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Abstract

Underactuated mechanical systems are those which
possess fewer actuators than the number of degrees of
freedom. It is shown that, except for some patholog-
ical cases, exclusively kinetic. two-link underactuated
mechanisms are of nonminimum phase when the
natural outputs are considered.
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1 Introduction

Underactuated mechanical systems have recently
gained research attention due to the variety of new
problems they have generated [5]. In most cases, these
systems are not feedback linearizable, and sophisti-
cated control methodologies need to be employed.

In this paper, the difficulty encountered in controlling
these systems is attributed to the nonminimum phase
characteristics. The nonminimum-phase property is an
input-output property well understood in linear sys-
tems and associated with right-half-plane transmission
zeros. However, in the nonlinear scenario, since the no-
tion of transmission zcros does not hold, nonminimum-
phase systems are defined based on the stability of the
zero (internal) dynamics [1].

As mentioned above, the nonminimum-phase nature is
an input-output characteristic and hence the outputs
have to be properly defined. In this study, we will con-
sider only natural outputs, which are the generalized
coordinates used in the standard robotics literature [4].
On the other hand, it is possible that there exists out-
puts for which the system is minimum phase. This
issue, however, is not addressed here.

The link between underactuated systems and
nonminimum-phase systems has not been rigor-
ously cstablished. The advantage of such a link is
that the techniques used in either fields [2} can be ex-
changed to shed more light on the subject. Along that
direction, the conjecture which forms the basis of this
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work is as follows: “a wide class of non-pathological
underactuated systems possess nonminimum phase
characteristics”.

As a step towards the goal, the analysis in this paper is
confined to two-link underactuated systems evolving in
the absence of gravity and friction (exclusively kinetic
system). It is proven that these systems with the nat-
ural outputs are nonminimum phase except for some
rare situations.

Section 2 introduces certain preliminaries, while insta-
bility of a generic system is shown in Section 3. In
Section 4, it is shown that the internal dynamics of
underactuated two-link manipulators have the generic
form described in Section 3 and, hence, is unstable. A
few examples are presented in Section 5 which is fol-
lowed by conclusions.

2 Preliminaries

In this section we will recall definitions of stability
and instability in the sense of Lyapunov and a gen-
eral theorem on instability. The definition of nonlinear
nonminimuin-phase systems will be given, and we will
finish this section by presenting the dynamics of exclu-
sively kinetic Lagrangian systems.

2.1 Stability

In the following, the stability definitions will be given
with respect to the origin. This does not impart on
generality since any equilibrium point can be handled
using an appropriate translation of coordinates. Con-
sider the system

z=f(z), z(0)=1z9, z€R" 1)

where f(0) = 0 (i.e., z = 0is an equilibrium point). Let
the solution to the above differential equation starting
from the initial condition zg and evaluated at time ¢
be denoted by x(t, zo).

Definition 1 (Stability about the origin [7]) The sys-
tem (1) is Lyapunov stable if, Ve > 0,36 > 0 such



that, ||zo|l < § = ||z(i, xo)l] < €, VE> 0.

If the system does not satisfy definition 1, it is unsta-
ble. The result presented next generalizes Lyapunov’s
instability theorem.

Theorem 1 (Chetaev [7]) The system (1) has an un-
stable equilibrium ot z = 0, if there exist is a C' func-
tion V: R* — R, a ball B, an open set Q C B, and a
function v of class K such that:

e 0<V(z)<oo,Vz e,
e 0céQ

o V(z) 27(llzll), Vz € Q,
o V(z)=0,Vz€éQNB,

This theorem states that if the initial condition is in
Q, then the system can only escape Q through the ex-
terior of the ball B,.. Since this happens for any initial
condition arbitrarily close to the origin, the system is
unstable.

2.2 Nonminimum Phase Systems

Since we will be concerned with two-degree of free-
dom underactuated mechanical systems, it is sufficient
to state the definitions of zero dynamics and nonlin-
ear nonminimum-phase systems for single-input single-
output systems. Note that this definition extends easily
to the multi-input multi-output setting.

Definition 2 (Zero Dynamics [1]) Consider the
control-affine nonlinear system:

y = h(2), (2)

where © € R™ and u,y € R. Now suppose there exist a
mazimal manifold Z* having the following properties:

i=f(@) + g(@)u, 2(0) = 20

1. h(z) = 0,Vz € Z*;

2. 3 o unique u*(z) Yz € Z*, such that f(z) +
g(z) u*(z) is tangent to Z*;

Then the zero dynamics of the system is given by

[ (@) = f(2) + g(z) u'(z),

I = =

zez*

)

Definition 3 (Minimum-phase Systems [1]) The sys-
tem (2) is said to be minimum phase at x., if T. is a
stable equilibrium point of f*(z). Otherwise, the sys-
tem is nonminimum phase at x€.
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2.3 Exclusively kinetic rigid body dynamics

Definition 4 (Degrees of Freedom) [3] Generalized co-
ordinates are a set of scalars which unambiguously de-
scribes the mechanical configuration. The number of
degree of freedom of the system is the number of gen-
eralized coordinates minus the number of independent
equations of constraint.

In the following, we will be concerned exclusively with
unconstrained systems. Thus the number of degrees of
freedom is equal to the number of generalized coordi-
nates.

Definition 5 (Underactuated mechanical system). A
system is underactuated if the system possesses fewer
independent actuators than its number of degrees of
freedom.

Definition 6 (Two-link wunderactuated mechanical
system) A two-link mechanical system is a set of two
rigid bodies connected to each other by an articulation.
A two-link underactuated mechanical system is a
two-link system which is underactuated.

In a two-link underactuated mechanical system, there
is only one generalized force that is associated with the
first coordinate, q;, or with the second coordinate, gs.
Thereby, one of the coordinates is left unactuated.

Definition 7 (Natural Outputs) The natural outputs
of a two-link mechanical system are: (i) the coordinate
defining the position of the first link with vespect to the
base, and (i) the second link with respect to the first.

Note that the natural outputs are also the generalized

coordinates. The systems that we will consider in the

following are two-link underactuated mechanical sys-

tems without gravity or friction (termed the exclusively

kinetic case). Then, the rigid body dynamics are given
¢'T'q

by
i=-| frpe] (@

where q = [q1,¢2]T and '™, m = 1,2 are the Christoffel
symbols of the second kind:

g2l

with n,,x denoting elements of the inverse of the inertia
matrix N = D~1. Notice that the Christoffel symbols
are symmetric I';; = T'J} from the symmetry of the
inertia matrix di; = dj. In [6], certain properties of
the inertia matrix are explored. The results that will
be used here are listed below.

} + D7y

3(]_7'

Ody;
aq;

+
aqr

) Nmk (5)



Property 1 (Properties of inertia matriz)

1. no element of the inertia matriz depends on qy

2. daa does not depend on qo.

3 A Result on Instability

It will be shown in the next section that internal dy-
namics of two-link underactuated systems have a spe-
cific structure due to the centrifugal terms. The insta-
bility of such a generic system is studied here.

Lemma 1 Let the system be described by
€=k()E (©)

where k() is analytic outside a finite set in the neigh-
borhood of the equilibrium point. [€,£]T = 0. Then (6)
is Lyapunov unstable around |£,€)T = 0.

Proof : 'When k() = 0 over an open interval around
the origin, the system reads ¢ = 0, which is trivially
unstable. Considering the case where k(¢) is non-zero
and analytic outside a finite set, there exists an ¢ > 0
such that k(&) is bounded and positive (without loss of
generality), in the interval ¢ € (0,¢). From the open-
ness of this interval, there exists an arbitrarily small
€1 > 0 such that k(¢) is positive and bounded for &
such that ¢; < ¢ < e. Define the Lyapunov function
candidate:

. . [t
V() =€ [ kndn (7)
Define the open set £2 {({,é) | E > 0,¢& >
€1, ||[€, §]T|| < €}. Notice that on the boundaries
60 = {(&,€) | € = 0} and 60y = {(£,) | € = @1},
V(¢,€) = 0. Furthermore, V(¢,€) > 0, V[, €]T € Q.
Now,
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il

. . €
K(E)E® + 26 / K(n)dn

3 .
k) (1 = k(n)dn) 0

This clearly shows that V(fg) > 0, V[g,é]T e Q.
Thus, the hypotheses of Chetaev’s theorem are satis-
fied, and the system (6) is unstable.

4 Two-link underactuated mechanical systems

The dynamics of the two-link mechanical underactu-
ated system are given by:

=-T1,¢? — 2T'ld1d2 — Tp43 + nuumi + naam2 (9)
Go=—-T%¢2 — 2T%,41G2 — T%yd5 + n2171 + n2a7410)
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T1=740 7'2%0

o = G 1 (0 2
¢ G2=0 G=—g; —a‘#)qz
g | i1 =75 (3% @ i =

Table 1: Equations of internal dynamics

where either 71 # 0 or 7o # 0. In this section, we
will detail the four possibilities for a two-link underac-
tuated mechanical system with natural outputs. The
actuator can either be on the first or second coordinate.
For each case, the output can either be chosen as the
first or second coordinate (g, or g2). We are then con-
fronted with four cases. In all four cases, the internal
dynamics will be derived when the controlled output is
maintained constant (rather than equal to zero as the
definition of the zero dynamics imposes).

Case 1l (r; #0, y = q1): In this case, the input 7; which
guarantees evolution on the manifold ¢; = 0 is given

by = —qu This induces the following dynamics on

the other coordlnate
1 .
3 ( )q% (11)

Considering the second co-

1 8dsp
doo 0go

Case 2 (1 # 0,y = @2): «
ordinate as the controlled output, 7 = %ﬁq% and the
internal dynamics on the coordinate ¢, are given by:

. nn .2 1 (0dip  10d11\ .
I EE T PR N LT
n ( 1 no1) ! diz \ 01 298¢ )"

(12)
The other two cases (7'2 # 0) follow in a similar man-
ner and yield §o = — i ( D %%‘fn )q2 when the
output is ¢; and §; = ——%;—la—d;;‘-qf when the output is
qz2-

Exploiting the structure of the inertia matrix described
in Property 1, the dynamics can be simplified. The four
cases obtained are summarized in Table 1.

It can be seen that the internal dynamics has the gen-
eral structure £ = k(£)£2, where € = ¢q; or £ = ¢2 as
appropriate. In most cases, k(£) is defined everywhere
and the analysis is straightforward. However, when
k(¢) is undefined, so is the internal dynamics. There,
two cases of singularity have to be distingushed: (i)
when k(¢) is undefined only at isolated points in the
interval (—e¢,¢) and (ii) when k(§) is independent of
¢ and undefined everywhere in (—¢,¢). In the non-
singular scenario, the following result can be stated:

Theorem 2 If the internal dynamics are well defined
outside a finite set in the neighborhood of the equilib-
rium point, then the two-link underactuated mechanical



systems are mon minimum-phase systems with respect
to the natural outputs.

Proof: The equilibrium point of the internal dynamics
is [¢,€)T = 0. If the internal dynamics are undefined
only at isolated points, it can be seen from Table 1
that the hypotheses of Lemma 1 are satisfied. Hence,
the result follows.

The singular situations require a more in-depth study.
We will show with examples in the next section that the
mechanism is uncontrollable under these situations.

5 Examples

In this section, we will discuss a few examples of two-
link underactuated mechanical systems. The examples
will be divided into two categories corresponding to
whether or not singularity (dy2(ge) = 0) can occur.
In every case, the corresponding inertia matrix will be
given and only one case of internal dynamics will be dis-
cussed. Table 1 can be used to calculate the remaining
internal dynamics.

5.1 Systems without singularity

¢ The pendobot (Planar 2R Robot). (11 #0, y =
q2)

| Ji+2J3c0sq2 Ja + J3cosqo
| Jo+ J3cosqe Jo

4

l

The. internal dynamics are G = —72%33—2@%.
Notice that these dynamics are always well de-

fined and unstable according to Theorem 2.

e The acrobot. (12 # 0, y = ¢1) This system has
the same inertia matrix as the pendobot. How-
ever, the actuation and the ouput are changed.

D= Jy +2J3cosqy  Jo + J3cos g
T | Jy + J3c0s g gy

The internal dynamics are o = 72—1—?%3;?(]%

which are well defined and unstable.

o The rotary prismatic system. (11 # 0, y = ¢2)

.

=
N

Dy
,f\h\(ﬁ D= J1+ J3gk =4
—\S - —J4 Jo

(s

The internal dynamics are §; = —#4—(12(}% which
show no singularity and are unstable.

5.2 Systems with singularity

In the first two examples, though there are a few val-
ues of gz which lead to singularity, the system is non-
singular at the other points where Theorem 2 can be
applied. However, in the third example, di2 = 0 for all
coordinate values, thereby depicting an extreme singu-
lar situation.

o The inverted pendulum. (71 # 0, y = ¢2)

D= J1 —J3singo
N (¥ ~ [ —Jssing: J2

When sin g5 # 0, the internal dynamics are §; =0
which are trivially unstable. The singularity oc-
curs when sin g = 0, which means the pendulum
lies in the position g = 0 or gz = w. Also, by
the definition of the internal dynamics, ¢ = 0.
If the system happens to be in a position where
g2 = 0 or g2 = w with zero velocity, it can be seen
from (10) that the system cannot leave the man-
ifold g2 = 0. Hence, the system is uncontrollable
from the equilibrium point. Note that gravity is
assumed to be absent.

e The rotational inverted pendulum. (m #
0,y= q2)

7 D= J1 + Jzcos(2gz) —Jasinge
* - —J4 sinqg J2

The singularity is similar to the inverted pendu-
lum case. When sin g3 # 0, the internal dynamics
are §; = 2cosgag>. If the system happens to be
in a position where ¢ = 0 or ¢2 = m with zero
velocity, singularity occurs and the system is un-
controllable as well.

e Perpendicular rotational inverted pendulum.
(Tl # 07 Y= f12)

D= Ji1 + Jacosqa + Jscos(2g2) O
- 0 Ja

This system exhibits the “worst” possible singu-
larity in the sense that dj» = 0 independently of



¢1 and go. Moreover, the system is uncontrol-
lable everywhere. Intuitively, it can be seen from
the fact that, since the motion along ¢ is only
through the centrifugal terms, the force can act
only in one direction.

6 Conclusions

The analysis of internal dynamics of two-link exclu-
sively kinetic underactuated mechanical systems with
the natural outputs was undertaken. It has been shown
that, in the nonsingular scenario the internal dynamics
are unstable making the system nonminimum phase.
Also, in the few examples studied, a link between sin-
gularity and uncontrollability was seen.

Generalization of the result on nomminimum phase to
more than two links is an open problem. Future work
will also be in the direction of rigourously establishing
the relationship between uncontrollability and singu-
larity.
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