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ABSTRACT

Semiconductor nanowires (NWs) have been investigated for decades, but their application into commercial products is still difficult to achieve,
with triggering causes related to the fabrication cost and structure complexity. Dopant control at the nanoscale greatly narrows their exploitation
as components for device integration. In this context, doping appears the truly last missing piece of the puzzle for III–V NWs, for them to
become commercially exploitable. In this paper, we review the doping of bottom up III–V NW arrays grown by molecular beam epitaxy and
metal-organic vapor phase epitaxy, aiming to link materials science challenges with the critical aspect of device design. First, the doping methods
and mechanisms are described, highlighting the differences between self-assembled and ordered NW arrays. Then, a brief overview of the avail-
able tools for investigating the doping is offered to understand the common strategies used for doping characterization. Both aspects are crucial to
discuss the recent advancements in reproducibility and up-scalability, which are discussed in view of large area fabrication for industrial produc-
tion. Finally, the most common doping-related challenges are presented together with the latest solutions to achieve high performing NW-based
devices. On this basis, we believe that new insights and innovative findings discussed herein will open the low dimensional materials era, on the
premise of multidisciplinary collaborative works of all the sectors involved in the design and optimization of commercial products.
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I. INTRODUCTION

Despite its abundance and implementation in industrial
processes, silicon shows some limitations for its future utilization in

existing technologies such as solar cells and electronics.1,2 III–V com-
pound semiconductors are one of the most promising candidates to
lead the post-silicon era with the additional ability to integrate the
optoelectronic functionality. The use of III–V semiconductors is still
limited at the industrial scale by the high cost of substrate materials
and dedicated fabrication machines. Indeed, devices using high quality
III–V materials require growth onto substrates with specific properties
(in terms of lattice and polarity matching). This makes production
extremely complex to develop and processes flexible hardly enough to
account for a wide range of applications.3–8 Recent progress in nano-
technology enabled the possibility to manipulate and structure matter
almost to the atomic scale. It also provided the opportunity to realize
new classes of functional devices based on nanostructures. Thanks to
their small size, these structures exhibit much less limitations with
respect to the substrate and can be integrated virtually onto any sub-
strate ranging from silicon, diamond to van der Waals materials.9–12

The implementation of III–V nanostructured devices could bring ben-
efits at many levels: boosting performances in different technological
areas,13 monolithic integration of mismatched materials,14,15 using
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reusable or economic substrates, and the reduction of production cost
by reducing the amount of material into the devices. Among the III–V
nanostructures explored in the last few decades, bottom-up nanowires
(NWs) have stood out due to their inherent small lateral size, which
effectively accommodates the strain stemmed from the lattice mis-
match between different materials.9,16,17 The layer-by-layer growth
mechanism, together with the small footprint, also hinders the forma-
tion of antiphase boundaries resulting from the polarity mismatch
with the substrate.18,19 This advantage opened the way to monolithi-
cally combine III–V semiconductors with a less expensive substrate
such as silicon, which would help also to smoothen the transition
towards new generation devices.

For several decades, the potential of NWs grown by epitaxial
methods has been demonstrated from their outstanding material qual-
ity to the realization of a large number of applications. It is, therefore,
surprising that still today there is a substantial gap between NW-based
laboratory-scale prototypes and commercially available products. The
wide range of modern commercial electronics, as well as cutting-edge
emerging technologies, is mainly based on well-established planar and
top-down processes in the semiconductor industry. The question
arises of what is required for bottom up NW systems to fulfill their
promise and have widespread impacts. Despite the extensive work—
theoretical and experimental—there are still some unanswered ques-
tions that limit their industrial applications.

In this context, NW doping has a central role. On one side,
semiconductor doping is the key for tuning the properties of the
active material in almost any electronic and optoelectronic device.
On the other, it may strongly influence the growth mechanisms, the
structure, and therefore the functional properties. As a consequence,
the architecture and the design of the device as a whole and the final
performance depend on the capability to control the dopant incorpo-
ration in the nanowires. Doping corresponds to the intentional
minute introduction of foreign impurities in a semiconductor crystal
to significantly modify its electrical, optical, and structural properties.
The techniques used to introduce these impurities in nanowires are
generally “in situ,” indicating that the incorporation of dopants
occurs simultaneously to the material synthesis. The introduction of
dopants during synthesis may affect the physical mechanisms
involved in the process. As a consequence, the synthesis parameters
need to be adjusted in order to obtain the optimal result. Indeed, the
optimization of the parameters is highly dependent on the chemical
nature of the semiconductor and of the dopant species. This is dis-
cussed in Sec. II, where the growth mechanisms of doped nanowires
are described in detail. Here, we will mainly focus on two epitaxial
growth techniques, i.e., molecular beam epitaxy (MBE) and metal-
organic vapor phase epitaxy (MOVPE), which are relevant to obtain
III–V nanowires in a high quality and reliable manner. The overall
picture is even more complex when considering the effect of doping
impurities at the nanoscale. Indeed, when scaling down to few tens
of nanometers, a tiny amount of dopant atoms can change drastically
the properties of the semiconductor. For example, 10 phosphorous
atoms into a 10 nm silicon cube yield a dopant concentration of
1019 cm�3, which is considered to be a high doping level in semicon-
ductor science.20 In the other term, the doping concentration and
distribution must be precisely characterized to obtain an ultra-fine
control over the growth conditions and to produce high performing
devices. In this perspective, doping characterization techniques

(discussed in Sec. III) are a bridging point between materials science
and device engineering.

Contrary to bulk and thin film semiconductors, bottom-up NW-
based devices are composed of an ensemble of millions of individual
nano-objects, called arrays. As the functional properties of such an
array depend on the uniformity of the nanowire morphology and crys-
tal quality, two of the most studied aspects in this field in the last
10 years are the growth reproducibility and the up-scalability. Recent
progress indicators such as selective area growth (SAG), novel
template-based approaches, and horizontal NW design aim to enable
the growth of large area arrays composed of millions of ordered nano-
wires with identical properties. Achieving a reliable large area growth
of identical nanowires would also directly impact the semiconductor
manufacturing industry, paving the way for a full commercial exploita-
tion of nanomaterials. Due to their relevance, these progress indicators
will be reviewed in Sec. IV, where the impact of the up-scaling strate-
gies on the doping uniformity is discussed. Finally, Sec. V will be
devoted to the common doping-related challenges for the realization
of highly performing NW-based devices. The concepts discussed in
this section will help to underline the challenges to overcome along
the path towards the commercialization of nanostructured electronics
and opto-electronic devices. This involves a wide range of applications
as summarized in Fig. 1. All these applications require a precise con-
trol of doping in a reproducible manner, and of course, scalability
issues need to be addressed when it comes to device application to
compete with the conventional planar devices in the market. It is not
an easy task, but interdisciplinary collaborative work from modeling,
growth, characterization, innovative device design, and fabrication can
hopefully bring a low dimension material era in the near future.

Despite these challenges, the NW community has been dedicat-
ing a lot of effort and passion to master this topic, and comprehensive
reviews on growth and doping are already available in the litera-
ture.13,21–24 However, a significant gap still exists between the funda-
mental aspects and the practical realization of commercial products.
In this paper, we aim to provide a comprehensive review, oriented to
the production of NW-based devices as an ultimate technology to
outdate silicon in the next future.

II. DOPING MECHANISM IN NANOWIRES

The most common mechanisms exploited for the growth of
III–V NWs are the so-called vapor–liquid–solid (VLS), vapor–
solid–solid (VSS), and vapor–solid (VS). In the former, a liquid/solid
metal catalyst forms and preferentially gathers vapor precursors and
generates an alloy. Once supersaturation of the components in the cat-
alyst is reached, a solid phase precipitates at the bottom of the droplet,
resulting in the one-dimensional growth of a NW.25

In VLS- and VSS-grown arrays, the position of the nanowires is
determined by the location of the catalyst particles on the substrate. In
the case where the droplet distribution is stochastic, long-range order
cannot be obtained. This results in a difference in nucleation and incu-
bation times arising from the droplet size dispersion, which usually
leads to inhomogeneity in diameter and length. NW arrays of such a
type are indicated as “self-assembled NWs.” The VS technique,
instead, is a catalyst-free growth method. In the context of NWs, it
consists of a layer-by-layer growth on the substrate. As growth occurs
in a highly kinetically dominated regime, the difference between
growth speeds of different crystal planes will lead to an asymmetrical
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crystal.26,27 In the case of III–Vs such as GaAs or InAs, the (111)
family of planes will govern the growth, and a mask opened in that
direction will result in a vertical NW growth.28

Nanowire growth by a VS mechanism typically requires mask
openings to obtain the desired morphology. As the shape and position
of the openings on the surface can be easily controlled, a more uniform
NWmorphology can be achieved.

This method can be referred to “selective area epitaxy” (SAE),
often corresponding to the fabrication of ordered NW arrays. Notably,
the correlation between the growth mechanism, array ordering, and
nanowire uniformity has weakened as new growth methods are con-
stantly under development. For instance, Ga-catalyzed NWs grown on
patterned substrates enable the growth of ordered NW arrays by VLS
or VSS.29–31 The same result was obtained by controlling the catalyst
distribution on the substrate by nanoimprinting lithography.32 It is
worth mentioning that until now, ordered NW arrays have always
been achieved through substrate patterning.

The growth mechanism strongly affects the incorporation of
dopant atoms in nanowires. In both VLS- and VS-driven nanowire
growth, the addition of a dopant may influence the thermodynamics
and kinetics of the system as it may affect surface energies. The balance

among the two affects the crystal growth and the dopant incorpora-
tion. Both thermodynamics and kinetics depend on the chemistry of
the system, i.e., on the chemical nature of the substrate, III–V
elements, and dopant species, not to mention temperature, partial
pressures, and atomic fluxes. It is, thus, highly complex to generalize
dopant incorporation for III–V NWs. The complexity of the topic can
be appreciated from Table I, which shows a summary of reported
dopant concentrations in binary III–V NWs, highlighting growth
techniques and dopant elements.

Despite the myriad of details concerning elements, growth tech-
niques, and the parameters used for doping, it is possible to unveil
principles common to all the NW doping processes. Figure 2 depicts
the main dopant incorporation paths in NWs, which are either
through the catalyst (i.e., along the growth direction) or through the
side facets. It is usual to see a contribution of both mechanisms during
the catalyzed growth of III–V NWs.23,33

In the case of VLS, dopant incorporation through the catalyst
occurs at the liquid–solid growth front interface.34 The dopant
concentration depends on the solubility of the dopant material in the
catalyst and the segregation coefficient of the dopant material into the
solid NW. Intuitively, this incorporation path affects the doping profile

FIG. 1. Development of devices based on III–V nanowire arrays as interdisciplinary collaborative work from modeling, growth, characterization, innovative device design, and
fabrication. Examples of devices currently under research: photodetectors [Adapted with permission from Ren et al., Nano Lett. 18, 7901 (2018). Copyright 2018 American
Chemical Society], solar cells [Adapted with permission from Wallentin et al., Science 339, 1057 (2013). Copyright 2013 American Association for the Advancement of
Science], light emitting diodes [Adapted with permission from Sekiguchi et al., Appl. Phys. Lett. 96, 231104 (2010). Copyright 2010 AIP Publishing LLC], lasers [Adapted with
permission from Kim et al., Nano Lett. 16, 1833 (2016). Copyright 2017 American Chemical Society], sensors [Adapted with permission from Sahoo et al., Nano Lett. 16, 4656
(2016). Copyright 2016 American Chemical Society.], photonic crystal [Adapted with permission from Scofield et al., Nano Lett. 11, 2242 (2011). Copyright 2011 American
Chemical Society].
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TABLE I. Reported binary III–V NWs with the dopant element and doping concentration range (in atoms�cm�3).

Material Growth method n-type p-type

AlN MBE, CVD,a MOVPE SiH4
35 Mg36 MgCl2

35,37,38 Cp2Mg39

6.7� 1020 –2.4� 1021 1016 4.4� 1020 – 8.6� 1021 1.2� 1020 –7.7� 1020

GaN MBE, MOVPE Si40–45 SiH4
46–50 Mg41–45 Cp2Mg46–50 Mg3N2

51,52

3.0� 1018–2.7� 1021 1018–1020 1017–1020 1016–3.0� 1018 1017–1020

InN MBE, MOVPE Si53–55 Mg55,56 DEZn57

5.0� 1017–1.1� 1020 2.0� 1015–6.0� 1015 2.0� 1021

GaP MOVPE, sublimation TESn58 DTBSe58 SiH4
58 S59 DEZn58 NH3

60

(N/A) (N/A) (N/A) 5.0� 1020 (N/A) 1018

InP MBE, MOVPE, LCGb Si61 SiH4
62,63 H2S

21,64–67 Te68 Zn68 Zn3P2
69

3.0� 1017–3.0� 1018 1018–3.0� 1018 3.0� 1018 4.0� 1020 4.0� 1020 1.2� 1021

TESn70–74 Se69,75,76 DEZn4,6,63–66,71–73,77,78 DMZn70

1017–1019 2.0� 1017–1020 1.0� 1017–1.2� 1020 (N/A)
GaAs MBE, MOVPE Si79–81 SiH4

82 Si2H6
83–85 Si80,81,86,87 C83 DMZn88

1017–1020 3.5� 1017 1017–5.0� 1018 1.4� 1018–4.0� 1019 8.0� 1018 1017

GaTe89–91 TESn92–94 Be81,90,91,95,96 DEZn67,77,82,85,88,92–94,97

4.0� 1018–2.0� 1019 1018 –3.0� 1018 1018–1021 1017–2.3� 1019

InAs MBE, MOVPE TESn98–100 SiBr4
100 DTBSe99,100 SiH498 DEZn98

1.9� 1018–1019 (N/A) 1018–1.2� 1020 6.8� 1016 (N/A)
Si2H6

101 H2S
100 Be102,103

1017–3.9� 1018 6.2� 1017–3.1� 1018 7.0� 1017–3.0� 1018

GaSb MBE, CVD, MOVPE Te104 Zn105

1.7� 1018 (N/A)
InSb CVD, MOVPE N/A C106

7.5� 1017

aChemical vapor deposition.
bLaser-assisted catalytic growth.
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along the growth direction. At the same time, dopant incorporation
through the side facets can occur. This process is mediated by the crys-
tal orientation of different facets.107

If the two incorporation paths are not properly coordinated,
inhomogeneities in dopant distribution can arise, with possible detri-
mental effects on the functional behavior of the nanowires to mitigate
this issue, and growth conditions can be tuned in order to suppress
one of the two paths, like introducing etching species.108 Borgstr€om
et al. suppressed VS contribution by introducing HCl during the
growth of Au catalyzed InP NWs in MOVPE. However, Connell
et al.109 reported that inhomogeneities can also arise during the sole
incorporation through the droplet. Atom probe tomographic (APT)
analysis on Au-catalyzed B-doped Si and P-doped Ge NWs revealed
that dopants are preferentially incorporated near the VLS trijunction.
The authors addressed the observed dopant anisotropy to the faceting
of the liquid–solid growth interface.

Nonuniform dopant distributions in NWs are also observed in
different material systems, although controversial reports can be
found. An example is the incorporation of dopants in MBE grown
self-catalyzed GaAs NWs. Preferential incorporation of Be atoms
along threefold symmetric truncated facets under a liquid Ga catalyst
has been reported by off-axis electron holographic analysis.110 The
dopant diffusion into the NW core during the process leads to the
radial and azimuthal variations of dopant distribution. On the con-
trary, Zhang et al. reported a uniform Be dopant distribution both
along the length of the NWs and radially across the diameter in the
same material system.111 Also, Te dopant incorporation has been stud-
ied using several complementary techniques.89 Models show that Te is
mainly incorporated by the VLS process through the Ga catalyst,
which results in both axial and radial dopant gradients due to Te diffu-
sion inside the NWs and competition between axial elongation and
radial growth of NWs. By comparing Raman spectroscopy and APT
analysis, they demonstrated that the activation of Te donor atoms is
100% at a doping level of 4� 1018 cm�3.

The amphoteric nature of the Si doped GaAs NWs (one of the
most studied systems in III–V NW doping) brings an additional ele-
ment to consider.80,81,86,87 In particular, it has been shown that Si
incorporates mainly in As-sites in Ga-assisted growth. For concentra-
tions higher than few 1018 cm�3, Si atoms drive Si-Si pair formation,
resulting in doping compensation.86 In 2019, Hijazi et al. presented a
model elucidating the importance of catalyst droplet composition as a
function of temperature, which allows for better understanding of Si
doping of Au catalyzed and self-catalyzed GaAs NWs.112 They
explained why most VLS Si-doped GaAs NWs are p-type and demon-
strated n-type Si doping of Au-catalyzed GaAs NWs grown by hydride
vapor phase epitaxy (HVPE) using high As concentration in the liquid
Au catalyst. Furthermore, very recently, Dubrovskii et al. pointed out
that the III–V VLS NW doping process is sensitive to the chemical
potential oscillations related to depletion of group V atoms in a cata-
lyst droplet using the analytic model, which quantifies the doping
oscillation over the monolayer formation cycle.113

Using a solid metal catalyst, vapor-solid-solid (VSS) NW growth
may result in a more controllable doping process114 due to reduced
solubility of growth precursors, as well as dopant elements in the cata-
lyst. In this case, the achievable doping level might be compromised.
The trade-off between improved control and maximum doping con-
centration achievable needs to be evaluated to determine whether VSS
growth is a valid option for the desired nanowire system.

One can consider removing the metal catalyst and to obtain
homogeneous doping profiles in VS-grown NWs. In the case of
particle-free growth, facet-dependent dopant incorporation can be
present (as multiple crystal facets are growing simultaneously), thus
leading to uneven doping profiles. In addition, typically VS-grown
NW presents heavily defective crystal structures, which might be detri-
mental for electrical functionalities. Few post-growth processes such as
etching115 and thermal annealing116 have been successfully applied to
modify the electrical properties at the micrometer-scale. Their use to
tune doping at the atomic level in future is unlikely as they are not
controllable at this scale.

Control over the dopant distribution down to the monolayer rep-
resents one key to unlock the use of III–V nanowires in a wide range
of applications. Unfortunately, unveiling the complicated nature of
NW doping is not an easy task. The majority of the studies were so far

FIG. 2. Dopant incorporation paths in nanowires with VLS and VS mechanisms,
respectively, through the catalyst (i.e., along the growth direction) or through the
side facets. It is usual to see a contribution of both mechanisms during the cata-
lyzed growth of III–V NWs, as shown on the left picture.
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conducted on self-assembled nanowires. As self-assembled growth is
inherently indeterministic, it leads to an intrinsic statistical uncer-
tainty. When NWs are randomly positioned on the substrates, each
has a different surrounding during the growth, and the adatom collec-
tion area is, therefore, affected. The consequent variation of their
morphologies, composition, and structural properties can also provide
significant instabilities to the dopant distribution. Therefore, the great
potential of NW arrays can only be relevant if we master NW doping
in ordered array systems. In this perspective, position-controlled
ordered NW arrays are essential for systematic doping studies.

To the best of our knowledge, the effects of doping in ordered
array systems have not been fully investigated yet. However, thanks to
the recent advances in ordered NW growth,31 their use for studying
and engineering NW doping in a more systematic manner is expected.
The possibility to exploit ordered arrays of nanowires will help disclos-
ing the relation between the growth mechanism and dopant
incorporation.

It will be interesting to see how doping studies on ordered nano-
wire arrays will affect the current understanding of surface driven
effects such as depletion, dopant deactivation, and Fermi level pinning.
As device dimensions are scaled down, the surrounding surface of the
semiconductor will become more important and will possibly rule the
electronic properties.

For example, in 2009, IBM demonstrated the discrepancy
between the physical radius and electronic radius of NWs.117 They
presented the effect of doping deactivation by measuring the electric
conduction of phosphorous doped Si NWs as a function of radius,
temperature, and dielectric surrounding. The increase in ionization
energy with the decreasing nanowire radius proved the effect of sur-
face states and dielectric mismatch. This effect is even more pro-
nounced in GaAs, which has very high surface recombination velocity
compared to other III–V semiconductors. Chang et al. calculated free
carrier density as a function of doping concentration for GaAs NWs
with various diameters.118

When the doping concentration is below 1017 cm�3, NWs are
fully depleted at the diameter of 100nm. Indeed, this phenomenon
has a significant impact on the functional properties of individual
NWs and therefore on the development of nanowire-based devices. In
this context, arrays made of millions of identical NWs are a precious
platform for the doping studies in the next future.

As a small amount of dopant can drastically change the growth
dynamics,77,78 accurate characterization of dopant concentration is
necessary. For this reason, Sec. III will discuss available doping charac-
terization methods, highlighting their strength, weaknesses, and com-
plementary nature.

III. CHARACTERIZATION METHODS

A large range of methods have been used to characterize bulk
and thin film semiconductors.119–121 The use of these techniques to
probe nanostructures, such as nanowires, involves several challenges.
On one side, the reduced dimensions and material volume require
techniques with high sensitivity. On the other, a very high spatial reso-
lution is necessary to reveal the physics of the dopant incorporation
and its relation to the growth mechanisms. At the same time, dopant
distribution affects the electrical properties, i.e., due to the amplified
effect of surfaces in depleting carriers.122,123 In this regard, doping

analysis and interface engineering are fundamental for the future
development of nanowire-based devices.

To account for this complex picture, doping investigations in
III–V nanowires are usually approached by multi-scale methods,
which require high spatial resolution and chemical/electrical/optical
sensitivity. This strategy aims to tackle the task by obtaining informa-
tion at different scales and/or on different doping-related properties,
ideally on the same nanowire.124

Analysis on multiple nanowires or on nanowire arrays can also
be performed. In this case, the result is considered an average over
the ensemble. For this type of measurement, SAE nanowire arrays,
which are expected to yield a higher uniformity, are preferable over
self-assembled ones.8,125,126 This may be highly helpful also for the
development of nanowire-based devices in the near future as high
uniformity have to be ensured also to obtain a reliable device on a large
scale surface.127

This section reviews several methods used to characterize the
doping in semiconductor nanowires. The discussed techniques are
given in Subsections IIIA–IIID to emphasize similarity, differences,
advantages, and disadvantages of each of them.We believe that the fol-
lowing classification is highly beneficial to readers interested in partic-
ular doping-related issues.

A. Structural characterization techniques

The most intuitive strategy to characterize the doping of semi-
conductor materials relies on the analysis of the chemical nature and
position of the dopants. The identification and mapping of atoms in
bulk or thin film materials have traditionally been performed by
energy-dispersive x-ray spectroscopy (EDX), secondary ion mass spec-
troscopy (SIMS), and, more recently, atom probe tomography (APT).

These techniques are characterized by very high chemical selec-
tivity and high spatial resolution, enabling us to obtain elemental data
and/or maps concerning the composition of the probed material.

The main difference among these techniques is related to the
limit of detection (i.e., the minimum detectable quantity of a given spe-
cies). This is the most important parameters when investigating the
doping by this kind of techniques. As an example, considering that in
1 cm3 of GaAs are present roughly 1022 atoms, a limit of detection of
at least 0.001% is necessary to detect dopant concentrations on the
order of 1017 cm�3. This is the main reason why EDX, extensively
used in semiconductor technology, is poorly suited for doping analysis
in III–V nanowires: due to its high limit of detection (around 0.1% in
the best conditions128), it has been used only for microwires where a
very high dopant concentration was expected.129

SIMS is better-suited for the purpose.130,131 Standard time-of-
flight (ToF) SIMS measurements can detect concentrations as low as
1017 cm�3 in thin films.132 Its nanoscale version exhibits high spatial
resolution (� 50 nm lateral resolution and � 20nm depth resolu-
tion),133,134 which makes it highly suitable for the investigation of
NWs.135 An example is the work of Chia and coauthors136 on MBE
grown Au-catalyzed GaAs NWs, where doping profiles for n- and p-
dopants have been measured [Fig. 3(a)]. The results lead to key
insights into the growth mechanisms with useful feedback for the
device design.

Although nano-SIMS is a powerful tool to probe individual
NWs, it is less suited to map the dopant distribution in specific
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FIG. 3. Examples of doping characterization done by structural (blue-framed), electrical (yellow-framed), optical (red-framed), and scanning probe (green-framed) methods. In the
center is a visual guide to the figure. The gray arrow indicates the order these methods are discussed in the text and the labeling. (a) SIMS: dopant concentration as a function of
depth for different Be:GaAs NWs. In the inset, a SEM image of the as-grown array. Adapted with permission from Chia et al., J. Appl. Phys. 118, 114306 (2015). Copyright 2015 AIP
Publishing LLC. (b) APT: on the left, 3D reconstruction of a NW with Ga atoms, Si dopants and contamination elements H, O, and C mappings; on the right, 2D atoms distribution
map of the Ga and Si and 1D radial relative composition profile of Si dopants and contamination elements. Adapted with permission from Ren et al., Appl. Phys. Lett. 107, 022107
(2015). Copyright 2013 Elsevier B.V. (c) Schematic and SEM image of a micro-system for resistivity, FE and Hall effect measurements. Adapted with permission from Thathachary
et al., Nano Lett. 14, 626 (2014). Copyright 2014 American Chemical Society. (d) Resistivity measurements: four-points resistance of Si:InAs NWs as a function of the distance of
metal contact to the cross section ratio (l/A) for nanowires with a different doping (color-coded). The straight lines correspond to the linear fits for each doping factor Adapted with per-
mission from Wirths et al., J. Appl. Phys. 110, 053709 (2011). Copyright 2011 AIP Publishing LLC. (e) FE and Hall measurements: charge carrier concentrations in S:InP as a function
of dopant gas molar fraction used during the growth. The error bars show the standard deviation within the measured NWs. In the inset, the SEM image of the measurement micro-
system. Adapted with permission from Hultin et al., Nano Lett. 16, 205 (2016). Copyright 2016 American Chemical Society. (f) Raman spectroscopy: on the left, the Raman spectrum
of a single Si:GaAs nanowire. The vibrational mode at 393 cm�1 corresponds to the incorporation of silicon in arsenic sites. On the right, the spatial distribution of the dopant concen-
tration defined by the intensity ratio between the LVM and TO modes along the nanowire. Adapted with permission from Dufouleur et al., Nano Lett. 10, 1734 (2010).Copyright 2010
American Chemical Society. (g) PL: on the left, the spectra of Si:GaAs nanowire arrays grown under various dopant flow rates. Adapted with permission from Arab et al., Appl. Phys.
Lett. 108, 182106 (2016). Copyright 2016 AIP Publishing LLC. On the right, the PL spectrum of a single Zn:GaAs NW and related fitting (red line). The predicted PL from undoped
GaAs is given by the orange dotted curve, demonstrating the PL redshift due to doping. The inset shows a p-doping map for this nanowire. Adapted with permission from Alanis
et al., Nano Lett. 19, 362 (2019). Copyright 2019 American Chemical Society. (h) THz spectroscopy: on the left, SEM images for Si- (top) and C- (bottom) doped GaAs core-shell
NWs. On the right, comparison of the decay of normalized photoconductivity for n-type (blue) and p-type (red) doped nanowires with an undoped nanowire reference sample (black).
Adapted with permission from Boland et al., ACS Nano 10, 4219 (2016). Copyright 2016 American Chemical Society. (i) EBIC: on top, schematic of Si:InGaP NWs on B:Si stems,
EBIC map, and corresponding EBIC current profile along the longitudinal axis. On the bottom, doping estimation as a function of the dopant flow used during the growth. Adapted
with permission from Piazza et al., Appl. Phys. Lett. 114, 103101 (2019). Copyright 2019 AIP Publishing LLC. (j) CL: on top, SEM image, and corresponding CL map of a single
Si:GaAs NW. On the bottom, FWHM extracted form CL measurement as a function of the carrier concentration for different doping levels. Adapted with permission from Chen et al.,
Nano Lett. 17, 6667 (2017). Copyright 2017 American Chemical Society.
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locations, i.e., interfaces, since a much lower limit of detection and a
spatial resolution on the order of nm are necessary.

Interface engineering is critical in view of commercial devices: for
example, it is key to control the dopant incorporation down to the
monolayer to estimate the sharpness of an electrical junction and for
the study of quantum objects embedded in NWs. Novel advances in
SIMS such as 1.5D and self-focusing SIMS show promise to tackle
these problems.134

More commonly, these challenges are addressed by APT, which
provides a very high spatial resolution (� 1nm, Ref. 137) and a lower
limit of detection (roughly 1016 cm�3).138 Therefore, APT is strongly
favorable for the analysis of atomic distributions in NWs.139–141

Agrawal et al.142 used this method to measure the distribution of Mg
atoms in high bandgap III–V NWs, obtaining both axial and radial
maps. The technique has been subsequently refined, enabling full 3D
volume reconstruction, as in the work of Du and coauthors
[Fig. 3(b)].143 The main drawback of this method is that both sample
preparation and data acquisition and analysis are highly time-
consuming. For this reason, a systematic analysis of an entire NW
array is virtually impossible, at the moment. Still, APT is highly valu-
able, especially in combination with other techniques. This strategy
allowed us to describe the incorporation of dopants and to have a deep
understanding of the physical phenomena occurring in NWs.89,144

Last but not least, it is worth noting that all the structural charac-
terization techniques imply a risk of permanently damaging the inves-
tigated material and can be thus of destructive nature. In this case,
they cannot be simultaneously performed on the same position, thus
limiting their execution on the same nanowire.

B. Electrical characterization techniques

Semiconductor doping aims to engineer the conductivity—or
more generally the electrical properties—of semiconductors. It is,
therefore, natural to analyze the electrical properties to characterize
the carrier concentration and mobility to investigate the doping effi-
ciency. This strategy is commonly used for thin film technologies
where electrical techniques are routine methods to assess the doping
concentration. The adaptation to the nanoscale was enabled by the
advancements in nanofabrication of test structures for single nanowire
analysis.145,146 A flawless fabrication is crucial since the contacts define
the access of charge carriers to the material [Fig. 3(c)].87,147,148

Current-voltage and field effect (FE) measurements are often
exploited in combination [Fig. 3(d)] to estimate the average carrier
concentration and mobility in nanowires. The former, performed in 2-
points and/or in 4-points configurations, enables the assessment of the
resistivity, while the latter allows us to assess the charge type and the
carrier concentration by monitoring the variation of the source-drain
current as a function of the gate voltage.101,149 Combining the data,
also the charge mobility can be estimated using Drude-like models,
potentially enabling a full characterization of the transport properties
in single NWs.

An alternative to FE measurements is to perform Hall measure-
ments. In this type of analysis, the Lorentz-type interaction between
the current flowing in the NW and a perpendicular magnetic field
leads to the build-up of an electric potential, which can be easily
related to the carrier concentration.148,150

The accuracy of the values obtained through these electrical char-
acterization methods is intimately related to the reliability of the

parameters to be used in the models describing the current-voltage
dependence.151 For example, capacitance values are usually difficult to
estimate due to their dependence on surface and bulk properties, as
well as on the nanowire-gate geometry.152,153 As a result, charge trap-
ping at the surface is often neglected, and I-V or C-V hysteresis is
under-reported. The difficulty in including these phenomena in a the-
oretical or semi-empirical model may represent the main sources of
error in doping estimation. Hultin et al.154 compared FE and Hall
measurements on S-doped InP NWs. In their study, the authors con-
clude that FE measurements are more sensitive to the surface proper-
ties, while Hall measurements give a better estimation of the bulk
properties. They highlight the significant impact of the electrical
modeling of the nanowire. Still, in this study, the carrier concentration
obtained with the two techniques differ only slightly [Fig. 3(e)].

Among other electrical methods, recently, techniques based on
thermoelectric effects have been developed, although less commonly
used for the analysis of III–V nanowires.144,155 For a more technical
description of the conventional electrical characterization techniques
for semiconductor materials, please refer to Ref. 156.

C. Optical characterization techniques

Material research involves several cycles of design, growth, char-
acterization, and analysis in order to achieve high-quality results. This
is even more important when developing nanostructured materials
since the interplay of many factors plays a fundamental role during
the growth. In this context, rapid characterization techniques on the
as-grown material are highly desirable. Optical characterization typi-
cally falls in this category.

The most commonly used techniques are Raman spectroscopy,
photoluminescence (PL), and optical-pump THz spectroscopy.
Raman spectroscopy relates the vibrational modes of the crystal with
the presence of impurities and therefore can be a sensitive to the con-
centration of dopants, when the local vibrational modes, LVMs, are
Raman active. An estimation of the dopant density can be obtained by
comparing the intensity of the LVM peaks.86,157 In Si doped p-type
GaAs, this approach can ensure a sensitivity around 1018 cm�3 at best.

However, due to the non-destructive nature and absence of time-
consuming sample preparation, Raman is widely used to study as
grown-nanowire arrays. For example, it was used on GaAs microwires
to study the incorporation of the dopant along the length of the nano-
wires86,158 [Fig. 3(f)]. Also, more complex doping-related phenomena
were studied, such as the amphoteric nature of Si atoms in GaAs
NWs.86,159

Similarly, PL is widely used to investigate nanowires. The
working principle of PL analysis relies on the inter-band transition
of carriers under optical excitation and subsequent radiative recombi-
nation. Hence, this technique is used to study the incorporation of
dopants in the material, which leads to the formation of intragap states
and to an increase in the population in the conduction or valence
band. Experimentally, the presence of dopant states results in a
broadening and shifts of the luminescence peaks (such as bandgap
narrowing and Burstein-Moss shift), dependent on the doping con-
centration160–162 [Fig. 3(g)]. Thanks to the extensive literature on
this topic, quantitative estimation of the doping concentration can
be obtained by analyzing the shift in the luminescence spectra, with
sensitivity up to � 1017 cm�3, enabling its use for systematic
studies. For example, Arab et al. investigated the incorporation of
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Si in GaAs nanowires grown by metalorganic chemical vapor depo-
sition (MOCVD) by relating the dopant flow used during the
growth to the carrier concentration in the nanowires.163 On a more
applicative note, l-PL maps were also use to evaluate the effect of
the p-doping level on the lasing properties of GaAs nanowires.164

Raman spectroscopy and PL analysis can be used efficiently
together to study III–V NWs by probing the impurity concentration
and the resulting electronic structure.157 Despite their easy implemen-
tation, both techniques are strongly limited in spatial resolution due to
the excitation wavelength on the order of few hundreds of nm. For
this reason, optical characterization methods are used mainly to inves-
tigate nanowire arrays, although a few analyses on single nanowires
can be found in dedicated studies.76,158

Another established method is optical-pump terahertz spectros-
copy, where the collective oscillation of free charges is excited, enabling
the estimation of the doping concentration from complex conductivity
spectra [Fig. 3(h)].165 III–V NW ensembles have been investigated
through this technique to retrieve not only the doping concentration
but also material parameters such as carrier lifetimes, mobilities, and
surface recombination velocities.166 In this field, it is indeed worth
mentioning the work of Herz and coauthors to investigate uninten-
tional and intentional doping levels in InAs, InP, GaAs, and InAsSb
NWs.167–171

D. Scanning characterization techniques

Scanning probe characterization techniques respond to the need
to investigate a large number of nano-objects with high spatial resolu-
tion by combining nanometric probes (such as an electron beam) and
scanning over macroscopic areas. When applied to doping analysis,
this category of experimental tools finds their major advantages in the
possibility to perform large statistical analysis with poor (or even with-
out any) nanofabrication.49,172,173 An example is given by electron
beam induced current mapping (EBIC), extensively used for both thin
films and nanostructured semiconductor analyses.174,175 EBIC enables
us to correlate the charges excited by the electron beam with the elec-
tronic band structure of nanowires containing electrical junc-
tions.176,177 This technique has been largely used on III–V NWs not
only to determine the type of doping obtained with a given dopant
species178 but also to perform quantitative doping estimation across
p-n junctions [Fig. 3(i)],179 with a limit of detection of roughly
1017 cm�3. EBIC can be used also to investigate doping-related phe-
nomena such as metal/semiconductor Schottky coupling and deple-
tion regions in electrical junctions, which are fundamental for the
development of optoelectronic devices.73,181–183 An additional tech-
nique is cathodoluminescence (CL).

Contrary to EBIC, CL does not require the presence of a rectify-
ing interface to enable material analysis since it relies on the inter-
band transitions occurring under electron beam excitation.184–186 In
the case of doping, the analysis of data is extremely complex, and it
requires a thin film calibration sample, enabling a comparative estima-
tion. Nevertheless, reliable values of carrier density can be obtained, as
demonstrated by the work of Lindgren and coauthors,187 who showed
a consistent agreement with Hall measurements. More recently, Chen
et al.180 developed a data analysis method relying on a spatial integra-
tion of the CL signal to define the peak position and FWHM represen-
tative of the carrier concentration in Si:GaAs NWs [Fig. 3(j)].
Additional scanning techniques have been developed and refined over

the last few years. Indeed, electron holography is recently gaining a lot
of consideration into the research community due to the possibility to
combine structural analysis and electrical potential mapping at the
very nanoscale (spatial resolution, � 1 nm),188 although several chal-
lenges related to surface states still need to be addressed to obtain a
quantitative doping estimation.124

Other techniques such as scanning microwave impedance
microscopy (SMIM) and x-ray fluorescence (XRF) are used in dedi-
cated studies,189,190 and progressive improvements are expected in the
years to come.

IV. THE CHALLENGE OF SCALABILITY

Currently, a systematic functional analysis of each individual
nanowire in a NW array is virtually impossible. The question is
whether this is necessary, especially if all NWs would be identical. Self-
assembled nanowires exhibit a relatively large NW size distribution,
especially compared to position-controlled NW array systems. This is
due partially to the variance in the interwire distance,191 which in turn
results in a fluctuation of the local precursor partial pressures.30

Conductive AFM performed on self-assembled GaAs NW arrays and
compared to top-down nanowire structures clearly illustrate this phe-
nomenon.127 In the self-assembled system, adjacent p-n NW junctions
can exhibit significant differences in their electrical behavior, ranging
from linear to diode-like characteristics. These variations have been
attributed to a change in the doping concentration and/or distribution
along the wire. In ordered arrays, the position of the NWs is deter-
mined by the substrate patterning. Consequently, a higher degree of
similarity in the morphology is found, although NWs are not all iden-
tical in length and diameter.30,192 Surprisingly, recent works indicate
that the electrical properties may also vary considerably in well-
ordered arrays.

All these raise questions concerning the scalability of NW
doping: do we understand where inhomogeneities come from and can
we find our way around them?

Concerning freestanding NW growth, it is known that the geo-
metrical parameters of an array (i.e., interwire distance and hole size)
can have an impact on the morphology and crystal structure of NWs
due to the variation of the adatom flux, resulting in different local
values of V/III ratio.193–196 A variation in the precursor flux implies
also a relative modification of the local dopant flux.

Morphological variations can also lead to variations in the dopant
concentration and thus nonuniformity from NW to NW. One can
consider that for NWs with a reduced size and low nominal doping
levels, a fluctuation of few dopant atoms can lead to strong variations
in their concentration. Moreover, the so-called “edge effect” contrib-
utes to the overall inhomogeneity. As NWs grow closer to the edge of
a regular array, an additional adatom flux through diffusion from the
dielectric mask can increase the NW growth rate. Non-linear position
dependent NW growth dynamics191,197 increases the complexity in
dopant incorporation and junction parameter designs. In the context
of a p-n junction, a difference in the axial and radial growth rate will
lead to electrical junction inhomogeneities between the center and
edge of an array. This effect could be more pronounced for an axially
defined junction because a non-intentional radial growth will poten-
tially decrease the junction performance by short circuiting the
junction.
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However, one can imagine to take advantage of different axial
and radial growth rates by obtaining NWs of different sizes on purpose
to enhance light absorption.198 One could, for example, integrate NWs
with different heights and diameters in the same array, to absorb light
more efficiently and increase the internal efficiency of a solar cell199 as
illustrated in Fig. 4(a). The suggested multiterminal NW solar cell
device scheme is based on three different dimensions and composi-
tions of III–V NWs as a unit cell, which enables an efficient lateral
solar spectrum splitting.

Scalability issues are often considered as an important factor for
bringing a device concept to the market. Considering that both MBE
and MOCVD techniques are currently capable of producing high
quality epitaxial films on industry scale 300mm wafers, the scalable
nanopatterning process gains significant importance. There are many
different kinds of nanopatterning techniques, and a comprehensive
review on recent progress of top-down lithography techniques is avail-
able in the literature.200 Among different techniques, e-beam lithogra-
phy (EBL) is the most widely used method for defining nanoscale
features due to its high-precision and versatile nature. However, it is
not yet appropriate for a large and dense area patterning due to low
throughput and high cost. EBL-free patterning can bring a huge
impact on the community, but still there is nothing can stand compar-
ison with EBL when it comes to resolution and reproducibility. From
the perspective of doping, horizontal NW configuration makes them
very attractive compared to the vertical NW configuration in terms of
scalability because the well-established planar doping process can be
directly transferred and facilitate post-device fabrication processes on
the original substrate.

In domains of application such as quantum computing202 or
photodetectors203 where the number and density of devices on a chip
are relatively low, up-scalability can be achieved either by the horizon-
tally defined in-plane selective-area growth (SAG) technique using a
template or mask to selectively grow one semiconductor material on
top of another204–210 or using dielectric templates that are referred to
as template-assisted selective epitaxy (TASE).211–213

These systems are promising for creating large-scale device-ready
junctions in a reproducible way like seen in Fig. 4(b). Moreover, the
recent use of modulation (or remote) doping permits us to signifi-
cantly decrease impurity induced scattering in such systems by cou-
pling the core material with a doped one and designing the band
structure to enhance the charge diffusion where desired [schematically
depicted in the inset of Fig. 4(b)]. In this way, dopant induced scatter-
ing can be reduced by a separation of free carriers and physically

doped layer, therefore increasing carrier densities and mobil-
ity.12,165,170,214–219 The integration of such a doping technique into
NW arrays can be a strong advantage not only for the material quality
but also in terms of reproducibility. In fact, such a strategy allows us to
decouple the optimization of crystal quality and the control over the
electrical properties, with a great simplification of the growth process.
Unfortunately, not all the architectures are compatible with remote
doping, and its implementation in each particular device should be
carefully evaluated.

V. DEVICES AND RELATED CHALLENGES

The achievement of commercially available NW devices requires
innovative engineering. Besides the challenges concerning growth,
characterization, and large area production discussed in Secs. II–IV,
several application-specific obstacles also come into play. Indeed, the
trade-off between material properties and the device requirements is
critical for any kind of semiconductor device, independently of the
scale of the active region. However, the significant impact of surface
phenomena at the nanoscale makes nanowires unique systems, and
therefore, specific device-related challenges have to be faced to achieve
high performance. In this section, we will first focus on one very com-
mon element in nanowire devices: the electrical junctions. The design
and fabrication of a nanoscale junction are strongly influenced by the
material doping, and they have a strong impact on the device function-
ality. We will detail the critical aspects of an electrical nanowire junc-
tion, highlighting the issues that may arise due to limitations in
controlling the doping concentration in interfaces and reduced vol-
umes. Then, we will point out additional nanowire properties and phe-
nomena, which are related to doping. Although they may appear
negligible, they actually play a crucial role in improving the perfor-
mance and figure of merit of the final device. Keeping in mind this
purpose, we discuss the most common strategies to optimize the
doping-related aspects of the design of nanowire-based devices.

A. Electrical junction in nanowire devices

All the electronic and opto-electronic devices respond to electri-
cal and optical input by means of current rectification to manage their
input or output signals. In a majority of cases, semiconductor technol-
ogies make use of electrical junctions as rectifying elements. In this
context, III–V NW-based devices also need an electrical junction such
as a nanoscale p-n (or p-i-n) junction. Only in a few applications,
current rectification is achieved by exploiting other elements: examples

FIG. 4. NW based future device scheme. (a) Schematic illustration of the triple junction NW array on a Si substrate. Each unit cell contains high, low, and two medium bandgap
nanowires (the higher the bandgap value, the higher the nanowires. Adapted with permission from Dorodnyy et al., ACS Photonics 2, 1284 (2015). Copyright 2015 American
Chemical Society). (b) Horizontal NW networks for Majorana zero mode (MZM) topological quantum computing inspired by Karzig et al.201
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are Schottky contacts in III–N NW piezoelectric generators220,221 and
hetero-barrier induced local electric fields in UV-photodetec-
tors.222–224 When designing an electrical junction in III–V nanowires,
two architectures are available: axial and radial junctions. In fact, due
to the 3D geometry of NWs, the electrical junctions can be embedded
in NWs along their longitudinal179,225,226 and along the radial direc-
tion.80,173,227,228 The latter case is often referred to as core-shell junc-
tion since one semi-junction is fully wrapped into the other one. The
debate on the pros and the cons of these two architectures is still ongo-
ing, and no clear advantage of one over the other has still
emerged.229,230 In some applications, the junction design has a very
high impact on the functionality of the device. For instance, the perfor-
mance of nanowire solar cells containing an axial junction tends to be
higher than their core/shell counterpart, although theoretically it
should be the opposite due to the effect of surface recombination.94,173

On the contrary, the design of LEDs and transistors with radial junc-
tions appears more promising,231,232 as demonstrated by gate all-
around (GAA) transistors that are slowly finding their way in the
industry world.233 Indeed, the material growth parameters reflect the
desired axial or radial architecture.234 Therefore, the quality and prop-
erties of the junction are intimately related to the mechanisms ruling
dopant incorporation.

As an example, we can emphasize on nanowires and mention
growth-related challenges inherent to the axial junction, such as taper-
ing. Depending on the growth conditions, as the nanowire grows, its
diameter may taper due to the radial VS growth contribution. It is
believed that the nanowire diameter will decrease linearly along the
length. However, to maintain a constant doping concentration, the

needed concentration of impurities varies hyperbolically with the
diameter [Fig. 5(a)]. This is the reason why tapering phenomena are
very likely to lead to doping fluctuations along the nanowire.

A common phenomenon occurring in VLS NWs containing
axial compositional and electrical junctions is the infamous reservoir
effect. It is generally accepted that having a crystal or a liquid acting
as a “secondary reservoir” is detrimental to the accuracy and repro-
ducibility of the growth: ideally, one wants a complete control over
the incoming flux of materials, and a reservoir effect can cause an
inertia in switching materials or doping elements, as depicted in
Fig. 5(b). This will lead to a lack of sharpness in heterostructures
(when different alloys are involved) or in the doping profile
(when switching from a dopant species to another), as shown in
Fig. 5(a).

In addition, VLS does not guarantee a homogeneous distribution
of dopants into the wire during the growth, which must be carefully
evaluated. The overall effect of these issues is the loss of control over
the dopant concentration and distribution within the wire,109 with a
direct impact on the band structure and on the junction parameters.
The consequences of the reservoir effect on the electrical properties
can range from a decrease in the electric field across the junction to
the onset of compensation mechanisms and consequent shift of the
junction interface, up to a completely faulty junction.72,91 In other
terms, a significant unbalance in the doping design can compromise
the functionality of the device. This is why a large literature section is
devoted to the analysis of the doping concentration and profiles and of
the abruptness of the junction, both from the experimental72,235,236

and theoretical237,238 perspectives [Fig. 5(c)].

FIG. 5. Growth-related doping issues in nanowires. (a) Schematic representation of the influence of tapering and reservoir effects on the doping concentration (on top) and dis-
tribution (on the bottom). To maintain a constant doping concentration, the needed concentration of impurities varies hyperbolically with the diameter. (b) Schematic representa-
tion of the reservoir effect, which can cause an inertia in switching materials or doping elements. Adapted with permission from Christesen et al., ACS Nano 8, 11790 (2014).
Copyright 2014 American Chemical Society. (c) Investigation of the abruptness of an axial junction in GaAs NWs. Adapted with permission from Darbandi et al., Nano Lett. 16,
3982 (2016). Copyright 2016 American Chemical Society.
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Many approaches have been explored to mitigate this effect such
as the use of solid catalysts114 and vapor source pulsing.239 Another
strategy is the exploitation of VS growth mechanisms, thus eliminating
the need for a liquid catalyst. However, as discussed in Sec. II, VLS-
grown NWs have advantages with respect to VS ones, and therefore, a
trade-off is usually considered.

The use of quick characterization techniques allows us to obtain
rapid feedback and to improve the design in very short time. In this
context, tools as EBIC and CL (described in Sec. III) are emerging,
demonstrating how they can be used for both investigating and boost-
ing devices.173,179,231 In the field of NW solar cells, Otnes et al. shown
exemplary junction parameter optimization.73

Iterative current–voltage (I–V) and EBIC measurements on sin-
gle NWs and fully processed NW array devices enabled them to opti-
mize the performance of InP NW array based solar cells. Their studies
on interplay between growth parameters, processing conditions, and
the solar cell power conversion efficiency (PCE) result in a more than
sevenfold improvement in solar cell PCE (from 2% to 15.0%, certified
by Fraunhofer ISE), achieving the highest reported value for a bottom-
up synthesized InP nanowire solar cell. Similarly, several groups have
used scanning probe techniques to identify limitations of NW devices
and improve the design accordingly, obtaining an increase in perfor-
mance.49,240,241 In this context, these techniques can be used in a
highly versatile way to face the challenges related to the band structure
of III–V NWs.

Both tapering and reservoir effects may be influenced by local
phenomena such as shadowing or substrate imperfections (which may
influence the geometry of the droplet). This phenomenon may poten-
tially lead to wire-to-wire inhomogeneity within the device. Also, in
this case, the use of scanning probe techniques can be precious for
identifying non-uniformity and correcting the design.227,231

Doping control in nanowires is fundamental also to determine
reproducibly the electrical properties at the interface with the sub-
strate. Indeed, a low dopant concentration close to the substrate can be
a major problem for devices relying on nanostructured heterointerfa-
ces. This is, for example, the case of nanostructured tandem solar
cells.242

In such a system, two solar cells (one in the nanowire array and
one in the substrate) are condensed in a two-terminal device. This
scheme requires current matching between the two junctions through
a tunnel diode, i.e., a junction between degenerate semiconduc-
tors.243,244 Indeed, the most intuitive way to achieve the tunnel junc-
tion is to implant a high doping level in the substrate and to grow
nanowires with very high doping stem. In this case, the ability to con-
trol the doping incorporation in the early stage of the growth is critical.
Wallentin and coauthor reported the growth of the InP/GaAs tunnel
diode, and Zeng and coauthors demonstrated the insertion of an InP/
InGaP tunnel junction in the center of a bottom-up nanowire.67,225

Sarwar and coauthors demonstrated the efficiency boost in UV LEDs
made of III–N NWs with a tunnel junction placed 100nm above the
interface with the Si substrate.245 To the best of our knowledge, no
report on the tunnel diode at the heterointerface between bottom-up
NWs and the substrate is still available.

Largely studied systems such as Si-doped GaAs NWs may be
suited to investigate dopant incorporation at the substrate interface.
Unfortunately, doping compensation limits the maximum achievable
concentration down to roughly 5� 1018 cm�3 (as previously

mentioned), hindering the development of this type of tunnel diode
on Si. Nevertheless, the only report on a nanostructured tandem solar
cell relies on the coupling of these structures.242 Deleterious effects can
also arise when no junction is expected at the nanowire/substrate
interface. Poor control over the local doping may result in an addi-
tional resistance (i.e., power losses in solar cells), which may be
wrongly attributed to high defect density or band offset.246,247

B. Other doping related challenges

The functionality of electronic devices is highly affected by any
doping variation since their figures of merit are directly related to the
local and overall charge density, as well as the resulting internal electric
fields. An example is given by the gate-all-around (GAA) FETs where
an optimum source-drain doping concentration maximizes the ON
current.248 Where no optimization is achieved, the technologies
cannot be fully exploited as in the case of III–V NWs for quantum
transport application: on one side, high charge density is required to
minimize the resistivity; on the other, the ionized impurities increase
the electron scattering, hindering the required ballistic regime.205

Facing and solving this kind of challenges—or taking advantage of
them, whenever possible—is one of the keys to enable the fabrication
of nonplanar electronic devices based on high mobility III–V NWs
such as InAs and InSb.106,249 One practical solution is the use of the
so-called modulation (or remote) doping, already mentioned in Sec.
IV. This approach has been used very effectively with InAs NWs. For
example, in vertical intrinsic nanowires, epitaxially capped by the
p-doped InP shell, the tunability of the hole concentration was demon-
strated by changing the dopant concentration and thickness of shell.250

More recently, this approach has been successfully applied to horizon-
tal nanowires networks designed for quantum transport applica-
tions.251 Due to the difficulty in improving the electrical properties at
the nanoscale, iterative characterization gained a lot of attention as a
fundamental part of the optimization process for nanowire-based
devices.

Another relevant aspect for nanowires concerns the high surface-
to-volume ratio and the strong impact of surface phenomena, which
implies a consequence common to all nanostructured devices: the
importance of the nanometric electrical connections. In addition to
the possibility of having deleterious rectifying contacts, a low charge
density localized close to the surface may induce a very high resistance
into the system, i.e., a localized energy loss. Doping engineering must
account also for this aspect, which involves the material coupling with
metal contacts and the assessment of the electrical properties at the
substrate interface.252

In high surface-to-volume structures such as nanowires, one
should in addition consider the effect of surface phenomena such as
the Fermi energy surface pinning on the nanostructures, as well as the
dopant deactivation through the increase in their ionization
energy.117,122 In some cases, surface states can have a positive effect on
the electrical properties. For example, intrinsic InAs NWs exhibit a
high n-type conductivity due to the high density of donor-type surface
states.253 As a consequence, the electron accumulation layer at the sur-
face may be beneficial for achieving low contact resistance; however, it
also makes it challenging to achieve high p-type doping in InAs NWs
due to compensation mechanisms. The opposite is happening in GaAs
NWs where acceptor-like surface states are forming at the interface
with the native oxide, pinning the Fermi energy close to the mid-gap

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 8, 011304 (2021); doi: 10.1063/5.0031549 8, 011304-12

Published under license by AIP Publishing

https://scitation.org/journal/are


value, creating a depleted surface layer, which limits the maximum
doping concentration.254,255 A wide research work has been done on
the optimization of surface and interfaces, mainly through surface
passivation.

By “passivation,” the growth of few atomic layers of a dielectric63

or semiconductor material256 (ideally having an epitaxial relationship
with the core semiconductor) aiming to reduce the densities of dan-
gling bonds and charge trap at the surface is indicated. It is well estab-
lished that passivation of the lateral areas can strongly enhance the
carrier lifetime by reducing the non-radiative recombination rate.
Moreover, by choosing the proper material coupling, also optical prop-
erties and internal stress can be tuned. For GaAs, the best passivation
is achieved with AlGaAs,118 which prevents the formation of native
oxide and has a higher bandgap (so, it is suited to work as a window
layer in solar cells). However, being very thin and hard to dope, these
outer layers may form a highly resistive contact in actual devices. This
is one of the main reason why several materials are still under research
as a passivating or capping layer for a broad range of semiconductor
nanowires.257–259

The variation of doping concentration may induce more complex
phenomena in optoelectronic devices. For instance, photodetector
figures of merit such as photoconductivity gain and photosensitivity
are related to the dark current flowing in the device. Several investiga-
tions have been published on GaN NW photodetectors, showing
how doping can impact the dark current and the collection of photo-
generated carriers, together with its influence on optical properties
(Burstein–Moss shift, compensation of eventual quantum Stark
effects).223,224,260,261 Moreover, it has been demonstrated that doping
impacts the environmental sensitivity and the presence of persistent
effects.262 The case of LEDs is different as the optical properties of the
active material have the highest influence on the figures of merit.
Nevertheless, current injection and light extraction can be affected by
the doping as in the case of the so-called “current crowding,” which
leads to a decrease in the IQE.263,264

VI. CONCLUSION AND OUTLOOK

In this review, the doping of bottom-up III–V NWs is discussed
to highlight the impact of the scientific challenges on the integration of
this technology in the industrial environment.

Indeed, the interplay between the kinetics of the growth and ther-
modynamic aspects affects the nanowire morphology in addition to
the doping concentration and profile along different directions. In this
regard, novel strategies have recently opened new possibilities to
achieve superior control over the grown materials. On one side, the
development of scanning characterization techniques and their imple-
mentation in the material design process can help in identifying and
solving issues arising from a lack of doping control. On the other, the
exploration of selective area growth epitaxy may ensure a higher
reproducibility, therefore reducing the nanowire-to-nanowire perfor-
mance scattering. Indeed, the research in this field will help to clarify
the unexplored aspect of dopant incorporation and to achieve an
increasingly higher control over doping of ordered III–V NWs in the
near future. In addition, creative solutions are currently explored to
speed up the development of NW-based devices, such as arrays made
of morphologically different NWs and horizontal architectures. All
these strategies can make the difference in transferring nanowire
know-how from academic to industrial environments. Nevertheless, a

large effort must still be devoted to facing challenges related to the fun-
damental physics occurring at the nanoscale to achieve high-
performing devices. Some strategies are quite established in the field,
such as the exploitation of VS growth to avoid reservoir effects and the
use of passivation layers to reduce Fermi energy pinning. Other
approaches have been applied to nanowires only recently, such as the
use of modulation doping to improve the ballistic charge transport.

In conclusion, the recent advancements in the field of III–V
NWs are oriented to improve the reproducibility and up-scalability
of the fabrication methods through the control over doping.
Accordingly, we believe that new insights and innovative findings will
open a low dimensional material era based on the premise of multidis-
ciplinary collaborative works of all the sectors involved in the design
and optimization of commercial products.
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Nygård, and A. F. i Morral, “Electrical contacts to single nanowires: A scalable
method allowing multiple devices on a chip. Application to a single nanowire
radial p-i-n junction,” Int. J. Nanotechnol. 10, 419 (2013).

147X. Zeng, R. T. Mour~ao, G. Otnes, O. Hultin, V. Dagyt_e, M. Heurlin, and M. T.
Borgstr€om, “Electrical and optical evaluation of n-type doping in InxGa(1�x)P
nanowires,” Nanotechnology 29, 255701 (2018).

148K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu,
B. Monemar, and L. Samuelson, “Spatially resolved hall effect measurement in
a single semiconductor nanowire,” Nat. Nanotechnol. 7, 718 (2012).

149E. Stern, G. Cheng, M. P. Young, and M. A. Reed, “Specific contact resistivity
of nanowire devices,” Appl. Phys. Lett. 88, 053106 (2006).

150A. V. Thathachary, N. Agrawal, L. Liu, and S. Datta, “Electron transport in
multigate InxGa1–xAs nanowire FETs: From diffusive to ballistic regimes at
room temperature,” Nano Lett. 14, 626 (2014).

151S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge,
and Si at 300 K,” Solid-State Electron. 11, 599 (1968).

152N. Cl�ement, K. Nishiguchi, A. Fujiwara, and D. Vuillaume, “Evaluation of a
gate capacitance in the sub-AF range for a chemical field-effect transistor with
a Si nanowire channel,” IEEE Trans. Nanotechnol. 10, 1172 (2011).

153R. Tu, L. Zhang, Y. Nishi, and H. Dai, “Measuring the capacitance of individ-
ual semiconductor nanowires for carrier mobility assessment,” Nano Lett. 7,
1561 (2007).

154O. Hultin, G. Otnes, M. T. Borgstr€om, M. Bj€ork, L. Samuelson, and K. Storm,
“Comparing Hall effect and field effect measurements on the same single
nanowire,” Nano Lett. 16, 205 (2016).

155V. Schmidt, P. F. J. Mensch, S. F. Karg, B. Gotsmann, P. Das Kanungo, H.
Schmid, and H. Riel, “Using the Seebeck coefficient to determine charge car-
rier concentration, mobility, and relaxation time in InAs nanowires,” Appl.
Phys. Lett. 104, 012113 (2014).

156M. J. Deen and F. Pascal, “Electrical characterization of semiconductor materi-
als and devices,” in Springer Handbook of Electronic and Photonic Materials,
edited by S. Kasap and P. Capper (Springer International Publishing, Cham,
2017), pp. 1–1.

157S. K. Ojha, P. K. Kasanaboina, C. L. Reynolds, T. A. Rawdanowicz, Y. Liu, R.
M. White, and S. Iyer, “Incorporation of Be dopant in GaAs core and core–
shell nanowires by molecular beam epitaxy,” J. Vac. Sci. Technol., B 34,
02L114 (2016).

158M. S. Mohajerani, S. Khachadorian, T. Schimpke, C. Nenstiel, J. Hartmann,
J. Ledig, A. Avramescu, M. Strassburg, A. Hoffmann, and A. Waag,
“Evaluation of local free carrier concentrations in individual heavily-doped
GaN:Si micro-rods by micro-Raman spectroscopy,” Appl. Phys. Lett. 108,
091112 (2016).

159E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, “Shell-
doping of GaAs nanowires with Si for n-type conductivity,” Nano Res. 5, 796
(2012).

160S. C. Jain, J. M. McGregor, and D. J. Roulston, “Band-gap narrowing in novel
III-V semiconductors,” J. Appl. Phys. 68, 3747 (1990).

161M. K. Hudait, P. Modak, and S. B. Krupanidhi, “Si incorporation and
Burstein–Moss shift in n-type GaAs,” Mater. Sci. Eng., B 60(1), 1 (1999).

162S. N. Svitasheva and A. M. Gilinsky, “Influence of doping level on shift of the
absorption edge of gallium nitride films (Burstein-Moss effect),” Appl. Surf.
Sci. 281, 109 (2013).

163S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentra-
tion dependence of the photoluminescence spectra of n-type GaAs nano-
wires,” Appl. Phys. Lett. 108, 182106 (2016).

164J. A. Alanis, M. Lysevych, T. Burgess, D. Saxena, S. Mokkapati, S. Skalsky, X.
Tang, P. Mitchell, A. S. Walton, H. H. Tan, C. Jagadish, and P. Parkinson,
“Optical study of p-doping in GaAs nanowires for low-threshold and high-
yield lasing,” Nano Lett. 19, 362 (2019).

165J. L. Boland, S. Conesa-Boj, P. Parkinson, G. T€ut€unc€uoglu, F. Matteini, D.
R€uffer, A. Casadei, F. Amaduzzi, F. Jabeen, C. L. Davies, H. J. Joyce, L. M.
Herz, A. Fontcuberta i Morral, and M. B. Johnston, “Modulation doping of
GaAs/AlGaAs core–shell nanowires with effective defect passivation and high
electron mobility,” Nano Lett. 15, 1336 (2015).

166H. J. Joyce, J. L. Boland, C. L. Davies, S. A. Baig, and M. B. Johnston, “A review
of the electrical properties of semiconductor nanowires: Insights gained from
terahertz conductivity spectroscopy,” Semicond. Sci. Technol. 31, 103003
(2016).

167J. L. Boland, A. Casadei, G. T€ut€unc€uoglu, F. Matteini, C. L. Davies, F. Jabeen,
H. J. Joyce, L. M. Herz, A. Fontcuberta i Morral, and M. B. Johnston,
“Increased photoconductivity lifetime in GaAs nanowires by controlled n-type
and p-type doping,” ACS Nano 10, 4219 (2016).

168H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L.
M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP
nanowires studied by terahertz spectroscopy,” Nanotechnology 24, 214006
(2013).

169J. L. Boland, F. Amaduzzi, S. Sterzl, H. Potts, L. M. Herz, A. Fontcuberta i
Morral, and M. B. Johnston, “High electron mobility and insights into
temperature-dependent scattering mechanisms in InAsSb nanowires,” Nano
Lett. 18, 3703 (2018).

170J. L. Boland, G. T€ut€unc€uoglu, J. Q. Gong, S. Conesa-Boj, C. L. Davies, L. M.
Herz, A. Fontcuberta i Morral, and M. B. Johnston, “Towards higher electron
mobility in modulation doped GaAs/AlGaAs core shell nanowires,” Nanoscale
9, 7839 (2017).

171H. J. Joyce, P. Parkinson, N. Jiang, C. J. Docherty, Q. Gao, H. H. Tan, C.
Jagadish, L. M. Herz, and M. B. Johnston, “Electron mobilities approaching
bulk limits in “surface-free” GaAs nanowires,” Nano Lett. 14, 5989 (2014).

172H. Zhang, G. Jacopin, V. Neplokh, L. Largeau, F. H. Julien, O. Kryliouk, and
M. Tchernycheva, “Color control of nanowire InGaN/GaN light emitting
diodes by post-growth treatment,” Nanotechnology 26, 465203 (2015).

173V. Piazza, M. Vettori, A. A. Ahmed, P. Lavenus, F. Bayle, N. Chauvin, F. H.
Julien, P. Regreny, G. Patriarche, A. Fave, M. Gendry, and M. Tchernycheva,

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 8, 011304 (2021); doi: 10.1063/5.0031549 8, 011304-17

Published under license by AIP Publishing

https://doi.org/10.1063/1.4931148
https://doi.org/10.1088/0957-4484/24/4/045701
https://doi.org/10.1017/S1431927609991267
https://doi.org/10.1146/annurev.matsci.37.052506.084200
https://doi.org/10.1063/1.4940748
https://doi.org/10.1063/1.4904952
https://doi.org/10.1063/1.4926808
https://doi.org/10.1063/1.4926808
https://doi.org/10.1021/jp2047823
https://doi.org/10.1016/j.ultramic.2013.02.012
https://doi.org/10.1021/acsnano.7b08197
https://doi.org/10.1116/1.2162575
https://doi.org/10.1116/1.2162575
https://doi.org/10.1504/IJNT.2013.053513
https://doi.org/10.1088/1361-6528/aabaa5
https://doi.org/10.1038/nnano.2012.190
https://doi.org/10.1063/1.2163454
https://doi.org/10.1021/nl4038399
https://doi.org/10.1016/0038-1101(68)90012-9
https://doi.org/10.1109/TNANO.2011.2123913
https://doi.org/10.1021/nl070378w
https://doi.org/10.1021/acs.nanolett.5b03496
https://doi.org/10.1063/1.4858936
https://doi.org/10.1063/1.4858936
https://doi.org/10.1116/1.4943600
https://doi.org/10.1063/1.4943079
https://doi.org/10.1007/s12274-012-0263-9
https://doi.org/10.1063/1.346291
https://doi.org/10.1016/S0921-5107(99)00016-1
https://doi.org/10.1016/j.apsusc.2013.02.094
https://doi.org/10.1016/j.apsusc.2013.02.094
https://doi.org/10.1063/1.4947504
https://doi.org/10.1021/acs.nanolett.8b04048
https://doi.org/10.1021/nl504566t
https://doi.org/10.1088/0268-1242/31/10/103003
https://doi.org/10.1021/acsnano.5b07579
https://doi.org/10.1088/0957-4484/24/21/214006
https://doi.org/10.1021/acs.nanolett.8b00842
https://doi.org/10.1021/acs.nanolett.8b00842
https://doi.org/10.1039/C7NR00680B
https://doi.org/10.1021/nl503043p
https://doi.org/10.1088/0957-4484/26/46/465203
https://scitation.org/journal/are


“Nanoscale investigation of a radial p–n junction in self-catalyzed GaAs nano-
wires grown on Si(111),” Nanoscale 10, 20207 (2018).

174F. Donatini and J. Pernot, “Exciton diffusion coefficient measurement in ZnO
nanowires under electron beam irradiation,” Nanotechnology 29, 105703
(2018).

175D. E. Ioannou and C. A. Dimitriadis, “A SEM-EBIC minority-carrier
diffusion-length measurement technique,” IEEE Trans. Electron Devices 29,
445 (1982).

176C. Donolato, “Evaluation of diffusion lengths and surface recombination
velocities from electron beam induced current scans,” Appl. Phys. Lett. 43,
120 (1983).

177E. B. Yakimov, S. S. Borisov, and S. I. Zaitsev, “EBIC measurements of small
diffusion length in semiconductor structures,” Semiconductors 41, 411–413
(2007).

178O. Saket, C. Himwas, V. Piazza, F. Bayle, A. Cattoni, F. Oehler, G. Patriarche,
L. Travers, S. Collin, F. H. Julien, J.-C. Harmand, and M. Tchernycheva,
“Nanoscale electrical analyses of axial-junction GaAsP nanowires for solar cell
applications,” Nanotechnology 31, 145708 (2020).

179V. Piazza, S. Wirths, N. Bologna, A. A. Ahmed, F. Bayle, H. Schmid, F. Julien,
and M. Tchernycheva, “Nanoscale analysis of electrical junctions in InGaP
nanowires grown by template-assisted selective epitaxy,” Appl. Phys. Lett. 114,
103101 (2019).

180H.-L. Chen, C. Himwas, A. Scaccabarozzi, P. Rale, F. Oehler, A. Lemâıtre, L.
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