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Quantum field theories with exact but spontaneously broken conformal invariance have an intriguing 
feature: their vacuum energy (cosmological constant) is equal to zero. Up to now, the only known 
ultraviolet complete theories where conformal symmetry can be spontaneously broken were associated 
with supersymmetry (SUSY), with the most prominent example being the N =4 SUSY Yang-Mills. In this 
Letter we show that the recently proposed conformal “fishnet” theory supports at the classical level a rich 
set of flat directions (moduli) along which conformal symmetry is spontaneously broken. We demonstrate 
that, at least perturbatively, some of these vacua survive in the full quantum theory (in the planar limit, 
at the leading order of 1/Nc expansion) without any fine tuning. The vacuum energy is equal to zero 
along these flat directions, providing the first non-SUSY example of a four-dimensional quantum field 
theory with “natural” breaking of conformal symmetry.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Conformal Field Theories (CFTs) represent an indispensable tool 
to address the behavior of many systems in the vicinity of the criti-
cal points associated with phase transitions. They also describe the 
limiting behavior of different quantum field theories deeply in the 
ultraviolet (UV) and/or infrared (IR) domains of energy. Could it be 
that CFTs are even more important and that the ultimate theory of 
Nature is conformal?

At first sight, the answer to this question is negative. Indeed, 
conformal invariance (CI) forbids the presence of any inherent di-
mensionful parameters in the action of a CFT. Because of that, CFTs 
have neither fundamental scales nor a well defined notion of par-
ticle states. On the other hand, Nature has both.

The loophole in these arguments is that conformal symmetry 
can be exact, but broken spontaneously by the ground state. This 
breakdown introduces an energy scale determined by the vacuum 
expectation value of some scalar dimensionful operator. The no-
tion of a particle is now well defined, and in addition to massive 
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excitations, the theory contains a massless dilaton, the Goldstone 
mode of the broken CI.

Theories with spontaneous breaking of conformal symmetry 
may be relevant for the solution of the most puzzling fine-tuning 
issues of fundamental particle physics, namely the hierarchy and 
cosmological constant problems. First, the Lagrangian of the Stan-
dard Model is invariant under the full conformal group (at the 
classical level) if the mass of the Higgs boson is put to zero. 
The observed smallness of the Fermi scale in comparison with 
the Planck scale might be a consequence of this [1,2]. Second, if 
conformal symmetry is spontaneously broken, the energy of the 
ground state is equal to zero (see, e.g. [3–6] and below). This fact 
may be relevant for the explanation of the amazing smallness of 
the cosmological constant.

A systematic way to construct effective field theories enjoying 
exact but spontaneously broken CI was described in [6], follow-
ing the ideas of [7,8] (for further developments see [9–11], for a 
review [12] and references therein). These theories are free from 
conformal anomalies but non-renormalizable. They remain in a 
weak coupling regime below the scale induced by the spontaneous 
conformal symmetry breaking. Their low energy limit may contain 
just the Standard Model fields, graviton plus the dilaton, which 
essentially decouples and does not lead to a long-range “fifth” 
force [8,13,14]. These theories are phenomenologically viable and 
satisfy all possible experimental constraints. Whether they can 
have a well-defined UV limit remains an open question.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2020.135922
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2020.135922&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:georgios.karananas@physik.uni-muenchen.de
mailto:vladimir.kazakov@phys.ens.fr
mailto:mikhail.shaposhnikov@epfl.ch
https://doi.org/10.1016/j.physletb.2020.135922
http://creativecommons.org/licenses/by/4.0/


G.K. Karananas, V. Kazakov and M. Shaposhnikov Physics Letters B 811 (2020) 135922
One can try to merge the “bottom-up” approach outlined above 
with the “top-down” strategy, starting from a UV complete the-
ory. All such known CFTs are always supersymmetric. The most 
notable and well studied example is N = 4 SUSY Yang-Mills (SYM). 
Although the immediate phenomenological relevance of such theo-
ries is not clear, they are widely used as “playgrounds” for studying 
the spontaneous breakdown of CI.

In this Letter we show that there exists a nonsupersymmet-
ric CFT with these properties—the recently proposed strongly γ -
deformed N = 4 SYM, dubbed Conformal Fishnet Theory (FCFT) 
[15].1 This theory is well defined and finite at all scales and has 
numerous flat directions at the classical level, without fine-tuning.

Moreover, some of them, are not lifted by quantum corrections, 
at least in the large-Nc limit.2 We will be able to demonstrate 
this perturbatively in the coupling constant. Among others, the 
reasons for these rather surprising properties for a non-SUSY the-
ory are: i) its UV-finiteness; ii) the fact that the FCFT has a large 
moduli space, which increases the chances of finding directions 
along which CI may be broken even without resorting to unnat-
ural tunings; iii) the supersymmetric stabilization mechanism of 
the parent theory is replaced by the absence of certain dangerous 
loop diagrams that would normally lift the classical flat direc-
tions in the Coleman-Weinberg (CW) effective potential [16]. This 
self-protection mechanism is not powerful enough to completely 
liberate the FCFT from all multiloop corrections on top of arbi-
trary flat directions, even in the planar limit. In spite of that, only 
a very limited sub-class of all higher loop graphs of φ4-type the-
ory (in the ’t Hooft limit) is present in the effective action. All of 
them can be identified and their structure strongly hints towards 
the presence of flat vacua which are robust under quantum effects.

Before moving on, let us emphasize that there is a price to pay 
for these nice features: this chiral theory is not unitary. As a con-
sequence, it is a logarithmic CFT [17,18]. This is why various pa-
rameters of the broken FCFT—e.g. the induced masses and certain 
vertices on top of the flat vacua—are in general imaginary. Never-
theless, the FCFT can be extremely useful as it provides the so far 
unique possibility to test certain ideas of potential phenomenolog-
ical value in the non-SUSY world.

2. Fishnet CFT

The FCFT involves the interacting Nc × Nc complex matrix fields 
X, X, Z , Z (if the theory were unitary a bar would stand for Her-
mitian conjugation) in the adjoint of SU (Nc); the Lagrangian at 
the classical level reads [15] (see [19] for a review)

L = Nctr
(
∂μ X∂μ X + ∂μ Z∂μ Z + ξ̃2 X Z X Z

)
. (1)

Here ξ̃ = 4πξ , with the real coupling constant ξ defined as ξ2 =
g2Nc e−iγ3/(4π)2; g is the Yang-Mills coupling constant and γ3
one of the three twists of the parent γ -deformed N = 4 SYM 
theory.3 The Lagrangian (1) is obtained by considering the double-
scaling limit corresponding to weak coupling and at the same time 
large imaginary γ3, such that ξ and γ1,2 remain finite.

Let us briefly review the most general properties of FCFT in the 
unbroken vacuum. A plethora of aspects of the theory on this con-
formal phase have been and are still being investigated actively; 
see [15,18,20–35].

1 The name of the theory stems from the characteristic regular square lattice form 
of its planar Feynman graphs.

2 To our best knowledge, this is a unique behavior for a four-dimensional theory, 
though a three-dimensional CFT with flat directions that persist at the quantum 
level was presented in [5].

3 In this theory, the S O (6) R-symmetry is broken down to U (1)3 , with γ1, γ2, γ3

being the parameters (twists) of the deformation.
2

A direct consequence of the strong imaginary deformation is 
the absence of the term corresponding to the Hermitian counter-
part of the quartic interaction. This makes manifest the fact that 
the theory is not unitary. On the other hand, it is exactly the 
absence of the complex conjugate interaction term that has far 
reaching implications. It restricts severely the number of possible 
planar graphs for various physical quantities, to the point that, de-
pending on the physical quantity, there are often none, or only a 
handful of diagrams, contributing at each order in the perturbative 
expansion.

At the same time, the fixed chirality of the interaction vertex, 
and the absence of the vertex of opposite chirality, forces them to 
possess the “fishnet” structure.4 This roughly means that the bulk 
structure of sufficiently large planar graphs is of the regular square 
lattice [15]. Importantly, the aforementioned chirality forbids the 
presence of certain diagrams, such as the ones that induce masses 
for the fields and the ones that renormalize the quartic coupling ξ . 
Consequently, the FCFT behaves as a fully-fledged logarithmic CFT, 
which implies the standard scaling properties for its local observ-
ables (i.e. correlators).

In addition, the theory appears to be integrable in the planar, 
’t Hooft Nc → ∞ limit [15,18,36], due to the integrability of the in-
dividual “fishnet” graphs discovered long ago [37], see also [38].5

Hence, many of the physical quantities—such as non-trivial Oper-
ator Product Expansion (OPE) data as well as certain three- and 
four-point correlators—are in fact exactly calculable [24].

However, the model is not complete already at one-loop or-
der: the cancellation of the divergences associated with the 
correlation functions of certain composite operators, such as 
tr(X2), tr(X2), tr(X Z), tr(X Z), requires that in the classical ac-
tion (1) new double-trace terms be included [39]. These read

Ld.t./(4π)2 = α2
1

[
tr(X2)tr(X2) + tr(Z 2)tr(Z 2)

]
−α2

2

[
tr(X Z)tr(X Z) + tr(X Z)tr(X Z)

]
,

(2)

with α1 and α2 couplings that, in general, depend on the renor-
malization scale, thus destroying, on the quantum level, the con-
formal symmetry. However, the beta functions for the running 
double-trace couplings possess two complex conjugate fixed lines, 
parametrized by ξ , with α2

1 = ± iξ2

2 − ξ4

2 ∓ 3iξ6

4 +O(ξ8) and α2
2 =

ξ2, for both of them [22,40].
The FCFT is completely defined by the explicitly local La-

grangian L + Ld.t. , with conformal symmetry persisting at the 
quantum level for the critical values of the α’s.

3. Flat vacua

The spontaneous breaking of CI corresponds to a situation in 
which at least one of the fields has a non-vanishing vacuum ex-
pectation value (vev). As our CFT is non-unitary, we model this 
vacuum state by an extremum of the (complex) effective action.

It is important to keep in mind that once we find such a (non-
trivial) saddle point, then the vacuum energy of the system auto-
matically vanishes along this flat direction. This follows from the 
fact that for CFTs the potential V is in general a homogeneous 
function of the fields φi of the theory. In other words V ∝ φi

∂V
∂φi

, 
where summation over repeated indices is assumed. Provided that 
at least one of the fields acquires a (constant in spacetime) vev, 
say φ̂1 �= 0, such that

4 “Fishnet” graphs represent a regular square lattice of massless propagators with 
vertices representing φ4-type interactions.

5 It is not clear whether much of this integrability stays intact in the sponta-
neously broken phase considered throughout this paper; nevertheless, it can be 
certainly useful in some particular calculations.
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Fig. 1. (a) Some of the cubic (upper graph) and the quartic (lower graph) interaction vertices that stem from the single-trace term when the Lagrangian is expanded around 
the symmetry-breaking vacua. A solid (dashed) line stands for the excitations X or X (Z or Z ), and “⊗⊗⊗” for the vacuum expectation value z or z̄. (b) The cubic (upper graph) 
and quartic (lower graph) vertices of opposite chirality are absent in the FCFT. To highlight this fact, we have crossed out these nonexistent vertices.
∂V

∂φ1

∣∣∣∣∣
φ̂1

= 0 , (3)

then it immediately follows that V = 0, although mass scale(s) are 
now present in the theory.

Let us look for an ansatz that extremizes the potential of the 
FCFT. To this end, we perform the following shifts in the action

X → x + X, X → x̄ + X, Z → z + Z , Z → z̄ + Z , (4)

where x, ̄x, z, ̄z are the vevs of the corresponding fields, and in an 
abuse of notation we denoted the fluctuations again by X, X, Z , Z
(as usual, these have zero vev’s).

The matrix equations of motion are obtained by varying the 
effective action w.r.t. x, ̄x, z, ̄z, respectively; they read

− κ〈tr(X2)〉x − 〈tr
(

X Z
)〉 z − 〈tr

(
X Z
)〉 z̄ + Nc z〈X Z〉+

+ Nc 〈Z x̄Z〉 + Nc 〈Z X〉z̄ + Nc 〈Z X Z〉 =
= tr(x̄2)x + tr (x̄z̄) z + tr (x̄z) z̄ − Nc zx̄z̄ ,

(5)

− κ〈tr(X2)〉x̄ − 〈tr
(

X Z
)〉 z − 〈tr (X Z)〉 z̄ + Nc 〈Z X Z〉+

+ Nc z̄〈X Z〉 + Nc 〈Z xZ〉 + Nc 〈Z X〉z =
= tr(x2)x̄ + tr (xz̄) z + tr (xz) z̄ − Nc z̄xz ,

(6)

− 〈tr(X Z)〉x − 〈tr
(

X Z
)〉 x̄ − κ〈tr

(
Z 2
)
〉 z + Nc x̄〈Z X〉+

+ Nc 〈X z̄ X〉 + Nc 〈X Z〉x + Nc 〈X Z X〉 =
= tr(x̄z̄)x + tr (xz̄) x̄ + κtr

(
z̄2
)

z − Nc x̄z̄x ,

(7)

− 〈tr(X Z)〉x − 〈tr (X Z)〉 x̄ − κ〈tr
(

Z 2
)
〉 z̄ + Nc x〈Z X〉+

+ Nc 〈X z X〉 + Nc 〈X Z〉x̄ + Nc 〈X Z X〉 =
= tr(x̄z)x + tr (xz) x̄ + κtr

(
z2
)

z̄ − Nc xzx̄ .

(8)

Here κ = −2α2
1/ξ2, 〈. . . 〉 denotes the quantum average of the cor-

responding quantity w.r.t. the action with the shifted fields (4), and 
we took into account the planar limit.

Notice that the presence of the non-Hermitian single-trace in-
teraction term, as well as the fact that κ is complex at the con-
formal point, results into the equations for the fields and their 
would-be Hermitian counterparts to not be related by complex 
3

conjugation. In turn, the solutions to the above equations for the 
pairs x, ̄x and z, ̄z need not necessarily be complex conjugates, so 
the vev’s may be viewed as four independent constants in the 
space of matrix fields. We will see that this may have important 
consequences for the quantum fate of the flat directions.

3.1. Classical flat vacua

Turning to the existence of (nontrivial) vacua, we note that clas-
sically, i.e. in the tree approximation, all the deviations X, X, Z , Z
of the fields in (5)-(8) should be put to zero (and there is no quan-
tum average). Thus, the classical flatness conditions are reduced to 
the r.h.s. of these equations being zero.

For simplicity, we will work with configurations for which 
xtree = x̄tree = 0,6 such that the first two of the equations of motion 
are identically satisfied, while the last two become (since κ �= 0)

tr
(

z̄2
tree

)
ztree = 0 , and tr

(
z2

tree

)
z̄tree = 0 , (9)

with ztree and z̄tree (constant) classical fields subject to

tr (ztree) = tr (z̄tree) = 0 , (10)

due to the unimodularity of the global SU (Nc) symmetry. Inspec-
tion of (9) reveals that, at least at the classical level, the fishnet 
CFT has a plethora of nontrivial symmetry breaking solutions, at 
any value of the coupling ξ .7 Interestingly, some are not present in 
the full N = 4 SYM nor in its γ –deformed descendant; rather, they 
emerge when the strong imaginary γ -deformation limit—leading 
to the fishnet CFT—is considered. A complete classification of the 
moduli space of the FCFT, however, lies well beyond the scope of 
the present paper. Therefore, here we will focus on the simplest 
possible symmetry breaking flat vacua that we have been able to 
find and leave the search and study for more complicated ones for 
the future.

6 We can also relax the requirement that xtree = 0 and require that both fields 
have nonzero vev. This considerably enlarges the set of possible flat vacua. For in-
stance, field configurations such that xtree ∝ ztree , may provide yet another set of 
acceptable vacua along which CI is nonlinearly realized.

7 Additional flat directions open up at isolated values of ξ .
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The first option is to take ztree and z̄tree to be nonzero, related 
by complex conjugation, and diagonal,8 i.e.

ztree = v diag
(
z1, . . . , zNc

)
,

z̄tree = v̄ diag
(
z̄1, . . . , z̄Nc

)
,

(11)

with v a (complex) parameter with dimension of mass and zk are, 
in general, complex numbers.9 Since by construction ztree �= 0 (and 
consequently z̄tree �= 0), the only option for both equations to hold 
is to require that

Nc∑
k=1

z2
k =

Nc∑
k=1

z̄2
k = 0 . (12)

The second class of symmetry breaking solutions to eqs. (5)-(8)
comprises vacua for which the fields X and X , and Z and Z , are 
not related by complex conjugation. As we have already pointed 
out, this is certainly a possibility, due to the non-Hermiticity of 
the theory. We may therefore assume that ztree, ̄ztree �= 0 and sub-
ject to (9) and (10). As we will show in the next section, such 
configurations may be rather interesting when it comes to quan-
tum corrections.

Yet another acceptable choice is to put xtree = x̄tree = z̄tree = 0, 
while ztree can be an arbitrary traceless Nc × Nc matrix. Interest-
ingly, even though conformal symmetry is broken spontaneously 
along such flat directions, the spectrum of the theory contains only 
massless degrees of freedom, at least in the planar limit.

The third and final category of “natural” flat directions we 
will be reporting on here involves nilpotent matrices of index 
2, i.e. ztree �= 0, while z2

tree = 0. Interestingly, such vacua appear 
also in beyond the Standard Model phenomenology, see [41]. Like 
in the previous case—and unlike what happens with Hermitian 
theories—all the excitations on top of these vacua in the leading 
Nc order are massless, in spite of the fact that conformal symme-
try is clearly broken. More details on the spectrum of excitations 
around the aforementioned classes of vacua can be found in the 
Appendix A.

Before moving on, let us stress that the existence of flat di-
rections for arbitrary ξ—even at the classical level—is a rather 
salient point that deserves some discussion. One might expect that 
whether or not the theory possesses ground states with nonlin-
early realized conformal symmetry would crucially depend on the 
specific value of the coupling constant. This is precisely what hap-
pens in other nonsupersymmetric CFTs such as the massless φ4

theory and its generalizations [13], where finetunings are required 
in order for CI to be spontaneously broken down to Poincaré [42], 
see also [43]. On the contrary, the FCFT has many vacua (some of 
which are inherited from its parent N = 4 SYM) with vanishing 
energy, without the need for finetuning. Equivalently, the dilaton—
that is part of the theory’s spectrum in the Coulomb phase—has 
zero mass, naturally.

In the following we will argue that this phenomenon persists 
at the quantum level and in the planar limit, at least for some of 
the vacua we found.

3.2. Quantum Coleman-Weinberg effective potential

To study the fate of conformal symmetry breaking at the quan-
tum level, we will also confine ourselves to “z-vacua,” for which 

8 The measure of the functional integral (and the original unbroken action) is 
invariant w.r.t. arbitrary complex matrix rotations (X, X, Z , Z) → U−1(X, X, Z , Z)U . 
Using it we can reduce, in general, only one of the four vev matrices (z, ̄z, x, ̄x) to 
diagonal form.

9 For the diagonal ansatz, condition (10) translates into 	Nc
k=1zk = 	

Nc
k=1 z̄k = 0.
4

Fig. 2. The one-loop tadpole diagrams stemming from the single- and double- trace 
terms—(a) and (b), respectively. A solid (dashed) line stands for the excitations X or 
X (Z or Z ), and “⊗⊗⊗” for the vacuum expectation value z or z̄. We have suppressed 
the color and chirality arrows.

x = x̄ = 0. It is important to keep in mind that, with such an 
ansatz, the extrema of the effective action do not break the dis-
crete symmetry X → −X , X → −X , meaning that we can drop 
all terms containing averages with odd powers of these two fields 
from (5)-(8).

Consequently, only the last two of these equations survive and 
boil down to10

κ
Nc

tr
(

z̄2
)

z = 〈
X z̄X

〉− κ
Nc

〈
tr(Z 2)

〉
z + 〈

X Z X
〉
,

κ
Nc

tr
(

z2
)

z̄ = 〈
X z X

〉− κ
Nc

〈
tr(Z 2)

〉
z̄ + 〈

X Z X
〉
.

(13)

3.2.1. The one-loop effective potential
Whether or not quantum corrections jeopardize the CI by up-

lifting the flat directions can be demonstrated already at the first 
loop order, by investigating the CW effective potential [16].

In this approximation α2
1 = ±iξ2/2, so we can set κ = ±i. In 

addition, the last terms in (13) are irrelevant (they correspond to 
higher order Feynman graphs). In the planar limit, the second and 
third terms are given by the diagrams presented in Fig. 2.

As we did in the classical considerations, let us require that z
and z̄ be diagonal matrices. The evaluation of the one-loop tad-
pole diagrams is straightforward in this case, see Appendix B. The 
matrix equations (13) take the explicit form

± itr
(

z̄2
)

= ξ2
[

tr(z̄2) log
z√
Q

+ tr

(
z̄2 log

z̄√
Q

)]
,

± itr
(

z2
)

= ξ2
[

tr(z2) log
z̄√
Q

+ tr

(
z2 log

z√
Q

)]
,

(14)

with Q = √
tr(z2) tr(z̄2); note that due to the non-Hermiticity of 

the FCFT the sign in the l.h.s. of both equations must be the same—
either plus or minus. The absence of sources breaking explicitly 
the CI of the theory translates into the effective potential (and 
its derivatives) to exhibit no dependence on the ’t Hooft-Veltman 
renormalization scale μ. In turn, the derivatives of the potential 
w.r.t. the fields are related to the beta function of ξ , which van-
ishes by construction. Let us stress that at large Nc , none of the 
physical quantities—such as correlators of local fields—can actually 
depend on μ for the chosen background fields z, ̄z, since in the UV 
regime the theory behaves like in the unbroken phase, which is UV 
finite. The CW potential is yet another example of such a quantity.

We notice immediately that it is in principle possible to put to 
zero the tree-level and one-loop parts of the potential separately, 
provided that the vacuum (11), apart from the constraints (10)
and (12), is also subject to

10 Note that z, ̄z are still arbitrary matrices, so that the order should be respected.
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Nc∑
k=1

z2
k log zk =

Nc∑
k=1

z̄2
k log z̄k = 0 . (15)

This condition picks up a particular subclass of the classical 
vacua discussed in the previous section. At the one-loop order 
these are not lifted by quantum effects. As a result, the vacuum 
energy of the loop corrected theory on top of these flat directions 
is zero, or in other words, the masslessness of the dilaton persists 
at one-loop level. It should be stressed that this is a unique situa-
tion for a non-SUSY four-dimensional theory.

Let us give a simple example of a flat vacuum which is robust 
under one loop quantum corrections. Take x = x̄ = 0 and z to be 
a block-diagonal matrix comprising Nc/4 diagonal sub-blocks each 
with dimensions 4 × 4

z = v diag(z1, z2, z3, z4︸ ︷︷ ︸, z1, z2, z3, z4︸ ︷︷ ︸, . . .) , (16)

and z̄ is its Hermitian conjugate in this case. Plugging (16) into the 
system of transcendental eqs. (10), (12) and (15), we numerically 
find a complex (as a consequence of the non-unitarity) solution

z1 = −0.587849 − 0.808971 i , z2 = 0.260305 + 1.45187 i ,

z3 = 1.32754 − 0.642903 i , z4 = −1 , (17)

where the overall rescaling z j → const × z j was absorbed into 
the complex modulus v labeling the one-parameter family of flat 
vacua.11

There is no difficulty in finding more examples for larger block 
matrices of the form (16), and thus with more of the parame-
ters labeling the flat vacua. For instance if we solve the system 
of eqs. (10), (12) and (15) for z made of Nc/5 sub-blocks of di-
mensions 5 × 5, we will have an extra parameter, in addition to 
v , parametrizing the flat directions. We can also mix sub-blocks of 
different sizes.

Although this is certainly an interesting option, as we will now 
demonstrate, it is not the only one. Actually, it is possible to ar-
range a situation in which the tree-level and one-loop contribu-
tions are of the same order of magnitude and can in principle 
balance each other out. Remarkably, this enables the perturbative 
analysis of the flat vacua and is in close analogy to what happens 
in the CW effective potential in gauge theories [16]. In the present 
context, we can achieve this by keeping the order of magnitude 
of the vacuum fields zk, ̄zk ∼ 1, while tr(z2) ∼ tr(z̄2) ∼ Nc O(ξ2). 
To this end, let us stick to vacua comprising diagonal matrices, 
assume that z = z̄ = v diag(z1, . . . , zNc ), but relax the require-
ment (12). For instance, we may consider the following perturba-
tive vacuum

zk = z(0)

k + ε(ξ)z(1)

k + η(ξ)z(2)

k + . . . , (18)

with z(i)
k ’s complex and subject to 

∑
k z(i)

k = 0 ∀ i, in order for the 
unimodularity constraint (10) to be satisfied. In the above, ε(ξ) ∼
cε

1ξ2 + cε
2ξ4 + . . . , η(ξ) ∼ cη

1ξ2 + . . . admit perturbative expansions 
in terms of the coupling and can be determined iteratively at each 
order by plugging zk into (14) and requiring that the equations be 

11 The masses generated on top of this vacuum can be calculated from the 
quadratic variation of the full effective potential V eff w.r.t. matrix fields Z , ̄Z , X, X̄ . 
The spectrum of the theory in the leading order at this limit comprises: i) N2

c − 1
complex massive excitations of the matrix scalar X whose masses are proportional 
to ξ̃2|v|2 z̄i z j with z′s from (16), (17); ii) N2

c − 1 gapless modes—including the 
dilaton which is proportional to tr

(
z̄ Z + zZ

)
. Note that beyond the planar approx-

imation, the excitations of Z will acquire masses, as follows from the variation of 
the CW action.
5

Fig. 3. (a) The chirality of the theory forbids some of the diagrams that would con-
tribute to the effective potential at higher orders, such as the one above appearing 
in O(ξ4). (b) Example of a possible non-planar vacuum diagram in the leading ξ2

order, to be neglected in the ’t Hooft limit.

satisfied. As a proof of concept, let us pick the following specific, 
but by no means unique, one-loop vacuum

zk = z̄k = e2π i(k−1)/Nc + cε
1ξ2 e−2π i(k−1)/Nc , (19)

such that 
∑

k z2
k = 2cε

1ξ2 Nc �= 0 and 
∑

k z2
k log zk ≈ Nc/2. At order 

ξ2, only the terms proportional to tr(z2 log z) and tr(z̄2 log z̄) con-
tribute from the right-hand side of the equations (14). It is 
straightforward to see that cε

1 = ±i/4, meaning that, up to a factor 
of 1/2, ε(ξ) coincides with α2

1 at one loop order, i.e. an acceptable 
one-loop flat direction is

zk = e2π i(k−1)/Nc + α2
1

2
e−2π i(k−1)/Nc . (20)

Before we move to the discussion of multiloop contributions to 
the CW potential, let us note en passant, that for massless excita-
tions, the one-loop contributions to the effective potential vanish 
identically. This means that vacua for which the fields are either 
not related by complex conjugation and only one of z, z̄ is nonva-
nishing, or are nilpotent matrices, do not receive any corrections at 
the one-loop level. Actually, this holds true at all orders of pertur-
bation theory as we will see in a while. This is due to the chirality 
of the theory that allows for specific types of vertices only, as 
well as the masslessness of the particles running in the loops. Of 
course, such flat directions are in a sense quite peculiar, as the CI 
is spontaneously broken but the spectrum of the theory does not 
accommodate any massive particles, in the large-Nc limit.

3.2.2. Higher-loop corrections to the effective potential
Let us now proceed to the possible multiloop corrections to the 

effective potential and study under which conditions and/or modi-
fications our considerations persist.

Let us focus first on the contributions from the single trace 
term of the potential, tr(X Z X Z). When the Lagrangian is expanded 
around the symmetry-breaking vacua, see Appendix A, the cubic 
and quartic terms give rise to the “chiral” vertices presented in 
Fig. 1(a). In essence, we may view the trivalent vertices of the the-
ory as the quartic chiral vertex with one of the legs removed and 
replaced by the corresponding expectation value, but otherwise 
preserving its double-line structure and chirality. Their presence 
leads to planar graphs similar to the ones built exclusively with a 
chiral quartic vertex, but with some propagators, or parts of the 
closed loops of X (or Z ) propagators removed (we call them loops 
with amputated propagators). It is important to keep in mind that 
the non-Hermiticity of the FCFT translates into a fixed chirality of 
the vertices. In other words, the absence of the complex conjugate 
counterpart of tr(X Z X Z) is in one-to-one with the absence of the 
“anti-chiral” vertices presented in Fig. 1(b) and marked with red.

It is now straightforward to see that without the anti-chiral ver-
tices, the “zoo” of possible Feynman diagrams is rather restricted. 
For example, the diagram Fig. 3(a) with two quartic vertices is ab-
sent from FCFT, even on top of vacua breaking conformal symme-
try, due to the opposite chirality of the single-trace vertices there. 
Note that many more kinds of graphs exist, like the one given in 
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Fig. 4. Exemplary multiloop tadpole diagrams of the fishnet type stemming from the 
single trace term. The specific three loop diagram (left) contains only cubic vertices, 
while the six loop one (right) contains both cubic as well as quartic vertices. The 
chirality of the theory forces the higher order planar diagrams stemming from the 
single-trace term to be of this form.

Fig. 5. Typical planar graph that feeds into the (derivatives of the) effective potential 
at four loops.

Fig. 3(b), with one quartic vertex but with higher than spherical 
topology. They will certainly modify the CW potential in the 1/N2

c
order of the ’t Hooft expansion, which we don’t consider here. 
Of course this simplifies considerably the situation. Nevertheless, 
the effective potential at higher orders may receive contributions—
among others—from fishnet diagrams (with possibly amputated 
propagators, as explained above). Two graphs of this type are pre-
sented in Fig. 4. Their types, and hence their number, are very 
limited w.r.t. the generic graphs of scalar QFT at each order in 
perturbation theory; unfortunately, they are still too complicated 
for explicit computations.12 For our purposes, however, it suffices 
to understand what happens qualitatively. In the z-vacua under 
consideration, such graphs can be only made of nested concentric 
circles of X-propagators connected by “radial” Z -propagators (pos-
sibly crossing the circles via quartic vertices) that end up on cubic 
vertices. Note that the X propagator (and the off-diagonal parts 
of the Z propagator) can connect cubic vertices of the same type 
only, in contrast to the diagonal components of the Z propagator 
that necessarily connect different vertices.

As for the diagrams following from the double-trace terms, they 
can only contribute to the large-Nc limit if they occur in the 
graphs in such a way that they connect two, otherwise discon-
nected, parts of the graph (corresponding to each of two traces 
from the double-trace vertex) [24,44]. An example of such graph 
is drawn in Fig. 5. Like in the one-loop considerations, the contri-
butions coming from the double-trace terms must exactly cancel 
the μ-dependence from the single-trace terms, as required by the 
conformality of the FCFT.

12 We thank the referee of the earlier version of this paper for pointing us on 
some of these graphs.
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Several important comments are in order here. First of all, for 
the “exotic” vacua in which z̄ = 0 and z �= 0 or vice-versa, the 
tree-level potential is exact. In other words, it receives no loop cor-
rections, at any order in perturbation theory. This is either because 
the diagrams cannot be constructed to start with, or they vanish 
identically (in dimensional regularization) since the particles run-
ning in the loops are massless.

The same is also true for the nilpotent vacua. Although both 
types of vertices may be present (assuming that the fields are 
related by complex conjugation), the corresponding diagrams van-
ish automatically, either because they are proportional to traces of 
zp = 0, for p ≥ 2 (one always finds such traces for the innermost 
circle of Fig. 4), or because, again, the excitations are massless.

One cannot conclude the same for the more interesting sym-
metry breaking solutions of the previous section, when both z, ̄z
are diagonal. Then the higher order diagrams in the effective po-
tential, such as of the type presented on Fig. 4, do not vanish. To 
see this more clearly, let us focus on the three loop graph on the 
left of this figure. On top of the diagonal vacuum (11), it is equal 
to

v̄ v2
(
ξ̃2
)4 ∑

k,l,m

z̄2
k z3

l

∫
d4 p1 d4 p2 d4 p3/(4π)3

p4
1(p2

2 + z̄kz j)((p1 + p2)2 + zkzm)
×

× 1

(p2
3 + z̄mzl)((p1 + p3)2 + z̄ j zl)

2
,

where pi ’s are dimensionless. This integral has logarithmic UV di-
vergences but once we add to it all diagrams of the same loop 
order (containing double-trace vertices as well) it is guaranteed 
by conformal symmetry that, as in the one-loop case, the overall 
result will be nonzero, finite and scheme independent. Actually, it 
would be interesting to explicitly compute it, a difficult but not im-
possible problem, which however lies beyond our purposes here.

On general dimensional grounds, we expect loop corrections to 
the effective potential to be of the following form

Vn−loop = cn

(
ξ̃2
)n+1

tr(z2) tr(z̄2) f (n)[z, z̄] , (21)

where cn are numerical factors, and f (n)[z, ̄z] homogeneous func-
tions of degree zero w.r.t. z and z̄, symmetric w.r.t. the permuta-
tions of pairs of eigenvalues (z j, ̄z j) → (zk, ̄zk). For instance, at the 
one loop level

f (1) =
tr
(

z2 log z√
Q

)
tr(z2)

+
tr
(

z̄2 log z̄√
Q

)
tr(z̄2)

, (22)

while at two loops, schematically

f (2) ∝ f (1) + c

⎛
⎝ tr

(
z2 log2 z√

Q

)
tr(z2)

+
tr
(

z̄2 log2 z̄√
Q

)
tr(z̄2)

⎞
⎠ .

Like we did in the one-loop approximation, we have a number 
of options. The first is to require that the higher-loop contribu-
tions vanish independently from the ones coming from the lowest 
orders. This would mean that in addition to (12) and (15), we have 
to further restrict the flat directions, since we will encounter new 
patterns of traces in higher loops. For example, for the 2-loop cor-

rection we will have to impose tr
(

z2 log2 z
)

= 0 as well. To fulfill

simultaneously all the flatness constraints, will certainly take larger 
than the 4×4 sub-matrices we worked with previously. This is a 
procedure that has to be effectuated repeatedly, and it is conceiv-
able that more than one conditions may be required at each loop 
order.
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Alternatively, we may insist that the tree level and one-loop 
contributions vanish independently from each other by virtue 
of (12) and (15), while the higher loop corrections are taken care 
of by “perturbing” this solution in the sense of (18). This way, all 
quantum corrections starting from a specific loop order will be 
comparable by design so they may compensate for each other.

Finally, we can stick with the perturbative vacua (18) and ap-
propriately generalize them by keeping higher powers of ξ and 
even use different harmonics so that all the terms in the effec-
tive potential will be of the same order. By doing so, we need only 
to impose one condition per loop order: that is, the derivative(s) 
of the full effective potential w.r.t. the fields be zero. This option 
is attractive since, in principle, we have the possibility to study it 
perturbatively, order by order.

4. Conclusions and open problems

In this work we initiated the study of spontaneous confor-
mal symmetry breaking in the recently proposed fishnet CFT. We 
showed that the theory admits a plethora of classical flat directions 
along which conformal symmetry is nonlinearly realized without 
fine-tuning. We also studied the quantum corrections and found 
that the classical conformal invariance is not violated, at least in 
some subclasses of the classical solutions. This fact is the (nontriv-
ial) aftermath of a delicate interplay between the finiteness of the 
theory, its non-Hermiticity, the large-Nc limit and the constraints 
on the flat directions.

The FCFT is integrable in ’t Hooft limit. Although the integrabil-
ity is demonstrated only for the unbroken vacuum, some features 
of it may survive for the broken vacua, at least in perturbation 
theory. This could offer a unique opportunity to elucidate various 
aspects of the dynamics behind spontaneous symmetry breaking in 
this particular theory. At the same time, it can serve as an inspir-
ing example for CFTs with such behavior in general. A first step 
towards this direction could be to check the validity of the con-
straints that were derived in [45]. For instance, the deep infrared 
limit of the two-point functions of scalar primary operators OI

were shown to obey the identity

〈OI 〉〈O J 〉 ∼ lim
x→∞

∑
K

cI J K

|x|�I +� J −�K
〈OK 〉 , (23)

with cI J K the OPE coefficients and �’s the corresponding scaling 
dimensions. As a test of this relation in the context of the FCFT, we 
can consider the dimension-two operators tr(X Z), tr(X Z), tr(X Z), 
tr(X Z), whose two-point correlators in the planar limit are pro-
tected against quantum corrections and decay as ∼ |x|−4 [24].

The fact that the vev of these operators vanish for our vacua, 
immediately implies the validity of (23). The OPE data for these 
operators in the unbroken vacuum have been computed in [24]. 
A more detailed study of various consistency conditions is left for 
future work.

In particular, the scalar one-point functions of the operators en-
tering the r.h.s. of these operators might be computable, using the 
methods developed in [22,24].

Let us also point out that some of the (classical) vacua we dis-
cussed in this work are present in the full γ -deformed N = 4 SYM 
and propagate all the way to the fishnet CFT. One can, for instance, 
assume that xtree = c ztree, with c a constant. Requiring that the 
above satisfy the equations of motion of the γ -deformed theory 
even before the fishnet double scaling limit is taken, translates 
into the coefficient α2 of the double-trace terms involving both 
Z and X in (2) being completely fixed α2 = −4g2 sin2 ( γ3

2

)
. As a 

sanity check, note that lim
g→0

α2 ∼ ξ2 , while lim
γ3→0

α2 ∼ 0 as it 

γ3→i∞
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should. To put it differently, the mere requirement that the full γ -
deformed N = 4 SYM theory possesses flat directions is smoothly 
connected to the ones of its fishnet “descendants,” completely de-
termines one of the coefficients appearing in the action of the full 
original CFT.

Finally, it would be interesting to study to what extent the dis-
cussed properties of the FCFT survive in the next 1/Nc orders, or 
even for finite Nc .
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Appendix A

Once we shift the fields as in (4), the relevant parts of the La-
grangian for the excitations read

L ′ = L + Ld.t. + L(2) + L(3) , (A.1)

where L and Ld.t. have the same form as in (1) and (2), while

L(2)/(4π)2 = Nc ξ2tr
[

x̄z̄ X Z + x̄Z xZ + x̄Z X z + X z̄xZ

+ X z̄ X z + X Z xz
]

+ α2
1

[
tr(x2)tr(X2) + tr(X2)tr(x̄2) + 4tr(xX)tr(Xx̄)

+ tr(z2)tr(Z 2) + tr(Z 2)tr(z̄2) + 4tr(zZ)tr(Z z̄)
]

− α2
2

[
tr(xz)tr(X Z) + tr(X Z)tr(x̄z̄) + tr(xZ)tr(x̄Z)

+ tr(X z)tr(X z̄) + tr(xZ)tr(X z̄) + tr(X z)tr(x̄Z)
]

+ tr(xz̄)tr(X Z) + tr(X Z)tr(x̄z) + tr(xZ)tr(x̄Z)

+ tr(X z̄)tr(X z) + tr(xZ)tr(X z) + tr(X z̄)tr(x̄Z)
]

,

(A.2)

and

L(3)/(4π)2 = Nc ξ2tr
[

x̄Z X Z + X z̄X Z + X Z xZ + X Z X z
]

+ 2α2
1

[
tr(Xx)tr(X2) + tr(X2)tr(Xx̄) + tr(Z z)tr(Z 2)

+ tr(Z 2)tr(Z z̄)
]

− α2
2

[
tr(xZ)tr(X Z) + tr(X z)tr(X Z) + tr(X Z)tr(x̄Z)

+ tr(X Z)tr(X z̄) + tr(xZ)tr(X Z) + tr(X z̄)tr(X Z)

+ tr(X Z)tr(x̄Z) + tr(X Z)tr(X z)
]

.

(A.3)
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Using (A.2), we can read the quadratic forms for the excitations X
and Z of the fields at the large-Nc limit. Moving to momentum 
space, on top of the z flat directions x = x̄ = 0, we find

D−1
X = Nc

(
k2 + ξ̃2 z̄ × z 0

0 k2 + ξ̃2 z × z̄

)
,

D−1
Z =

(
Nc k2 2(4πα1)

2tr(z2)

2(4πα1)
2tr(z̄2) Nc k2

)
,

(A.4)

where × denotes the matrix product. The masses of the excitations 
can be easily found from the above by setting k2 = 0. For the X
and X , these correspond to the eigenvalues of the matrices ξ̃2 z̄ × z
and ξ̃2z × z̄, while for Z and Z , the masses are ±2(4πα1)

2√Q . In 
turn, their exact values depend on the choice of the flat directions. 
For instance, if we move along (11)-(12), the X ’s masses are pro-
portional to |v|2ξ̃2 z̄i z j , while the Z ’s are massless. On the other 
hand, for the nilpotent matrices or the configurations with z̄ = 0
while z �= 0, the spectrum of the theory comprises only massless 
excitations, since the eigenvalues of both D−1

X

∣∣∣
k2→0

and D−1
Z

∣∣∣
k2→0

are zero.
Inverting (A.4), we find the corresponding propagator matrices

DX = 1

Nc

( 1
k2+ξ̃2 z̄×z

0

0 1
k2+ξ̃2 z×z̄

)
,

DZ = −1

N2
c k4 − 4(4πα1)4tr(z2)tr(z̄2)

×

×
( −Nck2 2(4πα1)

2tr(z2)

2(4πα1)
2tr(z̄2) −Nck2

)
,

(A.5)

with which we can immediately compute loops. From (A.1)
and (A.3), we can deduce the Feynman rules for the theory; some 
of the vertices associated with the single-trace terms are presented 
in Fig. 1.

Appendix B

To be maximally pedagogic, let us study in some details the 
one-loop diagrams appearing in Fig. 2, for general diagonal flat 
directions. Let us focus on the graph 2(a) coming from the single-
trace term with an insertion of the vev z̄.13 Reading the corre-
sponding vertex from (A.2) and using DX from (A.5), we find that 
the diagram evaluates to

= v̄ ξ̃2
∑

i

z̄i

∫
d4k

(2π)4

1

k2 + ξ̃2 v̄ v z̄i z j

= v̄2 v
(

4πξ2
)2

z j

∑
i

z̄2
i

[
−1

ε̄
+ log

(
ξ̃2 v̄ v

μ2

)
+ log

(
z̄i z j

)]
,

(B.1)

where we introduced 1/ε̄ = 1/ε + 1 − iπ − γE + log(4π), γE ≈
0.5772 is the Euler-Mascheroni constant and μ is the renormal-
ization scale.

For the “compensating” double-trace diagram 2(b), we should 
look at eq. (A.3) and work with the 21-component of the DZ prop-
agator; we obtain

13 This means that we are actually computing the derivative of the one-loop cor-
rection w.r.t. z.
8

= −v̄2v 4(4πα1)
4z j

∑
i

z̄2
i ×

×
∫

d4k

(2π)4

1

k4 − 4(4πα1)
4(v̄ v)2

∑
l,m

z̄2
l z2

m

= v̄2 v
(4πα1)

4

4π2
z j

∑
i

z̄2
i ×

×
⎡
⎣−1

ε̄
+ log

(−2i(4πα1)
2 v̄ v

μ2

)
+ 1

2
log

∑
l,m

z̄2
l z2

m

⎤
⎦ .

(B.2)

Putting the two contributions together and using the one-loop 
value α2

1 = ±iξ2/2, it is straightforward to see that the 1/ε̄ piece 
as well as the logarithms containing μ cancel automatically, as 
it should be in the CFT. Switching back to matrix notation, the 
derivative of the one-loop contribution w.r.t. z reads

∂

∂z
V 1−loop = ξ̃4

(4π)2
z

[
tr(z̄2) log

z√
Q

+ tr

(
z̄2 log

z̄√
Q

)]
, (B.3)

where Q = √
tr(z2) tr(z̄2) was also defined under eq. (14). Inte-

grating the above over z, we readily obtain

V 1−loop =

= ξ̃4

32π2

[
tr(z2)tr

(
z̄2 log

z̄√
Q

)
+ tr(z̄2)tr

(
z2 log

z√
Q

)]
.

(B.4)

Following exactly the same steps for the conjugated diagrams, we 
obtain the derivative of the one-loop contribution w.r.t. z̄

∂

∂ z̄
V 1−loop = ξ̃4

(4π)2
z̄

[
tr(z2) log

z̄√
Q

+ tr

(
z2 log

z√
Q

)]
. (B.5)
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