both in vertical and horizontal axes, according to their PC 
and displayed as colour ranging from blue to red. 
 

 

Thus, a Principal Component Analysis (PCA) was performed and the different Principal 

Components (PCs) were mapped into the corresponding mass image. In particular, when PC1 

to 4 were mapped in the mass image, two interesting patterns emerged. PC1 and PC2 

highlighted pixels populating inner and outer cell aspects, respectively, while PC3 and PC4 

mapped to distinct cells (Figure 15A). This indicated that two major axis of lipid variation exist 

in dHFs: one deriving from the uneven intracellular distribution of lipids and another resulting 

from cell-to-cell heterogeneity. Major lipid contributors of the intracellular variability axis (PC1 

and PC2) were sphingomyelins (SMs) (enriched in ‘outer’ cell pixels) and glycerolipids and 

ceramides (Cers) (enriched in ‘inner’ cell pixels) (Figure 15B). Lipids accounting for the cell-to-

cell variation axis (PC3 and PC4) belonged instead to the glycosphingolipid (GSLs) series (i.e., 

trihexosylceramides [Gb3]; and globosides [Gb4]) (Figure 15B).  
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Figure 15. Principal Component Analysis of lipids based on single-pixel analysis.  A) The intensity 
values for each non-background pixel were used for principal component analysis. PC1 to PC4 values 
are displayed on the correspondent mass image. Positive (red) and Negative (blue) contribution of 
variables to each principal component is shown. For every component, 10 loadings (lipids) that 
positively (red) or negatively (blue) contributed the most are shown. B) 7 µm ion images (354x218 
pixels) showing the distribution of sphingolipids Cer 42:1 and SM 42:1 (left panel) or glycosphingolipids 
Gb3 42:1 and Gb4 42:1 (right panel).  
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2.3 Conclusions 

 

This thesis is among the first report to use high spatial resolution MALDI-IMS to analyse dHF 

lipidome at cellular levels. With our approach we have measured 205 lipids (159 of which with 

high confidence), thus representing 12% of dHF lipidome. Moreover, by single-pixel MALDI-

IMS analysis we revealed two major axes of variation in spatial lipid distribution: (i) an 

intracellular lipid inhomogeneity with complex sphingolipids preferentially populating 

peripheral cell areas and glycerolipids and sphingolipid precursors populating the perinuclear 

region; (ii) a marked cell-to-cell lipid variability whereby different sphingolipid species 

decorate the membranes of different cells in the population.  

 

Firstly, the existence of discrete lipid environments (i.e., lipid territories) at different cell 

compartments is in agreement with the notion that the plasma membrane (represented by 

the ‘outer’ cell pixels) is enriched with SMs while glycerolipids are distributed to all cell 

membranes (Devaux FP, 1991; Op den Kamp JA, 1979; Sandra A and Pagano RE, 1978; Holthuis 

JCM and Menon AK, 2014) and major Cer pools are produced in intracellular (biosynthetic and 

degradative) compartments (Mullen TD et al., 2012) (represented here by the ‘inner’ cell 

pixels).  

Secondly, these results align with previous reports were individual GSLs were found to vary in 

syngeneic cell populations (Russo D et al., 2018; Majoul I et al., 2002) and suggest that cell-to-

cell variability is a conserved feature of GSL metabolism. Importantly, through this approach 

we were able for the first time to simultaneously evaluate the relative distributions of multiple 

GSLs and GSL precursors (>25 individual species) and to interpret them in the context of the 

overall local lipid composition. 
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CHAPTER 3. INVESTIGATION OF CELL-TO-CELL LIPID VARIABILITY  

 

Lipids are key regulatory and bioactive molecules that have been shown to be cell-to-cell 

variable in syngeneic, homogeneous cell populations. However, cell-to-cell lipid variability has 

not been systematically explored so far, mainly due to technological barriers. We showed that 

MALDI-IMS is a good tool to study a large fraction of lipids in single-cell. Thus, in this chapter 

we studied cell-to-cell lipid variability deeper. 

 

3.1 Cell-to-cell lipid variability 

 

To investigate cell-to-cell variability we developed a dedicated MALDI-IMS workflow 

according to which, optical images were used to guide manual cell segmentation on MS 

images, and extract integrated count values for individual cells and for each of the MS peaks 

considered (Figure 16). Single-cells were therefore manually segmented to extract count 

values and the mass spectra were averaged for each Region of Interest (ROI). As shown in 

Figure 17, single-cells, defined as single ROI showed variable averaged mass spectra different 

from the one extracted from an area where only matrix is present. 

 

 
 

Figure 16. Single-cell IMS analysis workflow. Cells were grown on glass slides, fixed and processed for 
standard microscopy imaging. Microscopy images were then used as template to manually segment 
single-cells from 7 µm/ pixel mass images reconstructed by MSiReader software. Single-cell ion 
abundance data were extracted with the Region of Interest (ROI) segmentation tool after 
normalization over total ion count (TIC) and batch corrected with ComBat algorithm. 
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Figure 17. Single ROI mass spectra from individual cells. dHFs were fixed and stained for confocal 
microscopy with Phaseolus Vulgaris Lectins (red) and bodipy FL C5-Ceramide (green) to identify 
plasma membrane and intracellular compartments. Using microscopy images as template, cells were 
manually segmented to extract mass spectra from cells and from background (upper panel). In the 
bottom panel, single-cell averaged mass spectra in the lipid mass range (m/z 400-1600) are shown. 
Mass spectrum from the background shows peaks from 2,5-DHB MALDI matrix. 
 

 

In order to increase the statistical power and the robustness of the results, IMS analysis were 

also performed with a higher spatial resolution system: AP-SMALDI5 (TransMIT GmbH). 

Although the data coming from the two different instruments were processed using the 

python implementation ComBat (Johnson WE et al., 2007) to minimize batch effect, it was 

not possible to merge the two data set. Thus, the datasets were batch corrected separately 

(Figure 18) and kept separated for the following analyses. We analysed 160 cells with AP-

SMALDI10 and 257 cells with AP-SMALDI5.  
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Figure 18. Batch correction analysis of single-cell lipid data. Batch correction of variability between 
three replicates of MALDI-IMS analyses on dHFs by using the ComBat algorithm. PCA plots of the 
single-cell lipid profiles with cells colour-coded according to the replicate before and after batch 
correction are shown. Data from AP-SMALDI10 and AP-SMALDI5 are shown in A and B respectively. 
 

 

Batch corrected count values for individual cells and for each lipid were normalized according 

to their average values among individual cells and the obtained values were then used to 

cluster cells according to their lipid composition and lipids according to their co-variation 

among individual cells. In further details, the obtained single-cell lipidomics data were used 

to evaluate the cell-to-cell variability associated with individual lipid species expressed as 

Index of Dispersion (IoD; being the ratio of standard deviation over mean [s/µ] of the 

normalized intensity values associated with a lipid across cell populations). The obtained 

values were used to rank lipids according to their decreasing IoD. As shown in Figure 19, lipid 

species annotated as sphingolipids (i.e., Cers, SMs, and GSLs) populated the top IoD ranking 
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positions. Thus, this suggests again that dHFs display a specific cell-to-cell variability in the 

sphingolipid synthetic pathway (Figure 2). 

 

 
 

Figure 19. Lipid cell-to-cell variability. Batch corrected and normalized single-cell lipid values of 160 
cells (A) and 257 cells (B) were used to determine cell-to-cell variability by using the Index of 
Dispersion (IoD). Lipids were ranked from the most to the least variable and colour coded according 
to the major lipid class they belong to (sphingolipids in red, glycerolipids in grey). Normalized lipid 
levels in each cell are shown in the bottom part of the plots. The same analysis was performed with 
two instruments: AP-SMALDI10 in A and AP-SMALDI5 in B. 
 

 

To assess which lipid species co-vary across individual cells, lipid-to-lipid correlation 

(expressed as Pearson Correlation Coefficient [PCC]) was used to build a network where 

nodes are individual lipid species, node size represents IoD, node colour is according to lipid 

classes, node transparency depends on the Attribution Confidence Score (ACS; defined in 

Chapter 2 and detailed in Methods), and edges are drawn between lipid couples where their 

PCC is > 0.85. As shown in Figure 20, highly variable sphingolipids form discrete co-variation 

groups that are not directly connected among them. Notably, these groups consisted of SLs 

bearing the same headgroup (i.e., OH with Cers; Hexose with HexosylCeramides [HexCers]; 

Trihexose with Gb3 species; and N-acetil-hexose-trihexose with Gb4 species) but different 

ceramide backbones. 
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Figure 20. Single-cell lipid co-variation networks. Lipid networks were built using Cytoscape 3.8.0 
with the extracted lipid count values from the analysis obtained by AP-SMALDI10 (A) or AP-SMALDI5 
(B). Nodes are individual lipids, size represents IoD, colour is according to lipid class. Edges connect 
two lipids where the PCC of their values in the cell database is > 0.85. Dotted circles highlight 
covariation groups composed of lipids belonging to the same class. 
 

 

Accordingly, mass images showed that sphingolipids with different headgroups but same Cer 

backbone are differentially ‘expressed’ by individual dHFs (i.e., non-colocalized) while 

sphingolipids with same headgroup but different backbones are found to co-vary across the 

cell population (i.e., colocalized). When the relative abundance of couples of individual lipid 

species sharing either the same headgroup or backbone was plotted, lipids sharing the same 

headgroup were found to be more correlated than those sharing the same backbone, 

indicating that Cer processing is more cell-to-cell variable than Cer production (Figure 21). 
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Figure 21. Mass Images of highly variable lipids. AP-SMALDI10 ion images (354x218 pixels) showing 
the spatial distribution of sphingolipid precursors (Cer) and complex sphingolipids (HexCer, Gb3 and 
Gb4). Overlay images show how sphingolipids with the same headgroup but different acyl chains are 
co-localized, while sphingolipids with different headgroups but same acyl chain do not co-localize in 
single-cells. Scale bar is 500 μm. Bottom down and right, relative abundances of individual lipid species 
in each cell sharing either the same headgroup or backbone are plotted.  
 

 

In a parallel approach, single-cell lipidomes were also used to obtain graphs whereby cells 

were clustered according to their lipid content. As shown in Figure 22A, several cell clusters 

could be recognized. When the levels of prevalent sphingolipid species were considered for 

each cluster, we observed that given species (i.e., sharing the same headgroup and having 

different backbones) were enriched in specific cell clusters, suggesting that dHFs exist in lipid 

metabolic states characterized by discrete sphingolipid compositions (Figure 22B).  
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Figure 22. Cell-to-cell co-variation network. Cell network was built using Cytoscape 3.8.0 with the 
extracted lipid count values from the analysis obtained by AP-SMALDI5. A) Nodes are individual cell. 
Edges connect two cells where the PCC of their values in the lipid database is > 0.35. B) Violin plots of 
normalised and batch corrected single-cell values for the most variable sphingolipids in the different 
cell clusters. 
 

 

3.2 Conclusions 

 

In this chapter, we used for the first time MALDI-IMS as tool to investigate cell-to-cell 

variability of a large portion of dHF lipidome. With our approach, we analysed single-cell 

heterogeneity of 296 molecules in the lipid mass range, in more than 400 cells and with two 

different instruments, obtaining reproducible results. We found that specific lipid metabolic 

segments, and in particular the sphingolipid pathway, are cell-to-cell variable and that 

sphingolipid variability is due to headgroup processing. Finally, we also found that cell-to-cell 

sphingolipid variability is sufficient to describe cell sub-populations with specific lipid 

compositions. 
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CHAPTER 4. CORRELATIVE VIDEO/ MASS MICROSCOPY OF SINGLE 

dHFs REVEALS THE EXISTENCE OF CELL ‘LIPOTYPES’ .  

 

[In this chapter, the lineage data analysis was done in collaboration with Gioele La Manno] 

 

Different factors can contribute to cell-to-cell dHFs lipid heterogeneity including intrinsic 

stochasticity, local cell environment, cell cycle, or the existence of stable cell states through 

cell division. To assess which of these factors determine the observed lipid heterogeneity we 

developed a correlative video/mass microscopy experiment on dHFs. 

 

4. 1 Development of correlative video/ mass microscopy of dHFs 

 

Low passage dHFs were plated at low confluence and imaged by phase contrast microscopy 

for 68 hours. Cells were then fixed and coated with a MALDI matrix (2,5-DHB) and the same 

area imaged by phase contrast was analyzed in positive ion mode by high resolution MALDI-

IMS (as detailed in methods). Individual cells were traced to reconstruct phylogeny and cell 

division times. Different cell parameters were considered including time elapsed since last 

cell division, number of cell divisions and phylogeny and correlated with relative levels of 254 

known lipid species determined by MALDI-IMS (Table 1).  In more detail, 50 cells at time point 

0 were identified as progenitors. Tracking of progenitors and their progeny was carried out 

from time point 0 to time point 135 (68 h) by following cells manually and marking new 

daughter cells at each division with napari 0.3.8 (https://napari.org). Optical images were 

then used to guide automatic cell segmentation on mass images to extract single-cell lipid 

count values (Figure 23). 
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Figure 23. Correlative video/ mass microscopy of dHFs. dHFs were plated on gridded glass-bottomed 
tissue culture dish and imaged by phase contrast microscopy over 68h. After fixation, cells were 
processed for MALDI-IMS. A) Still images at different time point of the time-lapse are shown in the 
upper panel. Lower panel illustrate how individual cells were followed. 50 cells were identified as 
progenitors and by a different colour and manually tracked for 68h.  Sister cells were identified with 
the same colour. B) 5 µm AP-SMALDI5 ion images (314x314 pixels) showing the distribution of 3 know 
lipids. The maximum values for the ion intensities could be found in the lower left corner. Scale bar is 
500 µm 
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Single-cell lipid count values were used to build a t-distributed Stochastic Neighbour 

Embedding (t-SNE) dimensionality reduction map, were cells sharing similar lipid composition 

clustered together (Figure 24). 

 

 
 

Figure 24. t-SNE dimensionality reduction analysis on dHFs based on single-cell lipid count values.  
Cells were clustered according to the values of 254 lipids extracted from the MALDI-IMS analysis by 
AP-SMALDI5. Lipid composition variances between cells (n= 125) are displayed as t-SNE, revealing the 
existence of 4 clusters.  
 

 

We then analyzed the phylogeny of each cell (Figure 25A) and calculated the frequency by 

which phylogenetically related cells (i.e., sister, cousin, and aunt cells) belong to same or 

different lipidome-defined cell clusters. We found that phylogenetically related cells are more 

likely to belong to the same cell cluster (i.e., to share a similar lipid composition) with the 

exception of cluster 4 (Figure 25B). When we calculated the time elapsed since last cell 

division for each cell in the four clusters, we found no significant difference between the 

clusters (Figure 25C).  
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Figure 25. Lineage analysis of dHFs. Each cell in the four clusters was manually tracked from time 
frame 0 to time frame 134. A) Cell hierarchy built on napari 0.3.8 is shown. Cells indicated with a grey 
box were not analyzed by MALDI-IMS. B) Probability analysis. C) Cell divisions were manually identified 
for each cell and reported here. For each cell, the frame number where we identified its last division, 
was manually identified. 
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These findings indicate that given lipidome configurations are stable across cell generations. 

To understand whether this holds true for the entire lipidome or whether few lipid species 

account for the existence of stable lipid states, we performed an analysis of lipid-based family 

separability for each lipid. To do this, we averaged the values of each lipid within a cell family 

and sorted the families from the one with the lowest average lipid level to the one with the 

highest without breaking any kinship link in the lineage (Figure 26A). As a statistical test, we 

plotted the trend of summing lipid levels across the sorted individual cells and compared it 

with the expected trend obtained by repeatedly (500 repetitions) permuting the lipid count 

values among cells but keeping the lineage structure constant (Figure 26B,C). By subtracting 

the observed from the expected trend, we obtained a value that we defined Area Under the 

Curve (AUC) and a corresponding p-value for each lipid (Figure 26C). When we considered the 

AUC along with the cell-to-cell variability associated with each lipid, we found that these two 

values were generally well correlated, and that lipids with a significant AUC difference (i.e., q-

value <0.05) were frequently identified among those with high cell-to-cell variability levels 

(Figure 26D). This suggests that lipids whose levels vary (i.e., those that contribute the most 

to lipidome-defined cell clusters) are well-propagated across cell generations.  Accordingly, 

when looking at the lipids with the highest q-value, we found them to belong to the 

sphingolipid and glycosphingolipid classes (Figure 27).  

 

 
 

 
Figure 26. Lipid-based family separability analysis. Analysis was performed for each lipid using a 
family-constrained sorting. A) Lipid-based family analysis of lipid Gb4 40:1 is shown as an example. 
Families were ordered moving entire clades and pivoting daughter cells with a python custom script. 
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Colour scale is according to lipid level (blue represents low levels, red represents high lipid levels).  B) 
A test statistic was performed considering the cumulative sum of values across the sorted families 
(red line) after this sorting was corrected by its expectation (black line). Dotted line represents a 
uniform situation where lipid intensities are equal in each cell. C) An empirical statistical test was 
performed 500 times, permuting the lipid values and keeping the lineage structure constant (blue 
shadow). In the right panel the AUC difference against the difference between the observed and 
expected curve is shown with the statistical significance (p-value) for lipid Gb4 40:1. D) AUC difference 
for each lipid is shown. Lipids with q-value < 0.05 (red dots) are considered significantly segregated 
from the others. 
 

 

 
 

 
Figure 27. Lipid analyzed based on family separability analysis. A) Empirical non-parametric p-values 
for each lipid, analyzed based on AUC differences, were FDR-corrected with [alpha = 0.05] to calculate 
the q-value.  Only lipids with q-value <0.05 are considered significant (red dots). B) Lipids were ordered 
according to their AUC difference.  C, D) Lipids with the highest and smallest AUC difference are 
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shown. Dendrograms showing lipids level calculated for each cell of the family. Colour scale is 
according to the lipid level (blue represents low levels, red represents high lipid levels). 
 

 

4.2 Conclusions 

 

Here we set up a correlative video/ mass microscopy approach to investigate the origin of 

cell-to-cell lipid variability. Our data indicate that a relevant fraction of cell-to-cell lipid 

variability is explained by phylogeny, with sister and related cells having higher chance to 

share a similar lipid composition. Lipids where their levels are similar within cell families are 

the same sphingolipids that account for the lipidome-defined cell clusters.  

 

These data suggest that individual dHFs experience different lipid metabolic states that are 

largely determined by their sphingolipid composition and that are possibly relative stable 

states that are inherited through cell generations. For simplicity, hereafter we refer to these 

lipid metabolic states as lipotypes. 
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CHAPTER 5.  MS-INDEPENDENT VALIDATION OF CELL-TO-CELL LIPID 

VARIABILITY 

 

This report is among the first to investigate steady-state cell-to-cell lipid variability in a 

syngeneic cell population, based on single-cell lipidomics analysis by MALDI-IMS. Whether 

the obtained data faithfully reflect an actual difference in cell lipid composition is hard to 

conclude based on MALDI-IMS data only. In this chapter we independently validate our 

MALDI-IMS findings.  

 

5.1 Validation of single-cell lipid heterogeneity by using bacterial toxins  

 

To independently test lipid variability in dHFs we took advantage of the use of bacterial toxins 

fragments: ShigaToxinB1a (ShTxB1a), ShigaToxinB2e (ShTxB2e), and CholeraToxinB (ChTxB).  

These toxins recognize sphingolipid headgroups to intoxicate cells, with ShTxB1a binding to 

trihexosylceramide Gb3 (Jacewicz MARY, et al., 1986), ShTxB2e binding to Gb3 and globosides 

Gb4 (Muthing J et al., 2009), and ChTxB binding the ganglioside GM1 (van Heyningen S, 1974). 

Thus, we used ShTxB1a, ShTxB2e and ChTxB to reveal GSLs in single dHFs by standard 

fluorescence microscopy and found that they bind dHFs with different patterns of cell-to-cell 

variability reminiscent of what observed by MALDI-IMS (Figure 28). 
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Figure 28. Bacterial toxin staining of dHFs. dHFs were fixed and processed for fluorescence 
microscopy. Cells were stained with bacterial toxins ShTxB1a (green), ShTxB2e (red), ChTxB (blue) and 
Hoechst (grey) for nuclei and images acquired by confocal microscopy. Scale bar is 50 μm. 
 

 

Along similar lines, cytofluorimetric assessment of toxin binding to dHFs membranes returned 

a heterogeneous picture with ShTxB1a, ShTxB2e and ChTxB identifying different cell 

populations (Figure 29). 

 

 
 
Figure 29. Cytofluorometric analysis of dHFs using bacterial toxins. Cells were fixed and stained with 
toxins recognizing lipid Gb3 (ShTxB1a/ShTxB2e), Gb4 (ShTxB2e) and GM1 (ChTxB). Side scatter plots 
and violin plots of log10 fluorescence intensity value for each toxin are shown for each toxin. Unstained 
cells were used as negative control. Cells were gated on the singlet population. 
 

 

Importantly, chemical inhibitors of three different reactions involved in SLs production (i.e., 

myriocin, Fumonisin B1 (FB1), and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-

propanol [D-threo-PDMP]) (Figure 30A) affected toxin binding in a predictable manner 

(Figure 30B) indicating that toxin binding is a faithful proxy for dHF membranes SL 

composition in our setting. Similar results were obtained by silencing of key enzymes involved 

in GSLs production (i.e., ST3GAL5, encoding GM3 synthase [GM3S]; A4GALT, encoding Gb3 

synthase [Gb3S]; and B3GALNT1, encoding Gb4 synthase [Gb4S]) (Figure 31). 
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Figure 30. Chemical inhibition of sphingolipid biosynthetic pathway. A) Schematic and simplified 
representation of the de novo sphingolipid biosynthetic pathway with the enzymes affected by drug 
inhibition. As shown in the figure, myriocin inhibits SPTLC, FB1 inhibits CerS and PDMP inhibits UGCG. 
SPTLC, Serine palmitoyltransferase; CerS, Ceramide Synthase; UGCG, UDP-Glucose Ceramide 
Glucosyltransferase. B) Cytofluorometric analysis of dHFs. Cells were treated with SL inhibitors (2.5 
μM myriocin, 25 μM FB1 or 10 μM PDMP) for 6 days and stained with ShTxB1a, ShTxB2e and ChTxB. 
Side scatter plots of log10 fluorescence intensity values for each toxin are shown. Unstained cells were 
used as negative control. Cells were gated on the singlet population. Control cells are shown in blue; 
treated cells in red. CTRL, n= 23’806; FB1, n= 23’007; myriocin, n= 22’470; PDMP, n= 25’308. 
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Figure 31. Cytofluorometric analysis of dHFs after siRNA-KD of the main GSL synthesizing enzymes. 
Cells were silenced for Gb3S (A4GALT), Gb4S (B3GALNT1) and GM3S (ST3GAL5) for 96h and then 
processed for flow cytometry. Cells were stained with ShTxB1a, ShTxB2e and ChTxB. Side scatter plots 
of log10 fluorescence intensity values for each toxin are shown. Unstained cells were used as negative 
control. Cells were gated on the singlet population. Control cells are shown in blue, treated cells in red 
(left panel). Histograms of the frequency distribution are shown for each condition and for each toxin 
binding (right panel). 
 

 

As a further validation test, we decided to directly correlate toxin staining and MALDI-IMS.   

To this aim, dHFs were first stained with ShTxB1a, ShTxB2e and ChTxB and subsequently 

imaged by MALDI-IMS. As shown in Figure 32A a close correspondence was found between 

the two imaging methods. In fact, cells stained by only ShTxB2e have a prevalent Gb4 positive 

profile in MALDI-IMS, those stained by both ShTxB1a and ShTxB2e have a prevalent Gb3 

positive profile in MALDI-IMS, and those stained by ChTxB have a Gb3 and Gb4 negative 
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profile in MALDI-IMS (note that GM1 is not revealed by positive ion mode MALDI-IMS under 

the conditions used). Cells were then manually segmented to analyse both toxins 

fluorescence intensity in confocal images and lipids intensity in mass images, to analyse the 

correspondence between toxins and lipid for each cell. As shown in Figure 32B, a very strong 

correlation was found between ShTxB staining (both ShTxB1a and ShTxB2e) and the lipids 

they recognize (Gb3 and Gb4, independently on the acyl chain) while anti-correlation was 

found between ChTxB and lipids Gb3 and Gb4.  

 

 
 
Figure 32. Correlative IMS-confocal analysis of dHFs. A) Cells were fixed and stained with bacterial 
toxins ShTxB1a (green), ShTxB2e (red) and ChTxB (blue) and images acquired by confocal microscopy 
(upper panel). Cells were then covered by a MALDI matrix and analysed by MALDI-IMS at high spatial 
resolution (5 μm) (lower panel). Overlay ion image (320x320 pixels) of complex sphingolipids [SM 
(42:1), Gb3 (42:1) and Gb4 (42:1)] showed good correspondence with the confocal image. Scale bar is 
200 μm. B) Confocal images were manually segmented by Fiji software to calculate integrated 
intensities, while mass images where manually segmented by MSiReader software to obtain single cell 
lipids intensity. Data were plotted as log2 relative intensity in each cell. Correlation was evaluated 
calculating R2 for each toxin-lipid couple; n= 88. 
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We then asked whether the observed cell-to-cell lipid variability was specific to the dHF line 

and to the in vitro conditions used in this study. Thus, 4 independent dHF lines collected from 

healthy individuals were analysed by toxin staining coupled with cytofluorimetry. As 

reported in Figure 33 all the tested fibroblast lines showed a cell to-cell variable GSL pattern, 

though with differences in the size of the different GSL-defined populations. Furthermore, 

in a similar way described in chapter 4, dHFs were imaged by phase contrast microscopy for 

72 hours, fixed and processed for confocal microscopy, in order to confirm with toxin staining 

that phylogeny determine the observed lipid heterogeneity (Figure 34).  
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Figure 33. Cytofluorometric assessment of lipid heterogeneity in dHFs from healthy donors. 
Cytofluorometric analysis of 4 dHFs lines from healthy donors. Cells were stained with toxins 
recognizing lipid Gb3 (ShTxB1a/ShTxB2e), Gb4 (ShTxB2e) and GM1 (ChTxB). Side scatter plots and 
violin plots of log10 fluorescence intensity values for each toxin are shown. Unstained cells were used 
as negative control. Cells were gated on the singlet population; n is indicated in the graph. 
 

 

 
 

Figure 34. Correlative video/ confocal microscopy of dHFs. A) dHFs were plated on gridded glass-
bottomed tissue culture dish and imaged by phase contrast microscopy over 72 h. Here a small part 
of one field is shown as example. B) After fixation, cells were stained with ShTxB1a (red), ShTxB2e 
(green) and ChTxB (blue). Confocal images were acquired in the same fields imaged by video 
microscopy. Here two field are grouped together and showed as example for confocal images.  
 

 

After toxin staining, each cell was segmented to analyse their lipid composition by quantifying 

fluorescence intensities of each toxin. When analysed for lineage tracking, we found that cells 

sharing the same lipid composition were found to derive in most cases from a single 

progenitor indicating that, once established, a specific GSL state (i.e. ChTxB+, ShTxB2e+, 
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ShTxB1a+ShTxB2e+ or ChTxB+ShTxB2e+ShTxB1a+) can be maintained through cell generations 

(Figure 35). 

 

 

 

Figure 35. Dendrograms of single-cell lipid composition across cell generation. 56 daughter cells 
were manually segmented to analyse fluorescence intensities (represented as percentage) and 
tracked back to identify their common progenitor.  
 

 

Heterogeneous cell-to-cell GSL composition could be also accounted by the single-cell 

expression of involved metabolic enzymes. To test this, mRNA fluorescence in situ 

hybridization (FISH) experiments were performed to simultaneously detect ST3GAL5 (GM3S), 

A4GALT (Gb3S), and B3GALNT1 (Gb4S) mRNAs in individual dHFs (Figure 36). By evaluating 
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the FISH signals in >750 individual cells we found that A4GALT and B3GALNT1 expression 

largely correlated. A4GALT expression predominate while a discrete cell population showed 

high B3GALNT1 mRNA expression. On the contrary ST3GAL5 showed an overall tendency to 

anti-correlate with both A4GALT and B3GALNT1 which was reminiscent of the relationship 

among the lipids produced by these enzymes (compare with Figure 29).  
 

 

 
 
Figure 36. Fluorescence in situ hybridization (FISH) analysis of GSL synthesizing enzymes. A) 
Representative confocal microscopy images of mRNA-FISH using A4GALT (Gb3S) (green), B3GALNT1 
(Gb4S) (red) and ST3GAL5 (GM3S) (cyan) probes. Nuclei were labelled with Hoechst (blue). Scale bar 
is 50 µm. B) Quantification of mRNA-FISH analysis in 758 individual cells. Number of spots per cells is 
shown as violin plot or side scatter plot for each gene. 
 

 

Since previous results were obtained in cultured dHFs, we wanted to know whether these 

phenotypes would hold in a more physiological condition. Therefore, we tested the GSL 

profile in the context of skin biopsies. We found that in their physiological context, bona fide 

dHFs also display remarkable cell-to-cell GSLs heterogeneity (Figure 37). 
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Figure 37. Characterization of skin tissue sections by bacterial toxins. Skin tissue sections embedded 
in Optimal Cutting Temperature (OCT) compound were processed for immunohistochemistry (IHC). 
A) Tissue section was stained with Pan-Keratin (red) and vimentin (green) to identify keratinocyte and 
fibroblasts, respectively. B) Tissue section was stained with bacterial toxins ShTxB1a (green), ShTxB2e 
(red) and ChTxB (cyan). Scale bar is 100 µm. 
 

 

5.2 Conclusions 

 

In this chapter we validated the existence of distinct SL lipotypes in dHFs with independent 

methods thanks to the use of bacterial toxins that recognize GSLs. We confirm the idea that 

a relevant fraction of cell-to-cell lipid variability is explained by phylogeny, with sister and 

related cells having higher chances to share a similar lipid composition. Finally, we found cell-

to-cell lipid heterogeneity to exist under physiological conditions, in skin biopsies from 

healthy individuals, and to possibly derive from distinct cell transcriptional configurations that 

in turn influence GSL synthesizing enzymes. 
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CHAPTER 6.  THE ORIGIN OF CELL-TO-CELL LIPID VARIABILITY:  

LIPOTYPES MARK SPECIFIC CELL STATES 

 

[In this chapter, scRNAseq experiment and data analysis for both scRNAseq and bulk RNAseq 

has been done in collaboration with Irina Khven and Gioele La Manno] 

 

As shown in the previous chapters, our results suggest that cell-to-cell lipid variability in dHFs 

is a consequence of discrete single-cell transcriptional states. It is increasingly appreciated 

that fibroblasts, are heterogeneous cells that, exhibit functional specialization due to the 

existence of multiple cell subtypes (i.e., cytotypes) (Lynch MD and Watt F, 2018; Rognoni E 

and Watt F, 2018). In this chapter, we thus asked whether specific lipotypes relate to discrete 

fibroblast cell states.  

 

6.1 Transcriptomic analysis of dHFs 

 

To study what global transcriptional configurations are associated with the different 

lipotypes, scRNAseq for a total of 5652 dHFs was performed. UMAP dimensionality reduction 

analysis was applied on global patterns of gene expression for each individual cell and 

automated clustering identified 17 cell groups (Figure 38A). When the relationship among 

these 17 groups was investigated we found them to converge into 6 recognizable super-

clusters (Figure 38B). Genes enriched in the clusters were identified and mapped in the UMAP 

space highlighting six major variation axes linked to proliferation; pro-inflammatory cytokine 

secretion (inflammatory), pro-fibrotic secretion (fibrogenic), extracellular matrix remodelling 

(fibrolytic) and angiogenic secretion (vascular). A further group represented bona fide basal-

state fibroblasts (basal) (Figure 38C). 
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Figure 38. UMAP analysis after scRNAseq analysis. A) UMAP analysis of 10x Genomics Chromium 
based scRNAseq of 5652 individual dHFs coloured by assigned cluster. Louvain clustering algorithm 
returned 17 cell clusters. B) Top marker genes were identified with the Wilcoxon test for each cluster. 
Expression dot plots of these genes were used to cluster subgroups. C) UMAP projections of canonical 
markers for basal, proliferative, fibrogenic, inflammatory, fibrolytic and vascular cell states. Colour 
scale is according to gene expression level. 
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Next, dHFs were stained with bacterial toxins and isolated according to their lipotype by 

fluorescence activated cell sorting (FACS) to perform RNA bulk sequencing analysis (Figure 

39A,B).  
 

 

 
 
Figure 39. Bulk RNAseq analysis of dHFs FACS sorted according to their lipotypes. A) FACS sorting of 
dHFs. Cells were stained with toxins recognizing lipid Gb3 (ShTxB1a/ ShTxB2e), Gb4 (ShTxB2e) and 
GM1 (ChTxB). Unstained cells were used as negative control. Cells were gated on the singlet 
population. Violin plots and side scatter plots of log10 fluorescence intensity values for each toxin with 
the sorting gates are shown. Four population (ChTxB+, ShTxB2e+, ShTxB1a+ShTxB2e+ and 
ChTxB+ShTxB2e+ShTxB1a+) were isolated and processed for RNA extraction and bulk RNA-seq. B) 
Scatterplot matrices comparing the total gene expression in each lipotype. Top differentially 
expressed genes are shown for each comparison. 
 

 

The averaged expression level of the 250 top genes found to be differentially expressed 

between the different lipotypes after bulk RNAseq were used to build lipotype signatures 

(Table 2). Lipotype gene signatures were used to calculate enrichment in functional 

categories. ChTxB+ showed high expression of genes involved in extracellular matrix 

organization. ShTxB2e+ showed high expression of genes involved in differentiation. 

ShTxB1a/2e+ showed high expression of genes involved in cell proliferation and triple positive 
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cells of genes involved in cytokine mediated pathways (Figure 40), indicating a good degree 

of specialization among dHF bearing different lipotypes.   

 

 
 

Figure 40. Over-Represented gene ontology Analysis (ORA). GO analysis were performed on 354 
genes found to be unambiguous and annotated to belong to functional categories. Each panel 
represents the enrichment ratio of the over-represented genes for each lipotype and the biological 
process they belong to.  

 

Lipotype gene signatures were then mapped into the UMAP space showing that they belong 

to discrete UMAP areas corresponding to the major transcriptional cluster (i.e., triple positive 

cells corresponded to inflammatory, fibrolytic and vascular fibroblasts, ShTxB1a/2e+ 

corresponded to proliferating cells, ShTxB2e+ corresponded to basal state fibroblasts, and 

ChTxB+ corresponded to fibrogenic fibroblasts) suggesting that specific membrane lipid 

compositions are associated with specific cell states (Figure 41).  
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Figure 41. Lipotype signatures mapped in the UMAP space. A) UMAP analysis of scRNAseq of 5652 
single dHFs coloured by assigned cluster. B) UMAP projections of lipotypes gene signatures. 250 top 
differentially expressed genes were used to calculate the average Z-score that was plotted into the 
UMAP space. Colour scale is according to Z-score level. 

 

 

As even further validation, dHFs were stained with toxins and counterstained with markers 

of given cytotypes. As shown in Figure 42, a good correlation was found between lipotypes 

and markers of different cell states. In particular, a marker for fibrogenic cells, smooth muscle 

actin (encoded by the gene ACTA2) was found to have a good correlation with ChTxB, while a 

marker for cell cycle and basal state dHFs laminin A (encoded by the gene LMNA) had a good 

correlation with ShTxB2e. 
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Figure 42. IF staining of dHFs with specific markers belonging to distinct transcriptional state. ACTA2 
and LMNA were chosen as key markers for fibrogenic or basal dHFs states and plotted in the UMAP 
space (left panel). dHFs were then fixed and processed for IF. Cells were stained with bacterial toxins 
ShTxB1a/B2e (red) and ChTxB (green) and images acquired by confocal microscopy. In the right panel, 
merge images show how fibrogenic genes overlap with ChTxB+ cells while basal dHFs genes overlap 
with ShTxB2e+ cells. Scale bar is 100 µm. 

 

 

6. 2 Conclusions 

 

This chapter was dedicated to the understanding of the transcriptional configurations 

associated to dHFs in culture by using combination of toxins staining, which represent a way 

to visualize our lipotypes, and RNAseq analysis, to visualize the different transcriptional state 

(i.e. cytotypes). We could confirm that our dHFs in culture are associated with multiple 

transcriptional states. Importantly, we found that specific lipid configurations correspond to 

specific fibroblast states, with triple positive cells being pro-inflammatory fibroblasts, 

ShTxB1a/2e+ being proliferating cells, ShTxB2e+ being basal-state fibroblasts, and ChTxB+ 

being fibrogenic cells. These data trigger the question of whether lipid heterogeneity 

contributes to cell fate specification that we investigated in the following chapter.
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CHAPTER 7. HIGHLY VARIABLE LIPIDS PARTICIPATE IN THE 

MAINTENANCE OF FIBROBLASTS TRANSCRIPTIONAL STATES 

 

[In this chapter, the scRNA-seq experiment and data analysis has been done in collaboration 

with Irina Khven and Gioele La Manno] 

 

GSL remodelling has been reported during cell differentiation to the point that GSLs have 

been used as differentiation stage and cell-type specific markers. It has also been shown that 

GSL synthesis does not prevent cells growth in culture but stops embryonic development at 

an early stage. This suggests that GSLs are necessary for tissue patterning and 

multicellularity. Our results showed that given GSLs configurations (lipotypes) are associated 

with precise dHF states. In this chapter, we asked whether GSL metabolism influences 

transcriptional programs involved in the establishment of these dHFs states. 

 

7.1 Transcriptomic analysis of dHFs after sphingolipids depletion 

 

To study whether lipids participate in the maintenance of fibroblast transcriptional states, 

scRNAseq for a total of 6546 dHFs was performed in absence of SLs. In particular, SL 

biosynthetic pathway was blocked using a CerS inhibitor, FB1, as it showed a strong effect in 

decreasing SL synthesis (as shown in Figure 30). The scRNAseq experiment was performed in 

duplicate in two different days to ensure reproducibility. UMAP dimensionality reduction 

analysis was applied on global patterns of gene expression for each cell showing a global 

change in the transcriptional landscape (Figure 43).  
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Figure 43. UMAP analysis of control and FB1 treated dHFs after scRNAseq analysis. UMAP analysis 
of 10x Genomics Chromium based single-cell RNAseq of 5652 single dHF for CTRL sample and 6546 
single dHFs for FB1 treated sample. A) UMAP space of CTRL and FB1 treated. B) UMAP space of the 
two replicates for CTRL and treated sample show the high reproducibility of the analysis. 

 

 

Data from control and treated samples were then integrated to identify the most significant 

transcriptional changes induced by sphingolipid depletion. when mapped in the 

transcriptional space along with control cells, FB1 treated dHFs displayed a different 

distribution (Figure 44A). FB1 treated cells were more frequently associated with fibrolytic 

(from 6% in CTRL to 23% in FB1 treated) and vascular (from 0.6% in CTRL to 1.3% in FB1 

treated) states and less with the fibrogenic (from 48% in CTRL to 40% in FB1 treated) or 

inflammatory (from 9% in CTRL to 6% in FB1 treated) states (Figure 44B). When looking at the 

density map, it appeared even more clearly that SL inhibition by FB1 shifted cells from a 

fibrogenic state, associated with ECM organization, to a more fibrolytic state, associated with 

ECM degrading proteins (Figure 44C).  
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Figure 44. UMAP and cell density map of control and FB1 treated dHFs after scRNAseq. A) Integrated 
UMAP projections of CTRL (5652 individual dHFs) and FB1 treated cells (6546 individual dHFs) coloured 
by assigned cluster. B) Quantification of cell distribution across basal, proliferative, fibrogenic, 
inflammatory, fibrolytic and vascular cell clusters in CTRL and FB1 treated cells expressed as 
percentage of total cells. C) Density maps of CTRL and FB1 treated cells mapped in the integrated 
UMAP space. High relative cell density is shown as yellow. 
 
 
When marker genes for fibrogenic cells, such as ACTA2 (i.e. smooth muscle actin SMa), or for 
fibrolytic cells, such as MMP1 (i.e. metalloprotease 1), where mapped into the integrated 
UMAP space, we found that fibrolytic proteins populated in FB1 treated sample, the area that 
was poorly populated in CTRL cells (Figure 45). 
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Figure 45. Integrated UMAP map of key marker genes for fibrogenic or fibrolytic genes. UMAP 
projections of genes encoding ECM depositing proteins (upper panel) or metalloproteases and (lower 
panel). Colour scale is according to gene expression level. 
 

 

7.2 GSLs participate in the activation of FGF and TGF-b signalling pathways 

 

It has been shown that both in physiological and pathological conditions, such as fibrosis, 

dHFs can exit their quiescent state and become “activated”. This process is driven by the 

activation of specific signalling pathways. Among these pathways, major contributors are 

Fibroblast Growth Factor (FGF) and Transforming Growth Factor Beta (TGF-b) signalling. They 

act through a reciprocal-negative regulation inducing fibrolytic or fibrotic states, respectively 

(David CJ and Massague´ J, 2018; Calon A et al., 2014; Bishen KA et al., 2008; Inoue Y et al., 

2002; Bordignon P et al., 2019). Thus, we evaluated the expression of FGF or TGF-b 

transcriptional signatures in dHFs (listed in Table 3 and obtained as detailed in Bordignon P 

et al., 2019) and found that genes upregulated in TGF-b and downregulated in FGF pathways 

map the region where fibrogenic genes are, while genes downregulated in TGF-b and 

upregulated in FGF fall in the region of the UMAP highly populated after FB1 treatment 

(Figure 46). Going further, we mapped some of the marker genes for the FGF or TGF-b 

signalling pathways onto the UMAP space (Figure 47).  

 

 

 

 
Figure 46. Integrated UMAP projections of FGF and TGF-b gene signatures. Signature genes were 
used to calculate the average Z-scores that were plotted into the UMAP space. Colour scale is 
according to Z-scores. 
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Figure 47. UMAP projections of key marker genes up-regulated in FGF or TGF-b signalling pathways. 
Genes signatures were obtained as described in Bordignon et al., 2019. Colour scale is according to 
gene expression level. 
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Western blot (WB), quantitative real-time PCR (qRT-PCR) and immunofluorescence (IF) 

analysis on selected markers confirmed that there is a shift from TGF-b to FGF signatures when 

we treated dHFs with FB1, and extended this result to other SL synthetic inhibitors D-threo-

PDMP and myriocin (Figure 48). 

 

 
 

Figure 48. qRT-PCR, WB and IF analysis of FGF and TGF-b genes after SLs depletion. dHFs were 
treated with SL inhibitors (2.5 µM myriocin, 25 µM FB1 or 10 µM PDMP) for 6 days and processed for 
qRT-PCR, IF or WB. A) mRNA levels of TGF-b and FGF genes were evaluated in CTRL and FB1 treated 
cells. qPCR data are shown as log2 fold change over control. (n=3; data are means ± StDev). B) Cells 
were lysed and processed for SDS-PAGE and western blotting analysis with antibodies recognizing 
ACTA2 and MMP1. Data were normalized against GAPDH and shown as log2 fold change over control.  
(n=3; data are means ± StDev; ***p <0.001 [Student’s t-test]). C) Cells were fixed and stained with 
ACTA2 (red) or MMP1 (green) antibodies. Scale bar is 50 µm. 
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The effect of the SLs inhibition could be consequence of two opposite response: an inhibition 

of the TGF-b or an activation of the FGF signalling pathways. When we challenged dHFs with 

increasing amounts of TGF-b1 we found that sphingolipid depletion does not inhibit TGF-b 

signalling, since the effect of TGF-b1 on ACTA2 and MMP1 levels was amplified in FB1 treated 

cells. On the other side when we treated cells with increasing amounts of FGF2, we found 

that FB1 treated cells are sensitized to FGF signalling, since ACTA2 and MMP1 levels were 

lower and higher compared to CTRL cells, respectively. This suggested that SLs depletion is 

influencing FGF signalling, possibly activating the FGF receptor (Figure 49). 

 
 
Figure 49. FGF2 and TGF-b1 dose response analysis after SLs depletion by FB1. Cells were treated for 
6 days with 25 μM FB1 and then serum starved for 8h and fed with increasing concentration of FGF2 
or TGF-b1 for 72h. Cells were then lysed and processed for SDS-PAGE and western blotting analysis 
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with antibodies recognizing ACTA2 and MMP1. Quantification is shown in the upper panels. Data were 
normalized against GAPDH and shown as log2 fold change over control; n=4. 
 

 

To understand how these two axes are impacted by sphingolipid depletion we took advantage 

of dHFs where FGF or TGF-b signalling pathways were inactivated due to the expression of 

dominant negative versions of the TGF-b Receptor 2 (i.e., DNTGFR2) or of FGF Receptor 1 (i.e., 

DNFGFR1). These cell lines were treated with FB1 and their transcriptional response was 

analysed by qRT-PCR and WB (Figure 50). We observed that FB1 was ineffective in inducing its 

transcriptional changes in DNFGFR1-dHFs, indicating that sphingolipids influence FGF 

transcriptional program possibly modulating FGF receptor activity at the plasma membrane.  

 

 

 
 
Figure 50. qRT-PCR and WB analysis of FGF and TGF-b key markers after FB1 treatment on DNTGFR2 
and DNFGFR1 dHFs. dHFs were treated with 25 µM FB1 for 6 days and processed for qRT-PCR or SDS-
PAGE and western blotting. A) mRNA levels of TGF-b and FGF genes were evaluated in CTRL and FB1 
treated cells. qRT-PCR data are shown as log2 fold change over control. (n=3; data are means ± StDev). 
B) Cells were lysed and processed for SDS-PAGE and western blotting analysis with antibodies 
recognizing ACTA2 and MMP1. Data were normalized against GAPDH and shown as log2 fold change 
over control; (n=2; data are means ± StDev; *p <0.05, **p <0.01 [Student’s t-test]). 
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7.3 Which lipid participates in the modulation of FGF signalling pathway? 

 

Myriocin, FB1 and D-threo-PDMP treatments deprive cells from many sphingolipids and how 

individual sphingolipids associated with distinct cell states influence FGF signalling cannot be 

inferred by these treatments only. We thus generated dHFs overexpressing either B3GALNT1 

(Gb4S) or ST3GAL5 (GM3S) by lentiviral infection. Transfection level and the right cellular 

localization (i.e. Golgi complex) of the enzymes were tested by IF as compared to CTRL cells 

(Figure 51). By using an antibody against V5, the tag used in the plasmids chosen, we observed 

a good transfection level of GSL enzymes compared to CTRL cell and the correct localization 

at the Golgi complex. Moreover, these over-expressing cells displayed the expected changes 

in sphingolipid composition with GM3S-OE dHFs being largely ChTxB+ and ShtxB1a/2e- and 

Gb4S-OE dHFs being prevalently ShtxB1a/2e+ and ChTxB- (Figure 52).  
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Figure 51. IF analysis of stable dHFs lines OE GSLs synthesizing enzymes. Cells were fixed and stained 
with V5 (green) antibody to detect the transfected enzymes or GOLPH3 (red) antibody to analyse GSL 
enzymes localization in the Golgi complex. Scale bar is 100 µm. 
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Figure 52. Cytofluorometric and fluorescence analysis of dHFs OE GSL synthesizing enzymes. A) Cells 
were stained with toxins recognizing lipid Gb3 (ShTxB1a/2e), Gb4 (ShTxB2e) and GM1 (ChTxB). Side 
scatter plots of log10 fluorescence intensity values are shown for each toxin. Unstained cells were used 
as negative control. Cells were gated on the singlet population; CTRL n=23’858; GM3S-OE n=24’007; 
Gb4S-OE n=21’358.  B) Cells were fixed and processed for fluorescence analysis. Cells were stained 
with bacterial toxins ShTxB1a (red), ShTxB2e (green) and ChTxB (blue) and images acquired by confocal 
microscopy. Scale bar is 100µm. 
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Furthermore, western blot (WB) and immunofluorescence (IF) analysis on ACTA2 and MMP1 
showed that the overexpression of ST3GAL5 (GM3S) induces an increase in ACTA2 and a 
decrease in MMP1 levels, while opposite effect is shown by B3GALNT1 (Gb4S) overexpressing 
dHFs (Figure 53). 
 
 

 
 

 
Figure 53. WB and IF analysis of FGF and TGF-b markers in dHFs OE GSL synthesizing enzymes. A) 
Cells were fixed and processed for IF. Cells were stained with ACTA2 (green) and MMP1 (red) and 
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images acquired by confocal microscopy. Scale bar is 100 µm. In the lower right panel, quantification 
of the immunofluorescence analysis is shown. Cells were segmented to calculate the integrated 
intensities of ACTA2 and MMP1. Data were normalized against the median and shown as log2 fold 
change over control in individual cell (CTRL n= 58; GM3S-OE n= 49; Gb4S-OE n= 81; ***p <0.001 
[Student’s t-test]). B) Cells were lysed and processed for SDS-page and western blotting analysis with 
antibodies recognizing ACTA2 and MMP1. Data were normalized over GAPDH and shown as log2 fold 
change over control (data are means ± StDev; n=6). 
 
 

7.4 Conclusions 

 

In this chapter we show that highly variable lipids (i.e. Gb3, Gb4 and GM1) participate in the 

maintenance of dHFs transcriptional states. Specifically, we found that cells treated with 

sphingolipid synthesis inhibitor FB1 display a shift from a transcriptional state bearing 

fibrogenic properties to one expressing pro-inflammatory cytokines and more fibrolytic 

properties. We also found that this shift is largely due to a diversion in the FGF signalling 

induced by SLs deprivation. Interestingly, we found that, the overexpression of anti-regulated 

GSL synthesizing enzymes, have opposite effect on FGF and TGF-b signalling.  This indicates 

that given lipid configurations (lipotypes) participate in dHFs fate determination by integrating 

transcriptional programmes endowed with key roles in skin homeostasis.  
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CHAPTER 8. CROSSTALKING BETWEEN dHFs AND LIPOTYPES 

 

Specific lipid configurations (lipotypes), as shown in the previous chapter, participate in dHFs 

fate determination by integrating into the circuits that influence transcriptional programmes 

endowed with key roles in skin homeostasis: FGF and TGF-b signalling pathways. Whether FGF 

and TGF-b signalling in turn influence the balance among the different lipotypes in dHFs is not 

clear. 

 

8.1 Do lipotypes and fibroblast signalling pathways crosstalk? 

 

In order to answer this question, we again took advantage of dHFs expressing dominant 

negative versions of the TGF-b Receptor 2 (i.e., DNTGFR2) or of FGF Receptor 1 (i.e., 

DNFGFR1). Cells were stained by bacterial toxins and analysed by fluorescence and 

cytofluorimetry. As shown in Figure 54, DNTGFR2 expression is associated with a slight 

reduction in ChTxB staining while DNFGFR1 expression caused a substantial increase in ChTxB 

staining and an almost complete abrogation of ShTxB1a and ShTxB2e staining. This indicates 

that perturbations in major transcriptional programs accounting for fibroblast heterogeneity 

are reflected in cell-specific lipotypes. 
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Figure 54. Cytofluorimetric and fluorescence analysis of dHFs expressing dominant negative form of 
TGFBR and FGFR. A) Cells were stained with toxins recognizing lipid Gb3 (ShTxB1a/2e), Gb4 (ShTxB2e) 
and GM1 (ChTxB). Side scatter plots of log10 fluorescence intensity values are shown for each toxin. 
Histograms of the frequency distribution are shown for each condition and for each toxin binding 
(right panel). Unstained cells were used as negative control. Cells were gated on the singlet population 
(pLenti n=12’214; DNFGFR1 n=12’855; DNTGFR2 n=12’357. B) Cells were stained with bacterial toxins 
ShTxB1a (red), ShTxB2e (green) and ChTxB (cyan) and images acquired by confocal microscopy. Scale 
bar is 100 µm. 
 

 

To confirm the changes in lipid composition in these cells, [H3]-sphingosine pulse experiment 

aimed at evaluating sphingolipid biosynthesis, was performed. As shown in Figure 55, 

DNTGFR2 expression has minimal impact on sphingolipid synthesis, while DNFGFR1 

expression caused a substantial decrease in Gb3 production. This suggests that there is a 

crosstalk between FGF receptor and GSLs with a specific impact on globosides levels. 

 

 

 
 
Figure 55. De novo sphingolipid synthesis in DNTGFR2 and DNFGFR1 dHFs. dHFs expressing dominant 
negative form of FGFR1 and TGFBR2 receptor were pulse labelled for 2 hours with [H3]-sphingosine 
for SLs synthesis assessment. The percentage of total radioactivity associated with SM, Cer and GSLs 
(i.e., GlcCer, LacCer, Gb3, and GM3) in the different cell lines was quantified after lipid extraction and 
HPTLC separation. (n=3; data are means ± StDev; *p <0.05, ***p <0.001 [Student’s t-test]). 
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Heterogeneous cell-to-cell GSL composition was found to correlate with the single-cell 

expression of the relevant GSL synthetic enzymes as shown by mRNA FISH experiments in 

Figure 36. Thus, mRNA FISH experiment was performed to simultaneously detect ST3GAL5 

(GM3S), A4GALT (Gb3S), and B3GALNT1 (Gb4S) mRNA levels in individual dHFs expressing the 

dominant negative version of the TGF-b Receptor 2 (i.e., DNTGFR2) or of FGF Receptor 1 (i.e., 

DNFGFR1). By evaluating the FISH signals in >400 individual cells for each cell line, we found 

that A4GALT expression is slightly reduced in DNTGFR2 and DNFGFR1 dHFs, while ST3GAL5 

mRNA expression is significantly increased in DNFGFR1 expressing cells (Figure 56).  

 

 

 
 
Figure 56. Fluorescence in situ hybridization (FISH) analysis of GSL synthesizing enzymes in DNTGFR2 
and DNFGFR1 dHFs. Quantification of mRNA-FISH analysis in 356, 586 or 427 individual cells (pLenti, 
DNFGFR1 and DNTGFR2 respectively) is shown. mRNA levels of A4GAL (Gb3S), B3GALNT1 (Gb4S) and 
ST3GAL5 (GM3S) are represented as number of spots per individual cells in a violin plot (*p <0.05, 
***p <0.001 [Student’s t-test]).  
 

 

Following a similar experimental setup, we decided to look at the mRNA level of the GSL 

synthesizing enzymes ST3GAL5 (GM3S), A4GALT (Gb3S), and B3GALNT1 (Gb4S) in individual 

dHFs after stimulation with FGF2 or TGF-b1. By evaluating the FISH signals in >400 individual 

cells for each condition, we found that ST3GAL5 mRNA expression is significantly decreased 
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in FGF2 treated cells, which is in good correlation with the fact that ST3GAL5 mRNA level 

significantly increased in DNFGFR1 expressing cells (Figure 57).  

 

 

 

Figure 57. Fluorescence in situ hybridization (FISH) analysis of GSL synthesizing enzymes in dHFs 
treated with FGF2 or TGF-b1.  Cells were treated for 72 h with 10 ng/mL of FGF2 or TGF-b1, then fixed 
and processed for FISH experiment. Quantification of mRNA-FISH analysis in 363, 564 or 496 individual 
cells (CTRL, FGF2 treated and TGF-b treated, respectively) is shown. mRNA levels of A4GAL (Gb3S), 
B3GALNT1 (Gb4S) and ST3GAL5 (GM3S) are represented as number of spots per individual cells in a 
violin plot (***p <0.001 [Student’s t-test]).  
 

 

8.2 Conclusions 

 

We observed that FGF signalling controls the expression of genes encoding key GSL synthetic 

enzymes and, as a consequence the cellular lipid composition. This regulatory wiring leads to 

a feedback loop circuit where its operation lead to multistability and to cell-to-cell 

heterogeneity, depending on a crosstalk between lipids and PM receptors (see discussion). 
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CHAPTER 9. DISCUSSION 

 

Fibroblasts play an essential role in mammalian physiology by synthesizing the ECM that is 

necessary to maintain the structural integrity and the architecture of tissues and organs 

(Driskell RR and Watt FM, 2015; Thulabandu V et al., 2017). Although fibroblasts were long 

thought to be a homogeneous cell population, recent research has uncovered an unforeseen 

degree of complexity for this cell type (Sorrell JM and Caplan AI, 2004; Lynch MD and Watt 

FM, 2018). Individual fibroblast, indeed, exhibit discrete gene expression patterns, leading to 

different biological functions that depend on their anatomical location, embryonic origin, 

stage of development or tissue microenvironment (Lynch MD and Watt FM, 2018; Sriram G et 

al., 2015). Fibroblasts can show high heterogeneity even within the same tissue or when kept 

in culture under controlled conditions. One such example is constituted by fibroblasts of the 

skin or dermal fibroblasts (Ghetti M et al., 2018; Harper RA and Grove G, 1979; Wang JF et al., 

2008). Multipotent progenitors differentiate into several dermal fibroblast lineages, which are 

primarily different due to their location in the dermis: papillary and reticular fibroblasts and 

dermal papilla (Driskell RR et al., 2013). Papillary and reticular fibroblasts exhibit differences 

in the expression of collagen subtypes, rate of cell division and contraction, and have different 

role in wound repair (Schoop VM et al., 1999; Philippeos C et al., 2018; Lynch MD and Watt 

FM, 2018; Sriram G et al., 2015; Griffin MF et al., 2020; Woodley DT, 2017; Janson DG et al., 

2012; Rinn JL et al., 2006; Varkey M et al., 2011).  

	

In addition to this first layer of heterogeneity, analysis based on scRNAseq, distinguished 

numerous mesenchymal populations in human skin, including pericytes, preadipocytes, and 

myofibroblasts and other uncharacterized cell types. According to this approach, dermal 

fibroblasts can be subdivided into four major populations with functionally distinct 

transcriptomic signatures and spatial distribution: secretory-reticular, secretory-papillary, 

pro-inflammatory and mesenchymal fibroblasts (Vorstandlechner V et al., 2019; Tabib T et al., 

2018; Philippeos C et al., 2018; Solé-Boldo L et al., 2020). 

dHFs heterogeneity, has profound implications for the understanding of pathological states, 

including diseases characterized by excessive fibrosis, aging (Maier AB et al., 2009; Haydont V 

et al., 2019; Solé-Boldo L et al., 2020), and cancer (Kalluri R and Zeisberg M, 2006). Among 
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them, skin fibrosis is the common outcome of many forms of tissue damage during the process 

of wound healing. It can manifest locally in response to dermal injury following burn, surgery, 

trauma, infection or radiation, or in association with systemic diseases such as scleroderma 

and graft-versus-host disease (Pedroza M et al., 2018; Song J et al., 2018). 

 

Wound healing involves a dynamic series of cellular and biochemical events including immune 

response, local proliferation of cells, EMC deposition, and tissue regeneration. Wound repair, 

thus, requires the coordinated efforts of several cell types including keratinocytes, fibroblasts, 

smooth muscle cells, endothelial cells, immune cells, macrophages, and platelets. Following 

skin damage, fibroblasts, in particular, exit their quiescent state and become “activated”. 

However, fibroblast subpopulations differ in their wound healing response. For example, 

lineage-tracing studies demonstrated that reticular fibroblasts are the first to repopulate the 

damaged tissue and mediate the ECM deposition, whereas papillary fibroblasts move in later 

and may have a role in remodelling and/or regeneration (Rognoni E et al., 2018). Thus, during 

the process of skin repair, dHFs ‘differentiate’ into inflammatory cells involved in cytokine 

secretion and in ECM degradation and remodelling (production of matrix metalloproteases 

MMPs) or into myofibroblasts that produce ECM proteins (collagens and fibronectins). After 

some days, the inflammation is resolved and both inflammatory cells and myofibroblasts are 

removed. When the injury is more severe or persistent, regeneration is not possible and the 

organism will respond with fibrosis, producing scars full of inflammatory cells and 

myofibroblasts (Adler M et al., 2020). Hence, a balanced activity of the different fibroblast 

types is key to repair scars and avoid fibrosis (Darby IA and Tim DE, 2007; Klingberg F et al., 

2013; Coentro JQ et al., 2018; Eming SA et al., 2014). Several transcriptional programs and 

signalling pathways involving growth factors, cytokines, and chemokines regulate the process 

of wound healing (Eming SA et al., 2014; Rossio-Pasquier P, et al., 1999; Gabbiani G., 2003). 

These include epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin-like 

growth factor, keratinocyte growth factor, platelet-derived growth factor (PDGF) and 

transforming growth factor (TGF-b) pathways (Barrientos S et al., 2008). FGF and TGF-b are 

the two main pathways linked to fibroblasts activation and they work through a reciprocal-

negative regulation (David CJ and Massague´ J, 2018; Calon A et al., 2014; Bishen KA et al., 

2008; Inoue Y et al., 2002; Bordignon P et al., 2019). 
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TGF-b signalling in particular enhances invasive properties and epithelial-to-mesenchymal 

transition (EMT) with induction of a battery of genes encoding proteins connected with the 

fibrotic and wound-healing reaction (David and Massague ́, 2018) and endowed with cancer-

invasive properties (Calon A et al., 2014). On the other side, FGF has been implicated in 

multiple fibrotic disorders (Bishen KA et al., 2008; Inoue Y et al., 2002; Strutz F et al., 2000), in 

promoting macrophage infiltration, and it has also been reported to suppress myofibroblast 

activation in skin wounds (Ishiguro S et al., 2009), with a potentially favourable impact on 

hypertrophic scars. Thus, these two signalling pathways play key roles also in epithelial 

tumours, activating skin fibroblasts to cancer associated fibroblasts (CAFs).  

CAFs as skin fibroblasts are highly heterogeneous and can be classified as inflammatory, 

immune or myofibroblast-like CAFs, each of which influence tumour growth and 

metastatization differently (Gascard P and Tlsty TD, 2016; Kalluri R and Zeisberg M, 2006).  

 

Given the diversity of dHFs and CAFs, it is then necessary to define the role their heterogeneity 

has to define the circuit that induce cells to choose a particular fate that can lead to different 

physiological outcomes: i.e., fibrosis vs fibrolysis or cancer metastatization vs chronic 

inflammation (Figure 58). 
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Figure 58. Simplified scheme of dHFs activation for tissue repair and cancer progression. Normal 
dHFs can be activated by two distinct signalling pathways. FGF and TGF-b control dHFs activation 
through a reciprocal-negative regulation. FGF-activated dHFs produce metalloproteases and cytokines 
while TGF-b-activated dHFs produce ECM proteins. Suppression of one pathway leads to activation of 
the other and vice-versa. This reciprocal regulation can lead to tumour-promoting CAF populations 
that favour metastasis through EMT or macrophage recruitment. On the other side it can lead to 
wound repair though the reciprocal action of ECM depositing cells (process of fibrosis) and ECM 
degrading proteins (process of fibrolysis). 
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In this thesis we have used high resolution MALDI-IMS to evaluate the lipid composition of 

individual dHFs in culture and found that individual dHFs vary in the sphingolipid composition 

of their membranes. Among sphingolipids, we focused our attention on GSLs Gb3, Gb4 and 

GM1 and found that these lipids define fibroblast sub-populations (lipotypes), that propagate 

across cell generation. By combining single-cell lipidomics with other existing and well 

established single-cell omics approaches, we also found that these lipotypes parallel the 

existence of dHFs cytotypes, with proliferative, inflammatory or fibrogenic properties, and 

that specific lipids where their expression is cell-to-cell variable participate in regulatory 

networks responsible for cell-to-cell heterogeneity. Finally, we have found that individual 

dHFs express specific GSL configurations depending on whether they are on resting or 

different activated states.  

 

Our results indicate that different SL metabolic branches can modulate dHFs response to 

instructive stimuli. In particular, GSLs Gb4 and GM1 integrate into the circuits above 

mentioned that drive the activation of dHFs through TGF-b or FGF signalling (Figure 59). This 

suggests that pharmacological modulation of the sphingolipid metabolism may allow targeting 

of specific fibroblast populations and cell signalling pathways to prevent fibrotic lesions and 

to influence skin tumour microenvironment. 

 

 
 
 
Figure 59. Hypothetical molecular model. A) Schematic representation of the FGF/sphingolipid 
circuit. FGF2 binds FGFR leading to the induction of A4GALT/Gb3S and to the repression of 
ST3GAL5/GM3S. This in turn will result in the prevalent production of Gb3/Gb4 over GM1. To close 
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the circuit GM1 negatively regulates FGFR, while Gb3/Gb4 activate FGFR in a positive feedback loop. 
B) The circuit described in (A) generates a bistable system where cells can be either Gb3/Gb4+ leading 
to a more fibrolytic state or GM1+ leading to a more fibrogenic state. Instructive signals (i.e., TGF-b 
and FGF) and lipid remodelling cooperate to assist cell state switches. 
 

 

Interestingly, it has already been shown that GSL reprograming has a role in the epithelial-to-

mesenchymal transition (EMT). During TGF-β induced EMT, the production of GSLs is switched 

from the asialo to ganglio series owing to the induction of ST3GAL5 and ST8SIA1 (encoding 

GD3 synthase) and to the repression of B3GALT4 (encoding GA1/GM1 synthase) (Mathow D 

et al., 2015) (Figure 60). Accordingly, Ghiroldi et al. found that an induced up-regulation of 

sialidase Neu3, a GM3 degrading enzyme, can significantly reduce cardiac fibrosis in primary 

cultures of human cardiac fibroblasts by inhibiting the TGF-β signalling pathway, ultimately 

decreasing collagen deposition (Ghiroldi A et al., 2020). 

 

 

 
 

Figure 60. The asialo- to ganglio-GSL switch during EMT. During the acquisition of the mesenchymal 
phenotype, which is induced by TGF-β1, the transcription factor Zeb1 binds the GM3S (ST3GAL5) 
promoter and activates its transcription. (Adapted from Russo et al., 2018). 
 

 

Moreover, a set of GSLs have also been found to interact with PM located signalling receptors 

and to modulate their activation (Coskun U et al., 2011; Park SY et al., 2012; Rusnati M et al., 

2002). Although some examples come from gangliosides which have been described to 

interact with platelet-derived growth factor receptor (PDGFR) and epidermal growth factor 
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receptor (EGFR), or with the ligands, such as FGF2, these reports are sometimes confusing 

since they point to opposing mechanisms (Miljan EA and Bremer EG, 2002). Thus, whether 

and how GSLs interact with PM receptors and how they influence their downstream effects is 

still to be investigated. Furthermore, these studies have been produced using bulk cell extracts 

and manipulating the level of few selected lipids, hence, which is exactly the role of GSLs in 

cell fate determination remains unclear.  

 

Here, we were able to study hundreds of lipids at the same time in individual cells and we 

found that their heterogeneity at the level of single-cells is sufficient to modulate dHFs fate. 

Cell-to-cell variability (either stochastic or deterministic) indeed provides otherwise identical 

cells with the capability to break symmetry and change their differentiation potential (Huang, 

2009). According to this concept, progenitor cells can follow alternative differentiation 

trajectories to achieve one of multiple stable states depending on the variable expression of 

a key factor, eventually leading to cell fate decisions (Huang, 2009). Besides proteins and 

nucleic acids, it has been shown that lipids also can influence these cell fate decisions during 

differentiation programs (Liang YJ et al., 2010, 2011; Russo D et al., 2018a; Breimer ME et al., 

2017). Lipids are, indeed, the main components of biological membranes but they also 

participate in energy metabolism, mediate signalling pathways, act as precursor of bioactive 

molecules, and interact with proteins to influence their activity and intracellular distribution.  

 

Among PM lipids, GSLs are particularly suited to influence signalling, receptor trafficking, cell–

cell contacts and adhesion, and, thus, ultimately gene expression. This is due to their glycan 

moieties that facilitate interactions with glycans and proteins of the same PM or with adjacent 

cells. It is their structural diversity and GSLs tissue specific production (Ngamukote S et al., 

2007) to suggest that, although they are dispensable for cell survival and basic cell functions, 

they can have a role in multicellularity by influencing cell fate decisions towards precise 

differentiation trajectories. It has been described that GSLs remodelling has a crucial role 

during embryonic development (Cochran FB et al., 1982; Handa K and Hakomori S, 2017; 

Kannagi R et al., 1983; Yamashita T et al.,1999) and neuronal differentiation (Liang YJ et al., 

2010, 2011; Russo D et al., 2018a; Breimer ME et al., 2017) as defects in GSL metabolism in 

model animals often leads to neurodevelopmental phenotypes or to embryonic death 

(Yamashita T et al., 2002; Nishie T et al., 2010; Allende ML and Proia RL, 2014). Moreover, GSL 
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composition varies among cells in a syngeneic cell population owing to cell cycle phase (Majoul 

et al., 2002), the local microenvironment (Snijder et al., 2009) or to metabolic circuits (Russo 

et al., 2018). How extensive cell-to-cell GSL variability is and how it participates in cell fate 

decisions and tissue patterning it’s still an open question.   

 

Our work is the first to systematically analyse single-cell lipid variability in dHFs and to describe 

how their heterogeneity can influence cell fate decisions. This highlights how new 

technologies to analyse single-cell lipidomes can be used to characterize biological 

phenomena in situ and to reveal lipid roles in intracellular processes, molecular 

microenvironment, cell-cell interactions, cell fate decisions and differentiation trajectories.   

 

In general, the discovery that single-cell lipidomes describe and determine cell states rises a 

whole set of new questions about the involvement of lipid metabolism in cell fate 

determination. What exact cell-to-cell variable lipid species influence signalling events 

involved in self-organisation and how mechanistically they do that? What regulatory 

networks dictate cell-to-cell lipid variability? What are the physiological contexts where cell-

to-cell lipid variability plays a role? What are the pathological consequences of inappropriate 

cell-to-cell variable lipid expression? Answering these questions will provide a new dimension 

in our understanding of cell fate determination and tissue patterning. 
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CHAPTER 10. MATERIALS AND METHODS 

 

All chemicals and reagents used are listed in Annex 1. Table of chemicals and materials. 

Working concentrations and time of treatment are indicated within the corresponding 

experiment. 

 

10.1 Cell lines and cell growth conditions 

 

Dermal skin human fibroblasts (dHFs) were kindly provided by the laboratory of Alberto Luini 

(IBP-CNR, Naples, Italy) and by the laboratory of Prof. Thorsten Hornemann (IKC-USZ, Zurich, 

Switzerland). For further validation and analysis 4 other dHF cell lines were kindly provided 

by the laboratory of Dr. Charna Dibner (iGE3-UNIGE, Geneva, Switzerland). Primary foreskin 

HF expressing dominant-negative FGFR1 (DNFGFR1) or dominant-negative TGFBR2 

(DNTGFBR2) were kindly provided by the laboratory of Prof. Paolo Dotto (DB-UNIL, Lausanne, 

Switzerland). 

Cells were grown in DMEM supplemented with 10% (v/v) foetal bovine serum (FBS), 4.5 g/l 

glucose, 2 mM L-glutamine, 1 U/ml penicillin/streptomycin.  The cell lines were grown under 

a controlled atmosphere in the presence of 5% CO2 at 37 °C. Cells were grown in a flask until 

90% confluence. The medium was removed and trypsin-EDTA solution (0.05% trypsin, 0.02% 

EDTA) was added for 3-5 min. Then, the medium was added back to block the protease action, 

and the cells were collected into a plastic tube. After centrifugation for 5 min at 1000 rpm, 

the cell pellet was resuspended in fresh medium, gently mixed, and placed in a new plastic 

flask with fresh growth medium. 

 

10.2 Generation of stable cell line over-expressing GSLs synthesizing enzymes 

 

[Generation of stable cell lines was done with the help of Galina Glousker from Prof. Lingner’s 

lab]. 
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For lentiviral production 293T cells were transfected in 10 cm dishes with 4 µg of the 

corresponding lentiviral vectors (empty vector or transgene listed in Annex 4) and packaging 

vectors pMD2.G (1 µg) and pCMVR8.74 (3 µg) using Lipofectamine 2000 (1:400 in OPTIMEM). 

The next day, the medium was changed for DMEM with 10% FCS and penicillin/streptomycin. 

The first harvest of viral particles was done 40 hours after transfection and fresh medium was 

added to the cells. Virus-containing medium was filtered through 0.45 µm filters and 10 ml of 

filtrate was applied to 1 million cells in 15 cm dishes. The second harvest was done 24 hours 

after the first harvest and the transduction repeated as described. The next day, transduced 

cells were split and selected with Blasticidin (10 µg/mL) for at least one week. 

 

10.3 Single-cell MALDI Imaging Mass Spectrometry (MALDI-IMS) workflow  

 

10.3.1 Sample preparation 

 

dHFs, were directly grown on glass bottom culture dish (Mattek) in complete media to roughly 

60% confluence. After aspiration of media, cells were washed twice with PBS, followed by 

fixation in 0.25% glutaraldehyde for 15 min. Following fixation and washing, cells were 

stained, when required, with fluorescent dyes or with bacterial toxins (as described below). 

Pen marks were manually drawn on the glass slide, on the back side of the sample, for image 

registration and then, confocal images (as described below) were acquired from an area of 

interest. 

For MALDI-IMS analyses, 150 μL of 2,5-dihydroxybenzoic acid (DHB), (30 mg/mL in 50:50 

acetonitrile/water/0.1% TFA), were deposited on the surface of the samples using the 

automatic SMALDIprep (TransMIT GmbH). 

 

10.3.2 MALDI-IMS analysis 

 

IMS experiments were performed using the AP-SMALDI10 or AP-SMALDI5 mass spectrometer 

that couples a QExactive (Thermo Fisher) with an atmospheric-pressure scanning-microprobe 

MALDI imaging source (AP-SMALDI, TransMIT GmbH). 

The MALDI laser focus was optimized manually using the source cameras with the focused 

beam diameter estimated to be around 5 μm. For each pixel, the spectrum was accumulated 
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from 50 laser shots at 60 Hz. MS parameters in the Tune software (ThermoFisher Scientific) 

were set to the spray voltage of 4 kV, S-Lens 100 eV, capillary temperature to 250°C. The step 

size of the sample stage was set to 7μm for AP-SMALDI10 or 5µm for AP-SMALDI5. Positive 

ion mode measurements were performed in full scan mode in the mass range m/z 400-1600 

with a resolving power set to R = 240000 at m/z = 200. Mass spectra were internally calibrated 

using the lock mass feature of the instrument. 

 

10.3.3 MALDI-IMS images reconstruction and annotation 

 

The data obtained were converted from the RAW format into the imzML format containing 

only centroided data using the RAW2IMZML software (TransMit GmbH). 

Mass images (296) were generated by MSiReader software (Bokhart et al., 2017; 

https://msireader.wordpress.ncsu.edu) after TIC normalization with a m/z tolerance of 3 

ppm. 

Metabolite annotation was performed in two steps: annotation with public databases and 

software and then ESI-LC/MS and MRM confirmation (as described below). 

imzML files were uploaded on METASPACE (Palmer et al., 2016; http://metaspace2020.eu) 

for a preliminary lipids annotation, with the m/z tolerance of 3 ppm and FDR of 5%, 10%, 20%, 

and 50% against the SwissLipids metabolite database.  

For further confirmation RAW data were analyzed with the software Alex123 (Analysis of 

Lipids Experiments) (Ejsing Lab, https://git.embl.de/ejsing/alex123) using a library with 

curated lipid ionization information with a m/z mass tolerance of 0.005 (Pauling et al., 2017). 

After peak identification based on the combination of two step approaches, to each lipid was 

associated an attribution confidence score (ACS) as detailed. 1 point was attributed when a 

lipid was identified by Alex123 software, while 1,2,3 or 4 points were attributed when a lipid 

was identified on MetaSpace with FDR 50, 20, 10 or 5% respectively. Finally, 5 points were 

given to a lipid that was identified by ESI-LC/MS with 1 extra point if the lipid identity was 

confirmed by MRM. Only lipids with an ACS > 5 were considered identified with high 

confidence. 

 

10.3.4 Single pixel analysis 
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Single-pixel analysis was performed using Fiji software (Schindelin J et al., 2012; 

https://imagej.net/Fiji) on the 296 mass images collected at 7µm spatial resolution by AP-

SMALDI10 (TransMit GmbH) and reconstructed by Mirion software (Paschke Cet al., 2013). 

Pixels corresponding to area where no cells were present displayed an extremely low total 

lipid intensity. These areas were identified using the evenly distributed lipid PtdAc 38:4 (m/z 

= 747.4937) and removed from further analysis. Lipid intensities in each pixel belonging to 

cell areas were then log-transformed and standardized across the entire image. PCA analysis 

was performed and the coordinate of each component was displayed with a different colour. 

The absolute values of the PCA loadings were then used to identify the lipids with most of the 

variance of each single component.  

 

10.3.5 Image Processing and Batch Correction 

 

Single dHFs were manually segmented on MsiReader with the free hand tool for ROI selection, 

after TIC normalization. Raw abundance data for each scan and each pixel in a ROI were 

exported with the MSiExport tool for the 296 m/z in the lipid mass range. 

Normalized lipid count values for biological replicates were integrated using ComBat (Johnson 

WE et al., 2007) to correct batch effect. PCA dimensionality reduction was performed and the 

top PCs were retained.  

 

10.3.6 Single-cell lipids data analysis (lipid and cell network) 

 

Batch corrected count values were used to calculate average against which each value was 

then normalized. For each lipid, standard deviation was calculated on normalized values to 

obtain the Index of Dispersion (IoD). Lipids were ranked for the most variable to the least 

variable according to their IoD.  

Single lipid values in each cell were used to determine their co-variation using the Pearson 

Correlation Coefficient (PCC). PCC was calculated using an in-house made R script (made by 

Francesco Russo, IBP, Napoli). Lipids with PCC >0.85 were connected to build a lipid 

correlation network using Cytoscape 3.8.0. Node size was calculated using the IoD (bigger is 

the node bigger is the IoD and vice versa) while nodes transparency was calculated according 

to the ACS (as detailed above).  
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Similarly, single-cell lipidomes values were used to determine their co-variation using the 

Pearson Correlation Coefficient (PCC). Cells with PCC >0.35 were connected to build a cell 

correlation network using Cytoscape 3.8.0. 

 

10.4 Lipid analysis 

 

10.4.1 Lipid extraction 

 

Total lipid extracts were prepared using a standard MTBE protocol followed by a methylamine 

treatment for total lipid analysis by mass spectrometry. Briefly, cell pellet was resuspended 

in 100 μL H2O. 360 μL methanol and 1.2 mL of MTBE were added and samples were placed 

for 10 min on a vortex at 4 C followed by incubation for 1 h at room temperature on a shaker. 

Phase separation was induced by addition of 200 μL of H2O. After 10 min at room 

temperature, samples were centrifuged at 1000 g for 10 min. The upper (organic) phase was 

transferred into a glass tube and the lower phase was re-extracted with 400 μL artificial upper 

phase [MTBE/methanol/H2O (10:3:1.5, v/v/v)]. The combined organic phases were dried in a 

vacuum concentrator. Lipids where then resuspended in 500 μL of ChCl3 and divided in two 

aliquots for a further methylamine treatment for sphingo- and glycosphingolipids analysis. In 

details, 500 μL of freshly prepared monomethylamine reagent [methylamine/H2O/n-

butanol/methanol (5:3:1:4, (v/v/v/v)] was added to the dried lipid extract and then incubated 

at 53 °C for 1 h in a water bath. Lipids were cooled to room temperature and then dried. The 

dried lipid extract was then extracted by n-butanol extraction using 300 μL water-saturated 

n-butanol and 150 μL H2O. The organic phase was collected, and the aqueous phase was re-

extracted twice with 300 μL water-saturated n-butanol. The organic phases were pooled and 

dried in a vacuum concentrator.  

 

10.4.2 MALDI-TOF untargeted lipidomics 

 

Extracted lipids were resuspended in 500 μL of CHCl3 and analyzed by MALDI-MS. 30 mg/mL 

2,5-DHB was freshly prepared in acetonitrile/water solution (50:50 v/v) with 0.1% TFA. An 

equivalent volume of sample solution (50 μL) was then mixed with matrix before deposition 

on the MALDI target. All mass spectrometry analysis for the identification of lipids (m/z 400-
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1800) were obtained using an Applied Biosystems 4800 MALDI-TOF/TOF mass spectrometer 

equipped with a 200 Hz tripled-frequency Nd:YAG pulsed laser with 355 nm wavelength. 

Measurements were performed in positive ion reflection mode at an accelerating potential 

of 20 kV. Each mass spectra were obtained by applying a laser energy of 4600 watts/cm2, 

averaging 4000 single laser shots/spectrum. 

 

10.4.3 LC-MS untargeted lipidomics 

 

For phospholipid analysis, lipid extracts (2 μL injection volume in ChCl3:MeOH 2:1) were 

separated over an 8 minute gradient at a flow rate of 200 μL/min on a HILIC Kinetex Column  

(2.6lm, 2.1 × 50 mm2) on a Shimadzu Prominence UFPLC xr system (Tokyo, Japan). Mobile 

phase A was acetonitrile:methanol 10:1 (v/v) containing 10 mM ammonium formate and 0.5%  

formic acid while mobile phase B was deionized water containing 10 mM ammonium formate 

and 0.5% formic acid. The elution of the gradient began with 5% B at a 200 μL/min flow and 

increased linearly to 50% B over 7 min, then the elution continued at 50% B for 1.5 min and 

finally, the column was re-equilibrated for 2.5 min. MS data were acquired in full-scan mode 

at high resolution on a hybrid Orbitrap Elite (Thermo Fisher Scientific, Bremen, Germany). The 

system was operated at 240,000 resolution (m/z 400) with an AGC set at 1.0E6 and one 

microscan set at 10-ms maximum injection time. The heated electrospray source HESI II was 

operated in positive mode at a temperature of 90 C and a source voltage at 4.0KV. Sheath gas 

and auxiliary gas were set at 20 and 5 arbitrary units, respectively, while the transfer capillary 

temperature was set to 275 °C.  

Mass spectrometry data were acquired with LTQ Tuneplus2.7SP2 and treated with Xcalibur 

4.0QF2 (Thermo Fisher Scientific). Lipid identification was carried out with Lipid Data Analyzer 

II (LDA v. 2.6.3, IGB-TUG Graz University) (Hartler et al., 2011). The LDA algorithm identifies 

peaks by their respective retention time, m/z and intensity. Care was taken to calibrate the 

instrument regularly to ensure a mass accuracy consistently lower than 3 ppm thereby leaving 

only few theoretical possibilities for elemental assignment.  

Data visualization was improved with LCMSexplorer in a homemade web tool hosted at EPFL 

(https://gecftools.epfl.ch/lcmsexplorer). 
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MS/MS spectrum were acquired using a hybrid Velos pro dual cell differential pressure linear 

ion trap mass spectrometer with a high field Orbitrap Elite instrument. The fragment spectra 

were generated using parallel MS and MSn analysis with 23eV in the HCD cell. 

 

10.4.4 TSQ ANALYSIS (Multi Reaction Monitoring)  

 

The lipid extracts were normalized against total phosphate content before analysis. Dried 

samples were re-suspended in 100uL chloroform/methanol (1:2) containing 5mM ammonium 

acetate and transferred to a 96well plate.  

The sphingolipids species were quantified using multiple reaction monitoring MRM on a TSQ 

vantage Extended mass range Mass spectrometer (Thermo Fisher Scientific) equipped with a 

robotic nanoflow ion source (Triversa Nanomate, Advion Biosciences). Auto-tuned collision 

energies and s-lens values were used on standards lipids covering the analyzed subclasses to 

improve MRM transitions. Mass spectrometry data were acquired with TSQ Tune 2.6 SP1 and 

Xcalibur 4.0QF2 (Thermo Fisher Scientific).  

The mass spectrometry results were treated with an automatic MRM lipid quantification 

platform, developed and hosted at EPFL Lausanne Switzerland (http://lipidomes.epfl.ch). 

Areas under the curve of MRM transitions were quantified relative to the internal standard. 

 

10.4.5 HPTLC 

 

dHFs were pulse-labelled in serum-free DMEM, supplemented with 1% BSA fatty acid free, 

with 0.1 µCi/mL 3H-sphingosine for 2 h. After labelling, the cells were further incubated in 

DMEM + 10% FCS for 24h. Cells were then harvested and lipids extracted with the standard 

Bligh and Dyer protocol (Bligh EG and Dyer WJ, 1959). Dried lipids were resuspended in 150µl 

of CHCl3 and spotted on silica gel high-performance–TLC (HPTLC) plates (Merck,Germany) and 

resolved with a mixture of chloroform, methanol and water (65:25:4 v/v/v). To visualize and 

analyse radiolabelled sphingolipids (i.e. Cer, GlcCer, LacCer Gb3, GM3 and SM), the TLC plates 

were placed in the RITA TLC Analyser (Raytest, Germany) and quantified using GINA (Raytest, 

Germany) software analysis. The percentage of total C.P.M. associated with Cer, GlcCer, 

LacCer, Gb3, GM3 and SM peaks for each of the lipids is reported. 
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10.5 Immunofluorescence analysis 

 

For IF analysis, dHFs were grown to approximately 80% confluency on glass coverslips, fixed 

with 4% paraformaldehyde for 10 minutes at RT and then washed three times with PBS. For 

tissues, samples were embedded in OCT compound and frozen, to be subsequently 

cryosectioned with a cryotome into 7-8 µm sections. Before staining, sections were dried at 

room temperature and then fixed with 4% paraformaldehyde for 20 minutes. After fixation, 

cells and tissues were blocked with 5% BSA and permeabilized when required with 0.5% 

saponin for 20 minutes at RT, followed by a 1 h incubation with selected antibodies (listed in 

Annex 2) against the antigen of interest in blocking reagent. Cells and tissues were then 

washed three times with PBS and incubated with appropriate isotype-matched, AlexaFluor-

conjugated secondary antibodies (Invitrogen, USA) diluted in blocking solution for 30 min. 

After immuno-staining, they were washed three times in PBS and once in water, to remove 

salts. After Hoechst staining for nuclei, the samples were mounted with Fluoromount-G and 

analyzed under a confocal microscope Zeiss LSM700 with 20x air objective (0.8 NA) or Leica 

SP8 with 10x air objective (0.3 NA) or 20x air objective (0.75 NA). 

Optical confocal sections were taken at 1 Airy unit under non-saturated conditions with a 

resolution of 1024x1024 or 2048x2048 pixels and frame average 4. Images were then 

processed using Fiji software (Schindelin J et al., 2012; https://imagej.net/Fiji). Adobe 

Photoshop CS3 was used to adjust the contrast of the images, whereas Adobe Illustrator 2020 

was used to illustrate figures. 

 

10.5.1 Immunofluorescence staining with toxins  

 

For ShTxB1a-Cy3 and ChTxB-AlexaFluor488 or ChTxB-AlexaFluor647 staining, the cells were 

fixed with 4% PFA, blocked in PBS containing 5% bovine serum albumin (BSA) without 

detergent, incubated with fluorescent B-subunit toxins for 1h, and then mounted with 

Fluoromount-G. 

In the case of ShTxB2e, after fixation and blocking, cells were incubated with the bacterial 

toxin for 30 min at RT, followed by conjugation with primary antibody for 1 hour and 

fluorescently-labelled secondary antibodies for 30 minutes. Cells were analysed by confocal 

microscopy as described above. 
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10.6 Flow cytometry analysis 

 

dHFs were subjected to trypsin digestion (0.05% Trypsin/EDTA) and washed twice with PBS. 

For cell-surface GSLs staining, resuspended cells were blocked with 2% BSA for 30 minutes at 

4°. Then, cells were extensively washed with PBS and incubated with optimal concentrations 

of the toxins for 1h at 4° and after washing with primary antibody. Cells were then washed 

again and incubated with fluorescently-labelled secondary antibodies when required for 30 

minutes. 

Cells resuspended in 2% BSA were analyzed by BD LSR Fortessa or LSRII SORP. (Becton 

Dickinson). Unlabeled cells were used as negative control. Viable cells were gated, and GSLs 

expressions were further analyzed in the gated region. Antibodies used are described in 

Annex 2. 

Data were exported with an in-house built R script and analysed with GraphPad Prism 8 

software. 

 

10.6.1 Isolation of lipids population by FACS 

 

A triplicate of primary human fibroblasts (5x106) in suspension were collected and stained as 

described above. Cells were resuspended in 2% BSA and sorted using a flow cytometer 

(FACSAriaII). After gating, four populations (ChTxB+, ShTxB1a/ShTxB2e+, triple positive and 

ShTxB2e+) were directly sorted through a 100 µm nozzle at 4° in 5 mL tubes filled with 1 mL 

lysis buffer or complete media. Cells were sorted in continuous in order to get the maximum 

amount from each population. Unlabeled cells were used as negative control. 

 

10.7 siRNA treatment and transfection 

 

The siRNAs for human ST3GAL5/GM3S, A4GALT/Gb3S and B3GALNT1/Gb4S (Annex 3) were 

obtained from Microsynth. 

dHFs were plated at 30% confluence in 6-well plates and transfected with 50 nM of siRNAs 

mix with Oligofectamine, according to the manufacturer instructions. At 72 h after the initial 

treatment with the siRNAs, the cells were treated with siRNAs mix again for 24 hours. After 

96 total hours of treatment the cells were processed for the different experiments. 
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10.8 Cell manipulation 

 

10.8.1 Drug treatments 

 

dHFs were treated by adding inhibitors of SLs synthesis, Fumonisin B1 25 μM, PDMP 10 μM 

or Myriocin 2.5 μM, in complete media for six days. Stock solutions of the drugs were 

prepared dissolving powders in DMSO following providers instructions. 

 

10.8.2 FGF2/TGF-b1 treatment 

 

dHFs were serum starved for 24h and then treated with different concentration (0, 0.1, 1 or 

5 ng/mL) of growth factors FGF2 and TGF-b1 by adding them in complete media for 72 hours. 

TGF-b1 stock solution at 50 µg/mL was prepared by dissolving it in water with citric acid 

10mM pH3 and 0.1% BSA. FGF2 stock solution at 10 µg/mL in PBS with 0.5% BSA. 

 

10.9 Fluorescence In Situ Hybridization (FISH) 

 

RNAscope Multiplex Fluorescent V2 assay (Bio-techne, Cat. No. 323110) was performed 

according to manufacturer's protocol on cells cultured in chamber slides, hybridized with the 

probes Hs 3plex positive control (Bio-techne, Cat. No. 320861) or 3Plex negative control (Bio-

techne, Cat. No. 320751) or Hs-A4GALT-C1 (Bio-techne, Cat. No. 486601), Hs-ST3GAL5-C2 

(Bio-techne, Cat. No. 816191-C2) and Hs-B3GALNT1-C3 (Bio-techne, Cat. No. 816181–C3) 

simultaneously at 40°C for 2 hours. The different channels were revealed with TSA Opal520 

(Akoya Biosciences, Cat. No. FP1487001KT) for C1, TSA Opal650 (Akoya Biosciences, Cat. No. 

FP1488001KT) for C2 and TSA Opal570 (Akoya Biosciences, Cat. No. FP1488001KT) for C3. 

Tissues were counterstained with DAPI and mounted with Prolong Diamond Antifade 

Mountant (Thermo Fisher, P36965).  

Data were analysed using an in-house Fiji script (made by Romain Guiet, EPFL, BIOP). 

Specifically, single-cells were automatically segmented based on nucleus staining (DAPI) to 

define a cell area were the number of spots per each cell and each probe were calculated 
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based on find local maxima. Statistical evaluations were reported as Student’s t test ∗p < 0.05, 

∗∗p < 0.01, and ∗∗∗p < 0.001.  

 

10.10 Correlative video-confocal microscopy 

 

dHFs, were directly seed the day before on gridded glass bottom culture dish (Mattek) in 

complete media to reach the day after roughly 30% confluence. Cells were then mounted on 

an Olympus Cell^R widefield microscope for transmission imaging under controlled 

temperature and CO2 and followed for 72h. The images were acquired every 30 minutes with 

40 ms exposure time with a 4x (0.13 NA) air objective. 

After 72h, cells were fixed with 4% PFA and processed for toxin staining as described above. 

The same areas acquired by brightfield microscopy were analysed by confocal microscope 

Zeiss LSM700 with 20x air objective (0.8 NA) as described above. 

Alternatively, after 72h, cells were fixed with 4% PFA and processed for MALDI-IMS (as 

detailed above) to couple phylogeny and single-cell lipidomics analysis. 

 

10.10.1 Time-lapse and lineage analysis 

 

Cells were tracked and each frame of the time lapse experiment annotated and the progeny 

of each cell was assigned. Time of division was annotated as the moment of visible cell 

contraction corresponding to the mitosis instead of at the moment cytokinesis (that was more 

difficult to determine accurately). We used a custom python script to build the mitotic lineage 

from the time lapse annotation and to perform the visualization and statistical analyses using. 

Cells were clustered using a subset of highly variable genes. To select the lipids we computed 

a bimodality score and selected the lipids with scores higher than 40 (43% of the lipids were 

retained). A score was computed for each lipid as the difference of the Bayesian information 

criterion (BIC) of two models: a simple gaussian distribution and a 2-gaussians mixture.  

After feature selection we performed dimensionality reduction on the log transformed lipid 

intensities, we considered the first 5 PCs, explaining 73% of the variance and discarded the 

first component as it captured the trivial variation explained by total signal change. We 

performed a t-SNE embedding to display the data in a two-dimensional space and then we 
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obtained 4 clusters using a Gaussian mixture model with diagonal covariance (scikit-learn 

implementation). 

Analysis of lipid-based family separability was performed for each lipid independently. We 

first found a family-constrained ordering of the cell based on the intensity of each lipid, then, 

we used the ordering to compute a test statistic for observed data and compared it to random 

realizations from the null distribution.  

The ordering was obtained considering the lineage tree as a constraint, that is by sorting the 

leaves by level of expression to the extent allowed without breaking any kinship link of the 

tree (i.e. only moving entire clades and pivoting daughter cells is allowed). As test statistics 

we considered the difference cumulative sum of values along the ordering, corrected by the 

expectation. We performed an empirical statistical test permuting the lipid values and 

keeping the lineage structure constant. We sampled the null-distribution and computed the 

expected value by performing 500 random permutations of the lipid intensities. Empirical 

non-parametric p-values were FDR-corrected with alpha = 0.05, we considered a lipid 

significantly segregated with respect to the structure of the lineage if q-value < 0.01. 

 

10.11 Bulk RNA-sequencing of FACS sorted dHFs population 

 

Bulk RNA sequencing was performed on the following FACS sorted populations of dHFs: 

Cholera Toxin positive (n=2), ChTxB/ShTxB1a/ShTxB2e positive (n=2), ShTxB1a/ShTxB2e 

positive (n=3) and ShTxB2e positive (n=1) and to a control unsorted population (n=2). Total 

RNA was isolated from FACS sorted dHFs populations using RNeasy Mini kits (Qiagen, 

Germany) according to the manufacturer instructions. The yield and the integrity of the RNA 

were determined using a spectrophotometer (NanoDrop ND-1000; Thermo Scientific, USA). 

Total RNA (10ng-1µg, depending on the different population) were submitted for RNA-seq 

with GENEWIZ, NJ. 

Libraries were prepared using Illumina HiSeq platform with ultra-low input configuration and 

sequenced with 2× 150 bp sequencing configuration to a depth of 350 million reads 

(GENEWIZ, NJ).  

Sequence reads were trimmed to remove possible adapter sequences and nucleotides with 

poor quality using Trimmomatic v.0.36. The trimmed reads were mapped to the Homo 

sapiens GRCh38 reference genome available on ENSEMBL using the STAR aligner v.2.5.2b.  
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Unique gene hit counts were calculated by using featureCounts from the Subread package 

v.1.5.2. The hit counts were summarized and reported using the gene_id feature in the 

annotation file. Only unique reads that fell within exon regions were counted (GENEWIZ, NJ). 

These bulk quantifications were used to extract, for each of the subpopulations, a set of 

enriched genes. First, we filtered the data tables from the genes that were lowly expressed 

along most of the samples: genes detected at average depth of less than 1.5 reads and that 

were at 8 reads in at least 15% of the samples were discarded. Samples were depth-

normalized to reads per million (RPM) and log transformed. Then the average level of 

expression of a gene each condition was compared with the average of the rest of the 

samples. Genes were, then, sorted by the fold increase, excluding genes for which log2RPM 

was less than 4. For each of the subpopulations the top 200 genes were used to compute the 

population signature on the single-cell data (described below). 

The signatures for TGF-b and FGF were computed with the same procedure starting from a 

list of the top 200 genes extracted from a previous bulk RNA-seq experiment (Bordignon P et 

al., 2019). 

A gene ontology analysis was performed on the statistically significant set of genes by 

implementing the software GeneSCF v.1.1-p2. The goa_human GO list was used to cluster the 

set of genes based on their biological processes and determine their statistical significance. A 

list of genes clustered based on their gene ontologies was generated. 

 

10.12 scRNA-seq experiment  

 

scRNA-seq experiments were performed using 10X Genomics Chromium scRNA-seq kit v3.1. 

3500 cells were loaded for each of the reaction following provider instructions. Libraries were 

sequenced at the depth of 300 million reads corresponding to an average of 80k reads per 

cell. Data were pre-processed using cellranger and velocyto v0.17.  

Single-cell data was analyzed using scanpy, velocyto and a set of custom procedures. We 

selected most variable genes using a CV-mean modeling-based feature selection with minimal 

dispersion 0.5, maximal mean 3 and minimal mean 0.0125 as previously described (La Manno 

G et al., 2016). Single-cell profiles were normalized by the total UMI count, counts were log-

normalized and PCA performed retaining the top 50 of components. 
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Clustering was performed using the Louvain clustering algorithm, with default parameters. 

Clusters were annotated consulting the literature relative to the differential expressed 

features. 

Signature enrichment scores for the toxin-marked subpopulations and for TGF-b and FGF 

pathways were both computed as average Z-scores across the 200-genes lists described 

above. We used a procedure analogous to the one used Seurat CellCycleScoring function 

(Stuart T et al., 2019). Briefly, the log-transformed depth-corrected counts of genes in the list 

were zero-centered and standardized and the obtained Z-scores were averaged along each 

cell. To avoid capturing sequencing depth bias the score was corrected for the expectation 

estimated computing the average Z score of a random sample of genes stratified by average 

expression level. 

 

10.12.1 scRNA-seq: Treatment-Control comparison 

 

The two datasets were first analyzed together analogously to the way described above for 

the control dataset.  

The integration analysis between the Treatment and control datasets was performed using 

Seurat integration algorithm with [default] parameters. Clustering and embedding were 

computed using Louvain and UMAP algorithm respectively. Density estimation on the 

embedding was performed using the kernel density estimator implemented ins scikit-learn. 

Gene expression analysis was performed using the original counts (not integrated.) 

 

10.13 Real Time PCR 

 

Total RNA was extracted and DNAse treated from a 10-cm dish with RNeasy Kit (Qiagen, 

Germany), according to manufacture instruction. The yield and the integrity of the RNA were 

determined using a spectrophotometer (NanoDrop ND-1000; Thermo Scientific, USA). 

Reverse transcription was performed using 250ng of RNA using random primers and 

SuperScript II (Invitrogen). Real-time PCR was performed with 7900HT Fast Real-Time PCR 

système (Applied Biosystems) using PowerUp SYBR Green reagent for detection (Applied 

Biosystems). All primer sequences are listed in Annex 5. mRNA levels were normalized to 

three housekeeping genes: Hypoxanthine-guanine phosphoribosyltransferase (HPRT), b-
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microglobulin (bM2), TATA-binding protein (TBP). Data were average of three replicates from 

independent experiments. 

 

10.14 SDS-PAGE and western blotting 

 

10.14.1 SDS-PAGE 

 

Two 16 x 18 cm plates were used for assembling standard gels. The plates were assembled to 

form a chamber using two 1.5 mm plastic spacers aligned along the lateral edges of the plates. 

The plates were then fixed using two clamps and mounted on a plastic base, which sealed the 

bottom. All of the materials were from Hoefer Scientific Instruments. The running gel was 

prepared by mixing H2O, 30% (w/v) acrylamide-bisacrylamide solution, 1.5M Tris-HCl (pH 8.8), 

10% (w/v) SDS, 10% ammonium persulfate (APS) and N,N,N',N'-tetramethylethylene diamine 

(TEMED) in different amount according to gel percentage. Soon after pouring, the gel was 

covered with a layer of water and left at RT for about 1 h. The water layer was removed. The 

stacking gel was prepared by mixing H2O, 30% (w/v) acrylamide-bisacrylamide solution, 0.5 

M Tris-HCl (pH 6.8), 10% (w/v) SDS, 10% (w/v) APS and TEMED, and the solution was pipetted 

and poured onto the running gel. Immediately, a 15-well comb was inserted between the 

glass plates and it was left 1 hour at RT. 

For sample preparation, after treatment, the cells were washed three times with PBS and 

lysed in RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 25 

mM Tris-HCl, pH 7.4), supplemented with protease cocktail inhibitor. The lysates were 

clarified by centrifugation, and quantified using a commercially available BCA kit (Pierce™ BCA 

Protein Assay Kit, ThermoFisher) according to the manufacturer instructions. 

Samples were prepared by adding an equal volume of 2x SDS sample buffer, incubating at 95 

°C for 5 min, briefly centrifuging and then loading onto the gel.  The gel was then transferred 

into the electrophoresis apparatus and the electrophoresis was carried out under a constant 

current of 7 mA overnight. 
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10.14.2 Western blotting 

 

The polyacrylamide gel was soaked for 15 min in transfer buffer, placed on a sheet of 3MM 

paper (Whatman, NJ, USA) and covered with a nitrocellulose filter. The filter was covered with 

a second sheet of 3MM paper, to form a "sandwich" which was subsequently assembled into 

the blotting apparatus. Protein transfer occurred at 400 mA for 4 hours. At the end of the run, 

the sandwich was disassembled and the nitrocellulose filter was soaked in 0.2% Ponceau red 

and 5% (v/v) acetic acid, to visualize the protein bands, and then rinsed. The strips containing 

the proteins of interest were blocked in TBS-T/5% BSA for 45 min at RT, and then with the 

primary antibody diluted at its working concentration in the blocking solution buffer 

overnight at 4 °C. After Washing with TBS-T, the strips were next incubated for 1 h with the 

appropriate HRP-conjugated secondary antibody, diluted in antibody dilution buffer and 

washed twice in TTBS, for 10 min each. After washing, the strips were incubated with the ECL 

solution for 3 minutes and exposed to x-ray films, which were then scanned. The intensity of 

the bands and preparation of images was done using ImageJ and Adobe Illustrator 2020. 
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Annex 1. Table of chemicals and materials 

Material Provider Catalogue number 

DMEM Life Technologies 31966021 

Fetal Bovine Serum (FBS) Life Technologies 10270106 

L-glutamine Life Technologies 25030024 

Pen/Strep Life Technologies 15140122 

0.05% Trypsin/EDTA Life Technologies 25300062 

Fumonisin B1 Enzo BML-SL220-0005 

Myriocin Enzo BML-SL226-0005 

DL-threo-PDMP Enzo BML-SL210-0010 

FGF2 Bio-Techne 233-FB-025/CF 

TGF-b1 PeproTech EC Ltd 100-21 

Square coverglasses Gloor instruments AGL46S10-15 

Paraformaldehyde EMS 50-259-96 

Saponin Sigma-Aldrich 47036 

Fluoromount-G, 25 ml Sigma-Aldrich 0100-01 

Bovin Serum Albumin (BSA) Sigma-Aldrich A2153 

PBS Life Technologies 14190169 

Oligofectamine Life Technologies 12252011 

Optimem Life Technologies 31985070 

Acrylamide/Bis-acrylamide, 30% solution Sigma-Aldrich A3699 

Ammonium Persulfate (APS) Sigma-Aldrich A3678 

N,N,N',N'-tetramethylethylenediamine Sigma-Aldrich T22500 

Pierce Fast Western Blot Kit, ECL Substrat Life Technologies 35050 

Lipofectamine 2000 Life Technologies 11668027 

Glutaraldehyde EMS Electron 16120 

Acetonitrile Sigma-Aldrich 34851-1L 

Trifluoroacetic acid Sigma-Aldrich 302031-100ML 

2,5-dihydroxybenzoic acid Sigma-Aldrich 85707-1G-F 
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Annex 2. List of the antibodies used in this study for flow cytometry (FACS), 

Immunofluorescence (IF) and Western Blotting (WB) 

 

 Usage  

Antibody/Toxins 
Flow 

Cytometry 
IF WB Provider 

ChTxB-Alexa Fluor 488 1:1000 1:1000  
Life Technologies 

C34775 

ChTxB-Alexa Fluor 647 1:1000 1:1000  
Life Technologies 

C34778 

ShTxB1a-Cy3 1:1000 1:800  
Prof. Johannes Lab; 

In-house prepared 

tert-Butyl methyl ether (MTBE) Sigma-Aldrich 34875-1L 

Methylamine Sigma-Aldrich 534102-1L 

Methanol Sigma-Aldrich 34860-2.5L 

Chloroform Sigma-Aldrich 650498-1L 
3H-sphingosine Anawa ART 0490-50 µCi 

BSA fatty acid free Sigma-Aldrich A-6003-10g 

DMSO LabForce sc-359032 

8 well chamber, removable  Vitaris 80841-IBI 

35 mm Dish | No. 1.5 Coverslip | Mattek P35G-1.5-14-C 

HPTLC plates Sigma-Aldrich 1055480001 

Prolong Diamond Antifade Mountant Thermo Fisher P36965 

RNAscope Multiplex Fluorescent V2 assay Bio-techne 323110 

Chromium Next GEM Single-cell 3' GEM, 

Library & Gel Bead Kit v3.1, 4 rxns 
10x-Genomics 1000128 

Chromium Next GEM Chip G Single-cell 

Kit, 16 rxns 
10x-Genomics 1000127 
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ShTxB2e 1:300 1:300  Prof. Müthing lab 

Mouse anti-ShTxB2e 1:300 1:300  
Sifin 

TS2103 

Mouse anti-SMa  1:300 1:500 
Abcam 

Ab7817 

Mouse anti-LMNA  1:100  
CST 

#477 

Rabbit anti-MMP1  1:300 1:1000 
Lubioscience 

GTX100534 

Rabbit anti-Vimentin  1:100  
CST 

5741S 

Mouse anti-Pankeratin  1:500  
BMA Biomedicals 

T-1302 

Mouse anti-GAPDH   1:2000 
Abcam 

ab9485 

Mouse and Rabbit  

Anti-HRP 
  1:10000 

Jackson Immunosearch 

711-035-152 

715-035-150 

Mouse anti-V5  1:200  
Thermo Fisher 

R96025 

 

 

Annex 3. List of siRNAs used in this work 

 

Human gene Accession number siRNA sequence 

A4GALT/Gb3S NM_017436 

1# 5'-AGA AAG GGC AGC UCU AUA ATT -3' 

2# 5'-GGA CAC GGA CUU CAU UGU UTT -3' 

3# 5'-UGA AAG GGC UUC CGG GUG GTT -3' 

4# 5'-GCA CUC AUG UGG AAG UUC GTT -3' 

ST3GAL5/GM3S NM_003896 1# 5'-CAA UGG CGC UGU UAU UUG ATT -3' 
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2# 5'-GUG CAC CAG UUG AGG GAU ATT -3' 

3# 5'-GAC CAU GCA UAA UGU GAC ATT -3' 

4# 5'-CGG AAG UUC UCC AGU AAA GTT -3' 

B3GALNT1/Gb4S NM_003781 

1# 5'-GAU AUG AGG UUC UUA CAU UTT -3' 

2# 5'-CAG GUU AUC CUC UAA UUG ATT -3' 

3# 5'-GUC GGG AUC UGU UUG AAU UTT -3' 

4# 5'-GUG CCA AGG AUC UAU GAA ATT -3' 

 

 

Annex 4. List of vectors used for lentiviral transduction of dHFs 

 

Gene Vector Provider 

Packaging 

vectors 
pCMVR8.74 Addgene Cat # 22036 

Packaging 

vectors 
pMD2.G Addgene Cat # 12259 

plenti pLX304, V5 (C-ter) Gene Expression Core Facility (GECF, EPFL) 

B3GALNT1 pLX304, V5 (C-ter) Gene Expression Core Facility (GECF, EPFL) 

ST3GAL5 pLX304, V5 (C-ter) Gene Expression Core Facility (GECF, EPFL) 

 

 

Annex 5. List of Real-time primers used in this work  

 

Human qPCR Primers 

Gene  Primer Sequences (5‘– 3’) 

ACTA2 
Forward GAGTTACGAGTTGCCTGATG 

Reverse GGTTTCATGGATGCCAGC 

COL1A1 
Forward CATGGAGACTGGTGAGACCT 

Reverse GCCATACTCGAACTGGAATC 
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COL5A2 
Forward GGATACATGGACGATCAAGC 

Reverse GACAGTCTTGCCCACATTTC 

CTGF 
Forward GTCCAGACCACAGAGTGGAG 

Reverse AGTACGGATGCACTTTTTGC 

ETV1 
Forward CCAGCTTTCTGAACCCTGTA 

Reverse TGTTCATACACTGGGTCGTG 

MMP1 
Forward ACACCTCTGACATTCACCAAG 

Reverse ATGAGCCGCAACACGATG 

SPARC 
Forward CCTGTACACTGGCAGTTCG 

Reverse TGTCATTGTCCAGGTCACAG 

STC1 
Forward AAAGGATGATTGCTGAGGTG 

Reverse GGCTTCGGACAAGTCTGTTA 

HPRT 
Forward AGCTTGCTGGTGAAAAGGAC 

Reverse GTCAAGGGCATATCCAACA 

bM2 
Forward TGCTCGCGCTACTCTCTCTTT 

Reverse TCTGCTGGATGACGTGAGTAAAC 

TBP 
Forward GCCCGAAACGCCGAATATA 

Reverse CGTGGCTCTCTTATCCTCATGA 
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TABLES 

 
Table 1. List of identified compounds. Putative lipid features (296 total) recorded in positive ion mode 
with their experimental m/z values. Lipid confirmed by LC/MS and MRM are annotated. Data refer to 
four separate IMS measurements. Analysis were obtained with mass resolving powers of 240,000 
(@m/z 200).  

 

m/z
experimental

m/z 
theoretical Dppm Tentative Lipids identification

Alex123
Alex123 
Adduct

Tentative Lipids identification
Metaspace

Metaspace 
adduct

LC-MS 
confirmed

MRM
 confirmed

478.3306 478.3292 0.0014 LPC O-16:2 H CerP 24:1 H
485.2649 485.2638 0.0011 LPA 20:2 Na LPA 20:2 Na
496.3411 496.3397 0.0014 LPC 16:0 H LPC 16:0 H yes yes
504.3068 504.306 0.0008 LPE 18:0 Na LPE 18:0 Na yes yes
504.3461 504.3448 0.0013 LPC O-18:3 H PC P-18:2 H
506.3611 506.3605 0.0006 LPC O-18:2 H PC O-18:2 H
510.3558 510.3554 0.0004 LPE 20:0 ; LPC 17:0 H LPE 20:0 ; LPC 17:0 H yes
516.3072 516.306 0.0012 LPC 16:1 Na LPC 16:1 Na
518.3239 518.3217 0.0022 LPC 16:0 Na LPC 16:0 Na yes yes
522.3568 522.3554 0.0014 LPC 18:1 H LPC 18:1 H yes yes
524.372 524.371 0.001 LPC 18:0 H LPC 18:0 H yes yes

534.2968 534.2956 0.0012 LPE O-22:6 Na LPC 16:0 /LPE 19:0 K yes
535.29501 unknown unknown unknown unknown unknown unknown unknown
542.4917 542.4907 0.001 Cer 34:2 Na
544.3388 544.3373 0.0015 LPC 18:1 Na LPC 18:1 Na yes yes
546.3542 546.353 0.0012 LPC 18:0 Na LPC 18:0 Na yes yes
560.3121 560.3113 0.0008 LPC 18:1 K yes
560.5024 560.5013 0.0011 Cer 34:1 Na Cer 34:1 Na yes yes
566.323 566.3217 0.0013 LPC 20:4 Na LPC 20:4 Na yes
577.519 577.5197 -0.0007 DG P-34:1 H

578.5231 578.5119 0.0112 Cer 34:0 Na yes
582.27369 unknown unknown unknown unknown unknown unknown unknown
588.5333 588.5326 0.0007 Cer 36:1 Na Cer 36:1 Na yes yes
599.5025 599.5033 -0.0008 DG P-36:5 H
604.25558 unknown unknown unknown unknown unknown unknown unknown

605.551 605.5503 0.0007 DG O-36:3 H
613.3485 613.3476 0.0009 PG P-24:2 Na
627.5352 627.5346 0.0006 DG O-38:6 H
628.3959 628.3948 0.0011 PE 26:1 Na PE 26:1 Na yes
632.6351 unknown unknown unknown unknown unknown unknown unknown
640.3955 640.3948 0.0007 PC 24:2 Na yes
644.5969 644.5952 0.0017 Cer 40:1 Na Cer 40:1 Na yes yes
654.411 654.4105 0.0005 PE 28:2 Na PE 28:2 Na

664.4687 664.4676 0.0011 CerP 36:3 Na
666.4839 666.48395 -5E-05 CerP 38:5 Na
669.4472 669.4466 0.0006 PA 32:1 Na PA 32:1 Na yes
670.6128 670.6108 0.002 Cer 42:2 Na Cer 42:2 Na yes yes
672.6268 672.6265 0.0003 Cer 42:1 Na Cer 42:1 Na yes yes
682.458 682.4572 0.0008 CerP 36:2 K
684.458 684.4574 0.0006 PE 30:1 Na PE 30:1 Na yes yes

685.28285 unknown unknown unknown unknown unknown unknown unknown
695.4627 695.4622 0.0005 PA 34:2 Na PA 34:2 Na
696.462 696.4599 0.0021 PC 28:2 Na yes

697.4787 697.4778 0.0009 PA 34:1 Na PA 34:1 Na yes
697.52442 unknown unknown unknown unknown unknown unknown unknown
697.5263 697.5255 0.0008 SM 32:1 Na SM 32:1 Na yes yes
703.576 703.5748 0.0012 SM 34:1 H SM 34:1 H yes yes

705.5913 705.5905 0.0008 SM 34:0 H SM 34:0 H yes yes
706.5391 706.5381 0.001 PC 30:0 H PC 30:0 H yes yes
707.4657 707.4646 0.0011 PA 37:6 H yes
709.4786 709.4778 0.0008 PA 35:2 Na
711.4369 711.4361 0.0008 PA 34:2 K
711.542 711.5411 0.0009 SM 33:1 Na yes

713.4527 713.4518 0.0009 PA 34:1 K yes
714.5077 714.5068 0.0009 PE 32:0 Na PE 32:0 Na yes yes
718.5394 718.5381 0.0013 PE 34:1 H PE 34:1 H yes yes
718.5762 718.5745 0.0017 PC O-32:1 H PC O-32:1 H yes yes
719.4627 719.4622 0.0005 PA 36:4 Na PA 36:4 Na yes
720.5553 720.5537 0.0016 PE 34:0 H PE 34:0 H yes yes
720.592 720.5901 0.0019 PC O-32:0 H PC O-32:0 H yes yes

721.4787 721.4778 0.0009 PA 36:3 Na yes
722.555 722.5541 0.0009 HexCer 34:1 Na HexCer 34:1 Na yes yes

723.4942 723.4959 -0.0017 PA 36:2 Na PA 36:2 Na
723.4956 723.5411 -0.0455 SM34:2 Na yes
724.4978 724.48774 0.01006 PC 30:2 H yes
725.5571 725.5568 0.0003 SM 34:1 Na SM 34:1 Na yes yes
726.5081 726.5068 0.0013 PC 30:1 Na PC 30:1 Na yes yes
727.5631 727.5612 0.0019 PA O-37:0 Na
728.5204 728.5201 0.0003 PC 30:0 Na PC 30:0 Na yes yes
730.5392 730.5381 0.0011 PC 32:2 H PC 32:2 H yes yes
732.5545 732.5537 0.0008 PC 32:1 /PE 34:1 H yes
733.5579 unknown unknown unknown unknown unknown unknown unknown
734.5705 734.5694 0.0011 PC 32:0 H PC 32:0 H yes yes
735.4349 735.4361 -0.0012 PA 36:4 K yes
735.57377 unknown unknown unknown unknown unknown unknown unknown
737.4526 737.4518 0.0008 PA 36:3 K
738.5064 738.5044 0.002 PE 34:2 Na PE 34:2 Na yes yes
739.4682 739.4674 0.0008 PA 36:2 K
739.5735 739.5724 0.0011 SM 35:1 Na yes
740.47166 unknown unknown unknown unknown unknown unknown unknown
740.5209 740.5201 0.0008 PE 34:1 Na PE 34:1 Na yes yes
740.5233 740.5224 0.0009 PE 36:4 H PE 36:4 H yes yes
741.5317 741.5307 0.001 SM 34:1 K yes
742.5367 742.5357 0.001 PE 34:0 Na PC 31:0/ PE 34:0/ PA 36:1 Na yes yes
742.539 742.5381 0.0009 PE 36:3 H PE 36:3/ PC 33:3/ PA 38:4 H yes yes PE 36:3
742.575 742.5745 0.0005 PC O-34:3 H PC O-34:3 H yes yes

744.4956 744.4938 0.0018  PC 30:0 K PC 30:0 / PE 32:0 K yes yes
744.4956 744.4938 0.0018 PE O-36:6 Na PE O-36:6 / PA 38:6 Na yes
744.5545 744.5537 0.0008 PC 33:2/ PE 36:2 H yes
745.4779 745.4778 1E-04 PA 38:5 Na PA 38:5 Na yes
745.4791 745.4802 -0.0011 PA 40:8 H yes
746.5711 746.5694 0.0017 PE 36:1 H PE 36:1 /PC 33:1 H yes  yes PE 36:1
746.6073 746.6058 0.0015 PC O-34:1 H PC O-34:1 H yes yes
747.4937 747.4959 -0.0022 PA 38:4 H yes
748.5871 748.585 0.0021 PE 36:0 H PC 33:0/PE 36:0 H yes
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749.5107 749.5091 0.0016 PA 38:3 Na PA 38:3 Na
752.5225 752.5224 0.0001 PC 34:5 / PE 37:5 H yes
753.5896 753.5881 0.0015 SM 36:1 Na SM 36:1 Na yes yes

753.58865 unknown unknown unknown unknown unknown unknown unknown
754.5372 754.5357 0.0015 PC 32:1 Na PC 32:1 Na yes yes
755.6047 755.6037 0.001 SM 36:0 Na SM 36:0 Na yes yes
756.5519 756.5513 0.0006 PC 32:0 Na PC 32:0 Na yes yes

757.50864 unknown unknown unknown unknown unknown unknown unknown
758.5699 758.5694 0.0005 PC 34:2 H PC 34:2/ PE 36:2 H yes yes PC 34:2
760.5863 760.585 0.0013 PC 34:1 H PC 34:1 / PE 37:1 H yes yes PC 34:1
761.4512 761.4518 -0.0006 PA 38:5 K yes
762.5048 762.5044 0.0004 PE 36:4 Na PE 36:4 Na yes yes
765.4836 765.4831 0.0005 PA 38:3 K
766.5396 766.5381 0.0015 PE 38:5 H PE 38:5 H yes yes
766.575 766.5745 0.0005 PC O-36:5 H PC 36:5/PE 39:4 H yes yes PC O-36:5

767.4991 767.4987 0.0004 PA 38:2 K
768.5523 768.5513 0.001 PE 36:1 /PC 33:1 Na yes
768.5917 768.5901 0.0016 PC O-36:4 H PC O-36:4/ PE 39:3 H yes yes PC O-36:4
769.4767 769.4778 -0.0011 PA 40:7 Na yes
770.5102 770.5095 0.0007 PE O-38:7 / PC 32:1 Na or K PE O-38:7 / PC 32:1 Na or K yes yes PC 32:1

770.51014 unknown unknown unknown unknown unknown unknown unknown
770.5709 770.5694 0.0015 PE 38:3 H PE 38:3 /PC 35:3 H yes yes
770.6066 770.6058 0.0008 PC O-36:3 H PC O-36:3 H yes yes
771.495 771.4935 0.0015 PA 40:6 Na PA 40:6 Na yes

771.50907 unknown unknown unknown unknown unknown unknown unknown
772.49706 unknown unknown unknown unknown unknown unknown unknown
772.5261 772.5251 0.001 PE O- 36:6 Na yes
772.5287 772.5275 0.0012 PE 45:0 H yes
772.5862 772.585 0.0012 PE 38:2 H PE 38:2 /PC 35:2 H yes yes PE 38:2
773.511 773.5091 0.0019 PA 40:5 Na PA 40:5 Na yes

773.52911 unknown unknown unknown unknown unknown unknown unknown
774.51274 unknown unknown unknown unknown unknown unknown unknown
774.6014 774.6007 0.0007 PE 38:1 H PE 38:1 / PC 35:1 H yes yes PE 38:1
776.5932 776.5952 -0.002 CerP 46:6 H
778.537 778.5357 0.0013 PC 34:3 Na PC 34:3 Na yes yes

780.5521 780.5513 0.0008 PC 34:2 Na PC 34:2 / PE 36:2 Na PC 34:2 / PE 36:2 yes PC 34:2
781.6201 781.6194 0.0007 SM 38:1 Na yes
782.5674 782.567 0.0004 PC 34:1 Na PC 34:1 / PE 37:1 Na yes  yes PC 34:1

783.57091 unknown unknown unknown unknown unknown unknown unknown
784.556 784.5251 0.0309 PC O-36:7 / PE P-39-6 Na PE P-39:6 Na yes

784.57396 unknown unknown unknown unknown unknown unknown unknown
784.5854 784.585 0.0004 PC 36:3 H PC 36:3 / PE 39:3 H yes  yes PC 36:3
785.5292 785.5303 -0.0011 PG 35:1 Na
786.5412 786.5408 0.0004 PC P-36:5/PE P-39:5 Na yes
786.6012 786.6007 0.0005 PC 36:2 H PC 36:2 H yes yes
787.4676 787.4674 0.0002 PA 40:6 K
787.669 787.6687 0.0003 SM 40:1 H SM 40:2 H yes yes

788.5214 788.5201 0.0013 PE 38:5 Na PE 38:5 Na yes yes
788.6171 788.6163 0.0008 PC 36:1 H yes yes
789.4835 789.48348 2E-05 PA 40:5 K
790.5361 790.5357 0.0004 PE 38:4 Na PE 38:4/ PC 35:4 Na yes yes PE 38:4
790.5754 790.5745 0.0009 PC O-38:7 H PC O-38:7/ PE P-41:6 H yes
792.5558 792.5537 0.0021 PE 40:6 H PE 40:6/PC 37:6 H yes yes PE 40:6
794.5673 794.567 0.0003 PE 38:2 Na PE 38:2/PC 35:2 Na yes yes PE 38:2
796.5254 796.5253 1E-04 PC 34:2 K PC 34:2 K yes yes
796.584 796.5826 0.0014 PE 38:1 Na PE 38:1/ PC 35:1 Na yes  yes PE 38:1

796.5866 796.5851 0.0015 PE 40:4 H PE 40:4 / PC 37:4 H yes yes PE 40:4
796.6301 796.6214 0.0087 PC O-38:4 H yes
797.5309 797.5303 0.0006 PG 36:2 Na PG 36:2 Na yes

797.58672 unknown unknown unknown unknown unknown unknown unknown
798.5413 798.5408 0.0005 PE O-40:7 Na PE O-40:7 Na yes
798.5413 798.5409 0.0004 PC 34:1 K PC 34:1 / PE 37:1 K yes yes PC 34:1
798.6102 798.6007 0.0095 PC 37:3 / PE 40:3 H yes
800.5568 800.5564 0.0004 PE O-40:6 Na PC O-37:6/ PE O-40:6 Na yes yes PE O-40:6
800.6178 800.6163 0.0015 PC 37:2 / PE 40:2 H yes
802.5369 802.5357 0.0012 PC 36:5 Na PC 36:5 / PE 39:5 Na yes yes PC 36:5
802.6331 802.632 0.0011 PC 37:1 H yes
804.5518 804.5513 0.0005 PC 36:4 / PE 39:4 Na yes
806.5698 806.5694 0.0004 PC 38:6 H PC 38:6/ PE 41:6 H yes yes PC 38:6
806.6501 806.648 0.0021 HexCer 40:1 Na yes
807.6143 807.6141 0.0002 SM 40:2 Na SM 40:2 Na yes yes
808.5844 808.5826 0.0018 PC 36:2 Na PC 36:2 Na yes yes

809.58679 unknown unknown unknown unknown unknown unknown unknown
809.6512 809.6507 0.0005 SM 40:1;2 Na SM40:1 Na yes yes
810.6004 810.5983 0.0021 PC 36:1 Na PC 36:1 Na yes yes
811.6687 811.6687 0 SM 42:3 H yes
812.5433 812.5412 0.0021 PS 36:1 Na PS 36:1 Na
812.6147 812.6139 0.0008 PC 36:0 Na PC 36:0 Na yes yes
814.5378 814.5357 0.0021 PE 40:6 Na PE 40:6 / PC 37:6 Na yes yes PE 40:6
814.5597 814.5592 0.0005 PS 38:2 H PS 38:2 H yes yes
815.7021 815.7001 0.002 SM 42:1 H SM42:1 H yes yes
816.592 816.5901 0.0019 PC O-40:8 H PC O-40:8 H

818.5682 818.567 0.0012 PE 40:4 Na PE 40:4 / PC 37:4 Na
818.6043 818.6034 0.0009 PC O-38:4 Na PC O-38:4 Na yes yes
820.5264 820.5253 0.0011 PC 36:4 K PC 36:4 / PE 39:4 K yes yes PC 36:4
820.5858 820.5826 0.0032 PE 40:3 Na PE 40:3/ PC 37:3 Na yes yes PE 40:3
821.5289 821.5303 -0.0014 PG 38:4 Na
821.6512 821.6507 0.0005 SM 41:2 Na yes
822.5417 822.5409 0.0008 PE P-42:8 Na
822.601 822.6007 0.0003 PC 39:5/ PE 42:5 H yes

823.6676 823.6663 0.0013 SM41:1 Na yes
824.5568 824.5564 0.0004 PE O-42:8 Na PE O-42:8 Na yes
824.6175 824.6163 0.0012 PC 39:4/ PE42:4 H yes
826.5733 826.5721 0.0012 PE O-42:7 Na PE O-42:7 Na yes
828.5541 828.5537 0.0004 PC 40:9 H PC 40:9 H yes
830.5682 830.567 0.0012 PC 38:5 Na PC 38:5 Na yes yes
832.5834 832.5826 0.0008 PC 38:4 Na yes
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833.651 833.6507 0.0003 SM 42:3 Na yes
834.5984 834.5983 1E-04 PC 38:3 Na yes
834.6011 834.6007 0.0004 PC 40:6 H PC 40:6 H yes yes
834.6795 834.6793 0.0002 HexCer 42:1 Na yes
835.60275 unknown unknown unknown unknown unknown unknown unknown
835.6459 835.6454 0.0005 SM 42:2 Na SM 42:2 Na yes yes
837.6822 837.68239 -0.00019 SM 42:1 Na SM 42:1 Na yes yes
838.641 838.632 0.009 PC 40:4 H yes

846.5418 846.5409 0.0009 PC 38:5 K PC 38:5 K yes yes
848.5572 848.5566 0.0006 PC 38:4 K PC 38:4 K yes yes
854.5703 854.5694 0.0009 PC 42:10 H PC 42:10 H yes
856.5849 856.5826 0.0023 PC 40:6 Na PC 40:6 Na yes yes
858.5994 858.5983 0.0011 PC 40:5 Na PC 40:5 Na yes yes
860.6174 860.6163 0.0011 PC 40:4 Na PC 40:4 Na yes yes
868.56977 unknown unknown unknown unknown unknown unknown unknown
896.60118 unknown unknown unknown unknown unknown unknown unknown
901.56515 unknown unknown unknown unknown unknown unknown unknown
909.5461 909.5463 -0.0002 PI 38:4 Na yes
918.5431 918.5409 0.0022 PC 44:11 K yes
930.54367 unknown unknown unknown unknown unknown unknown unknown
931.54872 unknown unknown unknown unknown unknown unknown unknown
933.5632 933.5616 0.0016 PGP 42:5 H
944.5592 944.5566 0.0026 PC 46:12 K
947.5014 947.5046 -0.0032 PI 40:7 K yes
956.55927 unknown unknown unknown unknown unknown unknown unknown
958.575 958.57502 -2E-05 PE 50:12 K
960.583 960.5879 -0.0049 PE 50:11 K

974.54888 unknown unknown unknown unknown unknown unknown unknown
980.5592 unknown unknown unknown unknown unknown unknown unknown
984.59066 unknown unknown unknown unknown unknown unknown unknown
986.606 986.6035 0.0025 PE 52:12 K

1000.56442 unknown unknown unknown unknown unknown unknown unknown
1002.5798 unknown unknown unknown unknown unknown unknown unknown
1004.55923 unknown unknown unknown unknown unknown unknown unknown
1006.5749 1006.57489 1E-05 Gb3 30:1 K
1008.59036 unknown unknown unknown unknown unknown unknown unknown
1010.60196 unknown unknown unknown unknown unknown unknown unknown
1022.54852 unknown unknown unknown unknown unknown unknown unknown
1024.56426 unknown unknown unknown unknown unknown unknown unknown
1032.6165 1032.5867 0.0298 Gb3 32:2 K
1035.51785 unknown unknown unknown unknown unknown unknown unknown
1037.5808 unknown unknown unknown unknown unknown unknown unknown
1038.58432 unknown unknown unknown unknown unknown unknown unknown
1040.54419 unknown unknown unknown unknown unknown unknown unknown
1045.56175 unknown unknown unknown unknown unknown unknown unknown
1046.6592 1046.6597 -0.0005 Gb3 34:1 Na yes
1048.68 unknown unknown unknown unknown unknown unknown unknown

1053.55434 unknown unknown unknown unknown unknown unknown unknown
1054.59923 unknown unknown Unknown Unknown Unknown Unknown Unknown
1066.56033 unknown unknown Unknown Unknown Unknown Unknown Unknown
1068.57545 unknown unknown Unknown Unknown Unknown Unknown Unknown
1077.57351 unknown unknown Unknown Unknown Unknown Unknown Unknown
1080.57623 unknown unknown Unknown Unknown Unknown Unknown Unknown
1082.53432 unknown unknown Unknown Unknown Unknown Unknown Unknown
1084.54918 unknown unknown Unknown Unknown Unknown Unknown Unknown
1092.57598 unknown unknown Unknown Unknown Unknown Unknown Unknown
1093.5475 unknown unknown Unknown Unknown Unknown Unknown Unknown
1094.59174 unknown unknown Unknown Unknown Unknown Unknown Unknown
1096.59992 unknown unknown Unknown Unknown Unknown Unknown Unknown
1106.55349 unknown unknown Unknown Unknown Unknown Unknown Unknown
1108.56889 unknown unknown Unknown Unknown Unknown Unknown Unknown
1108.60699 unknown unknown Unknown Unknown Unknown Unknown Unknown
1109.61089 unknown unknown Unknown Unknown Unknown Unknown Unknown
1111.56911 unknown unknown Unknown Unknown Unknown Unknown Unknown
1116.57553 unknown unknown Unknown Unknown Unknown Unknown Unknown
1118.59013 unknown unknown Unknown Unknown Unknown Unknown Unknown
1120.6072 unknown unknown Unknown Unknown Unknown Unknown Unknown
1122.52718 unknown unknown Unknown Unknown Unknown Unknown Unknown
1122.62233 unknown unknown Unknown Unknown Unknown Unknown Unknown
1124.5423 unknown unknown Unknown Unknown Unknown Unknown Unknown
1130.754 1130.7536 0.0004 Gb3 40:1 Na yes

1132.56938 unknown unknown Unknown Unknown Unknown Unknown Unknown
1134.58445 unknown unknown Unknown Unknown Unknown Unknown Unknown
1136.58568 unknown unknown Unknown Unknown Unknown Unknown Unknown
1138.59619 unknown unknown Unknown Unknown Unknown Unknown Unknown
1142.59139 unknown unknown Unknown Unknown Unknown Unknown Unknown
1144.60666 unknown unknown Unknown Unknown Unknown Unknown Unknown
1149.54913 unknown unknown Unknown Unknown Unknown Unknown Unknown
1151.56169 unknown unknown Unknown Unknown Unknown Unknown Unknown
1156.56865 unknown unknown Unknown Unknown Unknown Unknown Unknown
1156.7694 1156.7693 1E-04 Hex3Cer 42:2 H Gb3 42:2 Na yes
1158.7848 1158.7849 -0.0001 Gb3 42:1 Na yes
1160.7929 unknown unknown Unknown Unknown Unknown Unknown Unknown
1162.61473 unknown unknown Unknown Unknown Unknown Unknown Unknown
1173.59749 unknown unknown Unknown Unknown Unknown Unknown Unknown
1174.7584 1174.7589 -0.0005 Gb3 42:1 K yes
1182.58331 unknown unknown Unknown Unknown Unknown Unknown Unknown
1184.59889 unknown unknown Unknown Unknown Unknown Unknown Unknown
1208.62618 unknown unknown Unknown Unknown Unknown Unknown Unknown
1213.58965 unknown unknown Unknown Unknown Unknown Unknown Unknown
1228.90777 unknown unknown Unknown Unknown Unknown Unknown Unknown
1230.60795 unknown unknown Unknown Unknown Unknown Unknown Unknown
1249.8003 1249.7391 0.0612 GA1 34:1 Na Gb4 34:1
1258.63908 unknown unknown Unknown Unknown Unknown Unknown Unknown
1269.5914 unknown unknown Unknown Unknown Unknown Unknown Unknown
1270.59978 unknown unknown Unknown Unknown Unknown Unknown Unknown
1286.57406 unknown unknown Unknown Unknown Unknown Unknown Unknown
1294.80038 unknown unknown Unknown Unknown Unknown Unknown Unknown
1310.59248 unknown unknown Unknown Unknown Unknown Unknown Unknown
1326.56635 unknown unknown Unknown Unknown Unknown Unknown Unknown
1333.8401 1333.833 0.0071 GA1 40:1 Na Gb4 40:1
1344.64232 unknown unknown Unknown Unknown Unknown Unknown Unknown
1359.8489 1359.8487 0.0002 GA1 42:2 Na Gb4 42:0
1361.8635 1361.8643 -0.0008 GA142:1 Na Gb4 42:1
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Table 2. Lipotypes gene signatures. By comparing the expression of the top 350 genes in each FACS-
sorted population with the average expression of the others, lists of enriched genes have been 
generated as lipotypes signatures.  

 

ChTxB ChTxBShTxB1aShTxB2e ShTxB1aShTxB2 ShTxB2e

IGF2 MEG3 CPS1 HAS2
ACAN SERPINB2 EFNA1 CELF4
INMT KRTAP15 DSG2 ENSG00000280356

HAPLN3 NEAT1 KRT17 GREB1
ACVR2A ADAM33 CCAT1 CAPZA1
SFRP1 APP SLC7A2 PEG3
IGFBP7 TWIST2 NPTX1 FAM76A
VCAM1 MMP14 FAM83A CHIT1
CDH6 MMP3 C4BPA B3GALT1
KCND3 HLAB VTN SEMA3A
AFF3 S100A4 ECEL1 RP1116E18.3
DHRS3 HLAA NUP210 BROX
ADRA2A FRMD6 CTC575D19.1 TMCC3

AC005013.1 ANPEP CDH10 ADAMTS9
COMP FKBP10 AQP3 BAGE2
SFRP2 ENSG00000281383 RP3523K23.2 RGR
SHANK2 ECM1 PRSS21 RP1196K19.4
GCNT4 GPNMB LYPD3 ADAM23
CES1 MASP1 SRGN EFNA5

SCUBE3 PSG5 S100P ST8SIA5
SAMD11 CRABP2 TRIP13 KCNJ6
FHL1 MMP1 RASIP1 HHIP

HS3ST3B1 ANGPTL2 MAL2 TRAM1L1
PCDHGA10 LOXL1 TM4SF1 ADCY2
BRINP1 ANXA1 MAGEA6 LSM12
MMP11 CD248 CTB119C2.1 RNF157
HTR2A C1orf63 E2F2 NTNG1
CHRM2 LPXN MST4 ATP10B
TRIB2 SGCB SIK1 CD34
ID4 SPOCD1 SLCO4A1 PAG1

SULF2 TGFBI PRAME SLC6A15
HIVEP3 CDKN1A KYNU RAB22A
COL8A2 CTSK PRSS56 ADAM8
ARID5B TPST1 PDE3A CACNA1H
AKAP6 HIST2H2BE MTUS1 SLC41A2
WNK3 TRIM22 SLC27A2 PRRG3
DPT SPARC SERPINB5 PCDHA4

FAM20A IL8 BMP2 DPYSL2
FAT2 AKR1C1 SLC43A3 BDH1
PLCH2 UBC ZIC5 KSR2
DCDC1 C6orf1 PDE2A MAP1B
AKAP7 IGFBP3 MAGEA12 RP11378J18.8
PKD1P5 OAS2 FOLR1 MYO7B
WNT2B LUM DNER SCN1A
TSPAN18 PRAF2 LINC00473 SEMA3E
PDGFD MIR242 SLC7A5 BAALC
DYSF ENSG00000276107 SERPINB3 VIPR1AS1
FREM2 OAT MSLN POU6F2
EXPH5 CLEC11A ENSG00000275993 ENSG00000280543
SEMA6A FOSL1 ZIC2 NOVA1
COL15A1 ZNF83 GAL SLC24A4
ERBB4 FAM195B TFAP2A BICC1
ZNF521 THY1 PTP4A1 SNAP91
ZNF717 H1F0 ENSG00000272398 APBA1

RAB11FIP2 GREM2 ABLIM1 MYH7B
TET1 CD81 RP11461A8.4 LINC00702

FAM188B DTX3 CD55 MEGF11
ROR1 NFATC4 JUP CAMK4
SVOP MMP2 CDK1 KCNA2
TGM2 PAMR1 PVRIG ENSG00000279278
FGF9 EHD3 PRKAA2 CTSC
HNMT DNM1 KRT18 ENSG00000280156

PRICKLE2 MME LXN ADAMTS20
FLI1 RP11894P9.1 PDK4 ABCA13
AXIN2 MFAP4 PITX1 MYH2
SNED1 SNORD3A MCAM CYP46A1
TNFAIP6 IFI27L2 KCNN4 LINC00476
C10orf11 CHAC1 STRIP2 IQGAP2
IGFBP5 AQP1 LONRF3 ATP2B2

LINC00598 ADM IGF2BP1 PKHD1L1
LIPG TRPV2 FSTL3 GDNFAS1

ST3GAL5 BGN CHML OTOGL
COL22A1 ENSG00000279520 ALPP UGT3A1

RP3399L15.3 FMOD C4BPB KIF1A
ABCA1 GALNT15 GDA GDNF
NRCAM LSS ELF3 COL17A1
MEGF6 ARL4C ETS2 FYB
CACNA1E SSTR1 TSPAN12 PTCHD1
CYP27A1 TNFRSF14 MAGEA3 NPAP1
POU5F2 UCHL1 36951 CHD5
C1orf198 SLC16A2 MTATP6P1 RIN2
CH25H AKR1C2 KRT80 C8orf34
RNF150 HERC6 BAG1 RP11449L23.2
ABCA12 38047 NPR3 NKX31
UNC5B KLF6 PRG4 NDNF
ITGA11 FTLP3 FAAH2 MOV10L1
PRELP IFITM1 L1CAM SCIN
CDH11 CHIC1 LAMA5 ZNF385D
NOG C1S MCTP2 ENSG00000277363

MUC5B MIR503HG FOXA1 ATP6V0E2
MAB21L1 ANKRD13A KLF5 MUC16
HSPA2 ARMCX1 NUP155 MGAT4C
PLCG2 KLF7 ORC1 PLGRKT
OTOG PODN CCT5 RASGRP3
DCC PLCB4 MTATP6 RBFOX1
CADPS SERPINH1 CITED4 UBA6
MRVI1 TAX1BP3 BRI3BP ZNRD1AS1
RBMS3 AP2M1 TNS4 SRGAP1
CNN1 ACTA2 MCM2 CD226
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ChTxB ChTxBShTxB1aShTxB2e ShTxB1aShTxB2 ShTxB2e

RP11774O3.3 IGFBP6 MANEAL DNAJC3
ADCY10P1 TIMP2 CXCR4 MAGI2

TNC EDA2R CFI GPATCH2
PCDH15 ALDH1A3 COBL XKR4
PART1 CYP7B1 BARX1 TMTC3

CTD2619J13.19 OLFML3 FZD5 ENSG00000280011
EMX2OS FCGRT PPAP2C TLK1
FAM179A HLAC SNHG17 TBC1D32
GAB3 CTGF FAM83H EPHB2

RAPGEF5 QPRT LIFR COL2A1
BCL11A SCPEP1 OLR1 ENSG00000280007
TEX41 CCNL1 LRP8 UNC80
CLSTN2 MTMR9LP DSC2 BSN
ZNF516 GSTP1 SGK1 FRK
HSD17B2 GLIPR2 MAGEA1 ENSG00000274775
EBF1 APLP2 SMOC1 GABRG3
ROBO2 MT1E RAB26 ALPK3
ITGA8 MAPK3 CYCS DGKB
FZD4 CXCL1 TFRC C14orf182
PAPPA2 SNAI2 SOHLH2 PCDH9

RP11413E6.7 TMEM140 CTAG2 SLC7A14
PCLO ATP8B2 PAGE1 CSMD3

CNTNAP2 COL1A2 PODXL2 LINC00938
COL11A1 ARSJ RGS2 ENSG00000267719
GULP1 IFI27 IMPA2 CCDC30
STAB1 EPDR1 COL4A5 MYEF2
ITGBL1 ALPK2 DUSP16 RGS10
SDK1 MXRA8 KLHL23 PPP1CB

PHACTR3 STC2 GIPC3 LOXHD1
PKHD1 SOD2 SNORA71B FAT3
SMAD9 MTMR11 SERPINB4 AXL
OLFM2 CSF1 BMP6 HHAT
STK17B CRYAB TPD52 OTUD7A
SSPN PIK3R1 MYBL2 STAB2
PTK2B DYNLRB1 NDC1 DNAH11
NOTCH3 HEPH CKB NTRK3
PREX2 PEA15 SLFNL1 SRGAP2C
PLCB1 LAMB2 MCM10 PTPRQ
LIMS2 RP11345P4.7 LY6K MYRF
USH2A C1orf85 MTND1 ENSG00000279184
KALRN KCNK2 MRPS30 ENSG00000279080
PEAR1 GADD45A STEAP4 NOS1

KCNQ1OT1 TUBB2A GPRC5A KCNS3
RUNX1T1 LRRC15 GAGE1 TTC40
EMX2 ABHD4 NSUN2 ENSG00000275395
PKD1L2 PSMB9 ENSG00000270816 RP11379K17.4
OXTR SRPX2 SFN EFCAB4B
TRPM3 C11orf68 JPH1 CXorf22

INTS6AS1 NFKBIZ CEP72 MUC12
FRAS1 NFE2L1 FAM60A PGBD1

RHOBTB3 FTL ENSG00000273604 KIF5C
PCDH18 ISG15 RHOV GRIN2A
WFDC1 NID1 RP1276N6.2 LRP2
NRXN3 MAML2 ABCC2 ANKS1B

KIAA1199 CDIPT KLHL13 CTD3088G3.8
RFX3 TMEM204 ITPR1 SSPO
BICC1 RCN3 PLA2G4A RP11492D6.3
IKZF2 NAGK HPD FAM83F
LBH TMEM47 AVPI1 LRP1B
AR SULF1 ACVR2B LINC00886

LMOD1 RNF146 ANKRD32 DNAH7
RFTN1 LINC00968 CDC6 DZANK1
RELN SRPX FAM83D DUOX1
GPC4 RGMB CXADR FSIP2

PDE11A COL3A1 RTN4RL2 DGCR5
CDH23 ID2 NOLC1 C1orf222
C12orf55 SOCS5 EPGN FBXO36
SLC8A1 B2M GLCCI1 RP11119F7.5
PRKD1 RABAC1 AC010761.8 MUC17
XDH MIR143HG LDHB RP11212P7.2
BEND7 CXCL6 MISP NHLH2
KAZN IL20RB NRARP SH3TC2
SAMD5 CAV1 OSBP2 SHISA4
CXCL12 GSTA4 PDE4D LAMTOR5AS1
STC1 GPR68 LAMC3 LINC00910
DAPK2 FAM127A GPR126 TG

C2orf27A MYD88 SLC29A2 PLEKHG4B
FAT4 GALNT5 FZD10 NTRK2

ATP8A2 STAT1 S100A9 VSIG10
ITGA9 STAT2 TRABD2A ADPRHL1

C11orf87 TMEM119 SALL4 TNR
ITGB8 ADH5 SLPI KIAA1456
BMPR2 SRSF5 SLC20A1 RGMA
ANK3 YPEL5 MCM3 PTPN14
ILDR2 ARMCX3 DEPDC1 REEP3

NAALADL2 TRPC4 MYPN CSNK1A1
POSTN DNM3OS TUBA4A CHN2
RYR1 PJA1 ENSG00000276850 CACNA1B

PLEKHH2 VAT1 FKBP4 ADAM22
ENSG00000274775 SERPINE2 NEFH CDKN2D

MYBPC3 AKR1C3 LAMA1 SLC48A1
RP11417E7.1 LENG8 VAMP8 DCP1B
RAB11FIP4 FOSB KRT16 RHPN1
TENM4 ENPP2 CBFA2T3 SARDH
ANGPT2 APBB1 KIF21A FAM46A
KCNQ2 OLFML1 BRIX1 PAQR8
PTPRG DCN CHAF1A RP111220K2.2
DPP6 XG CDCA7 ARHGEF26
MLYCD TPRG1L C19orf33 ITGAX
EBF3 SERINC1 AOC2 GPRIN2
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ChTxB ChTxBShTxB1aShTxB2e ShTxB1aShTxB2 ShTxB2e

SLC5A3 NPC2 hsamir6723 C1orf233
MUC19 DAPK3 STOX2 TMEM54
SCN4A DPYSL3 CBX2 PAK3
CD302 FIBIN PDHA1 MYO7A
SOX2OT CFH PEG10 CA5A
ZBTB8B ARF4 SCARB1 DNAH2
TNFSF13B PSMB8 WNT7B ABCA4
SAMD12 RRAS LRFN1 KCNJ14
PLXDC2 FTH1 KRT8 MYT1L
MEF2C GRIA3 HSPA4L RP11416O18.1

TRAPPC12AS1 FGF7 POLR1B ABCA10
MUC6 NDRG1 OTUD1 SVOPL
STMN2 MALAT1 LGR4 USP6
C1orf132 GALNT10 NAT8L RPS6KA5
NLRC3 ISLR HCN2 PAX5
NR2F1 DAB2 SAPCD2 ST18
ESRRG IER3 SNHG1 SLC16A10

COL16A1 C11orf96 C10orf2 ADRBK2
SLIT3 WISP1 NUP160 SCUBE1

ZNF585B EPS8 DAK ARF6
KCNK6 MRGPRF MFSD12 ENSG00000279652
AMIGO2 EMP1 ZYG11A CUBN
MYO15A RCAN2 EIF4A3 KIAA1244
SEMA5A SEC24D EXO1 C6orf62
JAM2 STX12 DDX11 GABRB3

PRKAR2B PTTG1IP HPDL CSMD2
ENSG00000279118 ACTC1 SOWAHC RAP2B

DNAJC4 IFIH1 BTBD3 AK5
DGKI TUBA1A DSP ENSG00000278920

ALDH1L1 ID3 RIMS1 ARSK
EPB41L3 SH3BGRL UCP2 RP1
TSIX ACTN4 CDKN2A PPP3CA
TPRG1 TOM1L2 TRAP1 DNAH8

SLC9A3R2 DYNLT1 LAPTM4B DTNA
FADS2 SCOC CLUH PTPRT

RASGRF1 CREB3L1 MTND2 VWF
JPH2 EHBP1 SLC29A1 DNAH12

WHAMMP2 PKIG NUP205 IL7R
PARP8 WSB1 RP11314O13.1 RP11111M22.2
SDK2 WARS TAF1D KLHL28
MXRA5 SGCD NPR1 NRXN1
LRP1B THOC6 DDX12P A2ML1
ZNF567 FGF2 GLA TSIX
CLMN FLNC CDC25A ILDR2
F2R SPON2 FAM107B MAP3K4

ZNF827 SLC17A9 USP2 KIAA1324
EDNRA RNF185 KIF2C FOXD1
DPYSL2 ARHGAP29 LRPPRC CA12
ATL3 SPATA18 CELSR1 MYH11
NRP2 YPEL3 MATK DTNB
DCHS2 ACTN1 EIF4A1 FBN3
SORBS1 GRN CEBPA GMPR
TBC1D8B EFS LINC00958 SERINC5
SPOCK1 FTH1P7 TOP2A SRGAP3
PTPN14 TMBIM1 CHD7 CACNA1A
HYDIN RP11138A9.2 MLK4 MYO15B
TIAF1 MAGED2 RFC3 TRIM59
PDE5A UBA7 FAM81A RP11282O18.3
NEB PRKCDBP DUSP2 C3orf70

SMAD6 AASS RASSF9 SDK1
PTX3 SQSTM1 POLE3 RP11359E3.4

HMCN2 ATP6V1B2 WDR3 MGAM
NEXN SMPD1 GFOD1 ZAN
ST18 COPZ2 CKS2 ENSG00000276975

ZNF704 TNFSF4 ARHGAP4 ACOT11
ADAMTSL3 LOX ENSG00000261150 ENSG00000280061
COL4A3 ETS1 CPM DNM3
FZD7 LGALS1 MOSPD1 ENSG00000281344

RP11416O18.1 PDGFRB ESRP2 MTTK
KIF26B PARP14 PPAT KCNJ2
AKAP12 RSU1 RABGGTB MVB12B

RP11379K17.4 RND3 FAM46C EYS
VCAN WNT2 MCM4 RELN

MAN2A1 LRRC32 MPP7 TNXB
CCDC168 PPP4C CCDC86 SOX2OT
DDAH1 ANTXR2 DPH2 SORL1
ADAMTS1 RAB32 HSPD1 GPR98
ZNF585A VAMP5 CCNB1 RNF144B
GAS7 ACKR3 AURKA DOCK8
ELN STARD13 TROAP KIAA1217
FSIP2 STX4 ESPL1 RYR2
PKD1L1 MYO1D MRPL12 ERO1LB
RP1 LRRN4CL EMG1 CCBE1
GCH1 RBFA MTCO2 CDKL1
SOX6 DLST B4GALNT4 ENSG00000280434

ADAMTS5 ITM2C KIAA0947 CTC359D24.3
ARL10 PGRMC1 FANCD2 CACNA1D
VLDLR MDK CDC20 ERBB3
UNC80 RECK DKC1 GABBR2

CRISPLD2 ELN FAM83AAS1 ICA1L
NHSL2 SAMHD1 TMC5 FAM114A1
SRRM4 FTH1P2 FARSA ATL3
DCP2 FAM198B BUB1B SLC13A4
PTGDS PCOLCE GOLGA8B RASGRF1

PRICKLE1 TPP1 SDHA RP11286N22.8
GRIA1 SNRPN CENPV CACNB4
CALD1 HSPB7 WWC1 PTPRB
ECM2 TNFRSF19 TLCD1 KLHL3
CLEC2B PSAP NCAPG TSPYL1
PALLD ZNF25 BLM SHOC2
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ChTxB ChTxBShTxB1aShTxB2e ShTxB1aShTxB2 ShTxB2e

CYP2U1 KIAA1462 MOB3B SRPK2
PTPRD ORAI3 TEX15 RP11366L20.2
ATP9B TUSC3 NKRF DCC
NOV NDN FAM195A PREX2
PTGIS FAM180A PHKA2 ZNF442
EFEMP1 TRIM16L SPIRE2 PPP1R14B
FER1L5 MAPRE2 WDR4 NAALADL2
ZSCAN18 PLXNA3 NOP2 RNASET2
FHAD1 GFRA1 RRP7B WNT5B
TULP4 MAGED1 ECT2 HYDIN
PAN3 RP4635E18.8 GAS8 KCTD16

C15orf59 AGA GNAL HOMER2
GBP4 TCIRG1 RP4742J24.2 S1PR1
DCLK1 APCDD1L KIF4A ERAP2
ACSS3 TMEM230 XRCC2 ADAMTSL3
PLXNA4 ANXA6 SH3GL2 ZNF462
DNAH6 HSD3B7 PPT2 ANP32E
SOX9 GNAI2 HDHD3 CYFIP2
CASP10 LINC00856 ELAC2 MMS22L
ACAP1 GNG2 ANKRD18B MCF2L2
FBN2 IFI6 MCM7 PTPRD
ACTC1 ARMCX2 MBNL3 PRLR
NINL MYL6 CARD14 ELTD1
38596 APOL1 OXCT1 PKD1L1
DNAH14 UBL3 CCDC138 PIP4K2A
ETV6 HMOX1 SLC38A1 DUSP7
RFTN2 LMCD1 SYNGR2 MDM2
ZAN IL6 MTND4 CDCP1

RNF217 UBE2L6 CKS1B DNAH6
MYLK EHD2 ENSG00000275216 SRRM4
ZNF677 MFAP2 ABCG2 ENSG00000280383
RYR2 HOXC6 NLGN4X LINC01116
FN1 APCDD1 FASN RAPGEF3

PPM1K CNTN3 PRPF19 SYT14
DAB1 PLBD2 NETO2 EXO5
MAF RRAGA FOXRED2 ZNF585B
LRP2 PAX8AS1 DIO2 PLXNA4

ZNF506 FCHSD1 RP1118I14.10 KCNQ2
FZD1 EPSTI1 CEP152 DOPEY2
SETBP1 PLEKHO2 C1QBP ABCB9
AKNA TIPARP UBE2T TPRG1
NTRK3 MIR22HG FANCI ST3GAL3
DAPK1 GLT8D2 CDC7 ESYT3
KRCC1 CMTM3 DDX21 S100A10

TNFRSF11B TMEM50A NEK2 LRRK2
MFGE8 PRR16 NOL6 LRRC7
NRXN1 MMP19 HEATR1 FAM210A
CACNB4 RTN4 CHAC2 KCNG1
ARRDC3 FBLN5 SASS6 ABCA12
KLRD1 IFIT3 ERMP1 DOK5
IL15RA ZNF211 MET ENSG00000265808
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Table 3. FGF and TGF-b gene signatures. FGF and TGF-b signalling pathways signatures were kindly 
provided by Prof. Paolo Dotto (DB-UNIL, Lausanne) and obtained as detailed in Bordignon P et al., 
2019.  

 

SLC5A3 CDCP1 MAP4K4 WWTR1 LIMA1 CRIM1 HSPG2 FSTL1 DAB1
CNIH3 AK5 MGLL MRPL15 TNS3 CCNG2 CFB KCND3 SIPA1L2
PLXNA4 ANTXR2 NCAM1 MCM4 SLC39A7 MEDAG ENAH BAMBI FAM198B
STC1 GDNF FJX1 MFSD1 SLC39A14 NPIPA7 ASS1 FAM20A LINC00968
NTSR1 MYEOV PBX3 TLE3 CARS TRIB3 FN1 FAT4 PIEZO2
ESM1 SLC29A1 SEMA3A MYO10 ITGAV NABP1 WARS SEMA5A LMOD1

TMEM158 SNCG CTSS NET1 PCOLCE HEG1 PSG5 FRMD6 ALPK2
PRKG2 ITGB3 GRAMD1B WLS SMAD3 RP11-334E6.12 C1orf115 ATOH8 LUM

COL10A1 TMEM35 CD68 SYT11 CALCOCO1 MEIS2 TSHZ2 CXCL6 SFRP4
THBD ZC3H12C JUN SH3BGRL3 TSC22D2 FTH1 DAAM1 FBLN2 WISP1
ETV1 RGS17 CDKN2D MMP14 MARCKS RBMS3 CTHRC1 CYP7B1 GRIA1
ITGA10 VEPH1 MMP16 PRKCD FADS3 CALD1 APOL6 GBP1 RNF150
SPRY2 EHD3 EPHB1 C2CD2 AFAP1 ALDH1A3 CNN2 RP11-253M7.1 MKX
PODXL RP11-887P2.3 NR1D1 FAM129B P4HA2 PLOD2 PHGDH CRISPLD2 SVEP1
RFX8 PREX1 TSHZ3 DNMBP PDGFRB ENPP2 AJUBA ADA GPR133

C14orf169 DHRS13 SLC6A6 RPS6KA3 XPOT ITGBL1 MAP2 ADAMTS2 EFEMP1
KPRP SPHKAP S100A4 SH3PXD2B KDM5B MALT1 FOXC1 THBS1 STC2
LCE1F TNFAIP8L3 PLAU FANCA TRIO LOX TSPAN18 OSR2 IGFBP3
PRLR GEM TRPV2 KLF6 RP11-958N24.1 ATXN1 CPA4 KCNK15 COL5A1

HMGA1 VAT1L BCL2L1 SMTN SEMA3C ACTA2 PAPPA LRIG3 ADM2
INA ANKH TMEM171 GREM2 MYO1B ATP10A LEPRE1 KIAA1199 DAPK1

ARHGAP22 IL4R LRP8 DENND3 XBP1 PGRMC2 GALNT5 IL7R CXCL12
SFRP1 ABLIM3 STRIP2 MCM5 TOM1 RUNX1 TNFRSF11B PALM2-AKAP2 SULF1
TFPI2 SLC35E4 SLC8A1 RAB3B B4GALT1 ST5 P4HA1 UGCG LMCD1

SLC20A1 CSMD2 LAMA5 MGAT5 MARS CCDC80 ABCA5 MUC1 PDGFD
RP11-1198D22.2 SPRED1 STX1B MAP1B FLRT2 PRKAB2 CTGF ANGPT1 DHRS3

CORO2B PITPNC1 ACVRL1 RAC2 RCN3 PRPS1 NUPR1 S1PR3 COL1A1
FGF5 TNFRSF25 PNP SH3KBP1 STAT2 GDF15 C1QTNF5 ARRDC4 COL3A1

SCUBE3 ANGPTL4 MYO5A NCEH1 PMP22 GPR124 ID1 GDF6 WISP2
PHLDA1 ETV4 SLK DOT1L MAGED2 IFRD1 LURAP1L NTN1 ADAMTS5
NCALD LIMD1-AS1 SSX2IP CAPG FOSL2 TNFRSF19 WNT5A STAT1 ADH1B
FOXF1 RP1-79C4.4 SEMA7A MT2A IDH2 TXNIP PYCR1 PI16 KIF26B

FAM180A SIPA1L3 CPNE7 CAPN5 SH3PXD2A FNDC3B PLCB4 IRS2 ELN
STX1A LIMD1 NHSL2 EIF1AX RABGAP1 GALNT15 FNDC1 GNA14
IGFBP5 AC010441.1 ERRFI1 DUSP3 RP11-1212A22.1 KRT7 LOXL3 MIR503HG
DUSP6 HBEGF PHLPP1 PFKFB3 C6orf48 PCDH18 FMOD RP11-244F12.3
MMP1 ITPR3 RASA1 KLHL21 FAM101B SLC7A5 DPP4 GPR37
CCND1 DCBLD2 CTD-2541J13.2 S100A6 MN1 MEG3 PLXNC1 ID3
FZD8 BCAR3 SLIT2 ATP9A FGF7 MASP1 PLK2 OXTR
SPRY4 LINC00341 IRX1 SACS LIPA CRLF1 MBNL2 PODNL1

SLC6A15 SERPINB2 PPFIBP1 TJP2 DAAM2 SESN2 ACKR3 HSPB7
KCNQ5 MIR31HG MAPKBP1 CD109 sept.11 SPOCK1 COL4A2 STAC
NES SYNE3 ARRB1 MIR29A SOGA2 CDH2 IL16 AC131025.8
ITGA2 GLUL GNG2 SYNE2 KLHDC3 GLS NRCAM MIR145
PRRX1 ELK3 RASSF8 FMNL3 AHR IL20RB TMEM189-UBE2V1 SYNPO2
HAS2 PID1 RNF24 FIP1L1 GARS PPIC GREM1 CYP1B1

COL13A1 ADRA1D CHST7 ABI3BP C6orf132 DDIT4 WNT2 RP11-426C22.4
KCTD12 LRRC8C PHLDA2 TMEM131 RUNX1T1 FBN1 TPM1 ID2
FMNL2 SLC9A7 KREMEN1 UHRF1 OSTC NEK7 ACVR2A TGFBI
RNF152 ARNTL2 CAPN2 ZCCHC6 CD248 PALLD FGF2 FAM110B
RGS4 TBX3 PAG1 FRMD4A SHMT2 SORCS2 ADAMTS1 ARID5B

IL13RA2 SCFD2 FBXO33 MCM3 MYLK DAB2 GPR17 LBH
LTBP1 RASSF2 RGS3 SPEG HERPUD1 FAP DKK2 SLC39A8
CEP170 FAM84A DENND2A COPRS BMP2K FAM19A5 TENM3 EBF1
NT5E PLEKHG5 TNXB ECE1 GPX8 AVIL DGKI SLC6A9
PRDM8 MAPKAPK3 GPR56 CBFB HIF1A GCNT1 SLC1A5 THRB
RBPJ ELTD1 E2F1 TAOK3 ERBB2IP BGN RHOBTB3 ECM2
NRG2 NPTX1 RAPGEF3 MRPS6 AARS SGCD POSTN PTX3
ADIRF KIAA1217 CKB TRIOBP ARHGEF2 C1RL RP11-215G15.5 MIR143HG
GPR68 CTSK TMOD2 CTSL CBS LIMS2 CPM ITGA11
WNT9A LAPTM5 MOXD1 MCM2 NPIPA7 SNED1 GABRE ITGB8
NTNG1 NRIP3 CHST2 LGALS1 ROBO1 ADAMTS7 GDF5 FBN2
NTM CPED1 NBL1 ENC1 MYO1D NUAK2 AMOTL2 COL12A1
SYT7 SYNM KCNMA1 YWHAQ DLC1 ST6GALNAC5 ASNS GADD45B
HGF FAM129A USP53 TRERF1 MATN2 PLD1 DSE GPRC5B
TOX2 TBX2 SALL1 PXN DSP DDIT3 VIT CHRM2

MAP3K5 SPRED3 UBASH3B ARL2 CTSC ADARB1 DCN SERPINH1
CAMK2N1 GPRIN1 JADE2 AKAP2 MAGED1 VWCE NEDD9 PIM1

RP11-366L20.2 TENM4 ATP2B4 SFXN3 ANKRD13A JDP2 NREP PSAT1
ANPEP KIAA1549L PLIN2 UBALD2 YARS SEMA3B CACNA1C CHAC1
PLCXD3 HPCAL1 TNFRSF21 ECM1 C9orf3 SLC3A2 SFRP2 TENM2
GNG11 PAMR1 AHNAK2 SYNJ2 LGMN TIMP3 PEAR1 SEMA3D
FOSL1 CPNE3 GSTO1 FYCO1 TRAM1 PKDCC PTGIS RP11-1151B14.4
IRAK2 PHC2 ADAMTSL1 MCM7 RNF41 CNN1 GABARAPL1 MAP3K8
POU2F2 TMEM200A MET SVIL CYR61 RP11-572C15.6 COL4A1 ALDH1L2
RNF157 OSBP2 MAN1A1 FST THBS2 REV3L SH2D4A PRSS23
C5orf30 SATB2 H1F0 USP36 ANTXR1 WEE1 SDC2 OLFM2
DOCK4 LRRN4CL PSD4 ELOVL1 MXRA5 PXK RHOBTB1 COL1A2
CIT ELOVL6 MDGA1 MCL1 TMEM119 RNF144B COL8A1 ADRA2A

APBA1 PLAUR TFPI CARHSP1 UNC5B PAWR NPAS1 CFD
SLCO4A1 TOR4A FZD1 DYNC1H1 PXDC1 MYL9 COMP SLC7A11

RP11-290L1.3 CPXM2 OLFML2B APLP2 XAF1 SYTL2 CCL2 DPT
GALNT12 RMRP C3orf18 BZW1 JAG1 ITIH5 C1R LOXL2
PTGER3 TNFRSF6B PLAT PPP1R18 FHL1 EPSTI1 ZNF469 NNMT

RP4-555D20.2 NAGS RP6-99M1.2 IER2 LEPREL4 GRAMD3 ANKRD33B CEBPD
OPCML HIVEP3 ARHGAP18 RASA3 KDELR3 KLF7 SLIT3 VGLL3
HMGA2 TNFRSF1B OLFML2A ABHD2 MMP2 SLC1A4 GFRA1 C10orf54
SH2B3 FAM210B SMURF2 PARP4 PBX1 PCK2 PTGDS PODN

HAS2-AS1 PLCXD1 VEGFC FAM126A SLC43A2 ACAP1 SPCS2P4 COL5A2
MYH15 HS3ST3A1 SDCCAG8 MAT2A ATF4 NID2 PDE1C MFAP4
C6orf1 TMPO-AS1 PAK1 DNMT1 SWAP70 IL15 ELL2 ADAM12
EBF2 E2F7 CDYL2 CLIC1 CERCAM BICC1 PXDN CLEC3B
ETV5 ENPP1 HIPK2 HSPA8 THY1 MFAP5 TAGLN ADM

ZNF536 GALNT6 FHOD3 ANXA1 NID1 CITED2 MTHFD2 SPARC
NAV3 TFAP2C RIN1 CD59 BMP1 F3 CREB3L1 HMCN1
MLPH STEAP3 LRIG1 CCDC85B MAGED4B IGFBP4 CHN1 DEPTOR
DUSP5 HSD3B7 IFFO1 MYO1E APOL1 SELM MGARP MRVI1
SMAGP PLXNA2 SNN SH3GLB2 ADAMTS10 VDR CCDC85A CPZ
LPXN ZNF385D TGM2 EHBP1L1 COL16A1 PTK7 GRIA3 COL5A3

FGF2 Up-regulated FGF2 Down-regulated
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ELN TPI1P2 TPR CCDC74B PEBP1 NTN4
INHBE GCLM DUSP1 PERP C10orf54 OLFML1
PI16 COL11A1 DSP CPXM2 RAC2 TYMS
NOX4 EZR XPOT SLC9A9 IGFBP4 RAB38
KRT7 BCAT1 LIMS1 ADAM15 RNASE4 OAF
TRIB3 PLS3 ACTA2 GLB1 RNF144A TGFBR3
MGP TGFBI TRIB2 PPARG PRC1 RGS2

BHLHE40 ACLY KCTD15 HEXB LETMD1 APOD
CNN1 COL8A1 ALPK2 RILPL2 KRT19 COLEC12
LTBP2 OXTR WDR1 FYCO1 RASSF2 PDGFRL
ASNS NPW ZSWIM4 ITM2B C10orf105 LUM
ITGA11 SGCD NT5DC2 EVA1B MAP3K5 ACKR4
SLC7A5 CARD9 ULBP1 ADD3 LRPAP1 HSD17B2
HSD17B6 LOC644936 CNN3 MT1A HLA-E PDGFD
PSAT1 PRUNE2 FSTL3 CREBRF TKT SLC7A14
KCNH1 PDLIM3 FZD7 MAD2L1 KIAA0101 PCOLCE2
NUAK1 HSPA9 RBBP8 ARMCX1 C1GALT1C1 CLDN11
MTHFD2 SLC1A4 SLC9A1 PTGS2 CTXN1 MMP1
SLC2A5 TSC22D3 COL4A1 SOD2 PRELP APCDD1
TNC SH3PXD2A EPRS TMEM51 ZNF581 CLEC3B

KCNMB1 RAP1GDS1 C4orf32 CTSB ADAMTS5 NOV
ACTG2 IER3 FAM129A ANKRD10 ANPEP NPTX1

SERPINE1 ACTN1 AARD NUSAP1 TFPI
PMEPA1 NGF CHAC1 MBNL3 IQCK
TPM1 GLIPR2 VASP PTGS1 NYNRIN
WFDC1 PDCL3 TMEM2 CYBRD1 CREB5
PDLIM7 KIF26B AP4E1 IFITM1 RNASET2
ALDH1B1 NNMT P4HA1 BIRC5 PTGFR
CDH2 TUBB6 SGPL1 PTGIS GRK5
CTPS1 FKBP11 SERPINB7 NDRG3 SPRY1
SEL1L3 TCEA1 DNAJB9 TLE1 PYCARD
MICAL2 ATP2A2 EIF5 C16orf45 INTS8
PCK2 IARS PLN NNT PLAT
RBP1 NUPR1 EIF4EBP1 KCNK2 ZNF503
EFHD1 ITGA1 PLEKHO1 ZNF277 ADAMTS8
GBP1 TNFRSF12A ILK GSTM2 IGBP1
MEGF6 FLNB NEK7 ACKR3 MRGPRF
DDIT4 PPP1R13L CAV2 KITLG MBP
DACT1 GOT1 LARS DENND2A HIST1H2BD

MAMDC2 SERTAD4-AS1 MFAP4 GRP PRDM8
PSPH LRRC32 ANKRD11 PLCD3 SELENBP1
MYOZ1 HACD1 RCN3 DACH1 SNHG7

LOC284023 SNX30 EHD4 ANTXR1 TOP2A
PPP1R14A LDLR MORF4L2 MN1 SMPDL3A
AIMP2 SGK223 CNN2 NBL1 FAM46C
COL8A2 UPP1 SYNM PCYOX1 HMGA1
CSRP2 PLXDC2 LAMB1 AOX1

FAM101B FERMT2 CDH13 CCBE1
CTGF CDK7 GSTM1 RPS29
MYL9 TNFSF4 OSR1 EGFL6
KCNG1 RUNX1 NFIB CLCC1

GADD45B PAWR CFH SEMA5A
CSRP1 TXNDC12 EYA1 LRRN4CL
EGR2 SLC7A1 DUSP19 PID1
IGF1 CRLF1 RPL34 SVIL

TSPAN2 MYLK EPB41L2 NLGN4X
PTK7 LIMCH1 NOA1 C1QTNF1
SRF C9orf3 CD59 ALDH1A3

ANXA2 TUBA1A ABRACL OSR2
CYR61 TNS1 ADGRL2 CD302
UCHL1 GLIPR1 SIPA1L2 RARRES3
SLC6A9 RGS4 GYPC CLEC11A
SLC1A5 XYLT1 PTGES CASP1
VLDLR ECI1 RCAN2 LY6E
WARS DUSP14 BORCS7 STC1
COL7A1 SCHIP1 CHP1 CMBL
NRG1 ANKLE2 LDB2 TM4SF1
SCRG1 FBLN5 GPNMB PPL
CALD1 SIAH2 TCEA3 AMOT
TUBB2A TYMP TSHZ2 PHLDA1
TAGLN COL16A1 CTSF DPYD
PFKP FN1 EML1 EPHB6
PYCR1 TPI1 IGFBP6 PTGFRN
SORBS1 CAP1 SLC1A3 CEMIP
TPD52L1 SGCG ECM1 ENPP2
ANOS1 CFL1 ABI3BP SMARCC2
GALNT16 DDIT3 SH3D19 S1PR3
SLC3A2 POTEE MYLIP CD44
ADAM19 CILP NAV2 AKR1C4
GLS ARF4 ABCA1 IGFBP2

CADM1 ITSN1 GINM1 F10
CBS TP53I3 RPUSD4 SFRP2

CH25H TGIF1 MME ZNF423
CDK5RAP2 LONP1 AKR1C2 CCNG1
TNFAIP6 CSPG4 WLS TMEM158

IL6 CEBPG FMOD FLRT3
CCDC80 FGF2 FAM198B SFRP1
PLOD2 BTF3L4 CTSC PDK4
P4HA2 DPT NR1H3 MATN2
TENM3 TUBB3 GPSM2 ERAP2
MYADM CLIC4 RBBP4 PLPP3
BCAS4 C11orf96 DPP4 KLF4
SMYD3 GRAMD3 C17orf58 RSPO3
ZNF365 ACOT2 CAMK2N1 NFIA
EVA1A IL11 INHBB GPM6B
VCAN HES4 UBA7 OLFML2A
GPT2 ABCC3 TAPBP ADH1A
NREP BMP6 PLCB1 ANGPTL4
MARS NEXN AKR1C3 TNFRSF19

TGF-b Up-regulated TGF-b Down-regulated
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Personal competences  
- Highly motivated, team player, extremely organized. Ability to work independently or in a 
team. 
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Publications 
 
• Boni, A., et al. "Optimized PAMAM coated magnetic nanoparticles for simultaneous 

hyperthermic treatment and contrast enhanced MRI diagnosis." RSC advances 7.70 
(2017): 44104-44111. 

• Capolupo, Laura, and Vincenza Faraco. "Green methods of lignocellulose pretreatment 
for biorefinery development." Applied microbiology and biotechnology 100.22 (2016): 
9451-9467. 

• Pothukuchi, Prathyush, et al. "Regulated compartmentalization of enzymes in Golgi by 
GRASP55 controls cellular glycosphingolipid profile and function." bioRxiv (2020). 

• Rizzo, Riccardo, et al. "Retrograde Transport of Golgi Enzymes by GOLPH3 Across 
Maturing Cisternae Regulates Glycan Assembly on Sphingolipids and Cell Growth." bioRxiv 
(2019): 870477. 

• Russo, Domenico, et al. "Glycosphingolipid metabolism in cell fate specification." Journal 
of Cell Science 131.24 (2018). 

 
 
 Participation in scientific conferences  

 
• Short talk (virtual) |24h-IMSI. 19 November 2020. 
• Short talk (virtual) | Emerging Technologies in Single-cell Research. 20 November 2020. 
• Regular talk | OurCon VII. Saint-Malo, France. 28-31 October. 2019 
• Short talk | Sphingolipid Biology: Sphingolipids in Physiology and Pathology. Cascais, 

Portugal. 6-10 May 2019 
• Short talk & Poster | IMSS II & OurCon VI. Charleston, South Carolina. 11-14 November 

2018. 
• Poster | Bioengineering day. EPFL, Lausanne, Switzerland. 27 November 2019 
 
 
 Participation to scientific courses 

 
• Attendance to “Advanced Training Course on Emerging Biotechnologies for Sustainable 

Waste Management and Biorefinery Development” - Napoli, 4 e 5 April 2016 
• Attendance to “Advanced Imaging Mass Spectrometry Laboratory Course (AIMS.2018)” - 

Nashville, 23-27 April 2018 
 
 

Professional membership 
 
September 2018 – present Member of Imaging Mass Spectrometry society 




